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Proteins are very important macromolecules and perform crucial functions in all 

biological processes. They function as catalysts, transport and store other molecules such as 

oxygen, provide mechanical support and immune protection, generate movement, transmit 

nerve impulses, and control growth and differentiation (1). Large numbers of proteins perform 

their functions with the cooperation of metal ions, like troponin and calmodulin with calcium 
(2) - (7), Cytochrome C oxidase and Sco with copper (8) (9), hemoglobin and ferritin with iron (10) 

(11). This thesis is focused on calcium binding proteins. 

1.1 Calcium in biological systems 

Calcium is the most abundant inorganic element in biological systems, and accounts for 

about 2% (1400 gram) of the adult human body weight. About 99% of calcium in the 

physique is in skeleton and teeth as hydroxyapatite. The remaining 1% circulates in blood, 

extracellular spaces or is stored intracellularly in distinct organelle like ER/SR 

(endoplasmic/sarcoplasmic reticulum). (6) (12) 

During evolution, Ca2+ has emerged as the most versatile intracellular messenger that 

mediates a wide range of biological processes, like for example, muscle contraction, 

secretion, glycolysis and gluconeogenesis, ion transport and cell division (13). Within a typical 

cell, the intracellular calcium concentration [Ca2+]i is around 100 nM, sizably lower than the 

extracellular level [Ca2+]o by approximate 12,000-fold. This gradient is maintained through 

various plasma membrane calcium pumps.  

External biochemical or biophysical signals, such as hormones, neurotransmitters, 

electrical impulses or light, can often lead to transient increases of 10–100 folds in [Ca2+]i
 (14). 

This increase of [Ca2+]i is the result of the influx of the extracellular Ca2+ through three types 

of gated channel (by ligand, Ca2+ or voltage) located on the membrane and the release of 

calcium from internal stores to the cytosol. Then calcium ions bind particular proteins, which 

contribute to switch the cell from an “off” state to an “on” state and perform many cellular 

processes (15) (16). However, the amount of calcium ion in cells is highly regulated by several 

mechanisms in order to protect the cell against toxic effects under long-term exposure to 

high [Ca2+]i (>5-10uM): Ca2+ ions are actively pumped outside the cell across the membrane 

or pumped into ER/SR through the plasma membrane calcium ATPase (PMCA pump) and 
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the sacro(endo)plasmic reticulum calcium ATPase (SERCA pump), separately; Ca2+ can also 

be expelled from the cell by Na+/Ca2+ exchanger (NCX), which has lower affinity but higher 

capacity with respect to ATPases (Figure 1.1)(12). After that, the [Ca2+]i come back to the 

normal level and the cell switches to the “off” state again. 

 
Figure 1.1: The control of cellular Ca2+ (reprint from Carafoli, E. (2003) Nature Reviews Molecular 
Cell Biology, 4:326-332.) 

Calcium ions are also known to play very important roles outside cells. Normal [Ca2+]o 

is necessary to maintain the rhythmic contractions of heart and the stability of mammalian 

neural tissues(17)(18). 

1.2 Calcium binding EF-hand proteins 

During the “on” cell stage, calcium-binding proteins participate in calcium cell 

signalling pathways by binding to Ca2+. In a large number of these calcium-binding proteins, 

a “helix-loop-helix” secondary structure domain can be found, which is termed as “EF-hand 

motif”. (19)  

Functionally, calcium binding EF-hand proteins can be divided into two main subsets: 

the Ca2+ sensors and the Ca2+ buffers. The Ca2+ sensors transduce Ca2+ signals into metabolic 

or mechanical responses by interacting with various targets. This interaction is accomplished 
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predominantly through a Ca2+-induced conformational change and exposure of a 

hydrophobic target interaction site, which is sequestered in the apo form. Calmodulin (CaM), 

recoverin and some S100 proteins are the classic examples of Ca2+ sensors. On the other 

hand, signal modulators such as calbindin D9K and parvalbumin, known as Ca2+ buffer, do 

not require exposure of hydrophobic target interface to function. This kind of EF-hand 

proteins functions by modulating the Ca2+ signal transduction or removing this potentially 

harmful ion from the cytoplasm. (20)- (22) 

Structurally, EF-hand motifs are divided into two major groups: the canonical EF-hands, 

like calmodulin (CaM) and the prokaryotic CaM-like protein calerythrin, and the pseudo 

EF-hands exclusively found in the N-terminal of S100 and S100-like proteins. The canonical 

EF-hand motif is usually characterized by a sequence of 12 residues with the pattern 

X*Y*Z*#*–X**–Z, where X, Y, Z, #, –X and –Z are the ligands that participate in metal 

coordination and the stars represent intervening residues. This sequence forms a loop that 

can accommodate calcium with distinct geometries: seven ligands coordinate calcium at the 

vertices of a pentagonal bipyramid. The residue at the -X axis coordinates the Ca2+ ion 

through a bridged water molecule (Figure 1.2). The residues at position 1 and 12 are usually 

bidentate ligands (Asp or Glu) at axis X and –Z, respectively. These residues are negatively 

charged and will make a charge-interaction with the positively charged calcium ion. The 

sixth residue is necessarily Gly due to the requirements of the backbone conformation. The 

remaining residues are usually hydrophobic which can form a hydrophobic core and stabilize 

the two helices. The pseudo EF-hand motif is generally constituted by 14 residues which 

chelate Ca2+ primarily via backbone carbonyls in the positions 1, 4, 6, 9 and via the side 

chain oxygen groups of the residue in the position 14, which is usually Glu (Figure 1.3). (23) 

(24) 
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Figure 1.2: Calcium coordination in canonical EF-hand motif (first loop of calmodulin). Oxygen atoms 
ligating calcium are colored black. The water ligand is shown as a star. The five ligands that form the 
base of the pentagonal bipyramid are connected with black lines. The extensive hydrogen bonding 
patterns found in the loop are shown in broken lines (PDB code ICLL). (reprint from Nelson MR, 
Chazin WJ. (1998) L.J. Van Eldik and D.M. Watterson, eds. Academic Press, San Diego, 17-64.) 

 
Figure 1.3: Consensus sequence of canonical EF-hand (a) and pseudo Ef-hand domains (b).  
n: the hydrophobic residues within the flanking helices.  
#: the potential Ca2+ binding ligands involving the backbone carbonyl groups.  
(reprint from Zhou Y, Wang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ. (2006) Proteins, 65: 
643-655.) 
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1.3 Structural and functional features of S100 protein 

The S100 protein family is composed by low molecular weight (10-12 KDa) proteins, 

and represents the largest subfamily of the EF-hand calcium binding proteins. More than 20 

S100 members have been found so far. At least 16 S100 genes are clustered on human 

chromosome 1q21, with few exceptions of 4p16 (S100P), 5q14 (S100Z), 21q22 (S100B) and 

xp22 (Calbindin D9K). (25) The expression of S100 genes are ubiquitous, but tissue- and cell 

type-specific for individual S100 gene. The S100 proteins have 25-65% identity at the amino 

acid level and contain two EF-hand motifs flanked by conserved hydrophobic residues and 

separated by a linker region. The C-terminal domain EF-hand motif is a 12-residue canonical 

EF-hand with higher calcium binding affinity, whereas the N-terminal domain EF-hand motif 

is a 14-residue pseudo EF-hand motif, also known as S100-specific EF-hand, with a lower 

calcium binding affinity (26). The sequences of the linker region and the C-terminal extension 

are the most variable among the S100 proteins, and are believed to be the active binding site 

to particular targets. (27)  

Except calbindin D9k, which is monomeric, all other S100 proteins exist within cells as 

dimers (homodimers or heterodimers). Helix I and helix IV and the linker loop of each 

subunit form an X-type four-helix bundle which is held together by non-covalent bonds. 

They present the major contributors to the dimeric interface.  

S100 proteins undergo large conformational change upon calcium binding. Helix III, 

which is almost antiparallel to helix IV in apo form, rearranges itself by rotating of around 

40-50°, and becomes perpendicular to helix IV after Ca2+-binding. The hinge loop between 

helix II and III swings out, and a cleft is formed in each monomer. As a result, some 

hydrophobic residues, which are usually buried in apo S100 protein, are exposed to the 

protein surface. (Figure 1.4) These conformational changes are important for the 

Ca2+-dependent interaction with target proteins (28).  

S100A7, which does not bind Ca2+ in the N-terminal EF-hand due to the lack of the Glu 

residue in position 14, also has a similar conformational rearrangement upon Ca2+-binding 
(29). This indicates that the calcium-dependent conformational change is largely determined 

by the C-terminal EF-hand calcium binding. The calcium load of N-terminal calcium binding 
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site, instead, only causes minor alterations of its backbone conformation. S100A10, another 

special member of the S100 family, has “calcium bound” conformation with hydrophobic 

residues exposed, even in the absence of calcium ions. S100A10 lost the ability to bind Ca2+, 

because the first putative binding loop lacks three residues(30), and some amino acid 

replacements in the second putative binding loop (Asp-Cys at position 61, Glu-Ser at 

position 70 with respect to calbindin D9k) hamper the ability of this loop to bind Ca2+ (31)(32). 

Furthermore, the affinity for calcium in S100A3 is so low (Kd ≈ 20 mM) that calcium 

binding is actually prevented in vivo. (33) 

 
Figure 1.4: Calcium-dependent conformational change in S100 proteins. (reprint from 
Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. (2006) Biochem J, 396:201-214.) 

Besides Ca2+ binding, the binding of Zn2+ has been proven in some S100 proteins 

(S100B, S100A2, S100A3, S100A7 and S100A12) with a wide range of affinity (from Kd=4 

nM to 2 mM) (34)-(38). However, S100 binding of Zn2+ in the cytoplasm is rather unlikely, 

because of its sub-nanomolar intracellular concentration. On the other hand, several S100 

proteins have been also found in the extracellular space, where Zn2+ concentration can be 

sizably larger (39), and the Zn2+ binding could be biologically meaningful. The Zn2+ binding 

sites, distinct from those of Ca2+, are located at the subunit–subunit interface, and comprise 

His and Glu residues from the helix IV and the N-terminal Ca2+ binding loop of the other 

subunit (40). Zn2+-binding regulates the calcium binding affinity positively (S100B, S100A12) 

or negatively (S100A2), and can lead to similar conformational changes as Ca2+-binding with 

different amplitudes. This suggests that Zn2+-binding may modulate the Ca2+-dependent 

target interactions or in some cases promote interactions with different targets. (41) (42)   
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Cu2+-binding was also observed in a few S100 proteins (S100B, S100A5, S100A12 and 

S100A13) (43)-(46). S100B dimer binds 4 Cu2+ with a Kd of 0.46 uM, most of which can be 

replaced by Zn2+, suggesting that Cu2+ share the same binding site with Zn2+ in S100B. 

However, different S100 proteins could have various Cu2+ binding properties. Unlike Ca2+ 

and Zn2+ bindings, no protein conformational change was reported upon Cu2+ binding of 

S100 proteins (41) (45).  

Within cells, S100 proteins are involved in the regulation of protein phosphorylation, 

some enzyme activities, cell growth and differentiation, Ca2+ homeostasis and dynamics of 

cytoskeleton components. Both S100A4 and S100B inhibit p53 phosphorylation leading to 

inhibition of its transcriptional activity, thereby compromising p53 tumor-suppressor activity 
(47) (48). S100A10 inhibits ANXA2 (a Ca2+-dependent phospholipids-, membrane-, and 

cytoskeleton-binding protein) phosphorylation as a result of the sequestration of ANXA2 in 

the cytoplasm, and consequently S100A10 modulates the activities of ANXA2 (49). S100B 

and S100A1 stimulate a membrane-bound guanylate cyclase activity in photoreceptor cells 

and play a role in dark-adaptation of photoreceptors (50). The expression of S100A8 and 

S100A9, the formation of the S100A8-S100A9 heterodimer, and the S100A8-S100A9 

dependent regulation of casein kinase I and II activity are related to a definite functional 

stage of macro phages and the occurrence of an inflammatory response (51). S100A2 might 

have a tumor suppressor function through promoting p53 transcriptional activity. S100A1 is 

localized in membranes of the SR (sarcoplasmic reticulum) in striated muscle cells and in the 

perinuclear region of several cell types, and stimulates Ca2+-induced Ca2+ release in skeletal 

muscle cells. Calbindin D9K functions as Ca2+ buffer and modulates the Ca2+ homeostasis 

(52). 

In addition to their intracellular functions, several S100 proteins are secreted upon Ca2+ 

signaling via vesicle fusion with the cell membrane or some other mechanisms into the 

extracellular space, where they stimulate neuronal survival and/or differentiation and 

astrocyte proliferation, cause neuronal death via apoptosis, and modulate the activity of 

inflammatory cells (Figure 1.5). Interaction of S100B with the receptor for advanced 

glycation end products (RAGE) has been implicated in both neurotrophic and neurotoxic 

effects of S100B via activation of different pathways. 
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Figure 1.5: Schematic representation of intracellular and extracellular roles of S100 proteins. Not all 
the targets/activities putatively regulated by S100 proteins are in a Ca2+-dependent manner (N denotes 
the nucleus). (reprint from (53)Donato R. (2001), Int J Biochem Cell Biol. 33: 637-68.) 

S100A12 binds RAGE on endothelial cells, mononuclear phagocytes and lymphocytes, and 

triggers cellular activations (secretion of IL-1β and TNF-α) in a RAGE-mediated manner. 

S100A8-S100A9 complex is secreted by neutrophils by a secretion pathway that depends on 

an intact microtubule (MT) network. The heterocomplex was shown to recruit monocytes to 

inflammatory sites by enhancing CD11b expression and/or its affinity in human monocytes, 

and participate in the transendothelial migration mechanism. The extracellular effects of 
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S100A1, S100A2, S100A4, S100A6, S100A7, S100A10 and S100P have also been 

described (54)-(59) but only the secretion of the three proteins mentioned above have been 

documented (52). 

The chromosome 1q21, where most S100 genes are located, is structurally conserved 

during evolution. Within this chromosomal region, several rearrangements which occurred 

during tumor development have been described (41) (60). This might be the reason of the 

deregulatory expression of the S100 gene in various tumor cells. S100 gene deregulatory 

expressions have also been detected in several pathological conditions: cardiomyopathies, 

neurodegenerative and inflammatory disorders (60).  

S100A5 is a S100 member but poorly characterized at the protein level. 

Immunohistochemical analysis indicates that it is expressed in very restricted regions of the 

adult brain (the olfactory bulb, the brainstem, and the spinal trigeminal tract). Flow dialysis 

revealed that the S100A5 binds four Ca2+ ions per dimer with strong positive cooperativity 

and an affinity 20–100 folds higher than the other S100 proteins studied under identical 

conditions. It is also reported that S100A5 binds two Zn2+ ions and four Cu2+ ions per dimer. 

Although the structures and functional role of some other S100 proteins have been 

characterized, no structural data was available for S100A5. Also there are only few published 

works on the dynamic properties of S100 proteins, which could provide important features 

for ligand binding. Regarding the biological role that S100A5 could play, only one article 

reported that totally resected WHO grade I meningiomas did not recur or recurred later with 

high levels of S100A5 than with low S100A5 levels. (61) - (63) 

S100A16 is a novel member of the S100 family. It is widely distributed in humans, and 

highly conserved in mammals. Highest S100A16 mRNA levels were found in the esophagus 

followed by adipose and colon, low levels were found in lung, brain, pancreas, and skeletal 

muscle; S100A16 mRNA expression was up-regulated in tumors of bladder, lung, thyroid 

gland, pancreas, and ovary. Furthermore, investigation of S100A16 intracellular localization 

in human glioblastoma cells revealed an accumulation of the protein within nucleoli and a 

translocation to the cytoplasm in response to calcium stimulation. S100A16 presents 

uncommon characteristics with respect to other S100 proteins. The N-terminal pseudo 

EF-hand was predicted to be functionally inactive since it comprises 15 amino acids, and 
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lacks the conserved Glu residue at the last position, analogously to S100A7. However, the 

role that S100A16 plays inside cells and/or in the extracellular space is not clear. (64) (65) 

1.4 CaM and its inter-domain motion 

Calmodulin (CaM) is a well known EF-hand Ca2+- binding protein expressed in all 

eukaryotic cells. It can bind to and regulate a large number of protein targets, thereby 

affecting many different cellular functions, i.e. metabolism, cell proliferation, cytoskeletal 

dynamics, cell–cell interaction and development (Figure 1.6) (66) (67). 

 
Figure 1.6: Cellular distribution of CaM binding proteins at different cellular compartments. (reprint 
from the website of the Department of Chemistry, Georgia State University, USA 
http://chemistry.gsu.edu/faculty/Yang/Signaling.htm) 

Many of the proteins that CaM binds are unable to bind calciums, themselves. This 

makes CaM essential as a calcium sensor and signal transducer. When the cell is excited by 

external signals, the [Ca2+]I increases and calcium binds CaM. This causes CaM to be 

released from neuromodulin or neurogranin, which have much more affinity with apo-CaM 

than with Ca2+-CaM. In a Ca2+-dependent manner, CaM can interact with at least 30 different 

enzymes and proteins including Ca2+-transport ATPase, phosphodiesterase, myosin light 

chain kinase (MLCK) and other CaM-dependent protein kinases, calcineurin, and nitric 

oxide synthas (NOS). Apo CaM also play important roles to maintain cellular normal 

activities by binding to various actin-binding proteins (e.g. myosins), cytoskeletal and 

membrane proteins (e.g. neuromodulin and neurogranin), enzymes (e.g. phosphorylase b 
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kinase and iNOS) and channels and receptors (e.g. SR Ca2+ release channel and inositol 

1,4,5-trisphosphate receptor) (68). 

The CaM structure has been well characterized both in the apo and calcium form. The 

protein consists of two similar globular domains, the N-terminal (1-77) and the C-terminal 

(81-148) domains, each containing two canonical EF-hand motifs which allow CaM to bind 

up to four calcium ions per molecule. The two domains are connected by a very flexible 

central linker in solution, so that the relative orientation of the two domains can change 

readily. Within each of the two domains of CaM, significant conformational changes occur 

upon calcium binding. In the absence of calcium each EF-hand motif adopts a “closed 

conformation”, with the helices in an almost antiparallel arrangement and most of the 

hydrophobic residues shielded from the solvent (Figure 1.7 A). Binding of Ca2+ normally 

causes a rearrangement of the helices to the “open conformation”, with many hydrophobic 

residues exposed on the surface of the protein and a large hydrophobic surface created on 

each domain (Figure 1.7 B). This conformational switch allows CaM to bind to target 

proteins through these hydrophobic surfaces (69)-(71). Upon target binding, the inter-domain 

motion of CaM may be lost. As shown in Figure 1.7 C, the two domains of CaM wrap 

around the bound peptide (CaM kinase II CaM binding domain), form stable hydrophobic 

interface and make the CaM conformation rigid. 

 
Figure 1.7: CaM conformation. A: apo-CaM (1CFD); B: Ca2+ bound CaM (3CLN), the hydrophobic 
patches important for target binding are shown in red and calcium atoms are shown in yellow spheres; 
C: complex structure of Ca2+-CaM bound to CaM kinase II peptide (CaM binding domain) (1CM1). 
(reprint from Shifman JM, Choi MH, Mihalas S, Mayo SL, Kennedy MB. (2006), Proc Natl Acad Sci 
USA, 103: 13968-73.) 

The inter-domain motion of CaM in solution can be maintained in CaM-target 
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complexes if the target interacts with only one domain of CaM, e.g. in the CaM-C20W 

complex (72). Even if CaM binds to targets with both N- and C- domains, in particular cases, 

inter-domain motions are still observable (73) (74). It is a significant challenge to understand 

the relative positions to some extent that the domains can experience, the relative weight of 

each conformation and the time scale of the motions involved. X-ray crystallography can not 

give us such information because usually only a single “frozen” conformational state is 

present at the solid state and the existence of inter molecular packing forces may easily alter 

the behavior of proteins in solution (75) (76). NMR relaxation parameters can provide the 

information on local and global motions of CaM but not the details about the interesting 

inter-domain motions between the two assumed internally rigid domains.  

Paramagnetic restraints obtained from NMR experiments have been proved to be 

powerful tools to study protein-protein and protein-ligand interactions and for protein 

structure determination. Self-orientation residual dipolar coupling (rdc), which are 

distance-independent, provide information of the orientation of molecular nuclear pairs with 

respect to magnetic susceptibility tensor, and can also be used to study the inter-domain 

motion within the CaM molecule (77). The pseudocontact chemical shift (pcs) is a 

contribution to chemical shift of the nucleus caused by the presence of centers with unpaired 

electrons. This perturbation is measurable when the magnitude of the magnetic moment of 

the unpaired electron depends on the molecular orientation with respect to the magnetic field 

vector. Magnitude of the pcs is proportional to r-3 (78), where r is the distance between the 

free radical center and the nucleus. This inverse third power dependence allows observation 

of pcs for larger distance ranges up to approximately 40 Ǻ (79). Pcs can provide long distance 

restraints in structure determination as NOEs and another important tool for the CaM 

inter-domain motion study. 

From 2003, N60D CaM has been used in CERM to study the inter-domain motions in 

both free and target-bound states by substituting the Ca2+ ion on the second calcium binding 

site with a paramagnetic lanthanide. Protocols have been developed to calculate the 

maximum allowed probability (MAP) of each possible conformation. Based on these 

methods, the conformations with highest MAP values of free CaM, CaM complexes with 

α-Synuclein (AS), Death-associated protein kinase (DAPk), DAPK-related protein 1 (DRP1) 
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and myelin basic protein (MBP) have been determined or refined from X-ray structures 
(80)-(82). 

1.5 hMBF1: a reported CaM binding protein 

Human MBF1 (hMBF1) is a 16 KDa polypeptide, also known as endothelial 

differentiation-related factor (EDF) 1. It is a transcriptional cofactor that mediates 

transactivation by stabilizing the protein-DNA interaction. Structural data available on 

hMBF1 show that the protein contains an N-terminal flexible region and a C-terminal well 

structured domain. It was reported that hMBF1 is a CaM target protein, and that their 

interaction is regulated by the level of Ca2+. (83)- (85) In order to acquire more structural 

information of the interaction, NMR experiments were performed. 

1.6 Aims of the research 

During the three years of the PhD course, my research was focused on the 

determination of the structural and dynamic characterization of Ca2+ binding proteins by 

NMR spectroscopy.  

As mentioned before, S100 family is a big protein family. Since the first two S100 

proteins (S100A1 and S100B) were isolated from bovine in 1965, more than 20 members 

have been found up to now. Although most of S100 proteins have similar structural features, 

their properties of metal binding, dynamics, expression, target recognition and biological 

function vary significantly. In the last three decades, S100 proteins have received increasing 

attention due to its various physiological and pathological characters, such as cancer and 

cardiomyopathies. Even so, their protein targets, intracellular transport and secretion 

mechanisms, regulation factors and solution dynamics are still largely unclear. In my 

research, the structural and dynamic features of S100A5 and S100A16 have been studied in 

both apo and Ca2+ bound forms. The conformational changes that have been observed upon 

calcium binding were compared with those of the other S100 proteins. Furthermore, the 

binding of Zn2+ and Cu2+ ions have also been investigated. These information are likely 

helpful to predict and understand some of their possible functions. 

N60D mutant CaM was previously studied in CERM to investigate inter-domain 

motions. This was achieved by substituting a paramagnetic lanthanide in the second calcium 



 16

binding site of N-terminal domain. This single mutant strategy was successful for CaM, but 

can not be used for other multidomain proteins which do not bind metal ions or have not a 

mutant able to bind paramagnetic ions selectively in a single site. In order to solve this 

problem, a small lanthanide probe ClaNP-5 (Caged Lanthanide NMR Probe 5) was used to 

bind CaM (H107C, N111C) with two disulfide bonds. The probe has already been proved 

rigid with respect to the protein backbone (86). Refined MAP program was used to calculate 

the conformations with largest MAP values in agreement with the paramagnetic-based 

restraints observed for the lanthanide tagged protein. 
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Nuclear magnetic resonance (NMR) spectroscopy is a tool of structural biology used to 

obtain information on the structure and the dynamics of biological molecules in solution. It is 

applied for the study of small molecular compounds such as ethanol and dextrose as well as 

macro molecular compounds such as proteins and nucleic acids. The development of pulsed 

Fourier transform NMR spectroscopy by Ernst and Anderson (1) and the design of 

multidimensional NMR spectroscopy by Jeener(2) make this technique increasingly widely 

applied. Up to date, NMR spectroscopy and X-ray crystallography are the only techniques 

capable of determining the three dimensional structures of macromolecules at atomic 

resolution. However, in the NMR experiments, solution conditions such as the temperature, 

pH and salt concentration can be adjusted so as to closely mimic a given physiological fluid. 

In addition, NMR spectroscopy is a unique technique for investigating time-dependent 

chemical phenomena, including reaction kinetics and intramolecular dynamics. Recently, 

paramagnetic restraints pseudocontact shifts (pcs) and self-orientation residual dipolar 

couplings (rdc) have been used as long-range structural restrains for structure determination 

and for the study of the inter-domain motions within multi-domain proteins in solution(3)(4). 

My three years’ PhD researches are focused on the structural determination and the 

characterization of the dynamics of two S100 proteins, S100A5 and S100A16, and on the 

investigation of the conformations sampled by CaM in solution by using paramagnetic 

constraints. NMR titration studies were also performed to detect the possible interaction of 

CaM with target proteins, like hMBF1. 

