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At last gleams of light have come,  

and I am almost convinced (quite contrary to opinion I started with) 

 that species are not (it is like confessing a murder) immutable. 

Charles A. Darwin 
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Metabolomics in the system biology 

The decoding of human and other mammalian genomes during the 1990s caused a 

strong evolution in the field of molecular biology, giving birth to new fields of science, 

called “omics” sciences. All these new “omics” sciences provided a great number of 

biological features about complex systems, giving the scientific community a new point 

of view on this life form. Mammalian animals and men can presently be considered as 

“superorganisms” (1), in which environmental and lifestyle effects completely 

influence biomolecular organization. Such factors can also modify gene and protein 

expression and metabolites levels, leading to differences between various individuals 

(inter-individual), but also inside the same subject (intra-individual). Moreover, also 

the symbiotic gut microflora interacts with the host with a specific metabolism and a 

genome that usually is not well-known. This great complexity leads to the definition of 

“Global System Biology” (2) to highlight the necessity to integrate multivariate 

biological information to better understand the behaviour of the so called 

superorganism. The first born of these new sciences is transcriptomics, which studies 

the determination of gene expression changes between subjects (3), and proteomics, 

which deals with  the determination of all protein expression changes in a cell or tissue 

(4). In this context both metabolomics and metabonomics are defined (see Figure 

1.1). The term metabonomics is defined as “the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological 

stimuli or genetic modification” (5), while the term metabolomics is introduced later as 

the “comprehensive and quantitative analysis of all metabolites” in a system (6). Even 

if there is a difference between the two terms, they are almost considered as 

equivalent  and used interchangeably by the scientific community (1) as well as in this 

text. Though the term metabonomics was coined many years later, the concept of 

metabonomics was  born with the first simultaneous analysis of metabolites present in 

biological fluids through 
1
H NMR spectroscopy in the 1980s (7). The data obtained 

from this kind of analysis are very complex and they were interpreted by using a 

multivariate statistics approach to classify the samples according to their biological 

status (8-9).                          
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Figure 1.1 The “omics” sciences. 

Most metabolomics studies involved common biofluids as urine and serum/plasma 

that are easily obtainable from mammalians, especially from humans. Moreover, these 

two types of biofluids are obtained in a non- or poorly-invasively way and they are 

easy to find and collect because they are commonly used for many other biological 

analyses. Hence they can be used for disease diagnosis and in a clinical trials setting for 

monitoring drug therapy. Besides, all biological fluids are useful for metabolomics 

analysis, e.g. cerebrospinal fluid, synovial fluid, exhaled breath condensate, saliva and 

so on (10).  There are some problems associated to the use of these peculiar fluids for 

which they are not normally analyzed: poor collectable quantity, highly-invasive 

extraction techniques, poor metabolites information carried on. In addition, some 

metabolomics studies have used tissue samples and their aqueous or lipid extraction 

(11) or in vitro cell systems (12).  The number of different metabolites in these human 

fluids is unknown; estimates range from a minimum of 2,000 to 3,000 to a maximum of 

around 20,000 metabolites, compared with an estimated 23,000 genes and 60,000 

proteins (13). Small metabolites, that are low-molecular weight compounds that serve 

as substrates and products in various metabolic pathways, are of particular interest to 

metabolomics researchers. These small molecules include compounds such as lipids, 



 

7 

 

sugars, and amino acids, as well as bioactive products acting at very low 

concentrations in tissue signalling functions (14). 

Analytical technologies in metabolomics 

The main analytical techniques employed in metabolomics are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS). NMR spectroscopy is a 

non-destructive technique that provides detailed information on molecular structure 

of both pure compounds and complex mixtures (15), and for these reasons can be 

applied to metabolomics studies. High-throughput NMR spectroscopy consists of an 

automatic sample preparation step and a fast 
1
H NMR analysis, about eight minutes 

for each sample. The automatic sample preparation involves addition of buffer and 

D2O, as magnetic field lock signal for spectrometer; it enables to prepare a significant 

number of samples in a short time. The obtained spectra profiles are essentially the 

superposition of 
1
H NMR spectra of thousands different small molecules (up to 2500 

for urine, up to 200 for serum/plasma) present in sample at concentration >1 µM (16). 

A typical 
1
H NMR spectrum is obtained using water suppression techniques and adding 

TSP (sodium trimethylsilyl [2,2,3,3-
2
H4]propionate) as internal reference, it contains for 

urine predominantly sharp lines due to small molecules, while for serum and plasma 

both broad and sharp signals are present due respectively to macromolecules, as 

lipoproteins, and low molecular metabolites. These broad signals of macromolecules 

can be suppressed by applying  a Carr-Purcell-Meiboom-Gill (CPMG) filter to a standard 

1D sequence. One of the principal disadvantages of the NMR approach is the difficult 

identification of all metabolites in the samples, a process that involves a large number 

of techniques like two-dimensional NMR experiments. Indeed the 
1
H NMR of biological 

fluids is very complex and even though many resonances can be directly assigned  

basing on chemical shifts, multiplicity and by addition test, various two-dimensional 

NMR experiments are necessary to increase, but not to complete, the identification of 

biomarkers in biofluids. These 2D experiments include: i) 
1
H-

1
H J-resolved (J-res), to 

attenuate macromolecules signals and to give more information about multiplicity and 

coupling patterns ii) 
1
H-

1
H correlation spectroscopy (COSY) and 

1
H-

1
H total correlation 

spectroscopy (TOCSY), to provide 
1
H-

1
H spin-spin coupling connectivities iii) various 
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heteronuclear experiments that use information coming from other types of nuclei as 

13
C, 

15
N and, if it is present, 

31
P, as for example 

13
C-

1
H HSQC, to obtain information on 

the direct coupling 
13

C-
1
H.  

Mass spectrometry is a destructive technique that requires a very poor quantity of 

samples. Over the last few years its application to mammalian study has been 

increasing, especially for its great sensitivity, higher than NMR, and because it is a 

major technique for molecular identification, through the use of tandem methods for 

fragmention studies or of Fourier transform MS for a very accurate mass 

determination (1). Mass is usually coupled with chromatographic techniques as GC 

(Gas Chromatography) and LC (Liquid Chromatography) to separate different classes of 

substances (17).  The process of ionization, for biofluids as urine, is usually generated 

by the electron spray (ESI) method, and then both positive and negative 

chromatogram are measured. A three-dimensional chromatogram (retention time, 

mass, intensity) is generated by applying the HPLC (or GC)-MS approach. The great 

advantage is the possibility to cut off any mass peak from interfering substance (as for 

example drug metabolites or contaminant) without altering the dataset (1). 

It is possible to affirm that the two techniques are complementary for fully 

characterization: even if MS is better for identification of metabolites and for 

sensitivity, NMR is particularly useful for distinguishing isomers, informing on 

molecular conformation and studying molecular dynamics (1). Moreover, both NMR 

and MS techniques are being improved and developed.  

The sensitivity problems of NMR are partially solved by using cryogenic probes, where 

the detector coil and the pre-amplifier are cooled around 20 K, increasing the signal-

noise ratio (18); moreover, the recent development of a technique called high 

resolution 
1
H magic angle spinning (MAS) made feasible the acquisition of data on little 

pieces of tissue without any treatment; indeed, with the rapid spinning of the sample 

at an angle of 54.7° relative to magnetic field applied, it is reduced the line broadening 

effect and the associated loss of information (19-21). As far as MS metabolomics is 

concerned, the introduction of UPLC (Ultra Performance Liquid Chromatography) 

enabled better peak resolution and further increase in sensitivity and speed analysis 
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and it is still successfully applied to metabolomics studies (as UPLC-MS) (22). Finally, 

some “hyphenated” approaches  like HPLC-NMR-MS (23), in which each eluting HPLC 

peak is split to enable a parallel analysis by NMR and MS, are still  used for a complete 

metabolic identification. 

 

Metabolomics and disease 

However, the strongest point of NMR metabolomics is associated to the capability to 

analyze, at the same time,  all the metabolites present in biofluids with this approach. 

It is possible to obtain information about the status of a sample (and therefore of a 

subject) through the analysis of the so- called fingerprint. In NMR metabolomics the 

term fingerprint usually indicates the complete NMR profile of each analyzed sample. 

Applying statistical techniques, various samples are comparable through the exam of 

their fingerprint, without requiring the knowledge of all metabolites. This constitutes a 

true revolution to identify metabolic differences among various samples. Indeed 

metabolomics is still used for many purposes as for example to relate toxic or 

therapeutic effects of xenobiotics to normality (24), but one of the principal 

application of metabolomics is to aid human disease diagnosis. Several inborn errors of 

metabolism in children, for instance,  are diagnosed with the use of NMR spectroscopy 

of urine and serum (25). Moreover, in the last few years the use of metabolomics 

approach has increased to provide significant information on a wide range of 

pathologies, as cancer (26), ischemia-riperfusion (27), meningitis (28), diabetes (29), 

neurological disorders (30), liver fibrosis and cirrhosis (31), inflammatory bowel 

disease (32) and so on. Exploring pathologies through the holistic metabolomics 

approach can be very important to get new lights inside their mechanism and their 

impact on humans and animals. Nevertheless, it is possible to obtain a fast and non 

invasive diagnosis (pre-diagnosis) of some of them, as it is observable by reading a 

work about coronary artery disease (33), in which the sensitivity and the specificity of 

the test is either 92% or 93%, and therefore this allows to distinguish between normal 

coronary artery subjects and triple coronary vessel disease subjects with an high value 
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of accuracy. Sensitivity, specificity and accuracy are biostatistical parameters well 

explained in Table 1.1.  

While for angiogenesis the complete fingerprint of the illness is the responsible of the 

discrimination between healthy and sick subjects, it is also possible to highlight specific 

biomarkers for a selected pathology, or specific altered pathways, with metabolomics. 

This can be achieved without a priori knowledge about molecular characteristics. 

Therefore, metabolomics can be also used as a screening for markers and, once these 

are identified, can lead to the successive development of specific kits for a cheaper and 

extensive diagnosis of diseases. 

  Condition (as determined by GOLD STANDARD)  

  Positive Negative  

Positive True Positive (TP) False Positive (FP) (Type I error) Positive Predicted Value  

Test Outcome Negative False Negative (FN) (Type II error) True Negative (TN) Negative Predicted Value 

  Sensitivity (TP/FN+TP) Specificity (TN/FP+TN) Accuracy (TP+TN/TP+TN+FP+FN) 

Table 1.1  Biostatistical parameters. 

Future Applications 

One of the long-term goals of metabolomics is clearly the understanding of the existing 

relationships between genetic polymorphisms of different individuals and their 

metabolic fingerprint, in order to completely understand the response of different 

organisms to external stimuli. The achievement of this aim could be very important in 

the field of pharmacometabolomics, leading to personalized healthcare (34). Thus, an 

individual’s drug treatment will be tailored so as to achieve maximal efficacy and avoid 

adverse drug reactions. In order to solve this purpose it is necessary to exactly 

determine the genetic and environmental influences on the basal metabolic fingerprint 

of an individual, since these will also influence the outcome of a chemical intervention. 

In this direction a great improvement is obtained with the demonstration of the 

existence of unique individual metabolic phenotypes, called metabotypes (35-36). 
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Moreover, there is a wide range of current and emerging applications of 

metabolomics: i) investigation of invertebrates tissue extracts and biofluids as 

monitors of environmental toxicity (37-38) ii) investigation of plant biofluids (39) iii) 

studying of relationship between specific changes in gene expression and alteration of 

biochemical process (functional genomics) (40) iv) epidemiological study on large 

cohorts of biofluids samples to highlight differences in metabolism of various 

populations across the globe (41). 

Chemometrics methods 

Once the spectra of each biofluid are collected, it is necessary to analyze these data. 

