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 1.1 Neurodegenerative diseases and protein aggregation 
 

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), 

Huntington's disease (HD), prion diseases and amyotrophic lateral sclerosis (ALS) appear to 

have common cellular and molecular mechanisms, including protein aggregation and inclusion 

bodies formation, features, which seem to be directly related to neurotoxicity (Table1).  

 
Table 1. Human diseases associated with formation of extracellular amyloid deposits or intracellular 

inclusions with amyloid-like characteristics. (Reprinted from Chiti F., Dobson C.M. (2006) Protein misfolding, 

functional amyloid and human disease Annu. Rev. Biochem. 75, 333–366) 

 aData refer to the number of residues of the processed polypeptide chains that deposit into aggregates, not 

of the precursor proteins. 
bAccording to Structural Classification Of Proteins (SCOP), these are the structural class and fold of the 

native states of the processed peptides or proteins that deposit into aggregates prior to aggregation. 
cPredominantly sporadic, although in some cases hereditary forms associated with specific mutations are 

well documented. 
dPredominantly hereditary, although in some cases sporadic forms are documented. 
eFive percent of the cases are transmitted (e.g., iatrogenic). 
fFragments of various lengths are generated and have been reported to be present in ex vivo fibrils. 
gLengths shown refer to the normal sequences with nonpathogenic traits of polyQ. 
hLength shown is for ataxin-1 
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The aggregates usually consist of fibers containing misfolded proteins arranged in a β-

sheet conformation, termed amyloid. There is partial, but not perfect, overlap among the cells 

in which abnormal proteins are deposited and the cells that degenerate. The most likely 

explanation is that inclusions and other visible protein aggregates represent an end stage of a 

molecular cascade of several steps, and that earlier steps in the cascade may be more directly 

tied to pathogenesis than the inclusions themselves (1).  

Correct folding requires proteins to assume one particular structure from a constellation 

of possible but incorrect conformations, the failure of polypeptides to adopt their proper 

structure is a major threat to cell function and viability and neurons are particularly vulnerable 

to the toxic effects of mutant or misfolded proteins (2). 

The common characteristics of all these neurodegenerative disorders suggest parallel 

approaches to treatment, based on an understanding of the factors preventing the correct 

protein folding and the normal cellular mechanisms for disposing of not correctly functioning 

and potentially noxious proteins.  

 

1.1.1 Protein folding and misfolding related to neurodegenerative diseases 

In a cell, proteins are synthesized on ribosomes from the genetic information encoded in 

the cellular DNA. Folding in vivo is, in some cases, co-translational, which means that it is 

initiated before the completion of protein synthesis, whereas the nascent chain is still attached 

to the ribosome (3). Other proteins, however, undergo the major part of their folding in the 

cytoplasm after release from the ribosome, whereas yet others fold in specific compartments, 

such as mitochondria or the endoplasmic reticulum (ER), after trafficking and translocation 

through membranes (4, 5). Many details of the folding process depend on the particular 

environment in which folding takes place, although the fundamental principles of folding, 

discussed above, are undoubtedly universal.  

Following biosynthesis, a polypeptide chain, which is initially unfolded, can populate a 

wide distribution of conformations, each of which contains little persistent structure, as in the 

case of natively unfolded proteins, or fold to a unique compact structure, often through one or 

more partly folded intermediates (6) (Fig.1).  

Even during the latter intermediate steps incompletely folded proteins must inevitably 

expose to the solvent, at least some regions of structure that are buried in the native state, so, 

they are prone to inappropriate interaction with other molecules within the crowded 

environment of a cell (7). Living systems have therefore evolved a range of strategies to 

prevent such behaviour (4–7). All of the different conformational states assumed by the 
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proteins and their interconversions are carefully regulated in the biological environment, much 

as enzymes regulate all the chemistry in cells, by using machinery such as molecular 

chaperones, degradatory systems, and quality control processes (6). Of particular importance 

are the many molecular chaperones that are present in all types of cells and cellular 

compartments. Some chaperones interact with nascent chains as they emerge from the 

ribosome, whereas others are involved in guiding later stages of the folding process (4, 5). 

Molecular chaperones often work in tandem to ensure that the various stages in the folding of 

such systems are all completed efficiently.  

 

 

 

 

              

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A schematic representation of some of the many conformational states that can be adopted by 

polypeptide chains and of the means by which they can be interconverted. (Reprinted from 

Chiti F., Dobson C.M. (2006) Protein misfolding, functional amyloid and human disease Annu. Rev. Biochem. 75, 

333–366) 

 

A large fraction of newly translated proteins nonetheless fails to fold correctly, 

generating a substantial burden of defective polypeptide (8). These proteins are degraded 



 10

primarily by the ubiquitin-proteasome system (UPS) (Fig. 2), a multicomponent system that 

identifies and degrades unwanted proteins (9, 10). In addition to its role in clearing defective 

proteins, the UPS carries out selective degradation of many short-lived normal proteins, under 

very carefully controlled conditions and as a part of normal biochemical processes, thereby 

contributing to the regulation of numerous cellular processes. Failure to detect and eliminate 

misfolded proteins may contribute to the pathogenesis of neurodegenerative diseases. 

Conversely, it has been suggested that the UPS itself may be a target for toxic proteins (11). 

Under some circumstances, misfolded proteins may evade the quality control systems designed 

to promote correct folding and eliminate faulty proteins. When they accumulate in sufficient 

quantity, misfolded proteins are prone to aggregation. Insoluble aggregates of disease-related 

proteins may be deposited in microscopically visible inclusions or plaques, the characteristics 

of which are often disease specific (2).  

          

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The ubiquitin-proteasome system. (A) Proteins targeted for degradation are identified by covalent 

linkage to ubiquitin. Selective ubiquitination is accomplished by a series of enzymes (E1, E2, and E3) that 

constitute the ubiquitin ligase system. (B) Ubiquitinated substrates are recognized, unfolded, and degraded in an 

energy-dependent manner by the proteasome. (Reprinted from Taylor J.P., Hardy J., Fischbeck, K.H. (2002) 

Toxic proteins in neurodegenerative disease Science 296, 1991−1995)  

 

1.1.2 Amyloid fibrils formation related to neurodegenerative diseases 

Each amyloid disease involves predominantly the aggregation of a specific protein, 

although a range of other components including additional proteins and carbohydrates are 

incorporated into the deposits when they form in vivo (12). In neurodegenerative diseases, the 
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quantities of aggregates involved can sometimes be so small as to be almost undetectable, 

whereas in some systemic diseases literally kilograms of protein can be found in one or more 

organs (13). The fibrillar structures typical of many of the aggregates have very similar 

morphologies (long, unbranched and often twisted structures a few nanometres in diameter) 

and a characteristic ‘cross-β’ X-ray fibre diffraction pattern. The latter reveals that the 

organized core structure is composed of β-sheets whose strands run perpendicular to the fibril 

axis (14). The ability of polypeptide chains to form amyloid structures is not restricted to the 

relatively small number of proteins associated with recognized clinical disorders, and it now 

seems to be a generic feature of polypeptide chains (15, 16). The core structure of the fibrils 

seems to be stabilized primarily by interactions, particularly hydrogen bonds, involving the 

polypeptide main chain. Because the main chain is common to all polypeptides, this 

observation explains why fibrils formed from polypeptides of very different sequence seem to 

be so similar (14, 16). The generic amyloid structure contrasts strongly with the highly 

individualistic globular structures of most natural proteins (12). In these latter structures the 

interactions associated with the very specific packing of the side chains seem to override the 

main-chain preferences (16, 17). The state of a protein that is adopted under specific conditions 

depends on the relative thermodynamic stabilities of the various accessible conformations and 

on the kinetics of their interconversion (Fig. 1) (15, 18). Amyloid fibrils are just one of the 

types of aggregate that can be formed by proteins, although a significant feature of this 

particular species is that its highly organized hydrogen-bonded structure is likely to give it 

unique kinetic stability. Thus, once formed, such aggregates can persist for long periods, 

allowing a progressive build-up of deposits in tissue, and indeed enabling seeding of the 

subsequent conversion of additional quantities of the same protein into amyloid fibrils (12). It 

is therefore not surprising that biological systems have almost universally avoided the 

deliberate formation of such material. Nevertheless, there is increasing evidence that the 

unique properties of amyloid structures have been exploited by some species, including 

bacteria, fungi and even mammals, for specific, and carefully regulated, purposes (19–21). One 

particularly well-studied example of functional amyloid is that of the proteinaceous fibrils 

formed from the curlin protein, which are used by Escherichia coli to colonize inert surfaces 

and mediate binding to host proteins (6).  

The fibrils have the ability to bind specific dyes such as thioflavin T (ThT) and Congo 

red (CR) (22), although the specificity of binding of CR to amyloid fibrils and the resulting 

green birefringence under cross-polarized light has recently been questioned (23).    
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For many years the only structural information about amyloid fibrils came from imaging 

techniques such as transmission electron microscopy (TEM), and more recently atomic force 

microscopy (AFM), and from X-ray fiber diffraction (24–27). Despite the structural insights 

given by these techniques, as outlined above, until few years ago one of the most common 

statements found in the introductory sections of articles related to this field was reporting that 

amyloid fibrils could not be characterized in detail at the molecular level because they were not 

crystalline and too large to be studied by solution NMR spectroscopy. The situation has 

recently changed dramatically as a result of major progress in the application of solid-state 

NMR (SSNMR) spectroscopy to preparations of amyloid fibrils (28–30) and of successes in 

growing nano- or microcrystals of small peptide fragments that have characteristics of amyloid 

fibrils yet are amenable to single crystal X-ray diffraction analysis (31, 32). 

