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CHAPTER 1

Introduction :

Historically, the main focus of bioinformatics has been on computational analysis of biological 

macromolecules, i.e. proteins and nucleic acids. Advent of high-throughput sequencing methods pro-

vides bioinformaticians with more and more raw sequence data to analyze. Since proteins are biochem-

ical entities, the lack of specific biochemical data results in the immense information gap between pro-

tein structure and function..  Computational protein structure analysis is one of the cornerstones of 

bioinformatics. It seems strange how little attention the bioinformatics community has paid to metallo-

proteins and other complex proteins. (To get an idea, try PubMed search with the combination ‘bioin-

formatics’ + ‘biological inorganic’ or ‘computational’ + ‘bioinorganic’.) This is particularly striking 

considering the remarkable efforts and progress made in computational inorganic chemistry in the last 

few years .

In this PhD research work we aimed to further understand the biochemical properties of selected 

families of metalloproteins through bioinformatics . In the first project we studied copper-binding pro-

teins . In eukaryotes, these copper-binding proteins are localized in various cellular compartments (such 

as the cytosol or the mitochondrion), or can be extracellular . In prokaryotic organisms, copper-binding 

proteins are mainly periplasmic, in Gram-negative organisms, or associated to the plasma membrane in 

Gram-positive organism. Copper is crucial for the correct functioning of cells, but it can also be poten-

tially toxic. Copper toxicity is indeed at the basis of e.g. the use of this metal as a parasiticide in agri-

culture. These features made it necessary for living organisms to develop mechanisms that take care of 

copper uptake and transport to the appropriate sub cellular locations as well as of removal of excess in-

tracellular copper (collectively called copper homeostasis). For the many prokaryotic organisms that do 

not use copper within their cellular processes, only copper removal is a relevant aspect. The regulation 

of copper homeostasis occurs principally at the transcriptional level in prokaryotes, whereas it is main-

ly dealt with at the post-translational level in mammals.

As a part of copper homeostasis mechanisms, one pathway that is particularly widespread in-

volves the use of two protein partners, a soluble small (ca. 70 amino acids) copper(I) binding protein 

(called a metallochaperone) and an ATPase that can transport copper(I) ions across membranes at the 

expenses of ATP hydrolysis . Copper(I)-transporting ATPases are of the so-called P-type, i.e. they cat-

alyze reactions proceeding through a covalent phosphorylated “P” intermediate . Based on their struc-

tural organization, and in particular on the number and position of transmembrane segments, P-type 

ATPases can be further separated into subgroups, with proteins of the P1-subgroup being responsible 

for the transport of heavy metals, such as Cd2+, Zn2+, Pb2+, Co2+, Cu2+, Ag+, Cu+ 7.
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Scheme of the architecture of P1B-type ATPases and correspondence to the Pfam domains used 

for complete proteome analysis. An ATPase with three metal-binding domains (MBDs) is shown. Each 

MBD corresponds to a single HMA Pfam domain (green). The transmembrane and cytosolic regions 

map to two different Pfam domains: the Pfam domain E1-E2_ATPase (light orange) contains three 

transmembrane helices and the Actuator (A-) soluble domain; the Pfam domain Hydrolase (light blue) 

contains the ATP-binding site (in the N-domain) and the phosphorylation site (in the P-domain) as well 

as the two most C-terminal helices. The gray transmembrane helices do not belong to a Pfam domain, 

and  their  position  is  different  in  different  ATPase  classes.  The  regions  corresponding  to  the  E1-

E2_ATPase and Hydrolase Pfam domains are present in all P-type ATPases. The linker region on which 

the present study focuses is highlighted by an arrow. Relative region sizes are not to scale.

The  H+,K+ ATPase  is  instead  an  example  of  P2-type  ATPase.  Phylogenetic  analyses  have 

shown  that  the  P1-subgroup  encompasses  also  some  relatively  uncommon  bacterial  ATPases  that 

feature an organization in multiple protein subunits and are involved in potassium transport . In this 

work, we investigated the occurrence and properties of the P1B-ATPases and, partly, of their partner 

metallochaperones. We found that the latter proteins are typically encoded in organisms containing also 

ATPases of the subtypes 1B-1 or 1B-2. These subtypes have a characteristically extended N-terminal 

cytoplasmic tail that contains multiple metal-binding domains (MBDs), which can receive the metal ion 

from the metallochaperone. Therefore, we investigated the impact of the linker region connecting two 

of the cytoplasmatic metal-binding domains on their reciprocal dynamics and possible interaction with 

other the domains of the enzyme. For ATPases containing three or more MBDs, the two MBDs closest 

to  the  transmembrane  part  of  the  enzyme were  focused  upon,  as  an  extensive  body  of  literature 

indicates  that  they  play  a  different  biochemical  role  than  the  others.  We  observed  a  significant 
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variability in the number and spacing in sequence of the MBDs. On the basis of molecular dynamics 

simulations, we proposed that the MBDs could be quite free to reorient with respect to one another. The 

relative conformational freedom increased rapidly with the length of the linker between the MBDs. 

Also  based on available  experimental  studies,  these  data  suggested that  the  reciprocal  mobility  of 

MBDs is instrumental  to permit the tuning of the selectivity and/or affinity of the ATPase for the 

substrate as well as to modulate the enzymatic activity of the system. We additionally detected a small 

but significant number of instances in which a metallochaperone is likely to interact directly with the 

transmembrane domain of P-type ATPases lacking cytoplasmic MBDs .

My  second  project  was  on  c  –  type  cytochromes  who  are  ubiquitous  in  nearly  all  living 

organisms, where they play vital roles in mediating electron transfer (ET) reactions associated with 

respiration. Although their amino acid sequences differ greatly, all c-Cyts possess at least one haem that 

is covalently bound through amino acid side-chains of the proteins to position and orient the haem 

moiety  and  thereby  facilitate  efficient  reactions.  The  haem  moieties  are  commonly  co-ordinated 

through two thioester bonds to proximal cysteines in the protein, where the signature motif of most c-

Cyts is CX2CH (other common motifs include CX3−4CH, CX2CK and A/FX2CH). These motifs with 

covalently  bound haems are  the  key  components  used  to  constitute  the  haem-containing  domains 

whose diverse functions range from binding of O2 and catalysis to electron transfer and accumulation . 

c-Cyts have been extensively investigated, and several excellent reviews have been dedicated to the 

structures, chemistry and biogenesis of c-Cyts . This review focuses on the unique features of bacterial 

c-Cyts with multiple haems and their roles in bacteria-mediated dissimilatory reduction of solid metal 

(hydr)oxides  .  The  c-Cyts  are  essential  for  the  versatile  anaerobic  respiration  capabilities  .  c-Cyt 

maturation  system  are  unable  to  produce  functional  c-Cyts  and  consequently  fail  to  grow  when 

fumarate, dimethyl sulphoxide (DMSO) or trimethylamine N-oxide (TMAO) is used as the terminal 

electron acceptor . Genome sequence analysis has also revealed that most of these c-Cyts polypeptides 

found in DMRB possess more than one CX2CH motif, and that one of these putative c-Cyts in G. 

sulfurreducens has as many as 27 CX2CH motifs, in sharp contrast to the c-Cyts found in eukaryotes, 

which typically contain only one haem . Some multihaem c-Cyts found in DMRB are located in the 

outer  membrane,  where  they are  positioned to  interact  with extracellular  substrates,  whereas  most 

membrane c-Cyts found in other bacteria, including multihaem c-Cyts in sulphate respiring bacteria 

such as Desulfovibrio, are associated with the cytoplasmic or inner membranes .

Although their overall three-dimensional (3-D) structures vary considerably, one of the unique 

features found in most bacterial multihaem c-Cyts whose 3-D structures have been solved is the ar-

rangement of haem groups. In these multihaem c-Cyts, all haem groups are positioned in such way that 
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each is in close proximity to at least one of the other haems, and the porphyrin rings of two adjacent 

haems are positioned either parallel or perpendicular to each other. These arrangements are thought to 

facilitate rapid ET with considerable specificity among the haem groups that form a continuous ‘elec-

tric wire’ . When protein complexes are formed among multihaem c-Cyts, at least one haem group in 

one c-Cyt subunit is usually positioned close to a haem group in another c-Cyt subunit, again permit-

ting  rapid  and specific  inter-ET between  the  proximal  subunits  .  Formation  of  protein  complexes 

among multihaem c-Cyts and the close arrangement of haem groups within and between multihaem c-

Cyts make it possible to transfer electrons rapidly over relatively long distances. The c-Cyts quinol de-

hydrogenase (NrfH)/nitrite reductase (NrfA) complex of Desulfovibrio vulgaris consists of two NrfHs 

and four NrfAs with a total of 28 haems that are used to form the entire ET network of the NrfH/NrfA 

complex. The longest distance that electrons could flow from the haem possibly used for quinol oxida-

tion in one of the NrfH subunits to the haem for nitrite reduction in an NrfA subunit along the haem 

network (centre-to-centre) is ~98 Å (or 9.8 nm), in which 10 haems are involved .

It has long been recognized that the 3D structure of a protein is directly related to its amino acid 

sequence .  De novo structure predictions from solely the sequence thus provide another pathway to 

generate protein structural models. Among those, ROSETTA is one of the most successful programs for 

obtaining atomic level 3D structures of small proteins. For each small segment of the query protein, 

ROSETTA selects two hundred fragments from the crystallographic structural database that are similar 

in amino acid sequence and hence representative of the conformations the peptide segment is likely to 

sample during folding. A Monte Carlo based assembly process then uses these fragments to search for 

compact, low energy folds. The ROSETTA full atom refinement protocol, which employs Monte Carlo 

minimization  coupled  with  a  detailed  all-atom force  field,  is  then  used  to  search  for  low energy 

structures with close complementary side chain packing in the vicinity of the starting model . Adding 

the structural information contained in experimentally determined NMR chemical shifts holds promise 

to greatly improve the structural accuracy of selected fragments, and thereby to improve ROSETTA 

performance without any significant change in the basic structure or functioning of this well established 

program. 

My  third  project  was  on protein  structure  determination  .  The  important  practical  result 

achieved by the present work is that researchers in the field of protein structure determination may take 

advantage of sequence analysis , molecular dynamics and all computationally analysed data produced 

by us . The strategies we have developed allow one to obtain optimum conditions for the concerted use 

of predictions of different nature in calculations, as well as to analyse and compare the properties and 

the impact of each class of data. The recent gain in popularity of structural information suggests that 
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the number of users of these tools should become larger and larger in the next future.

The development of detailed protocols to be used in calculations also relates to the efforts which 

are currently aimed at increasing the degree of automation within NMR protein structure determination. 

The establishment of computational methods to replace the conventional manual approaches is a major 

future challenge: this is driven by the need of speeding up the progress of structural genomics projects, 

which are intended to provide structural  information on a genome-wide scale. The achievement of 

automated structure determination through NMR demands the methods for the assessment of structure 

quality  to  be  likewise  improved,  in  order  to  ensure  that  the  reliability  and  the  robustness  of  the 

conventional procedure is not compromised.

