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1.1 Mitochondrion 

 

Mitochondria are ubiquitous and essential organelles found in the cytoplasm of almost 

all eukaryotic cells. They are responsible for several processes that are critical for cell 

viability. Mitochondria generate most of the cell's supply of adenosine triphosphate 

(ATP), used as a source of chemical energy1. In addition to supplying cellular energy, 

they are involved in a range of other processes, such as signaling, cellular 

differentiation, cell death, as well as the control of the cell cycle and cell growth2. 

Mitochondria have been implicated in several human diseases, including mitochondrial 

disorders and cardiac dysfunction3, and may play a role in the aging process.  

The number of mitochondria per cell varies widely by organism and tissue type. Many 

cells have only a single mitochondrion, whereas others can contain several thousand 

mitochondria; for example, in humans, erythrocytes do not contain any mitochondria, 

whereas liver cells and muscle cells may contain hundreds or even thousands. These 

organelles are rod-shaped and range in size from 0.5 to10 µm.  The structure is 

composed of compartments that carry out specialized functions. These compartments or 

regions include the outer membrane, the intermembrane space (IMS), the inner 

membrane, and the matrix (Fig. 1). The inner membrane is highly convoluted, forming 

folds called cristae. The cristae greatly increase the inner membrane's surface area for 

hosting the enzymes responsible for cellular respiration. Mitochondria also contain own 

DNA and ribosomes for protein synthesis which are localized to the matrix.  

 

1.1.a  Structure 

 

The outer membrane of mitochondria is a phospholipid bilayer, containing protein 

structures called porins which render it permeable to molecules of about 5 kDa or less 

(the size of the smallest proteins). Larger proteins can also enter the mitochondrion if a 

mitochondrial signaling sequence of the imported proteins binds to a large multisubunit 

protein called translocase of the outer membrane (TOM), which then actively moves 

them across the membrane4. Disruption of the outer membrane permits proteins in the 

intermembrane space to leak into the cytosol, leading to certain cell death5. 

The inner membrane is freely permeable only to oxygen, carbon dioxide, and water. Its 

structure is highly complex, and contains proteins with five types of functions: those 

that perform the redox reactions of oxidative phosphorylation, ATP synthase, which 
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Fig. 1: Schematic representation of a mitochondrion structure. 

generates ATP in the matrix, specific transport proteins that regulate metabolite passage 

into and out of the matrix, protein import machinery and mitochondria fusion and 

fission protein. The cristae greatly increase the total surface area of the inner membrane. 

The larger surface area makes room for many of the above-named functions than if the 

inner membrane were shaped like the outer membrane. 

The intermembrane 

space is the space 

between the outer 

membrane and the 

inner membrane. 

Because the outer 

membrane is freely 

permeable to small 

molecules, the 

concentrations of 

small molecules 

such as ions and sugars in the intermembrane space is similar to that in the cytosol. 

However, as large proteins must have a specific signaling sequence to be transported 

across the outer membrane, the protein composition of this space is different than the 

protein composition of the cytosol. 

The matrix contains dissolved oxygen, water, carbon dioxide, a highly-concentrated 

mixture of hundreds of enzymes, special mitochondrial ribosomes, tRNA, and several 

copies of the mitochondrial DNA genome.  

 

1.1.b Function 

 

The most important role of mitochondria is the production of ATP.. Mitochondria 

accomplish this functional role in the matrix by oxidizing pyruvate and NADH which 

are produced in the cytosol during glycolysis. Pyruvic acid is first oxidized by NAD+ 

producing NADH and it is then decarboyxlated producing carbon dioxide and acetyl-

CoA. The acetyl-CoA is fed into the citric acid cycle where NADH, FADH2 and 

protons are formed. The inner membrane contains 5 complexes that are very important 

for ATP production: NADH dehydrogenase, succinate dehydrogenase, cytochrome c 

reductase, cytochrome c oxidase and ATP synthase.  
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Mitochondria have other additional functions: regulation of the membrane potential, 

apoptosis- programmed cell death6, calcium signaling (including calcium-evoked 

apoptosis)7, cellular proliferation regulation8, regulation of cellular metabolism8, certain 

heme synthesis reactions9 and steroid synthesis10.  

 

1.1.c Diseases 

 

Mitochondrial diseases result from failures of the mitochondria which are present in 

every cell of the body except red blood cells. Diseases of the mitochondria appear to 

cause the most damage to cells of the brain, heart, liver, skeletal muscles, kidney and 

the endocrine and respiratory systems. Depending on which cells are affected, 

symptoms may include loss of motor control, muscle weakness and pain, gastro-

intestinal disorders and swallowing difficulties, poor growth, cardiac disease, liver 

disease, diabetes, respiratory complications, seizures, visual/hearing problems, lactic 

acidosis, developmental delays and susceptibility to infection. Mitochondrial and 

metabolic medical conditions are often referred to as mitochondrial cytopathies. 

Mitochondrial cytopathies actually include more than 40 different identified diseases 

that have different genetic features. The common factor among these diseases is that the 

mitochondria are unable to completely burn food and oxygen in order to generate 

energy. Mitochondrial disorders may be caused by mutations, acquired or inherited, in 

mitochondrial DNA (mtDNA) or in nuclear genes that code for mitochondrial 

components. They may also be the result of acquired mitochondrial dysfunction due to 

adverse effects of drugs, infections, or other environmental causes. There are no cures 

for mitochondrial diseases, but treatment can help reduce symptoms, or delay or prevent 

the progression of the disease. Certain vitamin and enzyme therapies like Coenzyme 

Q10, B complex vitamins, might be helpful for some patients. Other treatments that 

might be prescribed include diet therapy and antioxidant treatments as protective 

substances. 

 

1.2 Transolcation of proteins into mitochondria 

 

The most part of the mitochondrial proteome are synthetized on ribosomes in the 

cytosol and then imported into mitochondria. What guides these proteins to the right 
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mitochondrial compartments? The cytosolic precursors contain a targeting signals. 

These targeting signals can be distinguished in two classes: a cleavable presequence at 

the N-terminus or an internal targeting signal. The N-terminal targeting sequences are 

also called matrix-targeting sequences (MTSs) and they direct the preproteins into the 

matrix. They consist of 10-80 amino acid residues and in most of cases are 

proteolitically removed by the mitochondrial processing peptidase (MPP)11,12. 

Numerous mitochondrial preproteins, however, do not carry cleavable presequences, but 

contain internal signals in the mature protein part. Proteins of this type are for example 

the carrier proteins of the inner membrane, some intermembrane proteins and the outer 

membrane proteins13-15. The nature of these signals remains largely unknown. 

Once these proteins are targeted to the mitochondria, they translocate through the 

mitochondrial membranes, and sorted to the different mitochondrial subcompartments. 

These pathway are mediated by  specific 

machineries in the outer and inner 

mitochondrial membranes (Fig. 2). The 

delegated machineries are in particular the 

preprotein translocase of the outer membrane 

(TOM) that allows all types of preproteins to 

cross the outer membrane, and, in the inner 

membrane, there are two different 

translocases: the presequence translocase 

(TIM23 complex), which works with the 

matrix  molecular chaperone Hsp70, allowing 

the preprotein translocation into the matrix 

and the carrier translocase (TIM22 complex) 

that mediates the insertion of hydrophobic 

proteins into the inner membrane. Apart from 

the TOM complex, in the outer membrane there is another complex (TOB/SAM 

complex), that catalyzes the membrane insertion and assembly of β-barrel proteins. 

Moreover the import of cysteines-rich proteins in the intermembrane space is dependent 

on the combined action of the TOM complex and the Mia40-Erv1 disulfide relay system 

in the intermembrane space. 

 

 

Fig. 2: Translocation and assemly 
of proteins into mitochondria. 
(Reprint from Mokranjac et al., 
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1.2.a The TOM complex 

 

The TOM complex (translocase of the outer membrane) is the major translocase of the 

outer membrane. It cooperates with other mitochondrial translocases to sort proteins 

into the outer membrane, the intermembrane space, the inner membrane and the matrix. 

Transport of MTS-containing preproteins in the matrix requires the concerted action of 

the TOM complex and the TIM23 complex located in the inner membrane. Cooperation 

of TOM, small TIM and TIM22 complexes leads to insertion of hydrophobic membrane 

proteins of the 

carrier family 

into the inner 

membrane.  

The TOM is 

constituted by a 

central core 

termed GIP 

(general 

insertion pore) 

and two initial 

receptors 

(Tom20 and 

Tom70) which are more loosely associated with this complex. They are both anchored 

in the outer membrane with N-terminal transmembrane region and expose hydrophilic 

domains to the cytosol. Tom20 and Tom70 have different substrate specificity, but also 

a partially overlapping function. Tom20 is the major receptor for the MTS presequence-

containing preproteins whereas Tom70 recognizes precursors of inner membrane 

proteins lacking a N-terminal presequence. Structural analysis of a part of the cytosolic 

domain of Tom20 in a complex with a prepeptide, showed the presence of a binding 

groove for the hydrpophobic surface of the MTS16. On the other hand, TPR 

(tetratricopeptide repeat) motives of Tom70 contain a site for docking of the chaperones 

Hsp90 and Hsp70 which deliver precursors of members of the solute carrier family to 

the TOM complex. Both the receptors pass on the precursor proteins to the GIP core. 

The TOM complex consists of the central Tom40 (Fig. 3), a β-barrel protein which 

forms a translocation channel and three small subunits, Tom5, Tom6 and Tom7. Tom22 

 Fig. 3: Topology and subunit structure of the TOM complex of  
animal. The complex consists of a β-barrel pore (Tom40) and a 
number of subunits that each consist of a single-pass 
transmembrane helix. All of these subunits are C-terminally 
inserted into the outer membrane. (Reprint fromPerry et al., Plant 

Physiol. Biochem, 2008). 
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Fig. 4: The 
TIM23 complex is 
the major 
translocase of the 
inner membrane. 
The complex can 
be structurally and 
functionally 
subdivided into 
the membrane-
embedded 
translocation unit 
(light grey) and 
the import 
motor (dark grey) 
located at the 
matrix face of the 
channel. (Reprint 

from Mokranjac et 

al., Biochem Soc 

Trans, 2005). 

serves as an additional receptor of the complex and has a central role in the integrity of 

the TOM complex17. The receptor domains of Tom20, Tom22 and Tom70 are exposed 

to the cytosol and form a so-called cis-binding site. These domains seem to contribute to 

the formation of the second trans-binding site (with higher affinity), present on the 

IMS-exposed surface of the TOM complex. It is assumed that the increasing affinities 

for targeting signals drive translocation through the TOM complex18-20. 

 

1.2.b The TIM23 Translocase 

 

The TIM23 complex is the major preprotein 

translocase in the inner membrane of 

mitochondria. It mediates translocation of 

preproteins across and their insertion into the 

inner mitochondrial membrane. This translocation 

is driven by the electrical potential across the 

inner membrane and the hydrolisis of ATP. The 

TIM23 complex can be divided into parts: those 

form a membrane-embedded part of the complex 

and those which form the import motor (Fig. 4). 

The membrane sector is constituted of three 

subunits, Tim50, Tim23 and Tim17. The import motor is 

formed by Tim14(Pam18), Tim16(Pam16), Tim44, Mge1 and 

mtHsp70. The TIM23 complex contains two additional 

proteins, Tim21 and Pam17 which are, however, neither 

essential for cell viability nor for the function of the complex.  

Protein import across and into the inner memebrane depends 

on the membrane potential. The net negative charge on the 

matrix side of the inner membrane creates an electrophoretic 

force on the positively charged presequences and contributes to 

their translocation across the inner membrane21. Furthermore 

this membrane potential seems to activate and open the channel 

formed by Tim23 and Tim1722,23. This potential is essential 

only during the initial steps of the import through the TIM 

channel and not during the translocation of the mature portion 
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Fig5: Sorting pathways of inner membrane proteins. (Reprint from 

Neupert et al., Annu Rev Biochem, 2007)..  

of the preprotein21,24. 

The translocation of preproteins into the matrix requires the action of the import motor 

of the TIM23 complex. It is a Hsp70 chaperone system. Its key player is mtHsp70 

whose ATP-dependent reactions of binding to and release from the translocating 

polypeptide lead to the vectorial transport into the matrix. The action of mtHsp70 is 

regulated by a number of cochaperones.  

 

1.2.c The TIM22 pathway 

 

The inner membrane proteins of mitochondria belong to several different families. 

These proteins follow different sorting pathways (Fig. 6). Solute carriers and 

hydrphobic TIM subunits (translocase of the inner mitochondrial membrane) are 

inserted into the inner membrane by the inner membrane complex, TIM22 translocase. 

Inner membrane proteins with only one trasmembrane region, are arrested at the level of 

the TIM23 complex. The last class of the inner membrane proteins follows the soluble 

translocation in the matrix. 

 

 

 

The TIM22 complex is constituted of three membrane proteins Tim22, Tim54 and 

Tim18 with which the samll Tim proteins, Tim9, Tim10 and Tim12, are connected. 

Tim22 is the core of the complex and is able to mediate the insertion of carrier proteins 

even in the absence of Tim54 and Tim18. The small Tim subunits form a complex 

bound to the IMS side of the TIM22 complex25.  
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All the substrates of this pathway are membrane proteins with transmembrane segments 

that exposes their N or C termini in the IMS. The targeting information of these proteins 

takes place at three levels: at the surface of mitochondria to mediate the binding to the 

Tom70 receptor, in the IMS to bind to the Tim9-Tim10 complex and the level of the 

inner membrane for the insertion by the TIM22 translocase. 