 

 

1.2 Amyotrophic Lateral Sclerosis 
 

The most common motor neuron disease in human adults is amyotrophic lateral sclerosis 

(ALS). Initially described (33) in 1869 by the famous French neurobiologist and physician 

Jean-Martin Charcot, ALS first became known as Charcot’s sclerosis. ALS is now familiarly 

known in the United States as Lou Gehrig’s disease, in honor of the great baseball player who 

developed the disease in the 1930s. 

Generally fatal within 1–5 years from onset, ALS has a yearly incidence (new cases in 

the population) of about 2 to 3 per 100 000 people with a prevalence of 5–7/100 000. The 

lifetime risk of developing the disease is approximately 1 in 2000. The typical age of onset is 

between 50 and 60. Before 65 years of age, male incidence is twice that of females. However, 

after 65 years, the incidence becomes equal (34).  

The primary hallmark of ALS is the selective dysfunction and death of motor neurons in 

the brain and spinal cord which leads to spasticity, hyperreflexia, generalized weakness, 

muscle atrophy and paralysis. Denervation of the respiratory muscles and diaphragm is 

generally the fatal event.  

“Amyotrophic” refers to the muscle atrophy, weakness, and fasciculation that signify 

disease of the lower motor neurons (LMN). “Lateral sclerosis” refers to the hardness to 

palpation of the lateral columns of the spinal cord in autopsy specimens, where gliosis follows 

degeneration of the corticospinal tracts. The clinical results are upper motor neuron (UMN) 

signs as spasticity and hyperreflexia (35) (Fig. 3). 
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Fig. 3 Motor Neurons Selectively Affected in ALS. Degeneration of motor neurons in the motor cortex 

leads to clinically apparent signs of UMN abnormalities: spasticity and hyperreflexia (left). Degeneration of motor 

neurons in the brain stem and spinal cord (LMN) causes muscle atrophy, weakness, and fasciculation (right) 

(Reprinted from Rowland LP, Shneider NA. (2001) Amyotrophic lateral sclerosis N. Engl. J. Med. 344, 1688–

1700) 

 

The causes of almost all occurrences of the disease remain unknown and the clinical 

course is highly variable, suggesting that multiple factors underlie the disease mechanism. In 

90–95% of instances, there is no apparent genetic linkage, a form of the disease referred to as 

sporadic ALS (sALS), but in the remaining 5–10% of cases, the disease is inherited in a 

predominantly dominant manner, a form referred to as familial ALS (fALS) (36). Of these 

familial cases, ~25% are caused by mutations in the gene encoding copper-zinc superoxide 

dismutase (37). 
 

. 
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1.3 Structural aspects and physiological roles of 

copper-zinc superoxide dismutase 
 

The antioxidant enzyme, copper-zinc superoxide dismutase (SOD1), is one of the cellular 

defense systems for oxidative stress. Its functional role is that of catalyzing the dismutation of 

two superoxide anions to dioxygen and hydrogen peroxide according to the following reactions 

(38): 

Cu2+, Zn2+ − SOD1 + O2
− ↔ Cu1+, Zn2+ − SOD1 + O2 

Cu1+, Zn2+ − SOD1 + O2
− + 2H+ ↔ Cu2+, Zn2+ − SOD1 + H2O2 

Eukaryotic SOD1 is a 32 kDa homodimeric metalloenzyme, found predominantly in the 

cytosol, but it is also found in other cellular compartments, including nucleus (39, 40), 

lysosomes, peroxisomes (40, 41), endoplasmic reticulum (42), and mitochondria. In the latter, 

SOD1 is concentrated in the intermembrane space (IMS) (43–46), but it can also be detected in 

the matrix (47) and on the outer membrane (OM) (48–50). 

Each of the two subunits of human SOD1 has 153 amino acids arranged in a Greek key 

β-barrel structure composed of eight antiparallel β-strands connected by loops of various 

lengths. Each subunit of the dimer contains an intramolecular disulfide bond, between Cys57 

and Cys146, which is localized near the active site that binds a catalytic copper ion (binding 

residues: His46, His48, His63 and His120) and a structural zinc ion (binding residues: His63, 

His71, His80 and Asp83)  (51–55) (Fig. 4).  

Primary sequence as well as three-dimensional structure of SOD1 is highly conserved 

from prokaryotes to eukaryotes (56). Several structural variations have been found in bacterial 

SOD1 proteins: a monomeric form in Escherichia coli (57), a heme binding site in 

Haemophilus ducreyi (58), no Zn binding site in Mycobacterium tuberculosis (59). 

Wild-type (WT) human SOD1 actually contains four cysteine residues per monomer. 

Besides the two cysteines involved in the formation of the intra-subunit disulfide bond, two 

reduced cysteines, Cys6 and Cys111, are located on β strand 1 and loop VI, respectively. The 

internal disulfide bond between Cys57 and Cys146 which contributes to the high stability of 

the SOD1 protein, is highly conserved in SOD1s from various organisms, including yeast, 

plants, flies, fishes and mammals (51, 60). In contrast, the other two free cysteines, Cys6 and 

Cys111, are not conserved. Actually, yeast, fungi and spinach (plants) have no free cysteines, 

and residue 6 is an alanine (Ala) while residue 111 is a serine (Ser) in these organisms (61). 

More evolved organisms, such as flies, fishes and mammals, including the Japanase monkey, 

have only one free cysteine, Cys6. Only humans and great apes (chimpanzee and orangutan) 
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have two free cysteines, Cys6 and Cys111 (62). Notably, the amino acid sequence of 

chimpanzee SOD1 is identical to that of human SOD1. Although the evolutionary process may 

differ from humans and great apes, chicken SOD1 has three free cysteines including Cys6 and 

Cys111. The third free Cys residue is located at the C-terminus, Cys154 (63). Because free 

cysteines generally are reactive and  WTSOD1 is less thermo-stable than Ser111-SOD1 or 

Ala6-SOD1 (64), the Ala6Cys and Ser111Cys mutations during evolution are puzzling. In 

particular, Cys111 is located at the surface of the SOD1 molecule and is thought to be highly 

reactive (65). 

Among the loops connecting the eight β strands, which characterize SOD1 structure, two 

have structural and functional role. The electrostatic loop (loop VII, residues 121–144) 

contains positive charged residues (Lys136 and Arg143) that contribute to guide the negatively 

charged superoxide substrate (O2
−) towards the catalytic copper site. The long zinc loop (loop 

IV, residues 49–84) contains all the zinc binding residues including His63, which acts as a 

ligand to both metals (53) (Fig. 4).  

 

  

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4 Secondary structural elements of human SOD1. The β-strands and  β-strand residues are 

numbered; the short α-helix (α1) that forms on Cu and Zn binding is shown as a cylinder. The Zn-coordinating 

residues, His63, His71, His80 and Asp83, are shown as gray spheres; the Cu-coordinating residues, His46, His48, 

His63 and His120, are shown as green spheres (the Cu–Zn bridging ligand, His63, is shown as two adjacent 

spheres). The disulfide bond between Cys57 and Cys146 is indicated with a broken line. The two large loops in 

SOD1 (loops IV and VII) are colored in red. (Reprinted from Shaw B. F., and Valentine J. S. (2007) How do 

ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem. Sci. 

 32, 78–85) 
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1.4 Post-translational modifications and stability aspects of SOD1 
 

The mature, correctly folded and enzymatically active form of SOD1 is obtained, in vivo, 

through several post-translational modifications such as the acquisition of zinc and copper ions, 

disulfide bond formation, and dimerization (66–70) (Fig. 5). While the mechanism by which 

SOD1 acquires Zn(II) is not fully understood, several aspects of copper insertion by the copper 

chaperone for SOD1 (CCS) are well established (71–76). Furukawa et al. (77) have shown that 

the intra-subunit disulfide bond is correctly introduced in yeast SOD1 by the copper-bound 

form of yeast CCS.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The structure of metal bound dimeric human SOD1. Copper and zinc ions are shown as blue and 

orange spheres, respectively. The zinc loop is depicted in orange and the electrostatic loop in teal. The 

intrasubunit disulfide bond is shown in red. (Reprinted from Valentine J. S., Doucette P. A., Potter S. Z. (2005) 

Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis Annu. Rev. Biochem. 74, 563–593) 

 

However, given that the cytosol is a strongly reducing environment, due to the high ratio 

of reduced glutathione to the disulfide form (GSH/GSSG) which ranges from 100:1 to 1000:1 

(78), the disulfide formation is an unfavourable process. These aspects suggest that the 

immature disulfide-reduced human SOD1s are more important species in the cytosolic 

environment than previously thought. Field et al. (79) have shown that uptake of the SOD1 
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molecule into the mitochondrial IMS is dependent on the status of the disulfide bond. The 

reduced form of SOD1 is imported through the mitochondrial OM, but the disulfide-bonded 

metal-free (apo) SOD1, the Zn(II)-loaded SOD1, and the holo-form of fully mature form of 

SOD1 are not readily transferred from the cytosol into the mitochondrial IMS. 

The tight dimer formed by SOD1, having a dissociation constant of ~1.0× 10−10 M−1 (80), 

provides it with the characteristics of a very robust protein with respect to physical and 

chemical denaturation; the holo protein remains folded at temperatures near the boiling point of 

water (81, 82). In addition, it retains a dimeric quaternary structure in 1% SDS (83) and 

enzymatic activity can be observed in the presence of 10 M urea or after 1 h in 4% SDS and at 

80°C (84). Furthermore, active fragments of SOD1 have been isolated from an Egyptian 

mummy dating to 1200 BC (85). Unlike the fully metallated protein (Cu2Zn2 SOD1S-S), which 

has a melting temperature (Tm) of ~95°C (81, 82), the metal-free, disulfide-reduced SOD1 

polypeptide (apo-SOD12SH) is relatively unstable and has a Tm value of 42°C at pH 7.4 (86). 

