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Introduction

The characterization of Z/γ∗ + jets production at the Large Hadron Collider,
with the vector boson decaying leptonically, will be one of the goals of early physics
analyses of the Compact Muon Solenoid (CMS) experiment. The rather clear lep-
tonic signature will make these events easy to identify, and the vector boson kine-
matics will be reconstructed with reasonable precision, even with a not perfectly
calibrated detector. These events will be very useful for the calibration of the CMS
calorimetric response, using the balancing of the jets and the recoiling Z boson.
Kinematic observables of the Z boson, such as the transverse momentum pT , will
provide us with a detailed description of the QCD radiation pattern, because the
Z boson recoils against QCD radiation. The distributions of these observables are
expected to be easily reconstructed using the excellent CMS tracking system. Also,
Z/W + jets events represent a background for many new physics searches, such as
Super-Symmetry.

For all these reasons it is extremely important to understand the differences
among the Monte Carlo event generator programs that can produce such kind of
events. In particular, it is crucial to understand the theoretical uncertainties, and
to see how the different approximations used in these programs produce differences
in the observables which can be reconstructed in experiments.

A study on different event generators for the production of Z/γ∗+jets events at
LHC is presented. These generators implement a combined use of fixed order Matrix
Element calculations and all order Parton Shower calculations. We used some of
the most popular programs for hadron collisions simulation: PYTHIA and HERWIG,
which are probably the most widely used event generators in high energy physics;
SHERPA and AlpGen, which are newer programs that implement higher order tree
level corrections for a number of processes.

In this work a description of the different techniques implemented in these event
generators for the simulation of Z/γ∗ + jets events is illustrated. We present three
levels of comparison. First, we compare the above mentioned event generators on
the ground of first order correction for the inclusive Z production. Since all the
generators used are able to take into account the first order tree level correction, they
should give similar results. Then we compare AlpGen and SHERPA including higher
order corrections; we also present comparisons with Z/γ∗ + jets measurements
performed at the Tevatron pp̄ collider. Finally we process AlpGen and SHERPA

events with the CMS detector simulation, to see how detector effects smear the
distributions obtained at generator level, and to see if the differences observed at
generator level are still recognizable in the reconstructed distributions.





Chapter 1

Electroweak physics and QCD at
LHC

In this chapter the Standard Model of Electroweak and Strong interactions
is introduced. The Standard Model [1] is a Quantum Field Theory based on a
SU(3)c ⊗ SU(2)L ⊗ U(1)Y local gauge symmetry. We shall see that the above men-
tioned symmetry can be satisfied only if the fermion fields are massless: this con-
trasts with the experimental observation of massive fermions. A mechanism known
as spontaneous symmetry breaking is used in the Standard Model to provide ele-
mentary particles with mass; this mechanism requires the existence of a new, still
unobserved, field known as Higgs field.

We shall see how the request for a local gauge symmetry and the spontaneous
breaking of the SU(2)L⊗U(1)Y symmetry leads to the prediction of the existence of
the weak gauge bosons Z and W± and how the fermion fields acquire mass through
the interaction with the Higgs field; we will see that the unbroken U(1)em symmetry
is responsible for the electromagnetic interaction mediated by the photon γ; we will
finally include the strong interaction in this picture, through the request of a local
SU(3)c gauge symmetry, that is mediated by eight colored gluons.

Within this framework we shall put into evidence the phenomenology of the
production of Z and W± bosons, as their production rate at LHC will be unprece-
dentedly high, thus allowing very precise measurements.

Unless otherwise stated natural units ~=c=1 are used throughout this work.

1.1 Elementary particles

The Standard Model is built with six spin-1
2

particles called leptons and six
spin-1

2
particles called quarks. They are classified in three generations and there is

no evidence for a fourth generation so far.(
νe
e

) (
νµ
µ

) (
ντ
τ

)
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Ordinary matter consists of leptons and hadrons; hadrons are classified in two
categories: mesons are bound states of a quark and an antiquark, baryons are
bound states of three quarks.

In the Standard Model leptons and quarks interact through three fundamental
interactions mediated by spin-1 bosons:

Strong : mediated by eight gluons g.

Weak : mediated by W+, W−, Z.

Electromagnetic : mediated by the photon γ.

Weak and Electromagnetic interactions are actually two manifestations of the same
fundamental interaction called Electroweak interaction.

1.2 Electroweak Interaction

The theory of Electroweak interaction has been formulated by S.L. Glashow [2],
A. Salam [3] and S. Weinberg [4] as an SU(2) ⊗ U(1) local gauge theory. The
local SU(2) symmetry requires the absence of mass terms for the fermions in the
lagrangian. We shall see how the introduction of the Higgs field and the spontaneous
symmetry breaking mechanism can be used to consistently provide the elementary
fermions with mass.

1.2.1 Electroweak unification

In 1957 the Madame Wu [5] and Garwin-Lederman-Weinrich [6] experiments
confirmed the parity violation for weak charged current interactions. Weak charged
current interactions were proven to prefer final states with left-handed particles or
right handed antiparticles [7]. Already in Fermi’s four fermions theory [8] of weak
charged interactions two conserved currents were identified:

J+
µ = ν̄Lγµ`L, (1.1)

J−µ = ¯̀
LγµνL, (1.2)

where νL and `L are the components of the left handed lepton spinor LL:

LL =
1

2
(1− γ5)

(
ν`
`

)
=

(
ν`L
`L

)
. (1.3)

The Noether theorem states that whenever a lagrangian density is invariant for
global transformations of a symmetry group a conserved current exists for each of
the generators TA of the symmetry group, with form:

ψ̄iγµT
A
ijψj. (1.4)
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Introducing also the SU(2) “up” and “down” operators

τ± =
1

2
(τ1 ± iτ2), (1.5)

(where τi with i = 1, 2, 3 are the Pauli matrices) we can rewrite the J+
µ and J−µ

conserved currents as

J±µ = L̄Lγµτ±LL. (1.6)

In order to complete the SU(2) invariance of the theory a third conserved current
should exist with form

J3
µ = L̄Lγµτ3LL. (1.7)

This current cannot be identified with the neutral current though, because the weak
neutral current involves both left handed and right handed components. Also the
electromagnetic current has both left and right handed components, and it does not
couple with the chargeless neutrino, thus it is not easily connected to J3

µ.
In order to save the SU(2) symmetry, the existence of a new U(1) symmetry

is required, and a new conserved current arises. The new symmetry is known as
hypercharge symmetry and is indicated with U(1)Y . The corresponding conserved
current is

JYµ = ψ̄γµY ψ, (1.8)

where the hypercharge operator Y is

Y = 2(Q− τ3), (1.9)

where Q is the electric charge, and τ3 is the “weak isospin” quantum number,
connected to the SU(2) symmetry. In this way the J3

µ current is preserved, thus
completing the SU(2)L symmetry, where the L subscript denotes the so called weak
isospin quantum number. The electromagnetic current is expressed as a linear
combination of J3

µ and JYµ :

Jemµ = J3
µ +

1

2
JYµ . (1.10)

Eq. (1.10) represents the Electroweak unification, that is the unification of weak
and electromagnetic interaction. In Sec. 1.2.2 we shall see how the weak neutral
current can be expressed as an analogous linear combination. The relevant quantum
numbers of electrons and quarks are summarized in Table 1.1.

1.2.2 Lepton sector

The SU(2)L ⊗ U(1)Y globally invariant electroweak interaction is expressed as
follows:

Llepton
EW = i

3∑
k=1

(
L̄kLγ

µ∂µL
k
L + L̄kRγ

µ∂µL
k
R

)
, (1.11)
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Fermions Quantum Numbers
Qem T T3 Y

(ν`)L 0 1
2

+
1
2

-1
(`)L -1 1

2
-1

2
-1

(`)R -1 0 0 -2
(u)L +

2
3

1
2

+
1
2

+
1
3

(d)L -1
3

1
2

-1
2

+
1
3

(u)R +
2
3

0 0 +
4
3

(d)R -1
3

0 0 -2
3

Table 1.1: Quantum numbers of lepton (`=e, µ, τ) and quark
([u, d]=[u, d], [c, s], [t, b]) helicity states: electric charge Qem in unit of e, weak
isospin T with third axis projection T3 and weak hypercharge Y .

where τµ = (1, τ1, τ2, τ3), LR = `R, because the right-handed neutrino is completely
sterile. In order to switch from global to local SU(2)L ⊗ U(1)Y gauge invariance
we have to introduce covariant derivatives (Dµ) in place of the ordinary derivatives.
Covariant derivatives have the following form:

Dµ =
(
∂µ + ig ~Aµ · ~τ

2
− 1

2
ig′(Y )Bµ

)
, (1.12)

where ~Aµ is a vector of three gauge fields needed to satisfy the local SU(2) symmetry,
while Bµ is the gauge field that guaranties the U(1) local symmetry; g and g′ are
the coupling constants for the gauge fields; Y is a diagonal matrix with hypercharge
values in its diagonal entries. Gauge fields introduced in the covariant derivatives
are accompanied by the following kinetic terms, that need to be introduced in the
lagrangian:

Lboson
EW = −1

4
~Eµν · ~Eµν − 1

4
FµνF

µν , (1.13)

where:
~Eµν = ∂µ ~Aν − ∂ν ~Aµ + g

(
~Aµ × ~Aν

)
,

Fµν = ∂µBν − ∂νBµ.

(1.14)

After inclusion of the covariant derivatives in Eq. (1.11) and after the following
change of variables:

W±
µ =

1√
2

(Aµ1 ∓ iAµ2),

Zµ = cos θWAµ3 − sin θWBµ, (1.15)

Aµ = sin θWAµ3 + cos θWBµ,

(where tan θW = g′

g
defines the Weinberg angle) [9], two interaction terms arise, one

involving vertices with net charge different from zero, that is the already mentioned
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weak charged current interaction Lcc
EW, and one involving vertices with zero net

charge, known as weak neutral current interaction, Lnc
EW:

Lcc
EW =

g√
2
L̄Lγ

µτ+LLW
+
µ +

g√
2
L̄Lγ

µτ−LLW
−
µ

=
g√
2

(
J+µW+

µ + J−µW−
µ

)
, (1.16)

Lnc
EW = −i

(
g sin θWJ

3
µ + g′ cos θW

JYµ
2

)
Aµ

−i
(
g cos θWJ

3
µ − g′ sin θW

JYµ
2

)
Zµ. (1.17)

The first row in Eq. (1.17) represents the electromagnetic part of the neutral current
lagrangian, while the second row is the weak neutral current lagrangian. Thus, we
can introduce the definition of the weak neutral conserved current Jnc

µ :

− i g

cos θW

(
J3
µ − sin2 θWJ

em
µ

)
Zµ = −i g

cos θW
Jnc
µ Z

µ, (1.18)

thus:
Jnc
µ = J3

µ − sin2 θWJ
em
µ . (1.19)

In conclusion, electromagnetic and weak neutral currents can be expressed as
linear combinations of J3

µ and JYµ . We can say that electromagnetism and weak
neutral current are tightly bound and live in between the SU(2)L and the U(1)Y
symmetries of the lagrangian.

1.2.3 Quark sector

Left-handed components of quarks are arranged in weak isospin doublets with
Y = 1

3

QL =

(
UL
DL

)
, (1.20)

and right-handed components are arranged into singlets

UR, Y = +4
3
,

DR, Y = −2
3
,

(1.21)

where U and D are combinations of the mass eigenstates ui = u, c, t and di = d, s, b:

U i
L,R =

∑3
j=1X(U ij

L,R)ujL,R,

Di
L,R =

∑3
j=1X(Dij

L,R)djL,R,
(1.22)

where X(U,D)L,R are 3 × 3 matrices related to the Cabibbo-Kobayashi-Maskawa
quark mixing matrix [10].
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The expression of the quark sector electroweak lagrangian closely follows the
one for leptons (Eq. (1.11)):

Lquark
EW = i

3∑
i=1

(
Q̄i
Lγ

µDµQi
L + Ū i

Rγ
µDµU i

R + D̄i
Rγ

µDµDi
R

)
(1.23)

with Dµ from Eq. (1.12).

1.3 Higgs field and electroweak interaction medi-

ators

Lagrangian densities described by Eqs. (1.11) and (1.23) do not contain mass
terms for the fermions. This is in striking contrast with what is observed experi-
mentally; a mass term in such lagrangian densities would break the SU(2)L×U(1)Y
gauge symmetry, that is so effective in reproducing the observed electroweak cur-
rents.

This problem can be overcome enlarging the particle content of the Standard
Model, introducing new fields, known as Higgs fields, organized in doublets, whose
potential is invariant under SU(2)L × U(1)Y local gauge transformations.

The Higgs field lagrangian, in its global gauge invariant form, is written as

LHiggs = (∂µφ
†)(∂µφ)− µ2φ†φ− λ(φ†φ)2, (1.24)

where φ is a spin-1
2

spinor, µ is a complex parameter and λ is a real positive
parameter. The corresponding hamiltonian density H is:

H = (∂µφ
†)(∂µφ) + V (1.25)

where the potential V reads:

V = µ2φ†φ+ λ(φ†φ)2. (1.26)

The fundamental state of the system is obtained through the minimization of the
potential V . If µ2 > 0 the fundamental state is φ = 0 and it preserves all the
symmetries of the lagrangian. If µ2 < 0, the derivative of the potential with respect
to φ†φ leads to the following minimum condition:

µ2 + 2λφ†φ = 0 (1.27)

Eq. (1.27) can be satisfied in infinite different ways because a global SU(2)⊗ U(1)
transformation leaves the φ†φ product unaffected.

The lagrangian of Eq. (1.24) is not invariant under local SU(2)⊗U(1) transfor-
mations because the derivatives do not transform linearly under a transformation
depending on xµ. In order to achieve the local SU(2) ⊗ U(1) gauge invariance we
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have to replace the ordinary derivatives with covariant derivatives (Dµ); the co-
variant derivatives are built in such a way that they transform linearly under an
SU(2)⊗ U(1) transformation

Dµφ→ UDµφ. (1.28)

This can be achieved through the introduction of new fields (gauge fields); in this
case the covariant derivative reads:

Dµ = ∂µ + ig ~Aµ · ~τ
2

+
1

2
ig′Bµ. (1.29)

The Higgs lagrangian, SU(2)⊗ U(1) locally invariant by construction, is:

LHiggs = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 − 1

4
~Eµν · ~Eµν − 1

4
FµνF

µν , (1.30)

where ~Eµν and Fµν are defined in Eq. (1.14); the gauge fields kinetic terms are
included in Eq. (1.30) as well.

As in the globally invariant version of the lagrangian, if µ2 < 0 a degenerate
fundamental state is found. By choosing a particular vacuum state we break the
symmetry. We shall choose a fundamental state with form

φ0 =

(
0

η

)
, η =

√
−µ

2

2λ
. (1.31)

Let’s apply an x dependent perturbation to the vacuum state:

φ =

(
0

η + σ(x)√
2

)
. (1.32)

Expanding the lagrangian density in Eq. (1.30) around the ground state and using
Eq. (1.15) the following expression for the lagrangian density is obtained:

LHiggs =
1

2
∂µσ∂

µσ + µ2σ2 +

−1

4
AµνA

µν +

−1

4
(W+†

µνW
µν+ +W−†

µνW
µν−) +

g2η2

4
(W+†

µ W µ+ +W−†
µ W µ−) +

−1

4
ZµνZ

µν +
g2η2

4 cos2 θW
ZµZ

µ +

+interaction terms, (1.33)

where Aµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ and so on.
The first line in Eq. (1.33) represents the Higgs boson scalar fields, with mass√−2µ2; the second line represents a massless field identified with the electromag-

netic field; the third line represents W± fields, with mass gη/
√

2; finally, the fourth
line represents the Z field with mass gη/(

√
2 cos θW ).
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1.3.1 Fermion mass terms

We shall now see how mass terms for the fermions can arise through the in-
teraction with the Higgs field, without breaking the SU(2)L ⊗ U(1)Y symmetry.
Introducing an interaction term of the fermions with the Higgs field, in the con-
text of spontaneous symmetry breaking, makes it possible to assign masses to the
fermions. This can be done via a Yukawa coupling with coupling constant Gf with
form:

Lfermion
mass = −Gf

(
F̄LφFR + F̄Rφ

†FL

)
, (1.34)

where FL and FR are fermion’s helicity eigenstates.

For the leptons Eq. (1.34) reads:

Llepton
imass = −G`

(
L̄LφLR + L̄Rφ

†LL

)
, (1.35)

which can be divided in two terms using Eq. (1.32) for the Higgs field and Eq. (1.3).

Llepton
mass = −G`η

(
¯̀
L`R + ¯̀

R`L

)
− G`√

2

(
¯̀
L`R + ¯̀

R`L

)
σ(x), (1.36)

G` being the Yukawa coupling constant for the lepton family.

The mass term for the lepton is then:

m` = G`η. (1.37)

1.4 Strong interactions

Out of the quark model proposed by Gell-Mann [11] in 1964, the idea of the
“colour” quantum number was proposed by Han and Nambu [12] in 1965 to avoid
the apparent paradox that the quark model seemed to require a violation of the Pauli
exclusion principle to describe hadron spectroscopy. Quantum Chromo Dynamics
(QCD) was then quantized as a gauge theory with SU(3)c symmetry in 1973 by
Fritzsch [13], Gross and Wilczec [14], Weinberg [15].

QCD coupling constant ranges over several orders of magnitude when moving
from hard, i.e. large momentum transfer processes, to soft processes. Its value grows
as the momentum transfer decreases. This effect is known as asymptotic freedom,
and it justifies the use of perturbation theory (perturbative QCD or pQCD) when
describing hard processes. At small energies (large distances), where the value of
the coupling constant becomes large, the theory behaves in a non-perturbative way;
in such a regime the isolated quark or gluon cross sections vanish and are replaced
by bound state dynamics. This effect is known as “confinement” and it justifies the
non-observation of free quarks and gluons.
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1.4.1 QCD lagrangian

QCD is an SU(3)c gauge theory whose lagrangian is written in the following
form:

LQCD = Linvar + Lgauge fix + Lghost (1.38)

Linvar is invariant under local SU(3)c transformations and reads:

Linvar =
∑
f

ψ̄f
(
iγµDµ −mf

)
ψf − 1

4
FµνF

µν (1.39)

where f runs over the six quark fields, Dµ is the covariant derivative:

Dµ = ∂µ + igAµaTa (1.40)

and
Fµν = ∂µAνa − ∂νAµa − gCabcAµbAνc (1.41)

where Aµa are the fields of the eight colored gluons, Ta are the eight generators of
SU(3), Cabc are the structure constants that define the commutation rules of the
SU(3) generators.
Lgauge fix and Lghost in Eq. (1.38) are needed for technical reasons connected to

how the quantization of the QCD lagrangian is performed [16].

1.4.2 UV divergences and renormalization

As many theories QCD suffers from divergent loop integrals. This ultraviolet
(UV) divergences need to be regulated so that cross sections can be calculated. We
shall now see how the regularization takes place and how a theory with an arbitrary
parameter (the regularization parameter) can be predictive.

When treating loop diagrams (Fig. 1.1) integrals of the following form are in-
volved:

Γun(p) =

∫
d4k

(2π)4

1

(k2 −M2(p))2
(1.42)

where M(p) is a function of the incoming momentum.
The divergent integral is replaced by a finite one by limiting the momentum in

the loop to a cutoff µ. In this way the divergent integral becomes:

Γun(p)→ Γren(p, µ) = − i

(4π)2
ln
(M2(p)

µ2

)
(1.43)

fafnfaf

Figure 1.1: A loop diagram.
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A question may arise on how predictive a theory can be if it depends on an
arbitrary parameter. Suppose that we want to measure a physical observable O(p),
where p is a set of momenta, and we have a theoretical expression of O, which relies
on a coupling g(µ) through a perturbation series with coefficients ai(p, µ),

O(p) =
N∑
i=0

ai(p, µ)g(µ)2i, (1.44)

where N is the highest order in perturbation theory that we were able to compute.
All we have to do is to measureO, fix µ to whatever value we like and solve Eq. (1.44)
to find g(µ). At this point, at the price of one measurement, we can predict O for
every other value of p.

Of course, since O is a physical quantity it cannot depend on the choice of µ.
As we shall see in the next section to require that O does not depend on µ defines
the “running” of the strong coupling constant.

1.4.3 Running αS: asymptotic freedom and confinement

Let’s consider a physical observable O, whose value depends on a scale Q, e.g.
the momentum transfer in a scattering process. As pointed above when we calculate
O as a series in the coupling constant αS we need to introduce a renormalization
scale µ, to make integrals calculable. In general, O is a function of Q2/µ2, and of
αS itself. To require that O does not depend on our choice of µ is equivalent to the
following equation:

µ2 dO(Q2/µ2, αS(µ2))

dµ2
= 0. (1.45)

It can be shown [17] that solutions of Eq. (1.45) have form O(1, αS(Q2)), which
means that the whole scale dependence of the observable O is embedded in the
running value of the coupling constant.

This means that O can be calculated at a fixed order in perturbation theory and
the running of αS predicts how O changes with the scale.