The protein import can be divided into five steps26 (Fig. 5a). Following their synthesis, 

carrier proteins are bound to the cytosolic chaperones Hsp70 and Hsp90 (step 1). These 

complexes are recognized by the receptors of TOM complex (step 2). Carrier proteins 

are then transferred to the TOM channel where they can acquire a topology in which the 

N and C termini are exposed to the cytosol (step 3). During this translocation the carrier 

proteins interact in the IMS with  Tim9-Tim10 complex, which probably shields their 

hydrophobic domains and accompany them across the IMS from the TOM channel to 

the TIM22 complex27-30. Finally carrier proteins are taken over by the TIM22 complex 

and inserted into the inner membrane in a membrane-potential dependent reaction (step 

4). After the release from the TIM22 complex they can assume their dimeric native state 

(step 5). 

Many inner membrane proteins of mitochondria have only one transmembrane region 

and assume an  Nin-Cout topology in the inner membrane. During the stop-transfer 

pathway (Fig. 5b) the trasmembrane domain functions as a signal targeting that causes 

the arrest of the precursor at the level of the inner membrane and inserts it laterally into 

the lipid bilayer. The transfer is mediated by TOM and TIM23 translocases.  

The main characteristic of  inner membrane proteins that follow the conservative sorting 

pathway (Fig. 5c) is the presence of a presenquence. These proteins are initially 

translocated to the matrix where they bound by mtHsp70. Then they integrate into the 

inner membrane in an export-like reaction, which is not well known..  

Membrane insertion is dependent on the membrane potential31,32. This insertion is 

facilitated by the Oxa1 complex33. Oxa1 belongs to a huge family of proteins with 

members in mitochondria, chloroplasts and bacteria34,35. 

 

1.2.d The TOB/SAM complex 

 

The Tom complex does not  only transfer  preproteins across the outer membrane, but 

also mediates the insertion of proteins into the outer membrane. There are different 

classes of outer membrane proteins that follow different insertion processes. An 



 

10 
  

interesting class is represented by β-barrel membrane proteins. Their insertion into the 

outer membrane requires the concerted action of  both TOM complex and the 

translocase of outer β-barrel proteins (TOB)36, also called the sorting and assembly 

machinery (SAM) complex37. 

The TOB complex is constitued by three components: Tob55 and two hydrophylic 

subunits. Precursor of β-barrel proteins interact with the receptors of the TOM complex 

and they pass through the TOM channel. In the IMS, complexes of Small Tim proteins 

guide the precursors from TOM to TOB complex, which inserts and assemblies them 

into the outer membrane (Fig. 6). 

 

 

1.2.e Protein import into the intermembrane space 

 

IMS proteins are involved in a lot of processes such as metabolic and bioenergetic 

reactions until the control of the regulated cell death, and are directed into IMS via two 

different routes: the bipartite presequences pathway and the redox-dependent MIA 

pathway. 

Some preproteins such as cytochrome b2 contain a canonical N-terminal MTS followed 

by a hydrophobic sorting signal, which arrests translocation in the matrix through the 

TIM23 complex. So the precursors are laterally transferred into the inner membrane and 

bipartite presequences are removed by proteolytic cleavage or remain attached to the 

inner membrane through transmembrane domains14,38-40. Other IMS proteins of low 

molecular weight (less than 15-20 KDa), are synthetized without a presequence and 

contain highly conserved cysteines motifs that can form disulfide bonds and/or bind 

metal ions14,41. The translocation of these proteins across the TOM complex requires 

their folding in the IMS. The folding is kicked up by the acquisition of cofactors and/or 

the formation of disulfide bridges. This type of transport is regulated by MIA 

(mitochondrial IMS import and assembly) machinery42-45.Two essential members of the 

MIA machinery have been identified, Mia40 (Tim40) and Erv1. This import pathway 

Fig. 6: Working 
model of the import 
mechanism of 
mitochondrial ß-
barrel membrane 
proteins. (Reprint 

from Paschen et al., 

Trends Biochem Sc, 

2005). 
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represents the first example where transport of proteins is coupled to the formation of 

covalent bonds between Mia40 and the translocating substrate. 

 

1.3 The disulfide relay system in the IMS of mitochondria 

 

Mitochondria derive from prokaryotic ancestors. The bacterial cytoplasm is a reducing 

compartment maintaining the cysteine residues of most proteins in their reduced state. 

This reduced state is preserved by the thioredoxin system and the 

glutathione/glutaredoxin system46,47. The corresponding mitochondrial compartment, 

the matrix space, also contains similar thioredoxin and glutathione/glutaredoxin systems 

to maintain its highly reducing redox state48. The bacterial periplasm has a more 

oxidative enviroment and in this compartment most of proteins contain disulfide 

bridges27,30,42,49,50, their formation being catalyzed by an oxidative folding pathway 

constituted by proteins of the Dsb family, DsbA and DsbB51,52.The IMS counterpart is 

supposed to be reducing since porins allow the free passage, across the outer membrane, 

of small molecules (up to 6 kDa) such as reduced glutathione53. However, IMS does not 

contain glutaredoxins and indeed GSH:GSSG measurements in mitochondria indicate a 

redox potential of –255mV for the IMS, which is more oxidizing than the cytoplasm 

and the matrix (the values of the redox potential are respectively –286 and –296 mV)54. 

Within the IMS it is possible to distinguish three classes of proteins that contain 

disulfide bonds arranged in a typical way: the Cx3C motif, the CX9C motif and other 

cys-rich proteins. 

 

1.3.a Proteins with twin Cx3C- The family of small Tim proteins  

 

The small Tims are ATP-independent molecular chaperones of the mitochondrial IMS 

that facilitate the import and insertion of outer and inner membrane proteins14,55,56,37,57. 

These chaperones are soluble heterohexameric, a3b3 complexes of about 70 kDa 

consisting of either the essential Tim9 and Tim10 subunits23,29,58-60, or the non-essential 

Tim8 and Tim13 subunits50,61,62. Tim12, the fifth member of the small Tim family, is 

exclusively found on the surface of the inner membrane in association with the Tim22 

insertion machinery.  

Proteins that belong to this family are about 10 kDa in size, they are conserved from 

yeast to mammals and plants and  share a characteristic twin CX3C motif. These 
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cysteines are crucial for the folding of the proteins63,64. In the folded state, the four 

cysteines are juxtaposed to form two intramolecular disulphides, an inner pair 

connecting the second and third cysteine and an outer pair connecting the first and 

fourth cysteine65. Formation of these intramolecular disulfide bonds is essential for the 

correct assembly of the small Tim proteins into hexameric complexes, as demonstrated 

by the crystal structures of the Tim9×Tim10 and the Tim8×Tim13 complexes30 27,50,63,66. 

The small Tim proteins belong to the IMS protein family produced in the cytoplasm 

without a targeting signal and they are translocated across the TOM40 channel in a fully 

reduced state. In the next step, the MIA machinery, through the postulated Mia40 

enzyme43,44,67, catalyses the oxidative folding of the incoming Tim precursors. In the 

last step the oxidized subunits are able to form the native heterooligomeric complex65. 

Mia40 should determine the specificity of substrate entry into the IMS by selective 

binding to specific cysteine residues of the precursors, thus performing a receptor-like 

function65,68. In this proposed pathway the other component of MIA machinery, Erv1 

protein, is involved in a following step of the process, possibly donating a disulfide to 

Mia40, in such a way regenerating MIA40 enzyme in the correct redox state to accept 

another molecule of precursor42,45,69,70. The general hypothesis that has been formulated 

suggest that Erv1, Mia40, and IMS precursors constitute the disulfide relay system. 

 

1.3.b Proteins with twin CX9C motif 

 

Most of the proteins with twin Cx9C motif have a domain containing a coiled-coil-helix-

coiled-coil-helix (CHCH) arrangement. Typical examples of proteins that belong to this 

family are Cox17 and Mia4071,72,42,73,74. These proteins are also substrates of the 

Mia40/Erv1 machinery. 

Recently, it has been found  that in yeast, Cox17 import into the IMS is catalyzed by a 

disulfide relay system involving Mia40 and Erv1 proteins, which can favor the 

formation of the partially oxidized Cox172S-S state42,43. 

Cox17 is an essential and highly conserved protein in eukaryotic organisms. Yeast and 

mammalian Cox17 share six conserved cysteine residues, which are involved in 

complex redox reactions as well as in metal binding and transfer. Cox17 is a the 

mitochondrial copper chaperone responsible for supplying copper ions, through the 

assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase75,76. CCO (cytochrome-c 

oxidase) is the terminal complex in the respiratory chain that transfers electrons from 
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cytochrome-c to molecular oxygen77. Electron transfer by CCO is supported by two 

haems and three copper ions located in subunits I and II (Cox1 and Cox2) containing 

copper centers CuB and CuA, respectively78. Cox17 exists in both the cytoplasm and 

mitochondrial IMS71 and yeast lacking Cox17 are respiratory-deficient due to a 

complete lack of CcO activity72. 

The human form of Cox17 is a 62-residue protein and can exist in the IMS in three 

different oxidation states: from the fully oxidized protein with three disulfide bonds to a 

partially oxidized form with two disulfide bonds or to a fully reduced state where no 

disulfide bonds are present79,80. The partially oxidized state can bind one Cu(I) ion 

(Cu1(I)Cox172S-S hereafter) with two consecutive Cys residues at positions C22 and 

C2375, whereas the fully oxidized state is not able to bind copper79.  

The import receptor Mia40/Tim40 (mitochondrial import and assembly) is essential for 

viability of cells in S. cerevisiae
43,81,44,67. The protein is highly conserved form yeast to 

humans and this homology reflects its important function.  

Mia40 resides in the IMS, either as soluble protein or N-terminally anchored to the 

inner membrane73,43,67. In fungi, the protein is synthesized as preprotein with a MTS 

followed by a hydrophobic transmembrane segment. Thus, the protein is imported into 

mitochondria via the TOM- and the TIM23 complexes in a membrane potential-

dependent manner. The N-terminal targeting signal is removed by the matrix processing 

peptidase and the protein is laterally sorted to the inner membrane by the hydrophobic 

segment. Thereby, the protein is anchored to the inner membrane with its major part 

protruding into the IMS44,67. On the other hand, Mia40 homologs in higher eukaryotes 

lack the N-terminal extension which includes this transmembrane region and the 

mitochondrial targeting signal73,43, so these proteins are smaller in size and soluble in 

the IMS of mitochondria. All homologs harbor a highly conserved domain of about 60 

amino acid residues. This domain contains six invariant cysteine residues in a CPC-

CX9C-CX9C arrangement. Replacement of a cysteine pair either in the CPC or in one of 

the CX9C segments with a pair of serine residues was lethal, indicating the crucial role 

of the cysteine residues for the function of Mia40p44. The human form of Mia40 is 142-

residue protein and can adopt different redox states indicating redox switches of its 

cysteine residues42,73. Substrate proteins for Mia40 are IMS proteins of less than 20 kDa 

containing characteristic cysteine motifs, organized in twin CX3C, twin CX9C or CX2C 

motifs82. Among them there are the copper chaperone Cox17 and the small Tims. 
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It has recently been found that Mia40 is the first component of the oxidative folding trap 

machinery43,44,67. Mia40 binds transiently to precursor proteins such as Cox17 and 

Tim10, imported into the IMS, facilitating their passage across the outer membrane and 

their retention in the IMS42.  

Mitochondria lacking functional Mia40 are selectively inhibited in the import of these 

proteins and have reduced endogenous levels of them as a consequence43,44,67,82. Mia40 

forms a transient intermediate with imported precursor proteins via an intermolecular 

disulfide bond as demonstrated by Mesecke and collegues (the authors show that 

radioactively tagged precursor proteins can be linked to Mia40 via DTT-sensitive 

disulfide bridges)42. In a cascade of oxidoreductase reactions, electrons are then 

transferred from Mia40 to Erv1 and finally to either oxygen or cytochrome c64,82. 

  

1.3.c Further proteins with disulfide bonds in the IMS 

 

In the IMS there are other proteins with disulfide bonds  that do not contain a twin Cx3C 

motif nor a twin Cx9C motif such as Cox11, Sco1, Ccs1, Sod1 and Erv1. 

Cox11 is an assembly factor needed for the incorporation of copper into the CuB site of 

cytochrome c oxidase83,84. It has been suggested that a dimeric form of the protein might 

be stabilized by an intermolecular disulfide bond85. 

Another protein involved in the assembly of cytochrome c oxidase is Sco172,86. Yeast 

Sco1 is constituted by a single transmembrane segment anchored to the inner 

mitochondrial membrane and an IMS soluble domain. The IMS domain harbours a 

single CX3C motif and these cysteines residues can be involved in disulfide exchange 

redox reactions87-89. 

The copper/zinc-superoxide dismutase (Sod1) and its copper chaperone Ccs1 are 

distributed between the intermembrane space and the cytosol, in addition to the nucleus 

and lysosomes90. The role of Sod1 in the IMS should be to protect the cell from the 

damage of superoxide radicals generated by the respiratory chain90,91. The active 

enzyme is a homodimer that has one intramolecular disulfide bond and one copper and 

one zinc ion bound per monomer92. The activation of the Sod1 requires the copper 

chaperone Ccs1, which forms an intermolecular disulfide bond to introduce copper and 

the disulfide bond into Sod1. Sod1 is imported into the intermembrane space in an 

immature form, lacking copper and zinc and a disulfide bridge and subsequently Ccs1 is 

required for Sod1 maturation in the intermembrane space93, in such a way the latter 
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protein is trapped in the IMS. Very recently, Mia40 has been shown to be essential for 

trapping Ccs1 and Sod1 in the IMS, being Ccs1 the potential substrate of Mia40. The 

crystal structure of Ccs1 of S. cerevisiae revealed indeed two disulfide bonds, one in a 

conserved Cx2C motif94, potentially being formed by Mia40. 