2.1 Structure determination by NMR spectroscopy 

Canonical protocols for NMR structure determination include the protein solution 

preparation, the collection and analysis of NMR datasets and the structural calculations 

based on NMR data.  

Typically, uniformly 13C and 15N labeled proteins are used for structure determination 

experiments. The double labeled protein makes it possible to record an experiment that 

transfers magnetization over the peptide bond, and thus connect different spin systems 

through bonds. The resonance signals of backbone nuclei are assigned by using a number of 

3D experiments, e.g. HNCO, HNCA, HNCACB and CBCACONH. All these experiments 
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consist of a 1H-15NHSQC plan expanded with a carbon dimension: HNCO contains the 

chemical shift of each HSQC peak and the carbonyl carbon of its previous residue; HNCA 

provides the chemical shifts of the alpha carbons of each HSQC peak and the sequentially 

previous one; HNCACB and CBCACONH contain both the alpha and the beta carbon 

signals. And then backbone sequential assignment can be undertaken by matching the shifts 

of each spin system and those of the previous one. When the backbone assignment has been 

obtained, usually, it is possible to assign the signals of side chain carbons and protons by 

using the HCCH-TOSCY spectrum, which is basically a TOCSY experiment resolved in an 

additional carbon dimension. 

The nuclear Overhause effects (NOE) are due to dipolar interactions between different 

nuclei. The intensity of NOE, i.e. the volume of the corresponding cross peak in a NOESY 

spectrum, is related to the product of the inverse sixth power of the internuclear distance r 

and an effective correlation time τc. NOEs between pairs of hydrogen atoms are traditionally 

of prime interest for structural studies (5).  

)(1
6 cf

r
NOE τ⋅

〉〈
∝                          [1] 

Since also affected by intramolecular motions, NOE data are usually treated as upper limit 

(UPL) of the inter-atomic distances instead of precise distance restraints. In practice, a 1H-1H 

NOE is observed between protons which are separated by less than 5-6 Å, and with a lower 

limit of 2.0 Å, which represents the sum of the van der Waals radii of the two 

NOE-connected hydrogen atoms. In addition to distance restraints, torsion angle restraints 

are also used in structural determination, which will improve the quality of the structure. 

Torsion angles can not be acquired from NMR spectra directly. However, torsion angles can 

be predicted by using several programs, such as TALOS and CSI, based on a complete set of 

backbone chemical shifts of HN, N, Hα, Cα, Cβ, and CO resonances. In my researches, 

TALOS and its upgraded version TALOS+ have been used for the prediction of torsion angle 

restraints (6) (7). By using both distance and angle restrains, the solution structures of S100A5 

and S100A16 were calculated by using the program CYANA 2.1(8) (9) and minimized with the 

program AMBER 10(10). The qualities of the structures were evaluated with the programs 

PROCHECK-NMR (11) and WHATIF (12). 
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2.2 Dynamic properties characterization by NMR relaxation parameters 

Since the 1970s NMR has been used to study the interplay between biomolecular 

structures, dynamics and functions (13). It is well known that there is an intimate relation 

between protein dynamics and molecular function. For example, protein dynamics contribute 

to the thermodynamic stability of functional states and play an important role in catalysis, 

ligand binding, molecular recognition processes and allostery. NMR spectroscopy is the 

unique method suitable to study many of these dynamic processes, because information can 

be obtained for motions that span a wide range of time scales such as fast internal motions 

(ps-ns) and slow motions (μs-ms). Passing from the protein overall correlation time in the 

order of 10-100 μs order. (14)- (16) 

Relaxation of an amide 15N nucleus spin at high field is dominated by the dipolar 

interaction with the directly attached proton spin and by the chemical shift anisotropy (CSA) 

mechanism (17). In a 15N relaxation experiment, a non-equilibrium spin order is created, and 

spin evolution is recorded to follow its relaxation to the equilibrium condition. At 

equilibrium, the nucleus is in the lower energy level and the 15N magnetization is aligned 

along the external magnetic field. This alignment can be changed by radio frequency pulses. 

After absorbing the energy of the pulses, the nucleus will be in the higher energy level and 

the 15N magnetization is not parallel to the external field any more. The magnetization will 

relax back to equilibrium, along the direction of the external magnetic field, with a time 

constant called longitudinal relaxation time T1. Due to the presence of the angle between 15N 

magnetization and the external field in non-equilibrium condition, the magnetization vector 

has a component perpendicular to the external magnetic field. The time constant for this spin 

component to return to equilibrium is called transverse relaxation time T2. Another relaxation 

parameter is the hetero-nuclear NOE, which is measured by saturating the proton (1H) signal 

and observing changes in the 15N signal intensities. 

The relaxation parameters are related to the spectral density function J(ω) of the 1H-15N 

bond vector by the following equations (18):  

)()](6)(3)()[4/( 22
1

1
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where  

〉〈= −32
0 )8/( NHNH rhd πγγμ                                            [5] 

3/σω Δ= Nc                                                      [6] 

In equation [3], it is sometimes necessary to account for chemical exchange effect by 

adding an exchange contribution Rex=ωN
2Φex to the predicted R2, where Φex is a constant that 

depends on the chemical shift differences, populations, and interconversion rates for the 

exchanging species (19). In equation [2] to [6], μ0=4π × 10-7 kg m s-2 A-2
 is the permeability 

of free space, h=6.6262 × 10-34 erg · s is Planck’s constant, γH and γN are the gyromagnetic 

ratios of 1H and 15N(2.6753 × 108 rad · s-1 · T-1 and -2.71 × 107 rad · s-1 · T-1, respectively), 

rNH=1.02 Ǻ is the nitrogen- hydrogen bond length, ωH and ωN are Larmor frequencies of 1H 

and 15N, and Δσ=-160 ppm is the chemical shift anisotropy measured for 15N nuclei in 

helical polypeptide chains(20). For a protein in solution, the spectral density function J(ω) 

depends on the global correlation time (τc) and on the internal motion of the 1H-15N bond 

vector (τi). J(ω) can be described by Lipari-Szabo Model-Free formulism (21): 
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where 1−
eτ = 1−

cτ + 1−
iτ .                                                [8] 

eτ is the effective internal correlation time. In the limit eτ << cτ and 2S ≈1, Equation [7] can 

be written as: 
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In this kind of rigid systems, where the H-N vectors are fixed, the τc value of any H-N vector 

is equal to the molecular overall tumbling time, assuming an isotropic model. The time scale 

for protein molecular tumbling is usually in the order of 10ns or longer, depending on the 

size of the protein. If protein backbone amides have conformational dynamics on a time 
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scale faster than the molecular tumbling, i.e. on the ps-ns time scale, the 15N R1 values of the 

corresponding residues are characterized by higher values than the average value, and NOE 

and R2 values are lower than the average value. If motions on μs-ms time scale are present, 

the modulation of isotropic chemical shifts contributes to the Rex term, resulting in much 

higher R2 values. Detailed examples on the characterization of local motions in S100A5 and 

S100A16 are shown in the Result section 3.1 and 3.2. 

2.3 Paramagnetic restraints (pcs and rdc) and their application 

As mentioned before, paramagnetic restraints pcs and rdc are increasingly widely used 

in NMR macromolecular structural and dynamics studies. Paramagnetic lanthanide ions are 

generally applied as the source of the paramagnetic restraints. The paramagnetic lanthanide 

ions have variable strength and degree of anisotropy, and this permits to achieve 

conformational information from the different ions (22) (23). 

Pseudocontact shifts (pcs) are related to the magnetic anisotropies and the structural 

parameters through the following equation: 

( ) ⎥⎦
⎤

⎢⎣
⎡ ϕϑχΔ+−ϑχΔ

π
=δ iii

i
i r

2cossin
2
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12
1 2
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2
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Where axχΔ and rhχΔ are the axial and rhombic anisotropy parameters of the magnetic 

susceptibility tensor of the metal: 

2ax
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zz
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.rh yyxx χχχ −=Δ                                                      [12] 

ir is the distance between the atom i and the metal ion, ϑi and ϕi are the spherical angles of 

atom i with respect to the principal axes of the magnetic susceptibility tensor centered on the 

metal ion (Figure 2.1 A). Different metal ions induce different pcs values, depending on their 

magnetic anisotropy. After the complete assignment of the 1H-15N-HSQC spectra of the 

paramagnetic and the analogous diamagnetic sample, the pcs values of N and NH of each 

amino acid are easily obtained from the difference between the corresponding chemical 

shifts of the paramagnetic and diamagnetic forms. By investigating the pcs of different 
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lanthanides, the distance and angular information of the nuclei located up to approximately 

40 Ǻ from the lanthanide ion can be obtained.(24)- (28). 

The residual dipolar coupling (rdc) between two spins occurs if the molecules exhibit a 

partial alignment in solution, which leads to an incomplete averaging of spatially anisotropic 

dipolar couplings. When molecules bind paramagnetic metal ions like paramagnetic 

lanthanides, self-orientation rdc arise as a result of the molecular partial alignment induced 

by the magnetic susceptibility anisotropy at high magnetic field. Differences in 1J 15N-1H 

splittings between the paramagnetic and the diamagnetic forms of the protein backbone 

amides, most frequently used in protein investigations, are described by the equation (28)(29): 
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where Θ is the angle between the N-H vector and the z axis of the χ tensor, Φ is the angle 

between the projection of the N-H vector on the xy plane of the χ tensor and the x axis 

(Figure 2.1 B), and axχΔ and rhχΔ are defined the same as in Equation [10]. Unlike NOEs 

and pcs, rdc values provide orientational information, both short range and long range, 

instead of distance information between two atoms. Rdc are becoming increasingly 

important as a powerful complement to NOE in structural determination and a useful tool for 

protein dynamic investigation (30). In practical applications, rdc data are usually obtained 

from IPAP-HSQC experiments as the difference in the doublet splitting in the indirect 15N 

dimension between the paramagnetic form and diamagnetic form (31). 

 

(A)                    (B) 

Figure 2.1: Schematic representation of the geometric dependence of 1HN pcs (A) and 1H-15N rdc (B). 

(reprint from Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G. (2004), J Am Chem Doc, 

126: 2963-70.) 
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 In this thesis, two kinds of mutated CaM (N60D and H107C, N111C) were used for 

the study of inter-domain motion: N60D CaM was loaded with Tm3+, Tb3+ and Dy3+ on the 

second Ca2+ binding site; H107C, N111C CaM was loaded with Lu3+, Yb3+and Tm3+ through 

the small tag ClaNP-5 mentioned before. The magnetic susceptibility tensors of the 

paramagnetic metals were obtained from the pcs values detected on the domain where the 

Ln3+ ion were located using the program FANTASIAN (32). The relative position between the 

two domains of CaM is calculated with the pcs and rdc values on the other domain using the 

program MAP approach (33).
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 The main achievements that I have obtained during these three years of PhD course are 

the structure determinations and dynamic characterization of two S100 proteins, S100A5 and 

S100A16. I have also investigated the presence of interaction between CaM and hMBF1 and 

the maximum occurrence of different conformations of CaM when the protein is free in 

solution. All these studies were performed by NMR spectroscopy. 

For the structural characterization of S100A5 and S100A16, I performed the NMR 

experiments, the resonance signals assignments and the structural calculations. I also 

performed the 15N relaxation measurements in order to obtain information on the protein 

mobility. The conformational changes upon calcium binding of both the two S100 members 

were discussed. All these studies are shown in detail in the result section 3.1 and 3.2. 

hMBF1 was reported as a CaM target, which interaction is regulated by the level of 

calcium ions. I studied the in vitro interaction between hMBF1 and CaM through NMR 

titration. These experiments indicated that no interaction is occurring between the two 

proteins both in absence and in the presence of calcium(II). This is reported in section 3.3. 

For studying the conformations possibly experienced by CaM, the maximum 

occurrence of given conformations can be calculated from the paramagnetic pcs and rdc 

values. This approach was previously applied to a variant of CaM (N60D), in which 

paramagnetic lanthanide ions were selectively bound to the second calcium binding site of 

N-terminal domain. In my study, the same approach has been used with the lanthanide ion 

bound on the surface of the C-terminal domain of CaM through the tag ClaNP-5. In this way 

I have obtained new sets of pcs and edc values, averaged according to the sampled protein 

conformations. By using this new pcs and rdc data together with those arising with the metal 

in the N-terminal domain, more accurate information can be obtained on the maximum 

occurrence of the different protein conformations. In this project, I mainly contribute to the 

NMR spectra acquirement, backbone resonance signals assignments and the calculation of 

pcs and rdc data. The detailed information is shown in section 3.4. 
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3.1 

Solution structure and dynamics of S100A5 in the apo and 

Ca2+-bound states 
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Abstract S100A5 is a calcium binding protein of the

S100 family, with one canonical and one S100-specific EF-

hand motif per subunit. Although its function is still

unknown, it has recently been reported to be one of the

S100 proteins able to interact with the receptor for

advanced glycation end products. The homodimeric solu-

tion structures of S100A5 in both the apo and the

calcium(II)-loaded forms have been obtained, and show a

conformational rearrangement upon calcium binding. This

rearrangement involves, in particular, the hinge loop

connecting the N-terminal and the C-terminal EF-hand

domains, the reorientation of helix III with respect to helix

IV, as common to several S100 proteins, and the elongation

of helix IV. The details of the structural changes are

important because they must be related to the different

functions, still largely unknown, of the different members

of the S100 family. For the first time for a full-length S100

protein, relaxation measurements were performed on

both the apo and the calcium-bound forms. A quite large

mobility was observed in the hinge loop, which is not

quenched in the calcium form. The structural differences

resulting upon calcium binding change the global shape

and the distribution of hydrophobic and charged residues of

the S100A5 homodimer in a modest but significantly dif-

ferent manner with respect to the closest homologues

S100A4 and S100A6.

Keywords Calcium binding proteins �
Calcium-induced conformational rearrangements �
EF-hand proteins � Protein dynamics � S100A5

Introduction

S100 proteins have been found to be implicated in a Ca2?-

dependent (and, in some cases, Zn2?- or Cu2?-dependent)

regulation of a variety of intracellular and extracellular

activities, and several biological targets have been identi-

fied for the different proteins [1]. A large variability in the

sequence is observed within the protein family, which is

responsible for the modulation of the shape and the nature

of the binding surface. This modulation is needed to bind

different targets, although the overall fold of most members

of the family is very similar. The structures available for
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S100–target peptide adducts actually display a remarkable

lack of uniformity in the orientation of the target [2].

Furthermore, individual S100 proteins can bind different

targets in different ways [3].

Several S100 protein structures are available, solved

either in solution or in the solid state. Together with

S100A4 and S100A6, S100A5, the function of which is

still unknown [4], belongs to a well-defined subset of the

S100 family showing high homology [5]. The structures

of S100A4 and S100A6 are available [6, 7], whereas that of

S100A5 is not. We report here the solution structures of

S100A5 in both the apo and the calcium(II)-bound states,

and compare these structures with those of its closest

homologues and of other S100 proteins.

The expression level of S100A5 was demonstrated

by immunohistochemical analyses to be restricted to a

few specific cells [8], i.e., in the olfactory bulb, in the

brainstem, and in the spinal trigeminal tract, analogously

to S100A3 and differently from other S100 proteins such

as S100A6 and S100B. Marked modifications of the

levels of expression of different S100 proteins (including

S100A5 and S100A6) occur in connection with the pro-

gression of astrocytic tumor malignancy [9]. It was found

that totally resected WHO grade I meningiomas with high

levels of S100A5 either did not recur or recurred later

than those with low S100A5 levels [9]. In this respect, the

recently found interaction with the receptor for advanced

glycation end products, well known to be involved in

tumor outgrowth, may acquire further biological rele-

vance [10].

Most S100 proteins are encoded by genes located in the

same chromosome 1q21, with the exception of genes

encoding S100B (located on chromosome 21q22), calbin-

din D9k (also called S100G, located on chromosome Xp22)

and S100P (located on chromosome 4p16) [11]. Interest-

ingly, S100A1, S100A3, S1004, S100A5, S100A6,

S100A8, S100A9, S100A12, and S100A13 genes are all

mapped within a short distance. It is widely appreciated

that colocalization of genes may imply coexpression of the

proteins [12, 13], and in the case of S100 proteins this

probably correlates with the observation of functional

heterodimers and possibly with concerted functions [13].

All S100 proteins are constituted by two EF-hand

motifs, highly conserved helix–loop–helix structural

domains that can each bind a calcium(II) ion. Canonical

EF-hand proteins have calcium binding loops constituted

by 12 residues; S100 proteins are a subgroup where the N-

terminal EF-hand loop is constituted by 14 residues [1, 4,

14]. The N-terminal EF-hand comprises helix I, the S100-

specific calcium binding loop I, and helix II, which is

separated by a flexible linker, called ‘‘hinge loop,’’ from

the C-terminal EF-hand, which comprises helix III, cal-

cium binding loop II, and helix IV.

Calcium(II) binding is an important mechanism in cells

because calcium(II) is toxic at elevated levels to cellular

metabolism, and therefore its influx and efflux in the

cytosol must be controlled and kept at submicromolar

resting levels [15]. Furthermore, calcium(II) ions play a

central role in cell signaling. Calcium(II) binding to EF-

hand proteins in fact induces in most cases conformational

changes that correlate with binding of target proteins/

enzymes involved in a wide variety of cellular processes.

The helices in the EF-hand motifs can have an almost

antiparallel arrangement, called ‘‘closed conformation,’’ or

an almost orthogonal arrangement, called ‘‘open confor-

mation,’’ depending on the presence of bound calcium [16–

22]. The latter conformation exposes large hydrophobic

clefts on the protein surface, which acts as a binding region

for a variety of targets.

Proteins undergoing changes in the orientation of the

helices of each EF-hand motif upon calcium(II) binding are

generally functionally related to activation of target pro-

teins, whereas proteins not undergoing conformational

changes have the function of calcium buffer and transport

[23]. In most cases, S100 proteins undergo smaller struc-

tural changes upon calcium(II) binding in the N-terminal

domain and larger changes in the C-terminal domain [2],

although not as large as those observed for the EF-hand

protein calmodulin [24].

All S100 structures determined to date (with the excep-

tion of that of calbindin D9k) show that these proteins exist as

homodimers, heterodimers, or tetramers [14]. Most of the

S100 proteins are homodimers. The dimer interface consists

of helices I (I0) and IV (IV0) of each subunit arranged in a

X-type four-helix bundle, in both the apo and the calcium-

bound states [14]. Calcium binding results in minor altera-

tions of the backbone conformation of calcium binding loop

I but causes helix III to reorient and form a more open

structure with respect to the apo state. As a result, the

hydrophobic residues of helices III and IV in the C-terminal

EF-hand are more exposed, thus facilitating the interaction

with target proteins. The solution structures obtained here for

the apo and calcium(II)-bound forms of S100A5 show that

the same behavior applies to this protein, and provide the

details of the exposed surface and charge distribution

responsible for its possible interactions. Despite the high

homology, S100A4, S100A5, and S100A6 show modest but

significant differences in the pattern of hydrophobic/hydro-

philic/charged residues exposed upon calcium binding. The

present data thus provide a further example of the diversity

of the exposed protein surface, which is likely to be reflected

in a diversity in target proteins.
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Materials and methods

Sample preparation

Untagged human S100A5 was cloned into the NdeI and

BamHI sites of the expression vector pET21a. The

recombinant plasmid was transformed into Escherichia

coli BL21 Gold cells. For the production of 15N-labeled or
13C- and 15N-labeled S100A5, cultures were grown in

minimal medium using 13C-glucose and/or 15N-ammonium

sulfate as the sole carbon and nitrogen source, respec-

tively. Cells were grown at 310 K to an optical density at

600 nm of 0.6 and growth was induced with 1 mM iso-

propyl b-D-thiogalactopyranoside. After induction, the

temperature was reduced to 298 K and the culture was

grown overnight. Cells were harvested by centrifugation at

15,000g for 15 min and resuspended in lysis buffer

[20 mM tris(hydroxymethyl)aminomethane (Tris)–HCl pH

7.5, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride,

2 mM dithiothreitol (DTT)]. Cell lysis was performed by

sonicating with eight bursts of 30 s each. The suspension

was ultracentrifuged at 200,000g for 30 min. The cleared

lysate was precipitated by slowly adding ammonium sul-

fate to 30% and centrifuging at 15,000g for 20 min. The

supernatant was brought to 2 mM CaCl2, applied to a

phenyl Sepharose column equilibrated with 20 mM Tris–

HCl, pH 7.5, 2 mM CaCl2. The unbound proteins were

washed out from the column with the same buffer. S100A5

was then eluted with 20 mM Tris–HCl, pH 7.5, 5 mM

EDTA. The eluate was concentrated and applied to a

Superdex 75 column equilibrated with 30 mM 2-morpho-

linoethanesulfonic acid, pH 6.5, 100 mM NaCl, 5 mM

DTT. The fractions containing S100A5 were pooled and

washed with excess EDTA to remove all metal ions. The

yield of S100A5 was 20 mg L-1 of culture.

NMR spectroscopy and structure determination

All NMR experiments for assignments were performed at

298 K using a Bruker 500 MHz spectrometer equipped

with a cryoprobe. Apo and Ca2-S100A5 samples (0.4 mM)

were 13C- and 15N-labeled, in 30 mM 2-morpholinoetha-

nesulfonic acid, 100 mM NaCl, and 5 mM DTT buffer

(pH 6.5), containing 10% D2O. Sequential assignments

of the backbone resonance were achieved via HNCO,

HNCA, CBCA(CO)NH, and HNCACB spectra. Side-chain

assignments were performed through 3D (h)CCH total

correlation spectroscopy, HBHA(CBCACO)HN together

with 13C nuclear Overhauser effect spectroscopy (NOESY)

heteronuclear single quantum coherence (HSQC), and 15N-

NOESY-HSQC experiments. Proton–proton distance

restraints were derived from the analysis of 2D NOESY,
15N-NOESY-HSQC, and 13C-NOESY-HSQC spectra

acquired using a Bruker 900 MHz spectrometer equipped

with a cryoprobe. The spectra were processed using

TOPSPIN and analyzed with CARA [25]. The secondary

structure elements were predicted from the chemical shift

index and the backbone dihedral angles were obtained from

TALOS [26], accordingly. The structures were calculated

using the program CYANA-2.0 [27]. The two subunits in

the dimeric structure were linked together through a chain

of dummy atoms with zero van der Waals radii. The cal-

cium(II) ions were included in the calculation of the cal-

cium-loaded form by adding new residues in the amino

acid sequence. Four chains of dummy atoms with zero van

der Waals radii, that can freely penetrate into the protein,

each of them ending with one atom with a radius of 1.8 Å,

which mimics the calcium ion, were included for this

purpose. Protein ligand atoms were linked to the metal

ion through upper distance limits of 3 Å, according to the

structure of S100A13.

The best 30 structures out of the calculated 350 struc-

tures of the CYANA family were then subjected to

restrained energy minimization with AMBER 10 [28].

Nuclear Overhauser effect (NOE) and torsion angle

restraints were applied with force constants of 50 kcal

mol-1 Å-2 and 32 kcal mol-1 rad-2, respectively. The

program PROCHECK-NMR [29] was used to evaluate the

quality of the structures.

Relaxation measurements

15N-R1, R2, and steady-state heteronuclear 1H–15N NOEs

were measured with a 700 MHz spectrometer using stan-

dard pulse sequences [30, 31], at 298 K. The longitudinal

(R1) and transverse (R2) relaxation rates were determined

by fitting the cross-peak intensities as a function of the

delay to a single-exponential decay through the standard

routines of the Sparky software program [32]. The hetero-

nuclear NOE values were obtained from the ratio of the

peak height for 1H-saturated and unsaturated spectra. The

heteronuclear NOE values and their errors were estimated

by calculating the mean ratio and the standard error from

the available data sets. R1, R2, and NOE values were

obtained for 67 and 71 out of the 92 assigned backbone NH

resonances for the apo and the calcium forms, respectively.

Estimates of the reorientation time were then calculated

with the model-free approach [33]. Theoretical predictions

of NH, R1, and R2 values for apo-S100A5 and Ca2-S100A5

were calculated by using the HYDRONMR software

program [34].

Metal binding detection

The binding of apo-S100A5 to Ca2? was monitored by

following the changes in the chemical shifts of the protein
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NMR peaks in the 1H–15N-HSQC spectra upon titration of

the apoprotein with calcium ions. The chemical shift per-

turbation between the free and bound states was obtained

for each residue by calculating the composite chemical

shifts according to Eq. 1:

dðHNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dd2
H þ ðDdN=5Þ2

2

s

; ð1Þ

where DdH and DdN are the differences in chemical shifts

between the bound and free states of the amide protons and

of the nitrogen atoms, respectively.

Accession numbers

Atomic coordinates, structural restraints, and resonance

assignments of apo-S100A5 and Ca2-S100A5 have been

deposited in the Protein Data Bank (codes 2KAX and

2KAY) and BioMagResBank (codes 16033 and 16034).

Results

Resonance assignment

The 1H–15N-HSQC of S100A5 in both the apo and the

calcium forms show well-dispersed resonances, as expec-

ted for a regularly folded protein. The backbone resonance

signals were assigned from residue Glu-2 to residue Tyr-83

and from residue Phe-87 to residue Lys-92 in the apo form,

and from residue Glu-2 to residue Lys-92 with the excep-

tion of Cys-43 in the calcium form. The corresponding

assignments are deposited in BioMagResBank together

with the 1H–13C–15N assignments of the side chain reso-

nances. The types of NMR spectra used for the assignments

are described in ‘‘Materials and methods’’.