The perturbative expansion of αS is such that

dαS(Q2)

dQ2
< 0, (1.46)

which means that the value of the coupling constant decreases at higher scales.
This is one of the most peculiar characteristics of QCD with respect to QED, where
exactly the opposite holds. In QED the coupling decreases with decreasing scales
and increasing distances. This is intuitively interpreted as a screening of the bare
electric charge due to fermion loops, and is anyway quite a little effect. On the
contrary in QCD the value of the coupling constant is tiny at high energies (small
distances) and becomes very big as the scale decreases.
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The fact that the coupling constant is small at high energies is often referred
to as asymptotic freedom, and it justifies the success of the perturbative approach
(pQCD) in describing hard processes.

On the other hand the fact that the coupling becomes so strong as the distance
grows justifies the confinement, that is to say the fact that in our experiments we
always observe bound quark states, and never free quarks or gluons; qualitatively,
this happens because as the partons produced in the hard interactions go apart
from each other it becomes easier to produce quark antiquark pairs, that recombine
into hadrons, than to keep pulling against a growing force.

The expression of αS(Q2) follows [16]:

αS(Q2)

4π
=

1

β1 ln(Q2/Λ2
QCD)

− β2 ln(ln(Q2/Λ2
QCD))

β3
1 ln2(ln(Q2/Λ2

QCD))
+O

( 1

ln3(ln(Q2/Λ2
QCD))

)
(1.47)

with β functions defined in [16]. ΛQCD is often regarded as the parameter at which
the interaction becomes strong.

Experiments usually measure αS at a certain scale, usually the mass of the Z
boson; Eq. (1.47) then predicts the value of αS at any other scale. A recent review
of αS measurements at the Z mass for different processes is shown in Fig. 1.2.

The running of αS as measured in experiments is shown in Fig. 1.3.

Figure 1.2: A recent summary of αS measurements [18].
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Figure 1.3: Running of αS [18]. αS values are plotted as a function of the scale
at which they were measures. Dotted line is the best fit. ±1σ solid lines are also
shown.

1.4.4 Infrared and collinear safe observables

One of the most remarkable successes of pQCD is the prediction of jet inclusive
cross section in e+e− collisions. Jets are collimated sprays of hadrons. Even if
hadrons are the result of a non perturbative process involving the quarks and gluons
produced in the hard process, pQCD is very good at predicting jet cross section.
The reason is that quarks and gluons are produced in the “bulk” of the process,
and involve a high momentum transfer. Quarks and gluons originated in the hard
process then undergo the non-perturbative hadronization process, but this happens
at much lower energies (and much higher distances). Hadronization happens too
late to modify substantially the topology of the event. This is an example of the
“factorization” properties of QCD cross section calculation that we will see in the
next section.

Let’s consider the e+e− collider case. The lowest order process contributing to
the inclusive jet cross section is e+e− → qq̄, with a γ or a Z boson exchanged in
the s-channel. The leading order cross section, in case of γ exchange is [17]

dσ

d cos θ
= 3

∑
q

πα2Q2
q

2s
(1 + cos2 θ), (1.48)

where θ is the emission angle of the q line with respect to the direction along the
beams, Qq is the charge of the quark and s is the squared center of mass energy.
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When moving to the next to leading order we have to account for possible addi-
tional gluon emission out of the quark or antiquark lines. The corresponding cross
section, considering quarks and gluons on the mass shell, is conveniently expressed
if we introduce energy fractions xi

xi =
2Ei√
s
, i = q, q̄, g. (1.49)

With this notation the cross section for emission of an additional gluon is

dσ

dx1dx2

∝ αS
x2

1 + x2
2

(1− x1)(1− x2)
. (1.50)

Since 1−x1 = x2E3(1− cos θ2,3)/
√
s and 1−x2 = x1E3(1− cos θ1,3)/

√
s, where 1, 2

denote q and q̄ respectively, and 3 denotes the gluon, Eq. (1.50) is divergent when
either the gluon is soft or when it is collinear with the line from which it originates.

These divergences are not of course physical, but only due to the fact that we
have considered only next to leading order real emission contributions. The recipe
to cure these divergences is to use a regularization procedure, introducing a cutoff:
in this way divergences are replaced with large logarithms, function of the cutoff.
Then, taking into account also the virtual diagrams completely cancels divergences
at NLO.

Divergences like the ones encountered here always arise whenever we add a real
emission line. If a quantity is free of such divergences it is called a soft-collinear safe
quantity. To make it possible to compare observables measured from experiments
with theoretical prediction it is important to define observables in a soft-collinear
safe fashion.

An observable O(p1, pN) function of N measured momenta pi is soft safe if

O(p1, . . . , pN) = O(p1, . . . , pN , ε), where ε2 is small, (1.51)

and is collinear safe if

O(p1, . . . , pi, . . . , pN) = O(p1, . . . , pi1, pi2, . . . , pN), where pi1 + pi2 = pi. (1.52)

For what concerns jets, a soft-collinear safe jet measure has to be such that the
number of jets in an event must remain unchanged if a soft particle is added or if
the four-momentum of a particle is split into two. An example of such a measure for
e+e− collisions is the JADE [19] jet measure. When running on an N particle final
state the JADE algorithm identifies two particles i, j as two jets if their invariant
mass Mij is such that:

M2
ij

s
> ycut (1.53)

where
√
s is the center of mass energy, and ycut is a cut chosen according to the user

needs. If two particles do not satisfy Eq. (1.53) they are recombined into a single
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object summing their four-momenta, and the algorithm is repeated with the new
object.

In case of massless particles Eq. (1.53) reduces to

M2
ij

s
=

2EiEj(1− cos θij)

s
> ycut (1.54)

where Ei and Ej are the energies of particle i and j respectively, and θij is the angle
between the two. From Eq. (1.54) it is clear that the regions of soft divergences
(Ei,j → 0) and the regions of collinear divergences (θij → 0) are cut away.

A variant of the JADE algorithm that is often used in hadron collision, and that
shares with JADE the soft and collinear safety is the longitudinally invariant kt al-
gorithm. In this algorithm, originally proposed in [20], two distances are calculated
for a set of N particles:

diB ≡ p2
T,i (1.55)

and

dij ≡ min{p2
T,i, p

2
T,j}
(∆R2

D2

)
(1.56)

where pT,i is the transverse momentum of particle i, ∆R2 = ∆y2 + ∆φ2 (y is the
particle rapidity, φ the azimuthal angle) and D is a parameter, usually of the order
of 1.

A cut value dcut is chosen and particles with dij < dcut are recombined summing
their four-momenta (also other recombination techniques can be used). Particles
with diB < dcut belong to the so called beam-jets, and are removed from the list.
The procedure is iterated until all the diB and dij are above dcut. This version of
the kt algorithm is often referred to as the exclusive kt algorithm.

An inclusive variant [21] exists in which no dcut is present. In the inclusive kt
algorithm the values of diB and dij are ordered from the minimum to the maximum
and a dmin is found. If dmin if of type diB then i is removed from the list and
assigned to the list of jets. If dmin is of type dij then i and j are recombined in
a pseudo-jet. The procedure is repeated until no pseudo-jets remain. In this way
it is guaranteed that final jets will be separated in angle by at least D (defined in
Eq. (1.56)).

It is worth noticing that the inclusive k⊥ algorithm as presented above is soft
unsafe, because a soft particle well separated from anything else would give rise to
an additional jet. When running the k⊥ algorithm in inclusive mode a minimum
pT cut for jets needs to be applied to recover soft safety.

The k⊥ algorithm is not the only way to build jets. In many studies and exper-
iments cone algorithms were extensively used.

While in k⊥ algorithm jets are built in an iterative way, progressively recom-
bining particles, cone algorithms are not based on progressive recombination tech-
niques; the basic idea of most of cone algorithms is to identify “seed” directions,
along high pT particles and draw cones with fixed radius around these directions.



1.4 Strong interactions 15

The position of each cone, and thus its particle content, is then adjusted according
to the particle content until a “stable cone” is found, that is a cone whose position is
stable. Stable cones are then turned into jets: this is done with different techniques
in the various cone algorithm available; what changes is mainly the way in which
overlapping cones are treated.

Most cone jet clustering algorithms (like for example JetClu, MidPoint [21])
suffer from infrared or collinear unsafety due to the use of seeds to start the search
of stable cones.

In a nutshell, the reason why the use of seeds makes these algorithms unsafe, is
that the algorithms always starts from the hardest seed and then proceeds towards
the softest. If a particle used as seed is replaced with a collinear pair it may not be
a seed anymore. It can be shown that this leads to a different sets of final jets, thus
confirming the collinear unsafety of the algorithm (details can be found in [22]).

Figure 1.4: Failure rate in an infrared safety test for various cone algorithms.

Only seedless implementation of cone algorithms, like SISCone [22] proved to be
infrared and collinear safe. Fig. 1.4 shows the failure rate of several cone algorithms
in a infrared safety test in which soft particles were added randomly to the initial
set of particles.
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1.4.5 Factorization theorems: Parton density functions

The cross section for a 2 → N process at an hadronic collider is conveniently
expressed as

dσpp→N =

∫ 1

0

dx1

∫ 1

0

dx2f1(x1, µ
2
F )f2(x2, µ

2
F )dσ̂pp→N(µ2

F ) (1.57)

In this expression σ̂ is the parton level cross section, x1 and x2 are the momentum
fraction of the proton momentum carried by the two colliding partons; f1,2 are the
parton density functions (PDFs), that describe the probability that a parton carries
momentum fraction x1,2; µF is the factorization scale, that is the scale at which the
separation between the hard perturbative interaction and the long distance, non-
perturbative, evolution of the produced partons takes place.

The PDFs for quarks and gluons at a scale µ2=10 GeV2 scale as calculated by
the MRST [23] collaboration in 2004 are shown in Fig. 1.5.

PDFs evolution with scale is governed by the DGLAP equation [24], as long as
αS(Q) remains in the perturbative validity region. DGLAP equation allows global
fits of a variety of data taken from different experiments, at different scales. Two
collaborations are the main provider of global PDFs fits, CTEQ [25] and MRST [23].

Figure 1.5: Distribution of xf(x) as a function of the momentum fraction x at
µ2=10 GeV2 for different partons [18].



Chapter 2

The CMS experiment at LHC

The Large Hadron Collider (LHC) [26] is the most powerful hadron collider
running in the next two decades. Its installation has finished in July 2008. LHC
will investigate processes with really tiny cross sections, down to the femtobarn.
The main reason that drove the choice of a hadron collider instead of an electron
collider like LEP [27–29] was the need to build a machine capable of reaching center
of mass energies much higher than LEP, to be housed in the LEP tunnel. This can
be achieved with a hadron machine thanks to the lower amount of synchrotron
radiation emitted by circulating hadrons. Hadron colliders, despite the production
of many low energy particles in a complex environment if compared to electron-
positron events, provide access to a wider energy spectrum, which in addition can
be explored simultaneously.

In this chapter I will briefly review the main characteristics of the LHC and I
will describe the LHC experiment I am involved in, the Compact Muon Solenoid
(CMS) [30].

2.1 The Large Hadron Collider

The LHC accelerator has been installed in the underground tunnel which housed
the LEP electron-positron collider until 2000. A schematic description of the LHC
accelerator complex and its services is shown in Fig. 2.1. LHC will have two counter
circulating proton beams, accelerated at 7 TeV in a 27 km ring, resulting in a total
center of mass energy of 14 TeV. The two beams will collide in four interaction
points; four experiments are built around the interaction points. Two general pur-
pose experiments, called ATLAS [31] and CMS [30], will do general Standard Model
measurements and will seek new physics; one experiment called LHCb [32] is ded-
icated to the B meson physics and it will carry out precise measurements of CP
violation; one experiment called ALICE [33] will investigate heavy ion physics (Pb
ions will be accelerated in a later phase of LHC operation).

LHC can be regarded as a discovery machine with an extremely wide energy
dynamic range, being able to investigate mass scales from order of few GeV, as
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Figure 2.1: The LHC accelerator complex. The location of the experiments along
the ring is indicated.

in the case of B-meson physics, up to a few TeV, for the discovery of new vector
bosons or quark compositeness.

In order to extend the LHC capability to explore new physics rare processes an
enormous effort has been made to raise the proton momentum as much as possi-
ble. In particular, a very sophisticated magnet system is needed to keep such high
momentum protons in the machine orbit. The formula that connects the bending
radius with the particle’s momentum and the magnetic field is:

B[T] =
p[ GeV]

0.3ρ[m]
(2.1)

where B is the magnetic field in Tesla, p the momentum in GeV, ρ the orbit radius
in metres. For a circumference of about 27 km, the magnetic field needed for 7
TeV protons is about 5.4 T. Actually, since LHC is made of curved and rectilinear
sections, the bending magnetic superconductor dipoles need to produce an 8.3 T
magnetic field. This value is close to the technological edge for superconducting
magnets nowadays.

Since the beam energy is limited by the bending power of the magnetic system
and by the circumference of the machine, another handle to raise the rate of inter-
esting and rare events is the luminosity L. The event rate n for a process with cross
section σ is

n = Lσ (2.2)
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The luminosity is connected to the beam properties with the following approxi-
mated formula [18]:

L = f
n1n2

4πσxσy
(2.3)

where n1 and n2 are the number of particles in beam 1 and 2 respectively, f is the
collision frequency, σx and σy are transverse dimensions of the beams. The proton
bunches at LHC will collide at a frequency of about 40 MHz, corresponding to a
spatial separation between bunches of about 7.5 m. The frequency cannot be raised
further, because of the limiting requirement of avoiding further collisions on the side
of each interaction region. The transverse dimensions of the beam can be squeezed
down to 15 µm.

In the startup period (the first six months of operation approximately) the
luminosity will be 2 × 1032 cm−2s−1. The luminosity will then be raised gradually
to 1× 1033 cm−2s−1. In this condition an integrated luminosity of 6 fb−1 should be
collected during 2009. The luminosity will be gradually raised, and it will reach
about 1× 1034 cm−2s−1 in 2012. The total integrated luminosity in 2012 should be
about 100 fb−1. In 2016 a luminosity of 3×1034 cm−2s−1 is foreseen. The integrated
luminosity at this point is expected to be about 650 fb−1.

The need for such a high luminosity has driven the choice of a proton-proton
collider, instead of a proton-antiproton. In fact, even if a proton-antiproton machine
has the advantage that both beams can be kept in the same beam-pipe, to produce
the number of antiprotons needed to reach the desired luminosity is an unfeasible
task. Table 2.1 describes the main design characteristics of LHC.

In the hard proton proton collision, with high transferred momentum, the center
of mass energy

√
ŝ is connected to the total center of mass energy

√
s as:

√
ŝ =
√
x1x2s (2.4)

where x1 and x2 are the energy fractions of the two partons participating in the
hard scattering.

The center of mass of the two hardly interacting partons is not motionless in the
experiment frame, but rather it is on average boosted along the direction defined by
the colliding beams. For this reason boost invariant observables ave very important
to characterize the event. One of such observables is the transverse momentum pT ,
defined as the projection of the momentum vector on a plane perpendicular to the
beam axis.

Another useful observable is the rapidity y

y =
1

2
ln
E + pz
E − pz = tanh−1

(pz
E

)
(2.5)

where E is the particle’s energy, pz the projection of particle’s momentum along
the beam direction. Under a boost along z with speed β, y undergoes the following
transformation: y → y− tanh−1 β, hence rapidity differences are invariant, thus the
shape of the rapidity distribution dN/dy is invariant.
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Circumference 26.659 km
Maximum Dipole field 8.33 T
Magnetic Temperature 1.9 K

p− p 82
208Pb- 82

208Pb

Beam energy at injection 450 GeV 73.8 TeV
Beam energy at collision 7 TeV 574 TeV(2.76 A TeV)
Maximum Luminosity 1×1034 cm−2s−1 2×1027 cm−2s−1

Number of Bunches 2 808 608
Bunch spacing 7.48 cm 5.3 cm
Bunch separation 24.95 ns 124.75 ns
Number of particles per bunch 1.1×1011 8×107

Total crossing angle 300 µrad <100 µrad
Bunch Length (r.m.s.) 7.5 cm 7.5 cm
Transverse beam size at Impact Point 15 µm 15 µm
Luminosity lifetime 10 h 4.2 h
Filling time per ring 4.3 min 9.8 min
Energy loss per turn 7 keV
Total radiated power per beam 3.8 kW
Stored energy per beam 350 MJ

Table 2.1: Technical parameters of LHC for p-p and Pb-Pb collisions.

In the ultrarelativistic approximation the rapidity y is the same as the pseudo-
rapidity η defined as

η = − ln
(

tan
θ

2

)
(2.6)

It’s often useful to refer to pseudorapidity as it depends only on the direction of the
three-vector.

2.2 The CMS detector

The Compact Muon Solenoid experiment (CMS) [30] is a general purpose LHC
experiment. Its main feature is the 4T superconducting solenoidal magnet; such a
strong magnetic field permits a compact design of the apparatus. The main design
priorities of CMS were a redundant muon tracking system, a good electromagnetic
calorimeter and a high quality inner tracking system.

The structure of CMS is typical for general purpose collider detectors. It con-
sists of several cylindrical detecting layers, coaxial with the beam direction (barrel
region), closed at both ends with disks (endcap region).

Figs. 2.2 and 2.3 show two schematic views of the CMS detector, that has a full
length of 21.6 m, a diameter of 15 m, and a total weight of 14500 tons.
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The coordinate frame used in CMS is a right-handed tern, with the x axis
pointing towards the LHC centre, y axis directed upward along the vertical and
z axis along the beam direction with the direction required to complete the right-
handed tern. The cylindrical symmetry of CMS design and the invariant description
of proton-proton physics suggest the use of a pseudo-angular reference frame, given
by the triplet (r, φ, η), where r is the distance from the z axis, φ is the azimuthal
angle, measured starting from the x axis positive direction, η is defined in Eq. (2.6)
(where θ is the polar angle).

Figure 2.2: A view of the CMS detector with its subdetectors labeled.

CMS is made up of four main subdetectors:

• Silicon Tracker: it is made of a Silicon Pixel vertex detector and a surrounding
Silicon Microstrip detector, with a total active area of about 215 m2. It is
used to reconstruct charged particle tracks and vertices.

• ECAL: it is an electromagnetic calorimeter to precisely measure electrons and
photons.

• HCAL: it is a hadronic calorimeter for jet direction and energy measurement.

• Muon System: it is a composite tracking system for muons. It consists of
Cathode Strip Chambers (CSC) in the barrel region and Drift Tube (DT) in
the endcaps. A complementary system of Resistive Plate Chambers (RPC) is
used both in the barrel and in the endcaps.
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Figure 2.3: A transverse view of the CMS detector.

The Silicon Tracker, ECAL and HCAL are located inside the magnetic coil. Muon
Chambers are located in the magnet return yoke. In the following sections a brief
description of each component is given.

2.2.1 Magnet

CMS magnet [34] is the biggest superconducting magnet ever built. It is able to
generate a 4T magnetic field in a huge volume. The magnet is made of five modules,
6 m diameter, 2.5 m length, 50 tons weight each. Spires in each module are made
of a Niobium-Titanium compound, which has superconducting properties, and they
are kept at 4K during operation with a liquid helium cooling system. A current of
20 kA flows in the spires during operation.

A 12000 tons weight iron yoke is built around the magnet to bridle the magnetic
field lines. The yoke consists of a barrel region, made of five rings, and two endcaps
consisting of three disks each.

Thanks to the intense strength of the field, a precise measurement of charged
particles momenta is possible. Besides, the field in the return yoke, where muon
chambers are located, permits an independent measure of muons momentum.
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2.2.2 Tracker

The Silicon Tracker [35, 36] is the CMS innermost detector. It consists of a
Silicon Pixel detector and a surrounding Silicon Microstrip detector.

It covers the region |η| < 2.4, r < 120 cm. Its goal is to provide a precise
momentum estimate for charged particles, and to allow a precise determination of
the position of secondary vertices. LHC events will be very complex, and track
reconstruction comes as a complex pattern recognition problem. In order to ease
pattern recognition two requirements are fundamental:

• low detector occupancy,

• large hit redundancy.

The low hit occupancy is achieved with a highly granular detector, while the re-
dundancy is achieved with a large number of detecting layers.

The pixel detector is made of three barrel layers and two endcap disks per side
(Fig. 2.4). The overall number of readout channels is about 60 millions and it covers
the region with 4.4 cm < r < 10.2 cm, |z| < 47 cm. The high granularity of the
detector permits an efficient separation of different track segments.

The Silicon Strip Tracker (SST) is made of ten barrel layers and twelve endcap
disks on each side. It has about 10 millions readout channels. The main components
of the SST are shown in Fig. 2.5. As indicated in Fig. 2.5 some of the layers are
equipped with single sided detectors, some with double sided detectors. Single
sided detectors can provide the particle’s impact point position in the direction
perpendicular to the strips. Double sided detectors can provide both coordinates
on the detector surface, as they are made with two single sided detectors glued
back-to-back with an angle of 100 mrad between the strips directions. Inner layers

Figure 2.4: A schematic view of the pixel vertex detector.
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Figure 2.5: An r − z schematic view of a sector of the Silicon Strip Tracker. The
location of single sided and double sided detectors is put into evidence.

are equipped with 300 µm thick sensors, while outer layers are equipped with 500
µm thick sensors.

The high flux of radiation through the tracker sensors causes damages. Pixel
and microstrip detectors and readout electronics are radiation hard. Nevertheless,
the pixel detector, which is exposed to the highest flux per unit area, will need to be
replaced at least once during LHC lifetime. In order to limit the effect of radiation
damage on sensor performances the tracker is operated at low temperature (-10◦C).