Erv1 belongs to the sulphydryl oxidases family. Sulfhydryl oxidases typically function 

in intracellular compartments, i.e., endoplasmatic reticulum and IMS, to promote 

cysteine pairing by transfer of electrons from thiol groups directly or indirectly to 

molecular oxygen. All sulfhydryl oxidases known contain flavin as an essential 

cofactor. Another common peculiarity is a CXXC motif adjacent to the FAD mojety. 

The Erv family name is derived from a yeast member identified and characterized early 

on, which was called “Essential for respiration and viability 1” or “Erv1”95 because it 

was found to be critical for mitochondrial biogenesis, respiratory chain function and 

progression through the cell cycle. The human form is called augmenter liver of 

regeneration (ALR). High-resolution structures have been determined by X-ray 

crystallography for Saccharomyces cerevisiae Erv296,97, Rattus norvegicus augmenter of 

liver regeneration (ALR)98-102,  Arabidopsis thaliana Erv1 (AtErv1)103 and African 

Swine Fever Virus (ASFV) pB119L104. Two isoforms of ALR are found to be present in 

hepatocytes. The shorter protein consists of 125 amino acids (15 kDa) and lacks 80 

residues at the amino terminus with respect to the longer protein which consists of 205 

amino acids (23 kDa). The 15 kDa ALR protein exists only in the nucleus while the 23 

kDa ALR protein is located in the cytosol and in the IMS105.. 

The alr protein is a 30 kDa homodimer linked head–to-tail by two intermolecular 

disulfide bonds. Each monomer is arranged in a cone-shaped helical bundle (α1- α5) 

and is able to bind one molecule of FAD in a no covalent manner98. Helix 3 contains 

the motif CEEC, the putative catalytic site. In addition to this motif, a second cysteine 

pair is found in the amino-terminus region and it has been proposed to work as “shuttle” 

of electrons. A working model predicts that a first cysteine of the CEEC motif forms a 

mixed disulfide with an exogenous thiol group of the sustrate106. In a second step 

another exogenous thiol group breaks the now formed mixed disulfide bond and leaves 

the active site reduced. The active site is regenerated by donating two electrons to the 

adjacent FAD, with the formation of one net disulfide. In this exchange of disulfides, 

the “shuttle motif” could mediate the redox communication between the CEEC motif 

and the substrate moiety.  



 

16 
  

The FAD moiety is then reoxidized by shuffling of electrons to cytochrome c which 

transfers the electrons to the final electron acceptor oxygen. In an alternative pathway 

molecular oxygen may directly reoxidize Erv1 producing hydrogene peroxide. 

Hydrogene peroxide is then converted to water by the cytochrome c peroxidase107. 

Several observations have demonstrated that Erv1 is involved in oxidation reactions of 

Mia40 which are required for the translocation of proteins into IMS42,74. The absence of 

functional Erv1 leads to inhibition of the import of small proteins into IMS42,64,70,82. 

Erv1 seems to be involved in the reoxidation of Mia40, after its reaction with precursor 

proteins42,  being this interaction between  Mia40 and Erv1 taking place via disulfide 

bonds42,70. These data are also confirmed by the fact that in absence of Erv1, Mia40 

accumulates predominantly in the reduced form42,70. 
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1.4 Aims and topics of the research 

 

The general aim of my PhD project was the investigation of the cascade of 

oxidoreductase reactions   involving the Mia40/Erv1 machinery in the IMS. In 

particular, the attention was focused on the characterization at the molecular level of the 

electron transfer cascade involving Cox17/Tim10, Mia40 and Erv1 protein partners. 

To characterize the oxidative folding mechanism, the first step was the structural 

determination of Mia40, since it was not available in PDB. Therefore, the wild-type 

human Mia40 has been cloned and expressed and its solution structure determined by 

NMR. Then, we have investigated the molecular interaction of human Mia40 with the 

wild-type human Cox17 in order to address the disulphide exchange mechanism. In a 

second step we expressed the human C26S-C55S-Cox17 and C36S-C45S-Cox17 

mutants, and the yeast C44S-C61S-C65S-Tim10 mutant and we have characterized the 

covalent complexes between Cox17 or Tim10 mutants and hMia40 by solution NMR 

spectroscopy.  

Finally, in order to elucidate the mechanism of electron transfer between Mia40 and 

Erv1, we cloned and expressed the wild-type human Erv1, and the double mutant 

C75/85A human Erv1. 

We solved the crystal structure of the human Erv1 (not available in PDB) and finally we 

investigated by solution NMR spectroscopy, the disulfide transfer reaction between 

hMia40 and the C75A-C85A-hErv1 mutant. 

The importance of understanding the molecular details of the Mia40/Erv1-dependent 

protein import machinery relies on that many substrates of this machinery are vital for 

the function and biogenesis of mitochondria. Indeed, these substrates are components of 

the electron transport chain, enzymes for metabolic processes and against superoxide 

toxicity, transporters for polypeptides and metal ions. In addition, a number of apoptotic 

factors are sequestered in the IMS until they are released from mitochondria and trigger 

the events leading to programmed cell death. While the functions of many of the single 

components have been studied over the last years, we are only now beginning to 

understand how IMS proteins are transported into the mitochondria after their synthesis 

in the cytosol, how they interact each other and how the influence of the Cys-redox state 

or metals on these processes can regulate the mitochondrial function. 
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2.1 Construct design 

 

Large-scale projects in genomic sequencing and protein structure determination are 

producing enormous quantities of data on the relationships between 2D gene sequence 

and 3D protein structure. Moreover, such efforts are providing experimental data on 

success factors at every step in the gene to structure research endeavor. Ideally, this 

wealth of information should be used in a feedback cycle to facilitate the design and 

production of genes and protein constructs that are optimized for the successful 

production of functional protein samples for structural studies. Fundamentally, this goal 

represents a bioinformatics software challenge. Genome browsers facilitate genomic 

analysis by presenting alignment, experimental and annotation data in the context of 

genomic DNA sequences. 

The first and crucial step for a production of a recombinat protein is the design of the 

construct with the highest probabilty of giving rise to a soluble and folded protein. 

First of all it is necessary to download from databases such as Genebank 

(http://www.ncbi.nlm.nih.gov/sites/entrez) and Ensembl 

(http://www.ensembl.org/index.html) the amino-acidic sequence of the target, and check 

the possible different splicing variants, SNP variants and  isoforms by the following 

tools: (http://www.ncbi.nlm.nih.gov/projects/SNP/)  for the predicted or validated SNPs 

and (http://www.ebi.ac.uk/swissprot/) for functional informations. 

When a protein of a particular interest is identified, its properties must be predicted 

using other different tools: 

Genome browsing. This bioinformatic approach is useful to find out proteins which 

share the same folding and the same consensus sequence within different genomes. 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi);  

The presence of transmembrane regions. It is very important to know if the protein is a 

totally soluble protein, a transmembrane protein or an integral membrane protein for the 

future expression and purification. (http://www.sbc.su.se/~miklos/DAS/, 

www.cbs.dtu.dk/sevices/TMHMM-2.0, 

http://www.ch.embnet.org/software/TMRED/form.html); 

 The presence of a N-terminal signal peptide. This presequence enables the expression 

of the protein in the periplasmic or mitochondria area. (http:// 

www.cbs.dtu.dk/sevices/SignalP/) 
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The presence in the sequence of intrinsically unstructured/disordered regions. 

(http://iupred.enzim.hu/); 

The prediction of secondary and tertiary stuctures. (http://www.npsa-

pbil.ibcp.fr/cgibin/npsaautomat.pl?page=/NPSA/npsa_seccons.html, 

http://www.sbg.bio.ic.ac.uk/~3dpssm/); 

The presence in the DNA sequence of codons which are rare to the the selected host for 

the expression of the recombinant protein. (For E.coli expression system: 

http://nihserver.mbi.ucla.edu/RACC/); 

N-terminal sequence should respect the “N-end rule”, that relates the metabolic stability 

of a protein to its N-terminal residue1. 

The knowledge and the prediction of protein-protein partner. (http://string.embl.de/). 

 

2.2 Gene cloning 

 

The yield, the solubility and the folding of a recombinant protein depend of course on 

its protein sequence, but these important factors can be optimized with a right choice of 

the expression system, the vector, the host cell and the culture conditions used. 

The best way to reach this purpose is to proceed with a parallel cloning and expression 

of the target protein with a high number of conditions. 

In the last years several eukaryotic expression systems were optimized, such as 

mammalian, yeast2,3 and insect cell expression. Cell-free protein synthesis has also a 

great potential, in particular with membrane proteins4,5. However, especially for NMR 

which requires high yields of labelled 15N, 13C and 2H samples, the E.coli expression 

system is nowadays the most widely used. 

For E.coli, a lot of expression vectors are avaible for the screening of different 

expression conditions. Each plasmid contains an origin of replication (ori), a gene for 

the antibiotic resistance, which allows the selection of only  clones carrying the  

interested gene, and a multicloning site, for the insertion of the target protein coding 

sequence. 

The classical cloning with restryction enzymes can not be adapted to a High-throughput 

(HT) approach since this methodology is too complicated. HT cloning requires the 

screening of a broad range of conditions tested at the same time, for these reasons new 

cloning techonologies have been developed in recent years. Recently, Landy and 

coworkers have described a universal clonig method (Gateway techononlogy) based on 
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the site-specific recombination6. Gateway system is based on the bacteriophage lambda 

site-specific recombination system which facilitates the integration of lambda into 

E.coli chromosome and the switch between the lytic and lysogenic  cycle. Through this 

techonology (developed by Invitrogen) is possible to clone a target gene into different 

expression vectors eliminating to work with restriction enzymes and ligase. 

Elements of expression plasmids that affect protein yield and its solubility are: 

promoters and fusion tags. The most used promoter system used for E.coli expression of 

recombinant proteins is the T7/lac promoter7. Genes under the control of T7/lac 

promoter are transcribed by T7 RNA polymerase, in presence of lactose. Prokariotic 

cells do not produce this kind of polymerase, and therefore for the expression can be 

used only  E.coli strains engineered to incorporate the gene for T7 RNA plymerase, the 

lac promoter and the lac operator in their genome. When lactose or a comparable 

molecule, such as isopropyl β-D-1-thogalactopyranoside (IPTG), is added to the culture, 

it displaces the repressor from the lac promoter. Since there are lac promotores upstream 

both the gene encoding the T7 RNA polymerase in the bacterial genome, and the gene 

enconding the target protein in the plasmid, IPTG activates both genes. If the basal 

expression must be reduced, as in case of toxic or membrane proteins, host strains 

containing the pLysS or pLysE vectors can be used. These vectors express the T7 

lysozyme, a natural inhibitor of T7 RNA polymerase. 

The other factor that affects the solubility and yield of a recombinant protein is the 

fusion-tag; even if the number of fusion partners is increasing progressively and so 

many cloning trials are possible, in few cases the best choice could be to express the 

native protein8. 

 

2.3 Protein expression 

 

The variables which affect the expression of a recombinant protein are: host strain, 

growth medium and induction parameters ( temperature, IPTG concentration and 

duration of induction step). 

The first step during an expression screening on a small scale (1-10mL of rich medium) 

is to test different E.coli strains and at least three temperatures after the induction (for 

example : 30°C, 25°C and 18°C). A second screening is sometimes performed in order 

to refine expression conditions and in the case all tests are negatives, it is necessary to 

redefine the stategy. 
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If no expression is observed, the following choices should be taken in consideration: 

• Redefine the construct. 

• Use an expression vector with an inducible promoter different from T7 (for 

exmple ARA or Cold inducible promoters9). 

• Test other E.coli strains. 

• If the protein is expressed in the insoluble part as inclusion bodies the choices 

could be: 

• Change the expression parameters (temperature, induction time, medium, 

amount of IPTG) 

• Test other fusion tags 

• Redefine the construct. 

• Proceed with an in vitro refolding screening. 

• Consider the possibility to move to an eukaryotic system. 

 

2.4 Protein purification 

 

The location of expressed protein within the host affects the choice of methods for its 

isolation and purification, indeed, the protein can be transferred in the periplasmic space 

or expressed like a soluble or insoluble ( inclusion bodies) protein within the cytosol. 

All the purifications involve several chromatographic steps performed adjusting the 

parameters according to the physical, chemical and biologcal characteristics of the 

protein. Ion exchange and size exclusion chromatography are commonly used to purify 

proteins in their native states. For proteins expressed with a fusion-tags, there are in 

commerce several different columns, suitable for  affinity chromatography. Among 

them, the most famous technique, used for proteins with a His-tag, is the Immobilized 

Metal ion Affinity Chromatography (IMAC). It exploits the interaction between 

chelated transition metal ions (generally Zn2+ or Ni2+) and side-chains of specific amino 

acids (in several cases histidines) on the protein. In IMAC, the target protein is usually 

washed from the impurities and then eluted with increasing concentration of imidazole. 

After the IMAC, the fusion-tag must be removed from the recombinant protein. Indeed 

many expression vectors are engineered to express a protease clevage site between the 

fusion-tag and the protein. Tobacco Etch Virus (TEV), Factor Xa, Thrombin, 

Prescission Protease, recombinant Enterokinase are some examples of proteases that are 



 

29 
  

normally used for the cleavage of tags. A second IMAC is generally performed in order 

to separate  the fusion from the target native protein. 

 

2.5 Biophysical characterization 

 

In order to characterize a pure protein several biophysical studies can be done. First of 

all mass spectrometry (MS) analysis is performed to elucidate the protein identity and 

understand if the sequence has the N-terminal methionine.  