Even more than NMR structure determination of individual proteins, the methodology for the 

structural characterization of protein-protein and protein-nucleic acid adducts, as well as of protein-lig-

and complexes, demands faster protocols to be established. Therefore, the development of suitable ap-

proaches to this task, which deals with a huge variety of potentially interacting systems, stands out as 

an active field of research.
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CHAPTER 2

The role of the N-terminal tail of metal-transporting P1B-type ATPases from genome-wide 

analysis and molecular dynamics simulations

Introduction :

For many organisms copper is an essential metal, because of its role as a cofactor in a variety of 

enzymes and electron carriers  1. In eukaryotes, these copper-binding proteins are localized in various 

cellular  compartments  (such  as  the  cytosol  or  the  mitochondrion),  or  can  be  extracellular  1,2.  In 

prokaryotic organisms, copper-binding proteins are mainly periplasmic, in Gram-negative organisms, 

or associated to the plasma membrane 1,2. A notable exception is observed in the case of photosynthetic 

prokaryotes that contain copper proteins in thylakoids 3. Notwithstanding its crucial role for the correct 

functioning of cells, copper can be potentially toxic in vivo 1. Copper toxicity is indeed at the basis of 

e.g. the use of this metal as a parasiticide in agriculture. These features made it necessary for living 

organisms to develop mechanisms that take care of copper uptake and transport to the appropriate sub 

cellular  locations as well  as of removal of excess intracellular  copper  4.  For the many prokaryotic 

organisms that do not use copper within their cellular processes, only copper removal is a relevant 

aspect 2.

Among the various biochemical solutions occurring in Nature to address the above-mentioned 

needs, one that is particularly widespread involves the use of two protein partners, a soluble small (ca. 

70 amino acids) copper(I) binding protein (called a metallochaperone) and an ATPase that can transport 

copper(I) ions across membranes at the expenses of ATP hydrolysis 4-6. Copper(I)-transporting ATPases 

are of the so-called P-type, i.e. they catalyze reactions proceeding through a covalent phosphorylated 

“P” intermediate 6. Based on their structural organization, and in particular on the number and position 

of transmembrane segments, P-type ATPases can be further separated into subgroups, with proteins of 

the P1-subgroup being responsible for the transport of heavy metals, such as  Cd2+, Zn2+, Pb2+, Co2+, 

Cu2+, Ag+, Cu+ 7. The H+,K+ ATPase is instead an example of P2-type ATPase. Phylogenetic analyses 

have shown that the P1-subgroup encompasses also some relatively uncommon bacterial ATPases that 

feature an organization in multiple protein subunits and are involved in potassium transport 8. The latter 

form the so-called P1A sub-subgroup, whereas the ATPases transporting heavy metals are dubbed P1B 9. 
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The aforementioned combination of a small, soluble copper(I)-transporter, operating in the cell cytosol, 

and of an enzyme that actively catalyses the translocation of the metal ions allows cells to remove 

copper(I) ions from the cytosol and either pump them outside the cell or into intracellular organelles, 

depending on the localization of the ATPase 6,10,11.

All  P-type  ATPases  share  a  basic  “core”  architecture  8,  comprising  a  hydrophilic  region 

protruding into the cytosol, which contains the phosphorylation and ATP-binding sites and a smaller 

cytosolic region (sometimes called the A-domain), which has a regulatory function and is required for 

the phosphatase step of the catalytic cycle (dephosphorylation of the intermediate formed during ATP 

hydrolysis  12).  These  cytosolic  parts  of  the  polypeptide  chain  are  connected  by  a  number  of 

transmembrane  helices,  which  are  involved in  the  formation  of  an  intramembranous  channel,  and 

whose organization, as mentioned, leads to the definition of P1 and P2 subgroups 7. In addition to the 

core structure,  the  distinguishing feature  of P1B-type  copper(I)-transporting ATPases,  which are  the 

focus of this work,  is their  long N-terminal tail,  which contains a variable (between one and six) 

number of 70-aa independently folded domains 5  . Each domain harbours a conserved sequence motif 

CXXC, through which it can bind one equivalent of copper(I)  13. The motif is often preceded by a 

methionine in position –2 (i.e. MXCXXC), which however is not involved in copper(I) coordination. In 

humans,  there  are  two  relevant  ATPases,  namely  ATP7A and ATP7B,  also  known as  the  Menkes 

(MNK) and Wilson (WND) disease proteins, respectively. Many studies are available for these two 

systems that demonstrate that, even in vivo, the presence of either the intact fifth or intact sixth metal-

binding domain (i.e. the two closest to the transmembrane domain) is sufficient to support the activity 

of the protein, including intracellular trafficking, at levels normal or close to normal 14-18.

The stretches of aminoacidic sequence linking the folded domains in the N-terminal tail are 

poorly structured  19,20. Notably, the length of such linker regions is very variable  5, both for linkers 

connecting different domains within the same protein or for linkers between corresponding domains in 

different proteins,  and ranges from three to  several  tens of amino acids.  In  the systems for which 

detailed experimental studies on the structure at the atomic level of the N-terminal tail are available 
20-24, the last two domains are connected by a relatively small number of amino acids (less than ten, to 

be compared to a few tens of amino acids linking the most N-terminal domains). The features  of the 

flexible N-terminal tail and its structural plasticity are important for the understanding of the overall 

functioning of P1B ATPases. Indeed, there is a substantial body of evidence that the interaction between 

the various regions of the enzyme as well as with the metallochaperone affect significantly its activity 

and, for the mammalian enzymes, the balance between onward and backward protein trafficking 11,25. A 

possible role of the N-terminal tail could be that of modulating the ATPase activity through metal-
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dependent interactions with the ATP-binding domain and the A domain of the enzyme 26. 

In the present work, we aimed at furthering our understanding of the role of the linker region 

through  molecular  dynamics  simulations  of  systems  having  different  linker  length  and  through  a 

bioinformatic analysis of the spacing occurring between corresponding domains in various ATPases 

with multidomain cytoplasmic tails.

Methods

Sequence analysis

We used the SMART (http://smart.embl-heidelberg.de/) database 27 to identify proteins having a 

domain architecture similar to that of the yeast copper-transporting ATPase Ccc2, i.e. containing at least 

two soluble metal-binding domains in addition to all other domains characteristic of P1B-type ATPases. 

Incomplete (i.e. containing only protein fragments) sequences were discarded. The SMART database 

contains protein sequences from Swiss-Prot and spTrembl databases as well as Ensembl proteomes 27. 

Archaeal, bacterial, and eukaryotic organisms were investigated. We retrieved more than 400 proteins 

and  extracted  from  the  latter  the  sequences  of  the  two  metal-binding  domains  closest  to  the 

transmembrane region. These sequences were aligned to check the conservation of the metal-binding 

CXXC motif. The proteins in which one or both of the two domains lacked the motif were removed. 

Then we separated the domain pairs on the basis of the length of the polypeptide region linking the two 

domains by a locally written program, which exploited the definition of domain boundaries of SMART. 

We selected a few different representative systems and performed molecular dynamics simulations on 

their apo and holo-forms:  Bacillus subtilis; the human Menkes’s disease protein (MNK); the human 

Wilson’s  disease  protein  (WND);  Deinococcus  geothermalis  and  Brucella  abortus  domains  whose 

interdomain  linker  regions  comprise  three,  seven,  seven,  eleven  and  thirty  five  amino  acids 

respectively. 

Among these five, only for B. subtilis and WND the structure of the two-domain construct is in 

the PDB (entries 1P6T 23 and 2EW9 22, respectively). Structural models for the other sequences were 

thus built using the program Modeller with standard parameters on the basis of these two available 

structures. Because of the choice of the template structures, in all MD calculations the two domains 

were  close  in  space  at  the  beginning  of  the  simulation.  Several  models  were  generated  for  each 

sequence, and each of them was then visually inspected. Models without apparent defects were ranked 

on the basis of their stereochemical quality and energy; the best model was used as input for molecular 

dynamics simulations. For each sequence, only the model with the best stability in the first hundreds of 
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picoseconds of the trajectory (after equilibration) was retained.

We used the Pfam  28 domains HMA, E1_E2_ATPase and Hydrolase, which are contained in 

P-type ATPases and metallochaperones (HMA only), to investigate the occurrence of these proteins in 

completely sequenced prokaryotic proteomes. Note that the E1-E2 ATPase domain is specific of P-type 

ATPases,whereas the Hydrolase domain is not specific but is required for phosphatase activity.  The 

program HMMER 29 was used for this purpose, with a E-value threshold of 10-5 (i.e. only domains with 

an E-value better than 10-5 were retained for analysis). Proteome sequences were retrieved from the 

Ref_Seq database 30. We used this approach, which is similar to what done in other studies by our and 

other laboratories 31-34, to obtain a more detailed view in a dataset of protein sequences more restricted 

than SMART. The present dataset however had the advantage of including only complete proteomes 

and therefore allowed us to perform meaningful comparisons among the ATPase and metallochaperone 

content of different organisms.

Molecular Dynamic Simulations (MD)

AMBER 8.0 35 was used to make individual simulations both in apo and in holo forms. Holo 

forms were built from the corresponding apo forms by adding a copper(I) ion in between the two S 

atoms of the cysteines of the motif CXXC. To do so, the side chains of the cysteins were properly pre-

oriented by restraining the distance between the S atoms and minimizing the structure of the apo-

protein. After insertion of the copper(I) ion, the S-Cu-S angle was loosely restrained at 180 degrees for 

a short time during the MD. Parameters for the metal site were taken from 36,37. The SHAKE algorithm 

was used to maintain bond lengths fixed, permitting the use of a time-step of 1.5 fs. The protein was 

solvated using TIP3P water and a ten Å buffering distance between the edges of the box and the 

protein.  Initially,  we  minimized  the  energy  of  each  system  in  two  stages.  In  the  first  stage,  we 

minimized the  water  molecules while  holding the  protein  and counterions fixed,  in  order  to  relax 

solute-solvent  contacts.  In  the  second  stage,  we  minimized  the  complete  system.  MD  were  then 

performed using periodic boundary conditions, at constant pressure (1 atm) and temperature (298 K) 

for six nanoseconds. For each trajectory, we analyzed a portion of four nanoseconds after the system 

had equilibrated. RMS versus time graphs are shown in Figure S1.

Results 

Separation of MBDs and its effect on the system properties

We retrieved  the  sequences  of  P1B-type  ATPases  that  contained  at  least  two  metal-binding 

domains (MBDs) from both the SMART database, which contains sequences from organisms in all 

domains of Life, and completely sequenced prokaryotic proteomes, in the latter case using the releant 
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HMM’s provided by the Pfam database. This resulted in, respectively, 320 and 290 sequences. The 

length of the linker between the two MBDs closest to the trans-membrane region was determined using 

the domain definitions of either the SMART or the Pfam database. A summary of the data is given in 

Table XX. As shown in Figure 1, the computed linker lengths featured a significant variability. The 

most likely separation between the two MBDs taken into account was three aminoacids, which was 

equal or very close to the first quartile of the distribution (Table 1). Nevertheless, the third quartile was 

t 16-17 amino acids, implying that one quarter of the sequences (i.e. 70-80) in the ensembles examined 

had linker regions with a length exceeding this value. The computed separation did not depend on the 

total number of domains in the ATPase (not shown).