Both NMR and mass spectrum can be thought of as a multidimensional set of 

metabolic coordinates, whose values are the spectral intensity at each data point (ppm 

for NMR and retention time for mass). Starting from these data, the principal aims of 

metabolomics can be summarized in four goals: i) visualization of overall differences, 

trends and relationships between samples and variables, ii) determination of whether 

there is a significant difference between groups, for instance between healthy subjects 

and sick subjects for a pathology, iii) highlighting all metabolites that are responsible 

for these differences and, maybe a little less important, iv) construct a predictive 

model for new samples. Multivariate statistical analyses are the key to achieve these 

goals. At present with the NMR spectra the variables are obtained by “bucketing”. 

Bucketing is a procedure used to reduce the total number of variables. One bucket (or 

bin) is a little slice of spectrum. The corresponding intensity of this slice is calculated in 

order to obtain our primary variables for each bucket. Obviously, the size of the 

buckets is one of the parameter to choose, even if 0.02 ppm is the commonest size. 

One of the simplest multivariate techniques largely used in metabolomics is PCA 

(Principal Component Analysis). PCA is a linear technique that expresses the maximum 

of variance in a data set through a small number of factors called Principal 

Components (PCs). Each PC is obtained as a linear combination of the primary 

variables (buckets). The first PC (PC1) expresses the maximum percentage of 

variability, then the value of variance quickly decreases in a way that the first PCs are 

the responsible for the great part of variability, while the last PCs are significantly less 
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important and express noise variability. Moreover, each PC is orthogonal and therefore 

independent with respect to the others. The conversion of data matrix into PCs gives 

two new matrices: score matrix and loading matrix. The scores express the coordinates 

for the samples in the model, indeed every dot in a score plot represents a single 

spectrum, and may be considered the new variable. The loadings represent the way in 

which the buckets are linearly combined. Hence, in the loading plot, each point 

represents a different spectral intensity and how the old variables weight to 

discriminate between samples, practically which buckets are responsible for the 

maximum variance. 

Moreover, in metabolomics, it is possible to apply also supervised methods of analysis. 

The most used of these methods is PLS (Partial Least Square) (42). PLS relates a matrix 

containing data that are independent from the samples, such as spectral intensity, 

called X matrix, with a matrix containing dependent variables (Y matrix), such as 

information about the nature of the samples (healthy or sick in case of studies of 

pathologies). In order to obtain valid data from PLS and, generally, from all supervised 

methods, it is necessary to split the samples into two sets, called “training set” and 

“validation set”. The training set is used to build the mathematical model which is used 

to analyze the validation set. Naturally many random and variable training sets and 

validation sets can be built to correctly and fully investigate the data through a robust 

model. One recent modification of the PLS method is constituted by the OPLS 

(Orthogonal Projection to Latent Structures method) (43), that is used to remove 

irrelevant and confusing parameters. The basic idea of OPLS is to separate the 

systematic variation in X matrix in two parts, one linearly related to Y matrix, and the 

other unrelated (orthogonal) to Y. This partition facilitates model interpretation and 

model execution on a new set of samples. Both OPLS and PLS can be used combined 

with DA (Discriminant Analysis) to establish the optimum of discrimination between 

samples. 

Only linear methods are described above. These kinds of methods are the most used in 

metabolomics, on the other hand the distribution of  metabolic data is often not well 

approximated by a multivariate normal, due to non-normality in the distribution of the 
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single metabolites or, more commonly, to the combination of several groups of 

normally distributed metabolites. Therefore the application of PCA, or corresponding 

supervised methods like PLS, can bring to the lack of information. For these reasons 

the application of various non-linear methods of multivariate analysis can be very 

useful in metabolomics. However, it is necessary to consider that non-linear methods 

employ more tunable parameters, which can lead to a difficult interpretation of data 

and to a reduction of model robustness. Moreover, they are usually more susceptible 

to overfitting and to the effect of noise. Therefore, even if their application is 

theoretically very useful, they have to be applied with extreme caution. Naturally also 

these methods are divided into unsupervised (as PCA) and  supervised (as PLS); a brief 

description of some of them is presented below. 

HCA (Hierarchical Cluster Analysis)  It is widely used in all areas of science and it is 

recently applied to a metabolomic study to explore a set of 20 toxicology studies (44). 

These methods cluster the data forming a tree diagram (also called dendrogram), in 

which the relationships between samples are expressed. The algorithm starts 

calculating the distance between all pairs of data points and, then, proceeds finding 

the closest pairs of cluster at each iteration (initially each cluster consists of a single 

data point). The main problem  in the application of these methods to metabolomic 

studies is that the reproducibility is not good,; the inclusion of new data,for instance, 

requires a complete re-computation of the dendrogram that can lead to a new 

structure not necessarily similar to that generated from the previous training set. 

Moreover, HCA does not generate diagnostic information about what features are 

responsible for the classification in sub-clusters. 

SOMs (Self-Organising Maps)  The SOMs is an unsupervised method of classification 

that reduces the dimensionality of the data through the creation of an array of nodes, 

each one  described by a “codebook” vector. During the training, each sample is 

presented to the map and the node with the closest reference vector is selected as the 

final node for the sample (also called “winning node”). Clearly the number of chosen 

nodes is a fundamental variable; with few nodes, for instance, the map does not 

represent faithfully the data distribution, while with a large number of nodes 
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phenomena as overfitting and noise susceptibility influence the analysis. Moreover, 

another disadvantage is associated to the final position of similar clusters, that may 

end up in distant parts of the SOM despite their similarity. For all these reasons they 

are not widely used in metabolomics, even if in a study on breast cancer SOMs are 

applied in combination with kNN  (k-Nearest Neighbour) classification (45). In R 

software some scripts to apply supervised SOMs have been developed. 

K-means clustering  This unsupervised algorithm is widely used in some fields as 

transcriptomics. It starts to work selecting the desired number of clusters and 

randomly assigning their center. For each iteration data points are classified through 

the assignment to one of the clusters, basing on the closest cluster center. After this 

addition the new cluster centres are recomputed. Despite their popularity, k-means 

are not often applied to metabolomics. The main reasons are the absence of diagnostic 

tools and associated visualization. In order to avoid these disadvantages this technique 

can be applied in combination with other statistical procedures, as in a metabolomic 

study of plant and marine invertebrate extracts with HCA (46). 

kNN (k-Nearest Neighbour) classification  This is the simplest of all supervised 

classification approaches. Every sample is classified to the class most frequently 

expressed among the k nearest neighbour. Therefore the k is the fundamental 

parameter to set. Small values of k can lead to the construction of a model subject to 

significant statistical fluctuations, while large values of k reduce statistical errors but 

can smooth out many details of the class distribution. As k-means, this method gives a 

classification of the sample without associated visualization and interpretation of data 

and, therefore, it is not applied only  in metabolomics (46,47). 

ANNs (Artificial Neural Networks)  ANNs is one of the most popular supervised method 

for pattern recognition in biomedical area. It consists of a network of nodes. Each of 

these nodes performs an operation to give a single output. Theoretically the nodes can 

be divided into three layers: i) input nodes ii) hidden nodes and iii) output nodes. 

Generally in metabolomic studies each input node  is formed by each single spectrum, 

while each output node represents each class of samples (even if it is better to have 

one more output node corresponding to an unknown class). Each hidden node 
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receives some information from various input nodes  and re-combines this  

information using a non-linear activation function to give a signal to the output nodes. 

For their great versatility the ANNs are still applied to some metabolomic studies (48-

51), even if this technique is not so easy to use. Indeed, some experience is required to 

select the optimal architecture (for instance the number of hidden nodes) in order to 

avoid error in spectra classification. Moreover, it is often difficult to clearly understand 

the connection weights to completely understand the parameters (buckets in our case) 

responsible for identification. 
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2 METABOLOMICS STUDIES 
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Metabolomics has established itself as an useful complement to the characterization of 

pathologies. The metabolome, that is considered the downstream of genome, transcriptome 

and proteome, is the best representation of a healthy or diseased phenotype of an organism. 

Indeed, metabolome amplifies changes caused by a biological perturbation. As opposed to 

metabolomics, which places a greater emphasis on comprehensive metabolic profiling, 

metabonomics is more often used to describe multiple (but not necessarily comprehensive) 

metabolic changes caused by a biological perturbation. Nuclear Magnetic Resonance (NMR)-

based metabonomics offers evident advantages in contrast with knowledge-guided search of 

metabolites in pathological samples. NMR-based metabonomics makes no assumptions on the 

identity of the metabolites that are relevant for the selected pathology. Information on the 

metabolite pattern alterations that can be significantly associated to the pathology is directly 

obtained through statistical analysis of the NMR profiles.  Usually, metabonomics does not rely 

on the measurement of a single metabolite-associated peak(s) but analyze spectra as whole: 

metabonomic profiles are essentially the superposition of the 
1
H NMR (in the most popular 

version of NMR-based metabonomics) spectra of tens to thousands different small molecules 

(up to 2500 in the case of urine) present in the sample at  > 1 µM concentration.
5
 In principle a 

NMR profile contains qualitative and quantitative information on all of them.  Small changes in 

enzymes concentrations can reflect in considerable alterations in intermediate products and 

because the fact that metabolic networks are connected by few high concentrated nodes, that 

can be investigated by NMR-based metabonomic analysis of biological fluids such as serum, 

plasma, and urine. MetNoMet (comparison between samples coming from the previous three 

breast cancer projects after starting therapy to highlight possible difference between 

metastatic and non-metastatic subject)  serum. 

Practically metabolomics seems to have a staggering diagnostic potential, explaining what 

actually happens to an organism and not what might happens as genomics or proteomics. 

Moreover its new approach, that is the contemporary analysis of all metabolites in a biofluid, 

indipendently of their assignment and their classes (fingerprint analysis) can be very useful to 

get new hints on various classes of pathologies.  

Aim of the work 

In this context my research projects have been developed during these three years. The 

general aim of the research can be splitted in two. First of all I tested the great potential of 

metabolomics in diagnosis and prognosis of pathologies or as new tools to discover biomarkers 
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and to understand complex biological mechanism of a pathology. In order to solve this goal, 

two diseases are selected: celiac disease (CD) and breast ductal carcinoma. CD is chosen 

because can be considered as a “metabolic” pathology or, at least, a pathology that seriously 

affects the metabolism of ill subjects. Indeed the mal-absorption associated to the pathology 

causes significant alteration in the metabolism of sick subjects. On the other hand, breast 

ductal carcinoma is a pathology with a great impact in the human population, especially in 

women. Therefore it is studied for many points of view and any contribution is important and 

fundamental to the definition of its onset and progression. Furthermore it is necessary to 

remember that almost all kinds of tumors can evolve in the metastatic form. The metastatic 

cells develop mechanisms in order to pass basal membrane of tissues and, then, the blood 

stream transfer them from one organ to others. Thus, the metabolomic studies of 

serum/plasma of subjects affected by a carcinoma is clearly very useful to define a general 

metastatic risk and to single out a specific fingerprint of the metastasis. Finally the application 

of metabolomics approach to these (but also to other) pathologies results to be very useful in 

order to highlight an eventual correlation between metabolic fingerprints and specific 

pathologies, try to diagnose and evaluate the advancement of a pathology and to evaluate for 

each subject the risk factors to contract a pathology, single out new biomarkers and study in 

detail several metabolic pathways. 

Nevertheless the metabolomic analysis of healthy subjects is clearly interesting and, therefore, 

constitutes the second principal aim of my research activity. Essentially the study of healthy 

subjects is important in metabolomics to have a clear definition of what is the variability. 