The metal-free, disulfide-intact protein (apo-SOD1S-S) has a Tm value of ~52°C (86). 

As far as the enzymatic activity of this protein is concern, while nonenzymatic 

dismutation of O2
− to O2 and H2O2 occurs with a rate constant of 2 × 105 M−1s−1, at pH 7.4, 

SOD1-catalyzed dismutation is significantly accelerated to an extent that it is diffusion-

controlled (2 × 109 M−1s−1) (87). Interestingly, this enzymatic rate of disproportionation is very 

similar to that of copper salts; however, given that intracellular free copper concentrations are 

quite low under normal aerobic growth (70), there has been a strong selection for organisms to 

elaborate a more efficient defense. The intracellular concentration of SOD1 is high (ranging 

from 10 to 100 μM) (88, 89), and apparently sufficient to consume physiological levels of 

superoxide radical. While superoxide is produced in the cytosol by several enzymes such as 

xanthine oxidase (90), the respiration process in mitochondria is a major source of O2
− 

generation (91).  

WTSOD1 localized into the mitochondrial IMS is providing protection from superoxide 

produced by the respiratory chain on the outer side of the inner membrane (IM), which is 

inaccessible to the matrix-residing Mn-superoxide dismutase (SOD2) present there in high 

levels (ca. 1 × 10−5 M) (92).  

At a tissue level, SOD1 is widely expressed in liver and kidney (93). It is also abundant 

in motor neurons (94). This correlates with high expression of xanthine oxidase in liver and 

with high susceptibility of neuronal cells to oxidative stress. Knockout studies indicate that 

elimination of the SOD1 gene in these cells results in widespread oxidative damage (41).  
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1.5 SOD1 and SOD1 mutations related to ALS 
 

At a first glance, SOD1, which is a highly thermo-stable enzyme (41, 95), seems an 

unlikely candidate for participation in any process involving protein instability, alterations or 

misfolding. Nonetheless, a link between SOD1 and ALS was first establish in 1993, by Rosen 

et al. (37) which described several point mutations in the gene encoding SOD1, localized on 

chromosome 21q22.1, accounting for 20–25% of fALS cases. The remaining 75–80% of fALS 

cases are caused by mutations in other genes (96).  

More than 100 different mutations have been identified, spanning all five exons of sod1 

gene. Most of these mutations result in the substitution of a single amino acid throughout the 

153-residue SOD1 polypeptide, although some mutations result in amino acid insertions and 

deletions and in truncations of the C terminus. An updated list of the mutations can be found at 

the online database for ALS genetics, http://www.alsod.org. The vast majority of the mutations 

are genetically dominant. The only one known exception, D90A, is an oddity since in certain 

families it is recessive (97), whereas in others it is dominant (98). 

Biophysical studies of fALS mutant SOD1 proteins suggest their partition into two 

groups with distinctly different biophysical characteristics with respect to metal content, SOD 

activity, and spectroscopy. These two groups have been termed metal-binding region (MBR) 

and wild-type like (WTL) fALS mutant SOD1 proteins (Fig. 6) on the basis of their SOD 

activities and metal-binding properties (69). The MBR subset of SOD1 proteins have mutations 

that are localized in and around the metal-binding sites, including the electrostatic and zinc 

loops, and were found to have significantly altered biophysical properties relative to WTSOD1. 

By contrast, the WTL subset of SOD1 protein was found to be remarkably similar to WTSOD1 

in most of their properties. 
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Fig. 6 The two classes of fALS mutant SOD1 proteins: WTL and MBR. Biophysical, biochemical and 

bioinorganic investigations have shown that ALS-associated variant SOD1 proteins have extremely diverse 

characters. 

 

Thorough investigations of a broad range of ALS-associated SOD1 variants describe the 

effects induced by the mutations as one or more of the following perturbations (95):  

(a) destabilization of the apo-SOD1S-S native state (decreased Tm), wherein instability 

remains even after metallation (relative to the WT protein with an equivalent metallation state);  

(b) decrease in the affinity for binding Cu or Zn;  

(c) decrease in overall net charge. 

On the other hand, there are also few mutations, which can increase the stability of apo-

SOD1 (e.g. D124V) or increase the net charge of the protein (e.g. V7E). Examples of 

perturbations induced by specific single point mutations are reported in Table 2. 
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Table 2. Biophysical effects induced by some ALS-associated amino acid substitutions in SOD1. 

(Reprinted from Shaw B. F., Valentine J. S. (2007) How do ALS-associated mutations in superoxide dismutase 1 

promote aggregation of the protein? Trends Biochem. Sci. 32, 78–85) 

 

           
       ‘–’ indicates no perturbation of these parameters 
 

1.5.1 Toxic gain of function of SOD1 mutant proteins  

Beside a huge effort of data acquisition and speculative debates, how mutated SOD1 

leads to motor neuron degeneration remains actually unclear. However, it is well established 

that SOD1-mediated toxicity in ALS is not due to loss of function but instead to a gain of one 

or more toxic properties that are independent of the levels of SOD1 activity. The main 

arguments against the importance of loss of dismutase function are that: 

(a) SOD1 null mice do not develop motor neuron disease and  

(b) removal of the normal SOD1 genes in mice that develop motor neuron disease from 

expressing a dismutase inactive mutant (SOD1G85R) does not affect onset or survival.  

In addition, levels of SOD1 activity do not correlate with disease in mice or humans; in 

fact, some mutant enzymes retain full dismutase activity. Finally, chronic increase in the levels 

of WTSOD1 (and dismutase activity) either has no effect on disease or accelerates it (99). 
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1.5.2 Proposed hypotheses for the toxicity of SOD1 mutants in ALS  

Over the years, many proposals for ALS mechanisms that underlie the selective killing of 

upper and lower motor neurons have been put forward. The combination of genetic, 

pathological and biochemical post-mortem studies has fuelled four primary hypotheses for 

mechanisms that provoke or contribute to the disease (100):  

 

1. Oxidative damage  

One of the proposed functions acquired by mutations in SOD1 is the increased 

peroxidase activity. H2O2, normally a product of the superoxide disproportionation, is 

catalytically converted into highly reactive and toxic hydroxyl radical at Cu1+ ion in SOD1 

mutant proteins, resulting in enzyme inactivation, oxidative modification of residues at or near 

the copper site, and loss of metal ions. Increased levels of hydroxyl radical have been reported 

in transgenic mouse expressing human SOD1 with the G93A mutation (37).  

Another aberrant copper chemistry proposed in SOD1 mutant proteins involves a strong 

oxidant, peroxynitrite (ONOO−). ONOO− forms from the reaction between nitric oxide (NO) 

and superoxide anion at a diffusion controlled rate. When SOD1 has no Zn ion bound, a Cu1+ 

ion in SOD1 is proposed to undergo one-electron reduction of molecular oxygen (O2) to form 

superoxide anion, which further reacts with NO and leads to the peroxynitrite production. 

Given that many ALS-associated mutant SOD1 proteins have reduced affinity for Zn ion, an 

acquired toxic function of SOD1 by mutations may arise from the peroxynitrite chemistry 

including the tyrosine nitration (37). 

Recently, however, aberrant copper chemistry has been questioned as a cause of the 

SOD1-linked familial ALS; disease symptoms have been found in the transgenic mouse 

overexpressing the copper-binding-site-null mutant SOD1, in which all four copper ligands 

(His 46, 48, 63, and 120) are mutated. 

While increased oxidative stress is a major pathology found in ALS-model mice and ALS 

patients, the bulk of the evidence to date does not strongly support the idea that aberrant copper 

chemistry originating with mutant SOD1 proteins is responsible for the disease (41). 

 

2. Repetitive motor neuron firing and subsequent excitotoxic death due to mishandling of 

glutamate, the neurotransmitter that acts on both upper and lower motor neurons  

Glutamate-mediated excitotoxicity from repetitive firing and/or elevation of intracellular 

calcium by calcium-permeable glutamate receptors has long been implicated in neuronal death. 

Glutamate released from presynaptic terminals triggers action potentials in motor neurons by 
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diffusing across the synaptic cleft to activate specific receptors on the dendrites of the 

postsynaptic neuron. A key component of the mechanisms necessary to prevent repetitive 

firing is the rapid removal of synaptic glutamate by glutamate transporters. Five subtypes of 

transporter are known, but it is the glial glutamate transporter EAAT2 that is responsible for 

~90% of the clearance for motor neurons (Fig. 8). Evidence of abnormalities in glutamate 

handling in ALS arose from the discovery of large increases in the levels of glutamate in the 

cerebrospinal fluid of ALS patients (81–83); a finding now reported in ~40% of sporadic ALS 

patients. Direct measurement of functional glutamate transport in ALS revealed a marked 

diminution in the affected brain regions, which was the result of a pronounced loss of the 

astroglial EAAT2 protein (100). Thus, glutamate excitotoxicity is likely to be an important 

contributor to neuronal death. Indeed, treatment with the glutamate release inhibitor riluzole is 

currently the only drug approved for treatment of ALS patients, although it extends survival for 

only two months on average (101). 

 

3. Axonal strangulation from neurofilamentous disorganization, an idea supported by the 

abnormal accumulation of neurofilaments as a pathological feature of many cases of sporadic 

and SOD1-mediated familial disease  

Another characteristic of ALS is the reduced activity of axonal transport, described first 

in patients with ALS (102) and more recently in transgenic mouse models of ALS (103) (Fig. 

