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1.1 Covalent and weak interactions in proteins 

 

Life processes consist of building up and breaking down molecules and the knowledge 

of the nature of chemical bonds that link atoms together in a molecule is important to 

understand biological processes1. The combination of weak interactions, together with 

covalent bonds, determines the structure of proteins and drive the protein-protein interaction 

processes. 

The majority of bonds in an organic molecule are covalent; these are formed when partially 

occupied orbitals of interacting atoms overlap, that is pairs of electrons are shared between 

atoms. Such bonds are strong and of short range. When a bond does not involve the sharing of 

pairs of electrons, we referred to non-covalent bonds. In general non-covalent bonding 

address to weak interactions that occur at distances of several angstroms and originate due to 

the electrical properties of the subsystem. Usually with the term “non-covalent interactions” 

we refer to these as a whole, indeed often they work in concert, thus providing force to hold 

the molecule, or part of the molecule together. The most common are the van der Waals 

interactions, that are short range interactions, so that they occur at distances comparable with 

the size of the interacting atoms, thus involving only neighbouring atoms. Such forces are 

about 100 times weaker than a covalent bond. Nevertheless, they tend to pull molecules 

together. When two molecules have complementary shapes hundreds or even thousands of 

v.d.W. forces may form between them. The Hydrogen bonds are interactions which are at the 

boundary between the  covalent  and non-covalent  interactions.  They  take  place  between  

pairs  of  atoms  only  if  one  of  them  is a  proton  donor  and  the other  one  is  a  proton  

acceptor. This is due to the fact that an hydrogen atom has a significant partial positive charge 

if is covalently bound to a more electronegative atom, such as oxygen, and is attracted to a 

neighboring atom that has a significant partial negative charge. In  contrast  to  the  other  two  

types, electrostatic  interactions  are  long  range  ones.  This  means that electrostatic 

interactions are also relevant beyond the limits of the closest neighbours. Electrostatic forces 

are generated between the opposing charges and the molecules align themselves to increase 

the attraction. 

Proteins are polymers of 20 different aminoacids bonded each other by covalent bonds 

(peptide bonds). The sequence of the different aminoacids constitutes the primary structure of 

the protein and determines how the protein folds into higher-level structures. The secondary 

structure can take the form either of alpha helices or of beta strands, formed through 
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hydrogen-bond interactions between NH and CO groups in aminoacids of the polypeptide 

backbone. Such elements of either alpha helix or beta sheet, or both, as well as loops and links 

that have no secondary structure, are folded into a tertiary structure. Finally, many proteins 

are formed by association of the folded chains of more than one polypeptide, thus constituting 

the quaternary structure of the protein2.   

Although the primary structure is due to the presence of covalent bonds, higher-level 

structures are principally due to non covalent, weak interactions. These interactions arise from 

several contributions: 1) van der Waals forces between the atoms forming the aminoacids; 2) 

hydrogen bonds between hydrophilic residues that are able to make such bonds to one 

another, to the peptide backbone, to polar organic molecules, and to water; 3) electrostatic 

interactions between ionizable groups of the aminoacids. Moreover it should be taken into 

account the contribution of the hydrophobic effect that arise from the tendency of 

hydrophobic aminoacids to avoid contact with water and to pack against each other. 

 

1.2 Protein interaction network  

 

Noncovalent forces control not only the folding of proteins but also their interactions 

with other proteins, nucleic acids, substrates, coenzymes and molecules in general. The 

comprehension of how the structure of the biomolecules affects their functions is one of the 

aim of structural biology. However, to really understand the cellular organization and the 

mechanism of the biological systems, not only the structure of the molecules and 

biomolecules are important but also the interaction among them. Moreover, protein flexibility 

and the dynamics of intermolecular interfaces can regulate binding affinity and specificity in 

molecular recognition, and can also have a profound effect on determining the 

thermodynamics and kinetics of the binding process.  

 

1.2.1 Protein-protein interactions 

Protein–protein interactions (PPIs) are known to be the major components of a wide 

variety of cellular events, they are operative at almost every level of cell function: in the 

structure of sub-cellular organelles, the transport across biological membranes, muscle 

contraction, signal transduction, regulation of gene expression, to make some examples. 

Complete sequencing of genomes has revealed that an organism can contain tens of thousands 
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of PPIs, thus forming all together a complex network3,4. 

 Protein-protein interactions can be classified into different types depending on the 

similarity between the interacting subunits (homo- or hetero-oligomers), the lifetime of the 

complex, (weak or transient interactions) and the location of interacting partners within one or 

on two polypeptide chains. Finally, since proteins usually work in a crowded environment 

with many potential binding partners, most proteins can be very specific in their choice of 

partner, although others can be multispecific, having multiple (competing) binding partners on 

coinciding or overlapping interfaces5. Thus, regulation of cell function by the interactions of 

these proteins is balanced not only by the relative affinities of the various protein partners but 

also by the modulation of these affinities by the binding of ligands, other proteins, nucleic 

acids, ions such as Ca2+, and covalent modification, such as specific phosphorlyation or 

acetylation reactions. This results in different biological outcomes and is extremely important 

for many diseases. Indeed, aberrant protein-protein interactions are involved in a number of 

neurological disorders such as Creutzfeld-Jacob and Alzheimer's disease. 

Therefore, PPI mapping would be of great value for understanding the molecular 

mechanism of cellular functions as well as diseases6. To do this, a structural characterization 

of the domains and of their dispositions within the protein and in their complexes with 

partners is fundamental. But in addition to this, we need a complete knowledge of the basis 

for specificity in these systems and comparative studies of similar interacting partners or 

mutated domains in order to bring to light the energetic properties linked to a particular 

sequence/structure.     

 

1.2.2 Internal protein dynamics 

To date, a number of three-dimensional protein structures have been solved at atomic 

resolution, nevertheless, explaining the protein function solely from the static three-

dimensional structure is expected to be difficult.  

Actually, proteins are dynamic over a spectrum of time scales and there is a deep 

correlation between dynamics and molecular function. Changes in conformational dynamics 

between folded and unfolded states contribute a significant entropy component to the 

energetics of protein stability, but protein dynamics play an important role also in molecular 

recognition processes (since entropic effects due to changes in internal dynamics can have a 

deep impact on binding affinities), in ligand binding (which often involves movement of 

molecules into areas that would normally be occluded), in catalysis (where conformational 
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rearrangements can juxtapose catalytic residues), and in allostery (where structural 

fluctuations can transmit information between different sites in a protein).  

 

1.2.3 Protein-ligands interaction 

Mapping interactions at protein-ligand binding sites is an important aspect of 

understanding many biological reactions and is a key part of drug design. It has been shown 

for a large numbers of targets that the 3D-structure of the protein can be used to design small 

molecules binding tightly to the protein7,8 and future progress in this field can be achieved 

only with a complete understanding of the protein-ligand interactions. The majority of the 

currently available drugs act via noncovalent interactions with the target protein. Therefore, 

these forces are of particular interest in drug design.  

The data now available on 3D-structures of protein-ligand complexes clearly indicate 

that there are several features found basically in all complexes: a high level of steric 

complementarity between the protein and the ligand (the lock-and-key paradigm); a high 

complementarity of the surface properties (lipophilic parts of ligand usually are found in 

contact with lipophilic parts of the protein, and the same usually occur with polar groups that 

form hydrogen bonds or ionic interactions); finally the ligand usually binds protein in an 

energetically favorable conformation.         

The enthalpic and entropic components of the binding affinity can be determined 

experimentally and the available data indicate that there is always a substantial compensation 

between enthalpic and entropic contributions9.   

For many protein complexes only relatively small regions of the binding surface, often 

called “hot spots”, contribute a major part of the binding energy.  The small ligands bind 

almost exclusively to well-defined, localized regions of proteins, independently of their 

affinity10. Once these hot spots are identified, binding interactions with adjacent regions of the 

protein surface can be subsequently explored to increase selectivity and improve affinity11. 

 

1.3 Metalloproteins and immunoglobulin cell surface 

proteins as models 

 

Calcium-binding proteins and zinc proteases are two large classes of proteins involved 

in several physiological and pathological processes. In these proteins weak interactions play a 
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crucial rule in structural organization and target recognition.  

EF-hand calcium-binding proteins are involved in the regulation of various cellular 

processes where they act as calcium sensors or as signal modulators (calcium buffers). The 

biological activity of these proteins rely on ion-induced conformational change or on features 

like ion binding affinity, selectivity, and kinetics. Matrix metalloproteinases are zinc-

containing proteases involved in extracellular matrix degradation, which is a fundamental step 

in many physiological processes like tissue remodeling and repair.  

  

1.3.1 EF-hand calcium binding proteins 

The EF-hand family of Ca2+-binding proteins (CaBPs) provides a rich framework for 

investigating fundamental relationships between weak interactions and biochemical function. 

The EF-hand motif is one of the simplest motifs with specific function and is among the most 

common in animal cells12. It consists of two α helices linked by a loop region that binds 

calcium  and was first found in the structure of parvalbumin. It’s specific for calcium-binding 

and, beside parvalbumin is present also in calmodulin, troponin-C and other calcium-binding 

proteins that regulate cellular activities towards the binding of the ion. These motifs are 

organized into structural units/domains containing two or more EF hands that form highly 

stable helical bundles 13.  

The S100 human protein family consists of at least 25 calcium-binding proteins and 

constitute the largest family within the EF-hand protein superfamily. The nomenclature of 

S100 genes was firstly introduced by Schaefer et al. 14 in order to overcame the considerable 

confusion generated by the plethora of names given to the early members of the family. In 

contrast to the abundance of S100 genes in vertebrates, they are completely absent in 

invertebrates. Interestingly, 21 human genes of the family of S100 are clustered in region 

1q21 of human chromosome 1. This chromosomal region exhibit several rearrangements 

which occur during tumor development, thus suggesting a correlation between S100 proteins 

with neoplasias15-17. 

S100 members are best known as mediator of intracellular Ca2+ signals, nevertheless 

certain members of this family are also secreted outside the cell, exerting extracellular actions 

in an endocrine, paracrine and autocrine manner18. 

Although the sequences of the family show some diversity, the key structural features 

of all S100 proteins are highly conserved19 (Figure 1). S100 proteins contain two EF-hand 

motifs, one in the N-terminal domain (composed by helix I, loop I and helix II) and one in the 
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the C-terminal domain (composed by helix III, loop II and helix IV). The two domains are 

connected by a linker, called “hinge-loop”. The first N-terminal EF-hand is unconventional, 

because its loop is usually composed by 14 aminoacids; the second one, in the C-terminal 

domain, is canonical20. A consequence of the longer loop in the N- terminal EF-hand of S100 

proteins is the different affinity of the binding of calcium(II) to individual EF-hand, due to the 

different coordination of calcium. The canonical C-terminal domain binds calcium in a similar 

manner to calmodulin and troponin-C resulting in a higher affinity site18,21. The N-terminal 

domain mainly binds the ion through main-chain carbonyl groups, in addition to the bidentate 

side chain of glutamate at the end of the loop, and this reduces the binding affinity up to 100 

times22. 

With the exception of calbindin D9K, which is monomeric, all the other structures of 

the S100 proteins revealed a homo- and, in some case, hetero-dimerization, in which every 

monomer comprise two EF-hand motifs15. Certain members of the family also form active 

tetramers or larger oligomers. Monomers are related by a two-fold axis of rotation and the 

major contributors to the dimer interface are the helix I and IV of each monomer that are 

ordered in a X-type four-helix bundle. This relationship is maintained both in the apo- and in 

the calcium-bound states18.  

 

 

Fig. 1: Ribbon representation of the S100P dimer. (A) Solution structure of apo-S100P  
(PDB: 1OZO). (B) X-Ray structure of holo-S100P (PDB: 1J55). Calcium ions are depicted in 
blue.  
 

Calcium binding to the S100s occurs in response to increases in intracellular calcium 

concentration. Upon calcium(II)-binding most of S100 proteins experiences a conformational 

change that involve helix III, which is antiparallel to helix IV in the apo state. As a 

consequence of the conformational rearrangement, the two helices become almost 

perpendicular. This movement “opens” the structure and exposes a wide hydrophobic cleft 
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that lays out as a binding site for targets23. Calcium binding to the N-terminal EF-hand, 

instead, causes only minor alterations of its backbone conformation. On the other hand, some 

family members, S100A10 and calbindin D9k, do not undergo changes in their conformation 

and have the function of calcium buffer and transport24,25. Moreover, not all the S100 

interactions are dependent on binding to calcium, indeed, calcium-independent interactions 

have also been described. In most cases the partners of apo-S100s are enzyme (i.e. glycogen 

phosphorylase for S100B and S100A126 and transglutaminase for  S100A10 and S100A1127), 

but the most important calcium-independent interactions of the S100 proteins are their 

abilities to form homo- and heterodimers, as well as some higher-order complexes. 

Besides calcium, some S100 proteins have also been shown to bind zinc (i.e. S100B28 

S100A229, S100A730, S100A1231), however, because of its subnanomolar intracellular 

concentration, binding of Zn2+ in the cytoplasm is rather unlikely. However, zinc binding to 

S100 proteins may occur in the extracellular space where the Zn2+ concentration may be much 

higher locally for a short time (in the brain it can rise as high as several tens to hundreds of 

µM32). At this regard the zinc has been reported to modulate the interaction of S100B with tau 

protein33. 

According to their high specialization, S100 proteins are involved in the regulation of 

a variety of intracellular processes, such as protein phosphorylation (τ protein and p53 by 

S100B33,34), enzyme activities (phospholipase A2 by S100A1035), Ca2+ homeostasis (S100A1 

by directly affecting the ryanodine receptor36), cell growth and differentiation, transcription 

factors, cytoskeleton dynamics and the inflammatory response. 

Secretion has been demonstrated for several members of the S100 protein family ( i.e. 

S100B, S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/A9, S100A12).  The 

mechanism of secretion is still obscure, although, for the S100A8/A9 complex it is suggested 

a secretion pathways that depends on an intact microtubule network37. At the same time, for 

S100B it’s known that secretion is not affected by the endoplasmic reticulum-Golgi classical 

secretion pathway inhibitor, brefeldin A. Despite the lack of information regarding the 

secretion mechanism of S100s, extracellular roles have been described for several S100 

proteins. For examples S100A8/A9 heterodimer is chemotactic for mediating inflammation38, 

S100B exhibit neurotrophic activity39, and S100A4 has angiogenic effects40.      

Calmodulin (CaM) is one of the many Ca2+-binding regulatory proteins. It’s an 

ubiquitous, multifunctional protein that is widely distributed in nature and can bind at least 30 

different targets with the subsequent regulation of several cellular processes, such as cellular 
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division and differentiation, gene transcription, ion transport by channels and muscle 

conctraction.  It was discovered as the activator of the cyclic nucleotide phosphodiesterase in 

brain and heart 41,42, and is composed by two domains (N- and C-terminal) linked by a 

flexible helix. Each of the two domains comprise two EF-hands, so that allowing the protein 

to bind four calcium ions. The sequence homology among the two domains is high (75%), 

however, the small differences are able to give different biochemical properties to the 

respective EF-hands. Indeed, the Kd of the C-terminal EF-hands for calcium is ∼10-6 M, 10-

fold stronger than the N-terminal EF-hands (Kd ∼10-5). Calcium binding to CaM induces 

conformational changes that are subsequently involved in the regulation of several cellular 

processes. These changes cause the exposition of an hydrophobic surface that interact with 

targets.  

However, also the flexible linker takes part in target binding, since it enables a great 

deal of variability in the relative orientation of the two domains that is critical for the ability 

of CaM in the interaction with such a large number of targets 43.  

The best known mode of interaction of CaM with targets is described by the binding 

of both domains to a single binding region and hence is called the “wrap-around” mode. This 

mode of interaction is observed for all the peptides derived from the autoinhibitory domains 

of myosin light chain kinases and for other CaM-dependent kinases 44,45, and causes the 

peptide to adopt an helical conformation, becoming enveloped by the two domains. This was 

initially considered the predominant mechanism for CaM-binding. However, the subsequent 

characterization of several structures of the protein in complex with targets showing 

posttranslational modifications, enlarged the CaM-binding repertoire. This confirm the 

important roles of the conformational flexibility within each domain to give the possibility of 

various different relative position of the two domains in order to adapt to different targets. 

Indeed, CaM is able to bind targets also in an extended mode, so that their domains interact 

with different regions of the target. The most direct example of this binding mode arise from 

the structure of the complex of CaM with the anthrax exotoxin, the Edema factor 46. This 

mode is also recurrent in the binding of the apo-CaM with targets, and many of these targets 

(such as neuromodulin and neurogranin) interact with the IQ motif of the protein, which 

contain the consensus sequence IQxxxRGxxxR 47. The binding can occur both in presence 

and in absence of calcium, and, in some cases, through not only the IQ motif by itself, but 

also combined with other CaM binding sequences. Finally, several examples of CaM-induced 

dimerization of the target have been reported. An example of this binding mode are present in 
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the structure of the CaM complex with the gating domain of the Ca2+ activated K+ membrane 

channel 48. 

 

1.3.2 Receptor for advanced glycation endproducts 

The Receptor for Advanced Glycation Endproducts (RAGE) is a member of the 

immunoglobulin protein family of cell surface molecules, whose gene is localized on 

chromosome 6 in the Class III region of the major histocompatability complex49-52.   

The receptor is composed of an extracellular part, a transmembrane helix and a short 

cytosolic tail. The extracellular region comprise three immunoglobulin-like domains: one 

variable V-type and two constant C-type, usually referred as C1 and C253 (Figure 2).  

 

 

 

 

Fig. 2: Schematic representation of RAGE. (Reprinted from Hudson BI et al. FASEB J. 2008) 

 

RAGE is expressed as both full-length (flRAGE), membrane-bound (mRAGE) and 

various soluble forms. The latter are produced by both proteolytic cleavage of fl-RAGE and 

alternative mRNA splicing, thus originating isoforms that consist of the extracellular domain 

lacking the transmembrane and cytoplasmic domains54,55. Among the over 20 different splice 

variants that have been identified to date in humans, the so-called "Endogenous Secretory 

RAGE" (esRAGE) is the only one that have been detected at the protein level in vivo and is 

present in a wide variety of human tissues56.  

Although RAGE expression is high in embryonic cells, in a wide range of the 

differentiated adult cells is expressed at low levels, such as neurons, smooth muscle cells, 

mesangial cells, mononuclear phagocytes, hepatocytes and cardiac myocytes. An exception is 
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the lung tissue, in which RAGE is expressed at substantially higher levels57. RAGE 

expression augment in association with inflammation-related pathologies such as vascular 

disease, cancer, neurodegeneration and diabetes58.    

Binding of ligands to RAGE has been shown to activate multiple cellular signaling 

cascades, among which ERK1/2-MAP kinases, SAPK/JNK-MAP kinases, JAK/STAT 

pathway. Many of these signaling cascades result in the activation of the downstream effector 

NF-κB59 (Figure 3). 

 

 

 

 

Fig.3: RAGE signal transduction pathways. (Reprinted from Vazzana N. et al. Intern Emerg 
Med 2009) 
 

RAGE ligands can be grouped into distinct families. The name of the receptor itself account 

for the first class of molecules that was recognized as RAGE ligand: Advanced glycation 

endproducts (AGEs) that comprise a class of products of reactions between proteins or lipids 

and aldose sugars60. Besides AGEs, RAGE was found to bind amyloid forming peptides61, the 

DNA binding protein amphoterin62 and S100 proteins63. 

 

1.3.3 Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) comprise a family of at least 28 secreted or 

transmembrane enzymes collectively capable of processing and degrading various proteins 

that constitute the complex structural entity that surround and support the cell: the 
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extracellular matrix (ECM) 64. They are involved in a number of pathogenic processes 

including tumour invasion and metastases, rheumatoid and osteoarthritis, angiogenesis and 

wound healing. At least 22 members of this family have so far been found in human tissues 

and they are divided into three groups, with respect to the main activity of the purified 

enzymes in vitro: the collagenases degrade fibrillar collagens type I, II and III; the gelatinases 

cleave triple helical type IV collagen and gelatine, the stromelysins are active against laminin, 

fibronectin, proteoglycans type IV collagen and other collagens with interrupted triple helices, 

and, finally, the membrane-type MMPs (MT-MMPs) are a subgroup of 5 members 65.  

All MMPs are synthesized with a prodomain 66 containing a leader sequence, which 

targets the protein for secretion. They are secreted as latent proforms, with a few exceptions 

of furin-processed  proteinases, such as MMP-11 or MMP-28. The prodomain of MMPs has 

an egg-like shape, and contains a well conserved cysteine switch motif of PRCXXPD for 

maintaining the proMMP latent 67,68. Generally, the structures of all MMP catalytic domains 

are quite similar. The shape of the catalytic domain is spherical with a flat active site cleft, 

which extends horizontally across the domain to bind peptide substrates or inhibitors. The 

catalytic domain has the zinc-binding motif, HEF/LGHS/ALGLXHS, which coordinates a 

zinc atom at the active site, and under the zinc, a ALMYP methionine-turn. The latency of the 

zymogen is maintained through cysteine-switch motif 68, in which the cysteine residue acts as 

a fourth zinc-binding ligand to maintain the enzyme inactive. In addition to the catalytic zinc, 

the catalytic domain also contains a structural zinc and two to three calcium ions. A sub-site- 

or S1’-pocket- or channel-like structure is a binding site for a substrate or inhibitor molecule 

within the active site, and differs considerably in size and shape among the various MMPs. 

P1’ indicates the residue of a bound substrate molecule. The P1’-S1’ interaction mainly 

determines the affinity of inhibitors, and the cleavage positions of peptide substrates. C-

terminal hemopexin or vitronectin-like domains affect substrate or inhibitor binding, 

membrane activation and some proteolytic activities. The hemopexin domain, very similar in 

structure among the MMPs, is an ellipsoidal disc, and is connected to the catalytic domain by 

a hinge region. The hinge region is flexible and rich in proline residues 69. It may also 

influence substrate specificity.  

Hierarchical regulation of MMP activity occurs on many levels 70, including gene 

expression control, proteolytic activation of MMP zymogens 68, inhibition by endogenous 

tissue inhibitors of metalloproteinases (TIMPs) 71, and both positive and negative proteolytic 

feedback loops 72. 
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Since many pathologies may benefit from control of the activity of MMPs, the quest 

for suitable human MMP inhibitors (MMPIs) has been actively pursued for more than a 

decade. Many inhibitors endowed with high-affinity, though modest selectivity, based on a 

variety of molecular scaffolds have been reported 3, and some entered into clinical trials for 

different indications, mainly in cancer and arthritis 73. 

It has been hypothesized that several side-effects observed during the clinical trials 

with MMPI could be related to the poor specificity and selectivity of the investigated 

molecules 74. These include musculoskeletal pain and inflammation which often required the 

interruption of  the therapy. Several attempts to design selective inhibitors have been carried 

out by using the structure-based strategy. 

 

 

 1.4 Aims and topics of the research 

 

The research carried out during my PhD has been focused on cloning, expression and 

characterization  of metalloproteins and immunoglobulin cell surface proteins and on the 

analysis of non covalent interactions relevant for these biological systems. In particular 

selected examples of:  i) protein-protein interactions; ii) interactions between different 

domains of the same protein and  

iii) protein-small molecule interactions have been investigated in their energetic and dynamic 

aspects. 

 

To date is well established that members of the multigenic S100 protein family play 

regulatory roles within cells through the interaction with several effector proteins, thus 

regulating enzyme activities, cell growth and differentiation and calcium homeostasis17,21,75. 

Moreover, secretion has been proved for several members of the S100 protein family and 

growing evidence suggests that most of the secreted S100 proteins exert their activity through 

a common receptor: the Receptor for Advanced Glycation Endproduct (RAGE) 76. The 

molecular mechanisms of the interaction between S100 proteins and RAGE are poorly 

characterized, however, evidences  collected so far suggest that S100 proteins might form 

sub-groups which bind to different sites on RAGE. Thus, the localization of critical surface 

residues involved in RAGE/S100 interaction will be helpful to deduce a more general scheme 

of ligand recognition and binding by RAGE receptor. S100P has been shown to interact with 
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RAGE in vitro, since it was shown to trigger the activation of NF-Κb through the MAPK 

pathway in a RAGE dependent manner in pancreatic and colon cancer cells lines77,78. 