Ca2? titration of apo-S100A5

The binding of calcium(II) to apo-S100A5 was monitored

by following the changes in the 1H–15N-HSQC NMR

spectrum of 15N-labeled apo-S100A5 upon addition of

increasing amounts of calcium(II). New peaks appeared in

the spectrum during the titration corresponding to the cal-

cium(II)-bound S100A5 form. The intensity of the new

peaks increased on increasing the Ca2? to apo-S100A5

ratio. When a 2:1 ratio (with respect to the protein subunit

concentration) was reached, the original peaks, corre-

sponding to the apo form, disappeared. Such behavior is

indicative of a slow exchange regime, i.e., the exchange

rate between the metal-free and the metal-bound forms is

much smaller than the chemical shift difference between

the two forms. Figure 1 shows the chemical shift changes

on passing from the apo to the calcium forms of S100A5.

The residues undergoing the largest changes in chemical

shifts are located in the Ca2? binding loops of the two EF-

hand motifs, as expected, and also in the C-terminus.

However, significant differences occur throughout the

protein, thus indicating that a significant conformational

change occurs on passing from the apo form to the calcium

form.

The findings of the Ca2? titration experiments are con-

sistent with previous measurements, which provided dis-

sociation constants for the binding of the first and second

calcium(II) ions in the submillimolar and submicromolar

range, respectively, and a strong positive cooperativity [8].

As already pointed out [8], the affinity of calcium(II) for

S100A5 is among the highest in the whole S100 family.

Relaxation measurements

The relaxation parameters for apo and calcium-loaded

S100A5 are shown in Fig. 2. Such measurements indicate

that the protein is dimeric in both forms. The reorientation

times corresponding to the observed relaxation rates were

in fact calculated to be 12.6 ± 1.0 and 13.5 ± 1.8 ns for

the apo and calcium-loaded forms, respectively, in agree-

ment with the molecular weight and the reorientation times

observed for other S100 homodimers [35–39].

In both apo-S100A5 and Ca2-S100A5, the relaxation

rate measurements show large mobility on a time scale

shorter than the reorientation time (R1 increases, R2

decreases, the NOE decreases) in the hinge loop and for the

last residues at the C-terminus, thus indicating that such

regions may be largely unstructured. Occurrence of motion

is also detected form some other residues of the calcium

binding loops (21, 26, 27, 61–63 in the apo form; 25, 27, 30

in the calcium form).
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Fig. 1 Composite chemical shift perturbation (CSP), as defined in

Eq. 1, of apo-S100A5 upon calcium(II) binding. The horizontal line
indicates the average value
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In the apoprotein, motion on a slower time scale

(microseconds to millisecons) was observed for some resi-

dues localized at the beginning of helix III (Asp-50 and

Ile-52), at the end of helix IV (Tyr-83), and at the C-

terminus (Phe-87), as indicated by the significantly larger

R2 value (for Ile-52, in particular, R2 is 52 s-1 compared

with an average value of about 20 s-1 observed for helix

residues). This mobility may originate from backbone

amide conformational exchange and/or side-chain rotation.

Since the time scale for the conformational exchange

(microseconds to milliseconds) is sizably shorter than the

mixing time (100 ms) of the NOESY spectra, the confor-

mational reorientations of these residues may cause 1H–1H-

NOEs to be observed between nuclei of the side chains of

such residues and residues located in quite different posi-

tions (see later). Upon calcium binding, residues in the

slow motion regime are not observed any more. However,

calcium binding does not reduce the fast motion detected

for residues in the hinge loop, the observed 1H–15N-NOE

being even smaller than in the apo form (the average
1H–15N-NOE in the hinge loop is 0.60 and 0.40 for the apo

and calcium forms, respectively).

Solution structures of apo and Ca2?-bound S100A5

The solution structures of the human S100A5 in the apo

and calcium-loaded forms were obtained. A total of 2,752

and 2,530 meaningful upper distance limits per dimer,

including 184 and 190 intersubunit upper distance limits

for the apo and the calcium forms, respectively, were used

(Tables 1, 2). Few NOE patterns were detected for residues

in the hinge loop and at the C-terminus, consistent with the

observed mobility of such regions. In the calcium form, the

Ca2? ions were restrained to be within 3 Å from the oxy-

gen ligand atoms (O of Ser-20, Glu-23, Ser-25, Thr-28 and

OE1, OE2 of Glu-33 for the first binding site, and OD1 of
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Fig. 2 Sequential plot of the experimental relaxation parameters of apo and Ca2?-S100A5. The values calculated by HYDRONMR are shown as

bars. NOE nuclear Overhauser effect
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Asp-60, Asn-62, OD1, OD2 of Asp-64, O of Glu-66, and

OE1, OE2 of Glu-71 for the second binding site). No

symmetry constraint was used.

The calculated families of structures are shown in

Fig. 3. In both forms, the eight individual helices of the

two EF-hand motifs of each subunit present in the dimeric

structure are very well defined; the four calcium binding

loops are less well defined, whereas the linker regions

Table 1 Structural restraints and statistical analysis of apo-S100A5

Structural restraints

NOE upper distance limits

Intrasubunit 1,284

Intraresidue 358

Interresidue

Sequential (|i - j| = 1) 395

Medium range (|i - j| \ 4) 320

Long range (|i - j| [ 5) 211

Intersubunit 184

Dihedral angle restraints

u 96

w 96

Statistical analysis

Family Mean

RMS violations per meaningful distance restraints (Å)

Intraresidue 0.0183 ± 0.0028 0.0178

Sequential 0.0179 ± 0.0025 0.0176

Medium range 0.0149 ± 0.0023 0.0093

Long range 0.0090 ± 0.0020 0.0087

RMS violations per meaningful dihedral angle restraints (�)

u 4.87 ± 1.23 4.00

w 4.04 ± 1.42 2.82

Average number of restraints per residue 14.96 14.96

Average number of violations per conformer

u 6.93 ± 2.00 8.00

w 6.63 ± 2.20 4.00

NOE violations between 0.1 and 0.3 Å 9.40 ± 2.59 8.0

NOE violations larger than 0.3 Å 0 0

Average RMSD from the mean (Å)

Backbone 1.00 ± 0.09a

0.78 ± 0.09b

Heavy 1.47 ± 0.09a

1.25 ± 0.09b

Residual CYANA target function (Å2) 1.18 ± 0.31

Structural analysis

Residues in most favorable regions (%) 82.7a/88.1b 92.6

Residues in allowed regions (%) 13.2a/10.0b 6.6

Residues in generously allowed regions (%) 2.2a/0.9b 0.0

Residues in disallowed regions (%) 1.9a/1.0b 0.8

NOE nuclear Overhauser effect, RMS root mean square, RMSD root

mean square deviation
a RMS deviation values were calculated in the sequence range 3–82
b RMS deviation values were calculated excluding flexible loop 41–52

of both subunits

Table 2 Structural restraints and statistical analysis of Ca2-S100A5

Structural restraints

NOE upper distance limits

Intrasubunit 1,170

Intraresidue 380

Interresidue

Sequential (|i - j| = 1) 325

Medium range (|i - j| \ 4) 280

Long range (|i - j| [ 5) 185

Intersubunit 190

Dihedral angle restraints

u 120

w 120

Statistical analysis

Family Mean

RMS violations per meaningful distance restraints (Å)

Intraresidue 0.0106 ± 0.0027 0.0123

Sequential 0.0092 ± 0.0016 0.0077

Medium range 0.0085 ± 0.0018 0.0083

Long range 0.0056 ± 0.0018 0.0053

RMS violations per meaningful dihedral angle restraints (�)

Phi 1.97 ± 0.23 1.6246

Psi 0.63 ± 0.42 0.5218

Average number of restraints per residue 13.75 13.75

Average number of violations per conformer

u 9.74 ± 1.76 9.0

w 1.83 ± 1.23 2.0

NOE violations between 0.1 and 0.3 Å 4.03 ± 1.93 6.0

NOE violations larger than 0.3 Å 0 0

Average RMSD from the mean (Å)

Backbone 0.93 ± 0.11a

0.83 ± 0.10b

Heavy 1.40 ± 0.10a

1.29 ± 0.09b

Residual CYANA target function (Å2) 0.31 ± 0.03

Structural analysis

Residues in most favorable regions (%) 86.0a/90.4b 90.7

Residues in allowed regions (%) 11.2a/7.5b 9.3

Residues in generously allowed regions (%) 1.9a/1.5b 0.0

Residues in disallowed regions (%) 0.9a/0.6b 0.0

a RMSD values were calculated in the sequence range 3–90
b RMSD values were calculated excluding flexible loop 41–49 of both

subunits
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between the two EF-hand calcium binding domains are

poorly defined. These results are in line with what was

previously found for other EF-hand proteins [36, 40]. Each

calcium binding loop contains a short antiparallel b strand.

The root mean square deviation (RMSD) from the mean

subunit structure for the structured regions of the protein

is 0.73 ± 0.10 Å (backbone) and 1.22 ± 0.09 Å (heavy

atoms) for apo-S100A5 (residues 3–40, 53–82) and

0.71 ± 0.09 Å (backbone) and 1.20 ± 0.07 Å (heavy

atoms) for Ca2-S100A5 (residues 3–40, 50–90). The

RMSD from the mean dimeric structure for the structured

regions of the protein is 0.78 ± 0.09 Å (backbone) and

1.25 ± 0.09 Å (heavy atoms) for apo-S100A5 (residues 3–

40, 53–82 of both subunits) and 0.83 ± 0.10 Å (backbone)

and 1.29 ± 0.09 Å (heavy atoms) for Ca2-S100A5 (resi-

dues 3–40, 50–90 of both subunits). More than 95% of the

residues (including those in the poorly defined regions) in

all structures were located in the allowed regions of the

Ramachandran plot. The conformational and energetic

analyses of both structures are reported in Tables 1 and 2.

The relaxation rates were then calculated using HY-

DRONMR [34] and the minimized mean structures

obtained, and are reported in Fig. 2 as bars. An overall

agreement is observed between calculated and experi-

mental values for the residues located on the protein heli-

ces; on the other hand, the differences between calculated

and observed values make it easier to appreciate the pres-

ence of mobility in some residues of the loops.

In both the apo and the calcium-loaded forms, S100A5

forms homodimers owing to the interactions between

helices I and I0 and between helices IV and IV0 of the two

subunits. There is a symmetry relationship between the

subunits consisting in a twofold rotational axis passing

through the dimer interface approximately perpendicular to

helix I and helix I0 and parallel to helix IV and helix IV0. At

the dimer interface, residues in the hinge loop between

helix II and helix III make contacts with residues near the

N-terminus of helix I of the other subunit. Residues Phe-

69, Lys-70, Ser-73, and Cys-80 in helix IV also make

several contacts with helix I0 and helix IV0 of the other

subunit. All these interactions align helix I and helix IV in

opposite directions to helix I0 and helix IV0, respectively, in

the dimer.

Discussion

The overall structures of both the apo and the calcium(II)-

loaded forms of S100A5 are in good agreement with those

obtained for other S100 proteins, such as S100A1, S100A4,

S100A6, S100A8, S100A12, S100A13, or S100B [6, 39,

41]. The comparison of the apo and calcium-loaded

S100A5 structures shows that the N-terminal EF-hands

(residues 5–41) are similar to one another (the backbone

RMSD is 2.0 Å), thus indicating that there is no large

conformational rearrangement upon calcium binding. In

contrast, the C-terminal EF-hand (residues 49–82) under-

goes a major conformational change upon calcium binding,

the backbone RMSD between the two forms increasing to

4.2 Å. This conformational rearrangement includes a quite

different orientation of helix III and nonnegligible changes

in helix IV and in the hinge loop (Fig. 4). These rea-

rrangements upon calcium binding are similar to those

observed for other S100 proteins [5, 6, 39, 42, 43], with

the exception of S100A10, which is known to have a

‘‘calcium-ready state’’ in both the N-terminal and the

C-terminal EF-hands although it does not bind calcium(II)

[4]. In apo-S100A6 (1K9P) and apo-S100A13 (1YUR), for

instance, helix III is almost antiparallel to helix IV, but

opens by 30–40� upon calcium binding (1K9K and 1YUT).

The same degree of opening is observed in other EF-hand

proteins, such as calmodulin [21], not belonging to the

S100 family. In S100A5 the angle between helices III and

apoS100A5 a 

I

IV

II

III

Ca2S100A5 

I

IV  

II

III

apoS100A5 homodimer Ca2S100A5 homodimer 
b 

II’ II’II II

III’
III’  

III
III

I I I’I’ 

IV’ IV’  IV IV

Fig. 3 Stereoview of the families of the solution structures of the

S100A5 subunit in the apo and calcium(II)-loaded forms (a) and

ribbon representation of the homodimer mean structures (b) obtained

after restrained energy minimization
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IV changes from 168� to 118� on passing from the apo to

the calcium-bound form, so the two helices are almost

perpendicular in the latter form.

Analogously to most S100 proteins, helices IV and IV0

in the apo form tend to be antiparallel (forming an angle of

152�), whereas they form an angle of about 130� in the

calcium-bound form, while helices I and I0 form a similar

angle (147–142�) in both forms.

Structural changes within the EF-hand family can be

monitored through a principal component analysis of the

six interhelix angles representing the reciprocal orienta-

tion of the four helices [21]. It was shown that the EF-hand

proteins can be clustered according to subgroups and

metal content using the first two principal components,

which concentrate the information distributed throughout

the six interhelix angles. The values of the first two

principal components also permit us to identify whether

S100 proteins have a structure typical of the apo or the

calcium-loaded form. The principal component values

were thus calculated for the two forms of S100A5, and

were plotted together with the values previously calcu-

lated for the S100 proteins (Fig. 5), and with the values

relative to other S100 proteins deposited in the Protein

Data Bank in the meantime, by using the same coefficients

for the interhelix angles (calculated with the program

MOLMOL) reported by Babini et al. [21]. The figure

shows that S100A5 is regularly positioned with respect to

the other S100 proteins in both the apo and the calcium-

loaded forms, thus pointing to the occurrence of similar

structures, and thus of similar overall rearrangement upon

calcium(II) binding. It is to be noted that the only two

S100 proteins not regularly placed are calbindin D9k and

S100A10 in the apo form.

The concomitant 50� reorientation of helix III with

respect to helix IV and the reorientation and translation of

helices IV and IV0 in S100A5 upon calcium(II) binding

result in an increased solvent-exposed surface of the hinge

loop and of some positively charged residues of helix II

and helix III in the calcium-loaded form. In fact, several

hydrophobic residues on helix III (Ile-52, Leu 55, Met-56,

and Leu-59), helix II (Ile-38), and helix IV (Phe-75,

Met-78, Tyr-83) are constrained in a hydrophobic cluster in

apo-S100A5, which is loosened upon calcium(II) binding.

On the other hand, calcium binding results in a decrease in

the exposure of the metal ligand residues Asp-60, Asn-62,

Asp-64, and Glu-71 in the C-terminal calcium binding

loop. Similarly to what was found for other S100 proteins,

the structural differences induced by calcium(II) binding in

the homodimer thus lead to an exposure of two symmet-

rically positioned clefts, defined by helix III, helix IV, the

hinge loop, and the last C-terminal residues, where target

proteins can be accommodated [14].

In the apo form, residue Ile-52 was identified by relaxation

measurements to experience mobility on the millisecond to

microsecond time scale. The side chain of this residue

experiences NOE contacts with both Met-56 and Tyr-83,

which are positioned in opposite directions. As anticipated in

‘‘Relaxation measurements,’’ this may be due to the occur-

rence of conformational exchange, and these data thus indi-

cate that the side chain of Ile-52 can rotate along an axis

perpendicular to helix III, so a conformational exchange is

also affecting the backbone amide group. As a consequence,

the residues forming a hydrophobic patch with Ile-52, and

particularly the ones localized on the protein surface such as

residue Tyr-83, may also experience sizable mobility on the

side-chain and/or backbone atoms.

The slow time scale motion detected for residues Ile-52

and Tyr-83 in the apo form is absent in the calcium form,

as a consequence of the conformational rearrangement of

both helix III and helix IV. In the apo form, in fact, the

Ca2-S100A5

Ca

IV

III

II

IV

III

II

I I

Apo-S100A5

2+

Fig. 4 Major structural differences upon calcium binding: the

different angle between helices III (enclosed in circles) and IV, and

the longer a-helical structure of helix IV
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Ca-A5
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Fig. 5 Principal component plot for the S100 proteins derived from

principal components analysis of the six interhelix angles [21].

Apoproteins (S100A1, S100A2, S100A3, S100A4, S100A5, S100A6,

S100A10, S100A11, S100A13, S100B, calbindin D9k) are indicated

with open circles and calcium-loaded proteins (S100A1, S100A4,

S100A5, S100A6, S100A7, S100A8, S100A9, S100A12, S100A13,

S100B, calbindin D9k, S100P) are indicated with solid circles. The

two open symbols not regularly placed with respect to the others

correspond to calbindin D9k and S100A10 in the apo form. The data

are based on the structural information reported in the supporting

information in [21] as well as on more recent structural information

reported in the electronic supplementary material
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aromatic ring of Tyr-83 of each subunit participates in a

hydrophobic cluster including the side chains of residues

Leu-44, Met-47, Ile-52, and Leu-79 of the same subunit. As

already noted [6], calcium binding overcomes the hydro-

phobic interactions that keep this cluster together, so the side

chain of Tyr-83 changes orientation and forms new hydro-

phobic contacts with the side chains of Leu-9, Val-13, and

Thr-14 of helix I of the other subunit of the dimeric structure.

This rotation is experimentally confirmed by the 1H–1H-

NOEs observed between Tyr-83 and residues Leu-44, Lys-

48, Ile-52, and Leu-79 of the same subunit in the apo form

and with residues Leu-9, Thr-10, and Val-13 of the other

subunit in the calcium(II) form. The loosening of the

hydrophobic cluster including Leu-44 and Met-47 may be

responsible for the larger fast motion deduced for the hinge

loop residues from the lower 1H–15N-NOE values measured

for the calcium form with respect to the apo form.

Another difference between apo-S100A5 and Ca2-

S100A5 is that the C-terminal helix IV is shorter in the apo

form. This very same difference has already been observed

for S100A6 and S100B [6, 40, 44]. This is due to the

unwinding of helix IV in apo-S100A5 at Tyr-83. The dif-

ferent orientation of the side chain of Tyr-83 is in fact

responsible for a break in the a-helical structure, being

consistent with a regularly formed a helix only in the

calcium-loaded form [6].

The hydrophobic residues at the extreme C-terminus

(Phe-87 and Leu-88) are important for stabilizing both the

apo-S100A5 and the Ca2-S100A5 homodimer. However,

these residues form a hydrophobic cluster with different

partners. In the apo form, they are in contact with Leu-27 in

the first calcium binding loop of the other subunit, whereas

in the calcium form they have hydrophobic interactions

with Val-13 and Thr-14 of helix I of the other subunit.

Analogously to relaxation studies of apo-S100B and

apo-S100A4 [35, 37], relaxation studies indicate that

helices I and IV are quite rigid, whereas helix III is

somewhat more flexible. On the other hand, in S100A5 the

loop experiencing a very large mobility is only the hinge

loop, whereas in S100A4 both the hinge loop and the

calcium binding loops are quite mobile, and in S100B the

mobility of the calcium binding loops is even larger than

that of the hinge loop [35, 37]. A larger mobility for the

hinge loop with respect to the calcium binding loops was

also observed for S100A1 [36].

The combination of the structural differences results in a

change of the global shape and distribution of surface

charges of the S100A5 homodimer upon calcium binding

(Fig. 6), whereas no major differences in motion are seen

in the two forms. The change in the shape of the protein on

passing from the apo to the calcium-loaded form is com-

mon to most S100 proteins [14, 39]. On the other hand, the

change in the charge distribution seems to depend largely

on the particular S100 protein [45]. S100A5 shows a

number of charged residues, both positive and negative, on

the protein surface in both the apo and the calcium-loaded

forms. Interestingly, upon calcium binding, some more

exposed positive residues (Lys-48, Lys-57) are moved

away from the inner part of the opened cleft, which

becomes slightly more hydrophobic, and the negative

electrostatic surface is smaller and more clustered around

the calcium binding sites. Other S100 proteins show a

different change in the surface charge and hydrophobic

distribution upon calcium binding: for instance, in S100A6

a larger increase of the hydrophobic surface was observed;

in S100B a larger negative charged surface is exposed; in

S100A4 the large hydrophobic surface present in the apo

form remains exposed also upon calcium binding; in
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Fig. 6 Electrostatic surface representation of the S100A5 dimer
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S100A13 the charge distribution remains as large as in the

apo form, but appears quite different. Overall, the present

data provide a further example of the diversity of the

exposed protein surface upon calcium(II) binding, which is

likely to be reflected in a diversity in target protein(s).

S100A4, S100A5, and S100A6 are the most closely

related S100 proteins according to phylogenetic trees

constructed on the basis of multiple sequence alignments of

S100 proteins [5]. Upon calcium binding, in all these

proteins the opened cleft exposes hydrophobic residues,

and positive residues become more exposed in the hinge

loop and at the end of the third helix, i.e., in the typical

protein target binding region. S100A6 also shows some

more exposed negative charges at the end of the third helix.

The charged groups surrounding the hydrophobic patch, as

well as the shape of the surface, are however distinctly

different for these proteins in the calcium-bound form

(Fig. 7). Such differences observed for S100A4 and

S100A6 reflect their different target specificity [46]. This

suggests that the function of S100A5 may also be different

from that of the other two proteins, and especially from that

of S100A6, owing to the different charge pattern.
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Abstract The homodimeric structure of human S100A16

in the apo state has been obtained both in the solid state and

in solution, resulting in good agreement between the

structures with the exception of two loop regions. The

homodimeric solution structure of human S100A16 was

also calculated in the calcium(II)-bound form. Differently

from most S100 proteins, the conformational rearrangement

upon calcium binding is minor. This characteristic is likely

to be related to the weak binding affinity of the protein for

the calcium(II) ions. In turn, this is ascribed to the lack of

the glutamate residue at the end of the S100-specific

N-domain binding site, which in most S100 proteins provides

two important side chain oxygen atoms as calcium(II)

ligands. Furthermore, the presence of hydrophobic inter-

actions stronger than for other S100 proteins, present in the

closed form of S100A16 between the third and fourth

helices, likely make the closed structure of the second

EF-hand particularly stable, so even upon calcium(II)

binding such a conformation is not disrupted.

Keywords S100A16 � EF-hand proteins � Calcium-

binding proteins � S100 proteins � Protein dynamics

Introduction

S100 proteins represent the largest subgroup in the family

of calcium-binding proteins bearing EF-hand motifs. A

functional EF-hand motif consists of a calcium(II)-binding

loop (usually of about 12 amino acids) flanked by two

a-helices. S100 proteins contain two EF-hand motifs, one

in the N-terminal domain (composed of helix I, loop I, and

helix II) and one in the C-terminal domain (composed of

helix III, loop II, and helix IV). The two domains are

connected by a linker, called a ‘‘hinge loop.’’ The first

N-terminal EF-hand is unconventional, because its loop is

usually composed of 14 amino acids; the second one, in the

C-terminal domain, is canonical. A consequence of the

longer loop in the N-terminal EF-hand is the different

affinity for calcium(II) with respect to the C-terminal

EF-hand, due to the different ion coordination. The canonical

C-terminal domain in fact binds the ion in a manner similar

to calmodulin and troponin-C, resulting in a high calcium

affinity [1, 2]. The N-terminal domain mostly binds the ion

through main-chain carbonyl groups, in addition to the

bidentate side chain of glutamate at the end of the loop, and

this reduces the binding affinity up to 100 times [3].

An interactive 3D complement page in Proteopedia is available at:
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With the exception of calbindin D9k, also known as

S100G, which is monomeric, all the other structures of the

S100 proteins revealed a homo- and, in some cases, het-

erodimerization. Some members of the family also form

tetramers or larger oligomers. In homodimers, the two

subunits are related by a twofold axis of rotation and the

major contributors to the dimer interface are helices I and

IV of each subunit that are ordered in a X-type four-helix

bundle. This relationship is maintained both in the apo state

and in the calcium-bound state.

Upon calcium(II) binding most S100 proteins experi-

ence a conformational change that mostly involves helix

III, which is antiparallel to helix IV in the apo state and

rearranges itself to become almost perpendicular in the

calcium(II)-bound state. This movement ‘‘opens’’ the

structure and exposes a wide hydrophobic cleft that acts

as a binding site for targets [4]. Calcium binding to the

N-terminal EF-hand, instead, causes only minor alterations

of its backbone conformation. On the other hand, cal-

bindin D9k does not undergo changes in its conformation

upon calcium(II) binding; S100A7 does not bind calcium

in the N-terminal EF-hand [5], as a consequence of the

lack of the glutamate residue in the last position of loop I,

the carboxylate group of which is essential for coordi-

nation of the calcium ion; and S100A10 does not bind

calcium in either the N-terminal and or the C-terminal

domain. Furthermore, the affinity for calcium in S100A3

is so low (Kd = 20 mM) that calcium binding is actually

prevented in vivo.