The CMS tracker has to fulfill the following requirements:

• Isolated lepton reconstruction efficiency close to 100% within |η| < 2. Fig. 2.6(a)
shows the reconstruction efficiency for single muon events.

• Transverse momentum resolution better than 4% within |η| < 2. Fig. 2.6 (b)

(a) (b)

Figure 2.6: (a) Reconstruction efficiency and (b) momentum resolution for single
muons with pT=1, 10, 100 GeV.
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shows the momentum resolution for single muons.

• Tagging and reconstruction for b jets.

The material budget in the tracker has to be as limited as possible, as the
electron energy loss due to bremsstrahlung and nuclear interactions of hadrons need
to be kept as low as possible. This is needed not to spoil tracking performances
and to keep the number of photons that get converted into an e+e− pair through
interaction with the material as low as possible. The tracker depth in terms of
radiation length X/X0

1 and in terms of interaction length λ/λ0
2 as obtained from

the full simulation of the tracker is shown in Fig. 2.7 as a function of η. The material
budget is higher in the region 1 < |η| < 2 due to the presence of cables and services
in this region.
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Figure 2.7: (a) Radiation length and (b) interaction length of the tracker as a
function of η. Contributions from different components are put into evidence.

2.2.3 Electromagnetic calorimeter

The CMS electromagnetic calorimeter [37,38] is a highly segmented calorimeter,
with excellent energy resolution, whose design was prompted by the possibility to
observe Higgs decay into two photons. Since the intrinsic Higgs width in the region
mH < 140 GeV is of the order of 100 MeV, the width of the reconstructed γγ

1X0 is the distance over which a high energy electron reduces its energy to a fraction 1/e of
the initial energy.

2λ0 is the mean free path of a hadron before having an interaction when traversing a material.
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invariant mass spectrum will be dominated by experimental resolution. Thus, an
electromagnetic calorimeter with resolution of order 1% is needed.

ECAL is made of lead tungstate (PbWO4) crystals. Lead tungstate is a radiation
resistant scintillating material; radiation robustness was a key design requirement,
because the absorbed dose per hour in high luminosity condition will range from
0.18 Gy/h at η=0, to 15 Gy/h at η=3.

Because of its high density (8.28 g/ cm2), lead tungstate has a short radiation
length X0=8.9 mm. Such a short radiation length permitted a very compact design
that made it possible to fit the calorimeter inside the magnetic coil, thus limiting
the non-sensitive material traversed by electrons and photons. Another advantage
of lead tungstate is the small Molière radius3 (2.2 cm) and the fast scintillation
decay time τ=10 ns that permits the collection of about 80% of the produced light
in the 25 ns interval between two bunch crossings.

The main drawbacks of PbWO4 are the low light yield (100 photons/ MeV) and
the strong dependency of the response on the operating temperature, that makes it
necessary to operate the crystals at stabilized temperature (18◦C).

As shown in Fig. 2.8, ECAL is subdivided into a barrel region covering |η| <
1.48, and two endcap regions covering 1.48 < |η| < 3.0.

y

z

Preshower (SE)

Barrel ECAL (EB)

Endcap

η = 1
.653

η = 
1.47

9

η = 2.6
η = 3.0 ECAL (EE)

Figure 2.8: A schematic representation of a quadrant of ECAL.

Crystals in the barrel region are tapered shaped, with a 2.2 cm×2.2 cm front
face and 23 cm length, and they are positioned at a radius of 1.24 m. The ∆η×∆φ
granularity in the barrel is 0.0175×0.0175. The depth in radiation lengths in the
barrel region is about 26 X0. Crystal with a 3 cm×3 cm front face, 22 cm long (24.7
X0) are used in the endcaps. The ∆η×∆φ granularity in the endcaps is 0.05×0.05.

The reduced depth in radiation length and the larger granularity in the endcaps
with respect to the barrel are partially compensated with a preshower detector
placed in front of the endcaps. Each preshower is made of two lead radiators and

3The Molière radius characterizes the transverse dimension of the electromagnetic shower evolv-
ing in a calorimeter.
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two planes of silicon microstrip detectors. The preshower will improve π0 rejection
power in the forward region.

Barrel region crystals are read with avalanche photodiodes, APD. ECAL APDs
are able to operate in the magnetic field and can cope with the low light yield
of the crystals. Each crystal is equipped with two APDs that produce a total of
about 4000 photoelectrons per GeV of deposited energy. In the endcaps, because
of the higher irradiation level, APDs would suffer from high leakage current, thus
the forward crystals are readout with vacuum photodiodes (VPD) [39].

In the range 25 GeV < E < 500 GeV, the energy resolution σE is(σE
E

)2

=
( a√

E

)2

+
( b
E

)2

+ c2, (2.7)

where:

• a is 2.7% GeV1/2 in the barrel and 5.7% GeV1/2 in the endcaps. It is a stochas-
tic term, and it is determined by the photoelectrons statistic;

• b is 155 MeV in the barrel and 200 MeV in the endcaps. It is determined by
electronic noise and pileup;

• c is 0.55% both in the barrel and in the endcaps. It is related to the longitu-
dinal shower evolution containment, the uniformity of the light collection in
the crystals and the precision of the inter-calibration between crystals.

2.2.4 Hadron calorimeter

The CMS hadron calorimeter (HCAL) [40] is used together with ECAL to mea-
sure energy and direction of jets, the transverse energy ET and the imbalance in
transverse energy Emiss

T . It provides good segmentation, moderate energy resolution
and angular coverage up to |η| < 5.

HCAL is made of four subdetectors (Fig. 2.9):

• the Barrel Hadronic Calorimeter (HB) is placed inside the magnetic coil and
it covers the central pseudorapidity region, up to |η| = 1.3;

• the Endcap Hadronic Calorimeter (HE) is inside the magnetic coil as well and
it is made of two endcaps extending the angular coverage up to |η| = 3;

• the Outer Hadronic Calorimeter (HO, or Tail Catcher) is placed in the barrel
region, outside the magnetic coil and is needed to enhance the depth of the
calorimeter in terms of λI ;

• the Forward Hadronic Calorimeter (HF) consists of two units placed outside
the magnetic coil, at ±11 m from the interaction point along the beams di-
rection. It extends the pseudorapidity coverage up to |η| = 5.
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Figure 2.9: A schematic representation of a quadrant of HCAL.

HB and HE are made with layers of 5 cm thick brass absorber interleaved with
3.7 mm thick plastic scintillators. The signal is readout through wavelength-shift
fibres. The ∆η ×∆φ granularity is 0.087×0.087.

HB has an energy resolution for single pions of approximately 120%/
√
E. The

minimum depth is about 5.8λI . In order to increase the calorimeter depth in the
barrel region a tail catcher (HO) has been added outside the magnetic coil. HO is
made of two scintillator layers, with the same granularity as HB; the total depth in
the central region is thus extended to about 11.8λI , with an improvement in both
linearity and energy resolution. HE has a minimum depth of 10λI .

The two HFs are made of steel absorbers with embedded radiation hard quartz
fibers. It provides fast Čerenkov light that is collected with photomultipliers. The
granularity is ∆η ×∆φ=0.17×0.1745.

2.2.5 Muon system

The CMS muon system [41] is dedicated to the identification and measure of
high pT muons, in combination with the tracker. The system is placed outside the
magnetic coil, embedded in the return yoke, to fully exploit the 1.8T return flux.

The system consists of three independent subsystems (Fig. 2.10):

• Drift Tubes (DT) are placed in the barrel region, where the occupancy is
relatively low (< 10 Hz/m2).

• Cathode Strip Chambers (CSC) are in the endcaps, where the occupancy is
higher (> 100 Hz/m2).

• Resistive Plate Chambers (RPC) are both in the barrel and in the endcaps.

The Drift Tube system is made of chambers consisting of twelve layers of drift
tubes each, packed in three independent substructures called super-layers. In each
super-layer two chambers have anode wires parallel to the beam axis, two have
perpendicular wires. Thus, each super-layer can provide two measurements of the
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Figure 2.10: A schematic view of a quadrant of the CMS muon system.

Figure 2.11: A schematic representation of a drift tube chamber. Drift lines in
presence of magnetic field are also shown.

r − φ coordinate and two measures of the z coordinate of the track hit positions.
Each chamber (Fig. 2.11) is made of two parallel aluminum plates with “I” shaped
spacer cathodes, isolated from the aluminum plates with polycarbonate plastic.
Chambers are filled with a gas mixture of Ar(85%) and CO2(15%). The position
resolution is about 100 µm in both rφ and rz.

Cathode Strip Chambers are multi-wire proportional chambers with segmented
cathodes (Fig. 2.12). Each chamber can provide both hit position coordinates.
Chambers are filled with a gas mixture of Ar(40%), CO2(50%), CF4(10%). The
chamber spatial resolution is about 80-85 µm.

Resistive Plate Chambers are made of parallel bakelite planes, with a bulk re-
sistivity of 1010 ÷ 1011 Ωcm. The gap between the plates if filled with a mixture of
C2H2F4 (94.5%) and i-C4H10. They operate in avalanche mode. Those chambers
have limited spatial resolution, but they have excellent timing performances; they
are mainly used for bunch crossing identification.
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Figure 2.12: A schematic representation of CSC cathode panel (left) and anode
panel (right).

2.3 Trigger system

LHC will produce interactions at 40 MHz frequency, but only a small fraction
of these events can, and is worth to, be written on disk. On the one hand the speed
at which data can be written to mass storage is limited; on the other hand the vast
majority of events produced is not interesting, because it involves low transferred
momentum interactions (minimum bias events). Thus, a trigger system is needed
to save interesting events at the highest possible rate. The expected rate of events
written to disk is foreseen to be 100 Hz.

CMS has chosen a two-level trigger system, consisting of a Level-1 Trigger
(L1) [42] and a High Level Trigger (HLT) [43]. Level-1 Trigger runs on dedicated
processors, and accesses coarse level granularity information from calorimetry and
muon system. A Level-1 Trigger decision has to be taken for each bunch crossing
within 3.2 µs. Level-1 Trigger task is to reduce the data flow from 40 MHz to 100
kHz.

The High Level Trigger is responsible for reducing the L1 output rate down to
the target of 100 Hz. HLT code runs on a farm of commercial processors and can
access the full granularity information of all the subdetectors.

We will now review the main characteristics of the CMS trigger system.

2.3.1 Level-1 Trigger

The Level-1 trigger is responsible for the identification of electrons, muons, pho-
tons, jets and missing transverse energy. It has to have a high and carefully under-
stood efficiency. Its output rate and speed are limited by the readout electronics
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Figure 2.13: Level-1 trigger components.

and by the performances of the Data Acquisition (DAQ) system.
It consists of three main subsystems:

• L1 Calorimeter Trigger;

• L1 Muon Trigger;

• L1 Global Trigger.

The L1 Global Trigger is responsible for combining the output of L1 Calorimeter
Trigger and L1 Muon Trigger and for making the decision. L1 Muon Trigger is
actually a composed system itself: information from RPC, CSC and DT specific
triggers are combined in the so called L1 Global Muon Trigger. The organization
of CMS Level-1 Trigger is schematically summarized in Fig. 2.13.

L1 Calorimeter Trigger

The input for L1 Calorimeter Trigger is calorimeter towers, that is clusters of
signals collected both from ECAL and HCAL. Towers are calculated by calorimeter
high level readout circuits, called Trigger Primitive Generators.

The Regional Calorimeter Trigger finds out electron, photon, τ and jet candi-
dates along with their transverse energy and sends them to the Global Calorimeter
Trigger.

The Global Calorimeter Trigger sorts the candidates according to their trans-
verse energy and sends the first four to the L1 Global Trigger.
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L1 Muon Trigger

The RPC trigger electronics builds Track Segments, gives an estimate of the pT
and sends these segments to the Global Muon Trigger. It also provides the CSC
logic unit with information to solve hit position ambiguities in case two or more
muon tracks cross the same CSC chamber.

The CSC trigger builds Local Charged Tracks (LCT), that are track segments
made out of the cathode strips only. A pT value and a quality flag are assigned to
the LCTs. The best three LCTs in each sector of nine CSC chambers are passed to
the CSC Track Finder, that uses the full CSC information to build tracks, assign
them a pT and a quality flag and sends them to the Global Muon Trigger.

DTs are equipped with Track Identifier electronics, which is able to find groups
of aligned hits in the four chambers of a super-layer. Those Track Segments are
sent to the DT Track Correlator that tries to combine segments from two super-
layers, measuring the φ coordinate. The best two segments are sent to the DT
Track Finder that builds tracks and sends them to the Global Muon Trigger.

The Global Muon Trigger sorts the RPC, CSC and DT muon tracks and tries
to combine them. The final set of muons is sorted according to the quality, and the
best four tracks are passed to the L1 Global Trigger.

L1 Global Trigger

The L1 Global Trigger is responsible for collecting objects created from the
Calorimeter and Muon Triggers and for making a decision whether to retain the
event or not. If the event is accepted the decision in sent to the Timing Trigger and
Control System, that commands the readout of the remaining subsystems.

In order to take the decision, the L1 Global Trigger sorts the ranked objects pro-
duced by calorimetry and muon system and checks if at least one of the thresholds
in the Level-1 Trigger table is passed.

Since there are large uncertainties in the cross section of many processes, the
Level-1 trigger thresholds for the initial low luminosity data taking have been de-
signed for an output rate of 16 kHz, instead of the planned 50 kHz, that is the
design limit for low luminosity. The L1 trigger table is reported in Table 2.2.

2.3.2 High Level Trigger

The High Level Trigger is designed to reduce the Level-1 output rate to the goal
of 100 events/s that are definitely going to be written to mass storage. HLT code
runs on commercial processors and performs reconstruction using the information
from all subdetectors. Data read from subdetectors are assembled by a builder unit
and then assigned to a switching network that dispatches events to the processor
farm. The CMS switching network has a bandwidth of 1Tbit/s.

This simple design ensures maximum flexibility to the system, the only limitation
being the total bandwidth and the number of processors. The system can be easily
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Table 2.2: Level-1 Trigger table at low (high) luminosity. Thresholds correspond to
values with 95% efficiency [43].

Trigger Threshold Rate Cumulative Rate

( GeV/c2 or GeV/c) (kHz) ( kHz)

Inclusive isolated e/γ 29 (34) 3.3 (6.5) 3.3 (6.5)

Di-e/di-γ 17 (19) 1.3 (3.3) 4.3 (9.4)

Inclusive isolated µ 14 (20) 2.7 (6.2) 7.0 (15.6)

Di-µ 3 (5) 0.9 (1.7) 7.9 (17.3)

Single τ -jet 86 (101) 2.2 (5.3) 10.1 (22.6)

Two τ -jet 59 (67) 1.0 (3.6) 10.9 (25.0)

1-jet, 3-jets, 4-jets 177,86,70 (250,110,95) 3.0 (3.0) 12.5 (26.7)

Jet ⊗ Emiss
T 86 ⊗ 46 (113 ⊗ 70) 2.3 (4.5) 14.3 (30.4)

e ⊗ jet 21 ⊗ 45 (25 ⊗ 52) 0.8 (1.3) 15.1 (31.7)

µ ⊗ jet - (15 ⊗ 40) - (0.8) 15.1 (32.5)

Minimum bias 0.9 (1.0) 16.0 (33.5)

Total 16.0 (33.5)

upgraded adding new processors or replacing the existing ones with faster ones
as they become available. Since the algorithm implementation is fully software,
improvements in the algorithms can be easily implemented and do not require any
hardware intervention.

Event by event, the HLT code is run on a single processor, and the time available
to make a decision is about 300 ms. The real time nature of this selection imposes
several constraints on the resources an algorithm can use. The reliability of HLT
algorithms is of capital importance, because events not selected by HLT are lost.

In order to efficiently process events the HLT code has to be able to reject
not interesting events as soon as possible; computationally expensive algorithms
must be run only on good candidates for interesting events. In order to meet this
requirement the HLT code is organized in a virtually layered structure:

• Level 2: uses only muon and calorimetry information;

• Level 2.5: uses also the pixel information;

• Level 3: makes use of the full information from all the tracking detectors.
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Each step reduces the number of events to be processed in the next step. The
most computationally expensive tasks are executed in the Level 3; time consuming
algorithms such as track reconstruction are only executed in the region of interest.
Besides, since the ultimate precision is not required at HLT, track reconstruction
is performed on a limited set of hits, and is stopped once the required resolution is
achieved.

Table 2.3 summarizes the HLT requirements at low luminosity to match the
cumulative rate of 100 Hz.

Table 2.4 shows the expected efficiency for the benchmark physics channels.

Table 2.3: High-Level Trigger thresholds at low luminosity for various channels [43].
The CPU time refer to a 1 GHz Intel Pentium III CPU.

Trigger HLT Threshold HLT Rate CPU time

( GeV/c2 or GeV/c) (Hz) (m s)

1e ,2e 29, 17 33, 1 160

1µ, 2µ 19, 7 25, 4 710

1τ , 2τ 86, 59 3, 1 130

Jet ⊗ Emiss
T 180 ⊗ 123 5 50

e ⊗ jet 19 ⊗ 45 2 165

Inclusive b jets 237 5 300

2.4 CMS simulation and reconstruction software

2.4.1 Framework implementation

The CMS simulation and reconstruction software, CMSSW [44], is a C++ [45]
framework that can be configured via Python [46] scripts.

CMS Event Data Model (EDM) is based on the concept of Event. An Event is a
C++ class that contains the information about a physics event, both raw level data
and reconstructed quantities. Reconstruction algorithms can access information
from the Event and put reconstructed quantities in the event. Events can be read
from and written to ROOT [47] files.

CMSSW can be run feeding the desired Python configuration script into the
executable cmsRun. The configuration file contains the modules, i.e. the algorithms,
that the user wants to run and it specifies the order in which they need to be run.
The executable reads in the configuration file and, using a plugin manager, finds
out in which libraries the modules to be run are defined and loads them.
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Table 2.4: Performance of HLT selection at low luminosity after applying the cuts
listed in Table 2.3.

Channel Efficiency

H(115 GeV/c2)→ γγ 77%

H(160 GeV/c2)→WW∗ 99%

H→ZZ→4µ 99%

A/H(200 GeV/c2)→ 2τ 45%

SUSY (0.5 TeV/c2 s-particles) 60%

W→eνe 67%

W→ µνµ 69%

tt̄→ µ+X 72%

Six types of modules can be implemented in CMSSW and dynamically loaded
via the plugin mechanism:

• Source: these modules are used either to load events from a ROOT file or to
produce events running an event generator.

• EDProducer: these modules read in the events provided by a Source, apply
an algorithm to the data contained in the event and produce other data to
be put in the Event. All the reconstruction algorithms are implemented as
EDProducers.

• EDFilter: they work exactly as an EDProducer, but they are able to return
a boolean value after the event has been processed. This boolean value can
be used to decide whether to continue the reconstruction or to stop.

• EDAnalyzer: these modules are used to analyze and characterize events. They
cannot put additional data in the Event, but can access the information stored
in the Event and, i.e., produce analysis histograms.

• EDLooper: are used for particular tasks, such are track based alignment, in
which there is a need to loop more than once on a set of events.

• OutputModule: these modules are used to write events to file after all the
other modules were executed.

Often modules need auxiliary information that is not stored in the event; these
information is stored in the EventSetup object.
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2.4.2 Event Generation and Reconstruction

Event generation in CMSSW can be done with many event generator programs.
Those programs can be run from within the framework, using dedicated interface
libraries. The configuration of the event generators is performed feeding cmsRun

with the appropriate configuration file containing the flags to be set in the event
generator. The event generator is responsible for filling the HepMC [48] record with
all the information about the currently generated event. The HepMC record is then
captured by the CMSSW framework and stored in the Event.

After the event has been generated the simulation of detector follows. The first
step in the simulation of instrumental effects is the smearing of the vertex position.
The event primary vertex, that is placed by the event generator at the origin of
CMS coordinate system, is smeared according to the expected pp impaction point
position distribution per bunch crossings. The next step is the simulation of the
interaction of particles with the detector. The description of these interactions is
achieved using GEANT4 [49]. Once energy deposits and multiple scattering effects
in the CMS subdetectors are simulated, the simulation of the signals produced by
the subdetectors follows. This step is knows as “digitization”.

The chain described so far is often referred to as “full simulation” chain. The
most time consuming step of the full simulation is actually the simulation of detector
effects using GEANT; the time needed to full-simulate an event with GEANT can
amount to several minutes.

For this reason a “fast simulation” of the detector effects has been set up. In
the fast simulation the GEANT step and the digitization step are skipped and
detector level quantities, such as the hit positions in the tracker and the energy
deposits in the calorimeters, are described using parametrized functions that aim
at reproducing the full simulation result.

Starting from the simulated signals in each subdetector (or from the low level
reconstructed quantities produced by the fast simulation), the reconstruction of the
event follows. With this approach exactly the same algorithms that will be used on
real data can be run on simulated samples.



Chapter 3

Proton-proton phenomenology:
Monte Carlo method

The structure of events produced at high energy colliders is extremely complex,
and numeric simulations are necessary to effectively simulate realistic events. Monte
Carlo Event generators are complex computer programs that subdivide the problem
of producing realistic events into a sequence of tasks that can be handled separately
with the help of both analytic and numeric computation.