8). The anterograde and retrograde transport of molecules and organelles is a fundamental 

cellular process that is particularly important for the development, function and survival of 

motor neurons, which are among the largest and longest cells in the body. Although the 

molecular basis for this slowing is not fully elaborated, several authors suggest that 

aggregations of neurofilaments in the proximal axons (spheroids) might physically 

compromise the transport apparatus (102), at least for anterograde traffic (96).  

 

4. Toxicity from intracellular aggregates and/or failure of protein folding or degradation 

a common feature of ALS involving SOD1 mutations  

In the recent years, protein aggregation has been proposed as the most accredited ALS 

mechanism on the basis of the fact that Bunina body and Lewy body-like hyaline inclusion are 

found in motor neurons and astrocytes of sporadic and familial ALS patients, respectively (41, 

96, 99, 104).  

The protein aggregates found in SOD1-related familial ALS patients and transgenic 

mouse models are strongly immunoreactive to SOD1 (99, 105) (Fig. 7).  
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The obvious loss of motor neurons in the brain and spinal cord initially focused attention 

on how mutated SOD1 may act within motor neurons to provoke neuronal degeneration and 

death. However, as in almost all prominent examples of inherited human neurodegenerative 

diseases, the mutant gene products are expressed widely. In the case of SOD1, expression is 

ubiquitous, raising the possibility that the toxic cascade may be achieved wholly, or in part, by 

mutant SOD1 action in the adjacent non neuronal cells. It has in fact been proved that toxicity 

to motor neurons from SOD1 mutants is non cell autonomous, that is, it requires mutant 

damage not just within motor neurons but also to non neuronal cells (99).  

       
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 SOD1 reactive inclusions in both motor neurons and astrocytes. (a) Motor neuron from a 

SOD1G85R ALS mouse. (b) Motor neuron from an ALS patient with SOD1 frameshift mutation at position 126. 

(c) Astrocyte from a SOD1G85R mouse. Top row (a, b, c) is stained with hematoxylin and eosin. Bottom row (d, 

e) and the insert in (c) represent the same sections stained with an antibody to SOD1. These inclusions are also 

immunoreactive with antibodies to ubiquitin (not shown). (Reprinted from Bruijn L. I., Miller T. M., Cleveland, 

D. W. (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS Annu. Rev. Neurosci. 

27, 723–749) 

 

1.5.3 Net charge, subcellular localization and SOD1 aggregation 

Most proteins possess a net surface charge (either positive or negative) at physiological 

pH, and the prevalence of net charge in biology has been proposed to function in part to 

prevent protein aggregation (106). In fact, decreasing the net charge on a protein usually leads 

to an increase in the rate of aggregation (107, 108).  
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Human SOD1 is predicted to have an isoelectric point (pI) of ~5.8 and to carry a net 

negative charge between 6 and 7 units at pH 7.4. Several ALS-associated SOD1 mutations 

decrease the net negative charge of SOD1 (Table 2), and this reduction in net charge could 

promote aggregation. Thus, ALS-associated SOD1 mutations such as D101N, D90A, N139K 

and E100K that are unlikely to promote SOD1 aggregation by destabilization of the native 

state or by inhibition of metal binding, might promote aggregation by decreasing the net 

negative charge of the SOD1 protein. 

Furthermore, it is likely that the aggregation-promoting effects of some of the mutations 

that do result in native state destabilization or metal-binding inhibition are also compounded by 

a concomitant decrease in net charge. For example, the mutation G37R, which destabilizes 

SOD1, and the mutation H46R, which inhibits SOD1 metallation without destabilizing the 

native apo fold, both result in a decrease in the net negative charge of the SOD1 protein (86) 

(Table 2). Oliveberg and co-workers (109) have also pointed out that a better correlation 

between SOD1 variant stability and ALS patient survivability can be found when increases or 

decreases in net charge are taken into account. Mutations that decrease the net charge of a 

pathogenic protein are also prevalent in familial conditions associated with protein aggregation 

such as renal amyloidosis, early onset Alzheimer’s disease and frontotemporal dementia with 

Parkinsonism (107). 

The local intracellular pH or fluctuations in intracellular pH could also be a factor in 

SOD1 aggregation, not only because low pH can induce molten globule or partially folded 

states, but also because of the correlation between net charge and rate of aggregation. Protein 

aggregation has been observed, in vitro, to be fastest at pH values near the isoelectric point of 

the protein where the net charge is zero (110, 111). SOD1, in addition to being present in the 

cytosol, is also present in the intermembrane space of mitochondria (112) and, as recently 

reported, in the trans-Golgi network (113). Because these compartments are more acidic than 

the cytosol – the intermembrane space by as much as ~0.7 pH units (114) and the trans-Golgi 

network by up to 2 pH units (115) – SOD1 proteins that are localized in these areas can be 

expected to have a lower net charge and therefore to have a higher propensity to aggregate. 

Thus, it is possible that the aggregation propensity of SOD1 could depend on subcellular 

localization and local variations inside the cells. 

 

1.5.4 Final event in ALS: A cascade of caspases which mediates motor neuron death 

Although the primary toxicities of the familial ALS–linked mutations of SOD1 remain 

unresolved, the final event in the death cascade has been partially clarified. Apoptosis, or 
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programmed cell death, is thought to be responsible for the end stage of ALS. At this time, 

mitochondria release cytochrome c and apoptosis inducing factor (AIF) followed by activation 

of the caspase cascade (116, 117). Activation of caspase-1, one of the early events in the 

mechanism of toxicity of SOD1 mutants, occurs months prior to neuronal death and 

phenotypic disease onset. A central feature in cell death mediated by mutant SOD1 is the 

activation of caspase-3, one of the major cysteine-aspartate proteases responsible for 

degradation of many key cellular constituents in apoptotic cell death. Caspase-3 activation 

occurs in motor neurons and astrocytes, where it cleaves the astroglial excitatory amino acid 

transporter 2 (EAAT2), contemporaneous with the first stages of motor neuron death (99).  

It has also been shown that amyotrophic lateral sclerosis-associated SOD1 mutant 

proteins bind and aggregate with the antiapoptotic factor Bcl2 in spinal cord mitochondria. 

When entrapped in inclusions, Bcl2 could be directly rendered non-functional. Entrapment and 

depletion of Bcl2 is supported by studies that show reduced levels of Bcl2 in SOD1 mice and 

patients with ALS (49).  

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 8 The specificity of the toxic effect of SOD1 mutations on motor neurons arises from the 

convergence of several risk factors. (Reprinted from Cleveland D.W., Rothstein J.D. (2001) From Charcot to 

Lou Gehrig: deciphering selective motor neuron death in ALS Nat. Rev. Neurosci. 2, 806–819) 

 

Figure 8 give us an overall view of the toxicity given by the accumulation of SOD1 

aggregates in motor neuronal cells and astrocytes.   
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(a) In normal cases a lower motor neuron receives signals to fire by the release of 

glutamate (Glu) from an upstream neuron, either an upper motor neuron or an interneuron. 

This signal is converted within the motor neuron into action potentials that stimulate the 

release of acetylcholine (orange) at its axon terminus, triggering muscle contraction.  

(b) Accumulation of SOD1 aggregates in the motor neuronal cells triggers a loss of 

overall protein-folding chaperone activity and inhibits the removal of other damaged proteins 

by choking the 20S proteasome subunit having as a result the disorganisation of the axonal 

neurofilaments (inhibiting in this way the transport of components along the axon) and 

chronically activation of caspase-1.  

(c) Inhibition of chaperone and proteasome activity, loss of axonal transport capacity and 

an accelerated SOD1-mutant burden force chronic deficits in motor neurons. Similar damage in 

astrocytes suppresses the accumulation and activity of glutamate transporters (EAAT2) that are 

necessary for recovering synaptic glutamate and for preventing repetitive motor neuron firing. 

Such disproportionate firing produces excessive calcium entry through calcium-permeable 

glutamate receptors, activating caspase-3, which serves as the executioner for motor neuron 

death through the degradation of key cellular components.  
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1.6 Aims and topics of the research 
 

The propensity of a protein to aggregate is a complex property reflecting a collection of 

different biophysical and physicochemical parameters such as hydrophobicity, net charge, 

native state stability and intrinsic β-structure (95). Therefore, an observed increase in the rate 

of protein aggregation – for any given protein variant – is not always accompanied by a 

specific defect such as destabilization of the native state or a decrease in net charge but it is 

given by a combination of more parameters. There is, perhaps, no better example of this 

complexity than the mutations of SOD1 that cause ALS. This motley crew of variants numbers 

well over 100 and no single defect has been found to be common among all the mutants that 

have been studied so far. 

The discovery of the relationship between SOD1 mutations and ALS (37) spurred 

intensive structural and biophysical analyses also in our laboratory, which aimed at revealing 

the molecular basis for this disease. My colleagues performed a deep study of human 

WTSOD1, both in the metalated and demetalated forms.  When I joined the lab it has already 

been shown (118) that WTSOD1, when lacking both its metal ions, forms large, stable, soluble 

protein oligomers by intermolecular disulfide bonds, under physiological conditions. In order 

to identify, which cysteines were involved in the formation of these intermolecular disulfide 

bonds, I cloned and purified two SOD1 mutants: C6A, C111S. Negative oligomerization tests 

on both these mutant proteins proved the involvement of these two cysteines in apo WT protein 

oligomerization (118). 