Indeed, metabolomics analyzes all metabolites that are present in a biofluid. Thus, when 

samples of subjects that have a specific pathology are analyzed, their metabolism and, 

consequently, their fingerprint is heavily affected by diet, physical activity and, in general, 

other environmental factors, besides than pathology. In this way the repeated study of urine 

samples (see chapter 5) coming from different subjects is very important in order to define 

better inter- and intra-variability and what are the effects on the metabolome of both 

environmental and genetic factor. Furthermore it is important to consider that the definition 

of healthy state is not completely clear and unambiguous. Therefore the metabolomics study 

of healthy individuals can be very useful to characterized their healthy states and to 

understand if it is possible to divide the healthy subjects basing on their metabolism. This can 

lead to define some classes of healthy subjects that present different “responses” to various 

stimuli such as drug intake, diet, physical activity and so on.  
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Finally each single metabolomic project developed during these three years, presents peculiar 

goals and aims that can be also significantly different from each other. These heterogeneous 

goals are separately treated in the each proper project chapter. 
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Celiac Disease 

Definition and Etiology 

Celiac disease (CD) (also called coeliac disease or sprue) is an autoimmune disorder of 

the small intestine caused by intolerance to gluten that occurs in people of all ages. It 

is characterized by immune-mediated enteropathy resulting in mal-digestion and mal-

absorption (1).  Although no pharmaceutical treatment is actually known to deal with 

it, a lifelong free-gluten diet is sufficient to reverse the symptoms and to allow the 

patient to spend a normal life (2). In particular, the pathology is caused by an immune 

reaction to gliadin, a gluten protein normally present in wheat, barley and rye. Upon 

exposure to gliadin, the enzyme tissue trans-glutaminase (tTG) modifies the protein, 

and the immune system cross-reacts with the small-bowel tissue, causing an 

inflammatory reaction, that leads to a truncating of the villi lining the small intestine 

(called villous atrophy). This interferes with the absorption of nutrients, because the 

intestinal villi are responsible for absorption (3). CD is defined as a multi-factorial 

disorder in which both genetic and environmental factors play a crucial role in 

pathogenesis (4). Genetically it is associated with specific alleles: HLA-DQ2 and HLA-

DQ8. HLA-DQ2 is expressed in more than 90% of people with CD (5). However, the 

expression of these two alleles is not sufficient to develop CD and, moreover, results 

from studies on siblings and on homozygous twins suggest that they are not the main 

causes of the disease onset (6,7). 

Prevalence and Incidence 

In epidemiology, prevalence is a statistical parameter associated to a disease that 

represents the total number of cases in a population at a given time divided by the 

number of individuals of the same population. Historically for celiac disease the 

prevalence was considered of about 0.02% (8), but the introduction of new diagnostic 

practices caused an increase in this value. At present  the prevalence is considered to 

be between 0.05% and 0.27%, even if for some populations of Southern Europe (as 

Italian), India and U.S.A. the prevalence is indicated to be between 0.33% and 1.06% in 

children (for Sahrawi people is 5,66%) and between 0.18% and 1.20% in adults (9-10).  
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 Incidence is a measure of the risk of developing some new conditions within a 

specified period of time. Some studies report a general decline of incidence during the 

1970s and a successive rising during the late 1980s and 1990s contemporary to the 

development of new methods of analysis and diagnosis (9, 11-13). In general incidence 

conveys information about the risk of contracting the disease, whereas prevalence 

indicates how widespread the disease is. 

Clinical Manifestation of Celiac Disease 

The symptoms of CD are various. Abdominal distension and pain, vomiting, 

steatorrhea, diarrhea, weight of loss and fatigue are relatively common symptoms in 

CD patients. Children between nine and twenty-four months tend to present - 

together with bowel symptoms - also  growth problems and pyloric stenosis. The 

described symptoms are relatively common for gastrointestinal mal-absorption 

pathologies. However, in case of CD, most patients have a constellation of other 

clinical manifestations, such as anemia; moreover, several other conditions are 

described associated to CD as T-cell lymphoma (14-15), osteoporosis (16), neurologic 

disease (17-18) and some autoimmune disorders (19), like type 1 diabetes (20), 

autoimmune thyroiditis (21) and Addison’s disease (22). Nevertheless, there are two 

types of CD that do not manifest themselves with significant symptoms or associated 

pathologies. These two forms of CD are called: silent CD and latent CD. While in the 

silent form the patients do not show any symptoms but present alteration of intestinal 

mucosa (villous atrophy), in the latent form the patients do not show both symptoms 

and intestinal damage but only have a clear predisposition to the pathology (positivity 

to anti-gliadin (AGA) and anti-endomysium (EMA) antibodies testing).  

Diagnosis and Therapeutics 

Several tests could be used to diagnose CD, including serological and endoscopic tests.  

The biopsy by fiber-optic endoscopy is the test which carries the higher value of 

sensitivity (about 100%) and lower frequencies of error, due to the possibility to have 

false positive (specificity is about 61%). In each case endoscopy represents a very 

invasive test; nowadays it is used to definitively confirm the presence of the CD in 
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patients with positive serology and/or high-risk symptoms, as weight loss, anemia 

(more than 120 g/l in females and 130 g/l in males) and diarrhea (23). Serological tests 

are the first approach used to determine CD. Most used tests are the indirect immune-

fluorescence measures of four antibodies : IgA-anti-reticulin (ARA) , IgA-anti-gliadin 

(AGA) and, above all, IgA-anti-endomysium (EMA) and IgA-anti-transglutaminase (tTG) 

(24). In parallel total levels of all IgA are checked to avoid the possibility to have false 

negative results associated to celiac patients with IgA deficiency; in this case IgG 

antibodies could be useful to diagnose CD (25). These tests have a very high value of 

sensitivity (over 90%) and specificity (about 99%) (26). Similar values of specificity and 

sensitivity are associated with anti-tTG test, even if it is quicker and easier than anti-

EMA test (27). Although serology appears as the better first approach to diagnose CD it 

is interesting to note that some cases of apparent seronegative CD occur, even if in 

presence of normal serum IgA (28). 

Historically the only one therapeutical approach in CD is a complete gluten-free diet 

(2). After a period of diet, varying from a few weeks to some months, all the 

symptoms, included villi atrophy, are totally reversed. All other tried strategies, for 

example the use of bacterial prolyl endopeptidase as dietary supplement to degrade 

anti-gliadin peptides (29), failed in vivo. 

Metabolomic study of Celiac Disease 

Aim of the work 

Although CD is a  widely studied pathology, many questions still remain unsolved . In 

particular, some symptoms and effects associated to the pathology are not well 

explained, for example up to 87% (30) of CD patients present chronic fatigue, that 

sometimes is the only symptom of undiagnosed CD (31-32); the origin of this syndrome 

is still unravelled and its attribution to mal-absorption is not sufficient. Clearly CD is a 

pathology with a direct impact on the metabolism, therefore the metabolomic 

approach, giving a holistic point of view of the pathologies, could be helpful to better 

understand some of these  unclear CD mechanisms. To solve these purposes of 

investigation, thirty-four both urine and serum samples of different celiac patients (7 
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males, 27 females, mean age 38.7 +/- 13.7 years) and thirty-four both urine and serum 

samples of different healthy subjects (13 males, 21 females, mean age 37.6 +/- 14.8 

years) are collected and analyzed. Moreover, it is also interesting the metabolomic 

analysis of follow-up patients. Normally the reversibility of the CD after the start of the 

gluten-free diet is only determined by the disappearing of the common symptoms. The 

analysis of the gut mucosa is not usually done by the patient when the pathology 

becomes asymptomatic, because is very invasive and tiresome. Thus metabolomic 

analysis of the follow-up samples should be useful: i) to validate the novel approach ii) 

to suggest a non invasive method of diagnosis of the CD reversibility. For this purpose 

urine and serum samples are also collected after three (n=17, 3 males, 14 females, 

mean age 40.5 +/- 14.1 years), six (n=10, 1 male, 9 females, mean age 38.7 +/- 13.8 

years) and twelve (n=13, 2 males, 11 females, mean age 41.3 +/- 11.5 years) months of 

treatment with a strict gluten-free diet.  

Results and Discussion 

Four different statistical analyses are used to discriminate between celiac patients and 

healthy subjects (HS). The best discrimination was obtained using six-fold PLS-RCC-

SVM method on the test sets with value of accuracy of 94.1% for serum CPMG spectra, 

92.6% for serum NOESY spectra and 83.3% for urine NOESY spectra as reported in 

Table 2.1.  

 

Table 2.1 Classification results for sensitivity, 

specificity and accuracy obtained for serum CPMG 

and NOESY spectra and urine NOESY spectra. 

These high values of discrimination are obtained by a simple statistical analysis and 

they demonstrate the existence of a metabolic signature for celiac disease. In details, 
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the lowest values of discrimination for the urine are probably related to the higher 

day-per-day variability expressed in the metabolic profile of urine samples (33); more 

surprisingly the values of CPMG serum spectra are higher than Noesy serum spectra. 

Not according to the relative frequent hypercholesterolemia (34-36) in CD patients, it 

seems that lipid variations do not contribute to the metabolomic signature of celiac 

disease. Separations between the two groups are also well visible in the Figure 2.1. 

Focusing the analysis on the CPMG (Figure 2.1 A) cluster and discrimination values, it is 

noticed that only three subjects are mis-clustered and only four subjects are, then, 

mis-assigned.  
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Figure 2.1 Clustering obtained by use of PLS-

RCC method on serum CPMG (A) and NOESY 

(B) spectra, and urine NOESY (C) spectra. 

Practically the SVM method mis-classified only one subject that is correctly clustered 

by PLS-RCC method. Interestingly this subject, which belongs to the group of controls 

(HS), has a familial history of lymphoma and myeloid leukemia. Regarding the other 

three subjects, two of them are celiac classified as HS and one is a control classified as 

celiac disease affected. Both CD subjects are completely asymptomatic, they are 

detected as celiac during familial screening, while the last mis-classified HS has a 

history of thyroid carcinoma and presents low levels of folate and ferritin like a great 

part of CD subjects; moreover, during collection he assumed levothyroxine. To assess 

which resonance peaks are significantly discriminating between CD subjects and HS, 

each bucket is analyzed using both ANOVA and non-parametric analogue Kruskal-

Wallis test. Discriminating buckets are chosen on the basis of the P value, it must be 

lower  than 0.05 (for urine) and 0.01 (for serum), with applying Bonferroni correction. 

Using this kind of variance analysis many metabolites show significant differences in 

concentration between two groups (see Table 2.2 and Table 2.3). 
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Table 2.2  Metabolites that are statistically 

different in sera of CD patients with respect to 

HS (P<0.01, Bonferroni correction applied). 

 

Table 2.3 Metabolites that are statistically 

different in urine of CD patients with respect to 

HS (P<0.05, Bonferroni correction applied). 

Interestingly, it is noticed that some metabolites present in the above tables are 

involved in the same metabolic pathways. In particular the Table 2.2 data suggest an 

alteration of the glycolysis process, the metabolism of glucose. Indeed higher levels of 

glucose and lower level of pyruvate, the last product of glycolysis, are present in sera 

of CD patients than in HS. If in literature the presence of high levels of glucose in CD 

patients is reported (37), decreased pyruvate is never signalled in CD patients. 

Moreover, if the alteration of glucose is linkable to various conditions, as for example 

the up-regulation of glucose intake at the level of microvillus membrane caused by an 
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alteration of the lipid-protein ratio of the same membrane, the decreasing of pyruvate 

in sera is consistent with the reduction of glycolysis. Furthermore, this hypothesis is 

confirmed by higher levels of 3-hydroxybutyrate in sera and acetoacetate in urine of 

CD patients (Table 2.3). These two metabolites are the product of the ketonic bodies 

catabolism, a supply pathway to convert energy as in case of reduction of glycolytic 

activity. Besides, ketonic bodies catabolism also lipid β-oxidation seems to be activated 

in CD patients, reading Table 2.2 lower level of lipid (determined through their R-CH2-

CH2-CO and –C=C-CH2-C=C- signals) are present in sera. This is probably caused by i) 

activation of lipid β-oxidation to replace the lack of energy due to less efficient 

glycolysis ii) alteration in gut intake of lipids due to mal-absorption associated to villi 

atrophy. The conversion of energy through these two ways is quite less efficient than 

glycolysis and it should explain the high frequency of chronic fatigue in CD patient. 