Different event generators exist that implement computations at different levels
of precision and with different techniques. Typically, the highest precision calcula-
tions, that take into account several orders in perturbation theory, are only available
for a limited number of processes, thus making it hard to derive predictions on in-
clusive quantities; on the other hand these quantities can often be described with
reasonable precision with programs that implement lower order calculations.

In this chapter we shall review the main aspects of the computations that lead
to the generation of realistic events; we will describe how the different steps are
implemented in some of the most popular generators, and we will highlight the
differences. To understand the differences among the event generators “on the
market” is a fundamental prerequisite to interpret experimental measurements. In
particular we will describe in detail the computation techniques used in PYTHIA [50],
AlpGen [51] and SHERPA [52] event generators, that were used in this work to produce
Z/γ∗ + jets events.

3.1 Event Generator components

A schematic representation of the different components (and calculation steps)
that are implemented in event generators is shown in Fig. 3.1.

The production of hadron-hadron collision events is the result of the following
chain of calculations:

• The first step is the calculation of cross sections for the selected processes.
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Hard event 

Multiple interactions

Beam remnants

Hadronization and hadron decays

P P

Figure 3.1: A schematic representation of the generation of an event in a typical
event generator [52]. Partons from the two incoming hadrons participate in the
hard scattering and in softer multiple interactions. Hadron remnants are treated.
Quarks and gluons are turned into hadrons by hadronization and then hadrons
decay.
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Cross sections are calculated for a pair of incoming partons (quarks and glu-
ons) extracted from the colliding hadrons.

• The event production starts with two colliding hadrons with given momenta.
One parton out of each hadron is selected to enter the scattering process we are
interested in. This step is often referred to as hard scattering generation. Final
state partons and leptons are produced according to the calculated differential
cross sections.

• Resonances produced in the hard event are decayed.

• When two partons take part in the hard event, accelerated colour charges are
present, thus bremsstrahlung can occur. This effect is called Initial State Ra-
diation (ISR) and is simulated with the so called Initial State Parton Showers.
To simulate ISR knowledge of the parton density function is needed.

• Also the final state partons can produce further radiation, called Final State
Radiation (FSR). Such radiation is simulated by the Final State Parton Show-
ers.

• In addition to the partons taking part in the hard interaction, several other
parton pairs can interact during a hadron-hadron collision, giving rise to in-
teractions with smaller transferred momentum. These Multiple Parton Inter-
actions (MPI) contribute to the so called underlying structure of the event.
Such interactions need to be simulated too if we want to produce realistic
events, and ISR and FSR need to be simulated for these collisions too.

• Leftovers of the interacting hadrons needs to be simulated to balance the
colour charge and for momentum conservation. The beam remnant handling
is thus another step in the event generation.

• The calculations described so far are carried out in the perturbative regime,
but, as the produced partons move apart from each other, the coupling con-
stant gets stronger and stronger and confinement effects take place. When
the coupling constant is strong enough quark-antiquark pairs are produced
from the vacuum and the partons turn into hadrons. This generation step is
referred to as hadronization.

• Finally, the event generator takes care of decaying τ leptons and B-hadrons;
in general particles with very short lifetime are decayed by the generator itself.
Those that live enough to reach the detector are left undecayed.

Many generators exist nowadays that can make calculations up to several par-
tons in the final state. Among the general purpose ones there are many tree-level
generators: PYTHIA [50], HERWIG [53], AlpGen [51], SHERPA [52], MADGRAPH/MADEVENT
[54,55] are able to make matrix element calculations for a number of processes, and
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to match the matrix element outcome with parton showers. A few generators which
can perform the full Next-to-Leading Order (NLO) calculation with all virtual cor-
rections included are also available for a limited number of processes; an example
is the program called MC@NLO [56].

3.2 Matrix element calculations

The first step in the generation of an event is the calculation of the hard processes
cross sections. General purpose event generators can perform such calculations for a
vast variety of processes. Nevertheless it is often useful to interface such generators
with dedicated hard process libraries in order to produce particular events, such as
Super-symmetry (SUSY) processes for example.

The state-of-the-art in the field of matrix element (ME) calculation is NLO, with
all the virtual loop corrections included. Loop calculations are complex and they are
available for a limited number of processes; for this reason tree-level matrix element
calculations still play an important role in the simulation of events produced at
hadron colliders; tree-level cross section calculations can be performed up to several
(eight or even more) partons in the final state.

The main problems with tree-level matrix elements are the soft and collinear
divergences (Sec. 1.4.4). Since at tree-level the loop corrections that would can-
cel these divergences are omitted, the phase space has to be carefully tailored to
avoid the problematic regions. This means that the matrix element cross section
calculations are performed away from soft and collinear divergences.

In order to produce realistic events, phase-space regions omitted from the matrix
element calculations need to be recovered, with care to avoid divergences. This is
done in a quite effective way by using parton shower calculations (Sec. 3.3).

In the following we will briefly describe various techniques to derive tree-level
matrix elements as they are implemented in three different generators: PYTHIA,
AlpGen and SHERPA.

3.2.1 Hard-coded differential cross sections

In many event generators, like PYTHIA, differential cross sections are hard-coded.
In PYTHIA many 2 → 2 processes and resonance production 2 → 1 processes are
implemented.

With this approach, however, it is difficult to go much further than 2 → 2
processes, even if one considers tree-level only. As the number of final state partons
grows the number of processes grows too and the hard-coding of many extremely
complicated cross section expressions becomes difficult.

If tree-level matrix elements with a large number of final state partons are
needed, automated calculation procedures need to be used. Two examples are
given in Secs. 3.2.2 and 3.2.3.
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3.2.2 ALPHA algorithm

The ALPHA algorithm [57] used in AlpGen is a numeric method to calculate tree-
level scattering amplitudes without Feynman diagrams. Scattering amplitudes are
connected with the Z-functional of the Lagrangian, that is the Legendre transform
of the Lagrangian as long as tree-level is concerned. The algorithm consists in a
numeric prescription to compute the Lagrangian Legendre transform, and thus the
scattering amplitudes in a straightforward way.

This algorithm is particularly fast and it allows for the computation of the matrix
element up to several partons in the final state, without the need to implement
the Feynman diagrams in the code. In this way both speed and generality of the
algorithm for a great variety of processes are addressed.

3.2.3 Helicity amplitudes

The helicity amplitudes method [58,59] used in SHERPA makes use of the Feyn-
man diagrams, but amplitudes are calculated in a numeric fashion. While in an
analytical approach amplitudes are calculated for each Feynman diagram, the basic
idea of the helicity amplitudes method is that, given a set of particles momenta
and helicities, for a given Feynman diagram, the amplitude is nothing else but a
complex number. Such numbers can be calculated sampling the phase space and
then they are squared and summed.

This approach relies on the decomposition of the Feynman amplitudes into build-
ing blocks consisting of scalar products of four-momenta and spinor products of the
form u(pi, λi)ū(pj, λj), where pi and λi are momentum and helicity respectively.
Such products can be easily handled numerically.

In order to integrate the amplitudes sophisticated integration techniques are
needed to efficiently sample the full phase-space.

3.3 Parton showers

When treating 2 → n processes, tree-level matrix elements suffer from diver-
gences in the soft and collinear regions. The splittings that suffer from these diver-
gences are q → qg, q̄ → q̄g, g → gg: the two first processes have a QED counterpart,
while the third comes from the non-abelian nature of QCD. The splitting g → qq̄
does not suffer from the soft divergence.

The tree-level divergences would be removed including also virtual corrections;
such calculations, however, are extremely complex and are available only for a
limited set of processes. Parton showers offer an alternative way both to handle
the complexity of several successive branchings and to remove soft and collinear
divergences in a physical way.

Far before the hard scattering process and far after that, partons are on the
mass shell; however, by the uncertainty principle, as the colliding partons approach
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the hard scattering (i.e. closer and closer in time to the hard scattering) they
can go more and more off-shell; thus, as the partons approach the hard scattering
they can emit harder and harder gluons. The virtuality of the emitting partons in
such conditions is space-like1. This behavior is modeled in the Initial State parton
showers.

As partons arising from the hard event move apart, the allowed virtuality de-
creases, so softer and softer gluons can be emitted. The emitting parton virtuality
in these circumstances is time-like1. This effect is modeled by Final State parton
showers.

A description of Initial and Final State Showers follows in Secs. 3.3.1 and 3.3.2,
starting from the Final State Shower because they are simpler.

3.3.1 Final State showers

In the vast majority of event generators both final and initial state parton show-
ers are modeled as a series of a → bc splittings. The evolution of the shower is
described with two parameters: the energy fraction z carried by one of the two
emerging partons, z = Eb/Ea, and an ordering variable t. Different choices are
possible for the ordering variable. A common choice, used both in PYTHIA and in
the shower module of SHERPA, is the virtuality Q2 of the parton that is going to
split, Q2 = p2

a. Saying that Q2 is the ordering variable of the shower means that the
final state radiation emission is strictly ordered with decreasing Q2. Other choices
are possible however. If the transverse momentum is used as an ordering variable,

1To see why an initial state branching involves space-like virtuality and a final state branching
involves time-like virtuality let’s consider a generic a → bc splitting. Let’s suppose a is moving
along the z axis of some reference frame. It’s convenient to introduce light-cone momenta p±
defined as:

p± = E ± pz. (3.1)

For a particle with virtuality m:

p+p− = m2 + p2
x + p2

y = m2 + p2
⊥. (3.2)

If we define f as pb
+ = fpa

+, then, conservation of p+ leads to pc
+ = (1−f)pa

+; also, pb
⊥ = pc

⊥ = p⊥.
Recalling Eq. (3.2), conservation of p− is then written as:

m2
a

pa
+

=
m2

b + p2
⊥

fpa
+

+
m2

c + p2
⊥

(1− f)pa
+

, (3.3)

thus:

m2
a =

m2
b

f
+

m2
c

1− f +
p2
⊥

f(1− f)
. (3.4)

In an initial state branching, if we assume that a is on shell and that c does not branch any further,
which means that it is on shell too, from Eq. (3.4) we see that m2

b = −p2
⊥/(1 − f) < 0, which

means that b is space like. On the other hand, in a final state branching, assuming that neither b
nor c is going to branch any further, i.e. they are both on shell, we have m2

a = p2
⊥/f(1− f) > 0,

which means that a is time-like.
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the Parton Shower is said to be pT -ordered. Another possible choice is the energy
weighted opening angle of each emission, E2θ2; angular ordering is used in HERWIG.

Let’s now consider in detail a virtuality ordered final state shower. Let us
consider a qq̄g final state (Fig. 3.2). If we let xi = 2Ei/

√
s (i=q, q̄, g) be the energy

g(3)

q̄(2)

q(1)

Z/γ∗

Figure 3.2: A qq̄g final state.

fractions of the final state particles we see that the following holds:

1− x2 =
m2

13

s
, (3.5)

where m13 is the invariant mass of the qg pair, and thus the virtuality Q2 of the
intermediate fermion line. The limit x2 → 1 corresponds to the collinear emis-
sion limit (Q2 = m2

13 → 0) as long as massless final state particles are concerned
(a massless particle can split and remain massless only if the emission is soft or
collinear). In this limit x1 corresponds to the energy fraction z = E1/E13, thus
x1 ≈ z, x3 ≈ 1− z.

The splitting probability dPa→bc in the limit of collinear emission is conveniently
expressed in terms of z and t = ln(Q2/Λ2) as:

dPa→bc(t, z) =
∑
bc

αabc
2π

Pa→bc(z)dtdz, (3.6)

where dt = dQ2

Q2 , αabc is the coupling constant that governs the splitting (either αS
or αQED), Pa→bc(z) is called splitting kernel.

The splitting kernels are derived from the Feynman amplitude in the limit of
collinear splitting. They are universal and have the following form:

Pq→qg =
4

3

1 + z2

1− z ,

Pg→gg = 3
(1− z(1− z))2

z(1− z)
, (3.7)

Pg→qq̄ =
nf
2

(z2 + (1− z)2).

where nf is the number of quark flavours.
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Eq. (3.6) suffers from all the divergences of the original matrix element, because
it is just an approximation of the exact matrix element in the collinear emission
limit. In particular, the collinear divergence resides in the 1/Q2 dependence, and
the soft divergence arises from the splitting kernels of Eq. (3.8) for z = 1.

The parton shower machinery handles these divergences manually imposing the
conservation of total probability. First of all, the branching probability between t
and t+ dt is obtained integrating Eq. (3.6) over the z allowed range, zmin(t) < z <
zmax(t).

dPa(t) =
(∑

bc

∫ zmax(t)

zmin(t)

αabc
2π

Pa→bc(z)dz
)

dt. (3.8)

This branching probability, however, does not conserve the total branching prob-
ability. Then, the probability of branching between t and t + dt is obtained as
the probability given by Eq. (3.8) times the probability that no branching occurred
between the starting shower scale t0 and t. Thus the expression of the branching
probability that conserves total probability is rather

dPFSRa (t) = dPa(t) · exp
(
−
∑
b,c

∫ t

t0

dt′
∫ zmax(t′)

zmin(t′)

αabc
2π

Pa→bc(z
′)dz′

)
. (3.9)

The exponential term in Eq. (3.9) is called Sudakov form factor ; it represents the
non-emission probability between scale t0 and t.

As said, the Sudakov form factor can be regarded as a term that conserves the
total branching probability. However the Sudakov has also an interpretation in
terms of Feynman diagrams; while the branching probability given in Eq. (3.6) can
be regarded as an approximation of the exact matrix element for real emission, the
Sudakov factor is an approximation of the complete virtual loop corrections.

With this machinery a consistent cascade of successive branchings can be evolved.
This is achieved in the following way; for each branching the scale t of the branch-
ing, the type of the branching and the value of z have to be assigned. The scale
t is chosen with the probability given by Eq. (3.9); once t is fixed the type of the
branching is assigned; if more than one branching is possible, the type is assigned
with a probability proportional to the integrated splitting kernels. Finally z is cho-
sen according to the unintegrated splitting function selected at the previous step.
The parton cascade is evolved down to a certain virtuality, of the order of 1 GeV2.
After that, non perturbative effects take place and hadronization is applied.

It should be noticed that the parton shower machinery relies on a collinear
approximation of the matrix element, thus it should perform well in the description
of the evolution of jets, but one cannot expect it to give a precise answer for the
description of well separated parton configurations. We will come back on this point
again in Sec. 3.4
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3.3.2 Initial State showers

The evolution of initial state radiation is more complicated than that of final
state radiation. Quarks and gluons are continuously produced and reabsorbed in
the colliding hadrons. This means that when the hard scattering occurs the initial
state radiation is already there, and the fact that a parton is removed from the
initial state due to the hard process prevents recombination processes.

Naively, one might think of simulating the initial state radiation starting from
the on shell partons well before the interaction, evolving them to higher and higher
scales up to the scale of the hard event and, if the evolution has been such that
the hard event can occur, generating the hard event. While this approach is rather
realistic, the efficiency can be quite low, especially if the hard event has a tiny phase
space available.

A different approach is used in most event generators: the hard event is produced
first, then one tries to reconstruct what might have happened before to the initial
state partons. This approach is often referred to as backward evolution.

Following the same approach outlined for the final state radiation we consider
splittings of the type a → bc, we write down the splitting probability and then
construct a Sudakov factor to conserve total probability.

The parton density function for a parton of type b evolves according to the
DGLAP equation [24]:

dfb(x, t)

dt
=
∑
a,c

∫
dx′

x′
fa(x

′, t)
αabc
2π

Pa→bc

( x
x′

)
, (3.10)

where fa(b)(x, t) is the parton distribution function for a parton of type a (b) carrying
a momentum fraction x of the hadron momentum at scale t = ln(Q2/Λ2); Pa→bc is
the splitting kernel given by Eq. (3.8).

In the backward evolution, the probability for parton b to “recombine” into
parton a, whatever a is allowed to be, going from scale t to t− dt is [60]:

dPb(t) =
dfb(x, t)

fb(x, t)
= |dt|

∑
a,c

∫
dx′

x′
fa(x

′, t)

fb(x, t)

αabc
2π

Pa→bc

( x
x′

)
. (3.11)

Recalling the final state radiation treatment, we compute the non-branching
probability between scale tmax and t < tmax:

Sb(x, t; tmax) = exp
(
−
∫ tmax

t

dt′
∑
a,c

∫
dx′

x′
fa(x

′, t′)

fb(x, t′)

αabc
2π

Pa→bc

( x
x′

))
. (3.12)

The probability for parton b to recombine into a during the backward evolution,
between t and t− dt is thus:

dPISRb (t) = −dSb(x, t; tmax)

dt
dt

=
{∑

a,c

∫
dx′

x′
fa(x

′, t)

fb(x, t)

αabc
2π

Pa→bc

( x
x′

))}
· Sb(x, t; tmax) · dt. (3.13)
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The ISR Sudakov factor Sb(x, t; tmax) is quite different from the one of the FSR, as
it contains the PDFs.

In order to produce an initial state parton cascade three quantities have to be
determined for each branching: the scale t, the flavour a, the fraction z = x/x′;
they are determined with the Monte Carlo method in this way:

1. t value is selected with the probability given by Eq. (3.13);

2. the flavour a is selected according to the ratio of the integrated splitting
kernels over z for different allowed choices of a;

3. finally z is chosen with probability given by the unintegrated splitting kernels.

The backward evolution technique leaves some ambiguity about the interpreta-
tion of z. When the two colliding partons are on-shell, each carrying a fraction xi
of the hadron momentum, the center of mass energy for the two partons system is

ŝ = x1x2s. (3.14)

A common approximation is to require that Eq. (3.14) is true for each splitting. This
means that for each splitting in the backward evolution ŝ takes a factor 1/z. Besides
it also means that we have to fit the splittings of the two partons contributing to
the hard interaction into a unique monotonic series. Further details can be found
in [61]. This complication is not present in FSR.

3.3.3 Parton Showers and resummation

When calculating a QCD observable perturbatively, the expansion in terms of
αS contains terms with form αnSL

k (k ≤ 2n), where L = ln qcut/s, qcut being the
cutoff for resolved emission. When small values of qcut are considered, even if the
perturbative regime is still valid (αS is small), the logarithms that appear in the
perturbative expansion may be large and spoil the convergence of the series. In other
words, the order n in the perturbative expansion is meaningful only if successive
terms in the series are small: this may not be the case if L is large.

In order for the perturbative expansion to recover predictive power, large log-
arithms need to be treated. The treatment of large logarithms is called “resum-
mation”; resummation is performed organizing the terms in the perturbative series
according to the degree of divergence (αnSL

2n are the leading-log terms, LL; αnSL
2n−1

are the next-to-leading log terms, NLL) and then resumming them to all orders in
αS. Resummed calculation are available for many processes at the NLL accuracy,
which means that terms up to NLL in the perturbative expansion are resummed to
all orders.

As discussed in [62, 63] the Sudakov factor in Parton Showers effectively repro-
duces the effect of resummation. Actually the coherent, angular ordered Parton
Shower is proven to resum large logarithms up to the NLL accuracy. In HERWIG

coherence effects are naturally included, while in PYTHIA and in the shower module
of SHERPA the coherence is manually imposed.
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3.4 Merging Matrix Elements and Parton Shower

Matrix element and parton shower calculations have different virtues and differ-
ent applicability limits. We can summarize some of the main facts about the ME
calculations as follows:

• as long as tree-level is concerned, these calculations can be performed up to
several (order of six) partons in the final state;

• ME are good at describing well separated parton configurations;

• ME calculations are exact to a given order in perturbation theory.

However:

• ME cross sections have divergences in the soft and collinear regions, thus they
can not describe the internal structure of a jet;

• since hadrons is what we observe in experiments, fragmentation models need
to be applied to the partons. To use bare ME partons would imply the need to
tune these models for each center of mass energy; this limits the applicability
of bare ME calculations.

On the other hand, Parton Showers:

• are universal; given the basic hard process, the parton shower technique will
produce realistic parton configurations;

• are derived in the collinear limit, and handle divergences with the use of
Sudakov form factors. This makes them particularly suited to describe the
evolution of jets;

• can be used to evolve partons down to a common scale; this removes the need
of tuning fragmentation models at different scales.

However, since they are derived in the collinear approximation, they may fail in
efficiently filling the phase space for well separated parton configurations.

From the above description it is clear that a combined use of ME and PS would
make it possible to take advantages of the qualities of the two approaches in the
phase space regions where each performs better.

Several prescriptions exist to perform ME-PS matching avoiding double-counting
or holes in the phase space. The aim of a ME-PS matching prescription can be for-
mulated as follows: describe a final state with n well separated partons with the
corresponding n-partons tree-level matrix elements, but also including the large
logs resummation that characterizes the parton shower. So, matching prescriptions
foresee a criterion to fill the phase space by making a combined use of ME and PS;
care must be taken to avoid double counting, i.e. to avoid that a configuration with
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n partons emerging from the ME is produced also by an (n − 1)-partons ME plus
an additional hard emission coming from the PS.