Moreover, the structural determinants of the interaction between RAGE and S100P, as in 

general with all S100s, are still poor characterized. The aim of the work was therefore focused 

on cloning, expression and characterization of S100P and on different constructs of RAGE. 

Then the interaction of S100P with the selected domains of RAGE receptor has been 

investigated by high resolution NMR spectroscopy, in order to identify the RAGE-S100P 

interaction surface and to obtain a structural model of the complex.  

Efforts have also been directed at the characterization of the structural and dynamical features 

of a uncommon member of the S100 protein family, which structure is still unknown: 

S100A16.  

S100A16 has been successfully expressed and the solution structure of both the apo and 

calcium(II) states solved by NMR. Mobility studies have been also carried out in order to 

obtain the starting point for future investigation of S100A16 interaction with possible targets.   

 

Calmodulin (CaM) is one of the most investigated examples of multidomain protein 

with the domains experiencing flexibility. The calcium-free form of the protein (apoCaM), 

which is the resting state of CaM in cells, is able to functionally bind a number of protein 

targets, as do in the calcium-bound state but its dynamics has received less attention than the 

latter. It was suggested that helices in apoCaM are quite mobile79 and that the C-terminal 

domain experience a conformational exchange. Furthermore, the calcium-binding loops are 

found particularly unstructured in the calcium free state, most likely due to their high 

flexibility 79,80. In order to evaluate the role of the weak interactions in interdomain flexibility 

and to address the open questions regarding the importance of the relative mobility of the 

domains, samples of CaM where the exchangeable protein protons are replaced by deuterium 

have been prepared.  The relaxometric analysis performed on these CaM samples allowed us 

to determine the  dynamics of the side chains in the apo state of the protein, the reorientation 

time value and a collective order parameter, which monitors side chain mobility.  

 

One of the strategies aimed to design molecules with  high affinity towards 

pharmaceutical targets consists in tethering  with a suitable linker, low affinity fragment for 

neighbouring binding sites81-83.  Thus, the affinity of molecules created in this way will be 

higher with respect to the sum of the affinity of the single fragments. The gain in affinity is 
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related to the so-called linking effect. To clarify the energetic aspects of tethering and to 

understand its limits and possibilities, we have investigated the interaction of a well 

structurally characterized inhibitor and of its deconstructing fragments with MMP-12 by 

isothermal titration microcalorimetry, X-Ray, NMR and fluorimetry. 
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One of the aims of structural genomics is the structure-based drug design, that has 

been extended to the study of the protein function. This can be faced by an High-Throughput 

approach (that characterized structural genomics projects), thus screening a huge number of 

genes but limiting the rate of success for each target, or by a large bibliographic and 

bioinformatics research (in functional genomics projects) in order to maximize the rate of 

success, but, thus augmenting the cloning and expression strategies that have to be performed. 

However, a multidisciplinary approach remains necessary in order to proceed on the screening 

of parameters that are necessary for good samples preparation. 

 

2.1 Genome browsing 

 

Bioinformatics is essential for deciphering the huge of data generated by high-

throughput experimental technologies, and in organizing information obtained from 

traditional biology. The ultimate goal of bioinformatics is to reveal the biological information 

hidden in the mass of data and to do this, various databases and software for prediction can be 

used as tools for searching gene banks, for the analysis of protein sequences and for the 

prediction of a variety of protein properties.   

Examples are GeneBank (http://www.ncbi.nlm.nih.gov/sites/entrez) or Ensembl 

(http://www.ensembl.org/index.html), from which nucleotidic sequences can be downloaded; 

Swissprot (http://www.ebi.ac.uk/swissprot/), for obtain information on the aminoacidic 

sequence, isoforms or biophysical properties and dbSNPs 

(http://www.ncbi.nlm.nih.gov/projects/SNP/) for information about predicted or validated 

SNPs.   

In order to select the protein construct with the highest probability of giving a soluble 

and folded protein, various tools can help in the prediction of the target protein properties and 

domain organization. Such predictions can indentify the presence of transmembrane regions 

(http://www.cbs.dtu.dk/services/TMHMM-2.0/); intrinsically unstructured regions 

(http://iupred.enzim.hu/);  N-terminal signal  peptide (www.cbs.dtu.dk/services/SignalP/)1; 

“rare” codons that are infrequently used by the host chosen for the expression of the 

recombinant protein (for E.coli they can be predicted at 

http://nihserver.mbi.ucla.edu/RACC/). Moreover, genome browsing can help to find proteins 

sharing the same fold and the same consensus sequence within different genomes 

(www.ncbi.nlm.nih.gov/BLAST). Domain border definitions can be done by  multiple 
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sequences alignments, since domains sequences are more conserved during evolution in 

respect to linker regions (http://align.genome.jp/), and then, the identification and analysis of 

protein domain architectures in completely sequenced genomes can be performed using 

SMART tool (http://smart.embl-heidelberg.de/)2. Finally known and predicted protein-protein 

direct and indirect) associations, can be found in the STRING database 

(http://string.embl.de/).   

 

2.2 Cloning  

 

In order to get high yield of soluble proteins, many factors have to be taken in 

consideration, such as the choice of the vector, of the cloning strategy, and of culture 

conditions. Of course, the knowledge of the protein characteristic will help in this choice, thus 

increasing the chance of success.  

The choice of the expression system is the first step that have to be faced. To date 

different expression systems are available, among which bacteria is the most attractive due to 

low cost, high productivity, and rapid use. However, the rational choice of the adequate host 

for a specific protein of interest remains difficult and need to be done taking into account the 

different characteristics of the expression system itself, such as the rate of cell growth, the 

cost, the expression level, extra- or intracellular expression or the possibility of 

posttranslational modifications3. For the expression of a protein of prokaryotic origin, the 

obvious choice is to use E. coli, but if the protein that have to be expressed is from an 

eukaryotic source, the method of choice will depend on more factors. To date, alternative 

hosts, as mammalian, yeast and insect cell, are more accessible and less costly4,5. Cell-free 

protein synthesis has also a great potential for the expression of problematic soluble and 

membrane proteins expression6. However, especially for the characterization that requires 

high yield of labeled protein, such as NMR, the E.coli expression system remains the most 

widely used. 

The expression system govern the following choice of the expression vector. Many 

plasmids are currently available for the E. coli system and the different characteristics that 

typify them can influence the yield of expressed soluble protein. The basic architecture of an 

E. coli vector is shown in Figure 1 and it contains an antibiotic-resistance gene that can select 

only the clones that contain the plasmid, an origin of replication and a regulatory gene for 

plasmid replication and regulation of the copy number, a promoter that initiates the 
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transcriptions, a multiple cloning site that enables to clone the gene of interest into the vector. 

In addition also tags and fusion proteins can be present in the vector, generally followed by 

protease cleavage sites. These elements, together with the promoters are those that mostly 

affect the yield and solubility of the recombinant protein. Many promoter systems of E. coli 

can be used as tools for protein expression, but actually only a few of them are commonly 

used. A ideal promoter is strong, has a low basal expression level, is easy to induce and is 

independent from the common components of culturing media. In the matter of fusion  

tags and partners, they offer several advantages in terms of expression, solubility, detection or 

purification.  

 

                        

 

Fig. 1: Basic architecture of an E. coli expression vector. 

 

In order to adapt an high-throughput approach to cloning, recently a new technology 

(Gateway technology) has been developed, thus giving the possibility to clone one or more 

gene into virtually any expression vector, without the time-consuming reactions that are 

characteristic of the classic use of restriction enzymes and ligase. This method, described by 

Landy and co-workers7 use a site-specific and conservative recombination (LR reaction). 

 

2.3 Site directed mutagenesis 

 

In vitro site-directed mutagenesis is a technique for studying protein structure-function 

relationships and gene expression, and for carrying out vector modification. 
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The basic procedure utilizes a vector with the gene of interest and two synthetic 

oligonucleotide primers, both containing the desired mutation and that are extended during 

temperature cycling by a high fidelity DNA polymerase. The extension of the oligonucleotide 

primers generates a mutated plasmid. Following temperature cycling, the product was treated 

with an endonuclease specific for a methylated DNA, in order to digest the parental DNA 

template and to select for mutation-containing synthesized DNA (this can be done since DNA 

isolated from almost all E. coli strains is methylated and therefore susceptible to endonuclease 

digestion). The vector DNA containing the desired mutations is then cloned and expressed by 

choosing the host and conditions, also in dependence of the single or multiple mutation.   

 

2.4 Protein expression and purification 

 

The screening of different conditions for recombinant  protein expression, in order to 

speed up the production, usually start with a parallel expression of a protein from a variety of 

vectors containing different tags and/or fusion partners, that are highly expressed and can 

work as translational enhancer, and a variety of E. coli host strains, that can help by encoding 

for a number of rare codons, or by reducing proteolytic degradation due to the presence of 

proteases. The optimization of the expression levels can then be achieved by varying some 

parameters: the time and/or temperature of induction, that is obtained by the addition of the 

proper inducer or by changing the growth conditions (in dependence of the kind of promoter 

used), or the concentration of the inducer itself.  

The choice of the strategy for protein purification, depend whether the protein is 

expressed by the host in the cytoplasm as soluble, or insoluble (in inclusion bodies, IB). 

Actually the protein can also be forced to be transported in the periplasmic space, due to the 

presence of a leader sequence (usually pelB and ompT) to the N-terminus of the target 

protein. If the protein is insoluble, it must be extracted from the inclusion bodies. This is 

anticipated by extensively wash and centrifuge a several times the IB with buffer containing 

detergents, such as Triton, or even low concentrations of denaturants, such as guanidine 

hydrochloride (GdnHCl) of urea. Then the IB are solubilized  usually with 4-6 M GdnHCl or 

8 M urea.  

The purification steps are guided by the physical-chemical and biological 

characteristics of the proteins: if they are in the native state, ion exchange and size exclusion 
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chromatography are commonly used, while, when fused with tags, affinity chromatography 

(Figure 2) is the optimum. As an example, GST-tag is a specific affinity tag, that not only 

facilitate soluble expression but also increase the efficiency of protein, and can be purified 

using glutathione immobilized to a matrix such. When the fusion tag is a simple His-tag, 

purification is achieved by Immobilized metal ion affinity chromatography (IMAC) (that 

purify proteins with exposed histidine groups via metal ion complex formation).  

In order to cleave the tag, various proteases can be used (TEV, Factor Xa, Thrombin, 

Prescission Protease, recombinant Enterokinase), depending on the protease specific 

recognition site selected and cloned in the vector codifying for the protein sequence at the 

cloning step. Then, the cleaved tag can be easily removed by the purified recombinant protein. 

If the tagged protein is expressed as inclusion bodies, the unfolded protein must be refolded 

prior to proceed with the cleavage, and this step can be problematic, since sometimes fusion 

tags may interfere with correct protein folding.  

 

 

 

Fig.2: General purification procedure of a typical His-tagged proteins (Reprinted from 
Recombinant purification handbook for expression and purification of His-tagged proteins, 
GE Lifescience) 
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Finally, again structural information can help, or force, in the choice of buffer 

composition: as example, DTT or Oxidised/Reduced Glutathione (for the presence of 

disulfide bridges, or reduced cysteine), and EDTA or EGTA (for metal binding proteins).   

 

 

2.5 Biophysical and structural characterization 

 

2.5.1 Fast Field Cycling Relaxometry 

Fast Field Cycling Relaxometry is a NMR technique used for the determination of 

longitudinal relaxation times of the solvent (T1) over a wide interval of magnetic fields, 

ranging from about 10-6 to about 1 Tesla. The range boundaries are set by sheer technical 

issues, being the lower limit affected by the local fields, while the upper limit is mainly 

determined by technical choices and compromises. 

This interval is very wide if compared with the 0.1 T-20T range covered by standard 

NMR, not considering the impractical technical issues of studying T1 dispersion curve with an 

array of standard magnets. On the other hand, FFC relaxometry requires a specialized system, 

given of much lesser resolution if compared with most NMR spectrometers.  

The basic scheme of an experiment can be divided into three phases. At first the 

sample is polarised in a high field Bp for the time needed to achieve saturation of the nuclear 

magnetization, then the magnetic field is switched to a lower value Br for a time tr, during 

which the magnetization is allowed to relax towards a new equilibrium value. Eventually, the 

magnetic field is increased again and the equilibrium magnetization is measured, by applying 

a 90° pulse followed by acquisition. 
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Fig. 3: A typical field cycle in FFCR.     

 

Although FFCR can be applied to several research fields, spanning from dynamics of 

liquid polymers to proton quantum tunnelling investigation, a useful biological application is 

the characterization of the hydration of proteins in solution.  

When recording the relaxation profile of a protein in D2O the observed proton 

relaxation is given by the sum of the contributions of all non exchangeable protein protons.  

 

2.5.2 ITC of protein adduct 

Isothermal titration calorimetry (ITC) is a thermodynamic technique that allows the 

study of the interactions of two species. When these two species interact, heat is either 

generated or absorbed. By measuring these interaction heats, binding constants (K), reaction 

stoichiometry (n), and thermodynamic parameters including enthalpy (∆H) and entropy (∆S) 

can be accurately determined. In addition, varying the temperature of the experiment allows 

the determination of the heat capacity (Cp) for the reaction. The ITC allows researchers to 

study almost any kind of interaction, including solutes with immobilized enzymes, tissue 

samples, or other solid materials in suspension. The CSC ITC may also be used to study the 

decomposition/stability of organic (ex. drugs) and inorganic materials over time (days to 

weeks). This is particularly useful for determining shelf/storage life of drugs.  

An ITC instrument consists of two identical cells composed of a highly efficient 

thermal conducting material (Hasteloy or gold) surrounded by an adiabatic jacket (Figure 4). 

The jacket is usually cooled by a circulating water bath. Sensitive thermopile/thermocouple 
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circuits detect temperature differences between the two cells and between the cells and the 

jacket. Heaters located on both cells and the jacket are activated when necessary to maintain 

identical temperatures between all components. In an ITC experiment, the macromolecule 

solution is placed in the sample cell. The reference cell contains buffer or water minus the 

macromolecole8 

 

 

 

 

 

    

 

 

 

 

 

 

Fig. 4: Schematic diagram of an ITC instrument. Two lollipop shaped cells are contained 
within an adiabatic jacket8.  

 

Prior to the injection of the titrant, a constant power9 is applied to the reference cell. 

This signal directs the feedback circuit to activate the heater located on the sample cell. This 

represents the baseline signal. The direct observable measured in an ITC experiment is the 

time-dependent input of power required to maintain equal temperatures in the sample and 

reference cell. During the injection of the titrant into the sample cell, heat is taken up or 

evolved depending on whether the macromolecular association reaction is endothermic or 

exothermic. For an exothermic reaction, the temperature in the sample cell will increase, and 

the feedback power will be deactivated to maintain equal temperatures between the two cells. 

For endothermic reactions, the reverse will occur, meaning the feedback circuit will increase 

power to the sample cell to maintain the temperature. 

The heat absorbed or evolved during a calorimetric titration is proportional to the 

fraction of bound ligand. Thus, it is of extreme importance to determine accurately the initial 

concentrations of both the macromolecule and the ligand. For the initial injections, all or most 

of the added ligand is bound to the macromolecule, resulting in large endothermic or 
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exothermic signals depending on the nature of the association. As the ligand concentration 

increases, the macromolecule becomes saturated and subsequently less heat is evolved or 

absorbed on further addition of titrant. The amount of heat evolved on addition of ligand can 

be represented by the equation10: 

 

               Q = V0∆Hb[M]t Ka[L]/(1+ Ka[L])                                Eq 1. 

 

where V0 is the volume of the cell, ∆Hb is the enthalpy of binding per mole of ligand, [M]t is 

the total macromolecule concentration including bound and free fractions, Ka is the binding 

constant, and [L] is the free ligand concentration. 

To determine accurately the enthalpy of binding, it is critical that the first several shots 

define a baseline region where all added ligand is bound to the macromolecule. The 

equivalence region should also be well defined by the concentration range spanned by the 

injections, to determine an accurate value of the association constant. It is necessary that 

concentrations be chosen so that measurable amounts of free and bound ligand are in 

equilibrium within the titration zone defined by the titrant injections. 

The observed binding isotherm is usually normalized as kilocalories per mole of 

ligand injected and plotted versus the molar ratio of ligand to macromolecule. The observed 

heats of binding include contributions from the dilution of the titrant (ligand) and dilution of 

the macromolecule. The method of data analysis depends on the system of interest. We 

decided to adopt the procedure for fitting data to the multiple independent binding site model 

using the analysis software ORIGIN (Microcal, Northhampton, MA) provided with the 

Omega ITC. 
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Fig. 5: a) Calorimetric titration of ligand MLC114 with protein catMMP12. The experiment 
consisted of 41 injections of 8 ml each of a 196mM stock solution of MLC114. b) 
Representative ITC Data. 
 

2.5.3 NMR spectroscopy 

     Nuclear magnetic resonance (NMR) spectroscopy is unique among the methods 

available for three-dimensional structure determination of proteins at atomic resolution, since 

the NMR data can be recorded in solution. Considering that body fluids such as blood, 

stomach liquid and saliva are protein solutions where these molecules perform their 

physiological functions, knowledge of the molecular structures in solution is highly relevant. 

In the NMR experiments, solution conditions such as temperature, pH and salt concentration 

can be adjusted so as to closely mimic a given physiological fluid. Conversely, the solutions 

may also be changed to quite extreme non physiological conditions, for example, for studies 

of protein denaturation. 

Furthermore, in addition to protein structure determination, NMR applications include 

investigations of dynamic features of the molecular structures, as well as studies of structural, 

thermodynamic and kinetic aspects of interactions between proteins and other solution 

components, which may either be other proteins or low molecular weight ligands11,12.  

The preparation of the protein sample is a crucial step of this process, since a highly 
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purified protein sample is required. Inhomogeneous preparation and/or aggregation of the 

protein as well as low molecular weight impurities may severely harm the structure 

determination. NMR spectra are then generated by placing the sample in a magnetic field and 

applying radio-frequency pulses, which perturb the equilibrium nuclear magnetization of 

those atoms with nuclei of nonzero spin. Transient time domain signals are detected as the 

system returns to equilibrium. Fourier transformation of the transient signal in to a frequency 

domain yields a one-dimensional NMR spectrum, which is a series of resonances from the 

various nuclei at different frequencies, or chemical shifts. The chemical shift of an atom 

depends on the electronic environment of its nucleus. 

NMR spectra of biological macromolecules contain hundreds or even thousands of 

resonance lines which cannot be resolved in a conventional one-dimensional spectrum (1D). 

Multidimensional NMR spectra provide both increased resolution and intermolecular 

correlations which are easy to analyse. The crucial step in increasing the dimensionality of 

NMR experiments lies in the extension from one to two dimensions. A higher dimensionality 

experiment consists of a combination of two-dimensional (2D) experiments. All 2D NMR 

experiments use the same basic scheme which consists of four following, consecutive time 

periods. 

During the excitation period the spins are prepared in the desired state from which the 

chemical shifts of the individual nuclei are observed during the evolution period t1. In the 

mixing period the spins are correlated with each other and the information on the chemical 

shift of one nucleus ends up on an other nucleus of which the frequency is measured during 

the detection period t2. Thus a resonance in the 2D spectrum, a cross peak, represents a pair of 

nuclei that suitably interact during the mixing time. 

Proteins with a molecular weight larger than 10 kDa must be isotope enriched in 15N and 
13C for an efficient structure determination; 15N and 13C are used because the most abundant 

carbon isotope (12C) does not give a NMR signal and the most abundant nitrogen isotope 

(14N) has undesired NMR properties. The sensitivity obtainable with these types of nuclei 

greatly varies even if the sample is fully isotope labelled with 13C or 15N. The proton offers 

the best sensitivity and for this reason constitutes the preferred nucleus for detection of the 

NMR signal. The other nuclei are usually measured during evolution periods of 

multidimensional NMR experiments and their information is transferred to protons for 

detection. 

For unlabelled proteins smaller than 10kDa, the combination of the two 2D spectra, [1H, 
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1H]- COSY and [1H, 1H]-NOESY often allows the assignment of most proton NMR signals13. 

The first experiment, the [1H, 1H]-COSY (COrrelation SpettroscopY), detects through-bond 

interactions between protons and correlates protons that are separated by up to three chemical 

bonds (J couplings). With this experiment the protons within an amino acid can be correlated, 

however, neighboring amino acids in the polypeptide sequence cannot be connected. The set 

of correlated proton nuclei is referred to as spin system. However, as soon as an amino acid 

occurs more than once in a polypeptide chain a direct assignment to a specific sequence 

position is not possible through COSY experiment. For this purpose the second experiment, 

the [1H, 1H]-NOESY14, is measured, where NOESY stands for NOE SpectroscopY14,15. The 

NOE is a consequence of dipole-dipole coupling between different nuclear spin which causes 

spin polarization to be transferred from one nucleus to any nearby nucleus.; in this way the 

atoms do not have to be in the same amino acid, they simply have to be close in space13,14. 

The magnitude of the NOE is proportional to r-6, where r is the distance between the 

interacting nuclei. Unfortunately, the magnitude of the NOE is also affected by a number of 

other phenomena, such as the rate of tumbling of the protein, which can diminish its 

magnitude and even make it zero. In practice, NOEs are observed in proteins between 

hydrogen atoms that are no more than 5 Å apart. 

For larger proteins extensive signal overlap prevents complete assignments of all 1H 

signals in proton spectra. This barrier can be overcome with 3D NMR techniques and 

uniformly 13C and 15N labelled proteins. The 1H-15N HSQC (Heteronuclear Single Quantum 

Coherence) is the most important heteronuclear NMR experiment which correlates the 

nitrogen atom of an NH group with the directly attached proton(s). In 13C, 15N-labelled 

proteins a sequential assignment strategy can be used which is based on through-bond 

correlations across the peptide-bond between sequential amino acids. The resolution of NMR 

spectra can be further increased by including 2H atoms in the protein and by going to the 

fourth dimension. With these methods systems with molecular weights up to approximately 

35 kDa can be studied. Recent advances in both hardware and experimental design promise to 

allow the study of much larger proteins16.  

When all, or almost all, the resonances of the NMR spectra are assigned, the H-H 

distances and the dihedral angles, respectively obtained from J3 couplings and NOE distances, 

are used to infer the conformation of the protein. The available programs for the calculation of 

three dimensional structures utilize, together with experimental constraints, information about 

the covalent structure of the protein such as the amino acid sequence, bond lengths, bond 
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angles, chiralities, and planar groups as well as steric repulsion between non-bonded atom 

pairs. Calculation programs fold a random generated 3D structure, in order to maximize the 

agreement between the structure and the structural constrains a folded conformation can be 

determined in great detail. However it must be kept in mind that the experimental constraints 

do not uniquely describe one exact 3D structure because NMR-derived constraints typically 

describe a range of possible values and many distances cannot be determined. Thus the result 

of NMR structure determination is not one model, but a set of similar models, all of which fit 

the experimentally determined constraints. The RMSD (root mean square deviation) between 

these models is used to assess how well the structure calculations have converged. Typical 

structures have backbone RMSD values of less than 1 Å, provided there are not large motions 

of the backbone or substantially different conformations coexisting in solution. 

 

2.5.4 X-Ray and protein crystallization  

X-ray crystallography is essentially a form of very high resolution microscopy. It 

enables to visualize protein structures at the atomic level and enhances our understanding of 

protein function. Specifically it is possible to study how proteins interact with other 

molecules, how they undergo conformational changes, and how they perform catalysis in the 

case of enzymes. In all forms of microscopy, the amount of detail, or the resolution is limited 

by the wavelength of the electro-magnetic radiation used. With light microscopy, where the 

shortest wavelength is about 300 nm, one can see individual cells and sub-cellular organelles. 

With electron microscopy, where the wavelength may be below 10 nm, one can see detailed 

cellular architecture and the shapes of large protein molecules. In order to see proteins at 

atomic detail, we need to work with electro-magnetic radiation with a wavelength of around 

0.1 nm or 1 Å. In other words, we need to use X-rays17.  

