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ABSTRACT 
Here we report on absolute frequency measurements of a commercial high power CW diode-pumped solid-state laser 
(Coherent Verdi-V5). This kind of lasers usually presents large frequency jitter (up to 50 MHz) both in the short term 
(1 ms time scale) and in the long term (>10 s time scale). A precise measurement of absolute frequency deviations in 
both temporal scales should require a set of different devices (optical cavities, optical wave-meters), each suited for 
measurements only at a specific integration time. Here we demonstrate how a frequency comb can be used to overcome 
this difficulty, allowing in a single step a full characterization of both short (<1 ms) and long term (> 103 s) absolute 
frequency jitter with a resolution better than 1 MHz. We demonstrate in this way the flexibility of optical frequency 
combs for absolute frequency measurements not only of ultra-stable lasers but also of relatively unstable lasers. The 
absolute frequency calibration of the Verdi laser that we have obtained have been used in order to improve the accuracy 
of the measurements of the local gravitational acceleration value with 88Sr atoms trapped in 1D vertical lattices. 

Key words: femtosecond laser, frequency comb, absolute frequency measurement, Verdi, Dynamical laser instabilities, 
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1. INTRODUCTION 
Today, optical frequency combs are widely used for many precision measurements, finding their natural 

application in frequency metrology for the calibration of ultrastable optical frequency references i. Other interesting 
metrological applications of frequency combs has been described in the literature, in which less stringent requirements 
on frequency stabilization of the comb spectrum is required, as for example in calibrating astronomical spectra ii, or in 
molecular THz spectroscopy iii. 

In this work, we report the implementation of a Ti:Sa femtosecond frequency comb for the characterization of 
the frequency stability of a commercial single-mode high power frequency doubled Nd-YVO laser (Verdi-V5 Coherent). 
This laser has found a wide application as a low noise pump for solid-state Ti:Sa lasers and is often employed in atomic 
physics experiments as a high power source for dipole trap. This laser is generally characterized by a low AM noise, but 
it can show a quite large frequency jitter (>50 MHz) both in short term (<1 ms) and in long term (>10 s). 

Here we demonstrate how an optical frequency comb can be used to measure the absolute frequency jitter at 
different temporal scales, showing how these device can find application also to perform precise absolute frequency 
characterization of unstable lasers. These measurements are of particular interest in the field of atomic physics in which 
high power CW solid state laser are typically employed to trap cold atoms in far off-resonance optical dipole traps with 
different geometries, ranging from single beam trap, crossed beam traps or multidimensional optical lattices. Especially 
in the last case, information about frequency jitter is important, since in this kind of trap laser frequency noise may 
convert in position fluctuations of the trap wells, resulting in additional atom losses. 

Here the absolute calibration of Verdi laser emission frequency have been used to improve the accuracy of the 
measurements of the local gravitational acceleration value by the use of 88Sr ultra-cold atoms trapped in 1D vertical 
realized with radiation from Verdi laser. 

ICONO 2010: International Conference on Coherent and Nonlinear Optics, edited by Claude Fabre,
Victor Zadkov, Konstantin Drabovich, Proc. of SPIE Vol. 7993, 79931I · © 2011 SPIE

CCC code: 0277-786X/11/$18 · doi: 10.1117/12.880974

Proc. of SPIE Vol. 7993  79931I-1

Downloaded from SPIE Digital Library on 09 Jun 2011 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



2. EXPERIMENTAL SETUP 
The experimental setup is described in Fig. 1. More details about the experimental setup can be found also in 

Ref. iv, v, vi, vii, viii. In brief, an ultracold sample of 88Sr atoms in produced in a two-steps magneto-optical-traps 
operating on the dipole allowed 1S0-1P1 transition at 461 nm and on the 1S0-3P1 intercombination transition at 689 nm. 
Atoms are then transferred in 1D vertical lattice realized with about 2W of laser radiation at 532 nm from a Verdi-V5® 
laser. This system is employed for precision measurement of gravity through the observation of Bloch oscillation of 
trapped atoms6. The beam is vertically aligned and retro-reflected by a mirror, producing a standing wave with a period 
λL/2 = 266 nm. In this condition, the acceleration of gravity g is proportional both to the Verdi laser frequency and Bloch 
oscillation frequency through the formula 

  
g = 2 h νb mSr λL( ) , where mSr is the atomic mass, λL is the lattice 

wavelength, νb is the observed Bloch oscillation frequency, and h is the Planck constant. Since mSr and h are well known 
(relative uncertainty 5×10-8), the force acting along the lattice axis can be determined by measuring the Bloch frequency 
νb and the wavelength of the light λL emitted by the Verdi laser. To obtain absolute frequency measurements of Verdi, 
part of its radiation is then sent through a 200 m single-mode fiber to the laboratory where is operating the femtosecond 
frequency comb (see Fig.1). 