Subsequently it is necessery to assign  the degree of folding of the sample. Solubility 

and stability of proteins at high concentration represent generally an indication of a 

good folding. In a second step, the folding can be estimated by 1H-NMR and circular 

dichroism (CD) spectroscopy. The latter technique could be also suitable to evaluate the 

thermal stability. 

The aggregation state of a protein in solution can be verified by a size exclusion 

chromatography coupled with a multiangle light scattering. The metal content can be 

analyzed by atomic absorption measurements. The formation of disulfide bonds can be 

checked by a covalent modification with an alkylating agent followed by a SDS-PAGE 

(Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis) or more accurately, 

by a MS measurement. 

 

2.5.a UV fluorescence 

 

Fluorescence is the emission of visible light by a substance that has absorbed light of 

different wavelengths. Proteins, with aromatic amino acids are intrinsically fluorescent 

when excited by UV light. The three amino acid residues, primarily responsible for 

inherent fluorence, are tryptophan, tyrosine and phenylalanine. These residues have 

distinct absorption and emission wavelenghts and differ in the quantum yields (Table1). 

 

Table1: Fluorescent characteristics of the aromatic amino acids. 

 Absorption Fluorescence 

Amino Acid Wavelenght (nm) Absorbtivity Wavelenght (nm) Quantum Yield 

Tryptophan 280 5,600 348 0.20 

Tyrosine 274 1,400 303 0.14 

Phenylalanine 257 200 282 0.04 
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Tryptophan is much more fluorescent than either tyrosine and phenylalanine. However, 

the fluorescence properties of tryptophan are solvent dependent. As the polarity of the 

solvent decreases, the spectrum shifts to shorter wavelenghts and increases in intensity. 

Tyrosine is excited at wavelenghts similar to which of  tryptophan, but emits at a 

different wavelenght (303nm). Its fluorescence has been observed to be quenced by the 

presence of nearby tryptophan mojeties via resonance energy transfer, as well as by 

ionization of its aromatic hydroxyl group. Phenylalanine is very weakly fluorescent and 

its fluorescence can be observed only in absence of tryptophan and tyrosine. In general 

proteins are excited at 280nm or at longer wavewlenghts, usually 295nm. In the first 

case, the fluorescence is due to both tryptophan and tyrosine, but the spectrum 

resembles that of tryptophan due to its great absorbtivity. Instead, in the second case, 

the fluorescence is due to only tryptophane residue. The fluorescence of the aromatic 

residues varies in a somewhat unpredictable manner in various proteins. The quantum 

yield may be either increased or decreased by the folding. Accordingly, a folded protein 

can have greater or less fluorescence than the unfolded form. The intensity in any case 

is not  very informative in itself. The magnitude of intensity, however, can be used as a 

probe of the perturbation of the folded state. 

Conformational transitions of a protein correspond at the transintions between different 

states10 such as folded and unfolded, oxidized and reduced states. These transitions are 

generally characterized by different fluorescence intensities and can be exploited in 

order to determine the relative stability of each state under different conditions. 

Progressive protein unfolding in denaturing buffers11, or a disulfide bond redox 

potential12,13 are some examples of interesting protein properties that can be monitored 

in this way. Moreover, proteins can be covalently labelled with various fluorophores, 

thus producing fluorescent protein conjugates. The emission of these bound tags is 

called extrinsic. Tagging a protein with a fluorescent probe is an important and valuable 

tool for protein characterization. 

 

2.5.b Free-Thiols quantitation by AMS assay 

 

The primary thiol-reactive functional groups are alkylating reagents, including 

iodoacetamides, maleimides, benzylic halides and bromomethylketones.  

The AMS (4-acetamido-4'-maleimidylstilbene-2,2'- disulfonic acid) is a thiol-reactive 

reagent that is water soluble, with high polarity and membrane impermeability. It 
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belongs to maleimides family and in comparison with iodoacetamides, maleimides 

apparently do not react with methionine, histidine or tyrosine. In the reaction with a 

thiol, AMS is added across the double bond of the maleimide to yield a thioether (Fig. 

7). Therefore, since the molecular weight of the protein is increased of 536.44 Da, also 

the mobility in a SDS-PAGE will be different, and the number of free thiols will be 

detectable. 

 

Fig. 7: Reaction of a thiol with a maleimide. 

 

 

2.5.c Ellman's Reagent (DTNB) for Quantitating Thiols 

 

Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid) or DTNB) is an important reagent 

for quantitating thiols in proteins, cells and plasma by absorption measurements14. It 

readily forms a mixed disulfide with thiols, liberating the chromophore 5-mercapto-2-

nitrobenzoic acid15 (absorption maximum 410 nm, ε ~13,600 cm-1M-1). Only protein 

thiols that are accessible to this water-soluble reagent are modified16. Inaccessible thiols 

can usually be quantitated by carrying out the titration in the presence of 6 M 

guanidinium chloride. 

 

2.5.d Hydrogen peroxide assay 

 

Hydrogen peroxide is a part of the oxygen reduction pathway, produced by the two-

electron reduction of molecular oxygen, or by the one electron reduction of superoxide 

anion radical. Hydrogen peroxide is a potent oxidant, and the levels of hydrogen 

peroxide must be accurately determined in order to fully characterize the oxidative state 

of the system under study. For example, an assay for detecting hydrogen peroxide in 

biological samples can be performed using in combination the horseradish peroxidase 

(HRP) and the 10-acetyl-3,7-dihydroxyphenoxazine. In the presence of peroxidase, the 

10-acetyl-3,7-dihydroxyphenoxazine reacts with H2O2 in a 1:1 stoichiometry to produce 
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the red-luorescent oxidation product, resoruin17. Resoruin has excitation and emission 

maxima of approximately 571 nm and 585 nm, respectively, and because the extinction 

coefficient is high (58,000 ± 5,000 cm–1M–1), it is possible to perform the assay 

fluorometrically or spectrophotometrically. 

 

2.6 Structural characterization 

 

2.6.a X-ray crystallography 

 

X-ray crystallography can provide high-resolution structures of biological molecules 

such as proteins and nucleic acids and their complexes at atomic level. In order to 

visualize proteins in atomic resolution it is necesseray to work with electro-magnetic 

radiation with a wavelenght of around 0.1nm or Å18.   The diffraction from a single 

molecule is too weak to be detectable. So, in order to amplify the signal it is necessary 

an ordered and repeated three-dimensional array of molecules, the crystal. If the crystal 

is well ordered, the diffraction will be measurable at high resolution and a detailed 

structure will result. The X-rays are diffracted by electrons in the structure and 

consequentely the result of a X-ray experiment is a three-dimensional map showing the 

distribution of electrons in the structure19. From this electron density, the mean 

positions of the atoms in the crystal can be determined, as well as their chemical bonds 

chemical, their disorder and various other informations. The optimization of the 

crystallyzation conditions is very important since from the optimization will depend  

diffraction properties of a protein, and so this process can take a long time until a well- 

diffracting crystal (< 2.5 Å) is obtained. Protein crystals are almost always grown in 

solution. The most common approach is to lower the solubility of its component 

molecules gradually; if this is done too quickly, the molecules will precipitate from 

solution, forming a useless dust or amorphous gel on the bottom of the container. 

Crystal growth in solution is characterized by two steps: nucleation of a microscopic 

crystallite (possibly having only 100 molecules), followed by growth of that crystallite, 

ideally to a diffraction-quality crystal20. It is extremely difficult to predict good 

conditions for nucleation or growth of well-ordered crystals21. In practice, favorable 

conditions are identified by screening; a very large batch of the molecules is prepared, 

and a wide variety of crystallization solutions are tested22. The various conditions can 

use one or more physical mechanisms to lower the solubility of the molecule; for 
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example, some may change the pH, some contain salts of the lyotropic series or 

chemicals that lower the dielectric constant of the solution, and still others contain large 

polymers such as polyethylene glycol (PEG) that drive the molecule out of solution by 

entropic effects. It is also common to try several temperatures for encouraging 

crystallization, or to gradually lower the temperature so that the solution becomes 

supersaturated. These methods require large amounts of the target molecule, as they use 

high concentration of the molecule(s) to be crystallized. The two most used methods for 

protein crystallization are both vapor diffusion tecniques. These are known as the 

“hanging drop” and “sitting drop” methods23. Both entail a droplet containing purified 

protein, buffer, and precipitant being allowed to equilibrate with a larger reservoir 

containing similar buffers and precipitants in higher concentrations. Initially, the droplet 

of protein solution contains an insufficient concentration of precipitant for 

crystallization, but as water vaporizes from the drop and transfers to the reservoir, the 

precipitant concentration increases to a level optimal for crystallization. Since the 

system is in equilibrium, these optimum conditions are maintained until the 

crystallization is complete19,23.    

 

2.6.b Nuclear Magnetic Resonance (NMR) spectroscopy 

 

NMR spectroscopy is one of the principal techniques used to obtain physical, chemical, 

electronic and structural information about molecules. In structural biology it is a 

powerful technique that can provide detailed informations on the dynamics and three-

dimensional structure of proteins in solution and the solid state, as well as on protein-

protein and protein-DNA interactions. NMR technique exploits the property that 

magnetic nuclei, with a spin quantum number different to zero such as the isotopes 1H, 
2H, 13C, 15N, have in a magnetic field on an energy splitting. An applied electromagnetic 

(EM) pulse causes the nuclei to absorb energy from the EM pulse and radiate this 

energy back out. Structural determination by NMR spectroscopy  usually consists of 

several following steps: preparation of the protein sample, NMR experiments, 

resonances assignment, identification of structural constraints (e.g. distances among 

hydrogen atoms) and calculation of the three-dimensional structure on the basis of the 

experimental constraints. In large molecules such as proteins, the number of resonances 

can be several thousand and an one-dimensional (1D) spectrum inevitably has overlaps. 

For this reason, multi-dimensional nuclear magnetic resonance spectroscopy is required 
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to correlate the frequencies of different nuclei. There are different types of experiments 

that can detect through-bonds and through-space nucleus-nucleus interactions.                                 

The Heteronuclear Single Quantum Correlation (HSQC) spectrum is a 2D spectrum, 

where  “heteronuclear” refers to nuclei other than 1H. In theory the HSQC spectrum has 

one peak for each H bound to a heteronucleus24. Thus in the 1H-15N-HSQC one signal 

is expected for each amino acid residue (one signal for each NH) with the exception of 

the proline, which has not amide-hydrogen due to cycle nature of its backbone. 

Moreover 1H-15N-HSQC also contains signals from NH2 groups of side chains of Asn 

and Gln and aromatic NH protons of Trp and His.                                                     

For small proteins (less than 10 KDa), it is not required to label the sample with 13C or 
15N. In this case the assignment strategy makes use of a combination of 2D 

homonuclear 1H experiments such as TOCSY (TOtal Correlated SpectroscopY) and 

NOESY ( Nuclear Overhauser Effect SpectroscopY). TOCSY experiment correlates 

different nuclei via J coupling25,26 and gives informations about through-bond 

correlations across bonds. Through-space correlations are instead measured via the 

Nuclear Overhauser Effect (NOE) and this experiment provides the distance costraints 

necessary to determine the structure of a macromolecule.                  

For larger proteins ( up to 30 KDa), extensive signal overlap prevents complete 

assignment of all 1H signals in proton spectra. The 3D NMR tecnique can overcome this 

barrier; this type of experiments requires the labelling 13C and/or 15N of proteins. In 

double labelled proteins, the sequential assignment strategy is based on through-bond 

correlations across the backbone atoms among sequential amino acids. The 3D 

experiments exclusively correlate the resonances of the protein backbone, and the 

experiments used are for example: HNCA, HNCACB, HN(CO)CA,  HN(CO)CACB, 

HNCO and HN(CA)CO27.                                              

In the case of proteins with a molecular weight larger than 30 KDa is necessary the use 

of TROSY (Transverse Relaxation Optimized Spectroscopy) experiments. The TROSY 

tecnique benefits a variety of triple resonance NMR experiments as the 3D HNCA and 

HN(CO)CA28. 3D H(C)CH-TOCSY and (H)CCH-TOCSY experiments are then used to 

link the side chain spin systems to the backbone assignments. These two experiments 

provide  the assignment of the side chains protons and of the side chains carbons29. A 

complete set of backbone chemical shits for all Hα, Cα, Cβ and CO resonances can be 

used to predict the secondary structure of the protein30. In particular, one of the most 

used tecniques for the quantitative identification and location of secondary structure in 
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proteins, is the Chemical Shift Index (CSI). The method relies on the fact that chemical 

shits of different nuclei in the protein backbone are related both to the type of amino 

acid and to the nature of the secondary structure they are located in. By comparing the 

actual chemical shift for a nucleus in a specific amino acid with a reference value, it is 

possible to predict in what secondary structure element the nucleus resides. 
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Introduction 

 