The aim of a ME-PS merging prescription is described in Fig. 3.3. αS orders
and large logarithm powers for a QCD perturbative calculation are shown on the
x and y axis respectively. As said in Sec. 3.3.3, PS calculations are able to re-sum
Leading and Next-to-Leading Large Logarithms. This means that parton showers
“live” on the diagonal green lines in Fig. 3.3. To produce a four jet event with a
matched ME-PS approach means that we want to take into account all the blobs
labeled by 4 plus all the green blobs to the right of the four jets vertical line; the
latter are produced by the parton shower. The matching prescription has to make
sure that the green blobs labeled 4 are taken into account only once.
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Figure 3.3: A schematic description of αS orders and large logarithm powers that
enter a multi-parton calculation. The terms within the blue contour are those
included in a matched ME+PS treatment of a 4 jet event.

In the following we will describe in detail three different matching prescriptions,
implemented in the three programs used to produce Z + jets events in this work:
PYTHIA, AlpGen and SHERPA. PYTHIA implements a corrected PS approach, in which
the first emission from the shower is ME-corrected [64–66]; AlpGen implements the
so called MLM prescription [67], while SHERPA uses the CKKW prescription [68,69].
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3.4.1 Parton shower reweighting

The basic idea in this approach is to start from the lowest order process and then
reweight the parton shower emission as if it were produced by a ME. For simplicity,
let’s consider for the moment the e+e− → jets process, where only the Final State
radiation is present; the lowest order process is e+e− → qq̄, with e+e− → qq̄g being
the first order real correction. We know that the cross section for the first order
correction is

1

σ

d2σ

dx1dx2

=
2

3

αS
π

x2
1 + x2

2

(1− x1)(1− x2)
, (3.15)

where xi = 2Ei/
√
s are the energy fractions of the quark and the antiquark. In a

virtuality ordered PS, like PYTHIA, the first emission from the shower is [64]

1

σ

d2σ

dx1dx2

=
2

3

αS
π

APS(x1, x2)

(1− x1)(1− x2)
(3.16)

with

APS(x1, x2) = 1 +
1− x1

(1− x1) + (1− x2)
· x2

1

(2− x2)2

+
1− x2

(1− x1) + (1− x2)
· x2

2

(2− x1)2
. (3.17)

Eq. (3.15) can be written in the same form as Eq. (3.16) if we substitute
APS(x1, x2) with

AME(x1, x2) = x2
1 + x2

2. (3.18)

In the collinear limit, x1 → 1 or x2 → 1, APS(x1, x2) → AME(x1, x2). In the
remaining part of the phase space AME(x1, x2) ≤ APS(x1, x2), as shown in Fig. 3.4.
We can use this feature of the virtuality ordered PS to re-weight the PS emission
through a veto algorithm. To do this one just has to produce the PS emission and
veto the emission according to AME/APS.

In PYTHIA the first emission from the shower is corrected with this technique.
This approach does not change the cross section, which remains the lowest order
one, but it improves the population of the phase space in a way that is corrected
to the first order matrix element.

A problem may arise in the above prescription if the first emission is not the
hardest, as pointed out in [65]. In virtuality ordered PS the first emission is usually
the hardest, so the problem is not serious, but in angular ordered showers, like
HERWIG, it is likely to have several soft, large angle gluons before the first hard
emission, that is the one that deserves the correction, so a modified treatment is
needed, as described in [65].

The technique described above can be used also in hadron collisions, where
ISR is present, as described in [66] for the case of inclusive W production. ME
corrections for the Initial State Radiation will be further discussed in Sec. 4.1.



50 3 Proton-proton phenomenology: Monte Carlo method

0

0.2

0.4

0.6

0.8

1

1x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ME over PS

Figure 3.4: The ratio AME/APS as a function of x1 and x2 [69].

3.4.2 The CKKW matching prescription

The CKKW (Catani-Krauss-Kuhn-Webber) matching prescription is based on
the separation of the phase space in two regions, through a k⊥ measure cutoff ycut:
a “jet production” region, which is filled by a weighted ME and a “jet evolution”
region, which is filled by the PS.

The algorithm was originally proposed for e+e− collisions in [68], then an ex-
tension to hadron collisions has been proposed in [69] that takes ISR into account.
In the original implementation, the k⊥ distance between two partons was defined
according to the Durham k⊥ algorithm as

yij =
2min{E2

i , E
2
j }(1− cos θij)

s
, (3.19)

where Ei(j) is the energy of parton i (j) and θij is the angular separation between
the two. A k⊥ resolution variable ycut is defined as:

ycut = q2
cut/s . (3.20)

The method is based on the calculation of jet rates. Let’s consider again the
process e+e− → jets for simplicity. The lowest order contribution to this process
is e+e− → qq̄. Recalling that the Sudakov form factor Si(qcut,

√
s) (i=q, q̄) can be

interpreted as a non-emission probability when going from scale
√
s to scale qcut,

the two-jet rate R2(qcut,
√
s), i.e. the probability of having two jets resolvable at

scale qcut, is nothing but the product of the probability that nor the quark neither
the antiquark emitted resolvable radiation between

√
s and qcut:

R2(qcut,
√
s) =

[
Sq(qcut,

√
s)
]2
. (3.21)
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Besides, considering that in general, for a parton of type i the probability of evolving
from scale

√
s to scale t > qcut without branching is

Si(t,
√
s) =

Si(qcut,
√
s)

Si(qcut, t)
, (3.22)

it can be shown that the three-jet rate, that corresponds to the emission of an
additional gluon resolvable at scale qcut, can be written as

R3(qcut,
√
s) = 2

[
Sq(qcut,

√
s)
]2 ∫ √s

qcut

dtΓq→qg(t;
√
s)Sg(qcut, t), (3.23)

where Γq→qg(t;
√
s) is the integral over the allowed z range for the splitting functions

Pq→qg given in Eq. (3.8). The factor 2 in Eq. (3.23) comes from the fact that the
additional gluon can be emitted either from the q or the q̄. Rates for every jet
multiplicity can be written using this same technique.

The CKKW prescription aims at giving a more refined description of jet rates
with respect to that of parton shower. The basic idea is to replace the Γq→qg(t;

√
s)

functions that appears in the rate expressions with the corresponding ME. Let’s
consider again the three-jet rate. Let’s suppose we produced a momentum configu-
ration according to the three-parton matrix element, with a ycut cutoff; this means
that the parton momenta produced are such that 3 partons are resolved at scale
qcut. The scale t at which the gluon emerged from either the q or q̄ lines can be cal-
culated as min(yqg, yq̄g) = t2/s. Then, according to equation Eq. (3.23), the weight
to be applied to this ME parton configuration is

Fqq̄g =
[
Sq(qcut,

√
s)
]2
Sg(qcut, t). (3.24)

This weight, applied on an event by event basis, allows to reproduce the three jet rate
of Eq. (3.23), with the exact matrix element in place of the collinear approximation
splitting function Γq→qg(t;

√
s).

This can be easily extended to any parton multiplicity and it improves the
description of configurations with n partons resolved at scale ycut making use of the
n-parton ME.

So far we took care of the phase space region above ycut. The description of
the phase space below the cut is done with plain parton shower. The shower is
however vetoed so that any hard emission above ycut is forbidden. It was shown
in [68] that the combined ME weighting plus vetoed PS cancels the dependency on
the parameter ycut up to the NLL accuracy.

The CKKW approach has been extended also to hadron-hadron collision and the
cancellation of the ycut dependency is reasonable, even if no proof exists so far that
demonstrates at which order the cancellation is achieved. The main difference with
respect to the e+e− case is that the k⊥ measure is replaced with its longitudinally
invariant version

yij =
min(p2

T,i, p
2
T,j)(∆y

2 + ∆φ2)/D2

ŝ
, (3.25)
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where ∆y2 is the rapidity distance and ∆φ2 is the distance along the azimuthal
angle; D is a parameter usually taken to be 1; ŝ is the energy in the center of mass
of the colliding partons. The whole CKKW prescription can be summarized in the
following steps:

1. ME cross sections σn,i are calculated for each parton multiplicity n and for
each different combination i of partons that contributes to multiplicity n. A
cutoff ycut on the separation of partons is applied to avoid divergences. A
fixed αS

ME is used.

2. One among configurations n, i is selected with probability Pn,i = σn,i/
∑

m,j σm,j.

3. Parton momenta are generated according to the corresponding matrix element
squared.

4. The scales at which the splittings happened are reconstructed: this is achieved
through a k⊥ clustering of the partons emerging from the ME. The clustering
is stopped when the core 2 → 2 process is found. This leads to a series of
n − 2 clusterings with associated values of the k⊥ distance y2...yn. Once the
values yi = t2i /s are known we can finally calculate the ME event weight, that
comes in two factors:

- an αS correction: for each clustering i an αS correction αS(ti)/α
ME
S is

applied;

- a Sudakov form factor correction is applied, like the one exemplified in
Eq. (3.24) for the 3 jet case.

5. Events are accepted or rejected according to their weight.

6. The accepted events are showered with a veto on the emission above ycut.

The matrix element calculation is implemented in SHERPA by the module called
AMEGIC++ [70], which uses the helicity amplitudes method. Parton showering is
done by the APACIC++ [71] shower module, that implements a virtuality ordered PS
with coherence effects explicitly included (similar to the PYTHIA PS).

3.4.3 The MLM matching prescription

The MLM (M. Mangano) prescription implemented in AlpGen does not require
a dedicated PS program, and can be used both with PYTHIA and HERWIG showers.

The MLM prescription is similar to the CKKW up to the αS correction. As in
CKKW, ME cross sections are calculated up to the maximum parton multiplicity
that the user wants in the final state; a minimum pT cut for final state partons is
used to cutoff ME divergences and a fixed αS is used. As in CKKW a “PS history”
is reconstructed and a splitting sequence is identified, with corresponding scales; an
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αS correction is applied as in the CKKW. From this point the two prescriptions
become different. As said, in the MLM approach a conventional PS program is used
(PYTHIA or HERWIG) and ME partons are showered without any constraint. The
parton collection that results from the PS step is clustered using a jet algorithm (a
cone in the AlpGen implementation, but also other options have been investigated,
e.g. a k⊥ algorithm is used in MADGRAPH/MADEVENT); the resulting jets are matched
in angle to the ME partons and only those events in which all the jets match to the
ME partons without any extra unmatched jets are retained (for the maximum ME
parton multiplicity additional jets, softer than the matched ones, are allowed).

This procedure tries to reproduce in one go the effect that in the CKKW is
achieved in two steps: the Sudakov re-weighting and the vetoed shower. Indeed
the rejection of events with additional jets should, at the same time, reject ME
configuration in a similar way as the Sudakov weight does and prevent additional
emission from the shower, thus reproducing the effect of the CKKW PS veto.

The MLM prescription is really convenient because it does not require modi-
fications in the PS program, but it just requires a veto routine to kill events not
fulfilling the matching criteria.

While the CKKW prescription contains one parameter (the qcut of the internal k⊥
clustering algorithm), in the MLM the user has to choose different parameters. The
cone algorithm used for the matching has three parameters, namely the minimum
jet pT the cone radius R, and the jet maximum pseudorapidity η. The minimum
pT used in the cone clustering (pT

jet
min) is not the same as the minimum pT used

in the ME step to cutoff divergences (pT
ME
min): usually it is recommended to have

pT
jet
min >pT

ME
min; this is needed because events that are below the cut at the ME level

could fall above after the PS. For this reason a process dependent tuning for pT
jet
min

with respect to pT
ME
min is needed; for the Z/γ∗ + jets production AlpGen authors

recommend to choose the jet finder minimum pT to be 5 GeV higher than the ME
minimum pT .

3.5 Hadronization

After the Parton Shower step of the event generation we are left with a set of
partons with virtualities of the order of the cutoff scale at which the shower was
stopped. Hadronization is the step in which partons are turned into hadrons. The
process is non-perturbative and at present is described by models. Currently, two
models are the most effective at describing data: the Lund string model, imple-
mented in PYTHIA, and the cluster model implemented in HERWIG. We shall now
briefly describe the main ideas behind the two approaches.
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3.5.1 Lund string model

Quark and antiquarks produced in the shower move apart from each other trans-
ferring part of their energy to the colour field that connects them. As they move
apart the color field lines tighten and acquire a string shaped configuration; the
energy stored per unit length in the colour field tends to be uniform, as shown in
Fig. 3.5. When enough energy is stored in the string it can break up into a quark

Figure 3.5: Schematic representation of the color field as the string forms.

antiquark pair. With this simple mechanism the formation of mesons is described.
The flavour of the qq̄ pair that results from the string break up is assigned with
probabilities tuned to data. The formation of baryons is more complex and it re-
quires considering a three quark final state in which two of the quarks are close and
form one of the two end points of the string.

3.5.2 Cluster model

The cluster model is based on the observation that colour connected partons
have a very rapidly falling invariant mass spectrum. This effect is often referred to
as “pre-confinement” and it suggests a hadronization model in which color singlets,
called “clusters”, are formed out of the partons emerging from the Parton Shower.
Clusters then decay to lighter resonances; in the decay the spin information is as-
sumed to be washed out; heavier hadrons and baryons are automatically suppressed
kinematically. This hadronization model has fewer parameters with respect to the
Lund model.

3.6 Multiple parton interactions

In each hadron hadron collision several (∼4-5 at LHC) parton scatterings happen
simultaneously. The cross section for parton-parton scatterings is dominated by
t-channel 2 → 2 low pT gluon exchange. When simulating realistic events, the
generation of the hard, large momentum transfer, process has to be accompanied
by additional soft parton-parton interactions that build up the underlying structure
of the event (“underlying event”). The number of additional interactions is chosen
assuming a Poissonian distribution, with mean number of events tuned to data.

The underlying event physics is the least understood and its simulation is heav-
ily relying on models, so extrapolation to different energies (Tevatron to LHC for
example) is difficult and uncertain.
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Generators used in this work describe the underlying event in different ways.
While PYTHIA does not apply the PS to the partons emerging from underlying
event simulation SHERPA does. This leads to a very different amount of radiation
produced by the two generators for the same number of multiple parton interactions,
with SHERPA being the hardest. For this reason SHERPA needs a fewer mean number
of multiple interactions than PYTHIA to reproduce presently available data.
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Chapter 4

First order corrections to Z/γ∗
inclusive production

In this chapter we compare different matching algorithms on the ground of first
order real corrections to the inclusive Z/γ∗ production.

We consider parton level observables, which means that we stop the simulation of
the event before the hadronization step; in this way we intend to avoid the smearing
effects due to the hadronization and thus we can look in detail at the perturbative
phase of event generation.

We consider the first order corrections to the inclusive Z/γ∗ production. The
lowest order graph for this process is qq̄ → Z/γ∗, with the first order correction
given by the graphs qq̄ → Z/γ∗g, and qg → Z/γ∗q: in both cases the additional
radiation comes from the initial state. As pointed in Sec. 3.4.1, PYTHIA is able to
fully take into account matrix element corrections for the first emission.

We investigate the effect of deactivating ME-corrections in PYTHIA for a number
of observables. We also compare distributions obtained with PYTHIA with those
obtained with HERWIG, as the latter generator implements ME corrections in a way
that is similar to PYTHIA.

We use ME-corrected PYTHIA production as a reference for a consistency check
of the two other matching prescriptions used in this work. Both CKKW and MLM
claim that they can describe multiple parton emission corrected for the correspond-
ing multi-parton matrix element. If just one additional parton emission from the
matrix element is permitted, those prescriptions should give results compatible with
PYTHIA. This test is particularly sensitive to possible dependences of CKKW and
MLM on the resolution parameter used to separate ME and PS regions. The ME
correction prescription implemented in PYTHIA does not depend on any parameter
and thus it provides us with the “correct” reference to spot dependences on the
ME-PS separation parameter used in the two other prescriptions.

Results presented in most of this and the next chapters were obtained running
an analysis coded with the Rivet [72] Monte Carlo validation software. Rivet is a
tool that provides a general framework for event generators validation and tuning.
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More information on Rivet will be provided in Sec. 5.4.

4.1 Matrix element corrections in PYTHIA

Matrix element corrections for inclusive Z/γ∗ production in PYTHIA modifies
the first emission from the PS so that the effect of the first order correction is
reproduced. The lowest order graph contributing to Z/γ∗ production is shown in
Fig. 4.1. The processes that contribute to the first order correction are qq̄ → Z/γ∗g,
represented by the graphs in Fig. 4.2, and qg → Z/γ∗q, represented by the graphs
in Fig. 4.3.

As already mentioned in Sec. 3.4.1 the correction comes as a re-weighting factor
of the parton shower. The initial state parton shower is weighted with two factors,
one to reproduce the matrix elements of Fig. 4.2, Wqq̄→Z/γ∗g, and one to reproduce
the matrix element of Fig. 4.3, Wqg→Z/γ∗q [66]. The PS emission closest to the hard

Z/γ∗

q

q̄

Figure 4.1: Lowest order contribution to the Z/γ∗ production.

(1)q

(2)q̄ (4)Z/γ∗

(3)g

(a)

(1)q

(2)q̄ (4)Z/γ∗

(3)g

(b)

Figure 4.2: Graphs contributing to the qq̄ → Z/γ∗g process.

qq̄ process is the one that gets the correction. In order to correct the PS we need
to classify this emission as either (qq̄ → Z/γ∗g)-like or (qg → Z/γ∗q)-like. A PS
branching like the one depicted in Fig. 4.4 is considered (qq̄ → Z/γ∗g)-like, while a
branching like the one in Fig. 4.5 is considered (qg → Z/γ∗q)-like.

The ratio of the ME and PS differential cross sections, classified as described
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(1)q

(2)g

(3)q

(4)Z/γ∗

(a)

(1)q

(2)g

(3)q

(4)Z/γ∗

(b)

Figure 4.3: Graphs contributing to the qg → Z/γ∗q.

Z/γ∗

Figure 4.4: The circled PS branching is considered of type qq̄ → Z/γ∗g.

Z/γ∗

Figure 4.5: The circled PS branching is considered of type qg → Z/γ∗q.

above, leads to the following expressions for Wqq̄→Z/γ∗g and Wqg→Z/γ∗q [66]:

Wqq̄→Z/γ∗g =
t̂2 + û2 + 2m2

Z ŝ

ŝ2 +m4
Z

, (4.1)

Wqg→Z/γ∗q =
ŝ2 + û2 + 2m2

Z t̂

(ŝ−m2
Z)2 +m4

Z

, (4.2)

where ŝ, t̂ and û are the Mandelstam variables. It can be shown that

1

2
< Wqq̄→Z/γ∗g < 1, (4.3)

and

1 < Wqg→Z/γ∗q < 3. (4.4)
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This means that the Parton Shower alone would overestimate the qq̄ → Z/γ∗g
contribution and underestimate the qg → Z/γ∗q contribution. One explanation for
the latter is that the s-channel graph in Fig. 4.3 (a) is not present in the PS.

We will now see in detail the effect of ME-corrections on various observables.
We should stress that the ME corrected distributions are the best description that
PYTHIA can give of existing data. Uncorrected result does not describe existing
data equally well, so only the ME corrected result should be trusted when making
comparisons to data. The reason why we are interested in evaluating how distri-
butions change switching off the ME corrections is only to characterize this effect.
Another reason for looking at the uncorrected result is that, as we shall point in
Sec. 4.4, when PYTHIA is used to shower events produced in AlpGen, ME corrections
are switched off because AlpGen itself is going to introduce its own corrections.

4.1.1 ME correction effect on lepton observables

The pT distribution for the lepton pair for inclusive Z/γ∗ production in PYTHIA

is shown in Fig. 4.6. The lepton pair invariant mass has been generated around the
Z resonance, between 66 and 116 GeV. Only the electron decay channel has been
selected.

The three curves correspond to three different configurations: one is with ME
corrections activated, the other two are obtained without matrix element correc-
tions, but with different starting scales for the shower: the total hadronic center of
mass energy and the invariant mass of the lepton pair respectively.

As already mentioned in Secs. 3.3.1 and 3.3.2, PYTHIA implements a virtuality or-
dered parton shower. The starting scale of the shower marks the maximum allowed
virtuality in the shower evolution. If the starting scale is set to MZ the hardest par-
ton transverse momentum cannot exceed MZ , and thus also the Z pT cannot exceed
90 GeV approximately, as shown in Fig. 4.6. When the starting scale is raised, the
spectrum gets harder. When ME corrections are activated the spectrum gets even
harder. The reason why the ME corrected spectrum is harder than the uncorrected
one can be explained considering the relative amount of the two corrections at the
LHC. The graph gq → Z/γ∗q contributes more than qq̄ → Z/γ∗g, because q̄ is not a
valence quark at LHC. We recall that Eq. (4.4) states that Wgq→Z/γ∗q > 1, meaning
that the first emission from the ME-corrected shower is done with a splitting prob-
ability higher than that of the uncorrected shower. Since the PS emission is always
ordered, a higher splitting probability means that the probability for emitting a
harder parton is higher than that of uncorrected shower. This explains why the
corrected spectrum is harder than the uncorrected one. We also notice in passing
that at the Tevatron pp̄ collider [73–75] exactly the opposite holds: in that case
qq̄ → Z/γ∗g dominates because q̄ is a valence quark; since the correction is < 1 for
this graph (Eq. (4.3)) the ME corrected result is softer than the corrected one, as
shown in [66].