Our optical frequency comb is based on an home-build femtosecond Ti:Sa laser with a pulse duration 50 fs 4. 
The self-mode-locked laser has a repetition rate of about 294 MHz and an average output power of more than 700 mW 
(in mode-locked operation) with 4.5 W pump power coming from solid-state Nd:Vanadate laser at 532 nm. Following 
the availability, we have used for this purpose both a multi-mode laser (Spectra-Physics Millennia Xs® ) and a single-

 
Figure 1:  Experimental setup  for Verdi frequency calibration and 1D  88Sr  optical lattice. The output radiation from Verdi is 
focused  on  the  ultra-cold  88Sr  cloud  (b)  and  part  of  it  is then  sent through  200 m fiber  to  the comb  lab  for  frequency 
measurements (a).   The beat-note signal between Verdi laser and the optical comb is used to stabilize the repetition rate of the 
femtosecond laser though PLL electronics that actuates slow and fast PZTs in the Ti:Sa cavity. All other interesting signals are 
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mode laser (Coherent Verdi-V5®). 

Fig.2 shows the design of the femtosecond laser with a detailed scheme of the Ti:Sa cavity. The fs laser cavity 
is composed by two curved mirrors (M1 and M2), one 2.5 mm-long Ti:sapphire crystal (doped at 0.25%) one high 
reflective Gires-Tournois interferometer type flat mirror (GTI) with dispersion –550 fs2, which is used to compensate the 
intracavity dispersion, and one output coupler (OC) with 3% transmission coefficient at 800 nm. An additional 1/4" inch 
diameter flat folding mirror (M3) with zero dispersion has been inserted in the cavity to allow fast (up to 40 kHz) control 
of the cavity length through a PZT. The overall estimated intracavity dispersion is about –200 fs2, while the total length 
of the cavity is ∼ 510 cm. 

All the mirrors (except the output coupler) are dielectric with >99% reflection coefficient at the center 
wavelength of 800 nm. The curved mirrors (radius of curvatures 25 cm) are both aligned to form X-shape cavity with an 
incidence angle α = 8° that compensates the crystal astigmatism. The pump beam is coupled into the cavity through the 
curved mirror M1 and is focused on the crystal through a lens with focal length 7.5 cm. The flat side of the input mirror 
M1 is AR coated at 532 nm to minimize losses. A second piezoelectric transducer on the OC mirror of the Ti:Sa cavity 
allows the slow control of the cavity length. 

The emission spectrum of the Ti:Sa mode-locked laser is centered around 810 nm with a typical FWHM of 
about 17 nm. The laser output is then coupled into a photonic crystal fiber (Femtowhite 800®) that broadens the spectrum 
up to a full optical octave (from 400 nm up to 1100 nm). The maximum power obtained at the fiber output is 350 mW, 
but in order to reduce the wideband frequency noise generated in the fiber at high intensity, we usually work with less 
than 250 mW. 

 
Figure 2: Experimental setup of Ti:Sa optical frequency comb cavity. L - lens, M1 and M2- curved mirrors, M3 - flat mirror, OC - 

output coupler, GTI - Gires-Tournois interferometer mirror,  α- astigmatism compensation angle, PCF - photonic crystal fiber. 
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The carrier envelope offset (CEO) frequency fCEO is measured with a standard f – 2f interferometer ix with a non-
linear 3mm-long BBO crystal (in type I configuration) placed in the first interferometer arm. The slow drift of offset 
frequency is corrected by actuating through a PZT on the position of the pump mirror (PM), while the fast fluctuations 
(up to 100 kHz) are corrected by acting on pump power through the use of an acusto-optical modulator (AOM). 

The common way to stabilized the comb repetition rate is either to lock it to an RF standard or, to increase its 
stability, to lock the beatnote between one tooth of the frequency comb and an optical standard. This is done typically by 
using PLL servo electronics acting on cavity PZTs. Note that, in the case of direct stabilization in the optical domain, the 
frequency stability of the optical standard will transfer to all comb components, and the frequency noise on the repetition 
rate signal is reduced by a factor n:  

frep = (fV ± fCEO ± fb) / n, 

where fV is the Verdi frequency, fCEO is the CEO frequency, fb is the beat-note between a comb tooth and the optical 
standard and n is an integer defining the comb tooth that has a value of the order  of 106. 

3. EXPERIMENTAL RESULTS 
In our case, we want to measure a laser frequency characterized by a quite large jitter. The output radiation from 

the 200-m fiber transfer is superimposed in a polarization beam-splitter with the radiation from the femtosecond comb 
(filtered at λ = 532 ± 5 nm). The beat signal between the Verdi laser and the nearby tooth of the comb Is detected on a 
fast photodetector and observed on a rf spectrum analyzer. A typical registration is presented in Fig.3a, which evidences 
that in a time scale of a few ms, the linewidth is about 10 - 15 MHz broad, due to Verdi laser fast frequency jitter ms x. 
Due to the typical low signal to noise observed (< 25 dBm on a 300 kHz bandwidth) and the fast frequency jitter, it is not 
possible to use standard frequency counters to perform precise frequency measurements. 

We overcome this difficulty by locking the repetition rate of the comb to this unstable reference, stabilizing the 
beatnote frequency. 