Table 1

Pfam SMART
Mean 15 ± 22 16 ± 24
First quartile 4 3
Third quartile 17 16
95th percentile 49 70
Minimum value 1 3
Maximum value 144 179

We then verified whether, independently of their separation, two consecutive MBDs formed a 

tight unit thanks to energetically favorable inter-domain interactions. To evaluate this hypothesis we 

built structural models of two-MBD units with different linker lengths (Figure XX), and subjected them 

to molecular dynamics simulations. During MD, individual MBDs remained stable with backbone rms 

deviations, after equilibration, in the range 1-2 Å. On the other hand, when considering their relative 

position, we observed larger rearrangements with respect to the initial orientation the longer the linker 

length  .  These  rearrangements  did not  depend on the  modeling procedure,  as  the  MD trajectories 

starting from the model structure of the MNK protein feature RMSD values as large as (for the apo-

protein) or even smaller than (for the copper-protein) those observed for the simulation of the WLN 

protein, which has the same linker length of MNK and started from an experimental structure . We 

evaluated the energies of inter-domain interaction along the various trajectories and computed for each 

system the average energy of the apo- and copper-protein in the 4 nanosecond production trajectory. 

The results are shown in Figure 2XX as a function of the separation in sequence of the two MBDs. It 

can be readily observed that the average inter-domain interaction energy falls sharply with increasing 

linker length.

Distribution of metallochaperones and ATPases in prokaryotic organisms

In  this  work,  we  investigated  selected  members  of  a  sub-class  of  P-type  ATPases,  namely 
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copper(I)-transporting P1B-type ATPases. These ATPases catalyze the transport of copper(I) ions across 

biomembranes at  the expenses of ATP hydrolysis.  The catalyitic cycle  involves the formation of a 

covalent  phosphorylated  “P”  intermediate,  hence  the  label  “P-type”  6.  P1-type  ATPases  are 

characterized by a common organization of their transmembrane segments that is distinct from that of 

P2-type ATPases  7; and the P1B sub-type is in particular responsible for the transport of heavy metals 

(Cd2+, Zn2+, Pb2+, Co2+, Cu2+, Ag+, Cu+) 8,9. The entire group of P1B-type ATPases can be further split in 

various  subgroups,  which  have  specific  structural  and  sequence  features  throughout  the  entire 

polypeptide that are linked to their metal specificity 38,39. The presence of (most frequently) N-terminal, 

cytoplasmic MBDs typically harboring a CXXC metal binding pattern is common to P1B-type ATPases 

transporting Cu+ (subgroup 1B-1), Zn2+, Cd2+, Pb2+ (subgroup 1B-2) 38-40. The MBDs themselves contain 

sequence features that  help discriminating the above metals  41.  ATPases containing multiple MBDs 

normally transport copper(I) and exceptionally transport zinc(II) 39.

It  is  known that  copper(I)-transporting ATPases from eukaryotes tend to  have  two or more 

MBDs  5. We investigated how common these are in prokaryotic systems, by scanning the complete 

proteome sequences of as many as 594 organisms using the  Pfam HMM’s representing the  HMA 

(corresponding to the soluble MBD), Hydrolase and E1_E2_ATPase domains. P-type ATPases were 

identified by the simultaneous presence of these two domains (which define their common basic “core” 

architecture  8); proteins were instead classified as P1B-1 or P1B-2 if they additionally contained one or 

more  HMA domains.  At  the  present  level  of investigation,  the  P1B-1 and P1B-2 sub-types  cannot  be 

distinguished, therefore from now on we will refer to the ATpases of P1B-1 or P1B-2  type as P1B-1,2-type. 

Hereafter, the figures referring to P-type ATPases exclude P1B-1,2-type ATPases. The results obtained are 

summarized in Table 2.

65% of the prokaryotic organisms analyzed simultaneously contained one or more P1B-1,2-type 

ATPases and one or more other P-type ATPases. In addition, 82 (14%) organisms encoded only P1B-1,2-

type ATPases, yielding a total of 468 (79%) organisms that encoded at least one P1B-1,2-type ATPase. In 

all the organisms analyzed, we detected only three instances of proteins containing the E1-E2 ATPase 

but not the Hydrolase domain, which is not specific of P-type ATPases but is nevertheless required for 

function. When counting individual proteins, we detected as many as 826 P1B-1,2-type ATPases. Most of 

these organisms encoded one or two P1B-1,2 ATPases; three was also relatively common.  Haloarcula 

marismortui encoded nine different such ATPases, which is probably related to its halophilic lifestyle. 

Bacterial P1B-1,2-type ATPases had between one and four MBDs (Table 3). 14 organisms encoded a 

single ATPase with four MBDs, with the separation between the two MBDs closest to the transmbrane 

domain  ranging  between  less  than  10  and  30  amino  acids.  In  Ralstonia  metallidurans and  P. 
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lavamentivorans, the four MBDs did not contain the canonical CXXC metal-binding pattern, which 

was replaced by CXXEE. For R. metallidurans this was implied with the substrate being lead(II) rather 

than copper(I), and the gene was called PbrA 42. In the proteins with three MBDs, all of them had the 

canonical CXXC pattern and featured a  quite  variable  spacing.  For example,  in the ATPases from 

Yersinia species the first and second MBDs were closely spaced whereas the third MBD was relatively 

distant  (in  sequence)  from  the  second,  as  well  as  from the  transmembrane  domain.  Finally,  244 

bacterial P1B-1,2-type ATPases had two MBDs.  R. metallidurans had two such ATPases, one with the 

canonical patterns and the other with the CXXEE patterns in the both MBDs. Proteins similar to the 

latter, i.e. having two MBDs with CXXEE pattern, are found in a variety of organisms (e.g. Klebsiella  

pneumoniae,  Shewanella  frigidimarina,  etc.).  Instances  of  proteins  in  which  the  two  MBDs  have 

different patterns also exist,  not only in  R. metallidurans 42,  but  also in distant  organisms such as 

Aeropyrum pernix. 

We analyzed also the distribution of the proteic partners of copper(I)-transporting ATPses, i.e. 

metallochaperones.  We detected putative metallochaperones,  assigned as such on the basis of their 

sequence containing only MBDs and no other known domains, in 335 organisms (Table 2). Of these, 

only 20 did not contain any P1B-1,2-type ATPase.  On the other hand, the majority of the organisms 

lacking  a  metallochaperone  encoded  one  or  more  P1B-1,2-type  ATPases.  Of  the  metallochaperones 

potentially without a partner P1B-1,2-type ATPase, 10 were from as many Lactobacilli species and were 

all adjacent in the genome to a P-type ATPase lacking any MBD. The same was true for Leuconostoc 

mesenteroides.  In  Thermoplasma  acidophilum and  Thermoplasma  volcanium the  only 

metallochaperone encoded was instead next to a mercuric reductase (MerA), and thus presumably had 

Hg2+ as its target (i.e. was part of an operon containing the merA and merP genes 43; MerP features a 

single HMA domain). In  Thermofilum pendens the gene encoding the metallochaperone was next to 

one  encoding  a  protein  containing  a  rubrerythrin  domain,  which  binds  iron.  Other  instances  of 

organism containing a metallochaperone but  not P1B-1,2-type ATPase appeared as sequencing errors, 

where the ATPase sequence was interrupted or abnormal in some way. 

Discussion

P1B-type ATPases of subgroups 1 and 2, which transport respectively Cu+ or Zn2+, Cd2+, Pb2+ ion, 

contain between one and six MBD’s 5. Prokaryotic ATPases contain up to four MBD’s (Table 3). The 

separation in protein sequence between the two cytoplasmic metal-binding domains (MBDs) is highly 

variable (Figure 1). In structurally characterized two-domain systems (B. subtilis  CopA 23,24 and the 

human protein WND 22), it has been proposed that the two MBDs that are closest to the transmembrane 

region domains form relatively tight  units,  possibly owing to  their  short  linkers.  In  more complex 
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multi-domain constructs, such as a three-domain construct from the MNK protein, the two terminal 

MBDs (domains 5 and 6) are more rigidly connected to one another than domain 5 is connected to the 

preceding MBD (domain 4) 20. A study of the entire N-terminal tail of MNK is also available, where it 

is readily observed that within any pair of consecutive domains besides 5 and 6 the two MBDs are 

nearly completely free to reorient with respect to one another 21.

The presence of a relatively short linker region between the two MBDs closest to the trans-

membrane part of the enzyme was proposed to be instrumental to maintain a fixed relative orientation 

of their respective metal-binding sites 21. This would avoid interactions between them in the presence of 

the metal substrate. In Anabaena AztA the interaction between a pair of MBDs can result in enhanced 

selectivity in a zinc(II)-transport system, where other divalent cations such as lead(II) or cadmium(II) 

form a stable metal-bridged intermediate involving the two MBDs that inhibits the ATPase 44. Within 

this frame it is notable that a small number of copper-transporting ATPases feature one MBD at the N-

terminal part of the trans-membrane region and one at the C-terminal part, which are therefore truly 

independent  units.  These  are  the  ATPases  from  Archeoglobus  fulgidus 45,  Bacteroides  fragilis and 

Troponema denticola. A model of the structure of the A. fulgidus ATPase is available 26, where however 

the C-terminal MBD has been removed and thus no information on its possible interaction with the N-

terminal MBD.

In  principle,  the  length  of the  linker  separating two consecutive MBDs is  not  sufficient  to 

establish whether they form a tight unit or not. Indeed, there could exist inter-domain interactions that 

are sufficiently stable (from the thermodynamic point of view) to hold the two together regardless of 

the length of the linker. However, MD simulations showed that the two domains display increasing 

freedom of relative reorientation with increasing separation in sequence and, in parallel, less significant 

energies of inter-domain interaction (Figure 2).  Therefore,  the linker effectively uncouples the two 

MBDs. These conclusions applied to both the  apo and holo forms, possibly to a larger extent in the 

latter than in the former even though metallation did not trigger significant changes within a single 

MBD, besides the region of the metal-binding site 46. Indeed, the regions of interdomain contact at the 

surfaces of the two MBDs appear in general to be poorly optimized for interaction. For example, Figure 

3 shows the electrostatic potential at the interfaces of the two MBDs of the WND protein, based on the 

experimental 2EW9 structure: it can be noted that regions with similar electrostatic potential are in 

proximity (at the top and in the center of the interfacial regions). 

In agreement with the above MD data, experimental NMR relaxation data for the two-domain 

systems from B. subtilis CopA and from WND show that the linker region is essentially as rigid as the 

rest of the protein in the former 23 but more mobile in the latter  22. This confirms that even the short 
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increase in linker length from the CopA to the WND protein (from three to five residues) is sufficient to 

appreciably increase the relative freedom of the two MBDs. Analogously, relaxation data for the three-

domain  construct  of  MNK  already  mentioned,  which  contains  the  fourth,  fifth  and  sixth  MBDs, 

demonstrate the flexibility of all linker regions  20. The linker between the fourth and fifth MBDs is 

nearly 50 amino acids in length and displays significantly higher flexibility than the linker between the 

fifth and sixth MBDs, which comprises only seven amino acids. The order parameters for bond vectors 

in the linker residues extracted from our simulations fell sharply from around 0.9 to around 0.5 when 

going from the shortest to the longest linker. In summary, the sequence analysis data (Table 1 and 

Figure  1)  and  the  MD  simulations  concur  to  establish  that  even  the  MBD  pairs  closest  to  the 

transmembrane domain do not need to have a fixed orientation with respect to one another. Relatively 

short linker lengths already permit an appreciable degree of relative conformational freedom; systems 

where the linker length is sufficient to allow the two MBDs to bring their metal-binding sites at short 

distance are fairly common (Table 1).