In order to test the validity of the mechanism proposed for WTSOD1 on its variants, 

eleven SOD1 mutants (T54R, V87M, G93A, G93D, V97M, I113F, I113T, L144F, D90A - 

pathogenic and L67V and I35T – non pathogenic) were also selected, cloned and purified in 

our laboratory (chapter 2.1.3). The mutations were chosen mainly on the basis of their 

structural location and character of the residue changes. The same characterizations performed 

for the WTSOD1 (by circular dichroism, optical, fluorescence, light scattering spectroscopies 

and size exclusion chromatography) were carried out for the mutant proteins in order to 

investigate their ability to form oligomers in conditions very close to the physiological ones. At 

this point of the research I contributed in showing that these eleven SOD1 mutants, only when 

they are in the metal-free form, undergo the same mechanism of oligomerization proposed for 

the WT metal-free protein (118). Moreover, in order to support the proposed mechanism, I 

cloned, expressed and studied the triple mutant [C6A, I113T, C111S]. This mutant, in its 

metal-free form, even though carrying one of the mutations inducing the fastest 
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oligomerization rate, did not oligomerize because of the absence of the two free cysteines Cys6 

and Cys111.  

We showed that the rates of oligomerization of SOD1 proteins carrying a single point 

mutation are different, but they eventually give rise to the same type of soluble oligomeric 

species only when Cys6 and Cys111 are present (119). 

After we succeeded in obtaining these promising results our goal was to enter into the 

details of the oligomerization mechanism by looking for some structural and dynamic 

differences between WTSOD1 and its mutants. In particular, I focused my research 

investigations on the two pathogenic mutants (T54R and I113T), which showed the most 

diverse rates in the oligomerization process. Residue T54 is located at the SOD1 dimer 

interface, and in the T54R mutant, it is substituted by a positive residue, showing, in its apo 

form, the slowest aggregation rate. Residue I113 is located at the dimer interface as well, but, 

in the I113T variant, it is substituted by a hydrophilic residue, showing, in its apo form, the 

fastest aggregation rate compared to the apo WTSOD1 protein.  

Before starting the structural and dynamic characterization of WTSOD1 and its mutants 

we had to improve the yield of expression for these proteins since, according to the protocol in 

use, the total amount of pure proteins obtained in minimal medium was very low (between 8 

and 10 mg/L). In order to solve this problem, I cloned the sod1 gene using the Gateway 

Technology (Invitrogen), which allows to readily insert it into a different set of expression 

plasmids codifying for various N-terminal fusion tags. It has already been reported (120) that, 

in many cases, the presence of these tags improve dramatically the solubility and the 

expression level of the proteins. Several constructs were expressed for the WTSOD1 protein 

(chapter 2.1.3) and the obtained results led us to choose the GB1-WTSOD1 fusion protein as 

the best candidate. I cloned then the mutant proteins in the new expression plasmid codifying 

for the selected N-terminal fusion tag and NMR and X-ray investigations of the purified 

proteins were undertaken as described in one of the following chapters (chapter 3.2). 

Our new findings led us also to investigate different aspects of the oligomerization 

process of both apo WT and its ALS-related mutants. I started different and parallel projects, 

which involve both the characterization of specific ALS-related SOD1 mutants and issues 

more tightly associated with the oligomerization mechanism and structural aspects of the 

metal-free WT protein. 

I am still in the process of completing a detailed biophysical and structural 

characterization as well as an investigation of the oligomerization propensity of apo D90A, 

which is the only SOD1 mutant showing a recessive hereditary pattern (chapter 3.3.1). I am 
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investigating the stability properties (guanidium-induced protein denaturation) of a slow 

oligomerizing mutant such as T54R in comparison with the WT protein in order to rationalize 

their oligomerization rates (chapter 3.3.2). Moreover, an investigation of the early steps of the 

oligomerization process is described as a work in progress in chapter 3.3.3., as well as 

preliminary data on the structural characterization of the dimeric metal-free form of WTSOD1 

by Solid State NMR (SSNMR) spectroscopy is presented in chapter 3.3.4. 
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2.1 Cloning techniques 
 

2.1.1 Gene cloning 
Isolation of sufficient amounts of protein from native sources is often impossible owing 

to low yields, culturing difficulties of the organism and instability during purification. 

Therefore, protein production from cloned recombinant DNA is normally the method of choice 

to obtain the desired protein. The cloning strategy has to be carefully designed, since it will 

influence the behaviour of the target protein in terms of yield, solubility, folding, etc. Although 

protein expression is no longer considered a major limiting step and protein purification 

techniques have improved dramatically in the past years, the problem of producing soluble 

proteins for purification is still a major concern. 

Many years ago it was discovered that some affinity tags are able to enhance the 

solubility of some of the partner proteins to which they are attached (1). Even if the number of 

fusion partners is increasing progressively during the years none of these tags work universally 

with each partner protein. The best way to maximize the probability of obtaining a soluble and 

correctly folded target protein is to proceed with a parallel cloning and expression of it with a 

high number of fusion partners.  

Anyway, the experience shows that in some cases the classic approach of expressing the 

native protein without any tag results the most successful one. While the latter classical 

approache do not require further sub cloning, ‘fusion partners’ impact on protein solubility 

leads to sub cloning of the gene of interest in a library of expression vectors that becomes 

laborious when handling a large number of genes. 

Another cloning strategy used in our laboratory is the Gateway® Technology from 

Invitrogen. The Gateway® Technology is a universal cloning method that takes advantage of 

the site-specific recombination properties of bacteriophage lambda (2) to provide a rapid and 

highly efficient way to move our gene of interest into multiple vector systems.  

In order to express the gene of interest using the Gateway® Technology the following 

steps have to be performed: 

1. cloning of the gene (which is a blunt-end PCR product) into one of the pENTR/TOPO 

vectors to generate an entry clone. 

2. generation of an expression construct by performing an LR recombination reaction 

between the entry clone and a Gateway destination vector of choice (Fig. 9) 
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3. introduction of the expression construct into the appropriate host (e.g. bacterial, 

mammalian, yeast, insect) and expression of the recombinant protein. 

This cloning method is faster, due to the higher reaction efficiency and to the fact that 

only sequencing of the entry clone is required, and most of all, the destination vectors are 

compatible with one single entry clone making the parallel approach easier. 

On the basis of the former considerations, in our laboratory, we usually clone each 

protein with the classic methods to express the protein in the native form and with Gateway 

system (Invitrogen) in order to express it with different N-terminal fusion tags (e.g. 6xHis-tag, 

TRX, GST, MBP, periMBP and GB1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9 Schematic comparison between the Classic and the Gateway cloning technology. Theoretically, 

parallel cloning is possible in both the cases but the Gateway system results faster due to the higher reaction 

efficiency and less sequencing demand since only the starting pENTR should be sequence verified. 

 

2.1.2 Site-directed mutagenesis 

The functional analysis of a protein often requires the generation of a number of single or 

multiple amino acid variants of the wild type gene. Site-directed mutagenesis is a technique for 

carrying out vector modification and characterizing the dynamic, complex relationships 

between protein structure and function. The basic procedure utilizes a supercoiled double-

stranded DNA vector with an insert of interest (the gene of interest) and two synthetic 

oligonucleotide primers containing the desired mutation (Fig 10). The primers, each 

complementary to opposite strands of the vector, are extended during temperature cycling by a 

Fig. 9Fig. 9Fig. 9
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high fidelity DNA polymerase (Pfu Turbo, Stratagene). Extension of the oligonucleotide 

primers generates a mutated plasmid. After PCR reaction the product is treated with an 

endonuclease specific for methylated and hemimethylated DNA, Dpn I. This enzyme is used to 

digest the parental DNA template and thus select only the mutation-containing synthesized 

DNA; this happens because DNA isolated from almost all E. coli strains is dam methylated and 

therefore susceptible to endonuclease digestion. The vector containing the desired mutations is 

then transformed into XL1-Blue supercompetent cells and subsequently subjected to 

sequencing analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 Overview of the QuikChange® site-directed mutagenesis method. (Reprinted from 

QuikChange® site-directed mutagenesis instruction manual) 

 

2.1.3 Cloning and site-directed mutagenesis of sod1 gene 

During this PhD thesis, the following WTSOD1 mutants were cloned using the classical 

approach: I35T, D90A, C6A and C111S. Mutations were performed in pPSOD-Iq plasmid 
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using a QuikChangeTM site-directed mutagenesis kit (Stratagene). The plasmids were 

propagated and purified by MINI KIT (Invitrogen) and the sequences were verified. 

In order to improve the yield of expression and the folding properties of WTSOD1 and 

some of its mutants obtained with the classic method, the sod1 gene was cloned by PCR and 

inserted in Gateway pENTR/TEV/D-TOPO plasmid (Invitrogen). The plasmid was propagated 

and purified by MINI KIT (Invitrogen) and the sequence was verified. The LR recombination 

reaction was performed in order to transfer the sod1 gene from pENTR/TEV/D-TOPO plasmid 

into different pDest plasmids (pDEST14, pDEST24, pETG20A, pETG30A, pDEST-HisMBP, 

pDEST-periHisMBP, and pTH34) suitable for protein expression and codifying for various N-

terminal fusion tags (6xHis, TRX, GST, MBP and GB1) (Fig. 11). The most efficient 

expression and purification system was conferred from the small-size fusion partner GB1. 

Mutations were performed in the pTH34 plasmid codifying for the GB1 fusion tag, which 

was chosen as the best candidate, using a QuikChangeTM site-directed mutagenesis kit 

(Stratagene). 

Also the pTH34 plasmids containing the following mutations: T54R, I113T, C6A, 

C111S, C111Y and the triple mutant [C6A, I113T, C111S] were propagated and purified by 

MINI KIT (Invitrogen) and the sequences were verified. 