Besides calcium(II), some S100 proteins (S100B [6],

S100A2 [7], S100A7 [8], S100A12 [9]) have been shown

to bind zinc(II). However, binding of zinc(II) in the cyto-

plasm is rather unlikely, because of its subnanomolar

intracellular concentration. On the other hand, several S100

proteins have been also found in the extracellular space,

where the zinc(II) concentration can be much higher [10];

in this respect, zinc was actually reported to modulate the

interaction of S100B with the tau protein [11].

S100A16 is the S100 protein most widely distributed

in humans, and is highly conserved in mammals [12].

Expression of most S100 proteins is actually highly tissue

and cell specific, whereas S100A16 expression has been

reported in a wide spectrum of human tissues (including

brain), analogously to S100A2, S100A13, and S100A14.

Upregulation of S100A16 was found in several cancer tis-

sues, suggesting a function related to malignant transfor-

mation or tumor development [12]. S100A16 expression

was upregulated in tumors of bladder, lung, thyroid gland,

pancreas, and ovary. Furthermore, investigation of S100A16

intracellular localization in human glioblastoma cells

revealed an accumulation of the protein within nucleoli

and a translocation to the cytoplasm in response to calcium

stimulation [13].

Among the S100 family, S100A16 is a ‘‘particular’’

member since it has uncommon characteristics. The

N-terminal EF-hand was predicted to be functionally

inactive since it comprises 15 amino acids, and lacks the

conserved glutamate residue at the last position, analo-

gously to S100A7. The inability of the N-terminal EF-hand

to bind calcium was indicated by flow dialysis experiments

carried out by Sturchler et al. [13]. Such experiments

(performed in a high ionic strength buffer) revealed one

Ca2? binding site per subunit, with Kd of 430 lM, which at

physiological conditions would be two- to threefold lower,

thus becoming very similar to that of many other S100

proteins. Tryptophan fluorescence variations indicated the

occurrence of conformational changes upon calcium(II)

binding in the C-terminal EF-hand, which lead to the for-

mation of a hydrophobic patch that could involve the

hydrophobic residues in helices III and IV and in calcium-

binding loop II. They also showed that S100A16 binds

zinc(II) in a different site with respect to calcium(II).

Of the 22 members found in the human genome, 17

S100 proteins have genes located in the S100A cluster on

chromosome 1q21. Exceptions are S100P (located on

chromosome 4p16), S100Z (5q14), S100B (21q22), and

calbindin D9k (Xp22) [14]. The human chromosomal

region 1q21 is structurally conserved during evolution and

exhibits several rearrangements which occur during tumor

development. Together with the finding of upregulation of

this protein in several cancer tissues [12], this indicates that

S100A16 may have a role in the molecular origin of certain

types of tumors and thus that it deserves structural and

functional characterization studies.

Considering the uncommon behavior of S100A16 with

respect to calcium binding, although several S100 protein

structures are already available, the structural character-

ization of human S100A16 in solution has been performed

in both the apo and the calcium(II) states. The apo state

structure has been also solved in the crystal state. Mobility

studies through relaxation rate analysis were also per-

formed in solution. This information represents the starting

point for future investigations on the binding with possible

targets.

Materials and methods

Protein expression

The gene coding for human S100A16 was generated from

complementary DNA using two sets of primers, in two

successive runs of polymerase chain reaction (PCR), the

second set intended to amplify the specific target sequence

within the first, longer, run product. The first set of external

primers had the following forward and reverse sequences:
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OS116F1 (TGCTGGAGAGGAGGCAGA) and OS116R1

(GGAAGGTCTGGAGGGAGAAG). The second set of

specific primers had the following forward and reverse

sequences: OS116F2 (AAACATATGTCAGACTGCTAC

ACG) and OS116R2 (ATAGAATTCACTAGCTGC

TGCTCT). The DNA amplified by PCR was cut with

restriction enzymes NdeI and EcoRI, purified from agarose

gel and cloned into plasmid pET21a(?) (Novagen), pre-

pared with the same restriction enzymes. With this

expression strategy, the product of the cloned gene has the

wild-type sequence of the S100A16 protein (see

Scheme 1), without a tag and any additional amino acid.

Vector pET21a(?), containing the human S100A16 gene

and cloned to produce the protein without a tag, was trans-

formed in BL21-Gold Escherichia coli strain (Novagen).

Cells were grown in Luria–Bertani medium at 37�C until an

optical density of 0.7 was reached at 600 nm. The protein

expression was then induced by adding 1 mM isopropyl b-D-

thiogalactopyranoside. The culture was allowed to grow for

4 h and then cells were harvested by centrifugation. The

cell pellet was resuspended in lysis buffer [50 mM

tris(hydroxymethyl)aminomethane (Tris) pH 8.0, 200 mM

KCl, 1 mM dithiothreitol (DTT), 0.5 mM Pefabloc, 10 mM

EDTA], and soluble proteins were extracted by sonication

followed by centrifugation. The cleared lysate was then

precipitated by slowly adding streptomycin sulfate to 1%

and centrifugation at 15,000g for 20 min. The supernatant

was dialyzed in 50 mM Tris pH 7.0, 50 mM KCl, 1 mM

DTT, 10 mM EDTA (buffer A) and loaded on a Q Sepharose

FF column (Amersham) equilibrated in buffer A and eluted

with a linear gradient to 50 mM Tris pH 7.0, 1 M KCl, 1 mM

DTT, 10 mM EDTA. The fractions containing S100A16

were collected, added to 2 mM CaCl2, and dialyzed against

50 mM Tris pH 7.4, 200 mM KCl, 1 mM DTT, 2 mM CaCl2
(buffer B). The protein was then purified through hydro-

phobic exchange with a HiPrep phenyl FF column (Amer-

sham) equilibrated in buffer B and eluted with 50 mM Tris

pH 7.4, 200 mM KCl, 1 mM DTT, 5 mM EDTA. A final

purification step was performed with size-exclusion

chromatography on a HiLoad Superdex 75 16/60 column

(Amersham) equilibrated with 20 mM 2-morpholinoetha-

nesulfonic acid (MES) pH 5.5, 200 mM KCl, 1 mM DTT,

1 mM Pefabloc. Protein expression and purity were checked

at every step by sodium dodecyl sulfate polyacrylamide gel

electrophoresis in 17% polyacrylamide after staining of

protein bands with Coomassie blue R-250 against protein

marker (Novagen).

Samples of 15N- and 13C,15N-enriched S100A16 protein

were produced as described above except for the use of M9

minimal medium containing (15NH4)2SO4 and 13C-glucose

as the sole nitrogen and carbon sources.

To express the selenomethionine-labeled S100A16 pro-

tein, the recombinant expression vector pET21a(?) was

transformed into the methionine-auxotrophic E. coli

B834(DE3). Cells were grown overnight in 150 mL of

selenomethionine medium base supplemented with seleno-

methionine nutrient mix (Molecular Dimensions) and

L-methionine (40 mg L-1). After collection by centrifugation,

cells were washed twice with water, resuspended in 1.0 mL

water, and added to 1.5 L of the above-mentioned medium

supplemented with L-selenomethionine (40 mg L-1). Cells

were grown and induced as described above. The recombi-

nant selenomethionine-labeled S100A16 protein was puri-

fied as for the native protein except that all buffers were

degassed and included a reducing reagent to avoid oxidation

of selenomethionine, and a chelator to remove traces of

metals that could catalyze oxidation. Full incorporation of

selenomethionine was confirmed by mass spectrometry

(calculated 11,764.2 Da; observed 11,762.05 Da).

Crystallization, data collection, and structure

determination

Crystallization trials on apo wild-type S100A16 and its

selenomethionine derivative were performed by the sitting

drop method from a solution containing 0.2 M potassium

citrate and 20% PEG3350 at 20�C. Hexagonal crystals

started to grow overnight.

Scheme 1 Amino acid sequence of S100A16. The residues involved in calcium(II) coordination are highlighted
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Several diffraction experiments at -173 �C were per-

formed using synchrotron light radiation. Single-wave-

length anomalous diffraction measurements were carried

out on the selenium edge wavelength (0.976 Å) at beam-

line XRD-1 at ELETTRA (Trieste, Italy), and the high-

resolution monochromatic data collection was performed at

beamline BW7A at DESY-EMBL (Hamburg, Germany).

The selenomethionine derivative crystal diffracted to

2.5-Å resolution and the native crystal diffracted to 2.1-Å

resolution; the crystals belonged to the hexagonal space

group P61 (see below) with four molecules (i.e., two

functional dimers) in the asymmetric unit and a solvent

content of about 55%. The data were collected by the

rotation method using 0.5� steps. The two datasets were

processed using MOSFLM [15] and scaled using SCALA

[16, 17] and both showed a percentage of merohedral

twinning of about 10%. The statistics are shown in Table 1.

The analysis of the anomalous Patterson map performed

with the program SHELXD [18, 19], using the tenfold

redundant dataset collected at the selenium edge (0.976 Å),

provided the positions of eight selenium atoms corre-

sponding to two methionines per monomer. The pre-

liminary phases obtained (figure of merit 0.25) were then

improved by density modification to a figure of merit of

0.75 using a solvent content of 55% with the program

autoSHARP [20, 21]. The first chain tracing after phase

refinement performed by ARP/wARP [22] was able to trace

180 residues in the electron density map out of 412; the

phases so obtained were then merged with the structure

factors of the higher-resolution native dataset and fed into a

new chain tracing procedure with BUCCANEER [23],

which yielded about 350 residues. The remaining residues

were then added and all the side chains were placed

manually using XtalView [24]. This procedure was applied

to both the possible space groups P61 and P65. The latter

yielded only a small number of residues traced. Therefore,

the correct space group was identified as P61.

Refinement was carried out using REFMAC5 [17, 25]

on the native dataset making use of NCS and TLS restraints

and taking twinning into account. Between refinement

cycles, the model was subjected to manual rebuilding using

XtalView [24]. Water molecules were added using the

standard procedure within ARP/wARP [22]. The stereo-

chemical quality of the refined model was assessed using

the program Procheck [26]. The Ramachandran plot was of

good quality with no residues in the disallowed regions.

The coordinates and structure factors were deposited in

the Protein Data Bank under accession code 3NXA.

It is worth mentioning that previous attempts to solve

the structure by molecular replacement were unsuccessful.

This was not due to a low structural homology of the

models used as templates, but to the presence of pseudo-

symmetry, due to the fact that the noncrystallographic axis

relating the two dimers in the asymmetric unit is close to

one of the crystallographic axes. An additional problem is

caused by the simultaneous presence of 9–10% merohedral

twinning with the operator k, h, -l. The latter factor also

accounts for Rcryst and Rfree values which are higher than

might be expected from the data resolution.

Isothermal titration calorimetry

Calcium(II) binding to S100A16 was characterized by

measuring the heat changes during the titration of CaCl2
into the protein solution using a MicroCal (Northampton,

Table 1 Data collection and refinement statistics of the single-

wavelength anomalous diffraction (SAD) and remote datasets

SAD dataset Remote dataset

Synchrotron beamline

(detector)

XRD-1 at ELETTRA

(MarCCD)

BW7A at DESY-EMBL

(MarCCD)

k (Å) 0.976 1.006

Spacegroup P61 P61

Cell dimensions (Å) a = b = 155.96

c = 37.09

a = b = 156.57

c = 38.14

Resolution (Å) 51.0–2.5 (2.64–2.50) 39.1–2.1 (2.21–2.10)

Total reflections 184,676 (17,630) 340,648 (20,115)

Unique reflections 21,191 (2,821) 29,230 (3,660)

Overall completeness (%) 96.0 (87.4) 91.6 (79.4)

Anomalous completeness

(%)

87.1 (58.9) –

Rsym (%)a 8.8 (42.3) 9.2 (39.9)

Rpim (%)b 4.4 (23.3) 2.6 (17.9)

Ranom (%)c 5.9 (22.2) –

Multiplicity 8.7 (6.2) 11.7 (5.5)

hI/r(I)i 5.4 (1.8) 6.0 (1.8)

B factor from Wilson plot

(Å2)

41.3 29.5

Phases FOM before density

modification

0.25 –

Phases FOM after density

modification

0.75 –

Refinement statistics

Resolution (Å) 39.1–2.1 (2.15–2.10)

Reflections in working set 26,651 (1,666)

Reflections in test set (9%) 2,650 (173)

Rcryst/Rfree (%) 24.7 (32.9)/29.8 (37.8)

Protein atoms 2,994

Water molecules 96

RMSD bonds (Å) 0.07

RMSD angles (deg) 4.4

Average B factor (including metals) (Å2) 52.50

Residues in most favored/additional allowed/

generously allowed/disallowed regions (%)

88.7/10.1/1.2/0.0

Numbers in parentheses refer to the high-resolution shell

FOM figure of merit, RMSD root mean square deviation
a Rsym ¼

P

h

P

l jIhl�iIhhj=
P

h

P

l Ihi h
b Rpim ¼

P

h

P

l
1

nh�1

� �1
2

Ihl � Ihi hj j=
P

h

P

l Ihi h
c Ranom ¼

P

hkl I hklð Þh i � I �h� k � lð Þh ij j=
P

hkl I hklð Þh i þ I �h� k � lð Þh ið Þ
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MA, USA) VP titration calorimeter. S100A16 and CaCl2
solutions were centrifuged and degassed under vacuum

conditions and equilibrated at 37 �C before titration. The

sample cell contained 0.2 mM S100A16 dissolved in

20 mM MES buffer (pH 5.5) with 200 mM KCl; the ref-

erence cell contained water. The solution of 10 mM CaCl2
was prepared in the same buffer used in the cell sample.

Upon equilibration, titrations were performed by injecting

7-lL aliquots of 10 mM ligand (CaCl2) into a 0.2 mM

solution of S100A16 using the default injection rate with a

300-s interval between each injection to allow the sample

to return to the baseline. The resulting titration curves were

corrected using the protein-free buffer control.

NMR spectroscopy and solution structure

determination

All NMR experiments for assignments were performed at

25 �C with a Bruker 500 MHz spectrometer equipped with a

cryoprobe. Apo and calcium(II)-loaded S100A16 samples

(0.6 and 0.8 mM, respectively) were 13C,15N-labeled, in

20 mM MES, 200 mM KCl, and 1 mM DTT buffer (pH

5.5), containing 10% D2O. Sequential assignments of the

backbone resonance were achieved via HNCO, HNCA,

CBCA(CO)NH and HNCACB spectra. Side chain assign-

ments were performed through 3D (H)CCH total correlation

spectroscopy, HBHA(CBCACO)HN together with 13C

nuclear Overhauser effect spectroscopy (NOESY) hetero-

nuclear single quantum coherence (HSQC) and 15N-NOESY

HSQC experiments. Proton–proton distance restraints were

derived from the analysis of 2D-NOESY, 15N-NOESY-

HSQC, and 13C-NOESY-HSQC spectra acquired with a

Bruker 900 MHz spectrometer equipped with a cryoprobe.

The spectra were processed using TOPSPIN 2.0 and ana-

lyzed with CARA [27]. Backbone dihedral angles were

obtained from TALOS? [28] from the chemical shifts of N,

HN, Ha, C, Ca, and Cb nuclei. The structures were calculated

using the program CYANA-2.1 [29, 30] by imposing the

dimer symmetry constraint (noncrystallographic symmetry

constraint). The two subunits in the dimeric structure were

linked together through a chain of dummy atoms with zero

van der Waals radii. The calcium(II) ions were included in

the calculation of the calcium-loaded form by adding new

residues in the amino acid sequence. Four chains of dummy

atoms with zero van der Waals radii, which can freely

penetrate into the protein, each of them ending with one

atom with a radius of 1.8 Å, which mimics the calcium ion,

were included for this purpose. Protein ligand atoms were

linked to the metal ion through upper distance limits of 3 Å,

according to the structure of S100A13.

The best 30 structures out of the calculated 350 struc-

tures of the CYANA family were then subjected to

restrained energy minimization with AMBER 10 [31].

Nuclear Overhauser effect (NOE) and torsion angle

restraints were applied with force constants of 50 kcal

mol-1 Å-2 and 32 kcal mol-1 rad-2, respectively. The

programs PROCHECK-NMR [32] and WHATIF [33] were

used to evaluate the quality of the structures.

Calcium(II) titration was performed with a Bruker

600 MHz spectrometer at 25 �C with 356 lM apo-

S100A16 sample. 1H–15N HSQC spectra were acquired for

different Ca2? concentrations in solution (0.1, 0.2, 0.4, 0.8,

1.6, 3.2, 6.4, and 12.8 mM).

The coordinates of the apo and calcium(II) solution

structures were deposited in the Protein Data Bank under

accession codes 2L50 and 2L51, respectively.

Zinc(II) titrations were also performed on both apo-

S100A16 and calcium-bound S100A16 with the same

experimental conditions as for the calcium(II) titration.
1H–15N HSQC spectra were acquired for different Zn2?

concentrations in solution (0.1, 0.3, 0.5, 1, 2, 4, and 8 mM).

Heteronuclear relaxation measurements

15N-R1, R2, and steady-state heteronuclear 1H–15N NOEs

were measured using a 700 MHz spectrometer using

standard pulse sequences [34, 35], at 25 �C. The longitu-

dinal (R1) and transverse (R2) relaxation rates were deter-

mined by fitting the cross-peak intensities as a function of

the delay to a single-exponential decay through the stan-

dard routines of the Sparky program [36]. The heteronu-

clear NOE values were obtained from the ratio of the peak

height for 1H-saturated and unsaturated spectra. The het-

eronuclear NOE values and their errors were estimated by

calculating the mean ratio and the standard error from the

available data sets. R1, R2, and NOE values were obtained

for 91 out of the 102 assigned backbone NH resonances for

both the apo and the calcium forms. Estimates of the

reorientation time were then calculated with the model-free

approach [37] and S2 values were calculated with the

program TENSOR2 [38]. Theoretical predictions of NH R1

and R2 values for apo-S100A16 and calcium(II)-loaded

S100A16 were calculated using HYDRONMR [39].

Results

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) experiments were

performed to investigate the binding of calcium(II) ions.

The binding between apo-S100A16 and Ca2? is endo-

thermic and the reaction proceeds with a positive change in

enthalpy. The ITC curve obtained, shown in Fig. 1, is

hyperbolic. The best-fit analysis performed using the one

binding site model yields an apparent dissociation constant
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of approximately (2.7 ± 0.2) 9 10-4 M, with 1.88 ± 0.08

binding sites per subunit. The same data were also ana-

lyzed with a sequential binding sites model, assuming the

presence of two different calcium binding sites per subunit.

The analysis with the two binding sites model provided

relatively similar DH and dissociation constant values,

without any significant improvement in the quality of the

fit. Therefore, ITC data provide a single binding constant,

as previously reported [13] and of similar value, but also

suggest the possibility that calcium(II) binding could

actually involve both sites in a cooperative way.

NMR resonance assignments

The 1H–15N-HSQC NMR spectra showed well-dispersed

signals in both dimensions, which indicated that S100A16

is well folded in both the apo and the calcium-loaded

states. All the backbone resonance signals were assigned,

except those for Tyr-20 and His-95 in apo-S100A16,

Val-23 and Lys-35 in calcium(II)-loaded S100A16, and

Ser-2, Lys-32, and Pro-89 in both forms.

Ca2? titration of apo-S100A16

The binding of calcium(II) to apo-S100A16 was monitored

by following the changes in the 1H–15N-HSQC NMR

spectra of 15N-labeled apo-S100A16 (Figs. S1, S2). The

intensity of most peaks in or around both calcium binding

regions (from Ser-24 to Ser-34 and from Asp-67 to Glu-78)

decreased immediately after the addition of Ca2?, becom-

ing invisible even before reaching a 1:1 ratio between

calcium(II) and S100A16. New peaks with increasing

intensity then appeared with different chemical shifts when

excess Ca2? was added, up to a S100A16-to-calcium(II)

ratio of about 1:10. This behavior is indicative of an

intermediate exchange regime. In contrast, some other

peaks continuously changed their chemical shifts upon

increasing the Ca2? concentration up to a 1:10 S100A16-

to-calcium(II) ratio, as for systems in the fast exchange

regime. These peaks were those experiencing a minor

chemical shift perturbation. No peaks showed the typical

behavior of the slow exchange regime. The analysis of the

chemical shift titration thus indicates that calcium ions

perturb several residues in both calcium(II)-binding loops.

Figure S3 shows the change in chemical shift during

titration of some fast-exchanging residues, and the corre-

sponding best-fit curves. A dissociation constant of about

3 9 10-4 M can be estimated assuming a cooperative

binding model, as found from ITC measurements. This

value is in agreement with the value obtained from ITC,

and again suggests the presence of two binding sites for

calcium(II). Note that both fast-exchanging residues and

intermediate-exchanging residues belong to both calcium-

binding loops, as the different exchange behavior during

the titration depends on the difference in the chemical shift

of the apo and calcium forms of the different residues.

Figure 2 shows the chemical shift perturbation on passing

from the apo to the calcium(II) form of S100A16. The changes

(with an average value of 0.11 ppm) are smaller than for other

S100 proteins (average values of, e.g., 0.5 ppm for S100A5

and 0.37 ppm for S100A13). The residues undergoing the

largest changes in chemical shifts are located in the two EF-

hand loops, the calcium binding sites. The small chemical shift

perturbation experienced by residues not belonging to the

metal binding sites indicates that the conformational changes

occurring between the apo and the calcium-bound forms are

smaller than those observed for other S100 proteins.

15N relaxation measurements

The relaxation parameters for apo-S100A16 and calcium-

loaded S100A16 are shown in Fig. 3. The reorientation times

Fig. 1 Isothermograms for the binding of S100A16 to Ca2?. The raw

data and the fit to the one binding site model are reported in the upper
panel and the bottom panel, respectively. The fit performed using a

sequential two binding sites model is of similar quality. Appropriate

background corrections were made to account for the heats of dilution

and ionization. All experiments were performed at 25�C
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corresponding to the observed relaxation rates were calcu-

lated to be 12.3 ± 1.5 and 12.3 ± 1.8 ns for the apo and

calcium-loaded forms of S100A16, respectively, indicating

that the protein is dimeric in both forms, and in agreement

with the molecular weight and the reorientation times

observed for other S100 homodimeric proteins [40–44].

In both apo-S100A16 and calcium-loaded S100A16, the

first residues in the N terminus and the residues in the C

terminus are poorly structured as a result of their fast

internal mobility, revealed by the small or negative NOE

values, as well as by the large R1 and the small R2 values.

Fast motion is also detected for some residues at the

beginning of helix II (Ser-37, Phe-38 in the apo form; Ser-

36, Phe-38 in the calcium form). Sizable motion is detected

for loop L1 of the N-terminal EF-hand motif and linker L2

between the two EF-hand motifs.

Upon calcium binding, several residues are subject to an

increase in mobility. Faster internal motions are present in

loop L1 (the 1H–15N-NOE values decrease with respect to

the apo form), whereas the residues at the end of helix IV

(Gly-84, Ile-86, Ile-90, and Ala-91) and Asp-67 experience

motions on a slower timescale, as indicated by the signif-

icantly larger R2 value compared with the average values

observed for the other residues. A reduction in mobility is,

in contrast, observed upon calcium binding for the residues

in loop L3 of the C-terminal EF-hand motif.
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Solution structure of apo-S100A16 and calcium-loaded

S100A16

The solution structures of human S100A16 in the apo and

calcium-loaded forms were calculated from a total of 1,177 and

1,167 meaningful intrasubunit upper distance limits and 89 and

94 intersubunit upper distance limits for the apo and calcium

forms, respectively. Few NOE patterns were detected for the

residues in loop L1 between helix I and helix II and at the C

terminus, consistent with the observed mobility in these

regions. In the calcium form, the Ca2? ions were restrained to be

within 3 Å from the oxygen ligand atoms (O of Val-23, Tyr-26,

Leu-28, and Lys-32 for the N-terminal Ca2? binding site; OD1

of Asp-67 and Asn-69; OD1 and OD2 of Asp-71; O of Arg-73;

OE1 and OE2 of Glu-78 for the C-terminal Ca2? binding site).

Since no unique NOEs were detected for one subunit and

not for the other, the calculations were performed by

imposing the dimer symmetry constraint into the CYANA

calculation. The root mean square deviation (RMSD) from

the mean structure for the structured regions of the dimeric

protein is 0.8 ± 0.1 Å (backbone) and 1.2 ± 0.1 Å (heavy

atoms) for apo-S100A16 (residues 7–23, 35–97 of both

subunits) and 0.7 ± 0.2 Å (backbone) and 1.1 ± 0.1 Å

(heavy atoms) for calcium(II)-loaded S100A16 (residues

7–23, 35–97 of both subunits). PROCHECK-NMR and

WHATIF programs were used to validate the structures on

the Web site https://nmr.cmbi.ru.nl/icing/iCing.html. More

than 98% of the residues in both apo and calcium(II) structure

families were located in the allowed regions of the Rama-

chandran plot. The statistical analysis is reported in Table 2.

The not excellent quality is common to many S100 proteins,

probably owing to the property of this class of proteins (and of

other signaling proteins based on the EF-hand domain) to

change conformation depending on the calcium state. The

relaxation rates calculated with HYDRONMR [39] from the

minimized mean structures under the assumption of no

internal motions, shown in Fig. 3, are in overall agreement

with the averaged experimental values. This confirms that the

protein is dimeric. On the other hand, the differences between

the calculated and observed relaxation rates make it easier to

appreciate the presence of mobility for some residues (see

‘‘15N relaxation measurements’’) [45–51].

The calculated families of structures are shown in Fig. 4.