Folding coupled to binding of two interacting proteins is increasingly recognised as a 

crucial event in functional processes of several proteins in higher organisms1. Coupled 

folding and binding might involve just a few residues or an entire protein domain in 

multi-domain proteins. Frequently, the functional interacting sites in disordered proteins 

are located in relatively short amphipathic sequences and the entropic cost to fold a 

disordered protein is paid for using the binding enthalpy. Coupled folding and binding 

examples include proteins that are natively (intrinsically) disordered2, many of which 

are involved in transcriptional regulation, translation and cellular signal transduction 

processes where structural malleability and the capacity to interact with many different 

protein partners is of crucial importance for the cell. Disulfide bond formation or 

disruption can be part of such processes as for example in various redox-signalling 

pathways in cells3. Formations of disulfide bonds in vivo does not occur spontaneously 

but requires an accessory protein part of an oxidative folding machinery which can 

introduce the disulphide bond(s) in the final protein target, which thus can reach the 

functional conformation4,5. Recently, such a process of oxidative folding has been 

discovered to operate in mitochondria of eukaryotic cells regulating the import of 

several mitochondrial proteins in the intermembrane space (IMS)6-8. Several cysteine-

rich proteins, which are targeted to the IMS of the organelle, undergo indeed an 

oxidative folding process guided by the Mia40/Erv1/cyt c machinery which introduces 

disulphide bonds in the substrates9-11. Mia40 is the crucial molecule of the machinery 

that functions both as a receptor in the intermembrane space and as the oxidoreductase 

that initiates the oxidation of the cysteines of the substrate by making transient mixed 

disulfides12-14. Recent evidence supports a site-specific recognition of the substrate 

docking cysteine that starts the oxidative folding process onto Mia4015. The specific 

cysteine of the substrate involved in docking with Mia40 is substrate-dependent, the 

process being guided by an intermembrane space targeting signal (ITS) present in 

Mia40 substrates. Positioning of the substrate is proposed to be guided by the ITS 

conformation. The recent available solution structure of human Mia40 uncovered the 

presence of a hydrophobic cleft which is adjacent to the active site CPC motif of Mia40, 

and was proposed to be the substrate binding domain12. Mutagenesis of residues in this 

hydrophobic cleft are indeed lethal in vivo and resulted in almost complete loss of the 

capacity of Mia40 to bind substrates suggesting this is the substrate-binding domain. 
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The substrates of Mia40 can be essentially divided into two main families of proteins, 

containing the first two CX9C motifs16 and the second two CX3C motifs17. Among 

them, there are the mitochondrial copper chaperone Cox1718-20 (containing twin CX9C 

motifs), that participates in the copper(I) transfer to Cytochrome c Oxidase (CcO)21-23 

and the small Tims (containing twin CX3C motifs)17 which are chaperones for 

mitochondrial membrane proteins24,25. Erv1 is also substrate of Mia40 but it works 

downstream in the electron transfer chain, being able to restore the oxidized state of 

Mia40 newly functional towards the CX9C and CX3C substrates26-28. The Mia40-based 

protein import and folding mechanism is therefore essential to allow a correct function 

of several mitochondrial processes, which are essential for cell life, from cell respiration 

to mitochondrial protein biogenesis. 

Here we show that a coupled folding and binding event involving Mia40 and its Cox17 

and small Tim substrates accounts for the oxidative protein trapping in the 

intermembrane space of mitochondria. This molecular mechanism explains the 

oxidative folding pathway mediated by Mia40 in the mitochondrial intermembrane 

space. 

 

Results and Discussion 

 

The folding properties of two selected Mia40 substrates, Cox17 and Tim10, which 

belong respectively to the CX9C and CX3C protein families, were first analysed through 

secondary structure predictor programs. For both proteins two helices were predicted in 

accordance with the structural data available for the oxidized states of the two proteins, 

i.e. where the four cysteines residues of the twin CX3C or CX9C motifs are involved in 

two disulphide bonds (Fig. S1). Very recently, we found that Cox17 docks to human 

Mia40 via its third cysteine of the twin CX9C motifs, in sharp contrast to data 

previously found for the small Tims which dock via its first cysteine of the twin CX3C 

motifs. This different behaviour has been rationalized by us on the basis the variable 

positioning of the ITS in different Mia40 substrates. ITS is indeed downstream of the 

third Cox17 docking cysteine but is upstream of the first docking cysteine in small 

Tims. On the basis of these information, we have thus produced human Cox17 and 

yeast Tim10 mutants where all the cysteines of the twin CX9C or CX3C motifs were 

mutated with the exception of the respective docking cysteines, i.e. C30/40/59S human 

Cox17 and C44/61/65S yeast Tim10 mutants. 
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It has been essentially assumed that the Cys-rich Mia40 substrates, as Cox17 and 

Tim10, should be in a fully Cys-reduced state when enter the IMS through the TOM 

complex. However, no direct evidences of this behaviour is still available. Therefore, by 

in-cell NMR we have investigated the conformational and redox state of Cox17 in the 

cytoplasm. E. coli cells transformed with a plasmid for overexpression of yeast Cox17 

and grown in 15N-labelled media show an 1H-15N HSQC spectrum typical of the 

unstructured form of Cox17 when it is fully reduced. The conformational and redox 

state of Cox17 in the cell is therefore the same observed for Cox17 when expressed and 

purified in the fully reduced state. As verification of the in-cell NMR results, the 

oxidative lysis of the E. coli cells determines the formation of Cox17 where the two 

disulphide bonds involving the twin CX9C motifs are formed. 

Once established that the cysteine-rich proteins, as Cox17 and Tim10, are fully reduced 

in the cytoplasm, the Cox17 and Tim10 mutants, which lack of three cysteines of CX9C 

motif but still contain the docking cysteine necessary to form the covalent complex with 

Mia40, can intrinsically assume the reduced conformation of wild-type Cox17 suitable 

to mimic the substrate physiological state recognized by Mia40, and can be thus used to 

trap the Mia40-substrate covalent complex. The latter is indeed transiently formed upon 

interaction of wild-type Mia40 with wild-type Cox17 and therefore not accumulating in 

solution. The folding state of these mutants in their free state were first experimentally 

investigated (by NMR and CD) and we found, at variance of the secondary structure 

prediction results, that the two predicted α-helical stretches are not present with the 

exception of segment 52-56 in Cox17 which show however a very low α-helical 

propensity (Fig. S2). These findings therefore indicate that Mia40 substrates are mainly 

populating unstructured conformations which can allow to have a greater capture radius 

for a specific binding site than the folded state with its restricted conformational 

freedom, in agreement with the so defined “fly-casting mechanism”29. 

However, while Mia40-substrates are unstructured in the conformational state 

specifically recognized by Mia40, they assume an α-helical hairpin fold once oxidized 

by Mia40. Therefore, a intriguing arising question is: is the Mia40-substrate recognition 

process a coupling of folding and binding? And, if yes, which is the mechanism of this 

process, i.e. does substrate folding occur before covalent binding between the protein 

partners or does covalent binding occur before folding? 

To answer to the first question we have isolated the transient Cox17-Mia40 covalent 

complex through an oxidative coupling reaction between C30/40/59S human Cox17 and 
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C53S human Mia40 and structurally characterized it. C53S human Mia40 mutant 

contains the cysteine of the CPC motif, Cys55, essential in vivo and crucial for mixed 

disulfide bond formation with the substrate. Accordingly, the isolated complex is 

covalently bound through a disulphide bond between Cys55 of C53S hMia40 and 

Cys49 of C30/40/59S hCox17 as resulted from their 13C chemical shift analysis. The 

analysis of 15N chemical shifts of C53S hMia40 shows that the residues close by CPC 

motif and those part of the hydrophobic cleft are largely affected by Cox17 interaction 

in the complex (Fig. 1) The analysis of the 13C chemical shifts also show that, while the 

secondary structure in C53S hMia40 is not affected upon Cox17 mutant binding (Fig. 

1), that of C30/40/59S hCox17 is drastically perturbed downstream of the docking Cys 

49 (Fig. 2). Residues 51-66 forms indeed an α-helix which is tightly packed to the 

hydrophobic cleft of Mia40 in the structure of the complex (Fig. 3). Therefore, the 

region downstream the docking Cys 49 up to the C-terminus from an essentially 

structured state, when is free in solution, folds upon docking with Mia40. On the 

contrary, all other residues at the N-terminus remain unfolded and do not interact with 

Mia40. By analyzing in detail the structure of the complex, we can clearly identify the 

type of interactions responsible of the induced folding mechanism. Hydrophobic 

contacts between Leu56, Met59, Phe72 and Phe91, Met94 from the side of hMia40, all 

belonging to the hydrophobic cleft, and Leu52, Ile53, His56, Met60, Leu63 from the 

side of C30/40/59S hCox17, all clustered on the same side of the “Mia40-induced” 

amphipathic helix, are found (Fig. 3). All above reported residues of hMia40 are 

necessary for the Mia40-Cox17 recognition as mutating them the import of hCox17 is 

reduced. On the other side, we found that not only Leu52, Ile53, His56, which match 

with the ITS signal sequence of Cox17 showing indeed a significant defect in the 

formation of an intermediate with Mia40 compared to WT Cox17, are involved in the 

recognition process, but also Met60 and Leu63 partially contribute to the interaction. In 

conclusion, from all data we can conclude that the Cox17 fragment recognized by 

Mia40 folds upon covalent binding with Mia40, thus resulting the recognition substrate 

process a coupled folding and binding event.  

To address if the induced folding mechanism is also operative for the other big family 

of Mia40-substrates, i.e. those which contain twin CX3C motifs, the covalent complex 

between Tim10 and Mia40 was similarly produced. From the analysis of NMR data, we 

found that only 10 residues upstream of the first docking cysteine are affected by the 

complex formation with Mia40, in agreement with the ITS signal sequence identified by 
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us through mitochondrial import assays. However, the high instability towards 

degradation of the C- and N-terminal segments of the covalent complex prevented us to 

structurally characterize the complex. This is in agreement with previous data showing 

that both Tim10 and Tim9 are sensitive to proteolysis in their N- and C-terminus (Vial 

et al. JBC 2003). To overcome this problem, a peptide of 10 aminoacid, whose 

sequence contains the docking cysteine Cys35 and the residues upstream of the cysteine 

which we identified to interact with Mia40, was synthesized and its interaction with 

Mia40 investigated. NMR and CD data show that the peptide does not have any α-

helical conformation in the free state, as found for Tim10 and Cox17 proteins. 

However, when it is covalently bound to Mia40 it forms a 8-long helix. As found in the 

Cox17-Mia40 complex, NH chemical shifts of the residues constituting the hydrophobic 

cleft of Mia40 are also drastically affected (Fig. 4). In conclusion, the peptide shows a 

conformational transition upon Mia40 oxidative coupling from an unstructured state to a 

folded α-helical state. Such result thus indicates that the recognition/binding mechanism 

between a CX3C substrate and Mia40 proceeds through the same induced folding 

mechanism observed for a CX9C substrate.  

Generalizing the findings, the induced folding mechanism can be applicable to all 

Mia40 substrates containing twin CX9C and CX3C motifs in such a way these studies 

laying the molecular basis of the oxidative protein trapping in the IMS of mitochondria. 

Indeed, the results reported here for the complexes between Mia40 and its substrates are 

supported by experiments in organello. Positioning the crucial cysteine of the substrate 

either upstream or downstream of its WT position, thus spanning a full turn of a helix, 

abolished dramatically the capacity for the substrate to interact in vivo with Mia40, 

suggesting that the folding coupled to binding of the ITS segments hold true also in 

vivo. 

Opening even more this view, the Mia40-substrate folding induced recognition can be 

thought like the starting point of an α-helical folding chain reaction, i.e. the formation 

of the first helix in Mia40-substrates upon interaction with Mia40 can determine, once 

the substrate is released from Mia40 with one disulphide formed (the inner or the outer 

depending on the kind of substrate), the α-helical folding of the other CX9C segment 

not-interacting with Mia40. The hydrophobic ITS residues indeed are available upon 

Mia40-release to establish hydrophobic contacts with hydrophobic residues present in 

the CX9C segment not-interacting with Mia40, inducing the α-helical formation of this 

segment. The latter induced folding process could also be the driving force for the 
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formation of the second disulphide within the CX3C or CX9C motifs, representing the 

folding chain process an autocatalytic reaction. Accordingly, in vitro experiments 

showed that O2 is able to rapidly oxidize the second disulphide bond within CX9C 

motifs of Cox17. NMR experiments where a Cox17 state with only one disulphide bond 

formed are also in progress to address if the α-helical formation is present in the CX9C 

segment not-interacting with Mia40. According to this proposal of α-helical folding 

chain mechanism, it has recently found that all CX9C proteins found in S. cerevisiae 

tend to have hydrophobic residues in positions 3, 4, and 7 within the CX9C motifs, 

which point directly towards the helix–helix interface, when the helices are modelled on 

the basis of the solved structure of Mia40. These hydrophobic residues present in the 

“Mia40-induced” amphipathic helix can be thus important to drive, through their 

hydrophobic interactions with the corresponding hydrophobic residues in the second 

helix, the formation of the second helix, juxtaposing the two reduced cysteines of the 

CX9C motif and thus rapidly autocatalyzing, in the presence of an electron acceptor, the 

formation of the second disulphide bond to obtain the final oxidized state of the CX9C 

substrate.   

 

Material and Methods 

 

Protein production 
Cysteine to serine mutant of three of the four Cys residues involved in the formation of 

the two structural disulphide bridges of hCox17 (C25/44/54S) as well as the cysteine to 

serine mutant of one of the two Cys residues of the CPC motif of hMia40 (C53S) were 

generated by PCR based site-directed mutagenesis (QuickChange site-directed 

mutagenesis kit; Stratagene) from pETG-30A and pDEST-MBP plasmids containing, 

respectively, hMia40 or hCox17 genes. Primer design and the PCR conditions were 

performed according to the manufacturer’s guidelines. The mutations were verified by 

sequencing reactions. The proteins were then expressed in Escherichia coli BL21(DE3) 

gold cells (Stratagene), which were grown in Luria-Bertani or in minimal medium in the 

presence of [(15NH4)2SO4] and [13C]glucose for the production of double-labeled 

samples. The hCox17 and hMia40 mutant proteins were purified and quantified as 

previously described for the wild type proteins12,18. 

yTim10 gene was inserted into a pGEX vector (GE Healthcare Life Sciences). Three of 

the four cysteine residues involved in the formation of the two structural disulphide 
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bridges of yTim10 were mutated into serine residues (C44/61/65S) by using 

QuickChange mutagenesis kit (Stratagene, La Jolla, CA). The proteins were expressed 

in Escherichia coli BL21(DE3) gold cells (Stratagene), which were grown in Luria-

Bertani or in minimal medium in the presence of [(15NH4)2SO4] and [13C]glucose for the 

production of double-labeled samples. The expression of the yTim10 triple mutant was 

induced with 0.4 mM IPTG for 4h at 303K. Purification was performed by using a 

GSTrap™ column (GE Healthcare Life Sciences). GST tag was cleaved with Thrombin 

protease, and separated from yTim10 with a size exclusion chromatography using 

HiLoad 16/60 Superdex 75 pg (Amersham Pharmacia Biosciences) gel filtration 

column. The fractions showing a single component by SDS-PAGE were collected and 

the protein concentration was measured using the Bradford protein assay20. 