One might naively expect that ME corrections should change the shape of spec-
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Figure 4.6: pT spectrum for the lepton pair in PYTHIA for three different settings
of the ISR: with ME corrections, without ME corrections and with the starting
scale of the shower set to

√
s, without ME corrections and with the starting scale

of the shower set to MZ . The relative difference with respect to the curve with ME
corrections is shown in the lower plot.

tra only at high pT ; low pT region should be well described by the parton shower
alone. Actually the Z pT spectrum is altered by ME corrections all over the pT
range, as shown in Fig. 4.6. The three distributions are normalized, but the differ-
ence at low pT is not only due to normalization; a change in shape is also present;
such a change is testified by the relative difference plot, that does not flatten as
pT approaches zero. The reason for the change in shape at low pT is that ME
corrections change the Sudakov form factor used in the shower [76].

Fig. 4.7 shows the pseudorapidity distribution of the Z boson for the three con-
figurations. The configuration with ME-corrections shows the most central Z, while
the configuration with starting shower scale set to MZ and without ME corrections
shows the less central distribution; this is consistent with what was observed on the
pT spectrum.

The pT distribution for the positive lepton is shown in Fig. 4.8. This distribution
confirms that the ME corrected spectrum is the hardest while the uncorrected one
with starting scale set to MZ is the softest.

4.1.2 ME correction effect on jet observables

We will now see directly how the ME corrections change the jet observables.
First of all we describe how jets are reconstructed throughout this work. Jets are
reconstructed with the longitudinally invariant k⊥ algorithm, as described in [77]
and in Sec. 1.4.4. We used the inclusive variant of the algorithm, which means that
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Figure 4.7: Pseudorapidity (η) distribution for the lepton pair in PYTHIA with three
different ISR settings: with ME corrections, without ME corrections with starting
scale set to

√
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Figure 4.8: pT distributions for the positively charged lepton.

clustering is performed until all the particles have been assigned to a jet and then
a minimum pT cut for jets is applied. Here we recall the k⊥ distance definitions; a
beam distance diB is defined for object i (i can be either a particle or a pseudo-jet
that has been created during the clustering procedure summing the four-momenta
of several particles):

diB = p2
T ; (4.5)
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a distance between to particles or pseudo-jets i and j, dij, is defined as:

dij = min(pT
2
i , pT

2
j)

∆y2 + ∆φ2

D2
, (4.6)

where ∆y and ∆φ are the rapidity and azimuthal differences between the two objects
respectively. The D constant marks the minimum distance between two jets and
has been set to 0.4 for this study; the minimum pT for jets has been set to 30 GeV.

Fig. 4.9 shows the jet multiplicity for the three configurations described above.
The fact that the number of jets is minimum for the sample without ME corrections

jetn
0 1 2 3 4 5 6 7 8 9

/d
n

 [
p

b
]

σd

-110

1

10

210

310

Jet Multiplicity with ME corr

s=
max

no ME corr, Q

Z=M
max

no ME corr, Q

0 1 2 3 4 5 6 7 8 9
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

Figure 4.9: Jet multiplicity for the three different settings of the shower and ME
corrections in PYTHIA.

and low starting shower scale, and maximum for the sample with ME corrections
is consistent with what has been observed on the Z pT spectrum; the largest the
radiation the highest the number of jets; thus also the Z pT spectrum is the hardest
since the Z recoils against the QCD radiation.

Fig. 4.10 shows the pT spectrum of the leading jet; in this case we plot the
differential cross section distribution, instead of the normalized distribution, as we
are interested in estimating the total amount of radiation. The behavior is consis-
tent with the expectations; the ME corrected sample shows the highest amount of
radiation, the uncorrected sample with scale set to MZ shows the lowest.

To test how the phase space available for QCD radiation is filled we looked at
differential jet rates. The differential jet rate n → n − 1 is the distribution of the
n→ n− 1 transition value, Qn→n−1, which is the value of the resolution parameter
dcut (in an exclusive k⊥ algorithm) for which an n jet event turns into an n − 1
jet event. Naively the n → n − 1 transition value could be found running the
k⊥ algorithm in exclusive mode (Sec. 1.4.4) with increasing dcut and finding the
value for which the requested transition happens. Actually it is enough to run the
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Figure 4.10: Leading jet pT spectrum for three different settings of the shower and
of the ME corrections in PYTHIA.

algorithm in inclusive mode and look at the clustering sequence and find the step
for which two pseudo-jets get recombined into one or one pseudo-jet is closest to the
beam line than to any other jet, and thus would be recombined with the beam-jet
in an exclusive approach.

To understand what a differential jet rate is let’s consider a simple example
with three particles in the final state. Let the particles be 1, 2, 3. Suppose that the
sequence of ordered distances looks like this:

d1,B < d2,B < d1,2 < d3,B < d1,3 < d2,3. (4.7)

In an exclusive calculation the first jet that would be recombined with the beam
line would be 1, thus the 3→ 2 transition value is Q3→2 = d1,B. Then particle 2 is
the next one to be recombined with the beam, thus Q2→1 = d2,B. At this point, if
the dcut is raised to be at least d2,B only d3,B survives in Eq. (4.7), thus Q1→0 = d3,B.

Let’s now consider another example sequence:

d1,B < d1,3 < d1,2 < d2,3 < d2,B < d3,B. (4.8)

As before, Q3→2 = d1,B. If we raise dcut to at least d1,B particle 1 gets clustered
with the beam and the new sequence looks like

d2,3 < d2,B < d3,B, (4.9)

so particles 2 and 3 are going to be clustered in the next step. Thus if dcut is set
to be at least equal to d2,3 particles 2 and 3 are clustered, thus passing from 2 to
1 jet. Thus Q2→1 = d2,3 After they are clustered the sequence will have one only
element, namely d(2,3),B; thus Q1→0 = d(2,3),B.
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Figure 4.11: Distribution for the 1→ 0 differential jet rate.

Let’s now see how the differential jet rates look for the three setting of ME cor-
rections. The 1→ 0 differential jet rate is shown in Fig. 4.11. The main differences
between the three settings are in the region for high values of Q1→0. We see that
the sample without ME corrections and with low starting shower scale is the one
that dies first. This means that it is unable to fill the phase space for hard parton
emission, which is responsible for filling the rightmost part of the plot. We see that
the plot ends at about 2.1, which corresponds to a Q1→0 ∼130 GeV, which is where
also the leading jet pT distribution in Fig. 4.10 ends. For what concerns the other
two settings we observe that they are similar, but while the sample without ME
corrections tends to fill the region below 1, the one with ME corrections fills the
region above 1 more, thus allowing for more radiation to be emitted.

Fig. 4.12 show the differential jet rates for the transition 2 → 1 and 3 → 2;
In this case the differences among the three settings are a bit tamed due to the
fact that additional emission other than the first one is anyway uncorrected for ME
effects.

4.2 Matrix element corrections in HERWIG

HERWIG implements ME corrections in a way that is similar to PYTHIA. There
are two main differences between HERWIG and PYTHIA that are relevant for ME
corrections:

• in HERWIG the PS is angular ordered, which means that the early emissions
are soft large angle gluons; thus, the emission that deserves the corrections is
not the first like in PYTHIA, as pointed in [65];
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Figure 4.12: Differential jet rates for the transitions 2→ 1 (a) and 3→ 2 (b). The
effect of different ME correction settings is shown.

• in HERWIG the PS cannot fill the phase space for values above the hard scale
of the process; in this respect it is similar to PYTHIA with starting scale set to
MZ .

For these reasons a two-step approach is used in HERWIG to implement ME correc-
tions [78]. In the phase space region covered by the PS, corrections are applied as in
PYTHIA, the only difference being that not the first emission, but rather the hardest
emission so far during the shower evolution gets the correction [65]. These correc-
tions are referred to as “soft ME corrections”. In the “dead zones”, that are left
completely uncovered by the PS, the exact ME for one additional parton is used,
with subsequent PS. These corrections are referred to as “hard ME corrections”.
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Figure 4.13: ME corrections effect in HERWIG in the Z pT distribution. The effect
at low pT is small, while in PYTHIA the shape was different at low pT as well.

The effect of deactivating ME corrections in HERWIG is shown in Fig. 4.13 for the
Z pT . While ME corrections in PYTHIA change the whole shape of the distribution,
also at low pT , the effect of ME corrections at low pT in HERWIG is small, the change
in shape is small.

A comparison between ME corrected Z pT distribution in PYTHIA and HERWIG

is shown in Fig. 4.14. The agreement is very good all over the pT spectrum.
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Figure 4.14: ME corrected Z pT distribution in PYTHIA and HERWIG.
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4.3 A comparison between SHERPA and PYTHIA

Since PYTHIA is able to correct the first emission for ME effects it represents
a good test-bed for procedures that claim to be able to correct also for further
emission; if only the matrix element for one additional parton is allowed to enter
the calculation the result should be close to PYTHIA. Besides, while both the CKKW
and MLM prescriptions depend on a separation parameter between the region filled
by the ME and the one filled by the PS, the ME correction algorithm in PYTHIA

is parameter free, and thus it represents a good reference to spot dependencies
on the separation parameter in the two other prescriptions. A dependency on
the separation parameter in CKKW and MLM is unavoidable, but it should not
be heavy; we will evaluate to what extent the dependency on the parameter is
cancelled. We recall here that for e+e− collisions the parameter dependency in
CKKW cancels to the NLL accuracy according to [79]. For hadron collision no
theoretical proof exists so far that establishes the limit to which the parameter
dependency is cancelled either in CKKW or in MLM. So it’s worth checking directly
if such cancellation occurs.

4.3.1 Total cross section

In PYTHIA the total cross section for inclusive Z/γ∗ is calculated at Leading Order
accuracy, i.e. it is calculated from the process qq̄ → e+e−; the subsequent PS, either
corrected or uncorrected, happens with probability 1, so it cannot modify the cross
section. In SHERPA the cross section comes as a sum over the different selected final
state parton multiplicities.

σSHERPA =
N∑
i=0

σi < wi > (4.10)

where σi is the cross section for i additional partons in the final state and < wi >
is the average Sudakov weight for that configuration.

Table 4.1 shows the cross section values as obtained in PYTHIA and in SHERPA

for four different values of the resolution cut qcut that steers the separation between
the ME and the PS regions.

The difference in the total cross section with respect to PYTHIA is up to about
10%, for the sample with the lowest value of qcut. Cross sections for both SHERPA and
PYTHIA are formally LO; some differences are due to the qcut dependency mainly.
If one takes a very high value for qcut, this makes SHERPA get closer and closer to
PYTHIA. In fact, as qcut is increased the contribution to the total cross section from
the configuration with one additional parton vanishes, thus leaving the leading order
contribution alone, that is the only one considered in PYTHIA for the cross section
calculation. In the sample with qcut=500 GeV the difference with respect to PYTHIA

goes down to 5%, and this residual difference is most probably due to different scale
choices.
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SHERPA σi [pb] < wi > Total σ [pb]
qcut=10GeV 0 jet 838.9 0.7489 1383

1 jet 998.7 0.7559
qcut=20GeV 0 jet 1059.5 0.9301 1405

1 jet 484.6 0.8657
qcut=40GeV 0 jet 1271.2 0.9992 1434

1 jet 177.2 0.9267
qcut=500GeV 0 jet 1926.6 0.7540 1453

1 jet 0.038 0.9802

PYTHIA Total σ [pb]
inclusive 1528

Table 4.1: Cross sections for SHERPA and PYTHIA.

4.3.2 Lepton observables

The pT spectrum for the lepton pair in SHERPA and PYTHIA is shown in Fig. 4.15
(a). As mentioned above, SHERPA has been run such that only one additional parton
can be emitted from the matrix element.

SHERPA has been run with three different values of the parameter qcut that gov-
erns the separation between the phase space region filled by the ME and the region
filled by the PS. The values used were qcut= 10, 20, 40 GeV. As described in
Sec. 3.4.2 the region above qcut is filled by a modified ME, in which Sudakov form
factors are attached to the ME, while the region below the cut is filled by a vetoed
PS. SHERPA appears to closely follow the PYTHIA spectrum. Some discrepancies are
observed in the first few bins. These are most probably due to a different tuning for
the primordial pT

1 distribution of partons in the protons. We notice in particular
that the high pT tail, that is sensitive to additional hard emission, appears to be
correctly reproduced. We also observe a small dependence on the value of qcut: the
three curves for SHERPA agree within few percent.

The pseudorapidity η distribution for the lepton pair is shown in Fig. 4.15 (b).
The distributions from SHERPA well agree with PYTHIA in the central region, where
the difference is within 10-15%; in the tails of the distribution difference is more
evident.

The pT distribution for the positive lepton is shown in Fig. 4.16. In this case
too SHERPA agrees with PYTHIA, without strong dependency on the resolution cut
qcut.

1The primordial pT distribution of partons in protons, often referred to as primordial k⊥ is the
transverse momentum distribution of partons in the hadrons entering the collision.
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Figure 4.15: pT spectrum (a) and η distribution (b) for the lepton pair in PYTHIA

and SHERPA. The latter has been run with at most one additional parton from the
ME; three different values for the separation cut between ME and PS regions have
been used: qcut= 10, 20, 40 GeV.

4.3.3 Jet observables

For what concerns the jet observables a powerful test of the matching algorithm
is the differential jet rate for the transition 1→ 0. Fig. 4.17 shows the distribution
for the rate 1 → 0 in PYTHIA and in SHERPA. For SHERPA we tried three different
values for the matching parameter qcut: 10, 20, 40 GeV. The vertical lines shown
in the plots indicate the position of the resolution parameter qcut. In SHERPA, the
phase space above qcut is filled by the Matrix Element, while the region below qcut
is filled by the vetoed shower.

SHERPA agrees well with PYTHIA. The transition between the ME- and PS-



4.3 A comparison between SHERPA and PYTHIA 71

) [GeV]+(l
T

p
0 20 40 60 80 100 120 140

) 
[1

/G
eV

]
+

(l
T

/d
p

σ
 d

σ
1/

-510

-410

-310

-210

+ ltP PYHTIA ME-corr
=20GeV

cut
SHERPA Q

=10GeV
cut

SHERPA Q

=40GeV
cut

SHERPA Q

0 20 40 60 80 100 120 140-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Figure 4.16: pT distributions for the positive lepton.
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Figure 4.17: Differential jet rate 1→ 0 in PYTHIA and SHERPA. For SHERPA we used
three values for the matching parameter qcut: 10, 20, 40 GeV. Relative differences
are calculated with respect to PYTHIA.

populated regions is quite smooth for all the three values used for qcut. The relative
difference with respect to PYTHIA is at most 20%, in the vicinities of the qcut region.
The tail for very low values of Q1→0 shows some differences, that can be due to
slightly different settings for the primordial k⊥.

For what concerns the rates 2 → 1 and 3 → 2, those are shown in Fig. 4.18.
The difference with respect to PYTHIA are of the same order or less than in the
case of the 1 → 0 transition; apart from a discrepancy in the low Q region, that
is motivated by the same effect as in the rate 1 → 0, the three curves for SHERPA

agree very well, and the relative difference with respect to PYTHIA is within 15%.
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Figure 4.18: Differential jet rate for the transition 2 → 1 (a) and 3 → 2. Relative
differences are calculated with respect to PYTHIA.

This is consistent with what is expected, since the second and third emission are
governed by the PS alone both in PYTHIA and SHERPA.

Fig. 4.19 shows the pT spectra for the hardest and the second hardest jet in
PYTHIA and in SHERPA for the three different values used for qcut. In this case, since
we are interested in the amount of radiation we normalized plots to their respective
cross section. The shape of the distributions is similar in all cases and also the total
cross section for the emission of at least one jet is similar.
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Figure 4.19: pT spectra for the hardest (a) and second hardest (b) jet in PYTHIA

and in SHERPA. The latter generator has been run with three different values of qcut.
Relative differences are calculated with respect to PYTHIA.

4.4 A comparison between AlpGen and PYTHIA

We made the same test with AlpGen, looking for differences with respect to ME
corrected PYTHIA. We considered the contribution from up to one additional parton
from the matrix element, and we used PYTHIA to shower the ME events generated
by AlpGen.

4.4.1 Total cross section

Table 4.2 summarizes the total cross section for AlpGen with up to one additional
parton from the ME. Results for three values of the ME cutoff for the generation of
the additional jet are shown. The difference with respect to PYTHIA is 5% at most.
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AlpGen σi [pb] Total σ [pb]
ME cutoff=10GeV 0 jet 1092 1609

1 jet 517
ME cutoff=20GeV 0 jet 1303 1594

1 jet 291
ME cutoff=40GeV 0 jet 1452 1558

1 jet 106

PYTHIA Total σ [pb]
inclusive 1528

Table 4.2: Cross sections for AlpGen and PYTHIA.

4.4.2 Lepton observables

The pT spectrum and the η distribution for PYTHIA (with and without ME
corrections) and AlpGen are shown in Fig. 4.20. Concerning PYTHIA, the sample
without ME corrections has the shower starting scale set to

√
s. For AlpGen we

used a minimum pT for the additional ME generated parton of 20 GeV, and the
minimum pT for the cone algorithm that steers the matching was set to 25 GeV, as
recommended by the authors.

AlpGen lepton pair pT spectrum appears to be softer than ME-corrected PYTHIA.
This also translates into a broader η distribution for AlpGen. If we compare AlpGen

to both ME corrected and to uncorrected PYTHIA, it appears that AlpGen follows
uncorrected PYTHIA for low pT values and then agrees with corrected PYTHIA in the
high pT tail.

Also the pT spectrum for the leptons from the Z boson decay (Fig. 4.21) shows
the same behavior.

The dependency on the resolution cut that separates the ME from the PS region
is very limited. The lepton pair pT and η spectra and the pT spectrum for the
electron from Z are shown in Fig. 4.22 for three different choices of the Matrix
Element cutoff in AlpGen (and correspondingly of the minimum pT of the internal
cone algorithm): qcut=10, 20, 40 GeV.

4.4.3 Jet observables

Differential jet rate plots appear to confirm the trend observed for letponic
observables. Fig. 4.23 shows the 1→ 0 differential jet rate. Both ME corrected and
uncorrected PYTHIA are shown as a reference. We see that AlpGen closely follows
uncorrected PYTHIA in the low Q1→0 region, then it starts to agree with corrected
PYTHIA for high values of Q1→0.

Fig. 4.24 shows the differential jet rates 1 → 0, 2 → 1 and 3 → 2 in AlpGen

for three different values of the ME cutoff in AlpGen. Also ME-corrected PYTHIA

is shown as a reference. The dependency on the cut is very limited, as already
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Figure 4.20: pT spectrum (a) and η distribution (b) for the lepton pair. AlpGen is
compared with PYTHIA, with and without ME corrections. Relative difference with
respect to ME corrected PYTHIA is shown for each plot.

observed for the leptonic observables.

4.5 Summary

We studied the effect of ME corrections in PYTHIA and HERWIG. Both programs
can fully take into account ME corrections for one additional parton emission. The
implementation is slightly different.

• PYTHIA modifies the shower in two steps: first the starting scale is raised so
that any hard emission from the shower is kinematically possible; then the
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Figure 4.21: pT spectrum of the electron from Z decay. AlpGen is compared with
PYTHIA, with and without ME corrections. Relative differences are with respect to
ME-corrected PYTHIA.
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Figure 4.22: (a) pT spectrum and (b) η distribution for the lepton pair. (c) pT
spectrum for the electron. AlpGen has been run with three different values of the
Matrix Element cutoff. Also ME-corrected PYTHIA is shown as a reference. Relative
differences are calculated with respect to ME-corrected PYTHIA.
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Figure 4.23: Differential jet rate for the 1→ 0 transition. AlpGen has been run with
a ME cutoff of 20 GeV. Both ME corrected and uncorrected (starting shower scale
set to

√
s) PYTHIA are shown as a reference. Relative differences are with respect

to ME corrected PYTHIA.

emission probability for the first emission is modified to include ME correction
effect.

• In HERWIG the shower leaves the phase space for hard emission completely
uncovered. For this reason the correction is performed in two steps: in the
region already filled by the shower the same approach as PYTHIA is used.
In the remaining part of the phase space the ME for one additional parton
emission is directly used.

Both approaches give similar results. When ME corrections are switched off the Z
pT spectrum in PYTHIA changes also at low pT , while the low pT shape in HERWIG

remains unchanged.
We used ME corrected PYTHIA as a test bed for SHERPA and AlpGen. When

those programs are allowed to emit at most one parton from the ME calculation
they should give results similar to PYTHIA. Actually SHERPA follows PYTHIA quite
well, both on lepton and jet observables. On the other hand AlpGen appears to
follow uncorrected PYTHIA at low pT , for example it shows softer Z pT spectrum
with respect to ME corrected PYTHIA. This can be traced down to the fact that
when PYTHIA is used to shower events produced by AlpGen ME corrections are
switched off. This is done because AlpGen is going to introduce its own corrections.
The side effect of this is that the low pT shape of the Z pT spectrum changes, and
AlpGen cannot do anything in that region, which is entirely determined by the PS
alone. AlpGen can only modify the high pT tail of the distribution.

The dependency on the cut used to separate the ME and PS regions is limited
both in AlpGen and in SHERPA.