The diffraction from a single molecule would be too weak to be measurable. So it is 

necessary to use an ordered three-dimensional array of molecules, in other words a crystal, to 

magnify the signal. Even a small protein crystal might contain a billion molecules. If the 

internal order of the crystal is poor, then the X-rays will not be diffracted to high angles or 

high resolution and the data will not yield a detailed structure. If the crystal is well ordered, 

then diffraction will be measurable at high angles or high resolution and a detailed structure 

should result. The X-rays are diffracted by the electrons in the structure and consequently the 

result of an X-ray experiment is a 3-dimensional map showing the distribution of electrons in 

the structure.  
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The data collected from a diffraction experiment is a reciprocal space representation of 

the crystal lattice18. The position of each diffraction 'spot' is governed by the size and shape of 

the unit cell, and the inherent symmetry within the crystal. The intensity of each diffraction 

'spot' is recorded, and is proportional to the square of the structure factor amplitude. The 

structure factor is a complex number containing information relating to both the amplitude 

and phase of a wave. In order to obtain an interpretable electron density map, we must first 

obtain phase estimates (An electron density map allows to build a starting model of our 

molecule) This is known as the phase problem can be accomplished in a variety of ways. 

 

• Molecular replacement - if a structure exists of a related protein, we can use 

this structure as a search model and use molecular replacement to determine the orientation 

and position of our molecules within the unit cell. The phases obtained this way can be used 

to generate electron density maps.  

• Heavy atom methods - If we can soak high-molecular weight atoms (not 

usually found in proteins) into our crystal we can use direct methods or Patterson-space 

methods to determine their location and use them to obtain initial phases.  

• Ab Initio phasing - if we have high resolution data (better than 1.6 angstrom or 

160 picometers) we can use direct methods to obtain phase information.  

 

Having obtained initial phases we can build an initial model (our hypothesis) and then 

refine the Cartesian coordinates of atoms and their respective B-factors (relating to the 

thermal motion of the atom) to best fit the observed diffraction data. This generates a new 

(and hopefully more accurate) set of phases and a new electron density map is generated. The 

model is then revised and updated by the crystallographer and a further round of refinement is 

carried out. This continues until the correlation between the diffraction data and the model is 

maximized19. 

The bottleneck of X-ray structure determination of macromolecular complex is the 

crystallization protocol. 

In order to crystallize a protein, the purified protein undergoes slow precipitation from 

an aqueous solution. As a result, individual protein molecules align themselves in a repeating 

series of "unit cells" by adopting a consistent orientation. The crystalline “lattice” that forms 

is held together by non-covalent interactions. The non-covalent bonds that hold together the 

lattice must often be formed through several layers of solvent molecules. In addition to 
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overcoming the inherent fragility of protein crystals, the successful production of x-ray 

worthy crystals is dependent upon a number of environmental factors because so much 

variation exists among proteins, with each individual requiring unique conditions for 

successful crystallization. Therefore, attempting to crystallize a protein without a proven 

protocol can be very tedious. Some factors that require consideration are protein purity, pH, 

protein concentration of protein, temperature, and precipitants. In order for sufficient 

homogeneity, the protein should usually be at least 97% pure. pH conditions are also very 

important, as different pHs can result in different packing orientations19. Buffers, such as Tris-

HCl, are often necessary for the maintenance of a particular pH. Precipitants, such as 

ammonium sulfate or polyethylene glycol, are compounds that cause the protein to precipitate 

out of solution. 

Two of the most commonly used methods for protein crystallization fall under the 

category of vapor diffusion. These are known as the hanging drop20 and sitting drop 

methods. Both entail a droplet containing purified protein, buffer, and precipitant being 

allowed to equilibrate with a larger reservoir containing similar buffers and precipitants in 

higher concentrations. Initially, the droplet of protein solution contains an insufficient 

concentration of precipitant for crystallization, but as water vaporizes from the drop and 

transfers to the reservoir, the precipitant concentration increases to a level optimal for 

crystallization. Since the system is in equilibrium, these optimum conditions are maintained 

until the crystallization is complete (see Figure 6). 

 

                                       

 
 
Fig. 6: Solution (blue) usually contains buffer and precipitant. Protein solution (red) contains 
the same compounds, but in lower concentrations. The protein solution may also contain trace 
metals or ions necessary for precipitation of particular proteins. 
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In the past few years macromolecular crystallography has become a standard technique 

used by many pharmaceutical and biotechnology companies. This methodology offers details 

of protein-ligand interactions at levels of resolution virtually unmatched by any other 

technique, and this approach holds the promise of novel, more effective, safer and cheaper 

drugs. Although crystallography remains a laborious and rather expensive technique, 

remarkable advances in structure determination and structure based drug design (SBDD) have 

been made in recent years. 
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3.1 Introduction 

3.1.1 S100 proteins as RAGE ligands  

The first S100 proteins that have been identified as RAGE ligands were S100A12 and 

S100B1. Then, a large number of S100s have been shown to interact with RAGE in vitro and 

most of them have shown to trigger RAGE dependent signaling in cell-based assays. 

Structural informations about S100/RAGE engagement were available only for S100B, 

S100A6 and S100A12. These data suggest that different S100s bind the receptor in different 

ways (Figure 1). As example, S100B is reported to bind V-domain of RAGE receptor. 

Binding studies performed by SPR show that the tetrameric form of S100B binds RAGE with 

higher affinity than the dimeric form, inducing  a dimerization of the receptor2. It was also 

suggested that the first C-domain of the receptor participate in S100B binding. On the 

contrary, S100A6 appears to interact with the second C-domain of RAGE (C2 domain) 3, 

even if the details of the binding mode are lacking. In case of S10012 the hexamer, formed by 

the protein in the extracellular space, binds both V and C1 domains and causes RAGE 

tetramerization4. These differences in binding mode, together with the properties of the 

various cell types in which S100/RAGE binding is reported, might explain the different 

effects triggered by the interaction.   

     

 

 

 

Fig. 1: Interaction of different S100 proteins with different RAGE domains. There are 
experimental evidence that S100 proteins might form sub-groups which bind to different sites 
on RAGE. (Reprinted from Leclerc E. et al. Biochimica et Biophysica Acta 2009) 
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S100P, first purified from placenta (hence its name), is expressed in normal organs or cells 

and in pathological tissues. This calcium-binding protein plays a role in cytokine-induced 

differentiation of human myeloid leukemia cells5 and is present in many tumors including 

ovarian, pancreatic, gastric, colorectal, breast and prostate carcinomas6. It has been suggested 

that, in tumor tissues, S100P promotes cell proliferation and survival via RAGE engagement 

through the activation of an ERK1/2-NFκB signaling pathway7.  

The structural determinants of the interaction between RAGE and S100P are still poor 

characterized. With the aim to clarify the activation of RAGE by S100P, two different RAGE 

constructs were expressed and tested by NMR for the interaction with S100P. The collected 

data clearly show that the holo form of S100P interact with the V-domain of RAGE. The 

alteration of the chemical shifts of both S100P and RAGE monitored on 1H-15N HSQC 

spectra have been exploited in docking programs to calculate the structure of a possible model 

of the complex between the two proteins.         

 

3.2 Material and methods  

 

S100P expression. The cDNA encoding for S100P was cloned in pETG30A using the 

Gateway technology (Invitrogen), in order to obtain a plasmid producing the protein fused 

with N-terminal His- and GST-tag. The vector was transformed in E.coli strain BL21 GOLD 

(Novagen) and cells were grown in LB media at 37°C until OD600nm reached 0.6; then protein 

expression was induced by adding 1 mM IPTG. Cells were allowed to grown at 25°C for 14-

16 hours and then harvested by centrifugation at 9000g. Cells were resuspended in 20 mM 

phosphate pH 7.4, 500 mM NaCl, 10 mM Imidazole and lysis was performed by sonication in 

ice. The soluble extract, obtained by ultracentrifugation at 40000g, was loaded on a HiTrap 

chelating HP column (GE Healthcare) previously charged with Ni2+ (for selective His-tag 

binding) and equilibrated with lysis buffer. After washing the column with different step 

corresponding to different, intermediate Imidazole concentrations (10 mM and 100 mM), 

recombinant fused protein was eluted with 20 mM phosphate pH 7.4, 500 mM NaCl, 500 mM 

Imidazole. The protein was then concentrated to 0.7 mg/mL and the cleavage of the tag was 

performed by AcTev protease assay in 1X TEV Buffer (50 mM Tris-HCl, pH 8.0, 0.5 mM 

EDTA and 1 mM DTT) at room temperature with overnight incubation. The tag and the 

AcTev itself (that present a His-tag at the N-terminus), were then removed from the cut 
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protein by affinity chromatography again with HiTrap column. Purified S100P was then 

dyalized in 50 mM TRIS pH 7.4, 200 mM KCl, 2 mM CaCl2 (buffer A) in order to perform 

the final purification step. This was carried out by hydrophobic exchange on Hiprep phenyl 

FF column (GE Healthcare) equilibrated in buffer A and the protein was eluted with 50 mM 

TRIS pH 7.4, 200 mM KCl, 5 mM EDTA.   

Protein expression and purity was monitored by SDS-PAGE in 17% polyacrylamide 

stained with Coomasie brilliant blue R-250 against Protein marker. 

 

Cloning and expression of RAGE constructs. Bacterial expression vectors were 

produced for the single V-domain and the tandem VC1-domain of RAGE. The constructs 

were amplified by PCR from the flRAGE DNA (GenBank NM_001136) with primers 

containing 5′ NdeI and 3′ XhoI restriction sites and contained the following RAGE protein 

sequences (excluding the 22 aminoacid signal peptide): V (23-132) and VC1 (23-243). DNA 

fragments were subcloned into the pET15b vector (Novagen) in order to express the proteins 

fused with an N-terminal His6-tag followed by a thrombin cleavage site. Vectors were 

transformed in E. coli strain Origami(B) DE3 (Novagen) and cells were grown in LB media at 

37°C till an OD600 ∼ 0.7 was reached. Then expression of the recombinant protein was 

induced by adding 0.5mM IPTG and growth was allowed for 6 hours at 20°C. Cells were 

harvested by centrifugation at 9000g and lysed by sonication in ice in 20mM phosphate pH 

7.4, 500mM NaCl, 1mM PMSF. Clarified lysate, obtained by centrifugation at 40000g, was 

first purified on HiTrap chelating HP column (GE Healthcare) equilibrated with the lysis 

buffer and eluted with a 10 column volume (CV) linear gradient to 20 mM phosphate pH 7.4, 

500 mM NaCl, 500 mM Imidazole.  Following dialysis in 20 mM phosphate pH 6.0, 150 mM 

NaCl, the His6 tag was removed by thrombin cleavage (1 units per mg of protein) incubated at 

room temperature for 2 h followed by separation over MonoS (GE Healthcare) with a 18 CV 

linear gradient to 20 mM sodium phosphate, pH 6.0, 850 mM NaCl. Expression and purity of 

each protein sample was verified by SDS-PAGE in 17% and 15% polyacrylamide stained 

with Coomasie brilliant blue R-250 against Protein marker.         

   

Expression of isotopically-labelled samples. Samples of 15N- and 15N,13C-enriched 

S100P and RAGE constructs were produced as described above except for the use of M9 

minimal media containing 15(NH4)2(SO)4 and 13C-glucose as the sole nitrogen and carbon 

source respectively. 2H,15N,13C-S100P (∼66% as estimated by NMR spectrometry) was 
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produced in a similar manner through adaptation of E.coli cells to deuteriated conditions 

achieved in each case by a series of culture enrichments on media with progressively 

increasing deuterium content. 

 

Expression and purification of E3M-M8Q-M10Q S100P. The mutant E3M-M8Q-

M10Q of S100P was obtained using QuickChange site-directed mutagenesis kit (Stratagene) 

on pETG30A-S100P expressing the WT S100P protein. The company protocol was followed. 

Several clones coming from each mutation reaction were sequenced. Using the same 

conditions for the expression of the protein in E. coli cells, the mutated protein precipitated in 

the inclusion bodies. Thus the procedure to obtain the mutants of S100P was similar to the 

one used for the wild type protein, the only differences were the addition of 8 M urea to the 

lysis buffer to solubilize the inclusion bodies, and, after the first purification step carried out 

by HisTrap chelating FF column, the protein was refolded with a direct step. 

 

NMR. After purification, protein samples of S100P with concentration ranging from 

0.3 to 0.8 mM were prepared by buffer exchange in Centricon cutoff 3000 Da (MILLIPORE) 

by washing with 10 mM HEPES-NaOH pH 7, 75 mM NaCl. The same procedure was 

followed for prepare NMR samples of V-domain 0.38 mM. For NMR experiments carried out 

with the holo-S100P, excess CaCl2 was added to each sample up to a final concentration of 10 

mM. 

NMR experiments were performed on a Bruker Avance spectrometer, operating at a 
1H frequency of 500, 800 and 900 MHz (in dependence of the experiment that was carried 

out) and equipped with cryoprobes. All NMR data were collected at 298 K and 310 K. 

Titration experiments of holo-S100P with V-domain, and VC1-domain of RAGE were 

performed by adding 0.2 mM and 0.26 mM solutions of V-domain, and VC1-domain, 

respectively, into 0.34 mM and 0.45 mM 2H,13C,15N-S100P solutions. Titration was also 

carried out for a solution of 13C,15N-V-domain 0.3 mM with 2.26 mM S100P in three steps to 

yield V-domain to S100P molar ratios of 1:1,1:2, and 1:3, respectively.     

Assignment was performed by a sets of 3D NMR experiments. Decoupling was done 

on 13C for 2D Trosy and on 2H for 3D trHNCACB and trHNCA. Classical 3D HNCA, 

CBCACONH and HNCACB watergate were also performed at 500 MHz. Relaxation 

measurements T1 and T2 and experiments were acquired at 500 MHz. To study interaction, 

HSQC and Trosy 2D experiments were performed at the 900 MHz. 
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Docking Calculation. Docking calculation were performed using the program 

Haddock. Active residues were selected to drive the docking using chemical shift perturbation 

and solvent accessibility as constraints. Calculation results were grouped in clusters on the 

basis of energy and RMSD of the complexes. 

 

3.3 Results 

 

Design and expression of RAGE domain constructs. RAGE constructs (V and VC1) 

were designed accordingly to the sequence alignment with known immunoglobulin family 

sequences and to the secondary structure prediction. Ala23 was choose as the N-terminus of 

the constructs since it is the first amino acid of the native receptor after loss of the signaling 

peptide.   

Frequently, in Ig-like domains, pairs of cysteines form disulfide bonds between β-

sheet secondary structures8. In both V- and VC1-domains structural disulfide bridges are 

present. Under physiological conditions, the E. coli cytoplasm is maintained in a reduced state 

that strongly disfavors the formation of stable disulfide bonds in proteins, this is due to the 

fact that thioredoxins and glutaredoxins (proteins that can catalyze the formation of disulfide 

bonds in peptides) are maintained in a reduced state by the action of thioredoxin reductase 

(trxB) and glutathione, respectively. Glutathione in turn is reduced by glutathione reductase 

(gor). For this reason the oxidation of cysteine thiols in cytoplasmic proteins is strongly 

disfavored, whether disruption of the trxB and gor genes encoding the two reductases, allow 

the formation of disulfide bonds in the E. coli cytoplasm9. Origami host strains have 

mutations in both the thioredoxin reductase (trxB) and glutathione reductase (gor) genes. 

Therefore this strain is usually exploited to express protein containing structural disulfide 

bonds. For this reason Origami strain has been selected to express both V- and VC1-domains. 

Protein expression in Origami strain is usually more sensitive to the  expression parameters, 

such as temperature and IPTG concentration which should be careful optimized.    

 

Backbone Resonance Assignments of holo-S100P and V-domain. The chemical shift is 

a sensitive probe to monitor protein-protein interactions. However the assignment of the 

protein resonances is essential to identify the regions of the protein involved in the interaction. 

The assignment and the solution structure of apo-S100P are available on BMRB and PDB 
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database while the holo form of the protein was not characterized by NMR. The addition of 

the calcium to the apo protein largely affects the 1H,15N HSQC spectra causing an extensive 

signal broadening. The quality of the spectra was improved by increasing the temperature to 

310K and decreasing the protein concentration to 0.5 mM. In order to improve the quality of 

the spectra and to speed up  backbone assignments of holo-S100P, uniformly labeled 2H, 15N, 
13C-protein was overexpressed in E. coli. Deuteration reduces the relaxation rates of NMR-

active nuclei, and it improves the resolution and sensitivity of NMR experiment. However, 

incorporation of 2H reduces growth rate of the organism and decrease the protein production 

as a consequence of the isotopic effect. Thus, bacterial colonies were selected to obtain which 

better survived during adaptation in high level of 2H2O concentration. E. coli colonies were 

adapted by repeated subculturing and by a gradual increasing of the deuterium content in the 

medium. All cell cultures were initiated by inoculation with a sample of the previous culture 

to an OD600 of 0.1 and were grown to stationary phase. Cultures were grown successively on: 

(i) LB medium/H2O, (ii) LB medium/30% 2H20, (iii) LB medium/60% 2H20, (iv) LB 

medium/90% 2H20. Then, the culture was switched to minimal media (enriched in 
15N,13C)/90% 2H20 and finally the clone with the highest growth rate was used for grown in 

minimal media/99% 2H20. With this protocol, an enrichment in 2H of ∼66% was achieved, as 

estimated with NMR spectrometry.          

 In order to obtain more detailed information on the structural features of the V-

domain-S100P adduct, 13C-15N enriched sample of the V-domain has been expressed and 

purified. Triple resonance NMR experiments for backbone assignment were performed on 
2H,13C,15N-S100P and on 13C,15N-V-domain, at 298K on 500 and 800 MHz spectrometers 

equipped with cryo-probe.      

 

 Chemical Shift Changes upon S100P-RAGE interaction. The interaction of apo and 

holo S100P with V-domain has been monitored by NMR. Aliquots of V-domain were added 

to 15N enriched samples of the S100P, in order to prove the interaction (Figure 2).  
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Fig. 2: 1H-15N-HSQC spectrum (800 MHz) of holo-S100P alone (blue), and in presence of V-
domain (red) at 310 K (A). 1H-15N-HSQC spectrum (800 MHz) of holo-S100P alone (blue), 
and in presence of VC1-domain (red) at 310 K (B). 
 

 

The evolution of the 1H-15N HSQC spectra clearly show that only the holo-S100P 

interacts with V-domain, and that the stochiometry ratio is 2:1, i.e. one V-domain binds one 

S100P dimer. The interaction of holo-S100P with the VC1 construct was also investigated 

and demonstrated by NMR. The comparison of the two sets of data clearly shows that the 

presence of the C1-domain does not affect the interaction of the V-domain with S100P 

(Figure 2). 

The effects that originate in the HSQC spectra upon the titration depend on the time 

scale in which the process is observed. Strong protein-protein interaction are generally in a 

slow exchange regime on the NMR time scale, thus indicating that the lifetime of the complex 

is long compared to the change in chemical shift between the free and bound form. This 

results, in an HSQC experiment, in separate signals that can be observed for the free and 

bound forms. During the titration, the free form will disappear gradually. On the contrary, in a 

fast exchange regime, the lifetime of the complex is shorter than the change in chemical shift 

of the two forms and this is related to weak binding. Only a single averaged signal is observed 

and this is fractionally weighted according to the populations and chemical shift of the two 

forms. Finally, in the intermediate condition (intermediate exchange regime), signals will 

result broadened and arising from both the free and bound forms. Titrating V-domain into 

holo 2H,13C,15N-S100P several signals became broader, other simply shifted or disappeared. 

These changes are consistent with the exchange between the free and complexed forms of 

S100P occurring in the intermediate NMR time scale. Based on these changes, we estimated 

that the equilibrium-binding constant of V-domain to holo-S100P is in the low micromolar 
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range. From the point of view of V-domain, upon titration of S100P onto 13C,15N-V-domain, 

few chemical shift changes were observed with lower intensity comparing with S100P.  On 

the other hand, signal to noise ratio was better and ambiguity lower considering V-domain is a 

monomer.  

 

Mobility studies on holo-S100P and holo-S100P in complex with V-domain. In order 

to investigate the structural and dynamical features of the S100P-V-domain complex, 

relaxation measurements were performed on the holo-15N-S100P and on its complex with the 

V-domain  at 298 K. Calculated values were performed by hydronmr using a model derived 

from the dimeric X-ray structure where the missing loop (Q46 – K51) was generated by 

modeler. 

The experimental R1 and R2 values nicely match with the calculated data obtained using 

HYDRONMR on the X-Ray structure of the dimeric holo-S100P (PDB 1J55). The residues 

belonging to the hinge loop (47-52) show slightly higher R1 values, and lower R2 values 

indicating that this protein region experiences some fast conformational rearrangements. 

Measurements showed also the six C-terminal residues (E90-K95) present a significant 

mobility. Again R2/R1 ratio is lower with respect to the rest of the protein. Experimental and 

calculated data are matching confirming the presence of a dimer molecule (monomer or 

tetramer would have significantly different values). These data on isolated S100P can be used 

as a reference for the study of the complex. Relaxation measurement were also performed for  
15N-S100P- Vdomain complex at 298K. Results obtained on T1 measurements showed as 

expected a general decrease of R1 values of S100P residues indicating the formation of a 

bigger molecule. Interestingly, the mobility observed in the middle loop and at the C-terminal 

helix is retained. Most probably, these regions are not directly involved in close contact with  

V-domain but might participate  in some conformational change. Calculated data were 

obtained using hydronmr programme  from a Haddock model of the S100Pdimer-Vdomain 

complex. Again, for the rest of the protein, experimental and calculated R1  

data are matching confirming the complex in solution corresponds to a S100P homodimer 

with V- 

domain at the concentration used (0.5 mM for S100P monomer and 0.3 mM for V-domain). 

 

 



55 

 

Generation of a model for the S100P/RAGE interaction. Concentration-dependent 1H-
15N HSQC experiments performed on the holo-S100P-V-domain complex show intensity 

attenuation and changes in chemical shift for the residues belonging to the hinge loop region 

of S100P. These weak effects could hint to the formation of small amounts of S100P tetramer 

with two V-domains linked to it. Therefore, although present as minor specie in solution, a 

S100P tetramer bound with two V-domains could be the biologically relevant species on the 

cell surface. To prove or disprove this hypothesis, models of the possible tetramers have been 

calculated from the NMR information. The resonances shifted upon the interaction of S100P 

with V-domain were identified in both the proteins by performing HNCA spectra on the 

S100P-V-domain complex either enriched in the V-domain or in the S100P partner. Using the 

chemical shifts perturbations observed on the two proteins, docking calculations were 

performed by using the program Haddock (Figure 3). The X-Ray structure of the holo S100P 

and of VC1, and the NMR structure of the V-domain of RAGE receptor (the member of the 

family closest to the mean PDB) were used as input files for docking calculation. From the 

analysis of the energetic and scoring functions, it appeared that only one binding mode is 

meaningful. For both the calculated complex (S100P-V-domain and S100P-VC1 tandem 

domain) the lowest-energy cluster experienced far much better scoring functions with respect 

to all others, larger interaction surfaces, and a much lower average number of ambiguous 

restraints, which indicate better agreement with the experimental data. Looking to the 

structural features of the two models  with the best scoring functions mutations have been 

planned to abolish the formation of the S100P tetramer. 

 

 

Fig. 3: Ribbod representation of the calculated model of the complex between S100P and 
VC1-domain.  
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Production of E3M-M8Q-M10Q mutant of S100P. In the calculated models Glu3, 

Met8 and Met10 seem to play a crucial role for the stabilization of the S100P tetramer (Figure 

4). In this respect the original aminoacids have been replaced with others exhibiting different 

physical-chemical properties in order to disrupt the interaction responsible for the complex 

formation.    

 

 

 

 

Fig. 4: (A) Ribbon model of the holo-S100P dimer. Aminoacids that are presumably 
responsible for the stabilization of the S100P tetramer are highlighted in cyana.(B) Sequence 
comparison of S100P wild type (wt) and the S100P mutant (mut). Changes in the S100P wt 
sequence to generate the S100P mutant are highlighted in cyana.  