Finally these suggestions should be confirmed by follow-up metabolites data 

expressed in Table 2.4 (see below), after 12 months of gluten-free diet all the previous 

considered metabolites return to normal levels with the exception of acetoacetate. 

Other interesting altered metabolites reported in Table 2.2 and Table 2.3 are choline 

and some aminoacids (such as asparagine, leucine, methionine, proline, valine) and, 

above all, IS (indoxyl sulfate), mHPPA (meta-HydroxyPhenylPropionic Acid) and PAG 

(PhenylAcetylGlycine). Choline and aminoacids are found to be lower: this is probably a 

direct consequence of mal-absorption by villi atrophy. The lower levels of IS, mHPPA 

and PAG are due to an alteration of gut microflora. While mHPPA is one of the several 

products of the microbiologically mediated breakdown of poliphenols (as caffeic acid) 

and the conjugate chlorogenic acid (38-39), IS is a harmful uremic toxin produced by 

the liver starting from indole. Indole is one of the products of tryptophan metabolism 

by intestinal bacteria (40). PAG is only recently attributed to gut microflora (41) and its 

contribution to the production of these metabolites has not been fully characterized 

yet (42). However, these three metabolites suggest a significant alteration of the gut 

microflora activity, that is recently indicated as one of the probable major 

environmental factor involved in the pathogenesis of CD (44). Some types of statistical 

analysis are also applied by follow-up samples. Substantially the number of these 

samples is not quite sufficient and uniform to give a clear description of what is 
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happening during the gluten-free diet period. However, as reported in Figure 2.2, after 

12 months of gluten-free diet (GFD) all samples but one are classified as belonging to 

the HS group, while after 3 and 6 months a great large number of samples remain 

classified as CD ( Figure 2.3). 

 

Figure 2.2 Predictive clustering of CPMG serum spectra of patients after 12 months of GFD 

 

Figure 2.3 Recovery percentage of CD 

patients under gluten-free diet in function 

of the months of diet. 
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Furthermore, metabolites that show a statistically significant variation between 

untreated CD patients and corresponding follow-up after 12 months of GFD, are found 

using a P value discrimination of 0.05. Obtained data are reported in Table 2.4.  

 

Table 2.4 Metabolites that significantly varies 

after 12 months of GFD. 

They confirm the previous suggestion about metabolic processes involved in celiac 

disease, indicating a return to “normality” after a few months of diet. In particular it is 

noticed a strong correlation between glucose and 3-hydroxybutyric acid levels (with r 

value of 0.93), as to indicate the restore of the glycolysis as principal pathway of 

conversion of energy. 

Conclusions and Perspectives 

This work, published in the Journal of Proteome Research and attached here in the 

proper chapter, fully shows the existence of a typical metabolomic signature for celiac 

disease, based on three components: i) mal-absorption, ii) alteration of energy 

metabolism and iii) alteration of gut microflora. In this way it also suggests to explore 

new features and to investigate some unsolved aspects of CD, such as chronic fatigue. 

Nevertheless, it is necessary to extend them to distinguish CD from other causes of 

mal-absorption, such as small intestinal bacteria overgrowth, Crohn’s disease, short 

bowel syndrome and so on; moreover, it is required to completely understand the 

capability of metabolomic to clearly highlight the presence of CD, even for peculiar 

forms of the pathology, as silent form and latent form. For the last purpose another 

study has already started with more than 100 samples of urine and serum analyzed. 

The study plainly provides a blind analysis of a significant number of samples coming 
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from subjects with various characteristics (HS, classic CD subjects, CD subjects on diet, 

latent CD subjects, silent CD subjects, subjects that suffers of other intestinal 

pathologies). These samples will be tested using as classification trial the test sets 

developed during the first study.  
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Breast Cancer 

Introduction and classification 

Breast cancer is a type of cancer that usually starts in the inner lining of the milk ducts 

or lobules. It is the second most common cancer after lung cancer worldwide, with an 

incidence of 10.4 % (calculated on both genders), and the fifth most common cause of 

cancer death (519.000 ca. deaths in the 2004, equal to 7% of all cancer deaths) (1). 

Breast cancer is about 100 times more frequent in women than in men, even if the 

rates of survival are practically equivalent. Currently four different types of 

classification exist for breast cancer. All these classifications are done on the basis of 

different criteria and serve  different purposes. These different schemes consider i) the 

type of pathology, ii) the grade of the tumor, iii) genetic and proteic expression and iv) 

the stage of tumor. 

Type of pathology : It is a classification based on histological appearance and on some 

other pathological criteria. From this point of view, the most common types of breast 

cancer are ductal carcinoma (malignant cancer in breast ducts) and invasive lobular 

carcinoma (malignant cancer in breast lobules). 

Grade of tumor : It is determined by the pathologist using a microscopy and the 

Bloom-Richardson-Elston staging system (2-3). With the microscopy it is assigned a 

score ranging from 1 to 3 to the three followed features: i) percentage of tumor with 

normal ducts, ii) number of observable mitotic figures and iii) characteristic of cell 

nuclei. Therefore, the final score will be included between 3 (well differentiated, best 

prognosis) and 9 (poorly differentiated, worst prognosis). In details, tumor with scores 

between 3 and 5 are grade 1, between 6 and 7 are grade 2 and between 8 and 9 are 

grade 3.  

Genetic and Proteic Expression : This test is usually done by immunohistochemistry. 

The breast cancer cells are tested for expression of some genes, as estrogen receptor 

(ER) and progesterone receptor (PR), and of some proteins, as human epidermial 

growth factor receptor 2  (HER2). 
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Stage of tumor : It is used the so-called classification of malignant tumors (TNM). TNM 

classification gives a code of a tumor constituted by a letter, that can be “T”, “N” or 

“M”, and respectively means Tumor, lymph Node and Metastases. The letter is 

followed by a numeric or alphanumeric code to substantially indicate some 

parameters of tumor as invasiveness, dimension, presence of tumor cells outside the 

breast, number, size and location of breast cells deposits in lymph node.  

Finally, these are not all possible classifications, for instance it is possible to do a 

classification based on the presence of inflammatory states (4);  moreover, some of 

these parameters can be significantly modified  over time.   

Etiology and epidemiology 

Although the first work on the epidemiology and etiology of breast cancer was 

published in 1926 by Janet E. Lane-Claypon for British Ministry of Health, at present it 

is not possible to establish correctly the epidemiological risk factor and etiology for 

every type of breast cancer. Indeed epidemiological research allows us to identify 

factor risks for a population, as incidence and prevalence, but does not give 

information about the single individual. At the same time about 5% of new breast 

cancer are attributable to hereditary factors, while the etiology of the other 95% is 

unknown (5). Breast cancer, like other forms of cancer, is considered to result from 

multiple environmental and hereditary factors. Moreover, a series of primary risk 

factors are identified as gender (6), age, hormones (7), a high-fat diet (8), alcohol 

intake (9), obesity, but only a small increase in breast cancer frequency is attributed in 

this study to these factors, and these studies are often not well randomized. 

Furthermore, the expression of two genes, called BRCA1 and BRCA2, is associated with 

an increase of about 30-40% of breast and ovarian cancer risk (10). Finally, personal 

and familial history of breast cancer significantly increases the risk of this pathology, 

while, for instance, some races, as Latina, Asian or Afroamerican are less subject to this  

pathology than Caucasian. 
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Clinical manifestations and signs of breast cancer 

It is considered that, in about 80% of cases (1), breast cancer is discovered by the 

patients themselves when they find a lump that feels different from the surrounding 

breast tissue. Sometimes the lumps, especially if they are very small are discovered 

through a mammography. Moreover, the presence of a lump in the armpits (lymph 

nodes) is also a possible symptom of breast cancer. Obviously many other signs may be 

included,  as changes in size or shape, skin dimpling, nipple inversion. Pain (called 

mastodynia) is another possible symptom but it is not characteristic. Indeed, it is 

possible to have it in many other breast pathologies such as mastitis and fibro-

adenoma. When breast cancer cells invade the lymphatic dermals, that are small 

vessels in the skin of breast, its presentation can resemble skin inflammation and thus 

is known as inflammatory breast cancer. Symptoms of inflammatory breast cancer 

include pain, swelling, warmth and redness throughout the breast. Another reported 

symptom complex of breast cancer is Paget’s disease. This is a syndrome that presents 

eczematoid skin changes such as redness and mild flaking of the nipple skin. As Paget's 

advances, symptoms may include itching, increased sensitivity, burning, and pain. 

There may also be discharge from the nipple. Approximately half of women diagnosed 

with Paget's also have a lump in the breast (11). Furthermore, when breast cancer is 

manifest in the metastatic form a great number of new symptoms  also appear, which 

depend on the location of metastasis. Common sites of metastasis include bone, liver, 

lung and brain (12). Unexplained weight loss can occasionally herald an occult breast 

cancer, often associated to very frequent symptoms as fever and chills. Bone or joint 

pains can sometimes be manifestations of metastatic breast cancer, as some 

neurological symptoms. These symptoms are "non-specific", meaning they can also be 

manifestations of many other illnesses. However, the presence of one or more of 

these symptoms have to be seriously considered by the person,  because of the 

possibility of an underlying breast cancer at almost any age. 

Diagnosis and Therapeutics 

The most common used screening method for diagnosis of breast cancer is a 

combination of X-ray mammography and clinical breast exam. In women at higher risk 
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than normal, such as those with a strong family history of cancer, additional tools may 

include genetic testing or breast Magnetic Resonance Imaging (MRI). Breast self-

examination was a form of screening that was heavily advocated in the past, but  

several large studies have shown that it does not have a survival benefit for women 

and often causes considerably anxiety. This is due to the fact that breast cancer can be 

detected at a relatively advanced stage operating in this way, whereas other methods 

push to identify the cancer at an earlier stage where curative treatment is more 

possible. X-ray mammography uses x-rays to examine the breast for any 

uncharacteristic masses or lumps. Regular mammograms are recommended in several 

countries in women over a certain age as a screening tool. Genetic testing for breast 

cancer typically involves testing for mutations in the BRCA genes. This is not generally 

a recommended technique except for those at elevated risk of breast cancer. While 

previously discussed screening techniques are useful in determining the possibility of 

cancer, a further testing is necessary to confirm whether a lump detected on screening 

is cancer or other, like a simple cyst. The common diagnosis is elaborated after a 

"triple test" of clinical breast examination led  by a trained specialist. This triple test 

comprises mammography, fine needle aspiration and cytology (FNAC). Both 

mammography and clinical breast exams, also used for screening, can indicate an 

approximate likelihood that a lump is cancer, and may also identify any other lesions, 

while FNAC extracts a small portion of fluid from the lump. If the fluid is clear the 

cancer is highly probably absent, while if there is presence of blood in the fluid, it is 

necessary a microscope inspection to check the presence of cancer cells. These three 

tools can be used to diagnose breast cancer with a good degree of accuracy. Another 

useful option is biopsy, which  consists in the removal of either part or entire lump. As 

for other tumors, the mainstay of breast cancer treatment is surgery when it is 

localized, with possible adjuvant hormonal therapy (with tamoxifen or an aromatase 

inhibitor), chemotherapy, and/or radiotherapy.  Depending on clinical criteria (age, 

type of cancer, size, metastasis) patients are roughly divided into high risk and low risk 

cases, with each risk category following different rules for therapy. 
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Metabolomic study of Breast Cancer 

Aim of the work 

The natural aim of every work which investigates breast or other types of cancer, is the 

improvement of the knowledge of both pathologies and exploitable clinical therapies. 