 

Oxidative coupling reactions 
Purified C25/44/54S hCox17 and C44/61/65S yTim10  mutants were first fully reduced 

by 100 mM DTT over night at room temperature and then exchanged under anaeroboic 

conditions into degassed phosphate buffer (KPi 50 mM, pH 7.0, EDTA 0.5 mM) using a 

PD-10 desalting column (Amersham Biosciences). The oxidative coupling reactions 

between C25/44/54S hCox17 and C53S hMia40  and C44/61/65S yTim10 and C53S 

hMia40 , to obtain the hCox17(C25/44/54S)-C53S hMia40 complex and the 

yTim10(C44/61/65S )-C53S hMia40 complex were then performed in presence of 5 

mM ferricyanide [Fe(CN)6]
3−, at a ratio of the two mutant proteins of 1:1; in the case of 

Cox17 and Mia40, for 2 hours at 4°C (Fig. S3) and in the case of Tim10 and Mia40 

over night at room temperature (Fig.S4). To remove the unreacted proteins from the 

complexes, the sample were concentrated by ultrafiltration and loaded in a 16/60 

Superdex 75 chromatographic column (Amersham Biosciences) previously equilibrated 

in the phosphate buffer. The fractions showing a single component at MW close to 25-

26 kDa by SDS-PAGE in non-reducing conditions were collected and concentrated by 

ultrafiltration for NMR analysis (Fig S5a and Fig S5b). 

 

Circular dichroism 

Far-UV CD spectra (190-260 nm) on C25/44/54S Cox17 and Tim9 peptide were 

recorded on JASCO J-810 spectropolarimeter. Each spectrum was obtained as the 

average of four scans and corrected by subtracting the contributions from the buffer. 

Each sample was in 50 mM phosphate buffer, EDTA 0.5 mM, pH 7.0, at a 15-30 µM 
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final protein concentration. All of the steps were performed under nitrogen atmosphere 

using a degassed buffer. Quantitative estimate of the secondary structure contents was 

made by using the DICROPROT software package. 

 

In-cell NMR  
E. coli cells harbouring the plasmid encoding the yeast Cox17 gene were first grown in 

unlabelled LB medium. Protein production was induced after transfer of the bacteria 

into stable isotope-labelled medium (100 ml). The collected cells were placed as 60% 

slurry into NMR tubes. Sample stability was monitored repeatedly by 2D 1H–15N HSQC 

spectra followed by plating colony tests. It is crucial for in-cell NMR30,31 to ensure that 

the proteins providing the NMR spectra are indeed inside the living cells, and that the 

contribution from extracellular proteins is negligible. Most 1H–15N HSQC cross-peaks 

disappeared after removal of the bacteria by gentle centrifugation after the 

measurement, whereas the lysate spectrum of the collected cells shows much sharper 

cross-peaks. These results were corroborated by SDS–PAGE, demonstrating that the 

contribution of extracellular protein to the observed signals is negligible. 

 

NMR spectroscopy 

NMR experiments were acquired using Bruker Avance spectrometers operating at 

proton frequencies of 500, 700, 800 and 900 MHz, all equipped with cryoprobes. 1H, 
13C, 15N NMR resonances of C53S hMia40 mutant in both free and bound states were 

assigned performing all the typical experiments for backbone assignment, i.e. HNCO, 

HN(CA)CO, HNCA, HN(CO)CA, CBCANH, CBCACONH32-36 . 

Similarly, to assign the 1H, 13C, 15N NMR resonances of C30/40/59S hCox17 and 

C44/61/65S yTim10 mutants in both free and bound states a double labeled sample was 

produced and all the classical experiments for backbone assignment were acquired. 13C-

edited and 15N-edited HSQC-NOESY experiments were also acquired for NOEs 

assignments on Cox17-Mia40 complex where the 13C and 15N labelling is present 

respectively on Cox17 or Mia40. The 1H,15N, 13C resonances of the unlabeled yeast 

Tim9 peptide (RLYSNLVERC) were assigned acquiring ROESY, TOCSY and 1H-13C 

HSQC, 1H-15N HSQC spectra.  

The weighted-average chemical shifts differences were calculated using the formula 

[(∆H2+(∆N/5)2+(∆Cα/2)2+(∆Cβ/2)2)/4]1/2, where ∆H, ∆N, ∆Cα and ∆Cβ are the 

differences between the free and bound chemical shifts. Backbone Cα and side-chain 
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Cβ resonances were included37 except for glycine and proline residues, in which cases 

δav was calculated as [(∆H2+(∆N/5)2+(∆Cα/2)2)/3]1/2 and [((∆Cα/2)2+(∆Cβ/2)2)/2]1/2, 

respectively38. 

To identify intermolecular NOEs in the Cox17/Mia40 and Tim9peptite/Mia40 

complexes, a ω1-13C-edited, ω2-13C-filtered experiment was recorded in a 2D plane (1H-
1H plane) (Fig S6)39 on three samples, i.e. 13C,15N C30/40/59S hCox17/unlabelled C53S 

hMia40, 13C,15N C53S hMia40/unlabelled C30/40/59S hCox17 and 13C,15N C53S 

hMia40/unlabelled Tim9 peptide. 2D TOCSY maps with 1H -13C filtering in the two 

dimensions and 2D NOESY map with 1H-15N filtering in the two dimensions were 

acquired to identify intramolecular NOEs involving the unlabeled partner. NOESY 

experiments were performed with 100 ms of mixing time, with spectral widths of 15 

ppm in the two dimensions. 

 

Structure calculation 

The solution structure of the adduct was thus solved using as constraints intra and 

intermolecular NOEs, the disulfide bond formed between Cys55 of C53S hMia40 and 

Cys49 of C30/40/59S hCox17 or Cys35 of yeast Tim9 peptide and torsion angles 

generated from chemical shifts analysis. NOE intensities were converted into upper 

distance limits using the program CYANA40, which is then used for structure 

calculations. In CYANA calculations a linker of 80 residues was added to connect C53S 

hMi40 sequence to C30/40/59S hCox17 sequence, allowing the two proteins to sample 

all possible reciprocal orientations. The length of secondary structure elements was 

determined on the basis of the Chemical Shift Index (CSI)41. φ and ψ dihedral angle 

constraints were derived from the chemical shift analysis by using Chemical Shift Index 

and PECAN42 programs. In addition, one disulfide bond between Cys55 of C53S 

hMia40 and Cys49 of C30/40/59S hCox17 or Cys35 of yeast Tim9 peptide was 

imposed, as resulted from their 13C chemical shift analysis. All these constraints were 

used for the structure calculations using CYANA program. The final 20 structural 

conformers were selected on the basis of the lower CYANA target function. We then 

subjected the 20 conformers to restrained energy minimization in explicit water with 

AMBER 10.043 and evaluated the quality of the 20 conformers with the programs 

PROCHECK, PROCHECK-NMR44 and WHATIF45. 

The adduct of C53S hMia40-hCox176SH was also calculated through HADDOCK 2.046 

program using as constraints both site direct mutagenesis and intermolecular NOEs 



 

 
  

73 

information. The structures of C53S hMia402S-S (PDBID 2k3j) and C30/40/59S 

hCox176SH, as obtained from CYANA calculations using φ and ψ dihedral angle 

constraints from CSI data, were used as starting point. The active and passive residues 

were obtained exploiting site-directed mutagenesis data, intermolecular NOEs and the 

disulfide bond between the two proteins. 
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Figure Legends 

 

Figure 1. Chemical Shifts Analysis of 15N C53S hMia40 bound to C30/40/59S hCox17. 

A) Superimposition of 1H-15N HSQC spectra (800 MHz, 298K) of 15N C53S hMia40 in 

the free state (black) and 15N C53S hMia40 in the bound state with unlabeled 

C30/40/49/S hCox17 (red). B) Chemical Shifts analysis using the software PECAN of 

C53S hMia40 in the bound state. C) The weighted-average chemical shift differences 

∆av(NHCαCβ) (that is, [(∆H2+(∆N/5)2+(∆Cα/2)2+(∆Cβ/2)2)/4]1/2, where ∆H, ∆N, ∆Ca 

∆Cb are chemical shift differences for 1H, 15N, 13C respectively) between C53S hMia40 

in the free state and C53S hMia40 in the bound state. 

 

Figure 2. Chemical Shifts Analysis of 15N C30/40/59S hCox17 bound to C53S hMia40. 

A) Superimposition of 1H-15N HSQC spectra (800 MHz, 298K) of 15N C30/40/59S 

hCox17 in the free state (black) and 15N C30/40/59S hCox17 in the bound state with 

unlabeled C53S hMia40 (red). B) Chemical Shifts analysis using the software PECAN 

of C30/40/59S hCox17 in the bound state. C) The weighted-average chemical shift 

differences ∆av(NHCα) (that is, [(∆H2+(∆N/5)2+(∆Cα/2)2)/3]1/2, where ∆H, ∆N, ∆Ca 

are chemical shift differences for 1H, 15N, 13C respectively) between C30/40/59S 

hCox17 in the free state and C30/40/59S hCox17 in the bound state, in this case we use 

only Cα because the assignment of Cβ of C30/40/59S hCox17 is not available. 

 

Figure 3. The solution structure of mutated Mia40-Cox17 adduct. A) C30/40/59S 

hCox17 and C53S hMia40 are shown as green and cyan ribbon, respectively. 

Hydrophobic residues of C53S hMia40 determining a strong defect in mixed disulfide 

intermediate formation with C30/40/59S hCox17 are shown in red, while hydrophobic 

residues in helix α2 of C30/40/59S hCOX17 interacting with the MIA40 hydrophobic 

cleft are shown in blue. Cys residues are shown in yellow. B) Overview of the 

interacting region of Mia40-Cox17 in which it is shown the van der Waals contacts 

between the two proteins in red from the side of hMia40, in blue from the side of 

hCox17. 

 

Figure 4. Chemical Shifts Analysis of 15N C53S hMia40 bound to 10 residues peptide. 

A) Superimposition of 1H-15N HSQC spectra (900 MHz, 298K) of 15N C53S hMia40 in 

the free state (black) and 15N C53S hMia40 in the bound state with unlabeled peptide 
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(red). B) Chemical Shifts analysis using the software PECAN of C53S hMia40 in the 

bound state. C) The weighted-average chemical shift differences ∆av(NH) (that is, 

[(∆H2+(∆N/5)2)/2]1/2, where ∆H and ∆N are chemical shift differences for 1H and 15N 

respectively) between C53S hMia40 in the free state and C53S hMia40 in the bound 

state. 
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Supplementary Figures 

 

Supplementary Figure 1. Prediction of secondary structure elements in Cox17, Tim9 

and Tim10 calculated by PSIpred software. 

 

Supplementary Figure 2. Chemical Shifts analysis of the free state of Mia40 substrate 

Cox17 and Tim10. A) Chemical Shifts analysis to determine the secondary structure 

elements performed by PECAN software and CD of C30/40/59S hCox17. B) Chemical 

Shifts analysis to determine the secondary structure elements performed by PECAN 

software of C44/61/65S yTim10. 

 

Supplementary Figure 3. Oxidative coupling reaction between C25/44/54S hCox17 

and C53S hMia40 analized by reducing and non-reducing SDS-PAGE. Lane 1: 

C25/44/54S hCox17 in aerobic conditions. Lane 2: C25/44/54S hCox17 in presence of 

5mM [Fe(CN)6]
3−. Lane 3: formation of the  hCox17(C25/44/54S)-C53S hMia40 

complex in aerobic conditions. Lane 4: formation of the complex in presence of  5mM 

[Fe(CN)6]
3−. 

 

Supplementary Figure 4. Oxidative coupling reaction between C44/61/65S yTim10 

and C53S hMia40  analized by reducing and non-reducing SDS-PAGE. Lane 1: C53S 

hMia40 in aerobic conditions. Lane 2: C44/61/65S yTim10 in aerobic conditions. Lane 

3: formation of the C44/61/65S yTim10-C53S hMia40 complex after 10 minutes. Lane 

4: formation of the C44/61/65S yTim10-C53S hMia40 complex after 3 hours. Lane 5: 

formation of the C44/61/65S yTim10-C53S hMia40 after 5 hours. Lane 6: formation of 

the C44/61/65S yTim10-C53S hMia40 complex over night. 

 

Supplementary Figure 5. (a). Gel filtration fractions of the C25/44/54S hCox17- C53S 

hMia40 complex,  analyzed by SDS-PAGE in non reducing conditions. (b). Gel 

filtration fractions of the C44/61/65S yTim10-C53S hMia40 complex,  analyzed by 

SDS-PAGE in non reducing conditions. 