 

The E3M-M8Q-M10Q mutant of S100P was initially expressed and grown in the 

same, optimized conditions in which the wild type protein was successfully obtained as 

soluble protein. Unfortunately, the mutant was expressed only in inclusion bodies. Thus, 

inclusion bodies were first purified from contaminants by washing and centrifuging cells 

several times in a lysis buffer containing low concentrations of urea. Then, the inclusion 

bodies containing the protein were solubilized in a 8 M urea buffer The protein was then 

purified by HisTag affinity chromatography. Then refolding was successfully carried out with 

a fast 100-fold dilution of urea and then with four steps dialysis against a buffer containing 50 

mM TRIS pH 8, 250 mM NaCl. The protein was successively separated from the tag and 

A 

B 
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purified as already described for the wild type S100P. The proper folding of the protein was 

verified by 1D 1H-NMR spectra (Figure 5). 

 

 

 

 

 

Fig. 5: Superimposition of 1D 1H spectra of S100P wild type (red) and E3M-M8Q-M10Q 
S100P (blue).   

 

 

However, the yield of this S100P mutant expressed as His-,GST-tagged construct is 

very low (∼4mg/L in minimal medium). Therefore, two new constructs have been designed 

and cloned in order to obtain the E3M-M8Q-M10Q mutant of S100P, one fused with only an 

His-tag at the N- terminus and the other as native protein without tails. The resulting plasmids 

have been already checked by DNA sequencing and the analysis with different E.coli strains 

and different growth conditions for a good protein expression performed.                    

 

 

3.4 Discussion 

 

The interaction of S100B with RAGE receptor plays a rule in the observed trophic and 

toxic effects of the S100 protein in the brain. Moreover, recent results suggest that S100P 
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contributes to the aggressive nature of pancreatic cancer likely through its ability to activate 

RAGE. Also in colon cancer the interaction of RAGE with S100P plays an important role as 

it stimulates cell growth and migration. Therefore, the structural characterization of the 

RAGE-S100P complex can provide the base to design molecules able to prevent the 

activation of the receptor. The data collected so far show that RAGE receptor binds the 

protein with the stochiometry of 1:2. Several signals of the S100P on the HSQC spectra shift 

upon the addition of increasing concentration of the V-domain of RAGE and some of them 

enlarge beyond the detection.  We have also clarified that only the V-domain is crucial for the 

interaction with S100P given that V-domain and VC1 tandem construct induce the same 

pattern of shift on the S100P protein. Considering the concentration of the two proteins at the 

different steps of the titration and the evolution of the signals in the HSQC, the dissociation 

constant has been evaluated to be in the low micromolar range, larger with respect to what 

observed in case of S100B. However should be kept in mind that the high affinity constant 

found for S100B is related to a binding mode where a tetramer of S100B interacts with two 

RAGE receptors at the same time, while, in this case, the interaction involve only the domain 

of a single receptor. The analysis allow us to identify the interaction surface between the V-

domain of RAGE and holo S100P so providing the possibility to understand the structural 

details of the interactions of RAGE receptor with one of its phatologically relevant ligands. 
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4.1 Introduction 

 
S100A16 is the S100 protein widest distributed in human, and highly conserved in 

mammals (M&H). Expression of most S100 proteins is actually highly tissue and cell 

specific, whereas S100A16 expression has been reported in a wide spectrum of human tissues 

(including brain),  analogously to S100A2, S100A13 and S100A14. Up-regulation of 

S100A16 was found in several cancer tissues, suggesting a function related to malignant 

transformation or tumor development (M&H). S100A16 expression was up-regulated in 

tumors of bladder, lung, thyroid gland, pancreas, and ovary. Furthermore, investigation of 

S100A16 intracellular localization in human glioblastoma cells reveals an accumulation of the 

protein within nucleoli and a translocation to the cytoplasm in response to calcium 

stimulation1.  

Among the S100 family, S100A16 is a “particular” member since it presents 

uncommon characteristics. The N-terminal EF-hand was predicted to be functionally inactive 

since it comprises 15 aminoacids, and lacks the conserved glutamate residue at the last 

position, analogously to S100A7. The inability of the N-terminal EF-hand to bind calcium 

was confirmed by flow dialysis experiments carried out by Heizmann and co-workers1. Such 

experiments (performed in an high ionic strength buffer) revealed one Ca2+-binding site per 

subunit with Kd of 430 µM, that at physiological conditions would be 2- to 3-fold lower. In 

such way the affinity of calcium for S100A16 becomes very similar to that of many other 

S100 proteins. Tryptophan fluorescence variations indicated the occurrence of conformational 

changes upon calcium(II) binding in the C-terminal EF-hand, that lead to the formation of a 

hydrophobic patch that could involve the hydrophobic residues in helix 3 and 4 and in the 

calcium binding loop II. They also showed that S100A16 binds zinc(II) in a different site with 

respect to calcium(II).  

Of at least 25 members found to date in humans, 21 S100 proteins have gene located 

in the S100A cluster on chromosome 1q21. Exceptions are S100P (located on chromosome 

4p16), S100Z (cq14), S100B (21q22) and calbindin D9k (Xp22) 2. The human chromosomal 

region 1q21 is structurally conserved during evolution and exhibit several rearrangements 

which occur during tumor development. The localization of S100A16 gene in the S100A 

cluster on human chromosome 1q21 (a region in which genomic instability frequently occurs 

in association with various tumors), together with the finding of up-regulation of this protein 

in several cancer tissues3 indicate that S100A16 may have a role in the molecular origin of 
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certain types of tumors and thus that it deserves structural and functional characterization 

studies.  

Considering the uncommon behavior of S100A16 with respect to calcium-binding, 

although several S100 protein structures are already available, the structural characterization 

of S100A16 in 

solution was here performed in both the apo and calcium(II) states, to address the exceptional 

characteristics of this protein within the S100 family. Mobility studies were also performed 

through relaxation rates analysis. This information represents the starting point for future 

investigations on the binding with possible targets.         

 
4.2 Material and methods 

 
S100A16 expression. Vector  pET21a(+), containing the S100A16 gene and cloned in 

order to produce protein without tag, was transformed  in BL21 Gold E. coli strain (Novagen).  

Cells were grown in LB medium at 37°C until an optical density at 600 nm was reached., then 

the protein expression was induced by adding 1 mM IPTG. The culture was allow to grow for 

4 hours and then cells were harvested  by centrifugation. Cells debris were resuspended in 

lysis buffer (50mM TRIS pH 8.0, 200mM KCl, 1mM DTT, 0.5mM Pefabloc, 10mM EDTA) 

and soluble protein was extracted by sonication followed by centrifugation. The cleared lysate 

was then precipitated by slowly adding streptomycin sulfate to 1% and centrifuging at 

15,000g for 20 min. The supernatant was dyalized in 50mM TRIS pH 7.0, 50mM KCl, 1mM 

DTT, 10mM EDTA  (buffer A) and loaded on a Q Sepharose FF (anionic exchange, from 

Amersham) column equilibrated in buffer A and eluted with a linear gradient to 50mM TRIS 

pH 7.0, 1M KCl, 1mM DTT, 10mM EDTA. The fractions containing S100A16 were 

collected, brought to 2mM CaCl2 and dyalized against 50mM TRIS pH 7.4, 200mM KCl, 

1mM DTT, 2mM CaCl2 (buffer B). The protein was then purified through hydrophobic 

exchange with a Hiprep phenyl FF (Amersham) column equilibrated in buffer B and eluted 

with 50mM TRIS pH 7.4, 200mM KCl, 1mM DTT, 5mM EDTA. A final step of purification 

was performed with a size exclusion chromatography on a Hi-load superdex 75 16/60 

(Amersham) column equilibrated with 20mM MES pH 5.5, 200mM KCl, 1mM DTT, 1mM 

Pefabloc. Protein expression and purity was checked at every step by SDS-PAGE in 17% 

polyacrylamide after staining of protein bands with Coomassie Blue R-250 against Protein 

marker (Novagen).  
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Samples of 15N- and 13C,15N-enriched S100A16 protein were produced as described 

above except for the use of M9 minimal media containing (15NH4)2SO4 and 13C-glucose as the 

sole nitrogen and carbon source. 

To express the SeMet S100A16 protein, the recombinant expression vector pET21a(+) 

was transformed into the methionine-auxotrophic E. coli B834(DE3) and growth was carried 

out with a medium based on a synthetic M9 minimal media (MM) supplemented with 

glucose, vitamins and amino acids with the exception of L-methionine. Bacterial growth was 

carried out overnight in the presence of L-methionine (Met) and then the colture was used to 

inoculate the same synthetic media in the presence of L-selenomethionine (SeMet). 

The recombinant SeMet-labelled S100A16 protein was purified and crystallized as for 

the native protein except that all buffers were degassed and included a reducing reagent to 

avoid oxidation of selenomethionine, and a chelator to remove traces of metals that could 

catalyze oxidation. 

 
S100A16 crystallization. The purified protein was concentrated to 14 mg ml-1. 

Crystallization conditions were established by the sitting-drop vapour-diffusion method. A 

PEG screening kit (PEG/Ion Screen, Hampton Research) was used for preliminary screening. 

2 ul of protein solution were mixed with 2 ul of reservoir solution and equilibrated against 0.8 

ml of the reservoir solution. 

 

NMR spectroscopy on S100A16 and structure determination . All NMR experiments 

for assignment were performed at 298 K on a Bruker 500 MHz spectrometer equipped with 

cryo-probe. Apo and Ca2-S100A16 samples were 13C, 15N-  labeled, concentrated to 0.3 mM 

and 0.1 mM for the apo and the calcium-bounded samples respectively and buffered in 20 

mM MES pH 5.5, 200 mM KCl, 1 mM DTT, 1mM Pefabloc containing  10%  D2O. 

Sequential  assignments  of  the  backbone  resonance  were achieved  via 3D HNCO,  

HNCA,  CBCA(CO)NH  and  HNCACB  NMR experiments.  Side  chain assignments  were  

performed  through  3D  (h)CCH-TOCSY,  HBHA(CO)HN together with 13C-NOESY-HSQC 

and 15N-NOESY HSQC. Proton-proton distance restraints  were  derived  from  the  analysis  

of  2D-NOESY, 15N-NOESY-HSQC and  13C-NOESY-HSQC  acquired  on  Bruker  900 and 

800 MHz spectrometers  equipped  with cryo-probe.  

The spectra were processed using TOPSPIN and analyzed with CARA. The structures 

were calculated using the program CYANA-2.0. The best 30 structures out of the calculated 

350 structures of the CYANA family were then subjected to restrained energy minimization 
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with AMBER 8. Nuclear Overhauser effect (NOE) and torsion angle restraints were applied 

with force constants of 50 kcal mol-1 Å-2 and 32 kcal mol-1 rad-2, respectively. The program 

PROCHECK-NMR was used to evaluate the quality of the structures. 

 

Relaxation measurement. 15N-R1, R2, and steady-state heteronuclear 1H–15N NOEs 

were measured at on a 700  MHz  spectrometer  using  standard  pulse  sequences,  at  298 K. 

The longitudinal (R1) and transverse (R2) relaxation rates were determined by fitting 

the cross-peak intensities as a function of the delay to a single-exponential decay through the 

standard routines of the Sparky software program. The heteronuclear NOE values were 

obtained from the ratio of the peak height for 1H-saturated and unsaturated spectra. The 

heteronuclear NOE values and their errors were estimated by calculating the mean ratio and 

the standard error from the available data sets. R1, R2, and NOE values were obtained for 91 

and 96 out of the 102 assigned backbone NH resonances for the apo and the calcium forms, 

respectively. Estimates of the reorientation time were then calculated with the model-free 

approach. Theoretical predictions of NH, R1, and R2 values for apo-S100A16 and Ca2-

S100A16 were calculated by using the HYDRONMR software program. 

 

4.3 Results and discussion 

 
Protein crystallization. The characterization of S100A16 has been carried out in solid 

state and in solution. After purification, a single band was obtained by 15% SDS-PAGE, 

corresponding to a molecular weight of human S100A16 monomer. Then, the PEG/Ion 

Screen, developed by Hampton Research, was used to provide a rapid screening method for 

the crystallization of the pure protein sample. The best result was obtained with 8% PEG 

3350, 0.2M Di-Sodium tartrate dihydrate, 0.2M Tri-Lithium citrate tetrahydrate, 0.2M Tri-

Potassium citrate monohydrate, 0.2M Di-Ammonium hydrogen citrate. Although large 

hexagonal crystals of S100A16 were obtained, nevertheless the structure of the protein could 

not be solved, due to the phase problem and to the presence of geminated crystals. In order to 

overcome this problem, the replacement of methionine residues by seleno-methionine was 

attempt. The presence of selenium in the protein permitted the collection of multiwavelength 

anomalous diffraction (MAD) data from a single crystal using synchrotron radiation. For the 

crystallization of the SeMet-S100A16 were used the same conditions as for the native protein 

and for checking the SeMet incorporation, MS experiments were performed on both 
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recombinant proteins, with and without SeMet-incorporation, using MALDI (Figure 1).  

 

 

Fig. 1: MALDI mass spectrometry of methionyl-S100A16 (A) and selenomethionyl- 
S100A16 (B). 

 

The S100A16 expressed by the Met-auxotrophic E. coli 

B834(DE3)[pET21a(+)/S100A16] in SeMet minimal medium supplemented with L-SeMet 

was able to incorporate the SeMet amino acid very efficiently. The N-terminal Met of the 

product was missing, but the next 101 amino acids matched with the known sequence of 

S100A16 (Accession No. AJ585980). Since the N-terminal Met was removed in vivo, only 

two Met can be substituted for SeMet in the purified protein. The calculated difference in the 

molecular mass between the recombinant Met-S100A16 and its SeMet analogue is 93,8. The 

molecular mass determination by MALDI gave a mass difference of 92,9 (11762 for the 

SeMet-S100A16 and 11669.1 for Met-S100A16), which matches the expected value very 

well. Unfortunately the quality of the collected data (Figure 2) was not good enough due to 

the gemination of crystals.      

 

 

 

Fig. 2: Crystals and diffraction pattern of purified SeMet-S100A16.  



66 

 

Resonance assignment. The 1H-15N heteronuclear single-quantum coherence (HSQC) 

NMR spectra showed well-dispersed signals in both dimensions, which indicated that 

S100A16 are well folded in both apo and calcium-load state. Besides Ser-1 and Pro-88, the 

backbone resonance signals of Tyr-19, Lys-31, His-94 in apo-S100A16 and Val-22, Lys-31, 

Lys-34 in Ca-S100A16 were not assigned. 

 

Ca2+ titration of apo-S100A16. The binding of calcium(II) to apo-S100A16 was 

monitored by following the changes in the 1H-15N-HSQC NMR spectra of 15N-labeled apo-

S100A16. Some new peaks appeared in the spectrum during the titration corresponding to the 

calcium(II)-bound S100A16 form. The intensity of the new peaks increased when the ratio of 

calcium to S100A16 was increased. When a 1:1 ratio (with respect to the protein subunit 

concentration) was reached, the original peaks, which correspond to the apo form, 

disappeared. This kind of behavior is indicative of a slow exchange regime. Figure 3 shows 

the chemical shift changes on passing from the apo to the calcium(II) form of S100A16. This 

change (average 0.11 ppm) is much smaller than some other S100 proteins (S100A5 0.5 ppm, 

S100A13 0.37 ppm).  
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Fig. 3: Composite chemical shift perturbation (CSP), of apo-S100A16 upon calcium(II) 
binding. The horizontal line indicates the average value. 

 

 

The residues undergoing the largest changes in chemical shifts are located in the Ca2+ binding 

site, the loop of the C terminal EF-hand motif. These small differences indicate that there are 

not a significant conformational change occurs like other S100 proteins on passing from the 

apo form to the calcium form. Flow dialysis experiment yielded S100A16 has a Ca2+ binding 

site with a dissociation constant (Kd) 430 uM1. 
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Relaxation measurements. The relaxation parameters for apo and calcium-loaded 

S100A16 are shown in Figure 4. Such measurements indicate that the protein is dimeric in 

both forms. The reorientation times corresponding to the observed relaxation rates were 

calculated to be 12.29±1.46 and 12.34±1.8 ns for the apo and calcium-loaded forms S100A16, 

respectively, in agreement with the molecular weight and the reorientation times observed for 

other S100 homodimer proteins4-8. 

 

                 apoS100A16                                Ca2S100A16 
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Fig. 4: Sequential plot of the experimental relaxation parameters of apo and Ca2+-S100A16. 
The values calculated by HYDRONMR are shown as bars. NOE: nuclear Overhauser effect. 

 

In both apo and calcium-loaded S100A16, the residues in the extreme N terminus, the loop of 

the N terminal EF-hand motif and the C terminus are poorly structured as a result of their fast 

internal mobility, revealed by the small or negative NOE values. Occurrence of motion is also 

detected from some residues on the beginning of the α helix II (34, 36, 37 in the apo form; 35, 

37 in the calcium form). Upon the calcium binding, the loop between helix I and II has more 
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motion (the 1H-15N-NOE values are even lower than the apo S100A16) and the residues at the 

end of the helix IV (83, 85, 89 and 90) and Asp-66 were observed have a motion on a slower 

time scale, as indicated by the significantly larger R2 value. This mobility may originate from 

backbone amide conformational exchange and/or side-chain rotation. 

 

Solution structure of apo and calcium-loaded S100A16. The solution structures of the 

human S100A16 in the apo and calcium-loaded form were obtained.  

Few NOE patterns were detected for the residues in the loop between helix I and II 

and the C-terminus, consistent with the observed mobility in these regions. In the calcium 

form, the Ca2+ ion were restrained to be within 3 Ǻ from the oxygen ligand atoms (OD1 of 

Asp-66, Asn-68; OD1 and OD2 of Asp-70;O of Arg-72;OE1 and OE2 of GLU-77). No 

symmetry constraint was used. The calculated families of structures are shown in Figure 5.  

                              

         apoS100A16                                         Ca2S100A16 

               

        

Fig. 5: Families of the solution structures of the S100A16 subunit in the apo and calcium(II)-
loaded forms (a) and ribbon representation of the homodimer mean structures (b) obtained 
after restrained energy minimization. 

 

 

 

a 

b 
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In both forms, the four helices of the two EF-hand motifs of each subunit present in 

the dimeric structure are well defined; the loop of the fist EF-hand motif is less well defined; 

whereas the N and C terminus are poorly defined. These results are in line with the relaxation 

results. 

The root mean square deviation (RMSD) from the mean dimeric structure for the 

structured regions of the protein is 0.94±0.11 Ǻ (backbone) and 1.33±0.1 Ǻ (heavy atoms) for 

apo-S100A16 (residues 6-24,34-67,75-94) and 0.83 ±0.11 Ǻ (backbone) and 1.30 (heavy 

atoms) for Ca2S100A16 (residues 3-22, 34-94).  

In both the apo and calcium-loaded forms, dimerization occurs through interactions 

between helices I and I’ and between helices IV and IV’, which form an X-type bundle. At the 

dimer interface, residues in the hinge between helix II and III make contacts with residues 

near the N terminus of helix I of the other monomer. The aromatic residues Tyr-78 and Trp-

79 in helix IV also make several contacts with helices I’ and IV’ of the other monomer. In the 

S100A16 dimer, all these interactions align helix I and IV in opposite directions to helix I’ 

and IV’, respectively. 
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5.1 Introduction 

 

Calmodulin, a protein which domains experience mobility, has been selected as a 

model to demonstrate the potential of the collective non-exchangeable protein protons 

relaxation rate analysis for dynamic characterization of biomolecules. To this aim, samples of 

calmodulin have been expressed and exchangeable protein protons have been replaced with 

deuterium. 

Calmodulin is one of the most investigated examples of proteins which domains 

experience mobility 1-7. The structures of both calcium-bound and apo-CaM have been solved 

both in the solid state 8,9 and in solution 1,2,10. The structure of the holo-CaM in the solid state 

is characterized by an extended conformation; on the other hand, the X-ray structure of 

apoCaM indicates that the N- and C-terminal domains are close to one another and interact 

directly 8, thus leading to a globular shape. Moreover, solution NMR studies on both forms 

indicate high flexibility in the central linker region and the absence of stable, direct contacts 

between the two domains, which are thus free to reorient and experience multiple relative 

conformations 2,10. 

Among the various experimental techniques developed in order to characterize protein 

mobility, NMR is known to be a powerful tool 11-18. Indeed, nuclear spin relaxation 

measurements (T1, T2 and NOE) give information on motions on the picosecond to 

nanosecond and microsecond to millisecond time scales 6,19,20, T1ρ and spin-echo 

measurements on the microsecond to millisecond time scale 21, and residual dipolar couplings 

on the picosecond to millisecond time scale, thus covering also the microsecond to 

nanosecond range 11,22. Such measurements are performed on single nuclei of each protein 

residue, and thus can be used to monitor the presence of motions related to the individual 

residues. On the other hand, detailed information of the spectral density function may be 

recovered, but this is not straightforward. 

 To date, several NMR techniques have been used to characterize in detail the mobility 

of calcium-bound CaM 5-7,19,23-25, whereas fewer experiments were performed to characterize 

the dynamics of apoCaM. Backbone amide hydrogen exchange experiments suggested that 

helices in apo-CaM are quite mobile 10, and the substantial line broadening observed for a 

number of residues, especially in the C-terminal domain, indicates that the latter experience a 

conformational exchange. This supports the idea that flexibility is fundamental for the 

interaction capability of the C-terminal domain of apo-CaM with its target peptides. 
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Furthermore, the calcium-binding loops are found particularly unstructured in the calcium 

free state, most likely due to their high flexibility 2,10.  

Mobility of both apoCaM and calcium-bound CaM in solution has been studied by 

measuring the amide relaxation rates, a technique providing information on the mobility of 

the protein backbone. In this way it was found that the order parameter for all secondary 

structure elements is of the order expected for well-folded proteins (S2~0.85 for apoCaM and 

0.72 for Ca4-CaM) when an isotropic diffusion model is used, or measurements are performed 

on truncated single terminal domains of the protein 6,19,20,26,27. S2 values down to ~0.55 are 

obtained for both forms when a global internal motion model is applied to fit the data 19,20. 

However, whereas the relative mobility of the protein domains of calcium-bound CaM has 

been extensively studied 5,7, it is not clear how much such mobility is important in the apo 

state of the protein, as the latter has a compact closed structure in the solid state, and such 

structure may represent the most representative conformation also in solution. Furthermore, 

whereas in calcium-bound CaM side chains have been shown to be exceptionally mobile 25, 

no information is available on the mobility of the side chains of CaM in the apo form. In this 

work, we used high sensitivity fast field cycling (FFC) relaxometry with the aim of 

addressing the open questions for apo-CaM. 

Fast field cycling (FFC) relaxometry is a low resolution technique which allows the 

measurement of nuclear longitudinal relaxation rates as a function of the magnetic fields, 

from 0.01 to tens or hundreds of MHz 28,29. In this way the spectral density function of the 

observed nuclei (typically the solvent water protons) can be directly accessed, and for this 

reason it is routinely used e.g. for the study of contrast agents for magnetic resonance imaging 
30-38. Recently, it has been shown that relaxometry can be used to detect the collective 

relaxation rate of protein protons, thus obtaining direct information on their spectral density 

function 39-42. On the other hand, the intrinsically low sensitivity of this technique provides an 

unique not resolved signal, so that no information can be obtained on the single protein 

residues. However, these measurements can be used to define a collective order parameter, 

SC
2, which reflects the presence of motions in a range of time scales from the picoseconds to 

the nanoseconds 39,41. SC
2 is defined from the reduction in the collective relaxation rate of all 

non-exchangeable protein protons with respect to the value expected for a rigid protein. 

Therefore, SC
2 depends on the motional averaging of all kinds of proton-proton interactions, 

including long-range interactions, which are certainly more sensitive to internal motions. 

Even short-range interactions may be heavily influenced by local motions especially for side 
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chain residues or residues on the protein surface. The measurement of SC
2 can thus provide a 

further piece of information for the description of the dynamics of proteins. 

 

5.2 Materials and methods 

 
Purification of apoCaM and sample preparation. Vector  pET16b, containing the 

N60D mutant of CaM gene fused with a His10 tag, was transformed in E. coli BL21 GOLD. 