In both forms, the four helices of the two EF-hand motifs of

each subunit are well defined, whereas loop L1 of the fist EF-

hand motif is less well defined. These results are in line with

the relaxation results. Helix IV is interrupted by residue Pro-

89, after which the helical arrangement starts again.

Crystal structure of apo-S100A16

The crystal structure of apo-S100A16 was solved as

described in the ‘‘Materials and methods.’’ The statistics

are reported in Table 1. The structure generally shows a

well-defined electron density map for the four helices of

the two EF-hand motifs of each subunit except for residues

from 51 to 71 of monomer D, comprising helix III and part

of the loop between helix III and IV. This is consistent with

a very high degree of mobility of these regions in the

crystal lattice, as also indicated by the B factors. To obtain

reasonably low R values, the geometry weight had to be

lowered in the refinement procedure, and this resulted in

Table 2 Structural restraints and statistical analysis

Apo-

S100A16

Ca(II)-

S100A16

NOE upper distance limits

Intrasubunit 1,177 1,167

Intraresidue 510 560

Interresidue

Sequential (|i - j| = 1) 288 288

Medium range (|i - j| \ 4) 236 224

Long range (|i - j| [ 5) 143 95

Intersubunit 89 94

Dihedral angle restraints per subunit

u 64 62

w 64 62

Average RMSD from the mean (Å)

Backbone 1.2 ± 0.2a 1.1 ± 0.3a

0.8 ± 0.1b 0.7 ± 0.2b

Heavy 1.7 ± 0.3a 1.7 ± 0.4a

1.2 ± 0.1b 1.1 ± 0.1b

Residual CYANA target function (Å2) 0.7 ± 0.1 0.7 ± 0.1

Structure analysis

Residues in most favorable regions (%) 82.1a 81.5a

87.5b 87.2b

Residues in allowed regions (%) 13.9a 14.1a

11.2b 11.4b

Residues in generously allowed regions (%) 2.2a 2.7a

0.7b 0.9b

Residues in disallowed regions (%) 1.8a 1.7a

0.6b 0.5b

Structure Z scores

2nd-generation packing quality -2.6 ± 0.3 -2.5 ± 0.4

Ramachandran plot appearance -4.7 ± 0.5 -4.4 ± 0.4

v1/v2 rotamer normality -5.7 ± 0.3 -5.3 ± 0.4

Backbone conformation -0.8 ± 0.5 -0.7 ± 0.5

RMS Z scores

Bond length 1.187 ± 0.002 1.184 ± 0.003

Bond angles 0.83 ± 0.01 0.86 ± 0.02

Omega angle restraints 1.9 ± 0.1 2.0 ± 0.2

Side chain planarity 2.1 ± 0.3 2.0 ± 0.2

Improper dihedral distribution 1.27 ± 0.05 1.33 ± 0.05

Inside/outside distribution 1.04 ± 0.03 1.01 ± 0.01

NOE nuclear Overhasuer effect, RMS root mean square
a Values were calculated in the sequence range 7–95 of both subunits
b Values were calculated in the sequence ranges 7–23 and 35–95 of both

subunits
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rather high RMSD for bond lengths and angles. Twinning

(mainly) and pseudosymmetry (partially) are likely the

reasons for this deviation from standard statistics for a

crystal structure of analogous resolution.

The superposition between the mean NMR apo structure

and the X-ray structure shows that the solution and solid-

state structures of apo-S100A16 are in overall agreement,

with the exception of loop L1 and loop L3 regions, as

shown in Fig. 5. The mean backbone RMSD between the

two structures of each subunit is 2.6 Å in the whole range

of protein residues, but if we consider only the sequence

ranges 7–23 and 35–95, it decreases to 1.7 Å, and if we

exclude the two above-mentioned regions (residues 24–34

and 66–73), besides the very first and last residues at the N

terminus and C terminus, which are intrinsically mobile,

the RMSD decreases to 1.3 Å, indicating that the structures

are in good agreement (Fig. 5). Furthermore, the dis-

agreement is mainly due to local discrepancies rather than

to overall changes in the interhelical angles (see Table 3).

Zn2? and Cu2? titration of apo-S100A16

After addition of Zn2? to apo-S100A16, the peak intensity

of the residues located in the hinge loop, in the turn region

of the last helix, and at the N terminus started decreasing

appreciably at a S100A16-to-zinc(II) ratio of 1:1, and some

peaks disappeared when a 1:3 ratio was reached. No new

peaks appeared during the whole titration, and all other

peaks remained unperturbed. Similar changes were

observed during the zinc(II) titration of calcium(II)-loaded

S100A16.

S100A16 should thus bind zinc(II) with low affinity

[dissociation constant greater than 10-4 M for the apo form

and even larger for the calcium(II) form]. Some residues in

the hinge loop (His-48) and at the N terminus (Cys-4, Glu-

9) of the other subunit may constitute the Zn2? ligands.

Copper(II) titration of apo-S100A16 was also attempted

but the protein immediately precipitated after addition of

copper(II).

Apo-S100A16
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families of the S100A16 subunit

and ribbon representation of the

homodimer mean structures of
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helix numbers. Calcium ligand
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Fig. 5 a Three-dimensional

structure of one of the two
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b backbone root mean square

deviation (RMSD) between the

crystal structure and the mean
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Discussion

In both apo-S100A16 and calcium-loaded S100A16,

dimerization mostly occurs through interactions between

helices I, I0, IV, and IV0, which form an X-type helix

bundle. Hydrophobic residues Trp-80 and Ile-83 in helix

IV make several contacts with Leu-8, Val-12, and Leu-15

in helix I0 and with Trp-80 and Ile-83 in helix IV0 of the

other subunit. Residues Glu-45, Leu-46, His-48, and Met-

49 in the hinge loop between helices II and III also make

contacts with residues near the N terminus of helix I0 of the

other subunit. In the S100A16 dimer, all these interactions

align helices I and IV in opposite directions to helices I0

and IV0, respectively.

The overall fold of the protein in the apo form is in

agreement with the previously known structures for other

S100 proteins [41, 44, 49, 52–54]. However, and differently

from most of the other S100 proteins, it is apparent that after

calcium binding S100A16 does not undergo any major

conformational changes. Indeed, the backbone RMSD

between the apo and the calcium(II)-loaded solution struc-

tures in the structured regions of the dimer (7–23, 35–95

of both subunits) is only 1.6 Å (Fig. 6). The C-terminal

EF-hand motif does not move to the open conformation

upon calcium(II) binding as shown experimentally, for

instance, by the presence of strong NOEs between Ala-59

in the third helix and Ile-86 in the fourth helix.

The largest change in the solution structure of S100A16

upon calcium binding is in the angle between helices II and

III, which varies from 157 ± 5� in the apo form (163 ± 2�
in the crystal structure) to 144 ± 4� in the calcium-loaded

form (see Table 3). The angles are measured by defining

the directions of the a-helices in each EF-hand motif from

the eight residues immediately preceding and following

each EF-hand loop [55]. For solution structures, such val-

ues are calculated from the mean NMR structure and the

corresponding errors from the standard deviation observed

within the structures of the families. The approximately

15–20� difference in the angle between helices II and III

upon calcium coordination is significantly smaller than that

measured for S100A13 (40�), which is the closest neighbor

of S100A16 in the phylogenetic tree.

The angle between helices III and IV is 148 ± 3� in the

apoprotein (153 ± 1� if measured in the apo crystal

structure), as expected for the almost antiparallel arrange-

ment typical of EF-hand motifs in the absence of calcium.

In other S100 proteins, such as S100A3, S100A5, and

S100A13, such an angle typically changes by 30–50� upon

calcium binding [44, 49], so the two helices become almost

perpendicular [53, 56–58]. In contrast, in the calcium-

loaded S100A16, the angle between helices III and IV is

150 ± 4�, so they remain almost antiparallel. Corre-

spondingly, helices I and I0 and helices IV and IV0 make

similar angles in both the apo and the calcium forms, dif-

ferently from most S100 proteins.

As shown in Fig. 6, there is a significant conformational

difference at the C terminus between the mean solution

structures of S100A16 in the apo and calcium forms. This

difference is due to the large mobility in solution of the

residues after the last helix.

As already seen, the differences between the X-ray

structure and the NMR structure of apo-S100A16 are

mainly in the loops and in the N-terminal and C-terminal

regions, due to disorder of these protein regions in solution,

in this case likely due to mobility. The global orientation of

the helices is, in contrast, very similar, as shown in

Table 3. The global orientation of the helices is actually the

main criterion to judge how much conformational change

takes places.

The superposition of the NMR structure onto the crystal

structure and the following symmetry expansion (coherently

Table 3 Angles between different helices, the directions of which

are defined by the eight residues immediately preceding or following

each EF-hand loop, calculated from the mean solution NMR structure

(the errors are calculated from the standard deviations within the 30

structures of the families)

Apo-S100A16 (deg) Ca(II)-S100A16 (deg)

I–II 136 ± 3 (128 ± 2) 142 ± 4

I–III 56 ± 4 (64 ± 3) 59 ± 4

I–IV 118 ± 3 (116 ± 1) 114 ± 4

II–III 157 ± 5 (163 ± 2) 144 ± 4

II–IV 52 ± 6 (37 ± 1) 60 ± 6

III–IV 148 ± 3 (153 ± 1) 150 ± 4

I–I0 136 ± 3 (154 ± 1) 138 ± 6

IV–IV0 156 ± 4 (158 ± 2) 166 ± 4

The values in parentheses refer to the angles calculated from the X-

ray structure
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with the crystallographic symmetry) does not show any

significant difference in the crystal packing contacts with

respect to those present in the crystal structure. This implies

that the structural differences in the above-mentioned

regions in the solid state are not due to packing contacts but

are related to an intrinsic mobility of those regions.

A principal component analysis of the six interhelical

angles representing the reciprocal orientation of the four

helices [55] clearly shows the peculiar features of S100A16

within the EF-hand family. With use of the first two prin-

cipal components, it is found that EF-hand proteins are

clearly clustered into two subgroups (closed and open)

which are characterized by the protein metal content, i.e.,

the apo and calcium-loaded forms. The principal compo-

nent values for the two forms of S100A16 in solution were

calculated from the interhelical angles reported in Table 3

and plotted together with the values previously calculated

for all the other S100 proteins [49] (Fig. 7), by using the

same coefficients for the interhelical angles reported in

Babini et al. [55]. The principal component plot shows that

apo-S100A16 is regularly positioned with respect to the

other apo S100 proteins, whereas in the calcium-loaded

form it is still located in the subgroup corresponding to

the closed structures in the apo state. Therefore, and at

variance with all the other S100 proteins, the calcium-

loaded form maintains a similar overall arrangement as the

apo form. It is to be noted that the only other S100 proteins

not regularly placed in the principal component plot are

calbindin D9k and S100A10. However, and at variance with

S100A16, for both of them the apo form maintains an

arrangement similar to that of the calcium-loaded form. In

other words, calbindin D9k and S100A10 are already in the

open conformation even in the absence of calcium,

whereas, in contrast, S100A16 is the first example of a

calcium-loaded form which remains almost as closed as the

apo form.

In most S100 proteins the two calcium binding sites are

the classic EF-hand C-domain binding site and the S100-

specific N-domain binding site. The former contains highly

conserved calcium ligand residues at positions 1, 3, 5, 7,

and 12, and has a larger affinity for the metal. The latter is a

14-residue motif where the calcium ligands are the back-

bone oxygen atoms of the residues at positions 1, 4, 6, and

9 and, in most cases, two side chain oxygen atoms of the

residue at position 14 (usually Glu). The N-domain binding

site of S100A16 lacks the glutamate at this last position

(see Scheme 1). This is expected to sizably decrease the

calcium binding affinity, because two important ligands are

missing. Furthermore, the N-terminal EF-hand comprises

15 amino acids instead of 14, owing to the insertion, unique

for S100A16, of residue Leu-28, and the ligand at position

9 is replaced by a ligand at position 10. S100A16 has been

reported to bind one calcium(II) ion only for each subunit,

i.e., that in the C-terminal EF-hand, through flow dialysis

experiments (buffer 50 mM Tris–HCl, pH 7.5, 500 mM

KCl) [13]. The present study suggests that in our conditions

S100A16 indeed retains the ability to bind a calcium ion

(with low affinity) also in the N-terminal EF-hand motif

even without the glutamate at position 14. The calcium

titration followed by NMR spectroscopy indicates that

most of the residues on both calcium binding sites are in an

intermediate or fast exchange regime. Chemical shifts

changed until 10 equiv of calcium(II) per subunit was

added, pointing out the low binding affinity for both sites.

The present observations allow us to make some general

comments on the energetics involved in the calcium-trig-

gered conformational changes that characterize the func-

tional role of S100 proteins. To do so, reference can be

made to Fig. 8a, where the calcium binding and the con-

formational changes are separated. As illustrated in the

figure, the equilibrium constant K for the apo closed form

and the calcium(II) open form is the product of the equi-

librium constant for the apo and the calcium forms in the

closed state (K1) multiplied by that for the closed and open

forms in the calcium(II)-bound state (K3): K = K1 K3

(=K2K4). For ‘‘normal’’ S100 proteins, K2 \ 1 (i.e., the apo

closed form is more stable, see Fig. 8b) and K3 � 1 (i.e.,
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Fig. 7 Principal component plot for the S100 proteins derived from

principal component analysis of the six interhelical angles. Apopro-

teins (S100A1, S100A2, S100A3, S100A4, S100A5, S100A6,

S100A10, S100A11, S100A13, S100A16, S100B, calbindin D9k)

are indicated with open circles and calcium(II)-bound proteins

(S100A1, S100A4, S100A5, S100A6, S100A7, S100A8, S100A9,

S100A12, S100A13, S100A16, S100P, S100B, calbindin D9k) are

indicated with solid circles. The two open symbols not regularly

placed with respect to the other correspond to calbindin D9k and

S100A10 in the apo form. The solid symbol not regularly placed with

respect to the other corresponds to S100A16 in the calcium(II)-bound

form. The data are based on the structural information reported in

Table 3 and on data reported in Bertini et al. [49]. PC1 first principal

component, PC2 second principal component
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the calcium open form is more stable). In the case of cal-

bindin D9k, the apoprotein is more stable in the open form

(K2 [ 1), i.e., in a ‘‘calcium-ready’’ form (Fig. 8c).

Therefore, calcium binding is enhanced, as K4 � 1. Con-

versely, S100A10, which also exists as apoprotein in a

‘‘calcium-ready’’ form, has lost its ability to bind calcium.

It has been speculated that S100A10 is a structural protein

that needs to always be in the open form and does not need

to be opened by a signal, and therefore has lost its ability to

bind calcium. Indeed, the first putative binding loop lacks

three residues and cannot bind Ca2? [59], and some amino

acid replacements in the second putative binding loop

(Asp-Cys at position 61, Glu-Ser at position 70 with

respect to calbindin D9k) hamper the ability of this loop to

bind calcium [60]. S100A10 is in fact in a permanently

activated state, having hydrophobic residues exposed even

in the absence of Ca2? [60, 61], which allow the protein to

act as a linker tethering certain transmembrane proteins to

annexin A2 and thereby assisting their traffic to the plasma

membrane and/or their firm anchorage at certain membrane

sites [62]. So, for both calbindin D9k and S100A10, K2 [ 1.

The case of S100A16 investigated here is an unprecedented

case of K3 \ 1, i.e., the closed calcium-loaded form is

more stable (Fig. 8d). This, of course, implies that K1 [ 1,

despite the fact that the collective binding of the two cal-

cium ions is relatively weak. In turn, this suggests that

K1 [ 1 also for the ‘‘normal’’ S100 proteins, and that their

higher calcium affinity is due to a favorable combination of

both K1 [ 1 and K3 [ 1. In other words, S100A16 is

somehow the opposite of calbindin D9k. Whereas in normal

S100 proteins calcium binding is described by the product

K = K1 K3, in the case of calbindin D9k and S100A16

calcium binding is only described by either K4 or K1,

respectively. The relatively small calcium affinity of

S100A16 is thus due to the low value of K3, which makes

the binding only dependent on K1.

The presence of hydrophobic interactions represents an

important factor in moving the equilibrium between the
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open and the closed forms in EF-hand motifs. In S100

proteins this equilibrium depends mainly on the presence/

absence of interactions between the hydrophobic residues

of the third and fourth helices. In S100A16 the number of

hydrophobic residues present in the third helix is larger

than for other S100 proteins. In the closed form of

S100A16, strong interactions among hydrophobic residues

are actually present between the third helix (residues

Ala-58, Ala-59, Leu-62, Ile-63,and Leu-66) and the fourth

helix (residues Leu-82 and Ile-86). These interactions are

likely to make the closed structure of the second EF-hand

particularly stable, so even upon calcium(II) binding such a

conformation is not disrupted.

In S100A16, helix IV has the same length in both the

apo and the calcium-bound states, differently from some

other S100 proteins (S100A5, S100A6, and S100B), where

it is longer in the calcium(II)-bound form than in apo form

[49, 53, 63, 64]. The helix is interrupted and divided into

two short helices by an 84-89 (Gly-Gly-Ile-Thr-Gly-Pro)

sequence motif with three glycine residues and one proline

residue. In water-soluble proteins, proline is a potent helix

breaker [65]. It either breaks or kinks a helix because it

cannot donate an amide hydrogen bond, and because its

side chain sterically interferes with the backbone of the

preceding turn. This forces a bend of about 30� in the helix

axis [66, 67]. Furthermore, the glycine residues also tend to

disrupt helices because their high conformational flexibility

makes it entropically expensive to adopt the relatively

constrained a-helical structure and because they lack

hydrophobic stabilization [68].

Upon calcium binding, the global shape of the dimeric

protein changes, as a result of the structural differences, as

well as of the change in the distribution of surface charges.

The electrostatic potential surface calculation, the results of

which are shown in Fig. 9, was performed with MOLMOL

[69] after inclusion of the calcium(II) charge into the

AtomCharge setup file. Red and blue areas indicate nega-

tively and positively charged regions, respectively. On

passing from the apo to the calcium-loaded form, hydro-

phobic and positively charged residues are more exposed,

whereas negatively charged residues are somewhat less

exposed. These features may be important for the binding

capability of the protein in the two forms. In fact, each

S100 protein seems to show a peculiar surface charge and

hydrophobic distribution as well as different changes upon

calcium binding, ranging from exposing a more hydro-

phobic surface, to a larger negatively charged surface, or to

a different position of charged and hydrophobic residues on

the surface. This diversity is likely to be linked to the their

different target specificities.

In conclusion, we have shown that the homodimeric

structure of human S100A16 is subject to conformational

rearrangements upon calcium(II) binding that are much

smaller than those observed for most of the other S100

proteins. This is likely to be related to the weak binding

affinity of the protein for the calcium(II) ions, and to the

fact that the closed structure of the second EF-hand is

particularly stable in the presence of strong hydrophobic

interactions, so even upon calcium(II) binding such con-

formation is not disrupted.
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ABSTRACT 

The human Multiprotein Bridging Factor 1 (hMBF1) has been established in 

different cellular types to have the role of transcriptional coactivator. It is also a 

putative Calmodulin (CaM) target, reported to bind CaM in its calcium free state, 

but little is known about the structural features and the biological relevance of this 

interaction. We applied NMR to investigate the interaction between the two proteins 

in solution and compared the results with those obtained with CaM-agarose affinity 

chromatography. No changes in 1H-15N HSQC spectrum of both apo-CaM and Ca2+-

CaM upon addition of hMBF1, prove that the two proteins do not interact in vitro. 

These results were confirmed by CaM-agarose affinity chromatography when 

operating under the same conditions. The discrepancy with respect to present and 

previous experiments performed with CaM-agarose affinity chromatography 

depends on different experimental parameters suggesting that particular attention 

must be paid when CaM, or other immobilized proteins, are used to measure their 

affinity with putative partners. These results also implies that if an interaction 

between the two proteins exists in vivo, as reported for hMBF1 of endothelial cells, it 

might involve a posttranslational modified form of the proteins or it relies on other 

conditions imposed by the cellular environment. 

Keywords 

Calmodulin; human Multiprotein Bridging Factor 1; CaM-hMBF1 interaction; IQ-like 

CaM target; NMR; CaM-agarose affinity chromatography 

Abbreviations 

CaM: calmodulin; hMBF1: human Multiprotein Bridging Factor 1; hMBF1α_C:  human 

Multiprotein Bridging Factor 1, α isoform, C-terminal domain; hMBF1α_FL human 

Multiprotein Bridging Factor 1, α isoform, Full Length
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1. INTRODUCTION  

The intracellular calcium sensor protein Calmodulin (CaM) interacts, through a wide 

range of binding modes, with a large number of proteins to regulate their biological 

functions in response to calcium stimuli. The three-dimensional structure of CaM has 

been well characterized both in the apo and Ca2+ forms. The protein consists of two 

similar globular domains, the N-terminal (1-77) and C-terminal (81-148), each containing 

two helix-loop-helix (EF-hand) motifs which allow CaM to bind up to four calcium ions 

per molecule. The domains are connected by a central linker which is very flexible in 

solution, so that the relative orientation of the two domains can change quite readily [1-5]. 

Within each of the two domains of CaM, significant conformational changes are induced 

in response to calcium binding. In the absence of calcium each EF-hand motif adopts a 

“closed conformation”, with the helices in an almost antiparallel arrangement and most of 

the hydrophobic residues shielded from the solvent. Binding of Ca2+ normally causes a 

rearrangement of the helices to the “open conformation”, with many hydrophobic 

residues exposed on the surface of the protein and a large hydrophobic surface created on 

each domain [6,7]. This conformational switch allows CaM to bind to target proteins 

through these hydrophobic surfaces, characterized by a high proportion of Met residues. 

The latter seem to be essential for the unique promiscuous binding behaviour of the 

protein [8]. On the other hand, the hydrophilic nature of apo-CaM allows the protein to 

interact with other target proteins in a Ca2+-independent manner.  

 Although the CaM binding domains of CaM targets share very little sequence 

identity, many of them show a number of common characteristics. In particular, the 

highly conserved positions of bulky hydrophobic residues in CaM binding regions has 

allowed the classification of CaM binding domains into recognition motifs, named 1-14, 

1-10, 1-16 (with key bulky residues separated by 12, 8 and 14 residues, respectively) and 

IQ [9] (for a continuous update of CaM binding targets, see Calmodulin Target Database, 

Ontario Cancer Institute: http://calcium.uhnres.utoronto.ca). Atypical sequences that do 

not conform to any of the above motifs are referred to as Others. The IQ class includes 

two subclasses defined by the presence of the motifs IQ (or complete IQ) and IQ-like (or 

incomplete IQ). The first one has the consensus sequence: 

(F,I,L,V)QXXX(R,K)GXXX(R,K)XX(F,I,L,V,W,Y). However, the G after the first basic 



  63

amino acid (almost always R) is not always conserved, nor is the hydrophobic residue in 

the third position after the second basic amino acid, so the sequence 

(F,I,L,V)QXXX(R,K)XXXX(R,K) represents a more generalized IQ motif [10]. The IQ 

motif was first identified as a calcium-independent CaM binding motif [11] but 

experimental evidence of many exceptions exists [10], now confirmed by the structures 

of different Ca2+-CaM-IQ complexes [12-15]. The consensus sequence of the IQ-like 

motifs, (F,I,L,V)QXXX(R,K)XXXXXXXX, differs from the complete IQ for the absence 

of the second basic residue. The significance of this motif in its CaM binding properties, 

in some of these proteins, remains to be determined and so far no structural information 

of CaM/IQ-like complexes is available.  

The Multiprotein Bridging Factor 1 (MBF1) is an IQ-like containing protein, highly 

conserved in eukaryotes and archaea, while none of the sequenced bacterial genomes 

contains an orthologue of its coding gene [16]. This phylogenetic distribution fits with the 

functional role of the protein as a transcriptional co-activator [17-26] as eukaryotes and 

archaea have a high similarity in their transcription initiation complexes, whereas the 

bacterial systems look very different [16]. The CaM binding motif of this protein is 

slightly different from the IQ-like sequence, as only two amino acids, instead of three, are 

interposed between the IQ and the first basic residue (see Table 1). Despite this difference, 

the sequence seems to be responsible of the interaction with CaM, as revealed by in vivo 

and in vitro experiments with human and the homologous bovine and rat MBF1 

[22,24,27]. Structural data available on hMBF1 and the homologous from Bombyx mori 

and Tricoderma reesei  (PDB ID: 1X57, 2JVL) [28-31] show that the protein contains an 

N-terminal flexible region and a C-terminal structurally well defined domain with a 

helix-turn-helix (HTH) motif. The IQ-like sequence belongs to the latter domain and 

experimental evidence exists of a preferential role of this domain in CaM binding [32]. 

As the full length protein (here-after called hMBF1α_FL) is not stable in solution, we 

focused our study on the structured C-terminal domain of hMBF1, α isoform 

(hMBF1α_C), residues 71-148.   

We analysed hMBF1α_C binding to CaM by both NMR and CaM-agarose affinity 

chromatography. While the latter method gives contradicting results, depending on buffer 
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conditions, NMR clearly confirms that hMBF1α_C does not show binding capability to 

CaM, in vitro, both in the absence and in the presence of calcium.  