As mentioned, P1B-type ATPases are enzymes that transport heavy metals across biomembranes 

play a key role in the homeostasis and the mechanisms of biotolerance of these metals  38-40. Here we 

focused on P1B-1,2-type ATPases , which feature N-terminal, cytoplasmic MBDs. ATPases containing 

multiple MBDs normally transport copper(I) or, less commonly, divalent cations such as zinc(II) 39. The 

common metal-binding pattern for these systems is CXXC; we also detected proteins with CXXEE 

patterns that are presumably involved in the transport of divalent cations, such as lead(II). In some 

instances,  proteins  with  two  MBDs had  a  different  metal-binding  pattern  in  each  of  them.  These 

systems  were  common  to  phylogenetically  distant  organisms.  Notably,  extensive  horizontal  gene 

transfer of P1B-1,2-type ATPases has been recently reported among bacteria isolated from subsurface 

soils contaminated by metals, involving not only proteobacteria but also actinobacteria and firmicutes 
47.

We carried out extensive investigation of the distribution of P-type ATPases and of their partner 

metallochaperones in prokaryotes. Metallochaperones always occurred as single-MBD proteins, with 

the five detected exceptions appearing again as sequencing errors, introducing breaks within P1B-1,2-type 

ATPase sequences. They are known to be involved in the transport of either copper(I) or mercury(II) 43. 

In some organisms it is actually possible to find both copper(I) chaperones and mercury(II) chaperones, 

having respectively a P1B-1,2-type ATPase and a protein of the  mer  operon as their partners. Notably, 

MerA contains a MBD domain as well, which is the domain for interaction with the Hg2+ chaperone 43. 

In  Streptococcus gordonii we identified an operon with a MerA containing two MBD domains and a 

MerP homologue. Metallochaperones were detected only in proteomes encoding also at least one P1B-1,2-
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type  ATPase,  with  only  22  exceptions  (Table  3).  These  included  10  Lactobacilli,  where  the 

metallochaperone was in the same operon of a P-type ATPase lacking any MBD. However,  in 75 

organisms we detected a larger number of metallochaperones than P1B-1,2-type ATPases. In fact,  we 

observed the occurrence of metallochaperones in the same operon of P-type ATPases not belonging to 

the 1B-1 or 1B-2 subgroups also in the proteome of organisms that did encode P1B-1,2-type ATPases. 

This finding suggests that the ATPase does not strictly need to receive its metal substrate through a 

cytosolic  domain  first.  Indeed,  for  CopA from  A.  fulgidus  it  has  been  recently  suggested  that  the 

metallochaperone  may  interact  directly  with  the  transmembrane  site,  without  an  intermediate  step 

involving the MBDs of the ATPase  45. In the proposed mechanism of function of the  SERCA Ca2+-

ATPase, which is an archetype for P-type ATPases, calcium(II) is directly bound to the trans-membrane 

site 48. In other instances, metallochaperones had as their protein partner a MerA homologue. Finally, 

the  observation  that  a  large  number  of  organisms  encode  P1B-1,2-type  ATPase  sequences  but  not 

metallochaperones (Table 3) strongly suggests that these enzymes can sequester their metal substrate 

directly  in  the  cytoplasmic  space,  either  from a  small-molecule  complex  or  from an  unidentified 

metallochaperone.

Conclusion 

We investigated the occurrence and properties of P1B-1,2-type ATPases and, partly, of their partner 

metallochaperones. P1B-1,2-type ATPases may contain multiple MBDs in the N-terminal cytoplasmic part 

of their sequence. This, together with the observation that the number of these domains tends to be 

higher  in  more  complex  organisms,  has  stimulated  numerous  studies  of  their  overall  properties, 

function  and  specialization.  In  particular,  it  has  been  shown  that  in  the  human  MNK and  WND 

proteins, which contain six MBDs, the two domains closest in sequence to the transmembrane part of 

the protein have a different role than the other four 10. Here we demonstrated through sequence analysis 

across a large dataset of organisms and molecular dynamics that in the majority of organisms, these two 

domains are  structurally  independent  and can  reorient  one  with respect  to  the  other.  Therefore,  it 

appears  very  likely  that  they  can  exert  their  function  independently.  The  MBDs  have  a  role  in 

regulating the ATPase activity through interactions with the other protein domains 26. The presently 

observed relative flexibility can thus be instrumental in optimizing the regulation of the activity in 

multi-MBD ATPases.

Metallochaperones  are  single-MBD proteins  that  typically  deliver  copper(I)  ions  to  partner 

P1B-1,2-type ATPases or mercury(II)  ions in  the mercury detoxification system. However,  also when 

involved in the latter process, metallochaperones are detected nearly exclusively in organisms encoding 

P1B-1,2-type  ATPases  as  well,  possibly  indicating  that  they  evolved  originally  to  interact  with  the 
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ATPases and then adapted to scavenge also mercury(II). We also described several hints suggesting that 

metallochaperones can interact also with P-type ATPases lacking MBDs. Conversely, and much more 

commonly,  there  are  several  P1B-1,2-type  ATPases  that  likely  function  in  the  absence  of  a  partner 

metallochaperone.  This  is  typically  the  case  of ATPases  transporting divalent  cations  39.  For  these 

systems, in addition to modulating the overall enzymatic activity, the reciprocal mobility of MBDs 

could be important to tune the selectivity and/or the affinity for the substrate, which could be the metal 

ion complexed to either an organic molecule 49 or an unidentified cytoplasmic metallochaperone.
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Figure 1. Number of proteins with a given length of the linker connecting the two MBDs closest to the 

transmembrane domain. Open squares:  proteins from complete proteomes retrieved using the Pfam 

domains;  Open  circles:  proteins  from  the  SMART  dataset.  Inset:  full  graph.  The  R  correlation 

coefficient between the two datasets is 0.91.
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Figure 2. Interdomain interaction energy (separated into electrostatics, van der Waals and total 

energy, including also hydrogen bonding contributions)
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Figure 3 Surface electrostatic potential of the two MBDs of the WND protein (based on the 

experimental  2EW9 structure). Left:  surface of the first  domain show, with the second domains in 

ribbon representation; Right: vice versa. The two panels are interchanged by a rotation of 180° along 

the vertical axis. The electrostatic potential was calculated with the program MOLMOL 50.
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Table 2. Summary of the results of the analysis on 594 fully sequenced prokaryotic genomes 

using Pfam domains. P1B-1,2 ATPase were defined as those containing at least one MBD domain (called 

HMA in Pfam) in addition to other domains characteristics of P-type ATPases (called Hydrolase and 

E1-E2_ATPase in Pfam). P1B-1,2 ATPases were excluded from the count of P-type ATPases to avoid 

counting them twice. Metallochaperones were defined as proteins containing only MBD domains

Number of Proteins Number  of  organisms 

(percentage  of  the  594 

organisms analysed)
Individual proteins
Metallochaperone 521 335 (56.4%)
P-type ATPase (excluding P1B-1,2 type) 1625 462 (77.8%)
P1B-1,2 ATPase 826 468 (78.8%)
None n.a. 50 (8.4%)
Combinations of proteins
Metallochaperone and P1B-1,2ATPase 1072 (499+573) 315 (53.0%)
Metallochaperone and not P1B-1,2ATPase 22 20 (3.4%)
P1B-1,2ATPase and not metallochaperone 253 153 (25.8%)
Not P1B-1,2ATPase and not metallochaperone n.a. 106 (17.8%)
 P-type ATPase and P1B-1,2 ATPase 2082 386 (65.0%)
P-type ATPase and not P1B-1,2 ATPase 240 76 (12.8%)
P1B-1,2 ATPase and not P-type ATPase 129 82 (13.8%)

31



Table 3. P1B-1,2 ATPases with the indicated number of HMA domains.

Number of HMA 

domains

Number of P1B-1,2 ATPases Percentage  over  the  total 

number of P1B-1,2 ATPases
1 540 65.4%
2 245 29.7%
3 28 3.4%
4 13 1.6%
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CHAPTER 3

A systematic investigation of multi-heme c-type cytochromes in prokaryotes

Introduction .

c-type cytochromes are widespread metalloproteins that contain one or more covalently linked 

heme  cofactors.  The  covalent  linkage  of  the  cofactor  to  the  protein  typically  occurs  through  the 

chemical modification of the two vinyl groups of the cofactor, which react with two cysteine side 

chains to form thioether bonds in a stereospecific manner [1-3]. In the majority of cases, one protein 

ligand to the iron ion is the side chain of a His residue immediately following the second Cys residue 

(often called the proximal ligand). The typical signature for c-type heme attachment is therefore a 

CXXCH sequence motif [1]. Some exceptions are known, both regarding the residues covalently linked 

to the cofactor and the proximal iron ligand. As an example of the first case, in a restricted number of c-

type cytochromes the heme moiety is linked via a single thioether bond [4]. With respect to the second 

case, the penta-heme cytochrome  c  nitrite  reductase binds one of the heme groups via an atypical 

CXXCK motif whose Lys side chain coordinates the iron ion [5]. In structurally characterized c-type 

cytochromes, the number of heme cofactors that are bound to a single polypeptide chain ranges from 

one to as many as sixteen [6]. Those harbouring a single heme cofactor normally function as electron 

transfer proteins within redox chains, e.g., in aerobic or anaerobic respiration [7]. Instead, multi-heme 

c-type  cytochromes  (MHC’s  hereafter)  can  have  a  larger  variety  of  biochemical  roles,  including 

enzymatic activity next to electron transfer [8]. In the latter role, the spatial proximity of the heme 

cofactors  in  MHC’s  allows  electrons  to  rapidly  travel  across  relatively  long  distances  through 

subsequent intraprotein electron transfer steps. This feature can be further enhanced by the interaction 

of two or more MHC’s.

In the present work, we applied computational strategies to get an overview of the distrubution of 

MHC’s in prokaryotic organisms. We focused only on proteins containing the canonical CXXCH motif, 

as  MHC’s containg  only  non-canonical  motifs  are  presently  not  known.  This  work  constitutes  an 

extension of our previous investigations of mono-heme, mitochondrial-type c-type cytochromes [7;9], 

and  complements  our  investigation  of  the  occurrence  and  characteristics  of  prokaryotic  molecular 

machineries for the biosynthesis and uptake from external sources of the heme cofactor. The strategy 

adopted  is  a  variation  on  what  we  developed  and  refined  over  the  last  few  years  to  identify 
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metalloproteins in genomes. From the computational point of view, additional challenges arise due to 

the fact that the proteic part of multi-heme c-type cytochromes often does not adopt a well-defined 

fold. Indeed, it can be often the case that the structure of the protein is defined by the linkage of and 

hydrophobic interactions around the multiple heme cofactors [10]. This may be particularly true for 

cytochromes  containing  the  higher  the  number  of  cofactors  bound  to  the  protein.  Thanks  to  the 

extensive dataset of MHC’s gathered in this work, we can provide various hints for future experimental 

work in the field.