Cells were grown at 37°C in LB medium to an absorption of 0.8 at 600nm. Then IPTG was 

added to a final concentration of 0.5 mM, to induce protein expression and the growth was 

allowed for five hours at 37 °C. Cells were harvested by centrifugation at 9000g and lysis was 

performed in 20 mM MOPS pH 8, 300 mM NaCl, (buffer A) by sonication in ice followed by 

centrifugation at 40000g. The soluble fraction containing the His10-tagged protein was loaded 

on an HisTrap chelating FF column (GE Healthcare) equilibrated with buffer A. After 

washing the column with an intermediate Imidazole concentration (10mM), recombinant 

fused protein was eluted with 20 mM MOPS pH 8, 300 mM NaCl, 150mM Imidazole. The 

protein was loaded on a PD-10 desalting column (GE Healtcare) and the buffer was 

exchanged to 50mM TRIS pH 8, 100mM NaCl, 1mM CaCl2. Restriction protease Factor Xa 

(Roche diagnostic) was added to the solution (30 µg of enzyme for 30 mg of recombinant 

protein) to cut the His10-tag and the reaction was incubated overnight at room temperature. 

The cleaved tag was separated from the protein by HisTrap chelating FF column and the 

recombinant protein without the tag was eluted in buffer A. A final step of purification was 

performed with a size exclusion chromatography on a Hi-load superdex 75 16/60 (Amersham) 

column equilibrated with 20mM MES pH 6.8, 200mM KCl. The purity of the protein was 

checked by SDS-PAGE in 15% polyacrylamide gels after staining of protein bands with 

Coomassie Blue R-250 and the protein yield was about 25 mg/L.   

Samples were washed consecutively three times with a 20 mM EDTA solution pH 6.5 

to obtain the apo form, then were lyophilized and successively dissolved in D2O. Protein 

concentration was about 0.6mM and the pD was adjusted to 7. 

 

Relaxation measurements. Magnetization decay/recovery curves for CaM samples 

have been obtained at 298 K from 0.02 to 30 MHz using a Stelar fast field cycling 

relaxometer of the last generation 28. This technique consists in i) a preparatory part, during 

which a magnetization is induced through a polarization field (for low frequency 
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measurements) or a null magnetization is created (for high frequency measurements), ii) a 

relaxation part, during which the sample is kept at the relaxation field for a series of time 

intervals, and iii) a detection part, during which a field of 13 MHz is applied and the 

magnetization arising after such time intervals is measured. The acquisition is performed by 

applying a 90° radiofrequency pulse and integrating the resulting proton free induction decay 

(FID). The sensitivity of the instrument has been recently improved so that the signal of 

protein protons in submillimolar protein solutions in D2O can be detected with a good signal-

to-noise ratio 41. Magnetization decays from a prepolarized intensity were measured for 

relaxation fields between 0.02 and 10 MHz, using a polarization time of 0.2 s and a 

polarization field of 30 MHz. The points in the decay were acquired at 48 times 

logarithmically scaled between 0.001 to 0.1 s. For the higher fields (10-30 MHz), 

magnetization recoveries were measured through acquisition of the magnetization signal for 

64 times logarithmically scaled between 0.002 to 0.8 s. The number of scans was 512 and 128 

for the decay and recovery curves, respectively.  

The “universal” distribution of the relaxation rates reported in 41 was used to fit the 

magnetization decay/recovery. The fit function for the magnetization decay curves (up to 10 

MHz) was M=P1+P2*(0.0076*exp(-P3*t*0.11)+ 0.0079*exp(-P3*t*0.13)+ 0.0051*exp(-

P3*t*0.16)+ 0.0098*exp(-P3*t*0.19)+ 0.0166*exp(-P3*t*0.229)+ 0.0234*exp(-P3*t*0.275)+ 

0.0267*exp(-P3*t*0.331)+ 0.0316*exp(-P3*t*0.398)+ 0.0532*exp(-P3*t*0.479)+ 

0.0673*exp(-P3*t*0.575)+ 0.0784*exp(-P3*t*0.692)+ 0.102*exp(-P3*t*0.832)+ 

0.1223*exp(-P3*t*1.)+ 0.0881*exp(-P3*t*1.202)+ 0.0566*exp(-P3*t*1.445)+ 0.0588*exp(-

P3*t*1.74)+ 0.0751*exp(-P3*t*2.09)+ 0.0849*exp(-P3*t*2.512)+ 0.0575*exp(-P3*t*3.02)+ 

0.0208*exp(-P3*t*3.63)+ 0.0069*exp(-P3*t*4.37) ), where M is the magnetization, t is the 

time and P1, P2 and P3 are fit parameters. The relaxation rates present in the distribution are 

thus provided by P3 times the different numbers in the exponential functions. For the 

magnetization recovery curves (for frequencies larger than 10 MHz), the same function is 

used with exp() substituted to 1-exp() and an additional term (1-exp(-0.06*t) is added to 

include the relaxation recovery of free water protons in D2O. 

 
5.3 Results 

 

The protocol for the expression and the purification of CaM was developed and then 

optimized in order to achieve a good yield in soluble protein (25mg/L of colture).    
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After purification by HisTrap chelating Fast Flow and Hi-load Superdex 75 

chromatography, one 16.6 kDa band, corresponding to CaM was visible on reducing 15% 

SDS-PAGE analysis (Figure 1A). Moreover, the elution profile of the ion-exchange 

chromatography showed only one peak, confirming the presence of only one form of CaM 

(Figure 1B).    

 

 

Fig. 1.: (A) Reducing SDS-PAGE of CaM N60D after purification. (B) Elution profile of the 
protein subjected to ion-exchange chromatography showing only one peak.   

 

 

CaM was treated with EDTA in order to remove any traces of metal ions from the 

solution and possible divalent ion bound to the protein. Then the sample was extensively 

washed with centricon in pure water to remove salt, buffer and EDTA. The sample constituted 

by CaM and pure water was rapidly frozen in liquid nitrogen and lyophilized to remove the 

solvent. The lyophilized sample was dissolved in D2O (99,96% enriched) and left at room 

temperature overnight in order to replace the exchangeable protein protons with deuterium. 

The sample was frozen again in liquid nitrogen and D2O removed by lyophilisation. The 

procedure was repeated four times in order to ensure the complete exchange. The final 

solution of the protein (0.6mM) in D2O was adjusted to  

pD 7. 0.5mL of the solution were used in a 10mm tube to measure protein proton relaxation.            

For each field of measurement the collective protein proton relaxation rate was 

calculated by fitting the magnetization decay/recovery curve with the “universal” relaxation 

rate distribution obtained for well folded proteins 41 reported in Material and Methods. The 
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fits were quite satisfactory (Figure 2) and reduced χ2 was sizably smaller (of a factor from 4 to 

1.5) than that obtained with monoexponential fits.  

 

 

Fig. 2: (Left) Magnetization decays at low magnetic fields (2.8, 1.5, 0.8, 0.4, 0.2, 0.1, 0.07, 
and 0.04MHz, from top to bottom). The monoexponential fit is shown as a dotted line for the 
magnetization decay at 2.8 MHz. (Right) Magnetization recovers at high magnetic fields (30, 
20, and 14 MHz, from top to bottom). In both panels, best-fit lines were calculated using the 
‘‘universal’’ distribution of the relaxation rates defined in Luchinat and Parigi (31) and 
described in the Materials and Methods section. 
 
 

The collective relaxation rate values obtained this way and corresponding to the 

weighted average of the relaxation rates of all non-exchangeable protons in the protein, are 

reported as a function of field in Figure 3.  

 

 

Fig. 3: Collective protein proton relaxation rates for 0.6 mM apocalmodulin, calculated as the 
weighted average of the relaxation rates obtained from the ‘‘universal’’ distribution (31). The 
solid line shows the best-fit profile according to Eq. 1. 
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When the concentration of the protein was decreased to 0.3 or increased to 1.2 mM, no 

difference in the relaxation profile was observed. This indicates that there is no protein 

aggregation, because the latter would be reflected in increasing contributions from molecules 

with a larger reorientation time. The relaxation profile shows one dispersion around 10 MHz; 

in general, such dispersion is related to a correlation time in the spectral density function 

which corresponds to the reorientation time of the protein 39,41. The profile was fit to Eq. 1 
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where τR, SC
2 and α are fit parameters. The validity of such equation for the collective protein 

proton relaxation rates as a function of the field was demonstrated by simulations performed 

using relaxation data generated with CORMA 41. However, the same equation (as well as the 

equation commonly used for unlike spins, due to the onset of the cross relaxation/spin 

diffusion effects at high fields) would be incorrect for the individual proton relaxation 

dispersions 41. 

From the average of all proton-proton dipolar interactions using the program CORMA 
43,44 and the structure of apoCaM (PDB 1QX5), <E2> was calculated to be 26.0×109 s-2 

(25.4×109 s-2 if the 1LKJ_1 structure is used). <E2> can also be obtained from the 

measurement of the second moment as achievable from the FID of the NMR signal of the 

protein in the solid state. For largely hydrated proteins the second moment nicely matches 

with the SC
2<E2> value obtained from low field relaxation measurements 40,41,45. (The second 

moment of a dry protein can be different from that of the hydrated system due to protein 

structural changes occurring in the presence of water (30). It has also been showed that 

hydration decreases the measured second moment because the latter is affected by the 

motional freedom experienced by the side chains, so that when the high-hydration plateau is 

reached, it becomes a measure of SC
2<E2> rather than of  <E2>). The <E2> value, although 

dependent on the local accuracy of the protein structural model, because it is a function of the 

sixth power of the distance between close protons, has been shown to be relatively constant 

and equal to (27±3)×109 s-2 in a large variety of regularly folded proteins 41. This is due to the 

fact that the major contribution to <E2> is given by the dipolar interactions between protons 

belonging to the same methylene and methyl groups, which have a fixed distance. The 

accuracy of the estimate of <E2> reflects on the accuracy of the determined SC
2 value. 
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The best fit value of τR is 13.6±0.5 ns, and it represents the correlation time 

modulating the dipolar interactions, i.e., the reorientation time of the protein (the error is 

estimated from the standard deviation). This value is in good agreement with the harmonic 

mean correlation time calculated by HYDRONMR 46 from the anisotropic rotational diffusion 

tensor using the X-ray structure of apoCaM (PDB 1QX5) in D2O at 298 K, equal to 14.0 ns. 

The harmonic mean reorientation time calculated by HYDRONMR using the apoCaM 

extended solution structure (1LKJ_1) is 19 ns, and it decreases down to 15 ns for other 

structures reported within the same family where the two domains are differently oriented and 

closer to one another; that of individual N-terminal (residues 1-80) and C-terminal (residues 

81-146) domains is 7.9 and 5.5 ns respectively. Therefore, the experimentally obtained τR 

value indicates that also in solution the reorientation time of apoCaM is basically that of the 

protein with the two domains in a closed position; this indicates that the protein would 

preferentially assume one or more compact structures. This is in line with other biochemical 

and biophysical measurements 47 (see below), and not in contrast with the NMR solution 

studies. Indeed, the latter indicate the lack of structural interactions between the two protein 

domains and mobility of the interdomain linker, both phenomena being still consistent with a 

fluxional behavior of the domains resulting in an ensemble of “closed” conformations. 

The best fit value for the squared collective order parameter SC
2 related to the global 

protein reorientation time is 0.37±0.02. The accuracy of such parameter (0.02 is the standard 

deviation from the fit) can be estimated to be about 0.07 as a consequence of the accuracy of 

the calculated <E2> value, in the hypothesis of a single correlation time responsible for the 

observed dispersion. This value is, beyond any experimental uncertainly, much smaller than 

that found for lysozyme and albumin 39, where SC
2 was calculated to be about 0.75. This 

indicates that internal dynamics in apoCaM must be much more effective than in the latter 

proteins.  

The parameter α represents the protein proton collective relaxation value achieved 

when the τR dispersion is completed.  Therefore, it is given by the contribution to relaxation of 

the (1- SC
2) term times the spectral density function related to local motions and occurring at 

time scales faster than those observable in the detected field range. From the value of α as 

obtained from the fit of the experimental profile to Eq. 1 (α = 4.2 ± 0.6 s-1), correlation time 

values for the fast local motions of about 0.2 ns are obtained, using the relationship α = (1- 

SC
2) <E2><τfast>. We note that in this case the value of α is about the double of the value 

obtained for lysozyme and albumin 39,41, consistent with the much larger (1- SC
2) value. 
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15N relaxation studies indicated that the two CaM domains experience a restricted 

mobility superimposed to the overall tumbling of the molecule 20. Further analyses were thus 

performed to investigate whether the reduction in SC
2 with respect to the values obtained for 

the other proteins can be ascribed to the motion of the single domains (global internal motion 

model). Therefore, the relaxation profile of apoCaM was fit using two collective order 

parameters and two correlation times, with one of them fixed to 6.5 ns, i.e., around that of the 

individual domains of the protein, to possibly detect the effect of an independent restricted 

reorietational motion of the two domains, according to Eq. 2.  
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The fit was equally good and a first reorientation time of 14.4 ns is calculated with 

SC(1)
2 equal to 0.32; the SC(2)

2 corresponding to the motion at 6.5 ns was calculated to be 0.06, 

i.e. much smaller (see Table 1).  

 

 

 

Table 1: Summary of best-fit correlation times and order parameters obtained for apoCaM. 

 

The presence of multiple correlation times cannot thus increase the SC
2 value 

corresponding to the slowest motion. This proves that the reduction in the SC
2 value observed 

for CaM with respect to the other proteins is indeed almost independent on the number of 

correlation times used to fit the data, and that the value itself is quite robust. It also proves that 

the fastest motions predominantly occur on time scales shorter than the time expected for the 

reorientation of the single domains. 

 

 



81 

 

5.4 Discussion 

 
The reorientation time, calculated with this work, reveals that for most of the time the 

protein posses a relatively compact structure, and thus that the two domains must be close to 

one another even in solution, although the absence of interdomain NOEs 2 suggests that a 

dynamic ensemble of conformations must be experienced. This result is relevant and is in line 

with the previously found interdomain contacts in apoCaM in solution, through fluorescence 

spectroscopy measurements performed on engineered apoCaM mutants 48. Moreover, 

fluorescence resonance energy transfer (FRET) measurements 49 suggest a reorientation time 

that is in agreement with the overall protein rotational motion, thus indicating that the inter-

domain conformational heterogeneity detected through high field NMR measurements must 

be the result of a number of slowly interconverting (in the nanosecond time scale) distinct 

conformations 49. 
15N relaxation studies previously performed 20 indicated a shorter reorientation time 

when an isotropic model for protein tumbling was assumed, shorter than expected for a fully 

compact closed structure. This made the global internal motion model, where internal 

domains have a restricted mobility superimposed to the overall tumbling of the molecule, 

preferable, in addition to the significantly better agreement between experimental and best fit 

values achieved with such model. The global reorientation times obtained from the high field 

relaxation measurements are largely affected by the selected groups of residues included in 

the fit and by the fields of measurement, and their uncertainty is thus relatively large. In the 

case of apoCaM, they span values from 9.6 to 13.6 ns in H2O 20. Scaled to D2O, these values 

span from 11.8 to 16.7 ns, which compare well with the present best-fit τR value of 14 ns in 

this study. (Table 1).  

The fit of the high field relaxation data also indicates the occurrence of internal 

motions with correlation time of about 3 ns 20. The latter value seems to be too short for the 

tumbling of the CaM single domains, which are expected to be around 5-5.5 ns in H2O. The 

fit of the present data actually indicates that, if a motion with such correlation time is present, 

its order parameter must be quite low (see table 1). On the other hand, a fit of equally good 

quality was also obtained by fixing the internal correlation time to 3.7 ns (corresponding to 3 

ns in H2O) as found in the 15N relaxation study, the other parameters assuming values 

comprised between those calculated in the isotropic model and in the internal motion model 

with τR2 fixed to 6.5 ns (see table 1). In conclusion, the present data are not sensitive enough 
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to determine the presence of motions with correlation times of the order of some nanoseconds, 

and they are consistent with the presence of such motions only with collective squared order 

parameters smaller than 0.1. For the purpose of the present study, it is important to note that 

the presence of such internal motions does not sizably change the value of the overall 

tumbling and of the corresponding order parameter. 

As expected, the obtained SC
2 values are smaller than the available S2 values obtained 

from relaxation rate measurements on backbone nuclei at high fields 26 both in the assumption 

of an isotropic model with a single reorientation time (S2=0.85) or of a global internal motion 

model, described by two order parameters, one for the global reorientation and one for 

internal protein motions occurring on an intermediate time scale between the global 

reorientation time and the faster internal dynamics. In the latter case, in fact, an averaged 

SNH(1)
2 value of 0.56 was calculated from the amide relaxation with a correlation time 

corresponding to the overall reorientation time of the protein 20, and further SNH(2)
2 values of 

0.25-0.30 for a correlation time of 2.5-3 ns (see table 1). These values are both significantly 

larger (outside the error) than the SC(1,2)
2  values of 0.32 and 0.06 obtained from the fit of the 

present data. 

The comparison of the order parameters determined from high field data and the 

collective SC
2 values determined here actually shows that the former does not monitor all 

motional features present in the protein in the picosecond to nanosecond range. This is 

because side chains dynamics is not revealed. On the other hand, side chain dynamics may be 

fundamental in the characterization of the protein. For instance, the low sensitivity of 15N 

relaxation measurements to side-chain and protein domain motions is for instance indicated 

by the fact that the SNH
2 values obtained for the calcium-bound CaM in the absence and 

presence of bound peptides are essentially the same for all residues except those in the linker 

between the N-terminal and C-terminal domains, despite the fact that the difference in the 

dynamics within the protein is outstanding 6,23. Analogously, only slightly different squared 

order parameters were calculated for the 13CO-13Cα vectors for free and complexed CaM 6.  

Side-chain mobility is better addressed by the model-free generalized order parameter, 

Saxis
2, for the symmetry axis of methyl groups 50. From the methyl order parameters observed 

in calcium-bound CaM, three distinct classes of motions were suggested, centered at squared 

order parameters of 0.35, 0.58 and 0.78, and peptide binding was shown to increase 

substantially the Saxis
2 measured for some methyl groups, by often moving methyls from one 

lower order parameter group to a larger order parameter group 24,50. These works clearly show 
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that CaM has a peculiar enhanced mobility in the side chains. As suggested in 25, this may be 

due to the hydrophobic residues allowing much larger side chain mobility than in the side 

chains of canonical globular proteins. In our study, the collective SC
2 value found for apoCaM 

(0.37), dramatically smaller than the value observed for other well folded globular proteins 

(0.75) 39,41, is even on the lowest side of the range of the Saxis
2 values for methyl groups 50. In 

this context it is particularly significant that the SC
2 values provided by the present approach 

arise from all protein protons, 3/4 of which belong to side chains, rather than from methyl 

protons, which constitute about 1/4 of the total. The strikingly small SC
2 value obtained in the 

present work points to an extraordinary mobility not only of methyl groups but of all side 

chain protons in general.  

Such high mobility of side chain protons is not shared by backbone protons, as it 

results from 15N relaxation data. This makes possible that the “universal” distribution of 

relaxation rates that was used to fit the data, and which indeed provided a good fit of the 

magnetization decay/recovery curves, may not approximate the real distribution as 

satisfactorily as it does for more rigid globular proteins. A fit of the magnetization 

decay/recovery curves was thus also performed using a double exponential function instead of 

the “universal” rate distribution, and also in this case the agreement with the experimental 

data was very good, the resulting relaxation rates being reduced of about 10%. Therefore, the 

fit of the resulting profile provides basically the same best-fit parameters, the SC
2 value being 

only slightly smaller. 

Relaxation measurements performed on apoCaM showed that the chemical exchange 

contributions are substantial for most residues of the C-terminal domain, thus implying intra-

domain exchange between conformational substates 26. This intra-domain conformational 

exchange appears to involve transitions between a predominantly populated closed 

conformation (with an antiparallel helical arrangement) and a smaller population of more 

open conformations (not parallel helical arrangements) of the C-terminal domain 2,10,26,51-55. A 

dynamic equilibrium involving conformations with a partially exposed hydrophobic core 

provides CaM with the ability to interact with its targets in the absence of excess calcium(II) 
56,57. Therefore, EF-hand motifs in apoCaM exist in both closed and open states, possibly 

sampling a very large spectrum of conformational states, with a conformational exchange rate 

on microsecond to millisecond time scale and predominance of the closed conformation. 

Although the generalized order parameter SC
2 here obtained only reflects motions in a range 

of time scales from the picoseconds to the nanoseconds, the presence of a large mobility in the 
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latter scale is likely to be associated with mobility in a slower scale as well. 

Large mobility seems to be present also in the N-terminal domain, and not only within 

the residues corresponding to the calcium binding loops. It was in fact shown that the first 

helix of the N-terminal domain of apoCaM undergoes large amplitude nanosecond motions 58. 

This indicates a considerable dynamic flexibility of the first helix of the N-terminal domain, 

and thus within the domain, in apoCaM. This is in line with molecular dynamics simulations 

that predicted the presence of four subdomains within the amino-terminal domain of the 

protein that have the potential to undergo large amplitude independent motions relative to one 

another 4. 

In conclusion, the measurements performed on apoCaM in this work provide direct 

information on both the reorientation time of the investigated system and on the extent of 

internal motions of protein protons. We have found that, i) the reorientation time obtained 

from the fit of the spectral density function of protein protons indicates that the protein is 

mainly in a conformation with the two domains in close contact, and ii) the collective squared 

order parameter obtained in the present analysis is much smaller than that obtained for other 

globular proteins. Such low SC
2 value depends on the larger side chain dynamics of apoCaM, 

because 3/4 of the protons contributing to the SC
2 value belong to side chains, and backbone 

nuclei are known to have a regular mobility from 15N high field relaxation measurements. 

Therefore, SC
2 beautifully complements other measurements to describe the extent of both 

global and local the motional features experienced by the system.  

Protein proton relaxation measurements at low fields, providing direct access to the 

spectral density function thus allow us to safely recover the reorientation time of the protein, 

which at high fields may result less straightforward to obtain because the corresponding 

dispersion is already largely occurred. From the reorientation time value, further information 

can be derived on the conformational state of the investigated systems. They also provide a 

collective order parameter which monitors side chain mobility, not accounted in standard high 

field 15N relaxation measurements. These findings point out some global aspects of the 

motion that complement other aspects available from different techniques, so that all together 

a complete picture for the protein dynamics can be recovered. The approach here proposed 

can be even more relevant for mobility studies of large proteins, when information from high 

field 15N T1, T2, NOE measurements can hardly be obtained due to severe line broadening of 

the NMR spectra, as well as for the investigation of dynamics in protein-protein adducts. 
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6.1 Introduction 

 

Several high-throughput methods have been developed over the years in order to 

speed-up the screening and the identification of new hits for pharmaceutical targets1-10,10-12. 

Usually, screening leads to identify molecules that need subsequent optimization steps in 

order to reach a satisfactory affinity. Among the screening methods, the fragment-based 

approach has seen an unquestionable success in both pharmaceutical industry and academic 

setting due to its high hit rate in generating candidate drugs1,12-17. 

The leading concept of the fragment-based approach is that a high affinity compound 

can be designed by tethering, with a suitable linker, two or more (even weak) ligands able to 

bind adjacent protein sites1. As it is easier to optimize the binding of a small fragment than of 

a large molecule, linking to separately optimized fragments has a better chance to produce 

compounds with nanomolar dissociation constant KD. As an added value, in several cases the 

KD of the tethered molecules is found to be smaller than the product of the KDs of the single 

fragments18,19. This additional increase in affinity can be explained by considering that, when 

two ligands bind to a protein, each of them loses a fraction of rigid body rotational and 

translational entropy. Conversely, when the two ligands are tethered in a single molecule, 

only one unfavourable rigid body entropy barrier affects the binding20. This smaller loss of 

entropy (i.e. relative entropic gain) accounts for the linking effect21,22. For a two-fragment A-

B molecule, the dissociation constant KD
AB is often reported as the product of the dissociation 

constants of the isolated fragments A and B, KD
A and KD

B, multiplied by a term named linking 

coefficient, E1,23: 

 

KD
AB = KD

A · KD
B · E (or, equivalently, ∆G AB = ∆GA + ∆GB + RT lnE) 

 (1) 

 

where  E < 1 implies a favourable contribution to binding. 

In an ideal case, the linking coefficient E, obtained from (1) when the three binding 

constants are know from experiments, would thus be a direct measure of the entropic gain. 