 

2. MATERIALS AND METHODS 

Salts and other chemicals were purchased from Sigma, except where indicated. 

hMBF1α_FL  cloning and purification - The gene coding for hMBF1_FL was 

amplified from cDNA using two sets of primers with sequences: OMBF1F1 

(GGACGGACGCTCGTCTTC) and OMBF1R1 (GCACTGATTTCGAGGCTTTG), for 

the external primers, and OMBF1F2 (CACCATGGCCGAGAGC) and OMBF1R2 

(TCATTTCGCCCTAGGCCCCTT) for the specific ones. The DNA amplified by PCR 

was purified from agarose gel and cloned in the Gateway plasmid pENTR/TEV/D-TOPO 

(Invitrogen). The gene was then moved into the Gateway destination vector pETG20A 

(European Molecular Biology Laboratory, Heidelberg, Germany) to get the plasmid 

pETG20A_MBF1_FL which encodes for a recombinant TrxHis-tagged hMBF1α_FL. 

The protein was purified from E. coli BL21 culture, induced with 1 mM isopropyl β-

thiogalactopiranoside (IPTG; Fermentas). Cells were collected by centrifugation, 

resuspended in buffer A [50 mM tris-HCl pH 8.0, 50 mM KCl, 1 mM MgCl2, 1 mM 

Rnase I, 1mM Dnase I, 0.5 mM PMSF, 1 mM Pefabloc, 50 μl/ml of protease inhibitor 

cocktail] and lysed through a French press operating at 1000 psi. The supernatant 

obtained by centrifugation was loaded onto a nichel-chelate Hi-Trap column (GE 

Healthcare) in buffer B [50 mM Tris-HCl pH 8.0, 50 mM KCl]. Elution of the protein 

was carried out with buffer C [50 mM  Tris-HCl pH 8.0, 50 mM KCl, 50 mM EDTA]. 

The protein was further purified by cation-exchange chromatography (Macro-Prep High 

S Support, Bio-Rad) in buffer D [20 mM Tris pH 8.8, 50 mM KCl] and eluted with a 

linear KCl gradient. The His-tag was cleaved with ActTev protease (Invitrogen) and two 

cation-exchange chromatographies were performed after cleavage, at pH 5.5 with buffer 

F [20 mM Mes, 50 mM KCl], and at pH 8.8 with buffer G [20 mM Tris pH 8.8, 50 mM 

KCl], using for the latter a  BIO PolyMa SCX column (Supelco). Protein elution was 

obtained with linear KCl gradient. Samples for NMR experiments were exchanged 

against buffer H [20 mM Hepes, 200 mM KCl, pH 7.4] and their concentration was 
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determined spectrophotometrically using as extinction coefficient the value ε280 = 12660 

M-1cm-1, calculated by the ProtParam tool [33] 

(http://www.expasy.org/tools/protparam.html). Samples purity was checked by SDS-page. 

hMBF1α_C  cloning and purification - The gene coding for amino acids 71-148 of 

hMBF1 was amplified from plasmid pETG20A_MBF1_FL using primers oMBF1F 

(5’GACAGGGTGACCCTGGAGGT3’) and oMBF1R 

(5’TCATTTCGCCCTAGGCCC3’), and cloned in plasmid pQE30Xa (QIAGEN) within 

the StuI site. Recombinant His-tagged hMBF1α_C was purified from E. coli XL1 Blue 

culture after 4 hrs from induction with 1 mM IPTG. The purification protocol was the 

same as for the full length protein, but Factor Xa (Amersham Biosciences) was used to 

cleave the His-tag. Protein concentration was determined spectrophotometrically using as 

extinction coefficient the value ε280 = 1490 M-1cm-1, calculated by the ProtParam tool 

[33]. Protein molecular mass was confirmed by MALDI-TOF spectrometry performed by 

the CIRB-CRBA Proteomic Facility Services -LaP- c/o CIRB-CRBA University Hospital 

St Orsola Malpighi, Bologna. The value obtained, 8558 Da is comparable, within 

experimental error, to that calculated by ProtParam tool [33], 8560 Da, for the protein 

sequence:  

DRVTLEVGKVIQQGRQSKGLTQKDLATKINEKPQVIADYESGRAIPNNQVLGKIE

RAIGLKLRGKDIGKPIEKGPRAK. 

Purification of 15N labelled hMBF1α_FL and 15N labelled hMBF1α_C - 15N labelled 

hMBF1α_FL and hMBF1α_C were obtained from bacterial growth in M9 minimal 

medium containing (15NH4)2SO4 as the only nitrogen source. The expression was 

increased using a 1:1 (v/v) LB pre-inoculum, adding 1mM IPTG after 2 hours from 

inoculum and collecting the cells after an over night growth. The purification protocol 

was the same used for the unlabelled proteins. 

CaM preparation – Unlabelled and 15N labelled N60D CaM were purchased from 

ProtEra srl (Florence, Italy, http://www.proterasrl.com/). Calcium N60D CaM sample 

was prepared by NMR titration of apo CaM with calcium until the protein was 

completely in the calcium-bound form [34,35]. The buffer used for the NMR experiments 

was buffer H [20 mM Hepes, 200 mM KCl, pH 7.4]. 
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NMR experiments - All the NMR titration experiments were performed at Bruker 700 

MHz spectrometer equipped with a cryo-probe at 298 K. CaM concentration was around 

0.65 mM. 1H-15N HSQC spectra were performed after every addition of 0.5 equivalent 

hMBF1α_C until the 1:3 ratio of CaM (apo and Ca2+ bound) to hMBF1α_C was reached. 
15N labelled hMBF1α_C (around 0.4 mM) was also used to acquire the 1H-15N HSQC 

spectra without and with calcium(II)  addition until 4 equivalents, to exclude the 

possibility of interaction between hMBF1α_C and calcium. Unlabelled apo and holo 

forms of CaM were titrated into 15N labelled hMBF1α_C in steps of 0.5 equivalents until 

the 1:1.5 ratio of hMBF1α_C to CaM was reached. 

hMBF1α_C binding to CaM-agarose - Binding of hMBF1α_C to a CaM-agarose 

(Sigma) column was checked in the following sample/column equilibration buffer 

conditions: A) 50 mM Tris, 5 mM CaCl2, pH 7.4; B) 50 mM Tris, 5 mM EGTA, pH 7.4; 

C) 20 mM Hepes, 5 mM CaCl2, pH 7.4; D) 20 mM Hepes, 5 mM EGTA, pH 7.4; E) and 

F) 20 mM Hepes, pH 7.4 metal free; G) 20 mM Hepes, 200 mM KCl, pH 7.4. For any 

experiment, 250 μg of pure protein were loaded on a 5 ml CaM-agarose column. After a 

long washing step with the same column equilibration buffer, elution was performed, 

respectively, with buffers: A’) 50 mM Tris, 10 mM EGTA, pH 7.4; B’) 50 mM Tris, 10 

mM CaCl2, pH 7.4; C’) 20 mM Hepes, 10 mM EGTA, pH 7.4; D’) 20 mM Hepes, 200 

mM KCl, 10 mM CaCl2, pH 7.4; E’) 20 mM Hepes, 10 mM CaCl2, pH 7.4 metal free; F’) 

20 mM Hepes, 200 mM KCl, metal free; G’) 20 mM Hepes, 200 mM KCl, 10 mM CaCl2, 

pH 7.4. The loading and washing fractions were pooled and then concentrated to 250 μl, 

as well as the elution fractions. An aliquot of both samples (the loading/washing sample 

and the elution sample) was loaded on SDS-PAGE to check the presence of the protein 

after passing through the column, in all the experimental conditions tested. 

 

3. RESULTS  

Preliminary NMR experiments on hMBF1α − We first produced hMBF1 in its full 

length sequence, as a fusion protein with TrxHis tag. After excision of the tag the protein 

looked stable in solution (Figure 1A) but it progressively underwent N-terminal 

degradation, in a time period of a few days, variable as a function of temperature (being 
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longer at low temperatures), and of the presence of protease inhibitors. This behaviour 

suggests that the N-terminal degradation might depend on the action of bacterial 

proteases and might be related to the lack of a tertiary structure of the N-terminal region, 

as shown by the 1H-15N HSQC spectrum of 15N hMBF1α_FL (Figure 1B). In that 

spectrum, approximately 70 resolved peaks were observed (instead of 148), in addition to 

severely overlapping signals in the spectral region 8.0-8.5 p.p.m. for 1H and 119-124 

p.p.m. for 15N, in which backbone signals of amide groups in random coil conformation 

are usually observed. The C-terminal domain alone, with a sequence corresponding to 

amino acids 71-148 of hMBF1α (Figure 1A), gave a pattern of peaks essentially identical 

to the well dispersed peaks in the spectrum of the full-length protein (Figure 1B). The 

assigned backbone chemical shifts of 15N13C labelled hMBF1α_C are reported in Table 2 

(supplementary material). These results suggest that hMBF1α has both flexible (in the N-

terminal domain) and well-structured (in the C-terminal domain) parts in solution. These 

data are in agreement with those reported for Bombyx mori MBF1 [28], and explain why 

the only high resolution structures available till now are referred to the MBF1 C-terminal 

domain, as in the case of the human (PDB ID: 1X57, unpublished) [31] and Tricoderma 

reesei orthologs (PDB ID:2JVL) [30,31].   

Monitoring CaM-hMBF1α_C binding by NMR - The binding of hMBF1α_C to CaM 

was monitored through the 1H-15N HSQC spectrum of 15N-labelled CaM in the presence 

of increasing amounts of hMBF1α_C up to 1:3 equivalents (Figure 2). No change in the 

spectrum occurred in the absence of calcium(II) in solution, indicating that hMBF1α_C 

does not bind apo-CaM (Figure 2A). Analogously, the 1H-15N HSQC spectrum of Ca2+-

CaM did not change appreciably by adding hMBF1α_C, indicating again that no relevant 

interaction between the two proteins occurs (Figure 2B). The same result was obtained by 

monitoring the 1H-15N HSQC spectrum of 15N-labelled hMBF1α_C in the presence of 

increasing amounts of apoCaM or holoCaM (Figure 3). The 1H-15N HSQC spectra of 
15N-labelled hMBF1α_C in fact did not change either after the addition of calcium ions in 

solution, of apo CaM (Figure 3A) or of calcium-bound CaM (Figure 3B). 

hMBF1α_C binding to CaM-agarose - To check the interaction of CaM with 

hMBF1α_C we used a CaM-agarose affinity chromatography column (Sigma), first 
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under the same experimental conditions used for hMBF1α [22,24], for the homologous 

bovine MBF1 [27], and for a 20 aa peptide spanning the IQ motif of rat MBF1 [27]. The 

recombinant hMBF1α_C was loaded on the column in the presence of calcium and in the 

presence of EGTA. The elution step was performed with a buffer containing EGTA for 

the first experiment and calcium for the second one. Figure 4 shows that hMBF1α_C 

does not bind to the column in the presence of calcium both with Tris or Hepes buffer 

(lanes A-A’ and C-C’ of Figure 4) but binds in the presence of EGTA (i.e. in the absence 

of free calcium), independently from the buffer (lanes B-B’ and D-D’ of Figure 4), 

confirming what previously reported in the literature [22,24]. The same result was 

obtained using a metal free buffer (i.e. without both calcium and EGTA; lane E-E’ of 

Figure 4) apparently confirming that hMBF1α_C binds apo-CaM and not its calcium 

bound form. However, once bound to the column, the protein can be eluted not only with 

CaCl2 but also with KCl (the latter in the absence of calcium, see lane F-F’ of Figure 4). 

Besides, the protein is not retained by the column when loaded in the presence of KCl 

(lane G-G’ of Figure 4). These results suggest that binding of hMBF1α_C to the column 

is not dependent on the calcium-free state of CaM but depends on ionic interactions with 

the activated matrix, which can be prevented by the presence of salts.  

 

4. DISCUSSION 

Information available in literature about the interaction of CaM with MBF1 are 

referred mainly to the application of CaM-agarose Affinity Chromatography, using a 

column where CaM is immobilized by cyanogen bromide activation to a 4% beaded 

agarose matrix. Results obtained by this technique, on the recombinant full length 

hMBF1α [22,24] and the homologous full length bovine MBF1 [27], indicate that the 

two proteins interact in the apo form. Analogous result was obtained for a 20 aa peptide 

spanning the IQ motif of rat MBF1 [27]. On the contrary, another group reports a 

calcium-mediated interaction between CaM and hMBF1 determined using an in vitro 

binding assay with 35S-GST fusion CaM and GST fusion hMBF1 [32]. In the latter work 

a stronger binding of GST-hMBF1 to GST-CaM was observed in the presence of Ca2+ 

than without, and an N-terminally truncated hMBF1, missing amino acids 1 to 77, 
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produced as GST-fusion protein, bound more strongly CaM than wild-type GST-hMBF1 

[32].  

In order to make progress in the understanding of the CaM-hMBF1 interaction we 

monitored by NMR the formation of the complex between the two proteins, and 

compared the results with those obtained with CaM-agarose affinity chromatography in 

different experimental conditions. In order to exclude a possible influence of not native 

amino acids, proteins were purified without any peptide or protein tag. Experiments were 

done with both the full length form of hMBF1 (data not shown), which contains an N-

terminal unstructured domain, and the C-terminal domain alone (hMBF1α_C), which is 

structured and stable in solution. The C-terminal domain of hMBF1α contains the IQ-like 

motif supposed to be responsible for CaM binding, and evidences exist in the literature 

for a preferential role of this domain in CaM complex formation [32]. Both form of the 

protein (FL and C-terminal domain) gave equivalent results by NMR and CaM-agarose 

affinity chromatography.  

In particular, the 1H-15N HSQC spectrum of both 15N-labelled CaM in the presence 

of increasing amounts of hMBF1α_C and 15N-labelled hMBF1α_C in the presence of 

increasing amounts of CaM clearly showed that no sizable interaction between the two 

proteins occurs, both in the presence and in the absence of calcium, in a buffer containing 

KCl at physiological concentration. On the other hand, we verified that the presence of 

KCl (in a calcium free buffer), prevents binding of hMBF1α_C to the CaM-agarose 

column, and that when bound to the column the protein can be eluted not only with 

addition of calcium but also with KCl (in the absence of calcium). On the contrary, 

without salts (in a buffer with or without EGTA), hMBF1α_C binds perfectly to the 

column as reported in previous studies [22,24,27].  Altogether these results suggest that 

binding of hMBF1α_C to the column is not dependent on the calcium-free state of CaM 

but rather depends on nonspecific interactions between hMBF1α_C and the CaM or the 

activated matrix of the column, which can be prevented by the presence of salt, be it KCl 

or CaCl2. Right now it is not possible to know if CaM or the matrix generate nonspecific 

binding sites for hMBF1α_C, when salts are omitted from the solution. In this respect, 

the control experiment with the matrix alone, made by the other groups who have used 

the CaM-agarose affinity chromatography to study the interaction between MBF1 and 
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CaM [22,24,27], and which gave no interaction of MBF1 with the matrix, is not sufficient 

to clarify this point. In fact, we cannot exclude that nonspecific binding sites in the 

agarose matrix are generated during the activation of the resin for CaM-binding. 

These results are particularly meaningful because they point out that a single 

experimental approach may not be sufficient to characterize protein-protein interactions 

and that experimental conditions far from physiological ones (as absence of potassium 

chloride in sample solution) are critical points that can generate false results. The 

nonspecific binding of MBF1α to the CaM-column, observed in the present and previous 

studies, suggest that, even though affinity chromatography with immobilized proteins is 

considered the method of choice both for analytical purposes and for quantitative 

assessment of such interactions, it should be regarded as a preliminary step whose results 

need to be confirmed, when possible, by spectroscopic experiments able to directly detect 

perturbations due to the presence of the interacting protein. This caveat possibly holds 

also for peptides that bind to CaM linked to beaded agarose matrix, for which 

innumerable works referenced in the literature make the assumption that most CaM 

binding proteins only interact with the immobilized CaM and not with the column matrix. 

For this reason, particular attention must be paid when CaM, as well as other 

immobilized proteins are used to measure their affinity with putative partners. 

Results so far obtained by in vitro experiments, do not exclude that an interaction 

between the two proteins exists in vivo, as suggested by Ballabio and co-workers [24] for 

hMBF1 of endothelial cells (named EDF1), on the base of immunoprecipitation assay on 

HUVEC cells. The authors speculate that EDF1 can serve, in the cytoplasm of endothelial 

cells, as a regulator of CaM availability and, consequently, of the activation of enzymes 

necessary for the maintenance of the vascular integrity. In the light of our in vitro 

experiments it is likely that if an interaction between the two proteins exists in vivo, it 

involves a modified form of CaM, or of hMBF1 or of both proteins. This would not be 

surprising as native protein assemblages are formed in a complex environment, and can 

be regulated by different mechanisms such as folding, modification, limited proteolysis, 

transportation to specific cellular compartments, and assembly with non-proteinous co-

factors. In conclusion, more experimental data are needed to elucidate the molecular 
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mechanism of MBF1/CaM interaction and its putative role in the functional network 

created inside the cells by CaM binding to its many competing targets. 
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FIGURE CAPTIONS 

Figure 1: A) SDS-page of recombinant hMBF1α_FL and hMBF1α_C; B) overlapped 
1H-15N HSQC spectra of hMBF1α_FL (red) and hMBF1α_C (green). 

Figure 2: 1H-15N HSQC of (A) apo-15NCaM (red) and apo-15NCaM:hMBF1α_C = 1:3 

(green); and (B) Ca4-15NCaM (red) and Ca4-15NCaM:hMBF1α_C = 1:3 (green). 

Figure 3: 1H-15N HSQC of (A) 15NMBF1 before and after adding CaM and (B) 
15NMBF1 before and after adding Ca4-CaM. 

Figure 4: SDS-page of samples obtained by CaM-agarose affinity chromatography. Pure 

hMBF1α_C was loaded on CaM-agarose column, washed with loading/washing buffers 

(LW) A to G and eluted with elution buffers (E) A’ to G’. Composition of buffers is 

specified on the side of the SDS-page. An aliquot of pure hMBF1α_C was loaded as 

control (CT).
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Table 1: Amino acid sequence of IQ and IQ-like motifs 

Motif Sequence 

                        I basic residue     II basic residue 
 

IQ (F,I,L,V)QXXX(R,K)GXXX(R,K)XX(F,I,L,V,W,Y) 
generalized IQ  (F,I,L,V)QXXX(R,K)XXXX(R,K)XXX 
IQ-like  (F,I,L,V)QXXX(R,K)XXXXXXXX 
hMBF1α IQ-
sequence 

IQQGRQSKGLTQK 
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Table 2  The assigned backbone chemical shifts of 15N13C labelled hMBF1α_C 
 
Res. 
Num. 

Res.  
type 

N C Cα Cβ HN Hα Hβ/Qβ 

76 ASP 122.953 172.883 51.462 37.925 7.938 4.224  
77 ARG 119.666 173.83 52.697 28.18 7.864 4.102 1.433 
78 VAL 121.991  59.761 29.467 8.052 3.726 1.634 
79 THR        
80 LEU        
81 GLU        
82 VAL  174.533      
83 GLY 107.04 172.836 45.804  8.284 3.853 

3.468 
 

84 LYS 119.395 176.317 55.614 28.947 7.321 3.889 1.665 
85 VAL 121.449 175.707 63.425 27.998 7.446 3.356 1.842 
86 ILE 119.697 174.098 63.369 34.759 8.035 3.144 1.719 
87 GLN 118.186 175.241 57.007 25.982 7.688   
88 GLN 118.186 176.961 55.838 25.219 8.136 3.734 1.86 
89 GLY 108.826 173.428 44.394  8.81 3.307 

3.646 
 

90 ARG 122.309 175.986 58.029 26.0 8.92 3.582 1.525 
91 GLN 119.104 177.812 56.313 24.721 8.18 3.867 1.986 

1.839 
92 SER 116.701 172.722 58.657 59.853 8.165 4.02 3.794 
93 LYS 117.663 173.592 51.87 30.354 7.01 4.174 1.783 

1.555 
94 GLY 109.099 171.36 43.3  7.718 3.608  
95 LEU 117.658 175.546 50.21 41.039 7.388 4.635 1.131 

1.434 
96 THR 115.626 173.202 58.453 68.19 9.126 4.081 4.494 
97 GLN 120.179 175.249 58.44 24.912 9.052 3.34 1.902 
98 LYS 117.977 175.263 56.933 28.976 8.129 3.538 1.519 
99 ASP 120.14 176.767 54.209 38.827 7.923 4.048 2.345 
100 LEU 119.966 173.594 54.808 38.204 7.864 3.655 1.654 

1.443 
101 ALA 121.275 176.302 52.859 14.453 8.049 3.293 1.149 
102 THR 113.77 174.604 63.378 66.012 8.202 3.69 3.988 
103 LYS 120.96 175.286 56.271 29.54 7.549 3.785 1.687 
104 ILE 107.595 171.36 57.364 35.72 7.241 4.372 1.809 
105 ASN 119.768 170.919 51.285 33.835 7.652 4.058 2.857 

2.4 
106 GLU 115.352 172.377 50.506 30.192 7.923 4.371 1.848 

0.824 
107 LYS 120.628  52.013 28.518 8.744 4.176 1.354 
108 PRO  175.207      
109 GLN 116.056 174.102 55.225 25.174 8.29 3.524 1.835 

1.529 
110 VAL 117.639 174.922 62.906 28.492 7.16 3.382 1.859 
111 ILE 115.899 174.92 58.818 31.779 6.398 3.229 1.835 
112 ALA 120.55 178.254 52.362 14.371 7.435 3.695 1.119 
113 ASP 119.847 176.072 54.212 36.341 8.26 4.043 2.627 

2.038 
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114 TYR 121.937 176.512 57.25  8.378   
115 GLU 116.857 174.843 56.5 26.331 8.106 3.873 1.647 
116 SER 110.721 172.722 55.371 61.462 7.63 4.173 3.673 
117 GLY 110.135 171.165 42.883  7.527 3.733  
118 ARG 118.088 173.038 54.271 28.91 7.82 3.923 1.454 

1.252 
119 ALA 118.967 172.833 47.955 17.731 6.801 3.987 0.582 
120 ILE 123.138  54.985 35.289 8.354 4.118 1.5 
121 PRO  172.645      
122 ASN 119.006  48.957 37.458 7.637   
123 ASN  174.533 53.939 35.37    
124 GLN 120.66 176.495 56.427 24.89 8.081 3.843 1.929 
125 VAL 121.937 175.472 64.193 28.387 7.952 3.131 1.845 
126 LEU 118.547 176.182 55.536 38.915 8.326 3.485 1.533 

0.954 
127 GLY 104.234 173.197 44.014  7.725 3.582  
128 LYS 119.768 177.275 57.335 29.763 7.168 3.794 1.413 
129 ILE 119.847 174.461 63.898 34.453 8.07 3.094 1.517 
130 GLU 120.003 176.218 56.544 27.547 8.598 3.799 2.085 

1.51 
131 ARG 113.789 175.244 55.716 26.926 7.021 3.61 1.574 
132 ALA 120.159 176.412 51.298 16.247 7.358 3.925 1.012 
133 ILE 106.188 172.413 58.26 35.877 7.989 4.139 1.594 
134 GLY 110.682 171.627 43.56  7.982 3.752 

3.455 
 

135 LEU 119.534 171.234 49.893 43.827 6.823 4.607 0.944 
0.656 

136 LYS 117.619 174.998 54.158 30.179 8.392 3.573 1.391 
137 LEU 121.820 171.045 50.902 41.269 9.786 4.407 1.575 

1.207 
138 ARG 114.336 172.854 51.345 30.915 6.764 4.227 1.527 

1.41 
139 GLY 108.025 171.832 41.893  8.429 3.492 

3.85 
 

140 LYS 119.886 174.4 54.849 29.269 8.37 3.85 1.496 
141 ASP 118.772 170.844 50.759 37.376 8.356 4.435 2.59 

2.275 
142 ILE 116.974 173.822 59.865 34.781 6.647 3.056 1.307 
143 GLY 113.867 170.34 41.976  9.126 4.022 

3.108 
 

144 LYS 120.687  51.374 28.46 7.762 4.317 1.586 
145 PRO  174.252      
146 ILE 118.791 172.962 58.642 35.7 7.109 3.603 1.27 
147 GLU 124.214 173.309 53.242 27.11 8.31 3.958 1.657 
148 LYS 122.914 173.874 53.421 30.057 8.334 3.986 1.489 
149 GLY 110.155  41.419  8.136 3.77  
150 PRO  174.22      
151 ARG 121.165 173.123 52.874 27.561 8.28 4.004 1.51 
152 ALA 126.314 173.891 49.489 16.085 8.114 3.959 1.082 
153 LYS 125.943  54.824 30.385 7.791 3.784 1.476 

1.388 
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Improving the maximum occurrence analysis of calmodulin conformations 

in solution by placing paramagnetic ions in both protein domains 

 

Introduction 

Conformational flexibility is often a crucial feature for proteins to perform their 

function in solution.1;2 During biological processes, different kinds of conformational 

changes may occur such as side chain rotations, loop motions, interdomain reorientations, 

intermolecular rearrangements, random-coil motions in unfolded proteins or protein regions. 