78 4 First order corrections to Z/γ∗ inclusive production

/GeV)
1->0

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
1-

>0
(Q

10
/d

lo
g

σ
 d

σ
1/

-410

-310

-210

-110

1

Differential Jet Rate 1->0 jets PYTHIA ME-corr
=10GeV

cut
AlpGen Q

=20GeV
cut

AlpGen Q
=40GeV

cut
AlpGen Q

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-1

-0.5

0

0.5

1

(a)

/GeV)
2->1

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
2-

>1
(Q

10
/d

lo
g

σ
 d

σ
1/

-410

-310

-210

-110

1

Differential Jet Rate 2->1 jets PYTHIA ME-corr
=10GeV

cut
AlpGen Q

=20GeV
cut

AlpGen Q
=40GeV

cut
AlpGen Q

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

(b)

/GeV)
3->2

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
3-

>2
(Q

10
/d

lo
g

σ
 d

σ
1/

-410

-310

-210

-110

1

Differential Jet Rate 3->2 jets PYTHIA ME-corr
=10GeV

cut
AlpGen Q

=20GeV
cut

AlpGen Q
=40GeV

cut
AlpGen Q

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-0.4

-0.2

0

0.2

0.4

(c)

Figure 4.24: Differential jet rates for the transitions 1 → 0 (a), 2 → 1 (b) and
3→ 2 (c). AlpGen has been run with three different values of the Matrix Element
cutoff. Also ME-corrected PYTHIA is shown as a reference. Relative differences are
with respect to ME corrected PYTHIA.



Chapter 5

AlpGen and SHERPA in Z/γ∗ + jets

In this chapter we explore the features of AlpGen and SHERPA in events in which
multiple emission from the ME is considered. A consistent matching of ME and
PS in those events is a much more complicated task than the one described in the
previous chapter.

We shall describe the behavior of the two generators when run with up to three
additional partons emerging from the ME. Both generators were run with CTEQ6L
[80] parton density functions. Results presented in this chapter are obtained running
the full event generation chain, including the hadronization step, but still without
the simulation of the Multiple Parton Interactions. We check at generator level
how event observables for leptons and jets change as the matching parameters or
the scale definition are changed. Then, we compare the two generators running
them with the default parameter choice.

Finally we see how the two generators reproduce real data published in three
recent papers from the Tevatron D0 collaboration.

5.1 Characterization of SHERPA

Results presented in this section, and in most of this chapter, were obtained
with an analysis coded within the Rivet [72] Monte Carlo validation framework.
The analysis has been run on the final state particles with |η| < 5. Jets were
reconstructed with the longitudinally invariant k⊥ algorithm as implemented in the
FastJet [81] package, that is interfaced to Rivet. The D constant used in the k⊥
algorithm was chosen to be 0.4. The minimum pT for jets was set to 30 GeV. We
required the presence of a lepton pair with invariant mass within 66 and 116 GeV.

In Fig. 5.1 we show the pT (a) and η (b) distributions of the lepton pair in
SHERPA, as obtained when running SHERPA with up to three partons emerging from
the ME and with a ME-PS separation cut qcut=20 GeV. The inclusive contribution
is in black, while the contribution from the different jet multiplicities is shown in
color. The high pT tail of the distributions is built up with the contribution from
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Figure 5.1: pT (a) and η (b) distribution for the lepton pair, and pT (c) and η
(d) distributions for the negative lepton. Events were generated with SHERPA. The
inclusive contribution is in black, while the contribution from the different jet mul-
tiplicities is in color.

multi-jet emission. This translates into the η distribution, where it is shown that
the lepton pair is more central in case of multiple jet emission.

The pT and η distributions for the negatively charged lepton are shown in
Fig. 5.1. Also in this case we observe that there is contribution to the high pT
tail from multiple jet emission.

Differential jet rates are shown in Fig. 5.2 for the transitions 1 → 0 (a), 2 →
1 (b), 3 → 2 (c). In each plot a vertical line signals the position of qcut. The
contribution from different jet multiplicities is put into evidence in color. As already
noticed in the previous chapter differential jet rates provide us with a very detailed
description of how the phase space is filled. The distribution for the differential jet
rate n→ n− 1 is filled by the n parton ME in the region above qcut, and by the PS
plus the ME up to n−1 partons in the region below qcut. This makes the differential
jet rate a very informative diagnostic tool for this matching prescription.

We notice that while the 1 → 0 distribution shows a very smooth transition
around qcut, little bumps are observed in this region in the 2→ 1 and 3→ 2 plots.
This is expected to some extent, because the matching prescription is not exact.
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Figure 5.2: Differential jet rates in SHERPA. (a) 1 → 0, (b) 2 → 1, (c) 3 → 2. The
vertical dashed line signals the position of qcut.
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This effect is probably due to configuration mismatch that can occur in the vicinities
of the cut: parton configurations that are below the cut as they emerge from the
ME can migrate above due to the way the PS alters the ME kinematics. The effect
is anyway moderate.

Jet multiplicity is shown in Fig. 5.3. The leading (a) and second (b) jet pT
distributions are shown in Fig. 5.4. Also in this case we see that the tail of the pT
distributions is filled by the multiple jet emission.
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Figure 5.3: Jet multiplicity in SHERPA.

In order to quantify the effect of the inclusion of multiple parton emission from
the ME we made some comparisons with ME corrected PYTHIA. The pT distribution
for the lepton pair (a) and for the negative lepton (b) in PYTHIA and SHERPA are
shown in Fig. 5.5. In both cases the distribution for SHERPA is harder at high pT .
We also notice that the low pT shape in the Z transverse momentum distribution
is unaffected, as expected.

The origin of these harder spectra can be identified looking at the differential jet
rates in Fig. 5.6. SHERPA fills the region for high Q significantly more than PYTHIA.
Consequently, the rate of events with at least one jet is higher in SHERPA, and it
shows a harder spectrum, as shown in Fig. 5.7.

Another interesting feature is the distribution of the difference in the azimuthal
angle between the leading and the second jet, shown in Fig. 5.8. SHERPA shows a
more evident tendency in producing back to back jets. A possible explanation is
that the 2-jet ME is present in SHERPA but not in PYTHIA.
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Figure 5.4: (a) Leading jet pT , (b) second jet pT in SHERPA.
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Figure 5.5: pT distribution for the lepton pair (a) and the lepton (b) in SHERPA and
PYTHIA.
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Figure 5.6: Differential jet rates in SHERPA and PYTHIA.
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5.1.1 Changing the matching parameter in SHERPA

As already noticed in the previous chapter it’s very important to evaluate the
dependency of observables on the matching parameter qcut. This parameter is un-
physical, so we shall check that there is little dependency of event observables on it.
We tried three different values of qcut: 20 GeV, 30 GeV, 50 GeV. In the following
we shall see how lepton and jet observables change as qcut changes.

Table 5.1 summarizes the total cross section values for the three above mentioned
choices of qcut. The difference between the maximum and minimum value is about
15%. Fig. 5.9 shows the pT and η distribution of the lepton pair. The effect on the
shape of these distribution is moderate. We notice however that the spectra tend
to be softer as qcut is increased. This is due to the fact that raising qcut means to
reduce the phase space available for the ME. Since the ME is responsible for the
hardest parton kinematics, softer spectra appear.

Differential jet rates in SHERPA are shown in Fig. 5.10 for three different choices
of qcut. The position of the cut is signaled with a vertical line. Relative differences
with respect to the qcut=20 GeV curve are shown. The relative difference is up to
40% in the region around the cut.

The jet multiplicity (a) and the leading jet pT spectrum (b) are shown in

SHERPA Total σ [pb]
qcut=20GeV 1594
qcut=30GeV 1411
qcut=50GeV 1400

Table 5.1: Cross sections for SHERPA.
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Figure 5.9: (a) pT and (b) η spectrum for the lepton pair and (c) pT distribution
for the electron with three different choices of qcut. Relative differences with respect
to the qcut=20 GeV curve are shown.

Fig. 5.11. The mean jet multiplicity is highest for the qcut=20 GeV sample and
lowest for the qcut=50 GeV sample. This in in agreement with what we already
observed on the lepton spectra: softer lepton spectra are accompanied by lower
mean jet multiplicity. The shape of the pT spectrum is almost unchanged.

5.1.2 Changing the scales in SHERPA

Another source of systematic uncertainties is the scale definition. In CKKW
the scale at which the strong coupling constant is evaluated is qi = yi · ŝ, where yi
identifies a particular clustering step i in the k⊥ clustering procedure that is used in
the CKKW matching prescription and ŝ is the scale of the 2→ 2 event, as described
in Sec. 3.4.2.

Since the scale is an unphysical parameter the dependency on the scale for the
reconstructed quantities should be limited. In SHERPA it is possible to change the
scale at which the coupling constant is evaluated by a factor. To evaluate to what
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Figure 5.10: Differential jet rates for different choices of qcut in SHERPA. (a) 1→ 0,
(b) 2 → 1, (c) 3 → 2. Relative differences with respect to the qcut=20 GeV curve
are shown.
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Figure 5.11: (a) Jet multiplicity and (b) leading jet pT spectrum in SHERPA for three
different choices of qcut.
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SHERPA Total σ [pb]
default scales 1594

scales ÷ 2 1292
scales × 2 1646

Table 5.2: Cross sections for SHERPA with different scale choices.

extent observables depend on the scale choice we generated samples in which the
scale at which the coupling constant is evaluated is multiplied by two or divided by
two. The choice of a factor of two is rather arbitrary, but it is quite common when
evaluating uncertainties due to the scale definition.
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Figure 5.12: pT (a) and η distribution for the lepton pair in SHERPA for three different
scale choices. Relative differences with respect to the default scales are shown.
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The total cross section for the three the different scale definitions is summarized
in Table 5.2. The difference between the two extremes is nearly 30%.

The scale dependency effect in the pT and η distribution for the lepton pair
is shown in Fig. 5.12. The lepton pair pT distribution shows that most of the
difference between the three samples is concentrated in the first bins, where the
0 jet contribution dominates. This is in agreement with the prediction from [82],
where it is shown that the inclusive LO cross section decreases with scales, while
the LO cross section for the emission of at least one jet is much less sensitive to
scale variations. Thus, since the biggest contribution to the inclusive cross section
comes from the 0 jet contribution the effect is mostly visible in the low pT region
in the lepton pair pT spectrum.

The effect translates into the η distribution, where the sample with scales divided
by two shows the most central lepton pair.

5.2 Characterization of AlpGen

In this section we describe events produced with AlpGen. We produced up
to three partons from the ME, with a minimum pT cut of 20 GeV. Events were
showered with PYTHIA, using the MLM matching prescription. The minimum Et
for the cone algorithm that is used in AlpGen to steer the matching was set to 25
GeV, as recommended by the AlpGen authors for this kind of events. Exactly the
same analysis that was run on the SHERPA sample was run on AlpGen to produce
plots shown in this section.

Distributions for the pT and η of the lepton pair in events produced with AlpGen

are shown in Fig. 5.13. Also in this case we observe how the multi-jet emission sums
up to produce the high pT tail.

Differential jet rates in AlpGen are shown in Fig. 5.14. For AlpGen the measure
used to separate the ME and the PS filled regions of the phase space is not k⊥,
hence the interpretation of the differential jet rates is more complex. In Fig. 5.14
the overall contribution is in black, while in color the contribution from different jet
multiplicities is shown. Even if we cannot identify a boundary between the ME and
the PS filled regions, the behavior of the curve around the minimum pT cut used in
the AlpGen cone algorithm (signaled with a vertical line in the plots) is expected to
be the region where possible matching effects show up. For all the three plots the
transition is rather smooth in this region.

5.2.1 Changing the matching parameter in AlpGen

As for SHERPA we modified the parameters of the matching to see how the total
cross section and the shape of the distributions change. The total cross section
in AlpGen for two different values of the pT cut of the cone algorithm used for the
MLM matching is summarized in Table 5.3. Practically no difference is observed.
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Figure 5.13: (a) pT distribution and (b) η distribution for the lepton pair in AlpGen.

AlpGen Total σ [pb]
pminT =25GeV 1534
pminT =40GeV 1516

Table 5.3: Cross sections for AlpGen with different choices for the pminT in the internal
cone algorithm.

The lepton observables distributions for the two choices of pminT are shown in
Fig. 5.15. The effect is very moderate in all the distributions.

For what concerns jet observables, differential jet rates are shown in Fig. 5.16
for the two choices of pminT . The relative difference plot shows the difference with
respect to the pminT =25 GeV sample. The shape of these distribution is mildly
affected in the region around the pminT cutoff.
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Figure 5.14: Differential jet rates in AlpGen.

5.2.2 Changing the scales in AlpGen

As for SHERPA we tried to change the scale where the strong coupling is evaluated.
We used a factor two and one half as in SHERPA. The effect on the total cross section
predicted by AlpGen is summarized in Table 5.4. The effect is of the same order as
in SHERPA.

The effect of a change in the scale choice on the pT and η spectrum for the
lepton pair is shown in Fig. 5.17 . In this case the low pT shape is unaffected, while
there are not negligible differences in the high pT tail.

AlpGen Total σ [pb]
default scales 1534

scales ÷ 2 1449
scales × 2 1672

Table 5.4: Cross sections for AlpGen with different scale choices.
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Figure 5.15: (a) pT distribution and (b) η distribution of the lepton pair; (c) pT
and (d) η distribution of the negatively charged lepton in AlpGen. Plots are shown
for two different values of the pminT used in the MLM cone algorithm. The relative
difference is calculated with respect to the sample with pminT =25 GeV.

5.3 Comparison between AlpGen and SHERPA

We compared AlpGen and SHERPA; both generators were run with the default
parameter choice (default scale choice and default matching parameters, i.e. qcut=20
GeV in SHERPA and minimum pT for the cone algorithm used in AlpGen set to 25
GeV); the AlpGen sample has been showered both with PYTHIA and with HERWIG.

The transverse momentum distribution and the η distribution for the lepton
pair are shown in Fig. 5.18. The shape of the distribution for the transverse
momentum shows not negligible differences; clearly SHERPA has the hardest spec-
trum, while AlpGen+PYTHIA shows the softest. We also notice that the low pT
shape of AlpGen+HERWIG is similar to SHERPA (the relative difference between
AlpGen+HERWIG and SHERPA is flat as pT→ 0), while the shape for AlpGen+PYTHIA

is different all over the pT spectrum. We believe that the different low pT behavior
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Figure 5.16: Differential jet rates in AlpGen for two choices of pminT : 25 GeV and 40
GeV; (a) 1→ 0, (b) 2→ 1, (c) 3→ 2. The relative difference plot shows difference
with respect to the pminT =25 GeV sample.

in AlpGen+HERWIG and AlpGen+PYTHIA is connected to the different effect that the
deactivation of ME corrections has on HERWIG and PYTHIA, as already discussed in
Secs. 4.1.1 and 4.2. Differences are also present in the η distribution, where SHERPA

shows the most central Z.

Both plots are consistent with a picture in which SHERPA is responsible for the
emission of more radiation than AlpGen. In fact, the more QCD radiation is emitted
the highest the Z boson transverse momentum is, because the Z recoils against the
QCD radiation.

The same picture is confirmed also from the spectra of the individual leptons:
the pT spectrum for the lepton from Z is shown in Fig. 5.19 (a); also in this case
the spectrum for SHERPA is the hardest. The η spectrum for the lepton from Z is
shown Fig. 5.19 (b); in this case no big differences are observed.

Let’s now have a look at the jet observables. The jet multiplicity for the three
generators is shown in Fig. 5.20. SHERPA has the highest mean jet multiplicity, while
AlpGen+PYTHIA the lowest. Nevertheless AlpGen samples show a somewhat longer
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Figure 5.17: pT (a) and η (b) distribution for the lepton pair with two different
scale choices.

tail for high multiplicity.

Fig. 5.21 shows the pT spectrum for the first (a) and second (b) jet. Both plots
are normalised to the total cross section for at least one (a) or two (b) jets. SHERPA
shows a higher cross section in both plots. For what concerns the leading jet SHERPA
also shows a slightly harder spectrum.

Fig. 5.22 shows angular correlations between the two leading jets: (a) is the
∆R=

√
∆φ2 + ∆η2, (b) is ∆φ and (c) is ∆η. These observables do not show big

differences.

This comparison shows that when running AlpGen and SHERPA with the default
parameter choice some not negligible differences arise. While the total cross section
is rather similar, it looks like SHERPA has more hard radiation than AlpGen. This is
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Figure 5.18: (a) pT distribution for the lepton pair; (b) η distribution for the lepton
pair. Events are produced with SHERPA, AlpGen+PYTHIA and AlpGen+HERWIG. The
relative difference is with respect to SHERPA.

confirmed by the mean jet multiplicity and by the jet pT spectra, and has an effect
on the Z and lepton spectra.
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Figure 5.19: (a) pT distribution for the lepton; (b) η distribution for the lepton.
Events are produced with SHERPA, AlpGen+PYTHIAand AlpGen+HERWIG. The rela-
tive difference is with respect to SHERPA.
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Figure 5.21: (a) Leading jet and (b) second jet pT distributions in SHERPA,
AlpGen+PYTHIA and AlpGen+HERWIG.



98 5 AlpGen and SHERPA in Z/γ∗ + jets

)
2

, j
1

 R(j∆
0 1 2 3 4 5 6 7 8 9 10

) 2
, j 1

/d
R

(j
σ

 dσ
1/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
j1,j2

(R)∆ SHERPA

AlpGen+Pythia

AlpGen+Herwig

(a)

)
2

, j
1

(jφ ∆
0 0.5 1 1.5 2 2.5 3 3.5 4

) 2
, j 1(jφ

/dσ
 dσ

1/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

j1,j2
)φ(∆ SHERPA

AlpGen+Pythia

AlpGen+Herwig

(b)

)
2

, j
1

(jη ∆
0 1 2 3 4 5 6 7 8 9 10

) 2
, j 1(jη

/dσ
 dσ

1/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

j1,j2
)η(∆ SHERPA

AlpGen+Pythia

AlpGen+Herwig

(c)

Figure 5.22: Angular correlations between the two leading jets: (a)
∆R=

√
∆φ2 + ∆η2, (b) ∆φ, (c) ∆η.
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5.4 Comparison to Tevatron data

In this section we compare SHERPA, AlpGen and PYTHIA with data collected at the
Tevatron pp̄ collider [73]. We used the Rivet analysis software for this comparison.
While Rivet can be used as an analysis framework for general studies on Monte
Carlo event generators, its main feature is that it comes as a very straightforward
tool to make comparisons to data.

Rivet implements a variety of algorithms that are used in experimental analyses;
for example it implements all the jet finding algorithms that are used in Tevatron
analyses. If one wants to see how an event generator reproduces results published
in an experimental analysis, he just needs to implement in Rivet a clone of the
experimental analysis, so that it can be run at generator level. Experimental data
need to be corrected for detector effects. Experimental data the user wants to
make comparisons to are stored in a data base called HEP-DATA [83]; for every
published analysis it is possible to request the inclusion of results and plots in
the HEP-DATA database. Once plots are in this database it is possible to export
them in a low weight histogramming framework called AIDA [84]; Rivet output
is AIDA histograms as well. Rivet implements a histogramming feature, called
“autobooking” that ensures that the histograms created have the same binning as
the original plots from the published paper.

5.4.1 Measurement of Z boson pT measurement at Tevatron
Run I by D0 collaboration

We made comparisons with data published by the Tevatron D0 collaboration
in [85], regarding the measurement of the differential production cross section of
Z boson as a function of Z’s transverse momentum, at

√
s=1.8 TeV. Data were

collected between 1994 and 1996, with an integrated luminosity of about 110 pb−1.

We produced simulated samples with PYTHIA, SHERPA and AlpGen (using PYTHIA

for Parton Shower and hadronization). The comparison among all the simulates
sampled and D0 data is shown in Fig. 5.23. The total cross section for all simulated
samples has been normalized to the measured cross section, so the comparison
concerns the shape of the distribution and not the overall normalization.

We notice that PYTHIA underestimates the high pT tail of the distribution. This
is due to the fact that only the first emission in PYTHIA is corrected for ME effect,
while the other emissions come from pure parton shower. Since the high pT tail of
the distribution is dominated by the emission of at least one additional parton from
the ME, the fact that PYTHIA sits below the data is reasonably explained.

On the other hand, SHERPA shows a harder spectrum in the high pT region, and
seems to follow experimental data quite well.

Also AlpGen seems to do a better job than PYTHIA, even if it appears to under-
estimate the last bin of the distribution.
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Figure 5.23: pT distribution for the Z boson at Tevatron (
√
s=1.8 TeV). Results

obtained from different MC generators are shown. The total cross section for the
MC generators is normalized to the measured cross section.

5.4.2 Measurement of σ(Z/γ∗+ ≥ njet)/σ(Z/γ∗+X) at Teva-
tron Run II by the D0 collaboration

We made a comparison with a recent measurement of the D0 collaboration on
the ratio between the production cross section for Z/γ∗+ ≥ n jet and the inclusive
Z/γ∗ production cross section. Data collected with the D0 detector correspond to
an integrated luminosity of 400 pb−1, and were collected with

√
s=1.96 TeV; these

data were published in [86].

Fig. 5.24 shows a comparison between D0 data and the predictions of PYTHIA

and SHERPA. Results from both generators were normalized to the ratio σ(Z/γ∗+ ≥
1 jet)/σ(Z/γ∗ +X) as obtained from data. This is the same choice that was made
also in the original paper. Jets were reconstructed with D0 Run II Infrared Legacy
cone algorithm [21], that is implemented in Rivet.