Metabonomics, being a science that provides a dynamic portrait of metabolic status, 

can be very useful in these directions. Particularly the improvement of the prediction 

of clinical outcomes is necessary to have a better approach to breast cancer, 

individualize the therapy and reduce the high side effects associated to it. For these 

purposes,  the attention is focused on the possibility to discriminate i) pre-operative 

not-metastatic breast cancer subjects ii) post-operative not-metastatic breast cancer 

subjects and iii) post-operative metastatic breast cancer subjects, by relying on the 

metabonomic analysis of the serum. Moreover, an important goal is to check the 

capability of metabonomics to single out the presence of micrometastasis in an 

organism. Indeed, in the treatment of early breast cancer, a critical issue is the 

identification of which individuals can benefit from adjuvant intervention. As 

mentioned above, the patients are divided into two groups (high and low risk) and 

their therapy is decided starting from this classification. However, the risk is often 

under- or over-estimate and, as a consequence, the applied therapy is not completely 

corrected and appropriated. One, and probably the most, important cause of this mis-

assignment is the existence of unpredicted micrometastasis in the host. The study of 

micrometastasis is a step not easily solvable. In this work it is hypothesized  that a 

metabonomic fingerprint of the micrometastasis exists and to check this metabonomic 

risk, data are compared with 10-year mortality rates data obtained from the use of 

Adjuvant!online (13) software.  

Collected serum samples are divided into three classes: i) 44 pre-operative early breast 

cancer ii) 98 post-operative early breast cancer (44 as the same of pre-operative, 45 

new recruited) iii) 51 metastatic breast cancer. For early breast cancer patients the 

mean time between pre-operative collection and surgery is 16 days (range 2:40), while 

for post-operative is 33 days (range 16-55). 
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Results and Discussion 

 

A clusterization between early pre-operative and metastatic subjects was obtained for 

both cpmg and serum spectra using O-PLS (Figure 3.1 A e 3.1 B). Looking at the figure 

it is noticeable the clearly separation between the two groups revealing the existence 

of a metabonomic fingerprint for metastatic pathology with respect to not-metastatic. 

After this process, a double cross validation scheme is applied to single out the correct 

value of prediction of defined statistical approach. A great number of individuals are 

correctly classified, whilst some cases of misclassification exist. Right percentage of 

recognition for CPMG are 75% of sensitivity, 69% of specificity and a global predictive 

accuracy of 72%. Similar values are obtained using NOESY1D, sensitivity of 77%, 

specificity of 68% and predictive accuracy of 73%. Through the application of Wilcoxon 

test with Bonferroni correction, some metabolites that are significantly discriminating 

between the two classes (p value < 0.05) are identified. Indeed metastatic subjects are 

characterized by higher value of glucose and of some aminoacids as phenylalanine, 

proline, lysine and N-acetyl cysteine and by lower value of many lipidic signals that are 

present in unfiltered noesy spectra. 

Clusterization showed in Figure 3.1 suggests that some pre-operative samples present 

very similar characteristic to metastatic samples. In order to better understand the 

cause of these misclassification, a factor of risk, called “Metabolomic risk” is assigned 

to every not-metastatic sample. The value of each Metabolomic risk is assigned 

measuring the Euclidean distance of each dot from the centre of metastatic cluster. 

Obviously, it is supposed that samples that have a higher distance from metastatic 

center have less metastatic characteristic  and, therefore, they have a lower value of 

risk. Practically, the shorter is the distance the higher is the risk, and vice versa. 
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Figure 3.1 O-PLS of pre-operative (N=44) and metastatic 

(N=51) patients showing near complete separation of 

patient groups; CPMG (A) and NOESY1D (B) techniques. 

The next step is to compare the Metabolomic risk with the established risk by using 

Adjuvant!online software. Adjuvant!online is a free software that is very useful to 

predict the risk of relapses and mortality associated to a breast tumor in not-operated 

subjects, if they are not treated;  moreover, the software also values the reduction of 

the risk in case of specific therapies. Parameters used by software are related to form 

and type of tumor, as size, hormonal receptor (ER) status, lymph node involvement 
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(14), but also to some patient characteristics, as age, diet, used drugs In Figure 3.2  the 

comparison between metabolomic risk and 10-year mortality by Adjuvant!online is 

reported. 

 

Figure 3.2 Correlation between 10-year breast cancer mortality 

estimated by Adjuvant!online (A) and Metabolomic risk (M) for 

pre-operative patients (pts). 

A clear relationship between the two established risks does not seem to be present at 

a first exam of the previous figure. Particularly,  it is noticeable that there is a 

significant discordance for three samples (present in the right extreme limit) that are 

classified as having a very high metabolomic risk whilst they do not seem to be a risk 

for adjuvant. The percentage value of concordance is about 48% for both metabolomic 

high risk and metabolomic low risk. To explain these data,  the best possible 

assumption is related to the presence of micrometastasis in some breast cancer hosts. 

Indeed micrometastasis are not considered in calculation of risk by Adjuvant!. 

Therefore, pre-operative patients that have a metabonomic fingerprint similar to 

metastatic subjects and, as a consequence, are the nearest to metastatic cluster, could 

have residual micrometastasis in their own bodies. To confirm these hypotheses, it is 

decided to use post-operative serum samples coming from same subjects as validation 

test set, in order to minimize inter-individual variation. The same methods of 
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clusterization and classification for pre-operative specimen are also used in this case 

leading to following results (see Figure 3.3).   

 

Figure 3.3 Impact of surgical removal of primary tumor on 

metabolomic risk 

In the above figures,  each bar represents the change of the metabonomic risk in pre- 

and post-operative samples; the longer the bar, the higher the variation of risk. In 

details i) 100% (11 of 11) of previously classified as lowa/lowm subjects remain in  the 

same class of risk, ii) 92% (9 of 12) lowa/highm show a risk reduction, iii) 80% (8 of 10) 

higha/highm have a reduction of metabonomic risk after surgery, iv) 36% ca (4 of 11) of 

higha/lowm  show interestingly a sizeable increase of metabonomic risk, whilst the 

others remain in the same class of risk. This last trend is the most interesting to 

analyze, because it seems to apparently be contrasting logical supposition. Indeed if a 

not-metastatic tumor is removed from the hosts, the risk of recidive and/or death 

should decrease.  Actually,  it is still suggested in literature that the surgical removal of 

a primary tumor could increase the risk of a future disease (15-17). The stress that is 

associated to a surgery, and that can cause both immunosuppression and proliferation 

of growth factors, can significantly trigger the possibility of tumor growth (18-19).  
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Conclusions and Perspectives 

In this work it is showed that a metabonomic fingerprint seems to exist for metastatic 

patients and it is observable analyzing serum samples. The differences between 

metastatic and early breast cancer patients are noticeable in both pre-operative and 

post-operative samples (i.e. coming from the same subject). Actually the collected 

biostatistical data are not very high in term of accuracy (about 70%). This is also 

probably due to great inter-variability. To overcome this problem it is necessary to 

collect more than one sample from the same subject in a short period of time. 

However, a definition of metabonomic risk, as percentage probability of 10-years 

death risk after surgery, is defined and compared with Adjuvant!online data. 

Metabonomic risks are partially in agreement with Adjuvant!online risk, but there are 

also significant differences that are attributed to the possible  existence of 

micrometastatis (not identifiable by Adjuvant!online). The only and better way to 

confirm these suggestions is to repeat the study in a class of subjects which is also 

donating follow- up samples, in order to highlight the effects of a possible progression 

of the pathology. Another important approach can be the analysis of tissues of breast 

cancer. The analyses of tissue is still  used in metabonomics and it has led to the 

significant results of suggesting sarcosine (20) as a possible biomarker of prostate 

cancer progression. Similarly, an identical approach is useful in order to completely 

understand the metabolism of breast cancer and also to study in details both the role 

of phenylalanine in tumor progression and the importance of its pathways in the onset 

of breast cancer and, moreover, in progression to metastasis. 
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Background 

Since their birth, metabolomics has showed a great potential in various research areas. 

In particular the relevance of metabolomics can be greatly enhanced by the 

determination of the existence of a metabolic phenotype, typical for each subject. 

Differences in experimental metabolic profiles due to genetic strain differences in 

animal models have been observed, leading to the suggestion that each individual or 

group of individuals may be characterized by a different metabotype, defined as “the 

multiparametric description of an organism in a given physiological state based on 

metabolomic data” (1). The availability of a characteristic metabotype of an individual 

could be fundamental in many fields as nutrigenomics (2,3), in evaluation of drug 

efficacy, in pharmacometabolomics (4), and in studies of personalized nutrition aimed 

at maintaining metabolic health and avoiding loss of homeostasis or correcting 

homeostasis dysregulations. Of course, a fundamental condition of metabotypes is 

their stability over time. A major problem is that the experimental metabolic profile is 

influenced not only by the genotype but also by age, lifestyle, environmental factors, 

nutritional status, assumption of drugs, and by other metabolites from symbiotic 

organisms, as gut microflora (5-7). Consequently, changes in the metabolic profile of 

biologically complex organisms (as humans) in response to pathological stimuli may be 

difficult to distinguish from normal physiological variations. Despite these factors, the 

experimental evidence of the existence of a metabolic phenotype is recently collected 

(8), assessing the influence of possible perturbing factors on the metabolic profiles and 

minimizing them in order to eliminate noise due to random daily variation. Indeed the 

approach used for the determination of the metabotypes counts on the NMR analysis 

of multiple urine samples (40 for each individual) taken in quite consecutive days 

(about 2-3 months) from 22 healthy subjects. Each  of these subjects avoids alcohol 

and drug intake the day before the collection, and, moreover, fills a complete dietary 

sheet in order to better determine changes due to food behaviour. In this way,  it is 

obtained for the first time a natural, stable, and invariant metabolic profile that is 

typical for a given subject, even if not necessarily unique. As  hypothesized, the 

identification of a characteristic individual fingerprint is very useful because it may 

allow the researchers to i) better plan personalized therapy and nutrition, ii) perform 
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studies of pharmacometabolomics to better predict and assess drug efficacy and 

toxicity, iii) follow phenotype changes as a function of disease progression, possibly 

leading to earlier diagnosis and prognosis, iv) perform cost-effective screenings on 

large human populations and v) address how possible long-term changes may be 

related to aging. The fingerprint is assessed to be stable only in a short period. 

Aim of the work 

The discovery of the existence of a stable individual human phenotype in a short 

period of time (about 2-3 months) is clearly an important improvement for 

metabolomics (8). At the same time it is necessary to unravel the behaviour of the 

metabotypes in a more extensive time period, in order to completely help researchers 

in all above mentioned fields and, especially, for medical application. To solve this goal 

11 subjects of the project called MetRef1 (8) are recruited again after 2 years, entering 

in the MetRef2 project, and 4 of them are recruited one more time 1 year later, 

entering in the MetRef3 project. Nine healthy individuals, not present in MetRef1, are 

recruited after 2 years of MetRef1 together with the other 11 subjects. These new 

recruited subjects result  to be useful to further extend the analyzed metabotypes and 

try to define the possible saturation of the metabolic space, in order to highlight the 

eventual presence of shared metabotypes in  two or more subjects. In this way the 

project MetRef2 is constituted by 20 individuals (9 males, 11 females), aging  25-55, 

donating 40 urine samples (first in the morning, pre-prandial) collected over a period 

of about 3 months. While MetRef3 is constituted only by 40 samples donated by 4 

subjects recruited for the third time (see Figure 4.1). 