 

 

 
        

 

 

 

 

 

 

 

 

 

 
 

 Fig. 11 Different pDest plasmids codifying for various N-terminal fusion tags. 
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2.2 Protein expression 
 

The variables in a protein expression experiment can be divided into two groups: genetic 

and environmental. Genetically encoded variables that affect protein expression include the 

sequence of the open reading frame, the choice of promoter, codon usage, mRNA secondary 

structure and addition of fused tags. Environmental variables include host strain, growth 

medium and induction parameters, e.g. temperature, IPTG concentration and duration of 

induction step.  

At the moment, several host systems are available for protein expression, including 

bacteria, yeast, plants, fungi, insect and mammalian cells. The choice is strongly dependent 

upon the specific requirements for the final product, since it will affect not only the protein 

expression, but also the subsequent purification.  

Unfortunately, many proteins belonging to interesting families, especially the human 

proteins, are extremely difficult to be produced as soluble proteins in the Gram-negative 

bacterium Escherichia coli, which often represents the first choice as an expression system, 

since it is the easiest, quickest and cheapest one. Even if in the recent years, the increasing 

knowledge of additives can assist the “in vitro” refolding process, and numerous proteins have 

been refolded into their active forms, yet the successful rate of this strategy is very low. 

Considerable efforts are currently underway to make alternative hosts more accessible and 

affordable, and eukaryotic systems including mammalian, yeast and insect cell expression are 

becoming easier and less expensive to be used (3, 4). Cell-free protein synthesis has also great 

potential for overcoming some of the problems of soluble and membrane proteins expression, 

but it still remains a work in progress for the time being (5). However, especially for NMR 

purpose, which requires the production of high yield of labelled 15N and 13C samples, the E.coli 

expression system is nowadays, the most widely used. 

Many efforts are currently focused on the optimization of the E.coli expression system. 

Factors such as reduced temperature (6), changes in the E.coli expression strain (7), different 

promoters or induction conditions (8) and co-expression of molecular chaperones and folding 

modulators (9) have all been examined and, in some specific cases, they led to enhancements 

of soluble protein production. 
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In our laboratory, the main system for protein expression is given by different strains of 

E. coli like BL21(DE3)Gold, Rosetta(DE3)pLysS, Rosetta2(DE3), Origami(DE3)pLysS, 

Origami2(DE3), etc. 

At first, expression and solubility screening on a small scale (1-10 ml LB) are usually 

performed using different E. coli strains available in our laboratory and inducing protein 

expression at two different temperatures (37ºC and 25ºC). The results are checked on SDS 

polyacrilamide gel (SDS-PAGE) and, on the basis of these data, it is decided whether or not 

proceeding to the scale-up and testing the expression in minimal medium (M9). This kind of 

approach allows to explore a large set of expression conditions and to identify the one, which 

gives the best yield of soluble protein. A second screening is sometimes performed in order to 

refine expression conditions or, in the case in which all the tests are negative, to redefine the 

strategy modifying some or all variables, in particular the most influencing ones, such as the 

choice of bacterial strain, the induction times, the kind of vectors and expression promoters 

used. If the main part of the protein is produced in the insoluble fraction, an alternative 

approach is to try an in-vitro refolding screening with different additives in order to obtain a 

folded and soluble protein. The last choice is to redesign the expressed protein domains or to 

switch to other expression system.  

 

2.2.1 SOD1 protein expression 

T54R, V97M, I113T (the cloning and the preliminary expression tests for these 3 mutants 

were already done when I joined the lab) I35T, D90A, C6A and C111S native SOD1 mutated 

proteins, cloned using the classical approach, were expressed in E. coli BL21(DE3)Gold. The 

cells were grown in LB medium in shaking flaks at 37°C until they reached the OD600 = 0.6. 

After induction with 0.7mM IPTG cells were left overnight at the same temperature (37°C). 

The GB1-WTSOD1 and GB1-SOD1 mutated proteins were instead over expressed in the 

E.  coli Origami pLysS strain (Novagen). The fusion proteins were obtained by growing the 

cells in minimal medium, in shaking flasks at 37ºC until OD600 = 0.7 and then induced with 

0.7mM IPTG and left overnight at 25ºC. 

The 15N-labeled, 15N- 13C-labeled proteins were obtained by growing the cells in M9 

containing 3g/l 13C-Glucose and 1g/l 15N-(NH4)2SO4 and following the above mentioned 

protocol.  

 

2.2.2 SOD1 protein extraction 
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Depending on the location of the expression, the protein has to be brought into solution 

by breaking the cells containing it. There are several methods to achieve this: repeated freezing 

and thawing, sonication, homogenization by pressure or permeabilization by organic solvents. 

The method of choice depends on how fragile the protein is and how sturdy the cells are.  

For the native SOD1 mutated proteins the extraction from cells periplasma was done by 

osmotic shock. The proteins were isolated in a 20mM Tris, 150mM NaCl, 0.1mM EDTA, 

5mM dithiothreitol (DTT) buffer at pH=8. After incubation for 30 minutes at 37ºC, the 

proteins were centrifuged at 165,000 × g for 20 minutes. Supernatants were dialyzed against a 

20mM Tris, 1mM DTT buffer in order to be loaded on the anionic exchange column.   

The GB1-WTSOD1 and GB1-SOD1 mutated proteins were instead isolated from cells 

cytoplasm by sonication in binding buffer  (20mM Tris, 500mM NaCl and 5mM Imidazol) at 

pH=8.00 and centrifuged at 165,000 × g for 20 minutes. 

 

 

2.3 Protein purification 
 

Protein purification presents also a number of challenges particularly in the presence of 

many other contaminant proteins. Separation of one protein from all others is typically the 

most laborious aspect of protein purification. All the purifications involve several 

chromatographic steps performed exploiting differences in protein size, physical, chemical and 

biological properties and binding affinity. The purification strategy depends mainly upon the 

location of the expressed protein within the host. In fact, the protein can be transported in the 

periplasmic space or expressed like a soluble or insoluble (inclusion bodies) protein within the 

cytoplasm. In each case the isolation can be performed with a variety of different techniques. 

Ion exchange and size exclusion chromatography are commonly used to purify proteins 

expressed in their native states. The purification of the recombinant proteins with the specific 

affinity tags is usually done by affinity techniques. Immobilized metal ion affinity 

chromatography (IMAC) is currently the most commonly used technique which exploits the 

interaction between transition metal ions (generally, Zn2+ or Ni 2+) and side-chains of specific 

amino acids (mainly histidine) on the protein.  In some cases, solubility tags have been 

combined with simple His-tag, allowing the fusion partner to maintain its solubilizing 

functionality and the His-tag its efficiency as an affinity tag. 

For the recombinant proteins, enzymatic digestion with a specific protease is necessary to 

remove the fusion partner from the target protein and a second IMAC purification is generally 



 47

performed in order to separate the two proteins. AcTEV, Factor Xa, Thrombin, Prescission 

Protease, recombinant Enterokinase are some examples of proteases that are normally used for 

the cleavage of fusion proteins. The protease specific recognition site is selected and cloned in 

the vector codifying for the protein sequence at the cloning step. For each protease/fusion 

protein pilot experiments should be done to define the most suitable conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12 General purification procedure of a typical His-tagged proteins. (Reprinted from Qiagen 

handbook for expression and purification of His-tagged proteins) 

 

2.3.1 SOD1 purification 

Native SOD1 mutated proteins were purified by Fast Performance Liquid 

Chromatography (FPLC) using anionic exchange and/or gel filtration techniques. In the first 

step, proteins were loaded onto a DEAE FF (Amersham Biosciences) anion exchange column 

and eluted during increasing salt gradient, using chromatographic buffers with 1 mM DTT 

each. Proteins were typically eluted in two different peaks, one at low salt concentration 

(around 60mM) and the other at higher salt concentration, thus suggesting the presence of two 
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differently charged species. The first purification was followed by a size exclusion 

chromatography when it was necessary.  

GB1-WTSOD1 and GB1-SOD1 mutated proteins purification was performed by IMAC 

using a nickel chelating (Ni2+) column (His-Trap) (Armersham Bioscience). The protein was 

eluted in 20mM Tris, 150mM NaCl and 300mM imidazol, pH=8.0. After concentration the 

sample was loaded on a PD-10 desalting column in order to exchange the buffer in 50mM Tris, 

0.5mM EDTA, 1mM DTT, pH=8.0. GB1 tag was cleaved with 2μl of AcTEV protease/1mg of 

fusion protein (Invitrogen, Carlsbad, CA) under overnight incubation at room temperature. The 

protease digestion was followed by a second IMAC purification in order to separate the protein 

from the fusion partner. At this point, WTSOD1 and SOD1 mutants, which were initially fused 

with GB1 tag, lacking the 6xHis fusion parter, do not bind any more the chelating column, 

while, the GB1 tag is eluted at 300mM of imidazole. Proteins purity was checked on a 17% 

SDS-PAGE and protein concentration was determined by optical spectroscopy; the extinction 

coefficient at 265 nm for SOD1 is 15900 M-1cm1.  

 

 

2.4 Sample preparation 
 

Copper-zinc superoxide dismutase is one of the most stable globular proteins studied so 

far. Structural investigations have been established that the enzyme stability is due to a 

combination of different factors, including the intrinsic stability of the eight-stranded β barrel 

fold, the close packing of the hydrophobic interfaces between the subunits, the presence of 

intramolecular disulfide bond and the active site stabilization induced by metal ions (10–12).  