We notice that PYTHIA underestimates the ratio, already for two jets. SHERPA
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Figure 5.24: Measurement of the σ(Z/γ∗+ ≥ njet)/σ(Z/γ∗ + X) ratio by the D0
collaboration. Comparison to PYTHIA, AlpGen and SHERPA are shown. The three
generators were normalized to the ratio for σ(Z/γ∗+ ≥ 1 jet), as done in the original
paper.

on the other hand correctly reproduces the ratio up to the third jet. The ratio for
≥ 4 jets is underestimated in SHERPA. This is most probably due to the fact that in
our simulation we allowed for up to three jets emerging from the ME. AlpGen (with
PYTHIA for PS and hadronization) is better than PYTHIA but worse than SHERPA

for the second and third jet; it is better than SHERPA for the fourth jet.

5.4.3 Measurement of Z/γ∗+ jet+X at Tevatron Run II by
D0 collaboration

In [87] the D0 collaboration measured the Z boson and leading jet pT and
rapidity distributions from Run II data with an integrated luminosity of about 1
fb−1 in events with at least one jet.

Jets were reconstructed with D0 Infrared Legacy Cone [21] with a radius of 0.5,
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a minimum pT of 20 GeV and rapidity |y| < 2.8. Leptons were required to have an
invariant mass between 65 GeV and 115 GeV, and rapidity |y| < 1.7.

Distributions obtained from the three generators were normalized to the mea-
sured cross section. The differential cross section as a function of Z pT and Z
rapidity y is represented in Fig. 5.25. Data points and predictions from SHERPA,
AlpGen+PYTHIA and PYTHIA are shown in each plot. These comparisons are consis-
tent with comparisons shown in the original paper. AlpGen is the best at describing
the Z pT spectrum. SHERPA seems to be too hard, while PYTHIA is too soft. PYTHIA
is expected to be softer than the two other generators because it lacks higher order
real emission corrections. The three generators describe y distribution reasonably.

The differential cross section for the leading jet pT and y distribution are shown
in Fig. 5.26. The pT distribution is still best reproduced in AlpGen+PYTHIA, while
SHERPA appears to be too hard, and PYTHIA too soft. Concerning the y distribution
it seems that SHERPA is doing the best job, while both AlpGen+PYTHIA and PYTHIA

predict slightly more central distributions.

5.5 Summary

We studied the dependence of AlpGen and SHERPA on the parameters that are
used to steer the ME-PS matching and on the scales definition. The change of
the matching parameter in SHERPA has a not negligible effect on the total cross
section (15% between the two extremes considered). On the other hand the effect
on the AlpGen total cross section is almost negligible. Concerning the shape of the
distributions, as qcut in increased in SHERPA, pT spectra tend to be slightly softer;
this has been ascribed to the reduced phase space for ME emission. The change in
shape in AlpGen is almost negligible.

The change of the scales definition has an effect of about 30% in the total cross
section in SHERPA and about 15% in AlpGen. Concerning the change in shape, we
observed that the pT spectrum in SHERPA changes mainly at low pT , while in AlpGen

the low pT shape is unchanged, and the effect is more evident at high pT .
Finally we compared AlpGen, SHERPA and PYTHIA with data collected by the

D0 collaboration at Tevatron pp̄ collider. Concerning the Z pT measurements, it
looks like SHERPA is the best at describing the Z pT spectrum in Run I data for the
inclusive Z production. On the other hand, in newer measurements for Z+ ≥ 1 jets,
it looks like AlpGen is the best at describing the Z pT spectrum, while SHERPA is
too hard. The same is observed in these newer data for the leading jet pT . So,
concerning the Z and leading jet pT spectra, probably we still lack the definitive
answer whether AlpGen or SHERPA is the best at describing data. We also made
comparisons with a paper in which the ratio σ(Z/γ∗+ ≥ njet)/σ(Z/γ∗ + X) is
measured. In this case it appears that SHERPA is reproducing data better than
AlpGen.
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(a)

(b)

Figure 5.25: (a) pT and (b) rapidity differential cross section for the Z boson. Total
cross section is normalized to the measured cross section.
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(a)

(b)

Figure 5.26: (a) pT and (b) rapidity differential cross section for the leading jet.
Total cross section is normalized to the measured cross section.



Chapter 6

Fast Simulation and
Reconstruction of Z/γ∗ + jets in
CMS

In this chapter we use the Fast Simulation of the CMS detector to see how events
generated with AlpGen and SHERPA are reconstructed in our detector; in particular
we want to see how the differences spotted at generator level are smeared when
looking at the reconstructed quantities.

We shall make comparisons between the quantities reconstructed with CMS
reconstruction software and the corresponding generated quantities obtained with
a Rivet analysis on the generated sample.

We will finally compare the reconstructed quantities on the samples produced
with AlpGen and SHERPA.

6.1 Event generation with AlpGen and SHERPA

AlpGen and SHERPA samples were produced with as similar configuration as
possible. Both samples were produced requiring an invariant mass for the lepton
pair higher than 50 GeV; no cuts were applied on the lepton or jet η. For both
samples the electron and muon Z/γ∗ decay channels were considered.

We produced events with up to three partons from the ME.

For both AlpGen and SHERPA we used the CTEQ6L1 [80] pdf set.

In AlpGen we used PYTHIA for the showering and hadronization. PYTHIA was
setup using the so called “D6T Tune” [88] for the underlying event (UE).

For SHERPA we used a dedicated UE tune, based on CTEQ6L1 (the default tune
is based on CTEQ6L).

For both generators we produced events for an integrated luminosity of approx-
imately 100 pb−1. Pile-up effects, due to additional proton-proton interactions dur-
ing each bunch crossing were not taken into account, because 100 pb−1 integrated
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luminosity is expected to be collected in low luminosity conditions.
CMS reconstruction software (CMSSW) has interface libraries for both AlpGen

and SHERPA. The production of events with AlpGen in CMSSW proceeds as follows:
first we need to produce ME parton level events with standalone AlpGen and then
run PYTHIA for PS and hadronization through the CMSSW AlpGen interface. For
SHERPA we need to run the preliminary step for the calculation of cross section using
standalone SHERPA; then, the generation of events happens from within CMSSW,
using the SHERPA interface.

6.2 Simulation of detector effects and reconstruc-

tion

The simulation of detector effects has been done with the Fast Simulation of the
CMS detector.

As introduced in Sec. 2.4.2, the Fast Simulation of detector effects skips the
time consuming simulation of the interaction of particles with the detecting mate-
rial (GEANT4 [49] step) and the digitization step. Simulated hits in the tracking
detectors and shower evolution in the calorimetry are obtained using a parametrized
approximation that aims at reproducing the full GEANT4 result.

Concerning the simulation of the hits in the tracker detector, a simplified ge-
ometry is used, which is made of cylinders and disks that are assigned a depth
in radiation and interaction lengths that approximates the full geometry result.
Propagation of particles between layers is performed analytically; when the par-
ticle traverses a layer, the effect of the interaction with the material is calculated
according to parametrized functions. The hit position and error are then assigned
with a Gaussian smearing with respect to the analytically calculated impact point.
Track reconstruction starts with the emulation of the seeding efficiency. The pat-
tern recognition step is skipped, the hit-to-track associations being taken directly
from the Monte Carlo information; the track fit is performed using the standard
algorithms.

Calorimeter energy deposits are obtained in two steps. First the shower is sim-
ulated as if the calorimeter were a homogeneous medium; then detector effects,
such as crystal granularity, inefficiency, magnetic field influence, are simulated.
Energy deposits are then turned into reconstructed signals simulating noise and
zero-suppression1.

Muon tracks in the muon detector are simulated using a parametrization of
resolution and efficiencies, but without the simulation of hits in the muon chambers.
The matching with tracker tracks is done using standard algorithms.

To pass from tracks and energy deposits in the calorimeters to physics objects,
like muons, electrons or jets, the standard CMS algorithms are used. The output

1The zero-suppression is an online algorithm implemented in the calorimetry readout boards
to avoid recording the signal of channels with output below a threshold level.
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of the reconstruction algorithm is then processed through the so called Physics
Analysis Toolkit (PAT) [89]. The PAT step produces high level physics objects like
photons, muons, electrons, taus, jets. Those objects embed all the information that
was produced in the reconstruction step, plus the matching with the Monte Carlo
truth. The PAT is a very recent development of CMS reconstruction and analysis
software and it will represent a standard tool for physics analyses.

6.3 Comparison between generated and reconstructed

quantities

In this section we will study several observables, making comparisons between
what is obtained at generator level and what is reconstructed. To do this, we setup
an analysis in CMSSW that runs on the reconstructed quantities, and a Rivet
analysis that runs on the same events at generator level.

Both analyses select events in which an e+e− or µ+µ− pair is present with an
invariant mass between 50 GeV and 150 GeV. Both leptons are also required to:

• have a pT greater than 20 GeV;

• have η < 2.4, which means that they have to be identified by the tracking
detectors (silicon tracker for the electrons, silicon tracker plus muon chambers
for the muons);

• be isolated. Muons are isolated if the sum of the pT of tracks reconstructed
in the region between a cone with radius ∆R = 0.01 and a cone with radius
0.3 around the muon is less than 3 GeV. Electrons have to fulfill the same
requirement as muons for the tracker isolation and in addition their deposits
have to be isolated in the calorimeter; this means that the calorimeter deposit
between a veto cone with radius 0.1 and a cone with radius 0.5 around the
electron has to be less than 5 GeV.

6.3.1 Lepton observables

Fig. 6.1 shows the pT distribution for the muon pair as obtained at generator
level and on the reconstructed quantities for the sample produced with SHERPA. The
shape of the distribution is very well reconstructed; the overall efficiency is about
95%. Both muons are required to be “global muons”, that is they have to be made
out of a tracker track and a muon chamber track.

In Fig. 6.2 the η distribution for the muon pair is shown. The agreement in
shape is quite good.

In Fig. 6.3 the pT (a) and η distributions (b) for the positively charged lepton
are represented. The shape of the pT distribution is very well reconstructed, also
at high pT . This is possible thanks to the excellent performances of our tracking
system.
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Figure 6.1: pT distribution for the lepton pair in SHERPA. Generator level result is
compared with what is obtained from the reconstructed quantities.
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Figure 6.2: η distribution for the muon pair in SHERPA. Generator level result is
compared with what is obtained from the reconstructed quantities.

6.3.2 Jet observables

In Fig. 6.4 the jet multiplicity as obtained on the SHERPA sample for the µ+µ−

decay channel is shown. Generator level distribution is compared to the recon-
structed one; the agreement is satisfactory.

The pT distribution for the first and the second jet in the SHERPA sample for the
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Figure 6.3: (a) pT and (b) η for the positively charged muon.

muon decay channel is shown in Fig. 6.5. The shape of the distribution as obtained
on the reconstructed sample follows the generator level shape fairly well. These
results are obtained with the application of energy corrections to the reconstructed
jets. These corrections aim at providing the correct energy scale for reconstructed
jets. Energy corrections are needed because the calorimeter response is a not trivial
function of the jet pT and η. The main sources of bias in the jet reconstruction are:
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• The jet algorithm, which can be such that only part of the energy is actually
included in the reconstructed jets.

• The magnetic field, which can deflect low pT particles such that they are not
included in the jet they belong to.

• The non-flat calorimeter response as a function of pT , that is due to the fact
that the hadron calorimeter is non-compensating.

• The calorimeters granularity.

• The interaction of particles with the material traversed before reaching the
calorimeters.

CMS has implemented two kind of jet corrections [90]. The first method is
often referred to as Monte Carlo driven method: the basic idea is to compare jets
reconstructed on a full simulation sample and the corresponding generator level
jets. The correction is given by the ratio between the reconstructed pT

REC and the
generator level jet pT

GEN; the correction is mapped as a function of pT and η. These
Monte Carlo driven corrections were used in this work.

The second method is referred to as data driven factorized correction. This
method is designed to be independent from the Monte Carlo and is used to derive
corrections directly from data. The method is called “factorized” because the cor-
rection happens in two steps: first the response is corrected to be flat in η (relative
correction), then a correction is applied to make the response flat in pT (absolute
correction). The relative η correction is obtained using di-jet events in which one
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Figure 6.5: pT distribution for the first (a) and the second (b) jet as obtained at
generator level and on the reconstructed quantities in the SHERPA sample.

jet is in a central η region (|η| < 1.3). The absolute correction is then applied using
pT -balance techniques in (γ + 1 jet) or (Z + 1 jet) events.

Since energy corrections need to be applied to the reconstructed jets, this makes
the task of calculating differential jet rates on reconstructed quantities particu-
larly difficult. We developed a technique to compute differential jet rates using
calorimeter towers. On Monte Carlo, as described in Sec. 4.1.2, the calculation is
done running the k⊥ clustering algorithm in inclusive mode and then looking for
the relevant recombination throughout the clustering sequence. On reconstructed
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quantities, the fact that the calorimeter response is not flat in pT and η alters the
clustering sequence with respect to what happens on the MC truth.

The bias in the jet energy scale due to detector effects alters the k⊥ distances
dij (between pseudo-jets) and diB (between a pseudo-jet and the beam line), thus
the clustering sequence is altered. In case the ordering of the clusterings is not
heavily altered by detector effects we can try to reconstruct differential jet rates out
of calorimeter deposits. To do so, we need a two step procedure; for the calculation
of the n→ n− 1 differential jet rate we set-up the following recipe:

1. run the k⊥ clustering in “exclusive” mode and require exactly n jets in the
event. In doing so, the dcut that steers the “exclusive” k⊥ is automatically
adjusted so that exactly n jets are built.

2. apply jet corrections to the n reconstructed jets, calculate the distances dij
and diB for the corrected jets and find the smallest among diB and dij: that
is the value for the differential jet rate n→ n− 1.

/GeV)
1->0

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
1-

>0
(Q

10
/d

lo
g

σ
 dσ

1/

-310

-210

-110

1

Differential Jet Rate 1->0 jets

GEN

REC

(a)

/GeV)
2->1

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
2-

>1
(Q

10
/d

lo
g

σ
 dσ

1/

-310

-210

-110

1

Differential Jet Rate 2->1 jets

GEN

REC

(b)

/GeV)
3->2

(Q
10

log
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

/G
eV

)
3-

>2
(Q

10
/d

lo
g

σ
 dσ

1/

-310

-210

-110

1

Differential Jet Rate 3->2 jets

GEN

REC

(c)

Figure 6.6: Differential jet rates in SHERPA at generator level and reconstructed: (a)
1→ 0, (a) 2→ 1, (c) 3→ 2

Differential jet rates are shown in Fig. 6.6 for the transitions 1 → 0 (a), 2 → 1
(b), 3 → 2 (c). Both the generator level and the reconstructed differential jet
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rates are shown in each plot. The shape of the distribution is reasonably well
reconstructed, even if there seem to be a shift of the reconstructed distribution to
the right of the generator level one. This is likely to be an effect of an energy
over-correction.

6.4 Comparison of reconstructed quantities for

AlpGen and SHERPA

In this section we make comparisons between AlpGen and SHERPA on the re-
constructed quantities, to see to what extent the differences that were spotted in
Sec. 5.3 are washed out by detector effects.

6.4.1 Leptonic observables

In Fig. 6.7 the reconstructed Z boson transverse momentum in the muon decay
channel is shown. The distributions show the differences that were already observed
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Figure 6.7: Z boson transverse momentum in the muon decay channel as recon-
structed in AlpGen and SHERPA samples. The overall normalization is the number
of events expected for 100 pb−1 by the two generators respectively.

at generator level, with SHERPA showing a significantly harder spectrum. Also the
η spectrum represented in Fig. 6.8 confirms what was observed at generator level,
with SHERPA showing a more central spectrum than AlpGen.

The muon momentum and η distribution as reconstructed on the samples pro-
duced with AlpGen and SHERPA are shown in Fig. 6.9. These distributions show the
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Figure 6.8: Z boson η distribution in the muon decay channel as reconstructed in
AlpGen and SHERPA samples. The overall normalization is the number of events
expected for 100 pb−1 by the two generators respectively.

expected behavior too, with SHERPA showing a harder spectrum than AlpGen. The
η distribution is quite similar as already observed at generator level.

pT and η distributions for the lepton observables in the e+e− decay channel are
shown in Fig. 6.10. As expected the same behavior observed in the muon decay
channel is observed also in the electron channel.

6.4.2 Jet observables

We now turn our attention to the jet observables. The jet multiplicity as re-
constructed in the AlpGen and SHERPA samples for the electron and muon Z decay
channels is represented in Fig. 6.11. As expected the mean jet multiplicity is higher
in SHERPA even if AlpGen shows a somehow longer tail.

The leading jet pT distribution is shown in Fig. 6.12. Even if the total cross
section for emission of 1 jet is higher in SHERPA, distributions are similar in both
the muon (a) and electron (b) decay channels.

The same holds true for the pT of the second jet as depicted in Fig. 6.13.
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Figure 6.9: (a) pT distribution and (b) η distribution for the positively charged muon
as reconstructed on the AlpGen and SHERPA samples. The overall normalization is
the number of events expected for 100 pb−1 by the two generators respectively.
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Figure 6.10: (a) pT distribution and (b) η distribution for the Z boson; (c) pT
distribution and (d) η distribution for the positron. Reconstructed quantities for
AlpGen and SHERPA are shown. The overall normalization is the number of events
expected for 100 pb−1 by the two generators respectively. Relative difference plot
with respect to AlpGen is shown.
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Figure 6.11: Jet multiplicity as reconstructed in the AlpGen and SHERPA samples for
the Z muon (a) and electron (b) decay channels. The overall normalization is the
number of events expected for 100 pb−1 by the two generators respectively. Relative
difference plot with respect to AlpGen is shown.
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Figure 6.12: pT of the leading jet as reconstructed in the AlpGen and SHERPA samples
for the Z muon (a) and electron (b) decay channels. The overall normalization is the
number of events expected for 100 pb−1 by the two generators respectively. Relative
difference plot with respect to AlpGen is shown.
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Figure 6.13: pT of the second jet as reconstructed in the AlpGen and SHERPA samples
for the Z muon (a) and electron (b) decay channels. The overall normalization is the
number of events expected for 100 pb−1 by the two generators respectively. Relative
difference plot with respect to AlpGen is shown.





Conclusion

The work presented in this thesis describes the differences among various event
generators in the production of Z/γ∗ + jets events. We used mainly four event
generators: PYTHIA, HERWIG, AlpGen and SHERPA.

PYTHIA and HERWIG are Leading Order event generators that implement QCD
radiation pattern using the Parton Shower technique. Both generators implement
a modified Parton Shower that can fully take into account the ME effect for one
additional parton emission from the initial state.

AlpGen and SHERPA assert that they can describe the QCD radiation pattern
using multi-parton ME calculations matched with Parton Shower. Those generators
use a different matching prescription to combine the ME part and the PS part of
the calculation.

We investigated the differences among these approaches. The comparison was
carried out in various steps. First, we investigated the effect of ME corrections in
PYTHIA and HERWIG. We verified that ME corrected distributions obtained with the
two generators agree fairly well. We noticed that switching off the ME corrections
has a different effect on the two generators. One of the most informative distribu-
tions in this respect is the Z boson transverse momentum. While in HERWIG the low
pT shape seems to be unaffected by ME corrections, in PYTHIA the low pT shape
changes considerably.

We compared ME-corrected PYTHIA with AlpGen and SHERPA configured so that
at most one additional parton can emerge from the ME calculations. In such con-
ditions results from the three generators should be similar, because the ME content
should be the same. Actually we observe that SHERPA follows ME corrected PYTHIA

quite well, in all the distributions that we considered. On the other hand AlpGen

(used with the PYTHIA for Parton Shower) shows differences with respect to ME
corrected PYTHIA. One of the distributions in which the discrepancy is more evi-
dent is the Z pT spectrum. AlpGen follows uncorrected PYTHIA at low pT , then it
starts to follow corrected PYTHIA. The reason for this effect is actually not related
to AlpGen itself but to the fact that when PYTHIA is used to shower AlpGen events
ME corrections are switched off, because AlpGen itself is going to introduce its own
corrections. The side effect is that the low pT shape in the Z pT spectrum changes
as an effect of the deactivation of ME corrections; AlpGen cannot modify the shape
in that region, that is fully determined by the PS alone.

We also compared AlpGen and SHERPA allowing both generators to emit up
to three partons from the ME calculations. We observed that pT distributions in
AlpGen are significantly softer than SHERPA, and that the shape of both the lepton
and jet observables are different. We also made comparisons to Tevatron data
collected by the D0 collaboration and published in three papers. The first paper
reported a measure of the inclusive Z pT spectrum with data collected at

√
s=1.8

TeV. SHERPA appears to be the best at describing these data. The second paper
considered concerned the ratio σ(Z/γ∗+ ≥ n jet)/σ(Z/γ∗ inclusive). Also in this



case SHERPA appears to reproduce data better than AlpGen and PYTHIA. Finally we
made comparisons with a recent paper in which the pT and rapidity spectra of the
Z boson and of the leading jet in Z/γ∗+ ≥ 1 jet events were measured. In this case
AlpGen is the best at describing spectra, with SHERPA showing too hard pT spectra.
Thus, this comparison still does not give a definitive answer to the question whether
AlpGen or SHERPA is the best at describing the effect of higher order radiation.

Finally, we used the Fast Simulation of the CMS detector and we reconstructed
events produced with AlpGen and SHERPA. The differences spotted at generator
level are still clearly visible on the reconstructed quantities. Thus, it should be not
difficult to discriminate between these different theoretical models once data will
be available.
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