Moreover, there are some singularities in the new collections that, although not 

statistically relevant, can contribute to better understand environmental and genetic 

contributions to the definition of the individual metabolic phenotypes. As it is 

noticeable in Figure 4.1, two new recruited subjects are homozygous twins (indicated 

with TA and TB codes), while other two subjects (BU and BV) are father and son. 

Moreover, some subjects that are donating in more than one project quite drastically 

change their lifestyle, as BC, who, during the two collections, moved from Italy 

(MetRef1) to Spain (MetRef2), varying the diet, and AR, who quitted smoking. 
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      Figure 4.1 Collection scheme of the three MetRef projects.. 

Results and Discussion 

To correctly define the metabolic space, it is necessary to start from the data published 

about the first MetRef work (8). These results are represented in Figure 4.2. 

 

Figure 4.2  Dendrogram relative to cluster analysis on the 21-

dimensional PCA/CA subspace for the 22 subjects of the MetRef1 

collection. 

In the dendrogram, each vertical bar is a single spectrum while each horizontal bar 

represents the inter-sampling distances for all spectra in a statistical space defined 

through a PCA/CA analysis. Moreover, the colours obviously highlight the spectra 

belonging to an individual (as reported in x axis), and therefore the black coloured bars 
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result to be a representation of the interindividual distances; practically every fork 

gives a measure of the metabolic affinity between the individuals. These 

representation is very useful in this case since it is totally impossible to  perform the 21 

dimensional space of the system. However, it is clearly visible that all subjects present 

a typical metabotype, there are not overlaps among all coloured lines by each 

individual. Furthermore, these trends are confirmed through a predictive analysis using 

the single vote classification: the mean value is 99.7% for MetRef1 collection (see 

Table 4.1). The same identical analysis is done on the 20 individuals of the MetRef2 

projects giving very similar results both as dendrogram visualization (Figure 4.3) and as 

percentage of recognition that results to have a mean of about 99.6% (Table 4.1). 

 

Figure 4.3  Dendrograms relative to cluster analysis on the 19-

dimensional PCA/CA subspace for the 20 subjects of MetRef2 collection. 

These results confirm the robustness of the method still used in  the first work. 

Moreover, analogous results, as dendrograms (Figure 4.4) and recognition values 

(Table 4.1), are obtained pooling together all 31 individuals of the MetRef1 and 

MetRef2 collection (clearly for the subjects that are participating to both collections 

the analyzed spectra are about 80 for each one). All these data confirm the existence 

of various individual metabolic phenotypes and suggest that the number of these are 

higher than 20 and not yet defined. Thus the metabolic space is probably distant to be 

satured and this opens significant perspective in fields as biology and medicine.  
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Figure 4.4  Dendrogram relative to cluster analysis on the 30-dimensional 

PCA/CA subspace for the 31 different subjects of both MetRef 1 and MetRef2 

collections. 

 

Table 4.1  The individual single vote scores, respectively for a) MetRef1 collection, b) 

MetRef2 collection, c) the 31 Different Donors from both collections, d) All 46 

Pseudodonors. 
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One fundamental step in the development of this work is the identification of time 

stability of the metabotypes. In order to satisfy this request the spectra of the same 

individuals that are present in different collections (11 for MetRef1 and MetRef2, 4 for 

MetRef3) are used in a single vote classification as both training and test set (see Table 

4.2) 

 

Table 4.2  Single vote classification. 

Different collections are used as training 

and test sets. 

As it is noticeable, the means are high and substantially similar, even if, using MetRef3 

as training set and MetRef2 as test set, the value is slightly lower. These high 

percentages reported in the previous table demonstrate that the metabotypes 

substantially remain stable in a time scale of about two-three years and this is a 

significant basis to the medical implication of the metabotypes. Indeed this justifies 

that drugs are metabolized in different ways by different subjects and, therefore, they 

may have different both positive and adverse effects. Moreover, these findings suggest 

the necessity to develop all medical therapies in a personal way or, even better, in 

different ways according to various existing metabotypes. In details it is possible to 

note in the previous table that some individuals, as, for instance AS, present value of 

recognition slightly  lower than others. To better understand what the cause of this 

result is,  it is possible to see the distance colour-coded matrix for all individuals that 

participate in at least two collections reported in Figure 4.5. The dark blue diagonal 

represents the spectra of all individuals in the same collection, that are clearly 

associated to the lowest distances (dark blue colour code), while the other four light 

blue square diagonals are associated to the spectrum of the same individual in 
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different collections to demonstrate that there is a partial confusion between various 

collections due to a relative stability of the metabotypes over time. For the individual 

AS the light blue squares in these four diagonals are relative darker than for the other 

subjects, to highlight shortest distances between collections that cause a major 

confusion (see also Table 4.1 column d). In conclusion AS has the most stable 

metabotypes in a short time scale. 

 

Figure 4.5  Distances in metabolic space  

for all individuals that participated 

 in at least two collections. 

Same results are also showed by the dendrogram in Figure 4.6, which is obtained 

considering each set of 40 spectra coming from the same individuals that participated 

to all three collections as different and not correlated pseudoindividuals.  

This approach confirms the stability of the metabotypes. Indeed the same 

pseudoindividuals are clustered together and in some cases it is presented also a 

superimposition as, for instance, it has been  highlighted for AS with Figure 4.5. Some 

considerations about the environmental and genetic contributions to metabotypes can 

be done by examining the previous figure. In particular TA and TB (homozygous twins) 

present  the shortest fork in dendrogram 4.4, followed by BU and BV that are father 

and son, indicating the presence of a genomic component. Furthermore, in the new 
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dendrogram the fork between TA and TB is one of the shortest and it is comparable 

with the forks among same pseudoindividuals. Practically TA and TB show a behaviour 

analogous to the same individuals in different collections in the dendrogram. These 

findings are also confirmed by the use of a single vote classification; the few 

misdiagnosed samples for TA and TB are assigned to one another, not casually 

assigned to other subjects as it happens for all individuals. 

 

Figure 4.6  Dendrogram relative to cluster analysis on the 45-

dimensional PCA/CA subspace for all the 46 different 

pseudoindividuals of all three collections.  

 

Finally it is necessary to make a consideration on the variability of the spectra. Even in 

this work it is clearly shown the time stability of the metabotypes, the detailed visual 

analysis of the spectra reveals some differences between various collections. These 

differences are classified as “spikes”, “waves” and “jumps” and they seem principally 

due to diet effects. In particular, i) spikes are signals that appear in a single spectrum  

having marked  differences in intensity between preceding and following days, ii) 

waves are signals that have a more gradual variation in intensity but  persist for more 

days, iii) jumps are signals that markedly appear in a collection  as spikes but they 

remain practically unchanged for all the collection and, sometimes, they are carried to 

next collection and are reversible. Spikes are principally due to particular food intake, 
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for instance the peak of TMAO (TriMethylAmine-N-Oxide) (9) clearly appears in spectra 

of urine collected the day after a fish diet intake, as well mannitol appears after 

chewing gum intake. At the same time many other events can cause a spike, as very 

intense physical activity (lactate), drug consumption (paracetamol-O-glucoronide), 

excessive alcohol intake (ethanol). Moreover, it is present in a BF subject a case of 

“anti-spike”, due to the disappearance of citrate signals, probably associated to a 

kidney metal complexation. Nevertheless, a particular diet is one of the causes of some 

jumps, in particular for individual AW it is observed a jump for xanthosine (10) due to 

an excessive meat consumption during a period of several days. A great number of 

jumps and waves are really due to the modification of gut microflora. It is noted that 

the peaks involved in waves and jumps are principally due to metabolites as hippurate, 

meta-hydroxyphenylpropionate, formate and phenylacetylglycine that are usually 

products of the metabolism of intestinal bacteria (11-15) and, therefore, linkable to 

activity variations of gut microflora. This last consideration leads us to consider the 

individual metabolic phenotypes as a metagenomic entity strongly affected by host 

genotype, environmental factors and gut microbiome. 
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6 METABOLOMICS STUDIES 

ON HUMAN PLASMA 
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Aim of the work 

This epidemiological study on healthy subjects was born with the aim to better 

understand the complex biological mechanisms that occur in living organisms. In order 

to reach this goal it has been decided to analyze a great number of EDTA-plasma 

samples (not fewer than 1000), that are collected from healthy blood donors in the 

Hospital of Pistoia. Due to this high number of samples, the project is quite widespread 

and complex, and therefore some sub-projects are identified, with specific goals to 

reach:  

1.Relationship study between altered blood parameters and metabolic fingerprints 

(Altered Blood Parameters) . 

2.Relationship study between peculiar behaviours of sample donors and metabolic 

fingerprints (Peculiar Behaviours). 

3.Relationship study between SNPs genetic polymorphisms and metabolic fingerprints 

(SNPs). 

Altered Blood Parameters 

A considerable amount  of information is present in plasma NMR spectra. In particular, 

some molecules have peaks arising in plasma spectra, such as cholesterol, LDL, HDL, 

glucose and so on.  These molecules are usually considered as “healthy state signals” 

for each individual, and for them it is given a range of confidence associated to the 

normal condition. However, they are not sufficient to completely define both healthy 

status and percentage of risk of cardiovascular pathologies onset. Therefore, current 

European guidelines for the prevention of coronary heart diseases recommend to base 

any intervention on the evaluation of total risk (1). In order to estimate such a risk, 

several predictive equations have been developed in the last decade (2-3). Possibly 

also metabolomics can be used as a method to define some of these factors of risk, so  

metabolomics spectra contain all the possible metabolic information that is present in 

blood. In order to check this hypothesis, a first step consists in the analysis of the 

relationship existing between the previous value determined by the standard method 
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of analysis and the same value predicted by the metabolomics statistical analysis. 

Practically, it is necessary to determine the existence of any kind of correlation 

between the first ones (that can be called true values for simplicity) and the second 

ones (that are predicted values), in order to verify the real capability of metabolomics 

to highlight standard blood values. The second step is the real definition of a 

metabolomics risk. Some other parameters, also associated with individual behaviour, 

can be considered to solve this goal. 

Peculiar Behaviours 

It is generally assessed that the healthy state of an organism is strictly related to the 

life style, besides genetic factors. Therefore, some of the  so-called “proper” 

behaviours have been identified as well as “not-proper” ones. For instance, a balanced 

diet and a steady physical activity are usually considered as a healthy pattern  for an 

individual. In the same way some habits are considered risky or harmful, such as 

smoking cigarettes, high alcohol intake and so on. Many of these “not-proper” 

behaviours are largely widespread in modern society, especially in the most developed 

countries. Thus their impact on the individual metabolism, and therefore, on the 

individual healthy state  have been already studied, see for instance the studies on the 

increment of risk percentage of lung cancer in smokers. There has been an increasing 

interest in the application of the metabonomic approach also to these fields recently 

(4-6). Indeed there is obviously a great advantage in the application of the 

metabonomic approach to the exam of the “un-proper” life styles. It is clearly possible 

to supervise the contemporaneous alterations of various metabolic pathways. In this 

way it is not only given a complete metabolic definition of all specific metabolic 

alterations due, for instance, to smoke but it is also possible to investigate how 

individual metabotypes can react to this and be able to define a possible percentage of 

risks of the onset of correlated pathologies. Naturally this step is strictly related to the 

previous one (altered blood parameters);  most of these “not-proper” behaviours 

cause a significant alteration of blood parameters before the pathology. 

SNPs 
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The last goal is to discover a relationship between genome and metabolome. It is 

assessed how the genome is one of the principal causes of the healthy state of a 

subject. Moreover, some gene mutations can cause serious pathologies that are not 

compatible with life in many cases.  