Metal free WTSOD1 (apo form) and its mutants were obtained according to a previously 

published protocol (13) with some small differences. The proteins buffer was exchanged using 

PD-10 desalting column (protein concentration was usually around 3 mg/ml). The modified 

procedure implies two buffer exchanges in 50mM acetate, 10mM EDTA, pH=3.8 followed by 

3 days of incubation at 4ºC. A further overnight exchange in the same buffer with 100mM 

NaCl was then performed, followed by the last two exchanges in 20mM phosphate buffer, 

pH=7.  

WTSOD1 protein was reconstituted with both zinc and copper ions (Cu2, Zn2) SOD1 

according to the procedure described below (14). (E2, Zn2) SOD1 was obtained by addition of 

one equivalent of zinc per subunit in a 50 mM acetate buffer, pH=5.0 followed by 12 hours 

incubation at room temperature. This form was further reconstituted with copper in a 20mM 
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Tris buffer pH=8.0 resulting in (Cu2, Zn2) SOD1. The SOD1 mutant proteins were 

reconstituted with zinc only by addition to the apo-form of two equivalents of zinc per subunit 

in 20 mM Tris buffer, pH=8.0. Metal content of these various forms of SOD1 was checked by 

inductively coupled plasma mass spectrometry (ICP-MS) using a Thermo Jarrell Ash 

Atomscan Model 25 Sequential inductively coupled spectrometer. 

Polyethylene glycol (PEG)/pH, (NH)4SO4/pH screenings using the vapour diffusion 

technique vapour were performed in order to obtain SOD1 crystals suitable for X-ray 

diffraction. Crystals of apo SOD1 (WT, T54R, I113T and D90A) were obtained at 288K from 

solutions containing 0.1 M MES (pH=6.5) or 0.1 M HEPES (pH=7.0), 20% PEG 3350. The 

final protein concentration was in all cases 0.1 mM.  

 

 

2.5 Biophysical characterizations 
 

Once obtained a pure protein, several studies can be done in order to characterize it. First 

of all, mass spectroscopy analysis is performed in order to verify the protein identity and 

understand if the sequence has the N-terminal methionine. Solubility and stability of the 

proteins, at high concentrations, generally represent an indication of a good folding. Before 

proceeding to the preparation of labelled samples the degree of “foldedness” is estimated by 
1H-NMR and circular dichroism spectroscopy. The latter technique could be suitable also to 

evaluate the thermal stability. Size exclusion chromatography coupled with multiangle light 

scattering is performed in order to determine the aggregation state of the protein in solution. 

The metal content is analyzed by atomic absorption measurements. Disulfide status could be 

checked by SDS−PAGE after modification with 4-acetamido 4' maleimidylstilbene-2, 2'-

disulfonic acid, or more accurately, by mass spectroscopy after modification with 

iodoacetamide. 

Once we are sure that the produced proteins are stable, a more complete set of 

biophysical and biochemical characterizations can be performed according to the particular 

research problem and system under investigation. 

 

2.5.1 Circular Dichroism 
Circular Dichroism (CD) is an excellent method to analyze protein and nucleic acid 

secondary structure in solution and it can be used to follow the changes in folding as a function 

of temperature or denaturant. CD is a phenomenon occurring when asymmetrical molecules 
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interact with circularly polarized light, thus absorbing left and right hand circularly polarized 

light with different absorption coefficients. In proteins the major optically active groups are the 

amide bonds of the peptide backbone, typically disposed in highly ordered arrays such as α-

helices or β-pleated sheets. In dependence of the orientation of the peptide bonds in the arrays, 

given by the symmetry of its disposition, optical transitions are differently split by exciton 

splitting, thus yielding characteristic spectral profiles for each of the three basic secondary 

structures of a polypeptide chain (α-helical, β-sheet or random-coil structures). A protein 

consisting of these elements will therefore display a spectrum that can be deconvoluted into the 

tree individual contributions; for this purpose several mathematical methods have been 

developed, all of them relying on the assumption that the spectrum of a protein can be 

represented by a linear combination of the spectra of its secondary structural elements, plus a 

noise term which includes the contribution of aromatic chromophores.  

Circular dichroism spectroscopy is particularly good to: 

· determine whether a protein is folded, and if so, characterizing its secondary structure 

and the structural family to which it belongs. 

· compare the structures of a protein obtained from different sources (e.g. species or 

expression systems) or comparing structures for different mutants of the same protein.  

· study the conformational stability of a protein under stress (thermal stability, pH 

stability, and stability to denaturants) and how this stability is altered by buffer composition or 

addition of stabilizers. 

· determine whether protein-protein interactions alter the conformation of protein. 

 

2.5.2 Fluorescence 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy, using a beam of 

light, which analyzes fluorescence from a sample. Given its extremely high sensitivity and 

selectivity, it is an important investigational tool in many areas including material sciences, 

analytical sciences, and across a broad range of chemical, biochemical and medical research. It 

has become an essential investigational technique allowing detailed, real-time observation of 

the structure and dynamics of intact biological systems. The pharmaceutical industry uses it 

heavily and it has become a dominating technique in biochemistry and molecular genetics. 

Fluorescence is the result of a three-stage process that occurs in certain molecules 

(generally polyaromatic hydrocarbons or heterocycles) called fluorophores or fluorescent dyes. 

A fluorescent probe is a fluorophore designed to localize within a specific region of a 

biological specimen or to respond to a specific stimulus. The process responsible for the 
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fluorescence of fluorescent probes and other fluorophores is illustrated by the simple 

electronic-state diagram (Jablonski diagram) shown in (Fig. 13).  
    

 

 

 

 

 

                                                                                   

 

 

  
 

 

 

 

 

Fig. 13 Jablonski diagram illustrating the processes involved in the creation of an excited electronic 

singlet state by optical absorption and subsequent emission of fluorescence. The labeled stages 1, 2 and 3 are 

explained in the adjoining text. 

 
Excitation (stage 1). A photon of energy hνEX is supplied by an external source such as 

an incandescent lamp or a laser and absorbed by the fluorophore, creating an excited electronic 

singlet state (S1').  

Excited-State Lifetime (stage 2). The excited state exists for a finite time (typically 1–

10 nanoseconds). During this time, the fluorophore undergoes conformational changes and is 

also subject to a multitude of possible interactions with its molecular environment. These 

processes have two important consequences. First, the energy of S1' is partially dissipated, 

yielding a relaxed singlet excited state (S1) from which fluorescence emission originates. 

Second, not all the molecules initially excited by absorption return to the ground state (S0) by 

fluorescence emission. Other processes such as collisional quenching, fluorescence resonance 

energy transfer (FRET) and intersystem crossing may also depopulate S1. The fluorescence 

quantum yield, which is the ratio of the number of fluorescence photons emitted (stage 3) to 

the number of photons absorbed (stage 1), is a measure of the relative extent to which these 

processes occur.  

Fluorescence Emission (stage 3). A photon of energy hνEM is emitted, returning the 

fluorophore to its ground state S0. Due to energy dissipation during the excited-state lifetime, 

the energy of this photon is lower, and therefore of longer wavelength, than the excitation 

photon hνEX.  

Indeed, proteins, with aromatic amino acids are “intrinsically” fluorescent when excited 

by UV light. The three amino acid residues that are primarily responsible for the inherent 
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fluorescence of proteins are tryptophan, tyrosine and phenylalanine. These residues have 

distinct absorption and emission wavelengths and differ in the quantum yields (Table 3). 
 

 

Table 3. Fluorescent characteristic of the aromatic amino acids. 

 

Protein fluorescence is generally excited at 280 nm or at longer wavelengths, usually at 

295 nm. In the first case, we obtain the excitation of both tryptophan and tyrosine residues but, 

due to tryptophan’s large absorptivity, the fluorescence spectrum usually resembles that of 

tryptophan. In the second case, using an excitation wavelength of 295 nm we can obtain a 

selective excitation of the tryptophan. The fluorescence of the aromatic residues varies in a 

somewhat unpredictable manner in various proteins. The quantum yield may be either 

increased or decreased by the folding. Accordingly, a folded protein can have either greater or 

less fluorescence than the unfolded form. The intensity of fluorescence is not very informative 

in itself. The magnitude of intensity, however, can be used as a probe of the perturbation of the 

folded state. 

The fact that protein conformal transitions, corresponding to the transition between 

different states, like folded and unfolded, oxidized and reduced, are generally characterized by 

different fluorescence intensities (15) was exploited in order to determine the relative stability 

of this states under different conditions. Progressive protein unfolding in guanidinium chloride 

(16), or a disulfide bond red-ox potential (17) are some examples of interesting protein 

properties that can be monitored in this way. Moreover, proteins can be covalently labelled 

with various fluorophores, thus producing fluorescent protein conjugates. The emission from 

these attached tags is called “extrinsic” fluorescence. Tagging a protein with fluorescent labels 

is an important and valuable tool for protein characterization. 

 ThioflavinT (ThT) fluorescence is a commonly used method to monitor fibril 

formation. This method is particularly attractive since ThT fluoresces only when bound to 

fibrils. The reaction between the protein and ThT is completed within 1 minute and ThT does 

not interfere with aggregation. Free ThT has excitation and emission maxima at 350 nm and 

 Absorption Fluorescence 

Amino Acid Wavelength(nm) Absorption  Wavelength(nm) Quantum Yield 

Tryptophan 280 5,600 348 0.20 

Tyrosine 274 1,400 303 0.14 

Phenylalanin 257 200 282 0.04 
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450 nm, respectively. However, upon binding to fibrils the excitation and emission change to 

450 nm and 485 nm, respectively (18). The structure of ThT has a hydrophobic end with a 

dimethylamino group attached to a phenyl group, linked to a more polar benzothiazole group 

containing the polar N and S. This combination of polar and hydrophobic regions creates the 

possibility for thioflavin T molecules to form micelles in aqueouse solution, with hydrophobic 

interiors and the positively charged N pointing toward the solvent. The benzothiazole moiety is 

a combination of a hydrophobic phenyl ring linked to a thiazole ring with positively charged 

nitrogen. ThT micelles binding involves hydrogen bond formation between charged nitrogen in 

the thiazole group to fibrils (19).  