Materials and methods

We downloaded 594 completely sequenced prokaryotic  genomes from the  RefSeq database 

(http://www.ncbi.nlm.nih.gov/RefSeq/) [11], which cumulatively coded more than 1.9 million protein 

sequences. The list of organisms investigated is given in Supplementary Table S1. As a first filter, we 

removed all  proteins  that  did not  contain at  least  two CXXCH motifs.  The  resulting ensemble  of 

protein  sequences  was  analysed  in  terms  of  domain  content,  using  the  program  HMMER 

(http://hmmer.janelia.org)  with  standard  parameters [12].  In  particular,  the  cutoff  for  domain 

assignment was set at an E-value of 10-5. All Hidden Markov Models (HMM) from the Pfam [13] and 

Superfamily  [14]  databases  were  used.  To  select  Pfam  HMM’s  representing  true  multi-heme 

cytochromes c, we identified which HMM’s that were detected in the protein sequences consistently 

contained at least two CXXCH motifs within their boundaries. For all of these HMM’s, we inspected 

the corresponding sequence logo to verify whether the CXXCH motifs had indeed a high degree of 

conservation.  We  then  inspected  the  available  literature  information,  starting  from  the  domain 

description  provided  in  Pfam.  For  the  Superfamily  database,  we  selected  HMM's  on  the  basis  of 

available structures of multi-heme cytochromes as described below. We extracted from the PDB all the 

structures  of  true  multi-heme  cytochromes  c  by  a  query  for  structures  containing  multiple  heme 

cofactors, with a 70% sequence identity filter, followed by manual inspection of the results to remove 

proteins containing multiple mono-heme domains, such as the SoxA subunit in the sulfur oxidizing 

enzymatic machinery [15], rather than binding multiple heme cofactors in a single domain. We run the 

entire Pfam and Superfamily databases against this PDB-derived dataset and retained all the HMM 

models that were assigned to one of the proteins in the dataset and contained within their boundaries 

multiple CXXCH motifs (Supplementary Table S2). As a counter-check, we then used this selection of 

HMM’s to scan with HMMER the ensemble of all the sequences of proteins in the PDB, and verified 

that at our level of confidence the program retrieved only MHC’s. Note that for Pfam the list of HMM’s 

obtained from this analysis of the PDB is a subset of the one obtained from literature analysis, as it 

contains only domains for which a representative with known structure is available. This procedure 
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constitutes nevertheless an independent validation of our selection of Pfam HMM models, using the 

PDB database as a “gold standard”.

With the above lists of HMMs, we inspected the results generated by HMMER for all proteins 

in  the selected genomes that  had at  least  two CXXCH motifs.  We retained as true MHC’s all  the 

proteins that contained at least one of the domains corresponding to one of the selected Pfam HMMs. 

We instead removed all  proteins whose CXXCH motifs were within the boundaries of other Pfam 

domains. In other words, we separated the initial list of proteins containing multiple CXXCH motifs 

into three groups on the basis of their content of Pfam domains: those that could be assigned as true 

MHC’s, those that could be assigned as other proteins incidentally containing the motifs or using the 

motifs for other purposes,  such as zinc-binding, and those that could not be assigned to any Pfam 

domain. Proteins that fell in the second group were discarded, whereas proteins in the third group were 

further analyzed. This was done initially once more against Pfam using a less restrictive 10-3 E-value 

threshold, and then using the Superfamily HMM’s following essentially the same procedure. Proteins 

that could not be assigned to any of the Superfamily HMM’s representing multi-heme cytochromes c 

were analyzed against the entire Superfamily database to discard non-MHC proteins.

Following the methodology described above, we obtained a list of multi-heme cytochromes c, 

characterized by the presence of at least two CXXCH motifs within at least one MHC (represented by 

either a Pfam or Superfamily HMM model). In addition, we also obtained a list of protein sequences 

with at least two CXXCH motifs that could not be assigned to any HMM of the entire Pfam database 

nor  of  the  entire  Superfamily  database  and are  thus  unclassified proteins.  MHCs and unclassified 

proteins were clustered by CLANS [16] to  obtain additional biochemical insight using an E-value 

threshold variable between 10-10 and 10-20. We found, also on the basis of our previous experience [7], 

that  very restrictive E-value thresholds are needed in CLANS to obtain an useful and functionally 

informative clustering of proteins. The complete list of results is given in Supplementary Table S3.

Results and Discussion

Selection of MHC domains

The list of Pfam domains representing MHC’s that we assembled for the present work is given 

in Table 1, which indicates also PDB assignments. The corresponding information for the Superfamily 

database is given in Table 2. 82 different structures of MHC’s were selected from the PDB. Table S2 re-

ports the PDB assignments on a per-PDB code rather than per-domain (as in Tables 1 and 2) basis. 

Note that protein structures containing repetitions of mono-heme cytochrome c domains were excluded 

as they do not really fit the concept of MHC (i.e. a single structural unit that harbours at least two c-

type heme cofactors) even though they do contain multiple heme cofactors in a single polypeptide 
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chain. We addressed the systems containing two or more mono-heme cytochromes in a previous study 

[7]. Only for one MHC of known structure no assignment to a HMM for both the Pfam and Superfami-

ly domain databases could be obtained. This is the case of PDB entry 2CZS, which corresponds to a 

protein from  Geobacter sulfurreducens [17]. BLAST [18] searches showed that homologues of this 

protein are only present in other species of the Geobacter genus. Owing to the methodology adopted, 

for all  Superfamily domains at  least  one structural  representative was identified,  whereas for three 

Pfam domains this was not the case (Table 1). Identification of MHC domains lacking structural char-

acterization is possible in Pfam thanks to the links to the scientific literature that the database is provid-

ing. Some independent support for the inclusion of these domains in Table 1 can be obtained from the 

sequence logo, which shows the conservation of the CXXCH motif in the members of the correspond-

ing protein families (not shown). The analysis of PDB assignments provided insight on some different 

features of the Superfamily and Pfam databases, which can in principle affect the way they should be 

used. All Pfam domains corresponded to at least two PDB structures, whereas a significant number of 

Superfamily domains corresponded to only a single structure (Table 2). On the other hand, the number 

of PDB structures for which we did not get an assignment to a Pfam domain with our threshold of E-

value was larger than for Superfamily domain assignments (29 and 4, respectively). Overall, the exam-

ined ensemble of PDB structures was assigned to a total of five different Pfam domains and 26 Super-

family domains. We can thus conclude that the granularity of the domain distribution in Superfamily is 

higher than in Pfam; at the same time, the coverage of the PDB by Superfamily is superior. This latter 

point is likely the result of the fact that Superfamily is originally built from the SCOP database, i.e., on 

structural rather than sequence families. A direct consequence of the above observations is that typical-

ly a Pfam assignment corresponds to several different Superfamily assignments. In other words, the 

various PDB structures that contain the same Pfam MHC domain can be assigned to different Super-

family MHC domains. For example, PDB entries assigned to the Cytochrom_CIII Pfam domain span 

as many as eight different Superfamily domains. This finer classification may relate to Superfamily 

picking up small structural variations within the Cytochrom_CIII family.

The finding and considerations described in the preceding paragraph provided the rationale for 

how we built our workflow of sequence analysis. The list of all the protein sequences containing multi-

ple CXXCH motifs in a proteome contains the list of all MHC’s that the organism of interest can pro-

duce. On the other hand, it is almost certain to include also non-MHC proteins. The inspection of Pfam 

domain assignments at a relatively stringent 10-5 threshold provides an easy and quick way to start sep-

arating MHC’s from non-MHC’s. At a less stringent 10-3 threshold the level of separation is only slight-

ly enhanced (within 5%). It is reasonable to perform the Pfam analysis first because of the lower num-
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ber of relevant domains and consequently greater ease of analysis. Unassigned proteins are then more 

finely investigated with Superfamily, and additional assignments are obtained thanks to its greater cov-

erage (note this applies only to systems similar to proteins of known structure). The protein sequences 

containing multiple CXXCH motifs that remained unassigned at the end of the procedure constitute po-

tential unprecedented MHC’s (although very likely not all of them will be). 

Proteome-level distribution and properties of MHC’s

The numerical results of our analysis of 594 proteomes are summarized in Table 3. Out of the 

over 1.9 million proteins that we examined, 3783 contained two or more CXXCH motifs. In 1330 pro-

teins the motifs (all or all but one) were contained in a Pfam domain not in Table 1 and therefore they 

were removed as they could not be true MHC’s, whereas 607 could be assigned as true MHC’s because 

two or more motifs fell within the boundaries of a true Pfam MHC domain. The remaining 1846 se-

quences were analyzed against  the Superfamily domain database,  leading to  an  additional  794 se-

quences being rejected and 985 sequences being assigned as MHC’s. 67 sequences remained complete-

ly unassigned, of which 7 were of homologues of the above-mentioned 2CZS PDB structure and were 

therefore added to the list of true MHC’s. In summary, we identified 1599 true MHC’s, and remained 

with 60 unassigned proteins. The true MHC’s constituted 42% of the initial list of proteins harbouring 

two or more CXXC motifs. The list of MHC’s is provided as Table S3. For all subsequent analyses, the 

true MHC’s and the unassigned proteins were grouped together. We also assumed that all CXXCH mo-

tifs bound one heme cofactor, even though it is of course well possible that some of them are actually 

involved in the formation of disulfide bonds or binding metal ions such as zinc(II), or both.

Our results corresponded to an average of about 2.7 MHC’s per organism studied. Unsurprising-

ly, the actual distribution of MHC’s among the various organisms is highly variable. Indeed, only 258 

organisms encoded at least one MHC, and therefore the majority of proteomes (56.6%) did not contain 

any. Table 4 reports some statistics describing the distribution of MHC’s, taking into account only the 

organisms that do encode at least one such protein. The average number of MHC’s encoded by an or-

ganism was six; however, it is important to note that half of the organisms encoded only three MHC’s 

or less. One quarter of the organisms that do contain MHC’s had more than six such proteins, and 5% 

of the organisms had more than 22 MHC’s. Geobacter uraniumreducens Rf4 was the organism with the 

largest number of MHC’s (75), corresponding to 1.7% of its proteome.

Another interesting statistics is that regarding the number of heme cofactors potentially bound 

to the MHC’s identified in the present work. To illustrate this, Figure 1 depicts the number of MHC 

proteins containing a given number of CXXCH motifs were present in our final dataset. The most com-
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mon number of motifs, and therefore of potentially bound heme cofactors, in a single protein sequence 

was four (25.0% of instances); two was nearly as common (23.1%). MHC’s with five motifs were also 

relatively common. Penta-heme MHC’s were the next most widespread type. However, this resulted 

from the combination of two types of proteins: true penta-heme MHC’s, such as NrfB homologues 

[19], and tetra-heme domains fused to mono-heme cytochromes, such as TorC or TorY [20] homo-

logues. At higher heme contents, sequences with eight and especially ten motifs were relatively com-

mon. Deca-heme MHC’s could be divided in two groups, i.e., those similar to OmcA proteins, which 

were found mainly in Shewanella species [21], and members of the DmsE family, a potential anaerobic 

DMSO reductase, which were found in Shewanella and some Geobacter species. Among less common 

heme numbers, 12 (1.3%), 16 (0.7%) and 26-27 (0.4% each) stood out. The higher (25 or greater) heme 

numbers were found only in -proteobacteria of the   Geobacter and  Anaeromyxobacter genus. These 

were typically divided by our analysis in a number of smaller MHC domains. However, in the absence 

of structural data, it is possible that this separation resulted from an unsatisfactory description of the 

large MHC’s in the currently available ensembles of HMM models (Tables 1 and 2).