 

 

Supplementary Figure 6. Intermolecular NOE. A) Region of X-filtered (f1), X-edited 

(f3),13C-separated(f2) 3D NOESY spectrum of 15N-13C C53S Mia40 bound to 
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unlabeled C30/40/59S Cox17. In f1 are reported frequencies of the unlabeled partner 

while in f3 are reported frequencies of double labeled partner. In this figure it is 

highlighted also the corresponding NOE peaks between double labeled Mia40 (red) and 

unlabeled Cox17 (black) B) Region of X-filtered (f1), X-edited (f3),13C-separated(f2) 

3D NOESY spectrum of 15N-13C C30/40/59S Cox17 bound to unlabeled C53S Mia40. 

In f1 are reported frequencies of the unlabeled partner while in f3 are reported 

frequencies of double labeled partner. In this figure it is highlighted also the 

corresponding NOE peaks between double labeled Cox17 (red) and unlabeled Mia40 

(black) 
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Introduction 

 

Disulfide bonds are important for the structure and function of proteins in eukaryotes1, 

prokaryotes2 and even viruses3. Several enzymes are known to catalyse dithiol–disulfide 

transfer reactions between proteins, but enzymes like sulfhydryl oxidases that are 

capable of synthesizing disulfide bonds de novo are less common4. In general, these 

enzymes exist as homodimers, which depend on FAD as a cofactor, use oxygen as final 

electron acceptor and contain a CXXC motif that is involved in the primary redox-

reaction and is located close to the FAD moiety4,5. The Saccharomyces cerevisiae 

protein Erv1p (essential for respiration and vegetative growth; encoded by the gene 

ERV1) and the human homologue ALR (augmenter of liver regeneration, hALR 

hereafter) are sulfhydryl oxidases in the intermembrane space of mitochondria6. hALR 

is found in a large number of different cell-types and tissues7. Its activity is essential for 

the survival of the cell, for the biogenesis of mitochondria and for the supply of 

cytoplasmic proteins with mitochondrially assembled iron–sulfur clusters6. In yeast, a 

second sulfhydryl oxidase, termed Erv2, has been identified in the endoplasmic 

reticulum8,9. The N-terminal parts of Erv/ALR family are very distinct, in contrast to the 

C-terminal parts, which include the primary redox-active centre and the FAD-binding 

domain, which are more similar (30% identity)10. Some members of the mitochondrial 

Erv1/ALR protein family consistently contain an additional CXXC motif in the N-

terminal domain, while others like Erv2 contain CXC motif at the C-terminus (Fig. 1). 

These motifs at the N- or C-terminus have been proposed to work as a shuttling of 

electrons from the substrate to the FAD moiety11. In particular, human ALR is found in 

two main alternatively spliced forms. The long form of the oxidase (lf-hALR, 23 kDa) 

exists predominantly in the mitochondrial intermembrane space (IMS) and contains an 

80-amino acid N-terminal extension housing the additional CxxC motif6. The short 

form (sf-hALR, 15 kDa) is an extracellular cytokine and also participates in intracellular 

redox-dependent signaling pathways12-17.  

The up-to now reported physiological substrates of hALR in mitocondria are Mia40 and 

cytochrome c18,19. Mia40 is an oxidoreductase that catalyzes oxidative protein folding in 

the mitochondrial intermembrane space20. This process produces the formation of 

disulphide bonds in Mia40-substrates and the consequent reduction of a disulphide bond 

in the active CPC site of Mia4020. hALR has been proposed to be then responsible of 

the re-oxidation of the latter disulphide in such a way regenerating functional Mia40 



 

 
  

92 

molecules ready to accept another substrate molecule21-23. Cytochrome c is also part of 

this electron-transfer pathway18; its interaction with hALR is indeed proposed to restore 

the oxidized redox state of the cysteines of hALR which are involved in the oxidation of 

CPC site of Mia40. In such process oxidized cytochrome c accepts electrons from the 

FAD moiety of hALR24. These cascade of interactions has not been investigated at the 

molecular level and the mechanism of these electron transfer reactions still remains 

largely speculative. In particular, the cysteines of hALR involved in the disulphide 

exchange reaction with Mia40 are not yet identified.  

In order to understand the electron transfer process and the interaction between hMia40 

and sf-hALR, the crystal structure of sf-hALR has been first solved. The protein has 

been then characterized in solution by NMR spectroscopy and finally its interaction and 

electron transfer reaction with hMia40 has been investigated in solution at the molecular 

level.  

 

Results and Discussion 

 

Wild-type sf-hALR is obtained from E. coli with ~1 FAD per molecule of protein which 

provides the typical flavin absorbance peaks at 455 and 375 nm, with a 280/450 nm 

absorbance ratio of ~5 (Fig. 2a). These features are identical to those previously 

reported for different tagged constructs of sf-hALR25. The protein, under aerobic 

conditions, runs on a not reducing SDS-PAGE as a dimer when it is freshly prepared, 

but over time has tendency to form DTT-sensitive oligomers (Fig. 2b). Addition of 

DTT at mM concentration prevents the formation of these oligomers but also drives the 

conversion of the protein to a monomeric form, which is complete at 70 mM DTT 

concentration (Fig. 2c). In the presence of reduced glutathione (GSH) up to 15 mM, 

which is the physiological concentration in the IMS26, sf-hALR behaves as a dimer with 

the FAD moiety remaining in the oxidized state (Fig. 2d), suggesting that the dimer is 

the functional state in the IMS.  

sf-hALR contains two not conserved, solvent exposed cysteines. Their substitutions 

with alanine, thus obtaining C74A/C85C sf-hALR mutant, provides a form which does 

not oligomerize, being a stable dimer for a long time under aerobic conditions, but 

which still maintain all the features of the wild-type protein with an unaffected UV/vis 

spectrum with respect to the wild-type protein, indicating that the mutations do not 

perturb the interaction with FAD (data not shown). Similar behaviour has been observed 
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for tagged constructs of mutated C74A/C85C hALR which indeed showed no difference 

in the UV/vis spectra as well as on DTT oxidase activity with respect to the wild-type 

protein25.  

The dimeric nature of this mutated protein was assessed and characterized in solution 

through a number of techniques. 15N heteronuclear relaxation rates provides a value for 

the correlation time for protein tumbling, which is related to the protein size, of 15.6 ± 

0.7 ns. This value is consistent with a protein of 15 kDa in a dimeric state for a total 30 

kDa mass. This dimeric state is also consistent with the size-exclusion chromatography 

and multiangle light scattering experiments (data not shown). Finally, addition of 50 

mM DTT to the stable dimeric form of C74A/C85A sf-hALR produces the formation of 

the monomeric state (Fig. S1). Taking into account of all data, we can conclude that 

C74A/C85A sf-hALR is a stable disulphide bonded dimer similar to the wild-type 

protein. 

The C74A/C85A sf-hALR protein crystallizes as a 30-kDa homodimer connected by 

two intermolecular disulphide bonds, namely C15-C124’ and C15’-C124, where ‘ 

denotes an adjacent molecule (Fig. 3). Each monomeric subunit has a cone-shaped five-

helical bundle fold (α1-α5) with a bound FAD molecule located at the mouth of the 

cone (Fig. 3). The observed polypeptide chain begins at residue 11 with a short loop 

ending at helix α1 (residues 19-35). A β-turn (residues 37-42) forms the tip of the cone. 

Helix α2 (residues 43-59), running antiparallel to α1, returns the chain back to the 

mouth of the cone and it is followed by a short loop ending at helix α3 (residues 63-75) 

that contains residues C62 and C65, the putative catalytic site, preceded by P61, a cis 

proline highly conserved within ALR/ERV family. After helix α3, the chain loops back 

to the bottom of the cone and enters α4 (residues 83-101), a 27 Å helix that represents 

the most conserved region in ALR/ERV proteins. Helix α4 then brings the chain back to 

the mouth of the cone where it loops back and enters helix α5 (residues 108-113). After 

helix α5 the chain forms an extended loop on the cone surface ending at D125, the C-

terminal residue of the protein. This structural organization is very close to that of other 

ALR/ERV proteins experiencing a RMSD of 0.45 Å with the crystal structure of rat 

ALR, ALRp27. 

An extensive network of salt bridges is found in C74A/C85A sf-hALR with one 

intermolecular salt bridge (K58-D48’) located on the dimer interface. Most of the 

hydrophobic residues in sf-hALR are located in the interface between helices α1 and α2 

and form an extended hydrophobic patch that is involved in dimerization. The dimer 
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interface occupies ~ 720 Å2 (~ 25% of the total surface area) of the monomer interface. 

The major dimeric interactions are located on helices α1 and α2 and are distant from the 

FAD-binding regions. Four hydrogen bonds and one salt bridge are found at the dimer 

interface. These structural features are common to ALRp structure27. 

All the six conserved cysteine residues of C74A/C85A sf-hALR (namely C15, C62, 

C65, C91, C108 and C124) participate to disulfide bridge formation: while the two 

cysteines at the N- and C-terminus are involved in an intermolecular disulphide bond, 

the other four form two (C62-C65, C91-C108) intramolecular disulphide bonds. The 

FAD molecule is flanked by the two latter disulphide bonds. In particular, the C62-C65 

pair is located only 3.7 Å from the N5 of the isoalloxazine ring of the FAD ligand, 

while the C91-C108 disulfide contacts the FAD ligand in correspondence of the oxygen 

of C91 which forms a hydrogen bonds with AN6 of the adenine moiety. The FAD 

molecule also strongly interacts with helix α1, α2 and α3 through a network of 

hydrophobic interactions, involving highly conserved residues in the ALR/ERV family. 

The ALR/ERV family is characterized by binding a FAD molecule in an unique stacked 

ring conformation. In C74A/C85A sf-hALR (as well as in ALR from Rattus Norvegicus 

and Erv227), the noncovalently bound FAD is present in an extended form with an 

unusual directionality of the adenine moiety. The protein region between the adenine 

and isoalloxazine moieties is occupied by the side chains of the conserved residues W27 

and H94, which are stacked parallel to the FAD ring structures. The isoalloxazine ring 

and the adenine ring sandwich the side chains of W27, H31 and H94 with a spacing of  

~  3.5 Å between each pair. The stacked structure is additionally capped at each end by 

Y60 and F106. 

The protein maintains the same structural organization in solution, where the α-helices, 

as monitored by the chemical shift index from NMR data (α1 19-35; α2 43-58; α3 64-

74; α4 82-101; α5 107-113), have approximately the same length being at maximum 

one residue shorter. A structural model of the monomeric state of C74A/C85A sf-

hALR, obtained by using chemical shift based structure determination protocol28, also 

shows that the relative orientations of α-helices are also fully conserved with respect to 

the crystal structure. Also in solution all the six cysteines are in the oxidized state as 

monitored by their 13C Cβ chemical shifts29. The analysis of the heteronuclear 

relaxation data (15N R1, R2, and heteronuclear 15N{1H}-NOEs at 298 K) for each residue 

of C74A/C85A sf-hALR points at an essentially rigid protein with the exception of 

residues at the N- and C-termini and in the first turn at the N-terminus of helix α3 
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containing C65 disulphide bonded to C62 of the CXXC motif and close to the 

isoalloxazine ring of FAD. In particular, while the N- and C-terminal regions are 

affected by ps-ns time scale backbone dynamics as monitored by higher R1 and lower 
15N{1H}-NOEs values with respect to the mean corresponding values (Fig. 4), 

conformational motions are present for residues 64-66 as detected by CPMG-R2 

measurements and for NHs of C62 and E63 which are too broad to be analyzed as a 

consequence of the exchange processes. The dynamic behaviour of the CXXC region is 

paralled by the average crystallographic B-factors which monitor extensive motions for 

the sidechains of residues 62-66. The latter experience values of around 40 Å2 compared 

to an average of about 18 Å2  calculated on the entire sequence (Fig. S2). 

C74A/C85A sf-hALR3S-S can quantitatively and rapidly (less than 30 minutes) oxidize 

the partially reduced state of hMia40 (hMia402S-S) to hMia403S-S, as monitored through 
1H-15N NMR spectra (Fig. 5). Upon addition of C74A/C85A sf-hALR3S-S, the NH 

resonances pattern of hMia402S-S drastically changes to those of hMia403S-S, i.e of the 

form where C53 and C55 of hMia40 are oxidized, whilst the other four Cys residues of 

hMia40 involved in two disulphide bonds within the CX9C motifs remains in an 

oxidized state, thus not being involved in the electron transfer reaction. Consistently, 

C74A/C85A sf-hALR3S-S undergoes reduction to a C74A/C85A sf-hALR2S-S species 

with the FAD redox state remaining unaffected. Clear NH resonance changes are seen 

indeed for C65 of the CXXC motif of C74A/C85A sf-hALR close to the FAD moiety 

and for neighbouring residues (Fig. 6). On the contrary, the chemical shifts of the NHs 

of the other four cysteines involved in C91-C108 and C15-C124’ disulphide bonds as 

well as the flavin region peaks in the visible spectrum remain unchanged, thus 

indicating that these sites are not implicated in the electron transfer reaction. From 

NMR titration data, it also appears that hMia402S-S signal intensity decreased with 

increasing C74A/C85A sf-hALR3S-S concentration and, concomitantly, signals 

corresponding to hMia403S-S appeared and increased in intensity, without the detection 

of additional signals belonging to the protein-protein complex. This behaviour therefore 

indicates that the protein complex is highly transient in the reaction mechanism and thus 

undetected by NMR. Accordingly, 15N heteronuclear relaxation rates of C74A/C85A sf-

hALR2S-S in the final protein mixture provide a value of 15.1 ± 0.9 ns for the correlation 

time for protein tumbling, which is comparable with that of C74A/C85A sf-hALR2S-S 

before mixing with hMia40, thus indicating no accumulation of the protein complex in 

solution.  
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In conclusion, in this work we found that sf-hALR is a 30-kDa homodimer connected 

by two intermolecular disulphide bonds, namely C15-C124’ and C15’-C124, which are 

responsible of the dimeric state of the protein. All the other four conserved cysteine 

residues of C74A/C85A sf-hALR (namely C62, C65, C91 and C108) form 

intramolecular disulfide bridges flanking the FAD molecule. In particular, C62-C65 

disulphide is located close to the isoalloxazine ring of the FAD ligand and therefore 

likely involved in donating electrons to the FAD moiety. The interaction with hMia40 

substrate showed indeed that the oxidation of the CPC motif of hMia40 is accompanied 

by the reduction of the C62-C65 disulphide. In this interaction the redox state of the 

FAD moiety is not perturbed, this result suggesting two possible rationalizations. The 

first predicts the necessity of the presence of cytochrome c in the reaction mixture in 

order to drive the electron transfer from the reduced C62-C65 disulphide to cytochrome 

c through FAD molecule. The second predicts the necessity of the occurrence of the 

CXXC motif at the N-terminus present only in the long form of hALR which, as 

mentioned before, has been proposed to shuttle electrons from the Mia40 substrate to 

FAD. 