NMR spectroscopy has long been used for structural and dynamic studies of proteins in 

solution. In NMR experiments, solution conditions such as temperature, pH and salt 

concentration can be adjusted to closely mimic the physiological fluid where the protein 

performs its function. Most protein dynamic studies are focused on the analysis of relaxation 

data (R1, R2 and NOE) and provide information on the protein tumbling times and on the 

presence of local motions.3;4 Paramagnetism-based restraints have been shown to monitor the 

presence of conformational rearrangements among protein domains,5 to detect the presence 

of minor interconverting conformations,6-8 to determine whether regions in the 

conformational space must be occupied or cannot be occupied by protein complexes,9;10 and 

to provide information on the maximum occurrence (MO) of any conformation that is 

sterically allowed.11  

The MO strategy is focused on determining the maximum weight that any given 

conformation can have in any conformational ensemble in agreement with all available 

experimental data obtained, e.g., through solution NMR or small angle scattering (SAS) 

measurements.11-13 These measurements in fact provide weighted averages over all the 

conformations experienced by the system. They cannot be used to recover the actual protein 

conformational ensemble, but do provide the maximum percent of time that a system can 

spend in any conformation.  

Calmodulin (CaM) is a calcium(II) EF-hand protein, which contains two similar 
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globular domains connected by a flexible linker.14 This structural feature makes it easy for 

the two domains to adopt a variety of different orientations with respect to one another. In 

order to describe the interdomain conformational variability, lanthanide ions were used as 

paramagnetic probes, and NMR experiments were performed to obtain pseudocontact shifts 

(pcs) and residual dipolar couplings (rdc).5;12 These data were used as restraints to calculate 

the conformations with largest MO and to analyze the different MO of the possible protein 

conformations. The N60D CaM mutant was actually used to selectively substitute the Ca2+ 

ion located in the second binding site of the N-terminal domain with a paramagnetic 

lanthanide ion (Tb3+, Tm3+ or Dy3+).15 The same analysis was performed to detect the 

conformational heterogeneity of CaM bound to α-synuclein12 or to a peptide from the myelin 

basic protein (MBP, unpublished results from the CERM laboratory). Pcs and rdc restraints 

were also used to detect slight conformational changes in CaM when bound to peptides 

representing the interaction sequence of two protein partners, the death-associated protein 

kinase (DAPk) and the DAPk-related protein 1 (DRP-1), on passing from crystal to 

solution.16 The results suggest that the two domains are relatively flexible with respect to one 

another in free CaM and that mobility changes after target peptide binding.17 

The advantage provided by the paramagnetism-based restraints is based on the 

possibility to retrieve the magnetic susceptibility anisotropy tensors of the different metals 

from the pcs values collected for nuclei belonging to the same domain where the metal ion is 

coordinated (the N-terminal domain in this case). The pcs and rdc values collected for the 

nuclei belonging to the other domain act as reporters of the interdomain conformational 

variability. In fact, they are the weighted average of the pcs and rdc values corresponding to 

all sampled conformations, and such values are determined by the same magnetic 

susceptibility anisotropy tensors calculated for the metal bearing domain which also act as 

orientation tensors. 

The MO value calculated for each conformation decreases towards the actual 

probability when the number of independent experimental restraints is increased. MO values 

of less probable conformations are expected to decrease more than those of the most 

probable conformations. The resulting larger spreading of the MO values calculated for the 

different conformations likely permits to better identify those with largest probability. 
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In this work we analyze how MO values are affected by the availability of restraints 

provided by paramagnetic metal ions located in both domains of CaM. Pcs and rdc collected 

for the N-terminal domain, when the paramagnetic metal is placed in the C-terminal domain 

of CaM, actually represent independent information and provide a different perspective on 

the protein conformational variability. Therefore, when the paramagnetic restraints obtained 

from both the metal positions are used together, the difference in the MO values of highly 

occurring and lowly occurring conformations is expected to increase. Furthermore, besides 

providing additional information on the relative position of the domains, the addition of these 

restraints could also remove some of the possible “ghost” solutions determined by the 

mathematical form of the pcs and rdc equations.12;13  

In order to place a metal ion in the C-terminal domain of CaM, the Caged Lanthanide 

NMR Probe 5 (CLaNP-5)18 was attached to the H107C/N111C CaM mutant. This tag was 

chosen because it can bind rigidly to the protein backbone through two cysteine residues.19 

Rigid binding is essential to obtain the correct magnetic susceptibility anisotropy tensor from 

the pcs of the attached domain and to easily interpret the pcs of the other domain.20  

 

Materials and Methods  

Protein preparation 
15N labeled N60D CaM was purchased from ProtEra s.r.l. (Florence, Italy, 

www.proterasrl.com). The NMR samples were prepared in 20 mM MES, 200 mM KCl, pH 

6.8. For the attachment of the ClaNP-5 tag, the H107C/N111C mutations were introduced in 

wild type CaM via site-directed mutagenesis. 15N labeled his-tagged H107C/N111C CaM 

was expressed in E. coli BL21(DE3) Gold cells and purified with Ni-NTA column and size 

exclusion chromatography in the same buffer as the N60D mutant. The entire process of tag 

attachment was performed under reducing conditions. The Ca2+-CaM mutant was incubated 

with 5 mM DTT for 30 mins to reduce all possible disulfide bridges and ensure that the 

protein existed in monomeric state. DTT was then washed out under reducing conditions. 

The protein was diluted to a concentration of 30 μM. Seven equivalents of Ln3+-loaded 

CLaNP-5 (Ln3+ = Lu3+, Yb3+ and Tm3+) was added to it. The mixture was incubated 
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overnight at 4 °C for the reaction to reach completion. To separate the tagged monomeric 

protein from aggregates and free tag present in solution, a purification was performed using a 

Superdex 200 gel filtration column. Approximately three-fourth of the total protein was 

found to be monomeric and reacted while the remaining one-fourth formed aggregates. In all 

the above steps of tagging, the CaM mutant was prepared in 20 mM MES, 200 mM KCl, 20 

mM CaCl2, pH 6.8. An excess of calcium was always used in the buffer to avoid exchange of 

Ca2+ from the binding sites with any free Ln3+ ions present in the tag solution.  

NMR Measurements 

All NMR experiments were performed at 298 K. 15N labeled N60DCaM (0.4 mM) was 

titrated to (Ca2)N(Ca2)C-CaM and (CaLn)N(Ca2)C-CaM (Ln3+ = Tm3+, Tb3+ and Dy3+) by 

addition of small amounts of calcium(II) and subsequently lanthanide(III) solutions. The 

titrations were performed by following the 1H-15N HSQC spectra at 700 MHz as previously 

reported.15 1H-15N IPAP HSQC spectra were also acquired to obtain the rdc values. 
1H-15N HSQC and IPAP-HSQC spectra of Ln3+-CLaNP-5 Ca4CaM (Ln3+ = Lu3+, Yb3+ 

and Tm3+) were acquired at 298 K and 700 MHz. HNCO,21 HNCA,22 CBCACONH21 and 

HNCACB23 experiments at 500 MHz were performed on 15N and 13C labeled H107C/N111C 

CaM tagged with Ln3+-CLaNP-5 (Ln3+ =Lu3+ and Yb3+) to obtain the backbone assignment. 

The backbone resonance signals of Tm3+-CLaNP-5 Ca4CaM were assigned based on the 

assigned 1H-15N HSQC spectra of the diamagnetic Lu3+ form and of the paramagnetic Yb3+ 

form.  

Pcs data were obtained from the difference in 1H chemical shift between corresponding 

nuclei in the paramagnetic and diamagnetic CaM derivatives. Rdc data were obtained as the 

difference in the doublet splitting in the indirect 15N dimension in 1H-15N IPAP-HSQC 

spectra (15) between the paramagnetic form and the diamagnetic form. 

Maximum occurrence (MO) calculation of CaM conformations 

The pcs values measured for the domain where the paramagnetic metal is located were 

used to calculate the magnetic susceptibility anisotropy tensors of the different metals. For 

the N60D (CaLn)N(Ca2)C-CaM samples, the program FANTASIAN24 was used to determine 

the anisotropy tensors. For the Ln3+-CLaNP-5 Ca4CaM samples the programs FANTASIAN 

and PARAMAGNETICCYANA-2.125;26 were used to determine the anisotropy tensors and 



 85

the position of the metal ions with respect to the backbone of the C-terminal domain. These 

tensors were then fixed in all subsequent calculations.  

The program for the calculation of the MO of any given conformation11 was modified to 

incorporate paramagnetic restraints arising from metal ions located in both protein domains. 

In this way, pcs and rdc measured for the C-terminal domain when the paramagnetic metal is 

located in the N-terminal domain could be analyzed together with pcs and rdc measured for 

the N-terminal domain when the metal is located in the tagged C-terminal domain. More 

details are reported in the Supporting Information S1 . 

A total of 400 conformations with different inter-domain orientations were obtained 

through the program RANCH.11;27 The MO values of each conformation were calculated 

from the paramagnetic restraints (pcs and rdc) obtained for the different lanthanides located 

in either the N- or the C-terminal domain. Taking each conformation as a starting point, a 

simulated annealing minimization was performed to generate an ensemble with a maximum 

of 15 other conformations which, together with the starting conformation, provides the best 

fit of the experimental data. Such fit was performed by minimizing a target function (TF) 

defined as the sum of the squared difference between the values obtained from the weighted 

average of pcs and rdc calculated for all conformations of the ensemble and the 

corresponding experimental data (see Eq. S2). The weight of the starting conformation was 

fixed in the minimization, and several calculations were repeated by changing the weight of 

such conformation. The MO value of each conformation was calculated as the weight for 

which the TF is 10% larger than the minimum value. More details are reported in the 

Supporting Information S1. 

 

Results and discussion 

Synthetic Tests 

Synthetic tests were performed by simulating the conformational heterogeneity of a 

two-domain protein like calmodulin. This was done by generating a large number (50000) of 

protein conformations using a Gaussian probability distribution around one selected 

conformation. Pcs and rdc data were simulated from the average of the rdc and pcs values 
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obtained for the different conformations. Pcs and rdc data were calculated for four or five ions 

with different anisotropy tensors all located in one domain or distributed between the two 

domains.  

These simulated data where then used to obtain the MO of the conformation at the 

center of the Gaussian distribution and of conformations with the orientation of the 

C-terminal domain described by Euler angles whose values were varied by ±50° (standard 

deviation of the distribution) from the central conformation. The calculations indicated that 

the conformation at the center of the Gaussian distribution can be better identified through 

the MO values when the metals are distributed in two domains rather than being all in a 

single domain. In fact, the difference in the MO between the central conformation and the 

conformations at one standard deviation increases when pcs and rdc data are referred to 

metals distributed in the two domains, rather than being all located in the same domain. 

More details are shown in the Supporting Information S2. This finding is not obvious as it 

has been proven that the amount of information for the characterization of the interdomain 

mobility is larger when rdc arising from metals with different anisotropy tensors without any 

main direction in common are all located in the same domain, with respect to the case of 

having them distributed in the two domains, in the absence of experimental errors and 

without using pcs.28 

N60D (CaLn)N(Ca2)C-CaM 

Pcs and rdc for (CaLn)N(Ca2)C-CaM (Ln3+ = Tm3+, Tb3+ and Dy3+) were measured in 

buffer 20 mM MES, 200 mM KCl and pH 6.8, the same used for the CLaNP-5 Tagged CaM 

samples. Some differences can be appreciated from those previously measured in 400 mM 

KCl, pH 6.5.12 

The structure of the CaM domains in solution was fixed to the coordinates deposited in 

PDB 1J7O and 1J7P.29 These structures were chosen because refined with an extensive use of 

rdc derived by external orienting media. The position of the lanthanide ions in the N60D 

(CaLn)N(Ca2)C-CaM samples was fixed to the coordinates of the calcium ion in the second 

binding loop of the N-terminal domain.  

The best fit of the pcs of the N-terminal domain amide protons to the protein structure 

provided the magnetic susceptibility anisotropy tensors reported in Table 1. They are in good 
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agreement with those previously obtained.5;12 The quality of the fit is good as shown in 

Figure 1A.  

The best fit of the rdc of the C-terminal domain amide protons to the protein structure 

provided the anisotropy tensors reported in Table 1. As previously found, they are sizably 

smaller that those obtained from the pcs of the N-terminal domain nuclei. The good quality 

of the fits, shown in Figure 1B, however indicate that the data are in good agreement with 

the protein structure, which thus moves as a rigid body, so that the obtained tensors are 

averages of the magnetic susceptibility anisotropy tensors positioned in the N-terminal 

domain as seen from a nucleus in the C-terminal domain.  

CLaNP-5 Tagged CaM 

Paramagnetic ions were placed in the C-terminal domain of CaM using the CLaNP-5 

tag.18 The mutation H107C/N111C was performed in order to allow the tag to be attached to 

the protein through sulfur bonds. The residues to be mutated were chosen i) positioned on 

one helix (the second of the C-terminal domain) in order to provide rigidity to the CLaNP-5 

tag; ii) so that the cysteine side chains are exposed on the surface of the structure with the Cβ 

atoms pointing away and the Cα atoms not closer than 6 Å and nor farther than 10 Å from 

one another; iii) in order to attach the tag in a position far enough from the N-terminal 

domain to avoid steric clashes that may affect the conformational heterogeneity of the 

protein. 

Lu3+-CLaNP-5 was used as the diamagnetic reference. The 1H-15N HSQC spectrum of 

Lu3+-CLaNP-5 H107C/N111C CaM is similar to that of Ca4CaM with differences limited to 

the residues in close proximity to ClaNP-5, indicating that the protein structure is maintained 

after binding of the tag (see Figure S4). Both Yb3+ and Tm3+ CLaNP-5 induced positive 

paramagnetic shifts, which in the Tm3+ form are much larger than in the Yb3+ form (see 

Figure 2), due to the larger magnetic susceptibility anisotropy of Tm3+. 

The program PARAMAGNETICCYANA-2.1 was first used to determine the position of 

the metal ions with respect to the C-terminal domain structure (PDB 1J7O29) using typical 

values for the magnetic susceptibility anisotropies and the observed pcs measured in the 

presence of Tm3+ or Yb3+ bound to the tag. The magnetic susceptibility anisotropy values 

were then refined using the program FANTASIAN through the best fit of the pcs to the 
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C-terminal domain structure and the relative calculated position of the lanthanides. The two 

programs were cycled iteratively until convergence of both the metal position and the 

susceptibility anisotropy tensors was reached.  

The observed pcs values fit very well versus the calculated data (Figure 3A). The 

resulting axial and rhombic components of the magnetic susceptibility anisotropy tensors as 

well as the Euler angles providing the orientation of the tensors are reported in Table 1. 

These results are in agreement with the values reported in Keizers et al.18 The z-axes of the 

Yb3+ and Tm3+ tensors are parallel, and the x- and y-axes of the two metals experience 

difference in the orientation of only 21° (Fig. 4). The calculations show that the metals are 

located at about the same distance from the protein backbone as in Keizers et al.18 The 

positions of Yb3+ and Tm3+ are in fact similar for the two metals and at distances of 8.3 Å 

and 6.5 Å from the Cα atoms of residues Cys-107 and Cys-111, respectively. The magnitude 

of the calculated anisotropies and the correct definition of the lanthanide position indicates 

that the CLaNP-5 probe binds Ca4CaM rigidly. 

The rigidity of the tag is confirmed by the rdc values measured for the C-terminal 

domain amide protons. These rdc, when fitted to the domain structure, provide a nice 

agreement with the values calculated from the best fit tensors. This is clear in particular for 

the Yb3+ sample, the C-terminal domain nuclei of which are less affected by paramagnetic 

line broadening due to the smaller susceptibility tensor of Yb3+ than that of Tm3+, which 

causes a smaller Curie relaxation (Figure 3B). The best fit anisotropy tensors (Δχax= 

8.1×10-32 m3, Δχrh= −2.5×10-32 m3) are actually very similar to those calculated from the pcs, 

indicating that no (or very modest) reduction due to motional averaging occurs. When the 

measured rdc are compared with the rdc values calculated from the tensor derived from pcs, 

a good agreement is indeed observed (Figure 3B), the differences between calculated and 

observed data being all within 2 Hz. 

Due to the much smaller magnetic susceptibility anisotropy of Yb3+ with respect to 

Tm3+, a reliable set of pcs and rdc for the N-terminal nuclei could be observed only for the 

Tm3+ derivative. The rdc, quite reduced with respect to those measured for the C-terminal 

domain, can be described by a single average tensor. The latter was obtained by fitting the 

rdc to the N-terminal domain CaM structure. As expected, the calculated average tensor is 
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sizably smaller than that obtained from the C-terminal domain pcs data (Table 1) as a 

consequence of extensive orientation averaging. The fit of the observed rdc versus the 

calculated values is shown in Fig. 3C. Pcs of the N-terminal domain NH nuclei were also 

collected, and they are reported in Fig 3D. 

MO analysis 

Calculations of the MO values for 400 CaM conformations randomly generated have 

been performed using the derived magnetic susceptibility anisotropy tensors and the pcs and 

rdc data observed for the domain without the paramagnetic metal. MO values are obtained 

from the largest weight that each of the 400 conformations can have when included in any 

possible ensemble with other 15 conformations with different weights. This ensemble was 

found as the family of structures in best agreement with the experimental data by minimizing 

the target function (TF), defined as a measure of the disagreement from the experimental 

data of the pcs and rdc values calculated according to the ensemble itself (see Materials and 

Methods and Supporting Information S1 for further details). It was checked that increasing 

the number of conformations above 15 does not decrease the TF, so that such number of 

conformations was chosen for the calculations. During the minimization, the weight of the 

fixed conformation (one of the 400 randomly generated conformations) was changed. The 

MO of such conformation was set to the largest weight for which the TF is smaller than a 

given threshold. The latter was defined 10% larger than the lowest possible TF value. 

The results obtained for the Tb3+, Tm3+ and Dy3+ ions positioned in the N-terminal 

domain provide the map of MO values shown in Fig 5A. The position of the C-terminal 

domain of CaM is indicated by an orientation tensor centered in the center of mass of the 

C-terminal domain, color-coded with respect to the MO of the corresponding conformation 

from blue (lower than 5%) to red (greater than 30%). Different orientations of the tensor 

reflect different orientations of the CaM C-terminal domain with respect to the N-terminal 

domain. The minimum for the TF was calculated by generating structural ensembles without 

any fixed conformation, and resulted equal to 0.203, so that a threshold of 0.223 was fixed. 

The overall distribution of the MO values is indeed relatively similar to that previously 

calculated for data acquired with a higher salt concentration in solution and with inclusion of 

SAXS restraints (Figure 3A of Bertini et al.11). As already seen, the conformations having the 
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C-terminal domain in the lower right quadrant of the frame have in general low MO, while 

the conformations with the highest MO are clustered in the central part of the distribution, 

corresponding to relatively but not fully elongated conformations.  

The set of rdc data acquired for the N-terminal domain when the Tm3+ tag is placed in 

the C-terminal domain of the CaM mutant was then added to the previous data, and MO 

calculations were repeated for the same 400 conformations. In this case, a minimum for the 

TF was calculated equal to 0.224, so that a threshold of 0.246 was fixed. The number of 

conformations with TF smaller than the defined threshold when their weight was 0.1 

increased from 66 to 248 (Figure 6). As expected, this indicates that the new set of data is 

effective in decreasing selectively the MO of conformations much less sampled or even not 

actually sampled by the system. The MO values are shown in Fig 5B. Figure 7 shows the TF 

values for all the conformations as a function of their weight. The substantial differences in 

the weight at which the TF value start increasing result in markedly different MO. 

Figure 8 shows the conformations with a difference in the MO values upon inclusion of 

the last set of restraints larger than 0.1. The corresponding orientation tensors are 

color-coded with respect to the MO difference from blue (difference in MO of 0.10) to red 

(difference in MO of 0.25). The figure shows that the effect is distributed along all the 

conformational space, for all relative positions and orientations of the C-terminal domain.  

The present calculations, as well as the simulations performed with synthetic data, show 

that although rdc arising from up to 5 metals located in different domains are not fully 

independent,28 differently from when they are all located in the same domain, they are quite 

informative for the determination of the MO of the different conformations when coupled 

with pcs and considering that data are effected by experimental errors. The information on 

the interdomain conformational variability that is contained in the rdc arising from different 

metals placed in the same domain is in fact larger than that contained in the rdc arising from 

the same number of metals but distributed between the two domains.28 In the latter case, 

however, relationships are present among the average rdc-derived tensors and the 

pcs-derived magnetic susceptibility anisotropy tensors28 that can profitably assess the 

consistency of the data. We have shown in the simulations reported in the Supporting 

Information that the use of pcs in the calculations may however compensate the smaller 
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information content of rdc on the protein conformational distribution, and may make the 

distribution of the metals in both protein domains preferable. Therefore, the use pcs and rdc 

data arising from metals placed in both protein domains i) permits an internal check of the 

quality of the data from the overall agreement of all sets of the experimental rdc with those 

calculated from the best-fit conformational ensembles and ii) provides a better discrimination 

among the different protein conformations depending on the calculated MO values. 

 

Conclusions 

We have shown that the simultaneous use of paramagnetism-based restraints arising 

from paramagnetic metal ions located in different domains of proteins experiencing 

interdomain mobility is quite informative for the determination of the maximum occurrence 

of any conformation. The increase in the information content provided by locating 

paramagnetic ions in different domains is larger than obtained by placing the same number 

of metal ions in the same site especially because of the quite different orientations of the 

magnetic susceptibility anisotropy tensors. In the case of CaM we have shown that the 

maximum occurrence of several conformations is quite reduced by the addition of pcs and 

rdc arising from the presence of a single metal ion rigidly attached to the C-terminal domain 

with respect to the values calculated using three metal ions placed in the N-terminal domain 

of the protein. As a result, the conformations likely experienced by the protein can be more 

accurately mapped.  
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Table 1. Magnetic susceptibility anisotropies and average tensors of the different 

lanthanides in the second calcium binding loop of the N-terminal domain of CaM and 

in the ClaNP-5 CaM. The Euler angles are in the ZYZ convention. 

 axχΔ (10-32m3) rhχΔ (10-32m3) Euler angles (P, T, O) 

Metals in the N-terminal domain – from N-terminal domain pcs 

Tb 35.6 -16.5 1.767a -0.883a 0.709a 

Tm 30.7 -8.5 0.476a -0.510a 1.812a 

Dy 35.5 -12.9 1.317a -0.721a 0.312a 

Metals in the C-terminal domain – from C-terminal domain pcs 

Yb 9.7 -2.6 0.885b -1.715b 1.822b 

Tm 56.3 -6.7 0.834b -1.360b 1.882b 

 

 
axχΔ (10-32m3) rhχΔ (10-32m3) Euler angles (P, T, O) 

Metals in the N-terminal domain – from C-terminal domain rdc 

Tb 3.1 2.9 -2.625b -0.042b 0.041b 

Tm 2.0 1.0 -0.324b 0.568b -0.160b 

Dy 2.7 -1.6 1.703b 0.049b 0.038b 

Metals in the C-terminal domain – from N-terminal domain rdc 

Tm 3.0 2.9 3.106a 0.301a -0.336a 

awith respect to structure 1J7O; bwith respect to structure 1J7P 
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Figure 1. (A) Observed versus calculated values of pcs of N-terminal domain nuclei 

for the terbium(III), thulium(III) and dysprosium(III) ions substituted in the second 

binding site of CaM N-terminal domain. (B) Observed versus calculated values of rdc 

of C-terminal domain HN for the terbium(III), thulium(III) and dysprosium(III) ions 

substituted in the second binding site of CaM N-terminal domain. 
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Figure 2 Superposition of a region of the 1H-15N HSQC spectra of Lu3+ (red), Yb3+ 

(green) and Tm3+ (blue) ClaNP-5 CaM 
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Figure 3 (A) Observed versus calculated pcs of C-terminal domain nuclei for the Yb3+ 

( ) and Tm3+ ( ) ClaNP-5 Ca4CaM. (B) Observed versus calculated rdc of 

C-terminal domain HN for the Yb3+-ClaNP-5 Ca4CaM. The solid symbols ( ) 

indicate the values calculated from the best fit parameters (Δχax= 8.1×10-32 m3, Δχrh= 

−2.5×10-32 m3), the open symbols ( ) indicate the values calculated using the 

pcs-derived tensor. (C) Observed versus calculated rdc of N-terminal domain HN for 

the Tm3+ ClaNP-5 Ca4CaM. (D) Observed pcs of the C-terminal domain for 

Tm3+-ClaNP-5 Ca4CaM. 
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Figure 4. The lanthanide ions (in blue) are placed at a distance of 8.3 Å and 6.5Å from 

the Cα atoms of residues Cys-107 and Cys-111. The orientations of the magnetic 

susceptibility anisotropy tensors are shown for the Yb3+ (magenta) and Tm3+ (brown) 

metals. The z axes of the anisotropy tensors of the two metals are essentially 

coinciding; the angle between the x (and y) axes of the anisotropy tensors of the two 

metals is 21.4°. 
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Figure 5. Arbitrary orientation tensors centered in the center of mass of the C-terminal 

domain, color-coded with respect to the MO of the corresponding conformation from 

blue (lower than 5%) to red (greater than 30%) for 400 structures generated randomly 

with RANCH. Panel A shows the results obtained from pcs and rdc arising with 

metals in the N-terminal domain; panel B shows the results obtained when pcs and rdc 

of Tm3+-ClaNP-5 Ca4CaM are also included. 
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Figure 6. Number of conformations as a function of the MO values calculated from 

the pcs and rdc arising with metals in the N-terminal domain (3+0 case) and by 

including pcs and rdc of Tm3+-ClaNP-5 Ca4CaM (3+1 case). 
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Figure 7. TF (describing the best agreement between any conformational ensemble 

and the experimental data) as a function of the weight of the conformation for which 

the MO is calculated. Each curve corresponds to a different conformation. The MO is 

defined by the intersection between the TF curve and the threshold chosen 10% larger 

than the smallest TF. Panel A shows the results obtained from pcs and rdc arising with 

metals in the N-terminal domain; panel B shows the results obtained when pcs and rdc 

of Tm3+-ClaNP-5 Ca4CaM are also included. 
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Figure 8. Arbitrary orientation tensors centered in the center of mass of the C-terminal 

domain, color-coded with respect to the difference in MO values upon inclusion of 

pcs and rdc of Tm3+-ClaNP-5 CaM. The colors change from blue (difference in MO of 

0.1) to red (difference in MO of 0.25) for the structures with MO differences larger 

than 0.1.  
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Supporting information 

S1: MO calculation 

The MO (maximum occurrence) values for hundreds of conformations of CaM 

have been computed using the paramagnetic restraints pcs and rdc obtained from metal 

ions positioned in two different metal binding sites located in protein domains which 

are mobile with respect to the one another. The calculations for the different 

conformations were performed simultaneously on a grid system. 