It has been pointed out that the covalent attachment of the heme group allows smaller protein 

length:heme ratios, which therefore tend to be larger in mono-heme cytochromes (either of c- or other 

types) than in MHC’s. The lowest ratios in mono-heme cytochromes c are around 60-70 for some bac-

terial proteins, whereas eukaryotic cytochromes feature typically 100 amino acids or more per heme. 

The present large dataset of MHC’s allowed us to verify whether there was a trend in these ratios with 

the number of heme groups bound by the polypeptide. As shown in Figure 2, there was no significant 

difference between the ratios observed in MHC’s with three to ten motifs. Also for MHC’s with two 

motifs there is in principle no significant difference with respect to the others, because of the large stan-

dard deviation around the average . However, the situation of di-heme MHC’s is clearly different, as ra-

tios from about 70 up to  270 are  observed.  For example,  all  MHC’s containing the Pfam domain 

DUF1111 had ratios between 230 and 280 (see also next section for discussion on this domain), where-

as NapB homologues had ratios between 70 and 85. The detailed domain composition of the various 

MHC’s has a significant impact on the computed values: for example, the penta-heme MHC’s that are 

TorC homologues had ratios at the higher end of the corresponding range of Figure 2, but this was in 

good part due to the fact that, as detailed in the next section, they are composed by a tetra-heme domain 

fused to a mono-heme domain, the latter having a higher ratio than the rest of the protein. Another con-

tribution toward the increase of the ratio results from linker regions in multi-domain MHC’s. In sum-

mary, the typical heme:protein length ratio for MHC’s is around 60-70 regardless of the number of mo-

tifs, with the possible exception of di-heme MHC’s. Multi-domain MHC’s tend to have higher ratios 
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than more compact MHC’s.

Functional insights

Further information can be obtained from the dataset of MHC’s that we assembled in this work 

by clustering the proteins with the program CLANS. Figure 3 graphically depicts the 30 largest clusters 

identified, whose size varied between 10 and 218 proteins and which cumulatively accounted for three 

quarters of the dataset. Some information is summarized in Table 5 for the largest clusters, which are 

discussed in the following. The largest cluster contained Torc and TorY homologues, which have five 

CXXCH motifs in a mono- plus a tetra-heme domain [20], and NapC/NirT homologues, which have 

four CXXCH motifs in a tetra-heme domain. These MHC’s mediate electron transfer from the quinine 

pool, directly or via other electron transfer proteins, to molybdo-enzymes reducing respectively DMSO 

or nitrate. In TorC, it has been proposed that the mono-heme cytochrome c domain injects the electron 

into the enzyme TorA, after receiving it from the menaquinone pool through the tetra-heme domain 

[20]. Notably, there is no MHC of known structure within this cluster, making this group a clear target 

for structure determination. Some could be detected similarity to the NrfH structure (PDB entry 2J7A; 

see also later). Indeed, the four heme-binding motifs in the tetra-heme domain do align to those of 

NrfH, but there is a significant difference in sequence spacing between heme 3 and 4. A (distant) evolu-

tionary relationship between the TorC/NapC and NrfH families has been proposed [22]. The second 

largest cluster containts 111 NrfA (nitrite reductase) homologues (Figure 4). NrfA binds five heme 

groups, of which one (the first in sequence) is bound via an unusual CXXCK motif (PDB Entry 1FS9 

[23]). Interestingly, in the present cluster we also identified proteins with five canonical CXXCH mo-

tifs in various organisms, e.g. from the  Campylobacter  genus (Table S3). The alignment between the 

proteins with four motifs plus the CXXCK motif and the proteins with five motifs was very good; in 

particular, the first CXXCH of the latter proteins corresponded perfectly to the CXXCK motif of the 

former. The proteins are therefore very likely to be true NrfA enzymes. It is to be noted that the His 

residue in the first CXXCH motif may actually not bind heme as seen in the octaheme terathionate re-

ductase (OTR, see later). The cluster contains also three proteins with one CXXCK motif and seven 

canonical motifs. The structure of a homologous protein from Thiolkalivibrio nitratireducens, a bacteri-

um not analyzed here, has appeared this year (PDB entry 2OT4 [24]). The five heme cofactors of NrfA 

can be superimposed well to five of the eight heme cofactors of the T. nitratireducens enzyme, whereas 

the additional three of the latter are contained in an extra structural domain. CXXCK motifs were iden-

tified only in the members of this family out of the 1659 sequences constituting our final ensemble of 

MHC’s. Cluster 4 was composed by 96 proteins containing the Pfam DUF1111 domain (DUF stands 

for Domain of Unknown Function [13]). All these proteins contained two CXXCH motifs, and are 
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sometimes annotated as being thiol oxidoreductases. We detected some sequence similarity in the C-

terminal region to a di-heme cytochrome c peroxidase of known structure (PDB Entry 1RZ5 [25]), sug-

gesting that also these proteins may contain two mono-heme domains [7] rather than a true MHC do-

main. These proteins are consistently associated in the respective genomes organization to a putative 

lipoprotein and other uncharacterized proteins. Also due to its relatively large size, the present family 

clearly is a target for both functional and structural investigation. Members of the MtrF and MtrA fami-

lies (together with other cytochromes not annotated) constitute clusters 5 and 6 respectively. The major-

ity of these proteins are from organisms of the  Shewanella genus, which are renowned for their rich 

content of cytochromes, where they are presumably involved in the dissimilatory reduction of metal 

(hydr)oxides [26]. The metal-reductase containing locus in Shevanella species is known to encode a 

variable number of deca- and undecaheme MHC’s [21]. They are mostly decaheme cytochromes, but, 

in particular for cluster 6, the number of motifs can range from 7 up to 26. Cluster 9 contained 40 pen-

taheme NrfB homologues (Figure 4). NrfB is an electron donor to NrfA [27;28] in proteobacteria, 

whereas the same role is played by NrfH in other organisms. Other more distant members of the family 

are contained in cluster 20. NrfH proteins defined cluster 11, with 33 members, and typically had four 

motifs. At the highly selective threshold of 10-20 the sequence of the  D. vulgaris NrfH protein in the 

aforementioned 2J7A structure did not fall in cluster 11 (Table 5), but joined the other NrfH proteins at 

a still tight threshold of 10-15. This is due to the D. vulgaris NrfH sequence being 20-30 amino acids 

shorter than the others. Finally, it is worth commenting cluster 12: it contained 38 proteins having eight 

motifs in all cases but one, which could be assigned as hydroxylamine reductases [29] or tetrathionate 

reductase (OTR) (Figure 4). As already mentioned, the structure 1SP3 of OTR [30] shows that one 

heme group in these enzymes has an anomalous ligation, with the His residue of the CXXCH motif not 

bound and being replaced by a Lys side chain, in a way that is reminiscent of NrfA ligation [5;23]. 

MHC variants in this cluster featured from five to ten CXXCH motifs.

By analyzing more closely the 15 largest clusters we noticed that when raising the clustering 

threshold to 10-15, cluster 6 and 9 merged, even though they typically contain 10 and 5 motifs, respec-

tively. In addition, also clusters 20 and 24 ended up in the same group, again with respectively 5 and 

8-10 motifs. From a detailed analysis of alignments, it appeared that the N-terminal 200 amino acids of 

the larger MHC’s aligned well to the entire sequence of the smaller ones, suggesting that the former, 

which corresponds to the  Shewanella  MtrA family, may a have a modular organization in which the 

first five hemes are contained in an element quite similar to the entire NrfB protein. The other larger 

clusters did not merge with one another until a threshold of 10-10 was used. However, at this level sever-

al functionally unrelated families were grouped together, suggesting that this threshold is inappropriate 
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to generate meaningful clusters.

Finally, it is interesting to compare the per-organism distribution of MHC’s with respect to the 

distribution of the enzymatic machineries for heme biosynthesis and uptake. For the correct production 

of MHC’s it is expected that an organism is able to either synthesize or acquire from a host the heme 

cofactor. By comparing the present dataset to that described by us in [31]. We observed only three pos-

sible exceptions to this rule. One protein in the organism Bifidobacterium adolescentis did not contain 

any known Pfam or Superfamily domain and thus was included in the final dataset as an unassigned 

protein only on the basis of the presence of two CXXCH motifs. This protein does not cluster with any 

other, and it is presumably a false positive. The second case is that of five proteins in  Haemophilus 

ducreyi, which include a complete system for nitrite reduction. In this case, the discrepancy should be 

ascribed to the fact that the heme uptake system of Haemophilus is poorly characterized and does not 

closely resemble that of other proteobacteria. Indeed, the need of Haemophilus ducreyi for heme as an 

iron source is documented [32], and other hemoproteins from this organism have been characterized 

[33]. Finally, we identified in Streptococcus thermophilus a fusion between a MerR-type regulator and 

a  putative  MHC domain.  Streptococcus  pyogenes,  which is  able  to  take  up heme [31],  and some 

Staphylococci contained highly similar proteins, but not Streptococcus pneumoniae, which also cannot 

synthesize nor take up heme with the common machineries although its virulence depends on hemin 

[34]. At present, we can only speculate that  Streptococcus thermophilus contains an uncharacterized 

heme uptake system.

Conclusion 

We identified 1659 MHC’s or unassigned proteins containing multiple CXXCH motifs in 258 

organisms (out of 594 analyzed). The presence of MHC’s is a good indicator of an organism’s ability to 

take up or synthesize heme; in two cases,  that  of  Haemophilus ducreyi and of  Streptococcus ther-

mophilus,  the presence of MHC’s in the genome may suggest that they have an uncommon or highly 

divergent heme uptake pathway. The most common number of heme-binding motifs in a sequence was 

four (25%) and two (23%), followed by five (13%) and ten (9.8%).

 However, the variability also within a group of MHC’s with the same number of motifs was 

relatively high. Only within individual functional families the ratio exhibited little variability. This ob-

servation could thus be useful to corroborate functional assignments of novel MHC’s.

The detailed comparison of the MHC sequences retrieved provided various hints to direct future 

experimental  work in  field.  For  example,  we identified homologues  of the  NRfA nitrite  reductase 

where the CXXCK motif of the catalytic heme is replaced by a fifth 5 CXXCH motif. In addition, we 

identified sequence similarity between deca-heme MHC’s of the MtrA family and penta-heme MHC’s 
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of the NrfB family. As a general consideration, it appears that the amount of structural information 

currently  available  for  MHC’s  is  limited  with  respect  to  the  diversity  of  this  broad  class  of 

metalloproteins, and even some of the largest MHC clusters lack a structurally characterized member. 