However, besides the favorable entropic contribution, there may be unfavorable 

enthalpic contributions to the binding that arise from distortions of the target binding 

geometry of the two fragments when linked together, as well as either favourable or 

unfavorable interactions of the linker itself with the target molecule. Indeed, it has been 
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observed that the linking coefficient is strongly dependent on the structural features of the 

tethered molecule and on its binding mode to the target. In some cases linking coefficients 

even larger than one (i.e. unfavorable) have been found, while in successful cases linking 

coefficient values slightly smaller than 10-2 have been observed19. The most favourable E 

value (3.1 × 10-3 M-1) has been observed for a biphenyl-based inhibitor of matrix 

metalloproteinase 2 (MMP-2) 19. Despite the pure entropic term would be theoretically 

capable to account by itself for linking coefficients as low as 10-8 M-1, 20 experimental 

verification that even E values of the order of 10-2 M-1 are entirely due to a favorable entropic 

term is still lacking. 

One way to obtain this verification would be to construct a two-fragment molecule 

where the two fragments are able to bind separately to the target in such a way that they just 

need to be linked together by one covalent bond without any intervening atom. The increase 

in binding affinity of a zero-length tether molecule of this type should be, at least to a first 

approximation, entirely due to the entropic effect, provided that the enthalpic contributions 

are essentially unchanged, i.e. the two fragments maintain all relevant interactions with the 

target when bound together. Interestingly, at least one case of this type has been described, 

and a reasonable although not extremely small E value of about 3.3×10-2 M-1 has been 

reported24. Unfortunately, experimental verification of its entropic nature through e.g. 

calorimetry is not available. 

Here we report on a sulfonamide derivative inhibitor of matrix metalloproteinases 

(MMP) whose components have been designed by application of a deconstructing 

procedure25, and where the linker is just one covalent bond. Sulfonamide derivatives 

constitute one of the most important classes of inhibitors of zinc enzymes, possessing a high 

affinity towards several zinc enzyme families including, besides MMPs, also carbonic 

anhydrases26-30. In the case of MMPs, sulphonamide inhibitors are constituted by a zinc 

binding group such as hydroxamate or carboxylate and by a lipophilic moiety interacting with 

the S1’ cavity31. N-hydroxy-2-(4-methoxyphenylsulfonamido) acetamide  (PMAHA, Figure 

1) is a simple but relatively potent inhibitor of MMP-1232,33. It can be easily synthesized by 

reacting the glycine methyl-ester with paramethoxy-sulphonyl chloride and then by 

deprotecting the methyl-ester to form the hydroxamic moiety. Virtually, this molecule can be 

considered as formed by two fragments, paramethoxybenzene-sulfonyl amide (PMS) and 

acetohydroxamic acid (AHA) (Figure 1), tethered by a simple covalent bond upon removal of 

one hydrogen atom on each side. The present case study analyzes the binding of PMAHA, as 
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well as of its constituting fragments PMS and AHA, to the catalytic domain of MMP-12 

(cdMMP-12). The system displays a very small value of E of 2.1 × 10-3 M-1, and it is shown 

that this value is entirely due to a very favorable entropic contribution, the enthalpic term 

being very similar to the sum of those of the two isolated fragments.  

 

 

 

 
Fig. 1: N-hydroxy-2-(4-methoxyphenylsulfonamido)acetamide (PMAHA) can be considered 
as formed by two fragments, paramethoxybenzene-sulfonyl amide (PMS) and 
acetohydroxamic acid (AHA). 
 

6.2 Material and methods 

 
Sample preparation. The cDNA encoding the cdMMP-12 (Gly106–Gly263) was 

amplified by a polymerase chain reaction (PCR) from IMAGE consortium clone (ID 196612) 

using two synthetic oligonucleotides as primers. The cDNA obtained was cloned into the 

pET21a vector (Novagen) between the restriction sites NdeI and BamHI. The single amino 

acid substitution, to obtain the F171D mutant, was created using the QuickChange™ Site-

Directed Mutagenesis Kit from Stratagene. The construct was transformed into the BL21Gold 

(DE3) strain for expression of recombinant protein. The cells were grown in 2×YT media at 

37 °C. and the protein expression was induced during the exponential growth phase with 0.5 

mM IPTG. Cells were left grow for 4 h after induction and were harvested by centrifugation. 

After lysis of the cells the inclusion bodies, containing the protein, were solubilized in 8 M 

urea and 20 mM sodium acetate (pH 5.0). The protein was purified on the Hitrap SP column 

(Pharmacia) with a buffer containing 6 M urea and 20 mM sodium acetate (pH 5.0). The 

elution was performed using a linear gradient of NaCl up to 0.35 M. The purified protein was 

refolded by using a multistep dialysis against a solution containing 50 mM Tris–HCl (pH 7.2), 
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10 mM CaCl2, 0.1 mM ZnCl2, 300 mM NaCl, 500 mM acetohydroxamic acid (AHA), and 

decreasing concentration of urea (from 4 to 2 M). The last two dialyses were performed 

against a solution containing 20 mM Tris–HCl (pH 7.2), 5 mM CaCl2, 0.1 mM ZnCl2, 300 

mM NaCl, and 200 mM AHA. The final yield of the purified protein was approximately 

30mg/l.  

Protein expression was also carried out in minimal medium containing 1.25 g/l of  

(15NH4)2SO4 in order to produce 15N-enriched protein. Typically, about 22 mg of enriched 

protein could be obtained from a 1 l culture. 

NMR spectroscopy. 1H–15N HSQC experiments, implemented with the sensitivity 

enhancement scheme, were recorded at 298 K on a Bruker Avance 700 operating at proton 

nominal frequency of 700.21 MHz. To determine the binding affinity of PMS towards the 

catalytic domain of MMP-12, the alteration of the chemical shifts induced on 2D 1H-15N 

HSQC spectra upon the titration with PMS was monitored by NMR. The experiments were 

performed on samples containing 0.289 mM of 15N-enriched MMP-12 in presence of 10 mM 

Tris–HCl buffer (pH 7.2), 10 mM CaCl2, 0.1 mM ZnCl2, 300 mM NaCl with and without 200 

mM acetohydroxamic acid. The dissociation constant was calculated by fitting the ∆δ as a 

function of the ligand concentration.  

 

X-Ray measurement. Crystals of human MMP12, already containing AHA from the 

refolding process, grew at 20 °C from a 0.1 M Tris-HCl, 30% PEG 6000, 200 mM AHA, 1.0 

M LiCl 2 solution at pH 8.0 using the vapor diffusion technique. The final protein 

concentration was about 10 mg/ml. A soaking procedure was carried out to obtain the adduct 

with PMS. The data were measured in-house, using a PX-Ultra copper sealed tube source 

(Oxford Diffraction) equipped with an Onyx CCD detector. The dataset was collected at 100 

K and the crystal used for data collection was cryo-cooled without any cryo-protectant 

treatment. The crystal diffracted up to 1.8 Å resolution and belongs to spacegroup C2 (a= 

51.57 Å b= 60.19 Å c= 54.21 Å, α= γ= 90° β= 115.09°) with one molecule in the asymmetric 

unit, a solvent content of about 50% and a mosaicity of 0.7°. The data were processed in all 

cases using the program MOSFLM34 and scaled using the program SCALA35 with the TAILS 

and SECONDARY corrections on (the latter restrained with a TIE SURFACE command) to 

achieve an empirical absorption correction. Table 2S shows the data collection and processing 

statistics for all datasets. The structure was solved using the molecular replacement technique; 

the model used was that of the MMP12-AHA adduct (1Y93) from where the inhibitor, all the 
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water molecules and ions were omitted. The correct orientation and translation of the 

molecule within the crystallographic unit cell was determined with standard Patterson search 

techniques36,37 as implemented in the program MOLREP38,39. The isotropic refinement was 

carried out using REFMAC540 but the metal ions B-factors were refined taking anisotropy 

into account. In between the refinement cycles the models were subjected to manual 

rebuilding by using XtalView41. The same program has been used to model all inhibitors. 

Water molecules have been added by using the standard procedures within the ARP/WARP 

suite42 and for the atomic resolution datasets hydrogens were added at the riding positions and 

refined. The stereochemical quality of the refined models was assessed using the program 

Procheck43. The Ramachandran plot is of very good quality. Table S1 reports the data 

collection and refinement statistics. 

Calorimetry. Isothermal Titration Microcalorimetry experiments were performed at 

298 K with a VP-ITC microcalorimeter (MicroCal, Inc., Northampton, MA). After an initial 

injection of 1µL, aliquots of 10µL of 200µM BMAHA  inhibitor with 0.1% (v/v) DMSO were 

stepwise injected into the sample cell containing a solution 20µM of MMP12 catalytic domain 

until complete saturation. All experiments were performed in 20mM Tris (pH 7.2), 5mM 

CaCl2, 0.1mM ZnCl2, 0.3M NaCl, AHA 4mM  with PMS in concentrations ranging from 0.1 

to 3 mM. Heats of dilution were measured by injecting the ligand into buffer and then 

subtracted from the binding heats. The thermodynamic parameters and KA values were 

calculated fitting data to a single binding site model with ORIGIN 7.0 sofware (Microcal, 

Inc.).  

 

6.3 Results 

 

The interaction of PMS with the active site of MMP-12 was analyzed by X-ray 

crystallography, NMR and microcalorimetry. The dissociation constant of PMS was obtained 

from the analysis of the chemical shifts perturbations on the assigned 1H-15N HSQC spectra of 

the free and AHA-inhibited form of MMP-12. The value of the dissociation constant (KD = 

1.5 × 10-3 M) was not affected by the presence of different concentrations of AHA in solution. 

The binding mode of the ligand in the active site of the protein was investigated by soaking 

crystals of MMP-12, incorporating the weak AHA inhibitor, in solutions of PMS. 

In the X-ray structure, the PMS ligand fits the S1’ cavity with the p-methoxybenzene 

group and establishes an H-bond between one of its sulfonyl oxygens (O2) and the amide 
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nitrogen of Leu-181 (2.93 Å ) (Figure 2B). At the same time, the free AHA ligand chelates 

the zinc ion with its two oxygens, and the interaction is further stabilized by two H-bonds, one 

between the protonated oxygen atom (O4) of AHA and the carboxylate Oδ2 of Glu-219 (2.53 

Å) and the second (2.76 Å) between the hydroxamate NH and the carbonyl oxygen of Ala-

182. It should be pointed out that the two ligands bind independently to the protein, and do 

not interact with one another.  Moreover, the AHA ligand exhibits the same binding mode in 

the presence and in the absence32 of PMS. 

The binding of PMAHA (Figure 2C) and AHA alone (Figure 2A) with MMP-12 was 

characterized previously by X-ray, microcalorimetry and enzymatic assay32,33. In the complex 

of MMP-12 with PMAHA, the inhibitor binds the catalytic zinc ion by its hydroxamic moiety, 

and its p-methoxybenzene group fits the S1’ cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Stereo view of the active 

site of MMP-12 complexed with 

hydroxamic acid (A). PMS and 

AHA  bind independently to the 

active site of MMP-12 protein and 

do not interact with one another 

(B). The presence of PMS do not 

alter the binding mode of AHA. 

The tethered molecule PMAHA 

maintains all the interactions 

observed for the two isolated 

fragments (C). Only the AHA 

moiety appears rotated with 

respect to the position of the 

isolated AHA ligand, but with all 

relevant protein interactions 

maintained. 
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 The paramethoxy-sulfonyl moiety in the PMAHA molecule shares the same 

binding mode of the isolated PMS ligand, while the AHA moiety appears rotated by ca. 45° 

with respect to the position of the isolated AHA ligand32.  Despite this rotation, all the 

interactions observed for the two fragments are in place: the bidentate behavior of the AHA 

moiety, the sulfonyl oxygen at 2.93 Å  from the amide nitrogen of Leu-181, the protonated 

oxygen atom (O4) at 2.53 Å from the carboxylate Oδ2 of Glu-219, and the hydroxamate NH 

at 2.76 Å from the Ala-182 carbonyl oxygen. A series of ITC measurements on the binding of 

a parent arysulfonamide inhibitor (BSAHA, see Figure 3) were performed in the presence of 

various PMS concentrations in the range 0.1 to 3 mM. 

 

 

 

Fig. 3: Structure of N-hydroxy-2-(phenylsulfonamido)acetamide (BSAHA).  

 

AHA was also present in solution at a concentration of 4 mM. By fitting the obtained 

enthalpy as a function of PMS concentration and after the correction for the competition with 

AHA, a ∆H0 of -6.0 kcal/mol was found for the binding of PMS. The ∆G0, ∆H0, ∆S0 and KD 

values for the binding of AHA and PMAHA to MMP-12 at 298 K were determined 

previously33 and are reported  in Table 1.  For PMS the free energy of binding (∆G0) was 

calculated from the dissociation constant obtained by NMR. The ∆S0 value was estimated 

from the relationship ∆G0 = ∆H0 - T∆S0. The value of ∆H0 for PMS was determined by 

isothermal titration microcalorimetry (ITC) in this work. As it appears from Table 1, the value 

of ∆H0 found for PMAHA (-8.52 kcal/mol) is similar to the sum of the binding enthalpy of 

AHA and PMS. At the same time the free energy of binding for PMAHA is much more 

negative than the sum of the ∆G0 of the isolated fragments. The resulting linking coefficient is 

about 2.1 × 10-3 M-1 (see Table 1). 
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Table 1: Corrected thermodynamic parameters for the investigated inhibitors. 

 

 

6.4 Discussion 

 

The large affinity observed for PMAHA is in line with expectations for this class of 

MMP inhibitors. The deconstructing analysis of this simple linked molecule provides a new 

piece of evidence to rationalize the key factors playing a role in the tethering approach. 

Although theoretical models predict, for the dimerization of adjacent ligands, affinity 

advantages up to 10-8 M with respect to either fragment, the experience on real cases shows 

that usually the gain in affinity is orders of magnitude smaller20,44. In fact, the linkage of the 

fragments often results in a new molecule that does not allow each of them to adopt the 

original and optimal binding mode25. 

In this respect, PMAHA with the related fragments PMS and AHA constitutes a good 

case study because all the requirements relevant to maximize the linking effect are satisfied in 

the molecule. In particular, the structural data show that the binding mode of the two 

individual fragments is substantially maintained in the joined molecule. Moreover, no sizable 

additional favorable interactions or unfavorable strain energies are introduced by the linker 

since the two fragments are “tethered” by a single covalent bond without any additional 

intervening atom. 

As already shown in table 1, PMAHA exhibits a dissociation constant (KD
AB) of 2.0 × 

10-8 M, much lower than the dissociation constants of the two fragments, PMS (KD
A = 1.5 × 

10-3 M) and AHA (KD
B = 6.2 × 10-3 M), and nearly three order of magnitude lower than the 

product of their relative affinity constants. 

A suitable approach to investigate the linking coefficient is to compare the difference 

in experimental ∆G0 and ∆H0 values and in the calculated entropy contributions. For PMAHA 

the difference in experimental ∆G0 (∆∆G0 ) with respect to the sum of the ∆G0 values for the 
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isolated PMS and AHA is large and negative (-3.64 kcal/mol). This increased affinity is not 

related to an improved interaction, as shown by the small (and even positive) difference 

(+0.66 kcal/mol) in experimental ∆H0 (∆∆H0) between PMAHA and the isolated PMS and 

AHA. On the contrary, the difference in T∆S0 for PMAHA is high and negative (-4.30 

kcal/mol) and fully accounts for the large linking effect observed for the tethered molecule. 

Besides the calculation of the value for the linking coefficient for the investigated 

molecule, the present analysis allows to us to achieve a more general view on the entropic 

contribution in fragment-based drug design. In particular, in the case of PMAHA no 

additional enthalpic and entropic terms, arising from atoms of the linker, contribute to ∆H0 

and to ∆S0. At the same time, other possible contributions to ∆S0 are probably negligible, as 

suggested by the superimposition of the complexes and by the small difference in the 

interaction energy (∆∆H0 = -0.66 kcal/mol). Collectively, all these findings provide an 

estimation of the value for the linking coefficient that can be reasonably achieved by tethering 

two ligands when the interactions of each of them are maintained and no additive effects arise 

from the atoms of the linker.  

The octanol/water partition coefficient (log P) calculated as CLog P value for each of 

the two fragments and for the tethered molecule shows that the hydrophilicity increases of one 

order of magnitude  from PMS (+0.42) to PMAHA (-0.69). 

In this respect, for PMAHA an increase in free energy of binding even larger than 4.30 

kcal/mol would have been possible without the small unfavorable enthalpic term of +0.66 

kcal/mol possibly related to small changes in binding mode. This large value opens also 

interesting questions on the advantages provided by the linking coefficient in fragment-

linking and fragment growing strategies45. In the former, additional atoms are introduced to 

tether the fragments, without altering the original binding mode. Obviously the length and the 

structure of the linker is designed to avoid steric clashes, to reduce the degrees of freedom 

and, possibly, to establish interactions with the target. However the linker is not conceived to 

maximize the interactions these interactions, and detrimental entalpic and entropic 

contributions to the free energy of binding can drastically reduce the benefit of the linking 

coefficient46. On the contrary, in the fragment growing approach at each step the additional 

moiety introduced in the scaffold is conceived to establish new strong interactions with the 

target without altering the optimal binding mode of the original core. Therefore, the latter 

strategy might theoretically take the best advantage from the entropic gain related to the 

linking coefficient. However, it should be pointed out that, in real cases, several factors such 
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as the lack of detailed structural information and the protein flexibility make it difficult to 

obtain a suitable growing of the fragment, and the two strategies usually result in ligands with 

similar affinity constants47. 

In summary we have shown that when the two fragments are tethered with a zero-

length linker in a way that  all the main interactions are maintained, linking coefficient values 

approaching 10-3 M-1 can be obtained. We have also verified the entropic nature of the linking 

coefficient, that in the absence of unfavourable enthalpic contribution can be even smaller 

than 10-3 M-1. 
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The comprehension of the physiological role of proteins in biological systems requires 

an integrated study where the structural and dynamical analysis  is flanked by a detailed 

investigation of the networks of the interactions involving each protein.  Breaking and 

formation of weak interactions not only controls the protein folding and dynamics, but are 

crucial for the protein function as responsible for the formation of stable or transient protein-

protein complexes. Weak interactions are also responsible for the binding of small molecules 

as substrates, cofactors or drugs to proteins. In this PhD research the role of weak interactions 

has been investigated in biologically relevant models using different biophysical and 

structural methodologies in order to clarify their contribution to protein folding, dynamics and 

to protein-protein and protein-ligand recognition. The research has been mainly focused on 

cloning, expression and characterization of human calcium binding proteins calmodulin, 

S100A16, S100P and on two soluble extracellular domains of the pathologically relevant 

RAGE receptor. In particular, samples of calmodulin have been exploited to investigate by 

relaxometry, weak and transient interdomain interactions and their effects on protein 

dynamics. The relaxometric analysis performed on apo calmodulin, in fact allowed us to 

monitor its behaviour in solution where, as shown by high field NMR measurements, the N-

terminal and C-terminal domain experience a dynamic ensemble of conformations. The 

analysis of the collective relaxation rate of the non-exchangeable protein protons provided a 

reorientation time in agreement with the overall rotational motion of the protein when the two 

domains are arranged in the closed form. This indicates that the two domains preferentially 

assume several compact structures, with the two domains close to one another. This latter 

evidence and the absence of interdomain NOEs indicates that the inter-domain conformational 

heterogeneity must be the result of a number of slowly interconverting distinct conformations 

associated with the breaking and formation of weak interactions. Moreover the analysis 

suggested the presence of a large side chain mobility which could not be monitored through 

standard high field 15N-1H relaxation measurements. The work focused on S100A16 allowed 

us to express the WT protein in good yield and to develop a reliable protocol to produce 

selenium-enriched S100A16 in order to solve the problem of phase in X-ray crystallography 

experiments. Crystals of Se-S100A16 have been obtained in large amount but, unfortunately, 

the observed gemination prevented the collection of data suitable for structure resolution. On 

the contrary, the NMR analysis performed on apo- and holo-S100A16 samples has provided 

the first structural and dynamical characterization of this protein. As all the other S100 

proteins, both apo and holo S100A16 in solution exist as homodimers stabilized by a network 
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of weak interactions. The structural analysis showed that the interaction of the calcium ion 

with the aminoacids forming the metal binding site induces a structural reorganization with 

exposition of hydrophobic surfaces. 15N relaxation measurements and the RMSD per residues 

for the calculated families of structures showed that the hinge-loop region of the protein 

experiences a sizably large mobility. 

Furthermore, the role of weak interactions in protein-protein recognition has been investigated 

by analyzing the binding of S100P to extracellular domains of RAGE. Identifying the 

interaction surface between the V-domain of RAGE and holo S100P provides an opportunity 

to understand the structural details of the interactions of RAGE receptor with one of its 

pathologically relevant ligands. Actually, RAGE interacts with a wide range of ligands that 

structurally have very little in common leading to diverse cellular responses from cytokine 

secretion and increased cellular oxidant stress to cell survival, differentiation, and 

proliferation. However, RAGE is a membrane receptor of  and can not be investigated in 

solution by NMR. The research activity carried out on RAGE during this PhD has been 

focused on cloning, expression and characterization of two extracellular domains of RAGE, V 

and C12 domains and of its ligand S100P. We observed  that the C1 domain of RAGE is not 

required for the binding to S100P because the pattern of shifts on holo S100P is the same 

upon the addition of V-domain and VC1 tandem construct. The NMR analysis clearly showed 

that one V-domain binds to one S100 homodimer. Using the chemical shifts perturbations 

observed on the S100P and on V-domain, a model of the complexes S100P-V-domain and 

also the related adduct with VC1 tandem construct have been calculated using Haddock. 

Understanding of the structural details of the interaction between RAGE and its ligands can 

provide new therapeutic opportunities to treat diseases as chronic inflammations, cancer and 

diabetes. Therefore, cloning, expression and structural characterization of the whole RAGE 

receptor and the analysis of its interaction with all the pathologically relevant ligands is the 

obvious development of the research started with this PhD. 

In the last part of my PhD, the role of weak interactions in ligand binding and the 

thermodynamic aspects of tethering have been analyzed by performing a structural and 

calorimetric analysis on a aryl-sulfonamide inhibitor of MMP-12 and on its constituting 

fragments. The analysis performed on samples of catalytic domains of MMP-12 showed that 

the tethered molecule displays a very small value of the linking coefficient, entirely due to a 

very favorable entropic contribution with the enthalpic term being very similar to the sum of 

those of the two isolated fragments. Moreover, we proved that large contribution to the 
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binding energy can be achieved when the two fragments are tethered with a zero-length linker 

in a way that all the main interactions are maintained. 
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Abstract The homodimeric structure of human S100A16

in the apo state has been obtained both in the solid state and

in solution, resulting in good agreement between the

structures with the exception of two loop regions. The

homodimeric solution structure of human S100A16 was

also calculated in the calcium(II)-bound form. Differently

from most S100 proteins, the conformational rearrangement

upon calcium binding is minor. This characteristic is likely

to be related to the weak binding affinity of the protein for

the calcium(II) ions. In turn, this is ascribed to the lack of

the glutamate residue at the end of the S100-specific

N-domain binding site, which in most S100 proteins provides

two important side chain oxygen atoms as calcium(II)

ligands. Furthermore, the presence of hydrophobic inter-

actions stronger than for other S100 proteins, present in the

closed form of S100A16 between the third and fourth

helices, likely make the closed structure of the second

EF-hand particularly stable, so even upon calcium(II)

binding such a conformation is not disrupted.