For this purpose, after the detection on the photodiode, the beat note signal is amplified, filtered and split in two 
channels. One channel is used to monitor the comb stabilization, while the second one is sent to a phase-frequency 
detector (PFD). The reference signal for the stabilization (sent to the second PFD input) is given by a local 30 MHz 
generator, referenced at long term to GPS reference signal. The servo signal for stabilization generated by the PFD (that 
is proportional to phase difference between the two input signals) is then sent to a PID (proportional-integrated-
derivative) controller that is used to actuate two PZT attached to two comb cavity mirrors for slow and fast (up to 40 
kHz) cavity length change. 

 
Figure 3: Beat-notes between Verdi and the optical comb, a) left, free-running regime, b) right, with the comb repetition rate 

locked on the  beat-note signal. 
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After detection the beat note signal is amplified, filtered and split in two channels. One channel from RF power 
splitter is used to monitor the comb stabilization, while the second one is sent to a phase-frequency detector (PFD).The 
reference signal for the stabilization (sent to the second PFD input) comes from a local 30 MHz generator, referenced at 
long term to GPS reference signal. The servo signal for stabilization generated by the PFD (that is proportional to phase 
difference between the two input signals) is then sent to a PID (proportional-integrated-derivative) controller that is used 
to actuate two PZT attached to two comb cavity mirrors for slow and fast (up to 40 kHz) cavity length change. 

In lock condition, as shown in (Fig. 3), the beat-note signal is stabilized at 30 MHz and the frequency jitter is 
then imposed on frequency comb repetition rate. Thanks to the large de-multiplication factor of the comb (~1.9×106) the 
10 - 15 MHz frequency jitter at 532 nm gets divided down to about 1 Hz and imposed on the repetition rate signal that is 
typically observed with S/N>50 dB over a bandwidth of 300 kHz. The repetition rate signal is then easily counted with a 
frequency counter set with 1 s gate time. 

In order to determine the absolute frequency of the Verdi we also count the CEO frequency. In our setup this 
signal is sufficiently long term stable compared to Verdi frequency instabilities, so that a stabilization of this signal was 
not required for this measurement. In this case, the absolute value of the Verdi frequency is given by equation 
f = n·frep ± fCEO ± fb . To determine the correct tooth number at the beginning and at the end of each measurement we 
employ a lambda meter, calibrated with a stabilized laser resonant with the 689 nm 1S0-3P1 88Sr transition, that allows an 
evaluation of the Verdi laser frequency with an uncertainty of the order of 100 MHz. 

In Fig. 4 the result of an absolute frequency measurement that lasts for about 104 s is shown. Long term 
deviation of Verdi frequency greatly depends on many factors, mainly related to temperature, and laser power setting. To 
increase long term stability we performed this measurement after that the laser was operating continuously for a long 
time (about two days) at the same power setting. Moreover, we covered the laser head with thermal insulation foam to 
increase the passive temperature stability 

From this measurement we can clearly see periodical deviation of the frequency at two different regimes. Firsts, 
we observe a long-term oscillation of the Verdi frequency with period ∼1000 s and amplitude 130-140 MHz. Secondly, 
there is a fast oscillation with a shorter period ∼ 33 s and an amplitude 30 - 70 MHz with typical value 30 - 50 MHz (see 
Fig. 4 inset). The missing data in this set are caused to a comb unlocking from the Verdi signal. 

We think that this represents a lower limit for long-term frequency fluctuations of non-stabilized Verdi laser for 
the reasons explained above. After shutdown period, these lasers can show in fact both quite different absolute frequency 
(offset by several GHz) and large frequency drift rate at start up (up to 100 MHz in one minute). 

As shown in the inset of Fig. 4, absolute determinations of the instantaneous value of the Verdi frequency (in 
the case of the measurement shown in Fig. 4 the mean value is 563 257 825±75 MHz) can be in this way performed with 
a sub-MHz resolution. This value can eventually be used to determine gravity with 10-7 relative uncertainty, by 
observing at the same time Bloch oscillation of ultra-cold 88Sr atoms trapped in vertical standing wave.  

4. CONCLUSION 
 

We made the absolute frequency measurement of the Verdi-V5 with sub-MHz resolution and observed the fast 
and the slow behavior of its frequency by the use of a femtosecond frequency comb. The frequency measurement have 
been used in accurate determination of gravity by the use of 88Sr atoms trapped in vertical lattices. This work 
demonstrates the great flexibility of optical frequency combs for precision measurements of optical frequencies of un-
stable lasers. This study in turn may also be important for the study of stabilization technique of CW solid-state diode 
pumped lasers and moreover could be important for the study of Ti:Sa femtosecond lasers dynamics. 

We want acknowledge the group of the Institute of Laser of the Russian Academy of Science in Novosibirsk for 
the help in the developing our comb frequency system. In particular, we thanks dr. Sergey Chepurov, whose expertise 
was fundamental for making operative the comb system. One of the authors (F.-Y. Wang) undertook this work with the 
support of "ICTP Program for Training and Research in Italian Laboratories, Trieste, Italy" 

 

Proc. of SPIE Vol. 7993  79931I-5

Downloaded from SPIE Digital Library on 09 Jun 2011 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



 

Figure 4: Verdi Absolute frequency measurement. In the inset are shown the Verdi frequency fluctuations at shorter time scale.  
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