This limits the possibility e.g. to perform systematic structural modeling of MHC’s because of the poor 

selection of templates, which would affect key factors such as the reciprocal position and orientation of 

the heme cofactors and their ligands. Experimental efforts in the structural investigation of MHC’s are 

thus warranted.
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Table 1. HMM’s describing MHC’s identified in the Pfam database and corresponding PDB entries.

Pfam HMMs PDB entries

Cytochrom_CIII 1gmb, 2e84, 2cdv, 3cao, 1a2i, 2cdv, 1z1n, 1upd, 1w7o, 2yxc, 1qn0, 1i77, 2cth, 

2bq4,  1up9,  1gws,  2z47,  1mdv,  2ewi,  2cy3,  1j0p,  3car,  1gm4,  1czj,  1gx7, 

2a3m, 1wad, 2ewu, 2cym, 2yyx,  1duw, 1ofy,  1it1, 1j0o,  2cth, 2yyw, 1ofw, 

2ewk, 19hc, 2a3p, 1qn1, 1aqe, 1h29, 2bpn, 2ffn, 2cy3, 1gyo, 2cvc, 3cyr, 1wr5, 

3cyr

Cytochrom_C552 1gu6, 2rf7, 2e81, 2j7a, 3f29, 1fs7, 3f29, 3bnf, 1fs9, 2ot4, 2e80, 2vr0, 1oah, 

3bnh, 3bnj, 1fs8, 2rdz, 3bng, 1qdb

DHC 2fw5, 2fwt

CytoC_RC 2prc, 1vrn, 6prc, 1prc, 1dxr, 2jbl,  4prc, 1r2c, 1txw, 3d38, 2i5n, 5prc, 7prc, 

1eys, 3prc

NapB 1jni, 1ogy

Cytochrom_NNT 2j7a, 2vr0

Paired_CXXCH_1 -

Gsu_C4xC_C2H -

DUF1111 -
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Table 2. HMM’s describing MHC’s identified in the Superfamily database and corresponding PDB en-

tries.

SUPERFAMILY 

HMMs

PDB entries

0035167 1aqe, 1czj

0037755 3bnf, 3bng, 3bnh, 3bnj, 2ot4, 2e80, 2e81, 1fs7, 1fs8, 1fs9, 1gu6, 2rdz, 2rf7

0038903 2ffn, 1a2i,  1wr5,  1cdv, 1cth, 1up9, 1upd, 3cyr,  2cth, 2cym, 2cyr, 2ewi, 2ewk, 

2ewu, 1gm4, 1gmb, 1gx7, 1i77, 1it1, 1j0o, 1j0p, 2bpn, 2cdv, 2yxc, 2yyw, 2yyx, 

2z47

0037345 1lm2, 1new, 1cfo, 1ehj, 2new, 1f22, 1kwj, 1l3o, 1hh5

0042897 1qo8

0045238 1w7o, 1cy3, 2cy3

0036657 2prc, 1dxr, 1vrn, 1prc, 1r2c, 3d38, 3prc, 2jbl, 5prc, 6prc, 7prc, 2i5n, 2jbl, 1vrn

0038266 2ozy, 2p0b

0036613 19hc, 1duw, 1ofw, 1ofy

0036731 1lj1, 1m64, 1y0p, 1e39, 1q9i, 1qjd, 1p2e, 1p2h, 1jrx, 1jry, 1jrz, 1kss, 1ksu, 2b7r, 

2b7s

0042718 1qdb

0044945 1mdv, 1wad, 2a3m, 2a3p, 1qn0, 1qn1, 2bq4

0038377 1z1n, 2cvc, 2e84, 1gws, 1h29

0037766 1bvb, 1ft5, 1ft6

0041763 1oah, 2j7a, 2vr0

0043396 3bxu, 1os6, 1rwj

0036263 1d4c, 1d4d, 1d4e

0038331 1gyo

0041853 1ogy

0038376 1ddc, 1h21

0045497 3cao, 3car

0040737 1m1p, 1m1p, 1m1q, 1m1r

0039660 1jni

0037571 1fgj

0043690 1sp3

0037264 1eys, 2j7a, 2vr0
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Table 3. Summary of input data and results.

Overview of Initial Data
Number of organisms analyzed 594
Number of sequences analyzed 1,900,966
Number of sequences containing two CXXCH mo-

tifs or more

3,783

Analysis  of  sequences  containing  two  CXXCH 

motifs or more
Number of MHC’s assigned by Pfam at 10-5 thresh-

old

585

Number  of  sequences  rejected  by  Pfam  at  10-5 

threshold

1,286

Number of MHC’s additionally assigned by Pfam at 

10-3 threshold

22

Number of sequences additionally rejected by Pfam 

at 10-3 threshold

44

Number of MHC’s additionally assigned by Super-

family at 10-5 threshold

947

Number of MHC’s additionally assigned by Super-

family at 10-3 threshold

38

Number of sequences additionally rejected by Super-

family at 10-3 threshold

794

Number of unassigned sequences 67
Number of homologues to 2CZS 7
Summary of results
Total number of MHC’s 1,599
Total number of rejected sequences 2,124
Total number of unassigned sequences 60
Number  of  organisms  with  at  least  one  MHC  or 

unassigned sequence

258

53



Table 4. Statistics describing the per-organism distribution of MHC’s in the final dataset. Only organ-

isms containing at least one MHC or unassigned protein are taken into account. For the minimum and 

maximum values of MHC’s the number of organisms containing that value is given in parentheses.

Mean 6 ± 10
First quartile 2
Median 3
Third quartile 6
95th percentile 22
Minimum value 1 (51)
Maximum value 75 (1)
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Table 5. Properties of the fifteen largest clusters detected by CLANS. Only motif numbers occurring in 

at least 10% of the members are reported. The number of members with a given number of motifs in 

each cluster is given in parentheses in the third column. 

Cluster # Members # of Motifs (members 

with given # of motifs)

PDB representative

1 218 4 (129), 5 (85) None
2 111 4 (91), 5 (16) 1FS7,  3BNG,  1QDB,  1GU6  1OAH,  2J7A, 

2OT4, 2RF7, 2VR0, 3F29, 1FS9
3 111 2 (111) 1OGY, 1JNI
4 96 4 (96) None
5 81 10 (72), 11 (9) None
6 78 10 (56) None
7 49 7 (16), 8 (27) None
8 41 From 9 to 45 None
9 40 5 (40) 2P0B
10 38 8 (32) None
11 33 4 (32) None
12 31 8 (30) 1FGJ
13 30 2 (30) 2FWT, 2FW5
14 28 5 (24), 6 (4) None
15 20 7 (4), 9 (9), 6 (3) None
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Figure 1. Distribution of MHC’s as a function of the number of heme-binding motifs. The graph shows 

the number of MHC’s in our final dataset that have a given number of CXXCH motifs. The inset re-

ports a vertical expansion to appreciate the values for proteins with more than 10 motifs.
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Figure 2. Average ratio between the length of MHC proteins and the number of CXXCH motifs as a 

function of the number of CXXCH motifs.
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Figure 3. Clustering of the MHC sequences of the present dataset. The graph presents a twodimension-

al visualization of the results of the CLANS grouping of sequences. Axes units are arbitrary. The se-

quences are represented by vertices in the graph, and BLAST matches below the threshold E-value of 

10-20 are shown as edges connecting vertices. Note that the overlap between different clusters is not 

meaningful.
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Figure 4. Three-dimensional structures of MHC’s. The available structures of MHC’s representing the 

largest clusters identified in this work are shown (cfr. Table 5) are shown as ribbons; the heme cofactors 

are in grey. The following structures were used: cluster 2, 1FS7 [23]; cluster 3, 1JNI [35]; cluster 9, 

2P0B [28]; cluster 12, 1FGJ [36]; cluster 13, 2FWT [37].
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CHAPTER 4

Benchmarking protocols for structure determination of proteins from chemical shift data

Introduction :

Chemical shifts are key to protein NMR spectroscopy not only because they allow separate observation 

of each 1H, 13C, and 15N nucleus in the macromolecule, but also as they carry important information on 

the local conformation. For example, chemical shift data can be used to obtain secondary structure 

information [1], or indications on hydrogen bonding [2,3]. Protein structural information derived from 

chemical shifts, such as the backbone ψ torsion angles predicted by the program TALOS [4] is widely 

used in NMR structure determination, typically to complement conventional NOE distance restraints.

Recently, several computational approaches have been developed to use the NMR chemical shifts alone 

as input for protein structure generation [5,6,7,8]. These approaches, represented by CHESHIRE [9], 

CS-Rosetta [10] and CS23D [11], match the experimental chemical shifts of the backbone and  13Cβ 

atoms,  which  are  commonly  available  at  the  early  stage  of  the  conventional  NMR  structure 

determination procedure, to a structural database to identify protein fragments with similar chemical 

shifts.  Because the structural database of proteins for which actual NMR assignments are available 

remains relatively small, empirical relationships [12,13,14,15] are commonly used to “assign” chemical 

shift values to nuclei in proteins of known structure. Selected protein fragments are then used as input 

for a fragment assembly procedure, which also aims to optimize empirical energy terms related to 

hydrogen  bonding,  hydrophobic  packing,  etc.,  to  generate  an  all-atom  protein  structure.  These 

approaches have been evaluated for several proteins, with sizes of up to 15 kD and a wide variety of 

folds. When the method converges, protein models that compare well with experimental structures are 

often  obtained.  For  CS-Rosetta  in  particular,  data  for  structural  genomics  target  proteins,  obtained 

before the conventional NMR structure determination process was available [16], showed that CS-

Rosetta could be a viable alternative for medium-size proteins [17].

To date,  the  chemical  shift  based structure  determination  methods have  been  evaluated  for 

proteins with complete or nearly complete NMR chemical shift assignments.  In  practice, however, 

resonance  assignments  are  often  incomplete,  and  also  may  contain  a  small  fraction  of  erroneous 

assignments.  The conventional NMR determination strategy is sufficiently tolerant to be successful 

even in the presence of only 80–90% of the backbone sequence-specific assignments. Some recent 
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work is available addressing this point [18].

In  order  to  establish a  consistent  evaluation of chemical  shift-based structure  determination 

protocols,  also  in  the  frame  of  the  e-NMR project,  we  set  out  to  build  a  benchmark  of  recently 

determined protein structures, lacking chemical shift assignments or homologs with available chemical 

shift assignment, to test the available protocols and investigate possible ameliorations.

Material and methods

Protein selection

We  decided  to  start  with  a  benchmark  of  ten  different  proteins.  The  selection  was  based  on  the 

following criteria:

only crystallographic structures with no or very distant homologs having an NMR assignment 

available were taken into account 

structures solved in 2007 or later 

the protein should be in monomeric state 

no ligands, metals or other heterogroups should be bound to the protein

protein size smaller than 150 amino acids

A query was run  on  the  PDB database  by  using the  advance  search  option  to  include  the  above 

conditions. The absence of homologues already studied by NMR was checked manually. At the end, the 

following ten structures were selected: 2DUY , 2HL7 , 2J8B , 2PLZ , 2RHF , 2EHS , 2I5M , 2P5K , 

2QNW , 3CA7, ranging in size from 35 to 70 amino acids These structures are depicted in Figure 1.