Keywords S100A16 � EF-hand proteins � Calcium-

binding proteins � S100 proteins � Protein dynamics

Introduction

S100 proteins represent the largest subgroup in the family

of calcium-binding proteins bearing EF-hand motifs. A

functional EF-hand motif consists of a calcium(II)-binding

loop (usually of about 12 amino acids) flanked by two

a-helices. S100 proteins contain two EF-hand motifs, one

in the N-terminal domain (composed of helix I, loop I, and

helix II) and one in the C-terminal domain (composed of

helix III, loop II, and helix IV). The two domains are

connected by a linker, called a ‘‘hinge loop.’’ The first

N-terminal EF-hand is unconventional, because its loop is

usually composed of 14 amino acids; the second one, in the

C-terminal domain, is canonical. A consequence of the

longer loop in the N-terminal EF-hand is the different

affinity for calcium(II) with respect to the C-terminal

EF-hand, due to the different ion coordination. The canonical

C-terminal domain in fact binds the ion in a manner similar

to calmodulin and troponin-C, resulting in a high calcium

affinity [1, 2]. The N-terminal domain mostly binds the ion

through main-chain carbonyl groups, in addition to the

bidentate side chain of glutamate at the end of the loop, and

this reduces the binding affinity up to 100 times [3].
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With the exception of calbindin D9k, also known as

S100G, which is monomeric, all the other structures of the

S100 proteins revealed a homo- and, in some cases, het-

erodimerization. Some members of the family also form

tetramers or larger oligomers. In homodimers, the two

subunits are related by a twofold axis of rotation and the

major contributors to the dimer interface are helices I and

IV of each subunit that are ordered in a X-type four-helix

bundle. This relationship is maintained both in the apo state

and in the calcium-bound state.

Upon calcium(II) binding most S100 proteins experi-

ence a conformational change that mostly involves helix

III, which is antiparallel to helix IV in the apo state and

rearranges itself to become almost perpendicular in the

calcium(II)-bound state. This movement ‘‘opens’’ the

structure and exposes a wide hydrophobic cleft that acts

as a binding site for targets [4]. Calcium binding to the

N-terminal EF-hand, instead, causes only minor alterations

of its backbone conformation. On the other hand, cal-

bindin D9k does not undergo changes in its conformation

upon calcium(II) binding; S100A7 does not bind calcium

in the N-terminal EF-hand [5], as a consequence of the

lack of the glutamate residue in the last position of loop I,

the carboxylate group of which is essential for coordi-

nation of the calcium ion; and S100A10 does not bind

calcium in either the N-terminal and or the C-terminal

domain. Furthermore, the affinity for calcium in S100A3

is so low (Kd = 20 mM) that calcium binding is actually

prevented in vivo.

Besides calcium(II), some S100 proteins (S100B [6],

S100A2 [7], S100A7 [8], S100A12 [9]) have been shown

to bind zinc(II). However, binding of zinc(II) in the cyto-

plasm is rather unlikely, because of its subnanomolar

intracellular concentration. On the other hand, several S100

proteins have been also found in the extracellular space,

where the zinc(II) concentration can be much higher [10];

in this respect, zinc was actually reported to modulate the

interaction of S100B with the tau protein [11].

S100A16 is the S100 protein most widely distributed

in humans, and is highly conserved in mammals [12].

Expression of most S100 proteins is actually highly tissue

and cell specific, whereas S100A16 expression has been

reported in a wide spectrum of human tissues (including

brain), analogously to S100A2, S100A13, and S100A14.

Upregulation of S100A16 was found in several cancer tis-

sues, suggesting a function related to malignant transfor-

mation or tumor development [12]. S100A16 expression

was upregulated in tumors of bladder, lung, thyroid gland,

pancreas, and ovary. Furthermore, investigation of S100A16

intracellular localization in human glioblastoma cells

revealed an accumulation of the protein within nucleoli

and a translocation to the cytoplasm in response to calcium

stimulation [13].

Among the S100 family, S100A16 is a ‘‘particular’’

member since it has uncommon characteristics. The

N-terminal EF-hand was predicted to be functionally

inactive since it comprises 15 amino acids, and lacks the

conserved glutamate residue at the last position, analo-

gously to S100A7. The inability of the N-terminal EF-hand

to bind calcium was indicated by flow dialysis experiments

carried out by Sturchler et al. [13]. Such experiments

(performed in a high ionic strength buffer) revealed one

Ca2? binding site per subunit, with Kd of 430 lM, which at

physiological conditions would be two- to threefold lower,

thus becoming very similar to that of many other S100

proteins. Tryptophan fluorescence variations indicated the

occurrence of conformational changes upon calcium(II)

binding in the C-terminal EF-hand, which lead to the for-

mation of a hydrophobic patch that could involve the

hydrophobic residues in helices III and IV and in calcium-

binding loop II. They also showed that S100A16 binds

zinc(II) in a different site with respect to calcium(II).

Of the 22 members found in the human genome, 17

S100 proteins have genes located in the S100A cluster on

chromosome 1q21. Exceptions are S100P (located on

chromosome 4p16), S100Z (5q14), S100B (21q22), and

calbindin D9k (Xp22) [14]. The human chromosomal

region 1q21 is structurally conserved during evolution and

exhibits several rearrangements which occur during tumor

development. Together with the finding of upregulation of

this protein in several cancer tissues [12], this indicates that

S100A16 may have a role in the molecular origin of certain

types of tumors and thus that it deserves structural and

functional characterization studies.

Considering the uncommon behavior of S100A16 with

respect to calcium binding, although several S100 protein

structures are already available, the structural character-

ization of human S100A16 in solution has been performed

in both the apo and the calcium(II) states. The apo state

structure has been also solved in the crystal state. Mobility

studies through relaxation rate analysis were also per-

formed in solution. This information represents the starting

point for future investigations on the binding with possible

targets.

Materials and methods

Protein expression

The gene coding for human S100A16 was generated from

complementary DNA using two sets of primers, in two

successive runs of polymerase chain reaction (PCR), the

second set intended to amplify the specific target sequence

within the first, longer, run product. The first set of external

primers had the following forward and reverse sequences:
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OS116F1 (TGCTGGAGAGGAGGCAGA) and OS116R1

(GGAAGGTCTGGAGGGAGAAG). The second set of

specific primers had the following forward and reverse

sequences: OS116F2 (AAACATATGTCAGACTGCTAC

ACG) and OS116R2 (ATAGAATTCACTAGCTGC

TGCTCT). The DNA amplified by PCR was cut with

restriction enzymes NdeI and EcoRI, purified from agarose

gel and cloned into plasmid pET21a(?) (Novagen), pre-

pared with the same restriction enzymes. With this

expression strategy, the product of the cloned gene has the

wild-type sequence of the S100A16 protein (see

Scheme 1), without a tag and any additional amino acid.

Vector pET21a(?), containing the human S100A16 gene

and cloned to produce the protein without a tag, was trans-

formed in BL21-Gold Escherichia coli strain (Novagen).

Cells were grown in Luria–Bertani medium at 37�C until an

optical density of 0.7 was reached at 600 nm. The protein

expression was then induced by adding 1 mM isopropyl b-D-

thiogalactopyranoside. The culture was allowed to grow for

4 h and then cells were harvested by centrifugation. The

cell pellet was resuspended in lysis buffer [50 mM

tris(hydroxymethyl)aminomethane (Tris) pH 8.0, 200 mM

KCl, 1 mM dithiothreitol (DTT), 0.5 mM Pefabloc, 10 mM

EDTA], and soluble proteins were extracted by sonication

followed by centrifugation. The cleared lysate was then

precipitated by slowly adding streptomycin sulfate to 1%

and centrifugation at 15,000g for 20 min. The supernatant

was dialyzed in 50 mM Tris pH 7.0, 50 mM KCl, 1 mM

DTT, 10 mM EDTA (buffer A) and loaded on a Q Sepharose

FF column (Amersham) equilibrated in buffer A and eluted

with a linear gradient to 50 mM Tris pH 7.0, 1 M KCl, 1 mM

DTT, 10 mM EDTA. The fractions containing S100A16

were collected, added to 2 mM CaCl2, and dialyzed against

50 mM Tris pH 7.4, 200 mM KCl, 1 mM DTT, 2 mM CaCl2
(buffer B). The protein was then purified through hydro-

phobic exchange with a HiPrep phenyl FF column (Amer-

sham) equilibrated in buffer B and eluted with 50 mM Tris

pH 7.4, 200 mM KCl, 1 mM DTT, 5 mM EDTA. A final

purification step was performed with size-exclusion

chromatography on a HiLoad Superdex 75 16/60 column

(Amersham) equilibrated with 20 mM 2-morpholinoetha-

nesulfonic acid (MES) pH 5.5, 200 mM KCl, 1 mM DTT,

1 mM Pefabloc. Protein expression and purity were checked

at every step by sodium dodecyl sulfate polyacrylamide gel

electrophoresis in 17% polyacrylamide after staining of

protein bands with Coomassie blue R-250 against protein

marker (Novagen).

Samples of 15N- and 13C,15N-enriched S100A16 protein

were produced as described above except for the use of M9

minimal medium containing (15NH4)2SO4 and 13C-glucose

as the sole nitrogen and carbon sources.

To express the selenomethionine-labeled S100A16 pro-

tein, the recombinant expression vector pET21a(?) was

transformed into the methionine-auxotrophic E. coli

B834(DE3). Cells were grown overnight in 150 mL of

selenomethionine medium base supplemented with seleno-

methionine nutrient mix (Molecular Dimensions) and

L-methionine (40 mg L-1). After collection by centrifugation,

cells were washed twice with water, resuspended in 1.0 mL

water, and added to 1.5 L of the above-mentioned medium

supplemented with L-selenomethionine (40 mg L-1). Cells

were grown and induced as described above. The recombi-

nant selenomethionine-labeled S100A16 protein was puri-

fied as for the native protein except that all buffers were

degassed and included a reducing reagent to avoid oxidation

of selenomethionine, and a chelator to remove traces of

metals that could catalyze oxidation. Full incorporation of

selenomethionine was confirmed by mass spectrometry

(calculated 11,764.2 Da; observed 11,762.05 Da).

Crystallization, data collection, and structure

determination

Crystallization trials on apo wild-type S100A16 and its

selenomethionine derivative were performed by the sitting

drop method from a solution containing 0.2 M potassium

citrate and 20% PEG3350 at 20�C. Hexagonal crystals

started to grow overnight.

Scheme 1 Amino acid sequence of S100A16. The residues involved in calcium(II) coordination are highlighted
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Several diffraction experiments at -173 �C were per-

formed using synchrotron light radiation. Single-wave-

length anomalous diffraction measurements were carried

out on the selenium edge wavelength (0.976 Å) at beam-

line XRD-1 at ELETTRA (Trieste, Italy), and the high-

resolution monochromatic data collection was performed at

beamline BW7A at DESY-EMBL (Hamburg, Germany).

The selenomethionine derivative crystal diffracted to

2.5-Å resolution and the native crystal diffracted to 2.1-Å

resolution; the crystals belonged to the hexagonal space

group P61 (see below) with four molecules (i.e., two

functional dimers) in the asymmetric unit and a solvent

content of about 55%. The data were collected by the

rotation method using 0.5� steps. The two datasets were

processed using MOSFLM [15] and scaled using SCALA

[16, 17] and both showed a percentage of merohedral

twinning of about 10%. The statistics are shown in Table 1.

The analysis of the anomalous Patterson map performed

with the program SHELXD [18, 19], using the tenfold

redundant dataset collected at the selenium edge (0.976 Å),

provided the positions of eight selenium atoms corre-

sponding to two methionines per monomer. The pre-

liminary phases obtained (figure of merit 0.25) were then

improved by density modification to a figure of merit of

0.75 using a solvent content of 55% with the program

autoSHARP [20, 21]. The first chain tracing after phase

refinement performed by ARP/wARP [22] was able to trace

180 residues in the electron density map out of 412; the

phases so obtained were then merged with the structure

factors of the higher-resolution native dataset and fed into a

new chain tracing procedure with BUCCANEER [23],

which yielded about 350 residues. The remaining residues

were then added and all the side chains were placed

manually using XtalView [24]. This procedure was applied

to both the possible space groups P61 and P65. The latter

yielded only a small number of residues traced. Therefore,

the correct space group was identified as P61.

Refinement was carried out using REFMAC5 [17, 25]

on the native dataset making use of NCS and TLS restraints

and taking twinning into account. Between refinement

cycles, the model was subjected to manual rebuilding using

XtalView [24]. Water molecules were added using the

standard procedure within ARP/wARP [22]. The stereo-

chemical quality of the refined model was assessed using

the program Procheck [26]. The Ramachandran plot was of

good quality with no residues in the disallowed regions.

The coordinates and structure factors were deposited in

the Protein Data Bank under accession code 3NXA.

It is worth mentioning that previous attempts to solve

the structure by molecular replacement were unsuccessful.

This was not due to a low structural homology of the

models used as templates, but to the presence of pseudo-

symmetry, due to the fact that the noncrystallographic axis

relating the two dimers in the asymmetric unit is close to

one of the crystallographic axes. An additional problem is

caused by the simultaneous presence of 9–10% merohedral

twinning with the operator k, h, -l. The latter factor also

accounts for Rcryst and Rfree values which are higher than

might be expected from the data resolution.

Isothermal titration calorimetry

Calcium(II) binding to S100A16 was characterized by

measuring the heat changes during the titration of CaCl2
into the protein solution using a MicroCal (Northampton,

Table 1 Data collection and refinement statistics of the single-

wavelength anomalous diffraction (SAD) and remote datasets

SAD dataset Remote dataset

Synchrotron beamline

(detector)

XRD-1 at ELETTRA

(MarCCD)

BW7A at DESY-EMBL

(MarCCD)

k (Å) 0.976 1.006

Spacegroup P61 P61

Cell dimensions (Å) a = b = 155.96

c = 37.09

a = b = 156.57

c = 38.14

Resolution (Å) 51.0–2.5 (2.64–2.50) 39.1–2.1 (2.21–2.10)

Total reflections 184,676 (17,630) 340,648 (20,115)

Unique reflections 21,191 (2,821) 29,230 (3,660)

Overall completeness (%) 96.0 (87.4) 91.6 (79.4)

Anomalous completeness

(%)

87.1 (58.9) –

Rsym (%)a 8.8 (42.3) 9.2 (39.9)

Rpim (%)b 4.4 (23.3) 2.6 (17.9)

Ranom (%)c 5.9 (22.2) –

Multiplicity 8.7 (6.2) 11.7 (5.5)

hI/r(I)i 5.4 (1.8) 6.0 (1.8)

B factor from Wilson plot

(Å2)

41.3 29.5

Phases FOM before density

modification

0.25 –

Phases FOM after density

modification

0.75 –

Refinement statistics

Resolution (Å) 39.1–2.1 (2.15–2.10)

Reflections in working set 26,651 (1,666)

Reflections in test set (9%) 2,650 (173)

Rcryst/Rfree (%) 24.7 (32.9)/29.8 (37.8)

Protein atoms 2,994

Water molecules 96

RMSD bonds (Å) 0.07

RMSD angles (deg) 4.4

Average B factor (including metals) (Å2) 52.50

Residues in most favored/additional allowed/

generously allowed/disallowed regions (%)

88.7/10.1/1.2/0.0

Numbers in parentheses refer to the high-resolution shell

FOM figure of merit, RMSD root mean square deviation
a Rsym ¼

P
h

P
l jIhl�iIhhj=

P
h

P
l Ihi h

b Rpim ¼
P

h

P
l

1
nh�1

� �1
2

Ihl � Ihi hj j=
P

h

P
l Ihi h

c Ranom ¼
P

hkl I hklð Þh i � I �h� k � lð Þh ij j=
P

hkl I hklð Þh i þ I �h� k � lð Þh ið Þ
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MA, USA) VP titration calorimeter. S100A16 and CaCl2
solutions were centrifuged and degassed under vacuum

conditions and equilibrated at 37 �C before titration. The

sample cell contained 0.2 mM S100A16 dissolved in

20 mM MES buffer (pH 5.5) with 200 mM KCl; the ref-

erence cell contained water. The solution of 10 mM CaCl2
was prepared in the same buffer used in the cell sample.

Upon equilibration, titrations were performed by injecting

7-lL aliquots of 10 mM ligand (CaCl2) into a 0.2 mM

solution of S100A16 using the default injection rate with a

300-s interval between each injection to allow the sample

to return to the baseline. The resulting titration curves were

corrected using the protein-free buffer control.

NMR spectroscopy and solution structure

determination

All NMR experiments for assignments were performed at

25 �C with a Bruker 500 MHz spectrometer equipped with a

cryoprobe. Apo and calcium(II)-loaded S100A16 samples

(0.6 and 0.8 mM, respectively) were 13C,15N-labeled, in

20 mM MES, 200 mM KCl, and 1 mM DTT buffer (pH

5.5), containing 10% D2O. Sequential assignments of the

backbone resonance were achieved via HNCO, HNCA,

CBCA(CO)NH and HNCACB spectra. Side chain assign-

ments were performed through 3D (H)CCH total correlation

spectroscopy, HBHA(CBCACO)HN together with 13C

nuclear Overhauser effect spectroscopy (NOESY) hetero-

nuclear single quantum coherence (HSQC) and 15N-NOESY

HSQC experiments. Proton–proton distance restraints were

derived from the analysis of 2D-NOESY, 15N-NOESY-

HSQC, and 13C-NOESY-HSQC spectra acquired with a

Bruker 900 MHz spectrometer equipped with a cryoprobe.

The spectra were processed using TOPSPIN 2.0 and ana-

lyzed with CARA [27]. Backbone dihedral angles were

obtained from TALOS? [28] from the chemical shifts of N,

HN, Ha, C, Ca, and Cb nuclei. The structures were calculated

using the program CYANA-2.1 [29, 30] by imposing the

dimer symmetry constraint (noncrystallographic symmetry

constraint). The two subunits in the dimeric structure were

linked together through a chain of dummy atoms with zero

van der Waals radii. The calcium(II) ions were included in

the calculation of the calcium-loaded form by adding new

residues in the amino acid sequence. Four chains of dummy

atoms with zero van der Waals radii, which can freely

penetrate into the protein, each of them ending with one

atom with a radius of 1.8 Å, which mimics the calcium ion,

were included for this purpose. Protein ligand atoms were

linked to the metal ion through upper distance limits of 3 Å,

according to the structure of S100A13.

The best 30 structures out of the calculated 350 struc-

tures of the CYANA family were then subjected to

restrained energy minimization with AMBER 10 [31].

Nuclear Overhauser effect (NOE) and torsion angle

restraints were applied with force constants of 50 kcal

mol-1 Å-2 and 32 kcal mol-1 rad-2, respectively. The

programs PROCHECK-NMR [32] and WHATIF [33] were

used to evaluate the quality of the structures.

Calcium(II) titration was performed with a Bruker

600 MHz spectrometer at 25 �C with 356 lM apo-

S100A16 sample. 1H–15N HSQC spectra were acquired for

different Ca2? concentrations in solution (0.1, 0.2, 0.4, 0.8,

1.6, 3.2, 6.4, and 12.8 mM).

The coordinates of the apo and calcium(II) solution

structures were deposited in the Protein Data Bank under

accession codes 2L50 and 2L51, respectively.

Zinc(II) titrations were also performed on both apo-

S100A16 and calcium-bound S100A16 with the same

experimental conditions as for the calcium(II) titration.
1H–15N HSQC spectra were acquired for different Zn2?

concentrations in solution (0.1, 0.3, 0.5, 1, 2, 4, and 8 mM).

Heteronuclear relaxation measurements

15N-R1, R2, and steady-state heteronuclear 1H–15N NOEs

were measured using a 700 MHz spectrometer using

standard pulse sequences [34, 35], at 25 �C. The longitu-

dinal (R1) and transverse (R2) relaxation rates were deter-

mined by fitting the cross-peak intensities as a function of

the delay to a single-exponential decay through the stan-

dard routines of the Sparky program [36]. The heteronu-

clear NOE values were obtained from the ratio of the peak

height for 1H-saturated and unsaturated spectra. The het-

eronuclear NOE values and their errors were estimated by

calculating the mean ratio and the standard error from the

available data sets. R1, R2, and NOE values were obtained

for 91 out of the 102 assigned backbone NH resonances for

both the apo and the calcium forms. Estimates of the

reorientation time were then calculated with the model-free

approach [37] and S2 values were calculated with the

program TENSOR2 [38]. Theoretical predictions of NH R1

and R2 values for apo-S100A16 and calcium(II)-loaded

S100A16 were calculated using HYDRONMR [39].

Results

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) experiments were

performed to investigate the binding of calcium(II) ions.

The binding between apo-S100A16 and Ca2? is endo-

thermic and the reaction proceeds with a positive change in

enthalpy. The ITC curve obtained, shown in Fig. 1, is

hyperbolic. The best-fit analysis performed using the one

binding site model yields an apparent dissociation constant
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123



of approximately (2.7 ± 0.2) 9 10-4 M, with 1.88 ± 0.08

binding sites per subunit. The same data were also ana-

lyzed with a sequential binding sites model, assuming the

presence of two different calcium binding sites per subunit.

The analysis with the two binding sites model provided

relatively similar DH and dissociation constant values,

without any significant improvement in the quality of the

fit. Therefore, ITC data provide a single binding constant,

as previously reported [13] and of similar value, but also

suggest the possibility that calcium(II) binding could

actually involve both sites in a cooperative way.

NMR resonance assignments

The 1H–15N-HSQC NMR spectra showed well-dispersed

signals in both dimensions, which indicated that S100A16

is well folded in both the apo and the calcium-loaded

states. All the backbone resonance signals were assigned,

except those for Tyr-20 and His-95 in apo-S100A16,

Val-23 and Lys-35 in calcium(II)-loaded S100A16, and

Ser-2, Lys-32, and Pro-89 in both forms.

Ca2? titration of apo-S100A16

The binding of calcium(II) to apo-S100A16 was monitored

by following the changes in the 1H–15N-HSQC NMR

spectra of 15N-labeled apo-S100A16 (Figs. S1, S2). The

intensity of most peaks in or around both calcium binding

regions (from Ser-24 to Ser-34 and from Asp-67 to Glu-78)

decreased immediately after the addition of Ca2?, becom-

ing invisible even before reaching a 1:1 ratio between

calcium(II) and S100A16. New peaks with increasing

intensity then appeared with different chemical shifts when

excess Ca2? was added, up to a S100A16-to-calcium(II)

ratio of about 1:10. This behavior is indicative of an

intermediate exchange regime. In contrast, some other

peaks continuously changed their chemical shifts upon

increasing the Ca2? concentration up to a 1:10 S100A16-

to-calcium(II) ratio, as for systems in the fast exchange

regime. These peaks were those experiencing a minor

chemical shift perturbation. No peaks showed the typical

behavior of the slow exchange regime. The analysis of the

chemical shift titration thus indicates that calcium ions

perturb several residues in both calcium(II)-binding loops.

Figure S3 shows the change in chemical shift during

titration of some fast-exchanging residues, and the corre-

sponding best-fit curves. A dissociation constant of about

3 9 10-4 M can be estimated assuming a cooperative

binding model, as found from ITC measurements. This

value is in agreement with the value obtained from ITC,

and again suggests the presence of two binding sites for

calcium(II). Note that both fast-exchanging residues and

intermediate-exchanging residues belong to both calcium-

binding loops, as the different exchange behavior during

the titration depends on the difference in the chemical shift

of the apo and calcium forms of the different residues.

Figure 2 shows the chemical shift perturbation on passing

from the apo to the calcium(II) form of S100A16. The changes

(with an average value of 0.11 ppm) are smaller than for other

S100 proteins (average values of, e.g., 0.5 ppm for S100A5

and 0.37 ppm for S100A13). The residues undergoing the

largest changes in chemical shifts are located in the two EF-

hand loops, the calcium binding sites. The small chemical shift

perturbation experienced by residues not belonging to the

metal binding sites indicates that the conformational changes

occurring between the apo and the calcium-bound forms are

smaller than those observed for other S100 proteins.

15N relaxation measurements

The relaxation parameters for apo-S100A16 and calcium-

loaded S100A16 are shown in Fig. 3. The reorientation times

Fig. 1 Isothermograms for the binding of S100A16 to Ca2?. The raw

data and the fit to the one binding site model are reported in the upper
panel and the bottom panel, respectively. The fit performed using a

sequential two binding sites model is of similar quality. Appropriate

background corrections were made to account for the heats of dilution

and ionization. All experiments were performed at 25�C
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corresponding to the observed relaxation rates were calcu-

lated to be 12.3 ± 1.5 and 12.3 ± 1.8 ns for the apo and

calcium-loaded forms of S100A16, respectively, indicating

that the protein is dimeric in both forms, and in agreement

with the molecular weight and the reorientation times

observed for other S100 homodimeric proteins [40–44].

In both apo-S100A16 and calcium-loaded S100A16, the

first residues in the N terminus and the residues in the C

terminus are poorly structured as a result of their fast

internal mobility, revealed by the small or negative NOE

values, as well as by the large R1 and the small R2 values.