Nevertheless, some other mutations are not  strictly correlated with pathologies. Some 

of them are called SNPs, or Single Nucleotide Polymorphism, and generally are  

responsible for different enzymes (isoforms) in different subjects. Basically a SNP is a 

single variation in DNA sequence generally due to the changing of one of the 

nucleotides. In details SNPs may be changed (substitution), removed (deletion) or 

added (insertion) to a polynucleotide sequence. When there is this kind of 

modification, two different alleles exist for a gene and almost all common SNPs have 

only two alleles. It is supposed that these single variations in the DNA can affect the 

way humans develop diseases and respond to pathogens, chemicals, drugs, vaccines, 

and other agents. SNPs are also thought to be key enablers in realizing the concept of 

personalized medicine (7). It is noted that the existence of SNPs is relatively common 

for genes coding for enzymes involved in glucidic (8) and lipidic (9-10) metabolism. 

Therefore, the polymorphisms that will be considered in these projects are associated 

to genes with an important metabolic role. In details 4 genes are selected: i) PPARγ2 

(Peronisome Profiletor Activated Receptor γ2 ii) LIPC (hepatic LIPase gene) iii) FADS1 

(Fatty Acid DeSaturase) iv) SREBP-1c (Sterol Regulatory Element Binding Protein 1c).   

PPARγ2 is a gene involved in the metabolism of lipids and glucose. The most common 

polymorphism is Pro12Pro, while the other is Pro12Ala. In a recent study it is noted 

that Pro12Ala polymorphism is associated with a diminution of activity of the hepatic 

receptor for the uptake of glucose and a higher sensibility to insuline (11). 

LIPC is involved in HDL metabolism. The selected polymorphisms for the gene are 

rs12593008, rs261342 and rs4775041. It seems that their expression is associated with 

a low level of HDL, especially in women (9). 

FADS1 is related to the enzyme Delta-5-Desaturase, that plays a fundamental role in 

the fatty acids metabolism. Indeed it is the responsible for the desaturation of acilic 
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chains of fatty acids. Two different polymorphisms are selected: rs174548 and 

rs3834458. The first one seems to be associated with level variations of HDL, LDL, and 

free cholesterol in serum (10). The second one seems to induce the increasing of the 

selected substrates for the enzyme (12). 

SREBP-1c is a gene that codifies for an important transcription factor of both lipidic 

and glucidic metabolism. The selected polymorphisms are rs2297508 and rs11868035. 

They are associated with type 2 diabetes (13) and LDL altered levels (8). 

Partial Results and Perspectives 

Preliminary results are obtained in a widespread number of blood samples, even if not 

definitive. More than 800  samples  are collected and analyzed (809). All these samples 

are EDTA-plasma. At the same time some important clinical data are collected from 

the recruited donors. These important data are anonymized for ethical reasons. Thus 

for  every sample (and therefore every donor), a few items of  information are present 

such as gender, smoke and drug intake, blood pressure, but also glycemia, cholesterol 

and triglicerides. Moreover, also LDL and HDL values are present for a lower number of 

samples/subjects (about 200). Initially it is decided to start with a simple classification 

of samples based on some of these classical blood parameters such as cholesterol, 

glycemia, LDL, HDL and ratio cholesterol-HDL. The last one is obviously easily derivable 

from the other data and it is an important blood parameter; it explains the ratio 

between the so-called “worst-cholesterol” and the so-called “good-cholesterol”. 

Therefore, if this ratio is not high, the subject does not have theoretically any risk of 

onset of cardiovascular disease even if  cholesterol level is higher than normal. In order 

to perform the first preliminary statistical analysis, it is decided to constitute two 

classes of samples/subjects based on each  of these blood parameters. For instance, 

the two classes of samples for glycemia parameter are formed with the following 

criterium: they contain the 10 per cent of samples having respectively the low values 

and the high values of the parameter (tails). All classes are correctly divided, see Table 

5.1. This is important for many reasons. First of all, it is checked the quality of 

metabolomic analysis of collected samples and, furthermore, it is demonstrated the 

metabolomic skill to clearly highlight specific alterations of important blood 
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parameters, even if they are not out of classical “range of normality”: for instance, LDL 

normal values have to be comprised between  70 and 180 mg per 100 mL, but the 

chosen classes present respectively samples with value of LDL lower than 110 (and not 

70) and higher than 140 (and not 180), and, therefore, subjects that are not defined at 

risk in a classical way are present in the analysis too and they are separated on the 

basis of their metabolomic profile. 

 

  CPMG Spectra Noesy Spectra 

  % Correct % Wrong Accuracy % Correct % Wrong Accuracy 

HIGH (> 105)
* 

94.78% 5.22% 88.13% 11.87% 

Glycemia 

LOW (< 78) 85.97% 14.03% 

90.18% 

88.32% 11.68% 

86.99% 

HIGH (>255) 96.84% 3.16% 94.64% 5.36% 

Cholesterol 

LOW (< 160) 98.32% 1.68% 

96.52% 

96.43% 3.57% 

95.95% 

HIGH (> 140) 92.51% 7.49% 96.10% 3.90% 

LDL 

LOW (< 110) 89.24% 10.76% 

90.72% 

95.74% 4.26% 

95.36% 

HIGH (> 70) 91.58% 8.42% 92.15% 7.85% 

HDL 

LOW (< 39) 92.46% 7.54% 

91.88% 

92.92% 7.08% 

92.50% 

HIGH (> 164) 95.38% 4.62% 94.96% 5.04% 

Triglicerides 

LOW (< 51) 96.54% 3.46% 

96.45% 

97.11% 2.89% 

96.42% 

HIGH (> 4.49) 92.35% 7.65% 95.18% 4.82% 

Chol./HDL 

LOW (<3.51) 95.21% 4.79% 

93.78% 

98.39% 1.61% 

96.41% 

* = each value is expressed in mg/100 mL with exception of Chol./HDL that is a ratio 

Table 5.1 : SVM classification of samples based on PLS-CA scores 

What happens for LDL, also happens for all the other considered parameters. Starting 

from these findings, a second level of analysis is to clearly identify the signals 

responsible for these correct classifications. Obviously, the principal candidates are the 

signals due to the same parameters which are selected as classifiers. Indeed it is 

normal to expect that the principal cause of separation is glucose signal in case of 

glycemia classes, and so on. Moreover, it is also possible for some other signals to be  
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quite differently represented in each of the two classes of spectra. This supposition is 

also suggested by the fact that different lipidic classes (as high LDL/low LDL such as 

high cholesterol/ low cholesterol) are correctly classified also taking into account 

CPMG spectra, that do not have a great contribution of lipid signals. This finding 

suggests that probably other signals and, therefore, other metabolites are involved in 

the classification of the two classes. Before trying to evaluate which  these metabolites 

are, another interesting test can be carried out. The samples which have been 

considered for glycemia are re-classified again in the same classes as before taking off 

glucose signals. Basically,  it has been tried to demonstrate that subjects with low 

value of glycemia are significantly metabolomic different from subjects with high value 

of glycemia, even if the glucose and other carbohydrates signals are cutting off. 

   CPMG Spectra Noesy Spectra 

    % Correct % Wrong Accuracy % Correct % Wrong Accuracy 

HIGH (> 105)
* 

81.72% 18.28% 81.80% 18.20% 
Glicemia     

(No Glucose) 
LOW (< 78) 84.55% 15.45% 

82.83% 

82.17% 17.83% 

81.96% 

*= mg/100 mL 

Table 5.2 : Classification of samples basing on glycemia (glucose peaks cut off). 

The quite high value of correct classification obtained, more than 80% (Table 5.2), 

definitively suggests that specific alterations of metabolites different from glucose are 

present between the two glycemia classes and, thus, the metabolism of a low glycemia 

subject is completely different from a high glycemia subject. The identification of these 

metabolites is the following step in order to highlight which metabolic pathways are 

altered by high value (or low value) of glycemia, rather than cholesterol, LDL and so on. 

A third approach has been used to investigate the data, starting from previous results. 

Indeed, the finding of a strict relationship between the considered tails of each 

parameter (10% high and low for each one) and metabonomic profiles of the same 

samples leads to have the same relationship for each value of each parameter, even if 

not comprised in the previously taken tails. Practically it is tried to check if a linear 

regression between the value of parameters coming from classical blood analysis and 



 

74 

 

the value of the same parameters determined by using multivariate statistical analysis 

on metabolomic data (PLS-CA scores) exists. As it is possible to see in the Table 5.3, 

these relationships exist for all considered parameters (I. E., glycemia, cholesterol and 

triglicerides are not yet analyzed). The first conclusion that can be done is that 

metabolomics could be used as predictive tool of these blood values. Clearly this is an 

important finding, even if the used classical methods are probably more accurate and, 

above all, are cheaper and easily applicable. 

 

 

CPMG 

Spectra 

Noesy 

Spectra 

LDL 0,8374 0,8803 

HDL 0,8297 0,8130 

Chol./HDL 0,8577 0,8824 

  

Table 5.3 : R
2
 for correlation between predicted values (NMR 

metabolomics) and true values (classical blood analysis). 

However, the existence of this relationship suggests the possibility to define various 

metabotypes basing on these parameters, but also on other ones, such as BMI, smoke 

intake and so on. These metabotypes could be related with the risk of onset of 

cardiovascular disease and, therefore, lead to the development of an innovative 

strategy to define the risk in subjects that have, or seem to have, all classical blood 

parameters inside the normal values of confidence. In order to do this it will be 

necessary: i) to check the “presence” of all these clinical parameters inside the NMR 

spectra, through the verification of a strict relationship between their real values and 

the predicted ones through NMR analysis, as it has been done for cholesterol, 

triglicerides, LDL, HDL and ratio cholesterol-HDL, ii)to consider  also other parameters, 

such as smoke, alcohol and drugs intake and check their influence in the metabonomic 

profiles of the previously chosen classes, iii) to obtain one value, that can be 

considered as a score, that is sensitive of the metabolomic risk of cardiovascular 

disease and that is useful as evaluation parameter of the same risk, iv) highlight the 
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difference and the similarity between the “newborn” metabolomic risk and the 

classical risk, although actually it does not exist a clear and unique parameter of risk 

accepted by the international community (1), in order to understand difference, 

similarity, strength and weak points of the new approach, v) validate the results. 
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Besides the perspectives opened by each project, that are reported in proper section 

of each proper chapter, it is generally demonstrated the feasibility of metabolomics in 

the study and interpretation of various pathology. Therefore the metabolomics 

approach can be easily extended to some other pathologies. Indeed some other 

metabolomics projects are already started or are in a starting-phase. These new 

projects involve some widespread pathologies such as diabetes (type II), lung 

carcinoma, Obstructive and Chronic BroncoPathy (BPCO), liver cyrrhosis and 

carcinoma. The study of these new pathologies lead us to define better their 

characteristic, but also allow us to clearly understand what are the ideal targets and 

the limits of the metabolomic approach. Moreover, regarding the definition of 

metabotypes, it is necessary to univocally define what are the metabotypes and how 

exactly different metabotypes are related to different metabolic capacities of 

individuals. 

Furthermore it is necessary to continuously improve the step of the standardization of 

the samples. In general the metabolome changes depending on the body fluid tested, 

on the method of analysis, and on sample collection and handling. This highlights the 

need for the optimisation of pre-analytical tools for metabolomic analysis of biological 

samples, both because this is a relatively new technique and because the analytical 

technique itself is still undergoing optimisation. In other words, the technique itself 

cannot be advanced without the standardisation of sample selection and preparation. 