2duy 2ehs
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2hl7 2i5m

2j8b 2p5k
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2plz 2qnw

2rh5 3ca7

Figure 1 Structures of the ten selected proteins.
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Chemical shift calculations

Chemical shifts were predicted for these proteins using both the shiftS and shiftX programs.

Brief description of SHIFTX: A computer program (SHIFTX) rapidly and accurately calculates the 
1
H, 

13
C and 

15
N chemical shifts of both backbone and side chain atoms in proteins. The program is freely 

available  as  a  web  server  at  http://redpoll.pharmacy.ualberta.ca.  SHIFTX uses  a  hybrid  predictive 

approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination 

with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent 

effects)  to  calculate  
1
H,  

13
C and  

15
N chemical  shifts  from atomic coordinates.  The chemical  shift 

hypersurfaces capture the  effects  of dihedral  angle,  side  chain orientation,  secondary structure  and 

nearest  neighbor,  which cannot easily be translated to analytical  formula or predicted via classical 

means.

Brief description of SHIFTS: SHIFTS takes a protein structure in  Brookhaven (PDB) format,  and 

computes proton chemical shifts from empirical formulas. It can also compute 15N, 13Cα, 13Cβ and 13C' 

shifts in proteins, using a database based on DFT calculations on peptides. It is freely available as a 

web server at http://casegroup.rutgers.edu/qshifts/qshifts.htm

CS-Rosetta calculations and results

After calculating shift values we used the e-nmr web portal to use CS ROSETTA program for the 

calculation of the 3D structure of each protein. The calculation was repeated twice, both excluding and 

not explicitly excluding the corresponding experimental structure .  We wanted to verify the effect of 

excluding the target structures from the database from which CS Rosetta selects fragments in order to 

ensure  that  the  calculations  did  not  consist  of  merely  reassembling  the  structures  from their  own 

fragments with the basic Rosetta procedure. The quality of the results was assessed for each of the ten 

selected proteins by calculating the backbone RMSD between three structures: the experimental protein 

structure,  the CS ROSETTA structure which did not explicitly excluded the experimental  structure 

during  calculation  and  the  protein  structure  calculated  by  CS  ROSETTA  explicitly  excluding 

experimental one. 
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Figure 2  Experimental  structure of 2EHS and structures calculated by CS ROSETTA using 

chemical shifts calculated by shiftX both excluding and including experimental structure . No. of amino 

acids = 75; RMSD between all 3 structures = 0.546 Å.

Figure 3 Experimental structure of 2DUY and structures calculated by CS ROSETTA using 

chemical shifts calculated by shiftX both excluding and including experimental structure. No. of amino 

acids = 65;RMSD between all 3 structures = 1.731 Å.
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Figure 4 Experimental structure of 3CA7 and structures calculated by CS ROSETTA using chemical 

shifts calculated by shiftX both excluding and including experimental structure. No. of amino acids = 

45;RMSD between all 3 structures = 5.536 Å

We found that CS ROSETTA can provide good results for proteins of 70 - 80 amino acids. This 

fact was demonstrated by RMSD values of proteins shown in figure 2 and 3. Interestingly, for structure 

3CA7, which is of a protein of only 45 amino acids, we obtained a very high RMSD value of 5.63 Å 

(Figure 4). Further work is needed to assess the reasons for this.
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Conclusion and future prospectives :

In the first part of our study the occurrence and properties of P1B-1,2-type ATPases, and partly, of 

their partner metallochaperones were investigated . P1B-1,2-type ATPases may contain multiple metal-

binding domains (MBDs) in the N-terminal cytoplasmic part of their sequence. The number of these 

domains tends to be higher in more complex organisms. For the human MNK and WND proteins, 

which contain six MBDs, the two domains closest in sequence to the transmembrane part of the protein 

have  been sown to  have  a  different  role  than  the  other  four  .  We demonstrated through sequence 

analysis across a large dataset of organisms and molecular dynamics that in the majority of organisms, 

these two domains tend to be structurally independent and can reorient one with respect to the other. 

Therefore, it appears very likely that they can exert their function independently. The MBDs have a 

role  in  regulating  the  ATPase  activity  through  interactions  with  the  other  protein  domains.  The 

presently  observed relative  flexibility  can  thus be  instrumental  in  optimizing the  regulation of  the 

activity in multi-MBD ATPases. 

Metallochaperones instead are  single-MBD proteins that  typically deliver  copper(I)  ions to  partner 

P1B-1,2-type ATPases or mercury(II) ions to te MerA reductase in the mercury detoxification system. 

However, also when involved in the latter process, metallochaperones are detected nearly exclusively 

in organisms encoding P1B-1,2-type ATPases as well, possibly indicating that they evolved originally to 

interact with the ATPases and then adapted to scavenge also mercury(II). We also described several 

hints  suggesting  that  metallochaperones  can  interact  also  with  P-type  ATPases  lacking  MBDs. 

Conversely, and much more commonly, there are several P1B-1,2-type ATPases that likely function in the 

absence of a partner metallochaperone, analogously to ATPases transporting divalent cations. For these 

systems, in addition to modulating the overall enzymatic activity, the reciprocal mobility of MBDs 

could be important to tune the selectivity and/or the affinity for the substrate, which could be the metal 

ion complexed to either an organic molecule or an unidentified cytoplasmic metallochaperone. There 

are several perspectives for this work, including: i) the simulation of interaction between the MDBs of 

ATPases  and  the  metallochaperones,  including  quantitative  estimates  of  metal-protein  interaction 

energies and their change along the reaction coordinate; ii) the modeling of the metal-binding sites 

within  the  transmembrane  regions;  iii)  the  simulation  of  interaction  with  different  metal  ions,  to 

understand the possible determinants of metal ion selectivity.

In the second part of our PhD work, we identified 1659 multi-heme cytochromes c (MHC’s) or 

unassigned proteins containing multiple CXXCH motifs in 258 organisms (out of 594 analyzed). The 

presence of MHC’s correlated well with, and thus can be taken as a good indicator of, an organism’s 
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ability to  take  up or synthesize heme;  we consequently  identified two cases,  that  of  Haemophilus 

ducreyi and of Streptococcus thermophilus, where the presence of MHC’s in the genome may suggest 

that they have an uncommon or highly divergent heme uptake pathway. The most common number of 

heme-binding motifs in a sequence was four (25%) and two (23%), followed by five (13%) and ten 

(9.8%). The average protein:heme ratio was relatively similar for all MHC’s, except di-heme proteins, 

regardless of the number of motifs at around 60 ± 30. However, the variability also within a group of 

MHC’s with the same number of motifs was relatively high. Only within individual functional families 

the ratio exhibited little variability. This observation could thus be useful to corroborate functional as-

signments of novel MHC’s. The detailed comparison of the MHC sequences retrieved provided various 

hints that can be useful to direct future experimental work in the field. For example, we identified ho-

mologues of the NRfA nitrite reductase where the CXXCK motif of the catalytic heme is replaced by a 

fifth 5 CXXCH motif. In addition, we identified sequence similarity between deca-heme MHC’s of the 

MtrA family and penta-heme MHC’s of the NrfB family. As a general consideration, it appears that the 

amount of structural information currently available for MHC’s is limited with respect to the diversity 

of this broad class of metalloproteins, and even some of the largest MHC families lack a structurally 

characterized member.  This limits the possibility e.g.  to  perform systematic  structural  modeling of 

MHC’s because of the poor selection of templates, which would affect key factors such as the recipro-

cal position and orientation of the heme cofactors and their ligands. Experimental efforts in the struc-

tural investigation of MHC’s are thus warranted. A possible perspective could thus be that of providing 

priorities for structural determination, e.g., by evaluating the leverage of each new MHC structure (that 

is, the number of new high-quality structural models can be derived from each new structure). A more 

in-depth analysis of the domain composition and possible  intramolecular interactions of very large 

MHC’s could also constitute an interesting perspective in terms of defining the modularity of these pro-

teins.

In the third part we aimed at establishing a benchmark for the evaluation of the performance of 

chemical shift-only methods for the calculation of protein structures. We initially focused on CS-Roset-

ta, and a set of ten proteins of known X-ray structure, but lacking any NMR characterization, to be used 

for calculations using simulated chemical shift data. The perspective in this work is to extend calcula-

tions to other programs and use an extended set of structures in the benchmark.
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One Page Description of thesis :

Title of thesis: Bioinformatics of metal binding proteins and genome wide analysis .

Specific area of Discipline : Structural Biology .

5 key words describing my work : bioinformatics; metalloproteins; cytochromes; copper; proteomics

Brief description of my work : 

During my PhD training I applied theoretical, bioinformatic methods to address problems in 

structural  biology  starting  from amino  acid  sequence  going  to  enzyme  function  through  structure 

determination. The first two years of my training were focused on protein sequence analysis and their 

comparison, homology modelling, molecular dynamics. In this context, I developed a computational 

approach to identify unprecedented members of known protein families on the basis of HMM model 

databases. The performance of this method was tested by using the PDB database as a “gold standard”. 

In the third year I applied Nuclear Magnetic Resonance (NMR) chemical shift calculation methods to 

validate  methods for  the  determination  of  the  tertiary  structure  of  proteins.  An objective  of  these 

calculations is to develop approaches that reduce the amount of time needed for solution structure 

determination of proteins based on NMR data.  It  is likely that this approach in the future will  be 

applied to study protein-protein as well as protein-ligand interactions.

The sequence-to-function analyses of protein families were applied on two different biological 

systems: i) an ubiquitous intracellular copper transport parthway; ii) multi-heme c-type cytochromes. In 

i), we focused on two protein partners: a soluble small (ca. 70 amino acids) copper(I) binding protein 

(called  a  metallochaperone)  and  P1B-type  ATPases,  which  can  transport  copper(I)  ions  across 

membranes  at  the  expenses  of  ATP hydrolysis.  The  latter  may contain  multiple  copper(I)-binding 

domains,  separated  by  a  flexible  protein  linker.  Molecular  dynamics  simulations  showed  large 

differences  in  the  behavior  of  systems  having  different  linker  lengths.  Indeed,  the  inter-domain 

interaction energy was inversely proportional to the length of the linker. S-order parameter values were 

higher for smaller linker lengths. This is clearly demonstrating that the reciprocal motions of domains 

was also dependent on the length of the linker. These results were comparable for both apo and holo 

forms, indicating that the copper(I) ion does not playing contribute significantly to modulating the inter 

domain interactions, which are only dependent on the length of the linker region. This has implications 

for  the  mechanism  of  copper(I)  transfer  to  the  ATPase  transmembrane  binding  site.  For  ii),  we 

investigated the genomes of the 594 prokaryotic organisms sequenced till date, thereby analyzing a 

total of 19,00,966 protein sequences. Of these, 3783 contained two or more CXXCH motifs, which are 

responsible for heme attachment to the protein, and therefore were potential multi-heme cytochromes. 
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After a systematic search of HMM models of two databases (Pfam and SUPERFAMILY), we retained 

1659 proteins as true MHC’s, and remained with 67 unassigned proteins.

For our NMR application, we have focused on protein structure calculations based on only the 

amino acid sequence and NMR chemical shifts. It involves homology modeling based on the sequence-

structure alignment, SPARTA , Cheshire ,CS - ROSETTA, cs23d and PSVS web servers complemented 

by locally written programs. 
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