 

Materials and Methods 

 

Protein production.  

The wild type hErv1 gene was inserted into a pET 24a(+). It was amplified by a PCR, 

while the double mutation C74A/C85A was made by QuickChange mutagenesis kit 

(Stratagene, La Jolla, CA). Both of them were cloned into the Gateway Entry vector 

pENTR/tobacco etch virus/D-TOPO (Invitrogen), and subcloned into pDEST-His-MBP 

(Addgene) by Gateway LR reaction to generate N-terminal His-MBP fused protein. The 

proteines were expressed in Escherichia coli BL21 (DE3) gold cells (Stratagene), which 

were grown in Luria-Bertani and minimal medium [(15NH4) 2SO4] and or [13C]-glucose 

for the production of labeled samples. Protein expression was induced with 0.4 mM 

IPTG for 16h at 293K. Purification was performed by using a HiTrap chelating HP 

column (Amersham Pharmacia Biosciences) charged with Ni(II). His-MBP tag was 

cleaved with AcTEV, and separated from the N-terminal domain with a second 

purification step. After this purification, it was required another purification step using  

HiLoad 16/60 Superdex 75 pg (Amersham Pharmacia Biosciences) gel filtration 

column. In order to calculate the concentration of the proteins with an exctinction 
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coefficient of 26970 M-1 cm-1, was used  the UV-visible spectrofotometry. The selective 

reduction of  cysteine motifs was followed by adding different amonts of DTT ( from 0 

to 100mM) to the protein samples and then subjected to SDS-PAGE. DTT was  

removed by P-D10 desalting column and the samples were concentrated under nitrogen 

atmosphere. The detection of the free thiols during the NMR titration between Mia40 

and Erv1 was performed using Ellman’s test30,31. The aggregation state of the double 

mutant protein was monitored in physiological conditions adding GSH in different 

concentrations (0-15mM) to the protein samples. Then the samples were subjected to 

SDS-PAGE. 

 

Protein crystallization and structure determination.  

The protein sample was concentrated up to 11 mM. Crystals of C74A/C85A hALR 

were obtained using the vapour diffusion technique at 289 K from solutions containing 

0.1 M MES pH 6.5 and 20% PEG 6000. The dataset was collected in-house, using a 

PX-Ultra copper sealed tube source (Oxford Diffraction) equipped with an Onyx CCD 

detector, at 100 K; the crystals used for data collection were cryo-cooled using 30% 

ethylen glycol in the mother liquor.  

The data were processed in all cases using the program MOSFLM32 and scaled using 

the program SCALA33 with the TAILS and SECONDARY corrections on (the latter 

restrained with a TIE SURFACE command) to achieve an empirical absorption 

correction. Table 1 shows the data collection and processing statistics for all datasets.  

The structures were solved using the molecular replacement technique; the model used 

for all datasets was 1OQC, where water molecules and ions were omitted. The correct 

orientation and translation of the molecule within the crystallographic unit cell was 

determined with standard Patterson search techniques34,35 as implemented in the 

program MOLREP36,37. The isotropic refinement was carried out using REFMAC538. 

REFMAC5 default weights for the crystallographic and the geometrical term have been 

used in all cases.  

In between the refinement cycles the models were subjected to manual rebuilding by 

using XtalView39 . The same program was used to manually build the FAD molecule. 

Water molecules were added by using the standard procedures within the ARP/WARP 

suite40 . The stereochemical quality of the refined model was assessed using the 

program Procheck41. The Ramachandran plot is of very good quality.  
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NMR data 

We carried out NMR experiments for resonance assignment on 0.5–1 mM 13C,15N-

labeled and 15N-labeled C74A/C85A sf-hALR samples in 50 mM phosphate buffer, pH 

7.0, containing 10% (v/v) D2O. All NMR spectra were collected at 298K and 308K, 

processed using the standard Bruker software (Topspin) and analyzed through the 

CARA program42. The 1H, 13C and 15N resonance assignments of C74A/C85A sf-hALR 

were performed following a standard protocol using, for backbone assignment, triple-

resonance NMR experiments and, for side chain assignment, TOCSY-based NMR 

experiments. To determine the secondary structure elements was used Chemical Shift 

Index (CSI) program43. φ and ψ dihedral angle constraints were derived from the 

chemical shift analysis by using Chemical Shift Index, PECAN44 and TALOS+ 

programs45. 

Relaxation experiments on 15N-labeled samples were performed at 600 MHz Bruker 

Spectrometer measuring 15N backbone longitudinal (R1) and transverse (R2) relaxation 

rates and the heteronuclear 15N{1H} NOEs. 15N R2 were also measured as a function of 

the refocusing time (τCPMG) in a Carr–Purcell–Meiboom–Gill (CPMG) sequence, which 

ranged between 450, 700, 900 and 1150 µs46. 
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Figure captions 

 

Fig. 1. A schematic picture of the primary structure from amino- to carboxy-terminus of 

various Erv/ALR family enzymes shows the Erv/ALR module in yellow with flexible 

polypeptide segments to either side. Di-cysteine motifs and other cysteine residues are 

indicated.  

 

Fig. 2 (a). UV/vis spectrum of the wild-type sf-hALR. (b). Purified wild-type sf-hALR 

subjected to SDS-PAge in reducing and non-reducing conditions. (c). DTT titration of 

the wild-type sf-hALR. (d). GSH titration of the wild-type sf-hALR. 

 

Fig. 3 X-ray structure of C74A/C85A sf-hALR. Ribbon diagram of C74A/C85A sf-

hALR in which secondary structure elements are shown in red and the FAD moiety is 

depicted in CPK mode. Disulfide pairings are shown in CPK mode and colored by 

elements. 

 

Fig. 4 Relaxation analysis of C74A/C85A sf-hALR. Experimental 15N relaxation 

parameters R1, R2 and heteronuclear 15N{1H} NOEs versus residue number of 

C74A/C85A sf-hALR collected at 600 MHz in 50mM phosphate buffer pH 7. 

Relaxation values cannot be obtained for residues 62 and 63 as their NH cross-peaks are 

too broad in the NMR spectra. 

 

Fig. 5 Oxidation process of hMia402S-S by reduced C74A/C85A sf-hALR followed by 

NMR. The 1H-15N HSQC spectrum of a 1:1 15N-labeled hMia402S-S/unlabeled 

C74A/C85A sf-hALR mixture is superimposed with the 1H-15N HSQC spectra of 

hMia402S-S or hMia403S-S. The 1H-15N HSQC spectrum of hMia402S-S is also shown. NH 

resonances of cysteine residues of CPC motif and some surrounding residues of hMia40 

are indicated in the NMR spectra. 

 

Fig. 6 Interaction between C74A/C85A sf-hALR and hMia402S-S. Ribbon diagram of 

C74A/C85A sf-hALR in which secondary structure elements are shown in red and FAD 

moiety is in CPK mode. Disulfide pairings are shown in yellow and the CXXC motif 

involved in the disulphide exchange reaction is indicated. The perturbated NH chemical 

shifts of C74A/C85A sf-hALR by hMia402S-S addition are shown as green spheres. 
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Supplementary Figure captions 

 

Fig. S1 DTT titration of the C74A/C85A sf-hALR. 

 

Fig. S2 B factor plot versus residues 
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Table 1. Data collection and refinement statistics for C74A/C85A hALR structure. 

 C74A/C85A hALR 

Spacegroup C2221 

Cell dimensions (Å, °) 
a= 50.85   b= 76.57   c= 62.31  

α, β, γ= 90° 

Resolution (Å) 62.3 – 1.9 

Unique reflections 9759 (1311)* 

Overall completeness (%) 98.5 (93.0) 

R
sym (%) 11.0 (46.0) 

Multiplicity 9.0 (3.0) 

I/(σσσσI) 6.1 (1.8) 

Wilson plot B-factor (Å2) 16.67 

Rcryst  / Rfree (%) 19.2 / 27.2 

Protein atoms 963 

Water molecules 133 

Ligand atoms 53 

RMSD bond lengths (Å) 0.015 

RMSD bond angles (°) 1.64 

Mean B-factor  (Å2) 19.50 

 

* Numbers in parenthesis refer to high resolution shells.  
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PERSPECTIVES 
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7.1 Conclusions 

 

Recently a disulfide relay system has been discovered in the intermembrane space 

(IMS) of mitochondria1. The essential components of this system are the oxidoreductase 

Mia40 and the sulfhydril oxidase Erv1. Substrates of this protein machinery are cys-rich 

proteins, such as Cox17 and Tim10, while once passed through the TOM channel and 

reached the IMS, they encounter Mia40, that has a key role in the oxidative protein 

folding (Fig. 8). 

 

 

 

 

 

The structure determination of Mia40 was crucial to understand the electron transfer 

mechanism between Mia40 and its substrates (Cox17 and Tim10). Therefore, we cloned 

and expressed the WT-HMia40 and C53S-HMia40 mutant. The structure of the wild 

type protein revealed a new type of oxidoreductase constituted by a folded central 

region. This region is formed by an α-hairpin core, common to other IMS proteins 

containing twin CX9C
2 or CX3C

3,4 motifs, kept together by two intramolecular disulfide 

bonds. The core of Mia40 is preceded by a N-terminal lid, which is the functional site of 

the molecule, with a CPC motif, being the active site of the oxidoreuctase. 

Fig. 8: Import and folding pathway of cysteine-rich proteins in the IMS of 
mitochondria. The precursor protein is imported across the TOM channel in a fully 
unfolded and reduced state. After its translocation is specifically recognized and 
bound by the oxidized form of Mia40 forming a transient intermolecular disulfide 
bridge. The subsequent transfer of disulfide to the substrate triggers its oxidative 
folding. Subesequentely Erv1 regenerates the oxidized form of Mia40 via another 
disulfide-exchange reaction. Then Erv1 uses mature, endogenous cyt c as an electron 
acceptor to re-oxidized itself. So the final source of the energy is the respiratory 
chain. (Reprint from Allen et al. J Mol Biol, 2005). 
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We demonstrated that Mia40 introduces disulfides into the Cox17 and Tim10 

substrates. During this electron transfer, the CPC motif functions as the active site, 

shuttling between the oxidized and the reduced state. A hydrophobic cleft, adjacent to 

the CPC motif, is the substrate recognition site, and also stabilizes the interaction 

between Mia40 and its partners (Cox17 and Tim10) to form the covalent intermediate 

complex between Mia40 and the substrates. Furthermore, we showed that this 

interaction induces the folding of these substrates. This mode of interaction determines 

an induced folding process at the same time with an oxidoreductase reaction.  

In order to regenerate Mia40, and therefore makes possible another oxidative-folding 

process with the incoming precursor, the sulfhydril oxidase Erv1 enables the 

reoxidation of the Mia40 protein5. 

As in the case of Mia40, the structure determination of Erv1 was important to study the 

molecular interaction between Mia40 and Erv1. Then we cloned and expressed the WT-

hErv1 and the C74A-C85A-HErv1 double mutant. We solved the X-ray structure of the 

double mutant protein. The structure is constituted by a 30-kDa homodimer connected 

by two intermolecular disulfide bonds. Each monomeric subunit has a cone-shaped five-

helical bundle fold and in the mouth of the cone is located a FAD molecule, bound 

through hydrophobic interactions. Helix 3 contains  residues C62 and C65, the catalytic 

site of the protein, which are close to the FAD moiety. Moreover NMR data show that 

Erv1 mantains the same structural properties in solution, behaving as a rigid dimer. 

We found that Mia40 is directly reoxidized by Erv1. The CPC motif of Mia40 and the 

CEEC motif of Erv1 are involved in the electron transfer mechanism, i.e. the disulfide 

bond formed by the two cysteine residues of the CEEC motif is reduced by Mia40 

concomitantly with the formation of two disulfide bonds within the CPC motif of 

Mia40.  

 

7.2 Perspectives 

 

The interaction between Mia40 and Erv1 needs to be better clarified, since it has been 

found that an ALR isoform containing an additional CXXC motif at the N-terminus 

with respect to the one here characterized is present in the IMS. This form is indeed 

longer than hErv1 here used (205 against 125 residues) and will be used to characterize 

how the electron transfer mechanism works at the molecular level between the long 

form of Erv1 and Mia40.   
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Another goal will be to isolate and characterize the covalent Cys-bridged complex 

formed between Mia40 and Erv1. 

The last step in the study of the disulfide relay system of IMS of mitochondria will be 

the characterization of the electron transfer reaction between Erv1 and cyt c. 
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