This is particularly true and necessary when it is analyzed some peculiar fluids, such as 

exhaled breath condensate or saliva for instance. Nevertheless, much research work is 

still needed in order to define the best protocols for sample collection and 

preparation. Sample handling and storage may strongly affect metabolomic profiles 

due to differing stabilities of the various metabolites. Even in the presence of 

“stability-optimised” samples, a strong limiting factor in the practical evaluation of 

diseases using a metabolomic approach lies in the intrinsic variability of human 

metabolic samples. Any study aimed at the identification of relevant metabolites 

should be presented with reference to the normal or control population. In order to be 

able to identify relevant metabolic changes, identification of metabolic fingerprint is 

usually needed as opposed to changes in concentration of a single biomarker. 
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However, the variations in metabolic fingerprinting are usually extremely small and 

therefore multiple sampling is required to eliminate the background noise due to 

personal variability. Sample collection, handling and storage are all critical steps for the 

detectability of metabolites by NMR and need to be optimised separately for each 

biofluid and tissue extract. For example NMR spectra of urine are dominated by 

thousands of sharp lines from predominantly low molecular mass metabolites, and the 

detectability of each metabolite is limited only by its concentration and stability over 

time. On the contrary, blood plasma and serum contain both low molecular and high 

molecular mass components. Tendency toward aggregation of proteins and protein-

small molecule interactions may cause disappearance of the signals of metabolites due 

to line broadening, even if the metabolites remain stable over time.  

Moreover this is valid also for statistical and NMR methods. The development of new 

simple 1D sequences of acquisition, an example is constituted by the 1D diffusion 

filtered acquisition (a sort of dosy1d), can be very useful to single out some 

information presented in samples, in case of 1D diffusion it is possible to obtain 

information about only macromolecules presented in serum, and in general in a 

biofluid. Moreover the development of new statistical analysis could further increase 

the quantity of obtainable data. 
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Sample Preparation 

All samples are collected in hospital structures and, immediately, frozen to – 80°C in 

order to avoid metabolites degradation. On the day of the analysis samples are thawed 

at room temperature and shaken before us. The following steps are slightly different 

basing on type of biofluids. Six hundred and thirty microliters of urine are added to 70 

microliters of a sodium phosphate buffer in deuterium oxide (2H2O). The buffer is 

principally constitued by  Na2HPO4 (0.2 M) and  NaH2PO4 (0.2 M); pH is standardized at 

7.0 to minimize variations in metabolite NMR chemical shifts. Moreover, the buffer 

also contains sodium trimethylsilyl [2,2,3,3-2H4]propionate (TSP) (10mM) and sodium 

azide (NaN3) (30mM), the first one is used to center the spectra at 0.00 ppm, the 

second one is a bacteriostatic.  Samples are centrifuged at 14 000g for 5 minutes to 

remove any solid debris. Blood samples, both serum and plasma, are simply prepared 

adding 300 microliters of them to  300 microliters of another sodium phosphate buffer 

in 20% (v/v) of 2H2O. The buffer contains  Na2HPO4 (70mM) and the pH is standardized 

at 7.4. Moreover, sodium trimethylsilyl [2,2,3,3-2H4]propionate (TSP) (0.8% w/v) and 

sodium azide (NaN3) (30mM) are present in the buffer. A total of 450 microliters of 

urine supernatant or serum are transferred into  4.25 mm outer-diameter NMR tubes. 

NMR Experiments and Bucketing 

One dimensional (1D) 1H NMR spectrum has been acquired at 600 MHz spectrometer. 

A spectrum of each sample is acquired with water peak suppression using a standard 

noesypresat1D pulse sequence. This sequence has been chosen in order to optimize 

sample acquisition basing on some parameters such as sensitivity, reproducibility and 

robustness. In particular it is chosen a presaturation sequence to partially erase the 

water peak because it is less invasive than other techniques as water gate-based 

(peaks are much easier  to integrate). Furthermore, the noesypresat1d sequence 

presents some advantages also with respect to standard zgpr and excitation sculpting 

(es). Indeed it is more sensitive than the sculpting for the absence of the shape pulses, 

and with respect to zgpr it is possible to experimentally have a better baseline. 
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Furthermore, serum samples are also acquired using a Carr-Purcell-Meiboom-Gill 

(CPMG) spin-echo sequence to suppress signals arising from high molecular weight 

molecules. This suppression is due to the capability of the mathematical CPMG filter to 

eliminate the signals with a short T2 such as macromolecules. Spectra are collected 

with 64 scans and 4 dummy scans. Thus the duration of each sequence is very short, 

about 8 minutes. Each 1D spectrum is segmented (in the range between 10.00 ppm 

and 0.02 ppm in to 0.02-ppm chemical shift buckets, and the corresponding spectral 

areas are integrated using AMIX software. Regions between 6.0 and 4.5 ppm, 

containing residual water and urea signals (in urine) are removed. The normalization is  

then carried out on the data prior to pattern recognition 

 

Multivariate Statistical Analysis 

Multivariate statistical analysis is a tool to examine relationships among a great 

number of statistical variables at the same time (multivariate data). Generally 

multivariate data are represented by a matrix. Each row of this matrix corresponds to 

an object, while each column is a peculiar and observable characteristic of the objects, 

for instance a bucket or a bin in metabolomics.  Many methods can be applied in order 

to perform a multivariate statistical analysis. Substantially the aim of these methods is 

obtaining a clusterization without giving data information to the systems 

(unsupervised methods). Basically, they search for correlating variables that allow a 

division of the objects into two or more classes. The principal and most used of these 

methods is PCA (Principal Components Analysis), even if other methods as HCA 

(Hierarchical Cluster Analysis) and Kohonen maps (also called SOMs) are used. 

Additionally to the X matrix containing data, another property, called y, may be given 

for each subject. This property adds a piece of information about the “nature” of each 

sample, as the class. These methods are supervised and therefore on a priori 

knowledge about subjects. The most common methods used are  PLS (Partial Least 

Square) regression (1) and their variants as O-PLS or K-PLS, but some other methods 

are also applied, as ANN (Artifical Neural Networks) and an informed version of 

Kohonen maps.  Moreover, both supervised and un-supervised methods are 
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frequently applied in combination with methods as Canonical Analysis (CA) and 

Regularized Canonical Analysis (RCC). These methods are usually applied on the 

PCA/PLS scores to enlarge the separation between the groups. After the separation 

step, it is necessary to classify the samples in order to decide which class each of them 

belongs to.. The principal tools to be applied in classification are k-Nearest Neighbor 

(k-NN) method, Linear Discriminant Analysis (LDA) (2) and derived methods, Support 

Vector Machine (SVM) method (3) and Random Forest method (4). 

The following step is the validation of the results.  The key of the validation of the NMR 

classification on class identity relies on Test Set Validation (TSV) approach which 

requires that models do not have any knowledge of the existence of any test set data. 

Monte Carlo cross-validation (MC), Leave One Out (LOO) validation and k-Fold 

validation are the principal  methods used in this step (5-6).  MC methods randomly 

split the dataset into two different set of data: training set and validation set. The 

training set is used to determine the statistical model, while the validation set is used 

to assess predictive accuracy. In k-Fold validation, the original dataset is divided into K 

subsets. K-1 subsets are used as training sets and the remaining subsets as validation 

sets.  Finally LOO works taking only one sample as validation set, whilst all other 

samples constitute the training set. All these methods are usually applied with 1000 

iterations, randomly varying the composition of both training and validation set, in 

order to obtain robust results. 

Finally, to assess which bucket is significantly different among various classes a one-

way analysis of variance is used. Normality of the data distributions is assessed using 

the Jarque-Bera normality test (7). Statistical significance of the means over the two 

groups is assessed using ANOVA or the non-parametric analogue Kruskal-Wallis test by 

using the Bonferroni correction on a nominal value of 0.005.  

Principal Component Analysis (PCA) 

PCA is an orthogonal linear combination of the original variables (normally called 

buckets or bins in metabolomics) in order to highlight the maximum variance among 

themselves. The mathematical formula can be expressed in this way: 
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                                                                             Y
T = W X T                

where X is the original matrix data and W is the matrix of the eigenvectors (see below) 

for linear combination. 

PCA was invented in 1901 by Karl Pearson, implemented in 1933 by Hotelling. The 

principal goal of PCA is the reduction of data, whilst it is retaining as much as possible 

the original variation present in the data set. This reduction is easily achieved by taking 

p variables from the data set (in metabolomics p buckets) X1, X2,…, Xp and linearly 

combining them to produce uncorrelated principal components (PCs) PC1, PC2,…, PCp. 

Moreover, these combinations are due so that the maximum variation among samples 

is expressed in PC1, the second greatest amount of variation in  PC2 and so on.  Clearly 

if the linear combination works well, the complete variability in the data set has to be 

adequately expressed by means of a few  PCs. Se vuoi dire pochi few, alcuni a few 

Mathematically the analysis is performed on a data set of p variables (X1, X2, … , Xp) 

for n individuals, as indicated below in Table 6.1. 

 

Table 6.1  Data matrix for principal component analysis 

It is necessary to calculate the corresponding covariance matrix:  
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where S is the covariance matrix,  sjk is the covariance of variables  Xj and Xk when j ≠ 

k and  the diagonal elements sjj represents the variance of variable Xj when j = k.   

original variation present in the data set. PCs and their associated eigenvalues are 

found in the sample covariance matrix through an iterative calculation process. 

In details, the first principal component (PC1) is then a linear combination of the 

original variables X1, X2, … , Xp, 

that varies as much as possible for the individuals, subject to the condition that 

 

where a11, a12… , a1pare coefficients assigned to the original p variables for PC1. 



 

87 

 

Therefore, the eigenvalue of PC1 is as large as possible given this constraint on the 

constant a1j. The constraint must be imposed in order to avoid the increasing of the 

eigenvalue of PC1 by simply increasing one or more of the a1j values. 

Similarly, the second principal component, 

 

is such that eigenvalues of PC2, are as large as possible subject to the constraint that: 

and also on the condition that PC2 is uncorrelated with PC1. The third principal 

component: 

 

is such that the eigenvalue of PC3 is as large as possible subject to the constraint that: 

 

and also on the condition that PC3, PC2 and PC1 are uncorrelated. All other principal 

components are obtained in a similar way. When  the eigenvectors (or PCs) are 

obtained, the following step is to select the components that better describe the 

system. Generally in PCA the number of extracted components is equal to the number 

of analyzed variables, but in general the last few components do not account for much 

of the variance and  can be ignored. It is not easy to identify the correct number of 

components that must be chosen to correctly describe a system. Someone suggests 

that the first 6 components explain 70% to 80% of the total variation. Probably  the 

best method to assess the adequate number of PCs is the so-called eigenvalue-one 

criterion (Kaiser criterion). Basing on this criterion, only the PCs that have eigenvalues 

higher or equal to one are retained. Indeed if a PC has an eigenvalue lower than 1, this 

means that contains less information than one of the original variables and it is 
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discarded. Actually the value of 1 as cut-off is considered too  selective and the correct 

cut-off value is experimentally determined in 0.7. However, the results of PCA are 

currently expressed in terms of scores (PCs) and loadings (eigenvalues).  

Partial Least Square (PLS) regression and derived methods 

The PLS is a common supervised method that was first introduced by Wold in 2001. It 

commonly relates to two different matrices: X, that usually contains spectral or 

chromatographic data, and Y, comprising quantitative characteristics of samples, as for 

instance class belongings. Substantially PLS finds the multidimensional direction in the 

X space that explains the maximum multidimensional variance direction in the Y space. 

PLS modelling is mathematically expressed by the following formulas:  

 

                                                                    X = TP
T 

+ E 

                                                                    Y = TC
T 

+ F 

 

where T is a score, or component, matrix (as see above for PCA), P and Q are 

respectively the loading matrices of X and Y and the terms E and F are the errors.  A 

recent development of PLS potentiality is obtained with OPLS. There is in OPLS the 

separation of X contribution in two parts: one is linearly related to Y matrix and the 

other one is orthogonal and, therefore, independent.          

                                                                    X = TpPp
T 

+
 
ToPo

T 
+ E 

                                                                    Y = TpCp 
T 

+ F            
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