A subroutine was implemented into the MO program to calculate the contribution 

to the target function (TF) arising from violations in the pcs and rdc values of nuclei 

located in the moving domain with respect to the reference frame fixed on the metal 

containing domain. Starting from a reference protein conformation, the relative 

orientation of the C-terminal domain with respect to the reference frame fixed on the 

N-terminal domain was calculated as a clockwise rotation; the opposite (anticlockwise) 

rotation was applied to determine the inter-domain orientation when the reference 

frame is fixed on the C-terminal domain. Similarly, a translation with the same 

amplitude but in the opposite direction was performed to compute the relative position 

of the domains.  

In the present study, when the metal ion is coordinated to the N-terminal domain, 

the different conformations of CaM are obtained by moving the C-terminal domain 

from a position P(x,y,z) to a new position P’ through a rotation R and a translation t. 

The new position P’ of the C-terminal domain was computed as R*(P-t). On the other 

hand, when the metal ion is fixed to the C-terminal domain, the same conformation of 

CaM is obtained by moving the N-terminal domain to the corresponding relative 

position P’ computed as (R-1*P) +t. The R rotation matrix was obtained from the Euler 

angles in the ZYZ convention: 

⎥
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⎥
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−
−+

−−−
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R                [S1] 

where c and s mean cosine and sine, and the subscripted numbers 1,2,3 indicate the 

three Euler angles (P,O,T). 

The protocol used to calculate the MO values was the following: 

1. A set of 400 fixed conformations representing the conformational space sampled by 

CaM was generated using the program RANCH (1). The following calculations 
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were then performed for each conformation. 

2. A weight smaller than 100% was fixed for the selected conformation. Other 

conformations with different weights (the sum of all weights being constrained to 1) 

were then added one by one, and each time a simulated annealing minimization 

was performed, in order to obtain the best possible agreement with the experimental 

data. A maximum number of 15 conformations was used to best fit the experimental 

observables. The TF to be minimized was defined as 

( )2

1000),,(,0 ),(),(~min)(
0

∑ ∑=
+−=

j

N

i iijijjRtwt
RtwRtwwTF

iii

δδδ            [S2] 

where jδ
~ are the experimental pcs/rdc values, ),( 00 Rtjδ are the pcs/rdc values 

calculated for the selected conformation with orientation 0R  and translation 

vector 0t , 0w is the corresponding weight, and ),( iij Rtδ are the pcs/rdc values 

calculated for the other i=1…N conformations with weight wi, position ti, and 

orientation Ri. During the minimization, conformations with weight less than 10-3 

were removed, in order to ensure convergence more rapidly. 

3. The weight of the selected conformation was changed and step 2 was repeated 

(using the ensembles calculated with different weights as starting points for the 

minimization). 

4. The MO of each selected conformation was calculated as the weight at which the 

TF is 10% larger than the minimum value achieved at low weights.  
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Figure S1.1 Flow chart of MO calculations 
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S2: Synthetic tests 

A simulation was performed by generating a family of 50000 conformations with 

a Gaussian distribution around one selected conformation, shown in Fig. S2.1, 

corresponding to the PDB 1CLL conformation. The orientation of the C-terminal 

domain with respect to that of the N-terminal domain of any conformation of the 

family is defined by 3 Euler angles. Pcs and rdc data corresponding to metals (with 

their anisotropy tensors) positioned in either the N or the C-terminal domains were 

then calculated according to the generated family of conformations. 

Calculations were then performed using different sets of pcs and rdc data to 

check the sensitivity of MO to the different probability of the conformations within 

the family. The MO values of the conformation at the centre of the Gaussian 

distribution and of other 8 conformations defined by changing each of the 3 Euler 

angles of ±50° (standard deviation of the distribution) from the central conformation 

were calculated. 

A signal to noise is defined as the ratio between the MO of the conformation at 

the Gaussian centre and the average of the MO values of the other 8 conformations:  

 
A larger signal to noise indicates an increased capability of the MO values to 

discriminate the conformations with larger probability from those with smaller 

probability. One of the 8 conformations was actually excluded in the performed 

calculations because in such conformation the two domains crashed.  

The calculations were performed both without and with including an 

experimental error on the simulated pcs and rdc data, using a total of 4 or 5 metal ions 

with different anisotropy tensors. Without errors, the signal to noise ratio was almost 

the same (1.26), irrespective of the distribution of the lanthanides within the two 

domains, if only rdc data are used in the fit. A small difference in the signal to noise 

ratio was observed when a Gaussian error was added to the rdc data. The best signal 

to noise ratio of 1.36 was obtained in the case of 3 metals in the N-terminal domain 

and 2 metals in the C-terminal domain (3+2 case) relative to the other distributions of 

the metal ions in the two domains (see Table S2.1).  

The same analysis was performed including the pcs data into the calculations. 

MO values were obtained for the central and the other 7 conformations using pcs and 

Signal 
Noise 

MAP of conformation at Gaussian centre 
Average MAP of the other 8 conformations 

= [3] 
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rdc data without error (Fig.S2.2) and with error (pcs’ and rdc’) (Fig.S2.3). The pcs’ 

and rdc’ values are defined as: 

01.0)01.01(' 21 ×+×+×= YgYgpcspcs                               [4] 

1.0)1.01(' 21 ×+×+×= YgYgrdcrdc                                  [5] 

)sin()log(2 211 XgXgYg ×××−= π                                 [6] 

)cos()log(2 432 XgXgYg ×××−= π                                 [7] 

where Xg1, Xg2, Xg3 and Xg4 are four random numbers (from 0 to 1). 

Table S2.1 reports the signal to noise ratio obtained from simulated data 

calculated with 4 or 5 metal ions differently distributed in the two protein domains. 

Both with and without inclusion of an experimental error, the presence of metals in 

different domains is definitely advantageous. The signal to noise ratios in the cases of 

3+1 and 2+2 metal distributions (number of metals in N-terminal + C-terminal 

domains) are always higher than in the 4+0 case.  

 
 

 

 

Table S2.1 Signal to noise ratio for the performed simulations 

Signal to noise ratio Metals in 

N-terminal + 

C-terminal 

domains 

 

Rdc restraints 

(no error) 

Rdc restraints

(with error) 

rdc+pcs restraints

(no error) 

rdc+pcs restraints

(with error) 

4+0 1.24 1.23 1.28 1.35 

3+1 1.26 1.33 1.37 1.43 

2+2 1.25 1.20 1.54 1.42 

5+0 1.23 1.29 1.33 1.47 

3+2 1.26 1.36 1.60 1.51 

 

References 
(1) Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. (2007), J Am Chem Soc, 

129: 5656-64. 
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Fig. S2.1 Gaussian distribution of the conformational family (magenta) around one 

selected conformation (yellow) 
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Fig. S2.2. MO analysis of the selected conformations within the simulated Gaussian 

distribution. Pcs and rdc data are simulated without including errors.  
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Fig. S2.3. MO analysis of the eight selected conformations within the simulated 

Gaussian distribution . Pcs and rdc data are simulated with addition of a Gaussian 

error.  
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S3: Best fit graphs 

Correlation between rdc (A) and pcs (B) values measured for nuclei belonging to the 

domain without the lanthanide ion and rdc and pcs values calculated from the 

ensemble of conformations providing a minimum value of TF in the MO calculations. 
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S4. Figure S4. 1H-15N HSQC spectra of Lu3+-CLaNP-5 H107C/N111C CaM (red) and 

of N60D Ca4CaM (black). Moving peaks are those around the mutation sites, i.e. 

around residues 60, 107, 111 or belonging to residues close in space to the mutation 

site (i.e. T26, I27 close to N60) 

 

 
1H (ppm) 

15N (ppm)
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S5. Experimental restraints 

RDC of N60D CaM  RDC of CLaNP-5-CaM 
  Residue Tb Tm  Dy    Residue Yb Tm 

4 LEU - - -0.142  7 GLU - 1.348
5 THR -18.447 0.098611 -17.808  16 PHE - 1.135
6 GLU 6.953 1.064 4.683  21 LYS+ - 0.780
7 GLU 3.335 - 7.024  22 ASP - 0.000
9 ILE 5.818 2.483 3.264  23 GLY - 0.000

10 ALA 8.585 -7.450 -9.153  24 ASP - 0.709
11 GLU 2.199 - -  25 GLY - -2.058
12 PHE -3.335 -1.419 -5.605  26 THR - -1.987
13 LYS+ 16.177 - 12.984  28 THR - -2.129
14 GLU 5.818 - -  29 THR - -0.780
15 ALA - -3.831 9.011  30 LYS+ - -0.071
16 PHE - - 9.862  32 LEU - -0.497
17 SER 15.254 - -  33 GLY - 0.851
18 LEU - -5.534 -  35 VAL - -0.993
19 PHE -0.851 -2.341 -  38 SER - -0.639
22 ASP - -9.862 -  40 GLY - 1.348
23 GLY -14.048 11.565 -2.909  42 ASN - 0.780
24 ASP - 7.946 -16.319  45 GLU - 0.780
29 THR - -1.561 -0.922  46 ALA - -0.071
30 LYS+ 2.767 - -  48 LEU - -0.071
31 GLU 2.554 12.629 -  49 GLN - 0.355
32 LEU 2.554 - -  50 ASP - 0.142
33 GLY 3.477 9.294 -  52 ILE - 2.696
34 THR - 10.572 -1.206  53 ASN - 0.851
35 VAL - 11.281 -  56 ASP - -0.922
36 MET - 7.450 -2.483  57 ALA - -0.071
37 ARG+ -17.241 - -11.281  58 ASP - -1.490
38 SER -10.430 - -20.292  59 GLY - -1.632
39 LEU -10.501 - -  60 ASP - 1.490
40 GLY -9.153 4.115 4.044  62 THR - -0.568
41 GLN -14.261   4.825  63 ILE - -1.774
44 THR - -1.774 1.490  64 ASP - -0.497
45 GLU - -1.845 -  65 PHE - -0.071
47 GLU -24.407 - -  85 ILE -3.193 19.866
48 LEU - -0.993 -7.734  86 ARG+ 2.980 3.193
49 GLN - 1.135    87 GLU 3.264 21.994
50 ASP - 8.656 1.490  88 ALA 3.831 22.562
84 GLU - - -0.639  89 PHE 3.831 22.562
85 ILE - 0.497 -0.639  90 ARG+ 2.767 11.068
86 ARG+ - - -0.851  91 VAL 2.625 -14.758
89 PHE - 1.490 -0.710  92 PHE 2.412 21.143
90 ARG+ - 1.206 -1.206  93 ASP 2.838 21.569
91 VAL -0.426 - 0.284  94 LYS+ -1.561 -5.037
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93 ASP -2.412 2.058 -1.277  95 ASP 3.477 21.853
94 LYS+ -0.284 0.568 -1.206  96 GLY -2.270 -13.126
95 ASP 1.490 0.000 0.993  97 ASN -3.902 -1.703
96 GLY - -0.497 0.142  98 GLY -2.483 4.683
97 ASN -1.206 0.213 -1.490  99 TYR 4.257 0.142
98 GLY 1.774 -0.497 1.490  100 ILE 4.896 23.839
99 TYR 0.993 -0.780 1.916  101 SER 7.024 9.011

100 ILE 1.277 -0.780 1.064  102 ALA -1.987 -6.953
101 SER 1.845 -0.497 1.348  103 ALA -5.037 19.937
102 ALA 0.426 -0.710 0.142  104 GLU 0.497 - 
103 ALA 0.284 0.000 0.568  105 LEU -2.341 0.497
105 LEU 0.851 -0.568 0.071  112 LEU 3.548 - 
106 ARG+ 0.000 0.568 0.568  113 GLY -1.561 20.859
107 HIS+ - - 0.568  114 GLU 3.547 - 
109 MET 0.497 - -  115 LYS+ 3.264 2.129
110 THR 0.568 - -0.142  116 LEU 9.436 23.626
111 ASN 0.213 0.000 -  117 THR -6.669 18.589
112 LEU - - 0.851  118 ASP 1.703 21.924
113 GLY - - -0.213  119 GLU 0.710 -6.527
114 GLU -0.213 - -0.568  120 GLU 3.547 - 
115 LYS+ 0.142 0.284 -0.355  121 VAL -2.838 20.717
116 LEU 0.426 0.000 -0.709  122 ASP -1.206 21.782
117 THR 1.774 -0.851 1.703  123 GLU 3.335 22.065
118 ASP -1.064 0.426 -0.426  124 MET 3.547 - 
119 GLU -0.993 -0.497 0.071  125 ILE 2.483 21.214
121 VAL - -0.071 -0.426  126 ARG+ -0.142 - 
122 ASP -1.135 0.000 -0.568  127 GLU 2.412 5.676
123 GLU - -0.780 -0.497  128 ALA 2.483 21.214
124 MET 0.213 -0.993 0.640  129 ASP 3.264 -17.808
127 GLU 0.426 -1.135 1.348  130 ILE 1.206 3.264
128 ALA - 0.071 -  131 ASP 2.483 27.529
129 ASP -1.916 0.213 -1.206  132 GLY -0.213 -5.889
130 ILE 0.000 0.284 -0.568  133 ASP -4.186 -11.849
131 ASP 1.490 -0.922 1.206  134 GLY 1.064 12.345
132 GLY -0.284 -0.071 -0.497  135 GLN 2.696 12.487
134 GLY 0.710 -0.213 0.922  136 VAL 4.328 20.008
135 GLN 0.851 -0.993 1.703  137 ASN 3.193 26.819
136 VAL 1.419 -0.851 1.774  138 TYR 8.656 21.64
137 ASN 1.561 - 1.561  139 GLU 0.355 -11.636
138 TYR 0.142 - -  140 GLU 1.064 22.562
140 GLU 0.568 0.284 -0.071  141 PHE 0.568 -9.082
141 PHE 0.922 -0.071 0.000  142 VAL -2.341 21.498
142 VAL 0.639 -0.284 -0.213  143 GLN 3.547 - 
143 GLN 0.284 0.213 -0.426  144 MET 1.987 3.831
144 MET 0.142 - -  145 MET -2.270 -16.744
145 MET 0.568 -0.710 -0.709   
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147 ALA -0.426 0.142 -0.071   
148 LYS+ - -0.568 -0.213   

 
PCS of N60D CaM  PCS of CLaNP-5-CaM 

  Residue Tb Tm  Dy    Residue Yb Tm 
4 LEU -0.039 - 1.629  6 GLU -0.029 -0.006
5 THR 1.074 -0.589 1.146  7 GLU -0.033 - 
6 GLU 1.184 -0.609 1.095  10 ALA - 0.019
7 GLU 1.092 - 0.966  13 LYS+ -0.003 - 
8 GLN - - 0.771  15 ALA -0.023 - 
9 ILE 1.750 -0.967 1.564  16 PHE - -0.011

10 ALA 1.870 -1.062 1.66  18 LEU -0.020 -0.065
11 GLU 1.426 - -  19 PHE -0.021 - 
12 PHE 1.749 -1.006 1.29  21 LYS+ -0.002 -0.040
13 LYS+ 2.751 - 1.87  22 ASP -0.010 -0.027
14 GLU 1.886 - 1.008  23 GLY -0.014 - 
15 ALA 2.352 -0.748 0.229  24 ASP -0.017 -0.048
16 PHE - - 0.317  25 GLY - -0.044
17 SER 2.031 - -  26 THR -0.012 -0.042
18 LEU 0.009 -0.544 -  27 ILE -0.022 - 
19 PHE 0.116 -0.054 -  28 THR - -0.058
21 LYS+ -1.338 - -2.043  29 THR -0.018 - 
22 ASP -0.685 -0.821 -  30 LYS+ -0.003 -0.024
23 GLY 0.644 -1.491 -1.159  31 GLU -0.014 -0.056
24 ASP 1.148 -2.372 -1.529  33 GLY -0.029 -0.085
29 THR - -0.016 -0.027  35 VAL - -0.068
30 LYS+ -4.582 - -  38 SER -0.011 - 
31 GLU -5.190 1.041 -  44 THR -0.025 -0.127
32 LEU -7.254 - -  45 GLU -0.007 - 
33 GLY -4.681 2.837 -  46 ALA -0.003 -0.020
34 THR -4.999 1.698 -2.129  48 LEU -0.007 -0.076
35 VAL -1.719 1.743 -  49 GLN -0.018 - 
36 MET -2.440 2.032 -2.63  50 ASP -0.023 -0.037
37 ARG+ -2.037 - -1.406  51 MET - -0.011
38 SER -1.652 - -1.455  52 ILE -0.022 - 
39 LEU -1.392 - -  53 ASN -0.004 -0.011
40 GLY -1.182 0.798 -1.489  54 GLU - 0.001
41 GLN -1.344 - -1.655  55 VAL -0.032 - 
42 ASN -2.073 - -  56 ASP - -0.037
44 THR -0.949 1.217 -0.946  57 ALA -0.016 -0.023
45 GLU - 0.845 -  58 ASP -0.012 -0.010
47 GLU -1.364 - -  59 GLY 0.010 0.014
48 LEU - 2.231 -1.195  60 ASN -0.001 0.000
49 GLN - 2.365 -  61 GLY -0.027 - 
50 ASP -2.379 2.435 -0.016  62 THR - -0.011
84 GLU - - 0.012  64 ASP -0.028 -0.085
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85 ILE - 0.124 -  65 PHE -0.009 - 
86 ARG+ - - 0.013  68 PHE -0.014 - 
89 PHE -0.095 0.070 0.002  70 THR -0.029 - 
90 ARG+ - 0.078 0.035  86 ARG+ - 0.715
91 VAL -0.134 0.007 0.064  90 ARG+ - 0.904
93 ASP -0.115 - 0.024  91 VAL - 1.511
94 LYS+ -0.088 0.044 -  93 ASP 0.523 - 
95 ASP -0.061 0.029 0.043  94 LYS+ 0.503 1.504
96 GLY -0.062 0.027 0.040  95 ASP -0.140 - 
97 ASN -0.056 0.037 0.027  96 GLY -0.268 - 
98 GLY -0.080 0.036 0.013  97 ASN -0.071 -0.797
99 TYR -0.064 0.047 0.017  98 GLY -0.066 -0.274

100 ILE -0.095 0.056 0.009  99 TYR 0.148 0.649
101 SER -0.080 0.049 0.011  100 ILE 0.503 2.73
102 ALA -0.066 0.048 0.002  101 SER 0.702 3.137
103 ALA -0.070 0.043 0.000  102 ALA 0.561 2.26
104 GLU -0.035 0.048 0.007  103 ALA 0.645 - 
105 LEU -0.105 0.064 -0.004  104 GLU 1.118 3.867
106 ARG+ - 0.057 -0.026  105 LEU 1.467 - 
107 HIS+ - - -0.021  113 GLY 1.565 - 
109 MET -0.115 - -0.055  115 LYS+ - 3.184
110 THR -0.010 0.008 -  116 LEU 0.654 - 
111 ASN -0.002 0.000 0.000  117 THR 0.337 2.02
112 LEU - - -0.041  118 ASP 0.250 - 
113 GLY -0.011 0.013 -0.011  121 VAL 0.546 - 
114 GLU - - -0.010  122 ASP - 1.812
115 LYS+ -0.002 0.017 0.001  123 GLU 0.364 - 
116 LEU -0.017 0.000 -0.068  124 MET - 2.345
117 THR -0.102 0.074 -0.059  127 GLU 0.295 - 
118 ASP -0.078 0.058 -0.045  128 ALA 0.430 - 
119 GLU -0.065 0.061 -0.027  129 ASP - 1.927
121 VAL - 0.057 -0.040  130 ILE 0.253 1.139
122 ASP -0.057 0.058 -0.017  131 ASP 0.184 - 
123 GLU 0.017 0.051 -0.021  132 GLY 0.179 1.069
124 MET -0.018 0.057 -0.023  133 ASP 0.179 - 
127 GLU -0.097 0.031 -0.029  134 GLY 0.214 1.264
128 ALA -0.087 0.054 -0.008  135 GLN - 1.324
129 ASP -0.072 - 0.005  136 VAL 0.500 2.77
130 ILE -0.090 0.042 -0.010  137 ASN 0.298 1.73
131 ASP -0.078 0.036 -0.010  138 TYR 0.157 - 
132 GLY -0.048 0.050 -0.002  139 GLU 0.142 0.936
133 ASP -0.043 - -  140 GLU 0.222 1.389
134 GLY -0.065 0.031 -0.005  141 PHE 0.340 2.057
135 GLN -0.065 0.039 -0.003  142 VAL 0.260 1.67
136 VAL -0.085 0.051 -0.001  143 GLN - 1.414
137 ASN -0.096 0.057 -0.002  144 MET 0.351 1.833
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138 TYR -0.109 0.050 -0.010  145 MET 0.402 2.552
139 GLU -0.080 - -     
140 GLU -0.118 0.069 0.001     
141 PHE -0.130 0.071 -0.003     
142 VAL -0.152 0.080 0.003     
143 GLN -0.143 0.081 0.000     
144 MET -0.037 - -     
145 MET -0.163 0.080 -0.006     
147 ALA -0.151 0.107 0.021     
148 LYS+ -0.147 0.087 0.017     
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4 
CONCLUSIONS AND PERSPECTIVE
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The solution structures of S100A5 and S100A16 were solved in both apo and calcium 

bound states. The two proteins were found to exist as homodimer in both the apo and 

calcium bound forms. 

S100A5 has the common characters of S100 proteins. It binds two calcium ions in 

each subunit. The structure analysis shows that it experiences large conformational changes 

upon the calcium ions binding: helix III rotates of about 50° with respect to helix IV and a 

cleft is formed at the hinge region between helix II and III, where the targets binding site is 

supposed to be. Also relaxation data suggest that in the hinge region there is more mobility 

than in the other parts of the proteins in both the apo and the calcium bound form. 

S100A16 is a peculiar S100 member: it binds two calcium ions with lower binding 

affinity than the common S100 proteins, like S100A5, and consequently performs much 

smaller conformational changes upon calcium binding than S100A5. The relaxation data 

show that the first calcium binding loop and the beginning of the second helix experience 

more mobility than the other regions. This special dynamic property suggests that S100A16 

could have different targets binding modes from other S100 proteins. More studies are 

needed to disclose its functional features. 

 S100A5 has a longer helix IV in the calcium bound state than in the apo form, 

analogously to S100A2, S100A4 and S100A6. On the contrary, in S100A16, helix IV has 

the same length in both the apo and the calcium bound forms because of a special sequence 

motif (Gly-Gly-Ile-Thr-Gly-Pro), which is adverse to the formation helix structures. 

According to the available structures of S100 proteins, we measured their inter-helix 

angles and analyzed their conformational properties in both the apo and the calcium bound 

forms by using a principal component analysis. All the structural conformations are divided 

into two sub-groups, one for the close state and the other for the open state. Exceptions are 

S100A10 and calbindin D9k. S100A10 does not bind calcium and has an open state 

conformation in the metal free form; calbindin D9k has open state conformation in both apo 

and calcium bound forms. While S100A5 is correctly positioned in the two groups 

according to the calcium bound or calcium-free state, S100A16 has a closed state 

conformation in both the apo and the calcium bound forms. Based on this structural 

information, energetics models for the calcium-triggered conformational changes of S100 
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proteins were made. 

The structural details and the electrostatic potential surface obtained for S100A5 and 

S100A16 as well as their changes upon calcium binding are expected to reflect their 

different target specificity. Therefore, the knowledge of these features can provide 

information on the possible different function of the proteins. 

From the NMR titration, the hMBF1 and CaM do not bind to each other in vitro both 

in the presence and in the absence of calcium(II). Further more, CaM- agarose study 

suggested that the binding of hMBF1 to the column is not dependent on the calcium-free 

state of CaM but depends on ionic interactions with the activated matrix, which can be 

prevented by the presence of salts. This result indicates that attention should be paid when 

investigating the interaction between proteins with column. 

Synthetic tests and experimental studies performed on flexible two-domain proteins 

suggested that inter-domain motions can be better studied using paramagnetic restraints 

obtained with metal ions coordinated to both protein domains rather than in a single 

domain. In the case of CaM we have shown that the maximum occurrence of several 

conformations is quite reduced by the addition of pcs and rdc arising from the presence of a 

single metal ion rigidly attached to the C-terminal domain with respect to the values 

calculated using three metal ions placed in the N-terminal domain of the protein. As a result, 

the conformations likely experienced by the protein can be more accurately mapped.  
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