Fast motion is also detected for some residues at the

beginning of helix II (Ser-37, Phe-38 in the apo form; Ser-

36, Phe-38 in the calcium form). Sizable motion is detected

for loop L1 of the N-terminal EF-hand motif and linker L2

between the two EF-hand motifs.

Upon calcium binding, several residues are subject to an

increase in mobility. Faster internal motions are present in

loop L1 (the 1H–15N-NOE values decrease with respect to

the apo form), whereas the residues at the end of helix IV

(Gly-84, Ile-86, Ile-90, and Ala-91) and Asp-67 experience

motions on a slower timescale, as indicated by the signif-

icantly larger R2 value compared with the average values

observed for the other residues. A reduction in mobility is,

in contrast, observed upon calcium binding for the residues

in loop L3 of the C-terminal EF-hand motif.
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Solution structure of apo-S100A16 and calcium-loaded

S100A16

The solution structures of human S100A16 in the apo and

calcium-loaded forms were calculated from a total of 1,177 and

1,167 meaningful intrasubunit upper distance limits and 89 and

94 intersubunit upper distance limits for the apo and calcium

forms, respectively. Few NOE patterns were detected for the

residues in loop L1 between helix I and helix II and at the C

terminus, consistent with the observed mobility in these

regions. In the calcium form, the Ca2? ions were restrained to be

within 3 Å from the oxygen ligand atoms (O of Val-23, Tyr-26,

Leu-28, and Lys-32 for the N-terminal Ca2? binding site; OD1

of Asp-67 and Asn-69; OD1 and OD2 of Asp-71; O of Arg-73;

OE1 and OE2 of Glu-78 for the C-terminal Ca2? binding site).

Since no unique NOEs were detected for one subunit and

not for the other, the calculations were performed by

imposing the dimer symmetry constraint into the CYANA

calculation. The root mean square deviation (RMSD) from

the mean structure for the structured regions of the dimeric

protein is 0.8 ± 0.1 Å (backbone) and 1.2 ± 0.1 Å (heavy

atoms) for apo-S100A16 (residues 7–23, 35–97 of both

subunits) and 0.7 ± 0.2 Å (backbone) and 1.1 ± 0.1 Å

(heavy atoms) for calcium(II)-loaded S100A16 (residues

7–23, 35–97 of both subunits). PROCHECK-NMR and

WHATIF programs were used to validate the structures on

the Web site https://nmr.cmbi.ru.nl/icing/iCing.html. More

than 98% of the residues in both apo and calcium(II) structure

families were located in the allowed regions of the Rama-

chandran plot. The statistical analysis is reported in Table 2.

The not excellent quality is common to many S100 proteins,

probably owing to the property of this class of proteins (and of

other signaling proteins based on the EF-hand domain) to

change conformation depending on the calcium state. The

relaxation rates calculated with HYDRONMR [39] from the

minimized mean structures under the assumption of no

internal motions, shown in Fig. 3, are in overall agreement

with the averaged experimental values. This confirms that the

protein is dimeric. On the other hand, the differences between

the calculated and observed relaxation rates make it easier to

appreciate the presence of mobility for some residues (see

‘‘15N relaxation measurements’’) [45–51].

The calculated families of structures are shown in Fig. 4.

In both forms, the four helices of the two EF-hand motifs of

each subunit are well defined, whereas loop L1 of the fist EF-

hand motif is less well defined. These results are in line with

the relaxation results. Helix IV is interrupted by residue Pro-

89, after which the helical arrangement starts again.

Crystal structure of apo-S100A16

The crystal structure of apo-S100A16 was solved as

described in the ‘‘Materials and methods.’’ The statistics

are reported in Table 1. The structure generally shows a

well-defined electron density map for the four helices of

the two EF-hand motifs of each subunit except for residues

from 51 to 71 of monomer D, comprising helix III and part

of the loop between helix III and IV. This is consistent with

a very high degree of mobility of these regions in the

crystal lattice, as also indicated by the B factors. To obtain

reasonably low R values, the geometry weight had to be

lowered in the refinement procedure, and this resulted in

Table 2 Structural restraints and statistical analysis

Apo-

S100A16

Ca(II)-

S100A16

NOE upper distance limits

Intrasubunit 1,177 1,167

Intraresidue 510 560

Interresidue

Sequential (|i - j| = 1) 288 288

Medium range (|i - j| \ 4) 236 224

Long range (|i - j| [ 5) 143 95

Intersubunit 89 94

Dihedral angle restraints per subunit

u 64 62

w 64 62

Average RMSD from the mean (Å)

Backbone 1.2 ± 0.2a 1.1 ± 0.3a

0.8 ± 0.1b 0.7 ± 0.2b

Heavy 1.7 ± 0.3a 1.7 ± 0.4a

1.2 ± 0.1b 1.1 ± 0.1b

Residual CYANA target function (Å2) 0.7 ± 0.1 0.7 ± 0.1

Structure analysis

Residues in most favorable regions (%) 82.1a 81.5a

87.5b 87.2b

Residues in allowed regions (%) 13.9a 14.1a

11.2b 11.4b

Residues in generously allowed regions (%) 2.2a 2.7a

0.7b 0.9b

Residues in disallowed regions (%) 1.8a 1.7a

0.6b 0.5b

Structure Z scores

2nd-generation packing quality -2.6 ± 0.3 -2.5 ± 0.4

Ramachandran plot appearance -4.7 ± 0.5 -4.4 ± 0.4

v1/v2 rotamer normality -5.7 ± 0.3 -5.3 ± 0.4

Backbone conformation -0.8 ± 0.5 -0.7 ± 0.5

RMS Z scores

Bond length 1.187 ± 0.002 1.184 ± 0.003

Bond angles 0.83 ± 0.01 0.86 ± 0.02

Omega angle restraints 1.9 ± 0.1 2.0 ± 0.2

Side chain planarity 2.1 ± 0.3 2.0 ± 0.2

Improper dihedral distribution 1.27 ± 0.05 1.33 ± 0.05

Inside/outside distribution 1.04 ± 0.03 1.01 ± 0.01

NOE nuclear Overhasuer effect, RMS root mean square
a Values were calculated in the sequence range 7–95 of both subunits
b Values were calculated in the sequence ranges 7–23 and 35–95 of both

subunits
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rather high RMSD for bond lengths and angles. Twinning

(mainly) and pseudosymmetry (partially) are likely the

reasons for this deviation from standard statistics for a

crystal structure of analogous resolution.

The superposition between the mean NMR apo structure

and the X-ray structure shows that the solution and solid-

state structures of apo-S100A16 are in overall agreement,

with the exception of loop L1 and loop L3 regions, as

shown in Fig. 5. The mean backbone RMSD between the

two structures of each subunit is 2.6 Å in the whole range

of protein residues, but if we consider only the sequence

ranges 7–23 and 35–95, it decreases to 1.7 Å, and if we

exclude the two above-mentioned regions (residues 24–34

and 66–73), besides the very first and last residues at the N

terminus and C terminus, which are intrinsically mobile,

the RMSD decreases to 1.3 Å, indicating that the structures

are in good agreement (Fig. 5). Furthermore, the dis-

agreement is mainly due to local discrepancies rather than

to overall changes in the interhelical angles (see Table 3).

Zn2? and Cu2? titration of apo-S100A16

After addition of Zn2? to apo-S100A16, the peak intensity

of the residues located in the hinge loop, in the turn region

of the last helix, and at the N terminus started decreasing

appreciably at a S100A16-to-zinc(II) ratio of 1:1, and some

peaks disappeared when a 1:3 ratio was reached. No new

peaks appeared during the whole titration, and all other

peaks remained unperturbed. Similar changes were

observed during the zinc(II) titration of calcium(II)-loaded

S100A16.

S100A16 should thus bind zinc(II) with low affinity

[dissociation constant greater than 10-4 M for the apo form

and even larger for the calcium(II) form]. Some residues in

the hinge loop (His-48) and at the N terminus (Cys-4, Glu-

9) of the other subunit may constitute the Zn2? ligands.

Copper(II) titration of apo-S100A16 was also attempted

but the protein immediately precipitated after addition of

copper(II).
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Discussion

In both apo-S100A16 and calcium-loaded S100A16,

dimerization mostly occurs through interactions between

helices I, I0, IV, and IV0, which form an X-type helix

bundle. Hydrophobic residues Trp-80 and Ile-83 in helix

IV make several contacts with Leu-8, Val-12, and Leu-15

in helix I0 and with Trp-80 and Ile-83 in helix IV0 of the

other subunit. Residues Glu-45, Leu-46, His-48, and Met-

49 in the hinge loop between helices II and III also make

contacts with residues near the N terminus of helix I0 of the

other subunit. In the S100A16 dimer, all these interactions

align helices I and IV in opposite directions to helices I0

and IV0, respectively.

The overall fold of the protein in the apo form is in

agreement with the previously known structures for other

S100 proteins [41, 44, 49, 52–54]. However, and differently

from most of the other S100 proteins, it is apparent that after

calcium binding S100A16 does not undergo any major

conformational changes. Indeed, the backbone RMSD

between the apo and the calcium(II)-loaded solution struc-

tures in the structured regions of the dimer (7–23, 35–95

of both subunits) is only 1.6 Å (Fig. 6). The C-terminal

EF-hand motif does not move to the open conformation

upon calcium(II) binding as shown experimentally, for

instance, by the presence of strong NOEs between Ala-59

in the third helix and Ile-86 in the fourth helix.

The largest change in the solution structure of S100A16

upon calcium binding is in the angle between helices II and

III, which varies from 157 ± 5� in the apo form (163 ± 2�
in the crystal structure) to 144 ± 4� in the calcium-loaded

form (see Table 3). The angles are measured by defining

the directions of the a-helices in each EF-hand motif from

the eight residues immediately preceding and following

each EF-hand loop [55]. For solution structures, such val-

ues are calculated from the mean NMR structure and the

corresponding errors from the standard deviation observed

within the structures of the families. The approximately

15–20� difference in the angle between helices II and III

upon calcium coordination is significantly smaller than that

measured for S100A13 (40�), which is the closest neighbor

of S100A16 in the phylogenetic tree.

The angle between helices III and IV is 148 ± 3� in the

apoprotein (153 ± 1� if measured in the apo crystal

structure), as expected for the almost antiparallel arrange-

ment typical of EF-hand motifs in the absence of calcium.

In other S100 proteins, such as S100A3, S100A5, and

S100A13, such an angle typically changes by 30–50� upon

calcium binding [44, 49], so the two helices become almost

perpendicular [53, 56–58]. In contrast, in the calcium-

loaded S100A16, the angle between helices III and IV is

150 ± 4�, so they remain almost antiparallel. Corre-

spondingly, helices I and I0 and helices IV and IV0 make

similar angles in both the apo and the calcium forms, dif-

ferently from most S100 proteins.

As shown in Fig. 6, there is a significant conformational

difference at the C terminus between the mean solution

structures of S100A16 in the apo and calcium forms. This

difference is due to the large mobility in solution of the

residues after the last helix.

As already seen, the differences between the X-ray

structure and the NMR structure of apo-S100A16 are

mainly in the loops and in the N-terminal and C-terminal

regions, due to disorder of these protein regions in solution,

in this case likely due to mobility. The global orientation of

the helices is, in contrast, very similar, as shown in

Table 3. The global orientation of the helices is actually the

main criterion to judge how much conformational change

takes places.

The superposition of the NMR structure onto the crystal

structure and the following symmetry expansion (coherently

Table 3 Angles between different helices, the directions of which

are defined by the eight residues immediately preceding or following

each EF-hand loop, calculated from the mean solution NMR structure

(the errors are calculated from the standard deviations within the 30

structures of the families)

Apo-S100A16 (deg) Ca(II)-S100A16 (deg)

I–II 136 ± 3 (128 ± 2) 142 ± 4

I–III 56 ± 4 (64 ± 3) 59 ± 4

I–IV 118 ± 3 (116 ± 1) 114 ± 4

II–III 157 ± 5 (163 ± 2) 144 ± 4

II–IV 52 ± 6 (37 ± 1) 60 ± 6

III–IV 148 ± 3 (153 ± 1) 150 ± 4

I–I0 136 ± 3 (154 ± 1) 138 ± 6

IV–IV0 156 ± 4 (158 ± 2) 166 ± 4

The values in parentheses refer to the angles calculated from the X-

ray structure
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with the crystallographic symmetry) does not show any

significant difference in the crystal packing contacts with

respect to those present in the crystal structure. This implies

that the structural differences in the above-mentioned

regions in the solid state are not due to packing contacts but

are related to an intrinsic mobility of those regions.

A principal component analysis of the six interhelical

angles representing the reciprocal orientation of the four

helices [55] clearly shows the peculiar features of S100A16

within the EF-hand family. With use of the first two prin-

cipal components, it is found that EF-hand proteins are

clearly clustered into two subgroups (closed and open)

which are characterized by the protein metal content, i.e.,

the apo and calcium-loaded forms. The principal compo-

nent values for the two forms of S100A16 in solution were

calculated from the interhelical angles reported in Table 3

and plotted together with the values previously calculated

for all the other S100 proteins [49] (Fig. 7), by using the

same coefficients for the interhelical angles reported in

Babini et al. [55]. The principal component plot shows that

apo-S100A16 is regularly positioned with respect to the

other apo S100 proteins, whereas in the calcium-loaded

form it is still located in the subgroup corresponding to

the closed structures in the apo state. Therefore, and at

variance with all the other S100 proteins, the calcium-

loaded form maintains a similar overall arrangement as the

apo form. It is to be noted that the only other S100 proteins

not regularly placed in the principal component plot are

calbindin D9k and S100A10. However, and at variance with

S100A16, for both of them the apo form maintains an

arrangement similar to that of the calcium-loaded form. In

other words, calbindin D9k and S100A10 are already in the

open conformation even in the absence of calcium,

whereas, in contrast, S100A16 is the first example of a

calcium-loaded form which remains almost as closed as the

apo form.

In most S100 proteins the two calcium binding sites are

the classic EF-hand C-domain binding site and the S100-

specific N-domain binding site. The former contains highly

conserved calcium ligand residues at positions 1, 3, 5, 7,

and 12, and has a larger affinity for the metal. The latter is a

14-residue motif where the calcium ligands are the back-

bone oxygen atoms of the residues at positions 1, 4, 6, and

9 and, in most cases, two side chain oxygen atoms of the

residue at position 14 (usually Glu). The N-domain binding

site of S100A16 lacks the glutamate at this last position

(see Scheme 1). This is expected to sizably decrease the

calcium binding affinity, because two important ligands are

missing. Furthermore, the N-terminal EF-hand comprises

15 amino acids instead of 14, owing to the insertion, unique

for S100A16, of residue Leu-28, and the ligand at position

9 is replaced by a ligand at position 10. S100A16 has been

reported to bind one calcium(II) ion only for each subunit,

i.e., that in the C-terminal EF-hand, through flow dialysis

experiments (buffer 50 mM Tris–HCl, pH 7.5, 500 mM

KCl) [13]. The present study suggests that in our conditions

S100A16 indeed retains the ability to bind a calcium ion

(with low affinity) also in the N-terminal EF-hand motif

even without the glutamate at position 14. The calcium

titration followed by NMR spectroscopy indicates that

most of the residues on both calcium binding sites are in an

intermediate or fast exchange regime. Chemical shifts

changed until 10 equiv of calcium(II) per subunit was

added, pointing out the low binding affinity for both sites.

The present observations allow us to make some general

comments on the energetics involved in the calcium-trig-

gered conformational changes that characterize the func-

tional role of S100 proteins. To do so, reference can be

made to Fig. 8a, where the calcium binding and the con-

formational changes are separated. As illustrated in the

figure, the equilibrium constant K for the apo closed form

and the calcium(II) open form is the product of the equi-

librium constant for the apo and the calcium forms in the

closed state (K1) multiplied by that for the closed and open

forms in the calcium(II)-bound state (K3): K = K1 K3

(=K2K4). For ‘‘normal’’ S100 proteins, K2 \ 1 (i.e., the apo

closed form is more stable, see Fig. 8b) and K3 � 1 (i.e.,
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Fig. 7 Principal component plot for the S100 proteins derived from

principal component analysis of the six interhelical angles. Apopro-

teins (S100A1, S100A2, S100A3, S100A4, S100A5, S100A6,

S100A10, S100A11, S100A13, S100A16, S100B, calbindin D9k)

are indicated with open circles and calcium(II)-bound proteins

(S100A1, S100A4, S100A5, S100A6, S100A7, S100A8, S100A9,

S100A12, S100A13, S100A16, S100P, S100B, calbindin D9k) are

indicated with solid circles. The two open symbols not regularly

placed with respect to the other correspond to calbindin D9k and

S100A10 in the apo form. The solid symbol not regularly placed with

respect to the other corresponds to S100A16 in the calcium(II)-bound

form. The data are based on the structural information reported in

Table 3 and on data reported in Bertini et al. [49]. PC1 first principal

component, PC2 second principal component
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the calcium open form is more stable). In the case of cal-

bindin D9k, the apoprotein is more stable in the open form

(K2 [ 1), i.e., in a ‘‘calcium-ready’’ form (Fig. 8c).

Therefore, calcium binding is enhanced, as K4 � 1. Con-

versely, S100A10, which also exists as apoprotein in a

‘‘calcium-ready’’ form, has lost its ability to bind calcium.

It has been speculated that S100A10 is a structural protein

that needs to always be in the open form and does not need

to be opened by a signal, and therefore has lost its ability to

bind calcium. Indeed, the first putative binding loop lacks

three residues and cannot bind Ca2? [59], and some amino

acid replacements in the second putative binding loop

(Asp-Cys at position 61, Glu-Ser at position 70 with

respect to calbindin D9k) hamper the ability of this loop to

bind calcium [60]. S100A10 is in fact in a permanently

activated state, having hydrophobic residues exposed even

in the absence of Ca2? [60, 61], which allow the protein to

act as a linker tethering certain transmembrane proteins to

annexin A2 and thereby assisting their traffic to the plasma

membrane and/or their firm anchorage at certain membrane

sites [62]. So, for both calbindin D9k and S100A10, K2 [ 1.

The case of S100A16 investigated here is an unprecedented

case of K3 \ 1, i.e., the closed calcium-loaded form is

more stable (Fig. 8d). This, of course, implies that K1 [ 1,

despite the fact that the collective binding of the two cal-

cium ions is relatively weak. In turn, this suggests that

K1 [ 1 also for the ‘‘normal’’ S100 proteins, and that their

higher calcium affinity is due to a favorable combination of

both K1 [ 1 and K3 [ 1. In other words, S100A16 is

somehow the opposite of calbindin D9k. Whereas in normal

S100 proteins calcium binding is described by the product

K = K1 K3, in the case of calbindin D9k and S100A16

calcium binding is only described by either K4 or K1,

respectively. The relatively small calcium affinity of

S100A16 is thus due to the low value of K3, which makes

the binding only dependent on K1.

The presence of hydrophobic interactions represents an

important factor in moving the equilibrium between the

Apo, Closed form 

Calcium(II), Closed form 

Apo, Open form 

Calcium(II), Open form 

K1

K2

K3

K4

K

K=K1·K3=K2·K4
A

Apo,
closed 

G

Reaction coordinate 

Apo,
closed 

Apo, open 

Ca2+,
closed 

Ca2+, open 

G

Reaction coordinate 

Apo, 
closed 

Apo,
open 

Ca2+, closed 

Ca2+, open 

G

Reaction coordinate 

Apo, open 

Ca2+, closed 

Ca2+, open 

 “normal” S100  calbindin D9k S100A16
B C D

Fig. 8 Equilibrium constants

(a) and energy levels (b–d) for

the of open and closed forms of

the S100 structures in the apo

and calcium(II)-bound states.

Observable forms of ‘‘normal’’

S100 proteins (b), calbindin D9k

(c), and S100A16 (d) are

highlighted with dashed lines

 

90°

90°

90°

90°

Calcium(II)-loaded S100A16 

Apo S100A16 Fig. 9 Electrostatic surface

representation of the S100A16

dimer

254 J Biol Inorg Chem (2011) 16:243–256

123



open and the closed forms in EF-hand motifs. In S100

proteins this equilibrium depends mainly on the presence/

absence of interactions between the hydrophobic residues

of the third and fourth helices. In S100A16 the number of

hydrophobic residues present in the third helix is larger

than for other S100 proteins. In the closed form of

S100A16, strong interactions among hydrophobic residues

are actually present between the third helix (residues

Ala-58, Ala-59, Leu-62, Ile-63,and Leu-66) and the fourth

helix (residues Leu-82 and Ile-86). These interactions are

likely to make the closed structure of the second EF-hand

particularly stable, so even upon calcium(II) binding such a

conformation is not disrupted.

In S100A16, helix IV has the same length in both the

apo and the calcium-bound states, differently from some

other S100 proteins (S100A5, S100A6, and S100B), where

it is longer in the calcium(II)-bound form than in apo form

[49, 53, 63, 64]. The helix is interrupted and divided into

two short helices by an 84-89 (Gly-Gly-Ile-Thr-Gly-Pro)

sequence motif with three glycine residues and one proline

residue. In water-soluble proteins, proline is a potent helix

breaker [65]. It either breaks or kinks a helix because it

cannot donate an amide hydrogen bond, and because its

side chain sterically interferes with the backbone of the

preceding turn. This forces a bend of about 30� in the helix

axis [66, 67]. Furthermore, the glycine residues also tend to

disrupt helices because their high conformational flexibility

makes it entropically expensive to adopt the relatively

constrained a-helical structure and because they lack

hydrophobic stabilization [68].

Upon calcium binding, the global shape of the dimeric

protein changes, as a result of the structural differences, as

well as of the change in the distribution of surface charges.

The electrostatic potential surface calculation, the results of

which are shown in Fig. 9, was performed with MOLMOL

[69] after inclusion of the calcium(II) charge into the

AtomCharge setup file. Red and blue areas indicate nega-

tively and positively charged regions, respectively. On

passing from the apo to the calcium-loaded form, hydro-

phobic and positively charged residues are more exposed,

whereas negatively charged residues are somewhat less

exposed. These features may be important for the binding

capability of the protein in the two forms. In fact, each

S100 protein seems to show a peculiar surface charge and

hydrophobic distribution as well as different changes upon

calcium binding, ranging from exposing a more hydro-

phobic surface, to a larger negatively charged surface, or to

a different position of charged and hydrophobic residues on

the surface. This diversity is likely to be linked to the their

different target specificities.

In conclusion, we have shown that the homodimeric

structure of human S100A16 is subject to conformational

rearrangements upon calcium(II) binding that are much

smaller than those observed for most of the other S100

proteins. This is likely to be related to the weak binding

affinity of the protein for the calcium(II) ions, and to the

fact that the closed structure of the second EF-hand is

particularly stable in the presence of strong hydrophobic

interactions, so even upon calcium(II) binding such con-

formation is not disrupted.
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(1998) Biochim Biophys Acta 1448:254–263

15. Leslie AGW (1991) In: Moras D, Podjarny AD, Thierry J-C (eds)

Molecular data processing. Oxford University Press, Oxford

16. Evans PR (1993) Proceedings of the CCP4 study weekend. In:

Sawyer L, Isaacs N, Bailey S (eds) Data collection and pro-

cessing, pp 114–122

17. Collaborative Computational Project N (1994) Acta Crystallogr

D50:760–763

18. Schneider TR, Sheldrick GM (2002) Acta Crystallogr D

58:1772–1779

19. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

20. Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Methods Mol

Biol 364:215–230

21. Bricogne G, Vonrhein C, Flensburg C, Schiltz M, Paciorek W

(2003) Acta Crystallogr D 59:2023–2030

22. Perrakis A, Morris RJH, Lamzin VS (1999) Nat Struct Biol

6:458–463

23. Cowtan K (2006) Acta Crystallogr D 62:1002–1011

24. McRee DE (1999) J Struct Biol 125:156–165

25. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr

D53:240–255

26. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J

Appl Crystallogr 26:283–291

J Biol Inorg Chem (2011) 16:243–256 255

123



27. Keller R (2004) The computer aided resonance assignment

tutorial. CANTINA, Goldau

28. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) J Biomol NMR

44:213–223

29. Guntert P (2004) Methods Mol Biol 278:353–378

30. Herrmann T, Güntert P, Wüthrich K (2002) J Mol Biol
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