In the present work, ThT fluorescence spectroscopy was used in order to investigate the 

tendency of the apo, copper depleted and fully metallated, human WTSOD1 and some of its 

mutants to form fibrillar aggregates under incubation in condition close to the physiological 

ones (100μM and 37°C) . 

 

2.5.3 Reaction with 4-acetamido 4' maleimidylstilbene-2, 2'-disulfonic acid (AMS) 

AMS is a reagent that covalently reacts with free thiol groups, and its molecular weight is  

about 500 Da; it therefore modifies protein mobility when it runs in a SDS-PAGE. This 

iodoacetamide derivate has high water solubility and is readily conjugated to thiols.  

The number of free cysteines in WTSOD1 and its mutants were monitored on a SDS-

PAGE according to the following protocol. 10ul samples containing 2-4% SDS, 10μM protein, 

100μM AMS were prepared. After incubation for 1h at 37°C and addition of FSB3X without 

DTT the samples were run on SDS-PAGE. Samples prepared following the same procedure, 

but without the addition of AMS were used as reference. 

   

2.5.4 Light scattering 

Laser light scattering is a “non-invasive” technique that provides the absolute molecular 

weight (MW) and size of macromolecules in solution; the amount of light scattered is directly 

proportional to the product of the weight-average molar mass and the concentration of the 

macromolecule. Thus monitoring the size of a protein molecule is a way of observing the 

structure changes which may happen over time, pH, ionic strength, and it also provides 

information about the oligomeric state of the protein. Since laser light scattering provides the 

MW average for all molecules in solution it is generally useful to utilize it coupled with the gel 

filtration technique.  
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In this work, SOD1 aggregation was monitories by gel filtration and light scattering. 100 

µl aliquots of the incubated proteins at 37ºC were periodically taken and analyzed by gel 

filtration on Superdex 75 HR 10/30 (Amersham Biosciences) at room temperature. The column 

was preequilibrated with 20 mM potassium phosphate, pH=7.0, and the flow rate was 0.6 

ml/min. The chromatogram, which monitors the species formed during incubation, was 

obtained by monitoring the absorbance at 280 nm. 20µl aliquots of the incubated proteins at 

37ºC were also periodically taken and analyzed by gel filtration on G2000SWXL and 

G4000SWXL (Tosoh Bioscience) columns at room temperature. The columns were 

preequilibrated with 20 mM potassium phosphate, pH=7.0, and the flow rates were 0.7 and 1 

ml/min respectively. The chromatogram, which monitors the species formed during incubation, 

was obtained by monitoring the absorbance at 280 nm. 

While Superdex 75 HR 10/30 is a semi-preparative gel filtration columns, the 

G2000/4000SWXL are analytical ones. Their void volumes are 75 kDa, 150 kDa and 7000 kDa 

respectively. The Superdex column was used when a separation of the dimer from the rest of 

the oligomeric species was necessary for further analysis. The G2000SWXL analytical column 

was used to monitor the very initial steps of the oligomerization process while the successive 

time points, in which a larger oligomer, with MW higher than 150 kDa, was formed, were 

better observed with the G4000SWXL column. 

The G2000SWXL and G4000SWXL columns were also connected to a light scattering 

spectrometer. The online multiangle light scattering (MALS) detector (DAWN EOS, Wyatt 

Technology, Santa Barbara, CA) and differential refractive index (DRI) detector (Optilab DRI, 

Wyatt Technology) setup was used to measure the light scattered as a function of angle and 

absolute protein concentration of fractions eluting from the size-exclusion chromatography 

column. The Zimm/Debye approximations were used in the Astra software (Wyatt 

Technology) to estimate molar mass. Data were fit using a second-order polynomial. The 

analysis was performed for each one of the 20µl aliquots periodically taken from the 

incubation batches so as to monitor the increase in molecular weight of the soluble species 

formed during aggregation. 

 

 

2.6 Structural characterization 
 

Determination of protein structure is a top priority for complete understanding of proteins 

role and function. There are many techniques suitable to study different structural aspects of 
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cellular components, but two techniques allow a resolution at the level of distinguishing 

individual atoms: X-ray crystallography and Nuclear Magnetic Resonance (NMR). 

 

 

 

2.6.1 X-ray crystallography 

X-ray crystallography uses the diffraction pattern of X-rays, which are shot through a 

crystal. The pattern is determined by the electron density within the crystal. The diffraction is 

the result of an interaction between the high energy X-rays and the electrons in the atom. The 

electrons get activated and their relaxation to the initial energy state emits new X-rays. Bundles 

of such waves can be enhanced if they are in phase, and they get cancelled out if they are out of 

phase. Therefore, the diffraction of parallel X-rays from an object containing thousands of unit 

molecules arranged in a regular lattice, results in the enhancement and cancellation of the 

diffracted waves. A resulting pattern of this vectorial process can be correlated with the 

distribution of the electrons in the crystal.  

X-ray crystallography requires the growth of protein crystals up to 100/300 micron in 

size from a highly purified protein source. The most time consuming process on the path to 

determining molecular structure is protein crystallization. This involves screening a large 

number of buffer conditions until the ones ideal to induce protein crystallization are found. 

Once a well-diffracting crystal (< 2.5Ǻ) is obtained the structure determination can proceed 

quickly especially if the structural model of a protein with good sequence homology to the 

unknown one has already been determined.  

X-ray structures are high resolution structures enabling resolutions of the order of 1Å. 

Yet they depict a static structure, the result of a technique which requires large, stable protein 

crystals, within which each protein unit is lined up in a regular lattice. It was soon recognized 

that these static structures didn't really help explaining function because the structures are 

mostly the average of millions of identical units. 'Loose' structural parts like surface loops 

often failed to be resolved leaving some protein structures incomplete. The development of 

nuclear magnetic resonance techniques, NMR, was also used to overcome such kind of 

problems. 

 

2.6.2 NMR spectroscopy 

NMR measurements are carried out in solution under conditions that can be as close as 

possible to the physiological state. Some times even if crystal structures are available, 
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additional data in solution are needed to determine the potential biological function of the 

protein. NMR is not only capable of solving protein structures to atomic resolution but it also 

has the unique ability of accurately measure the dynamic properties of proteins and can also 

supply information on protein folding and on intra-, as well as, intermolecular interactions. 

Furthermore, the analysis through NMR spectroscopy easily allows the characterization under 

several, different experimental conditions, such as different ionic strength and pH. A protein 

sample characterized by a good circular dichroism spectrum, a good 1H-NMR or better a good 
1H-15N HSQC spectrum and if it is stable in time, has high probability to be suitable for NMR 

structural characterization.  

Nuclear magnetic resonance spectroscopy, which was first used to determine the three-

dimensional structure of a protein in 1985 (20, 21), relies on the fact that some atomic nuclei, 

such as hydrogen, are intrinsically magnetic. In a magnetic field, these magnetic nuclei can 

adopt states of different energy. Applying radio-frequency radiation can induce the nuclei to 

flip between these energy states, which can be measured and depicted in the form of a 

spectrum.  

The NMR properties of a nucleus – such as the energy difference between the 

orientations and therefore the frequency at which that nucleus absorbs energy – depends on its 

chemical environment. Magnetic nuclei are affected by each other as well as the applied field, 

both through chemical bonds and over short distances through space. This can be exploited to 

assign resonance signals to particular nuclei in a complex structure, and derive constraints for 

the distances that separate them. 

The steps towards NMR structure determination can be summarized as follows: 

preparation of the protein solution, NMR measurements, assignment of NMR signals to 

individual atoms in the molecule, identification of conformational constraints (e.g. distances 

between hydrogen atoms), calculation of the 3D structure on the basis of the experimental 

constraints. NMR spectra of biological macromolecules contain hundreds or even thousands of 

resonance lines which cannot be resolved in conventional one-dimensional spectra (1D). In 

fact, the interpretation of NMR data requires correlations between different nuclei, which are 

implicitly contained in 1D spectrum but often are difficult to extract. Multidimensional NMR 

spectra provide both, increased resolution and correlations which are easy to analyze.  

During its relatively short history, protein NMR already has undergone several 

transformations that have extended its size limit (Fig. 14) (22, 23). These transformations were 

brought about by technical advances in NMR spectroscopy and by progress in protein labeling 

schemes. The assignment of resonance initially were accomplished by analyzing two-
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dimensional homonuclear spectra, limiting the size of proteins suitable for NMR studies under 

10 kDa because of spectral complexity. The subsequent availability of uniformly 15N/13C-

labeled proteins produced in bacteria led to the development of the so-called triple resonance 

experiments in the late 1980s and early 1990s. These multidimensional heteronuclear 

experiments establish sequential connections of backbone resonance on the basis of the larger 

and more uniform heteronuclei through-bond couplings instead of through-space couplings that 

vary greatly in intensity depending on the local conformation. In addition, the NMR signals 

have been spread effectively into additional 15N and/or 13C dimensions, alleviating spectral 

degeneracy. These advances, together with the later incorporation of pulsed field gradients, 

extended the range of proteins suitable for NMR to 25 kDa. 2H labeling of proteins has 

contributed greatly to the field of protein NMR. By substituting the nonexchangeable protons 

with deuterons, the relaxation time of heteronuclear signals are prolonged, resulting in 

narrowed linewidth and a dramatic increase in resolution and sensitivity. This has increased the 

size limit of protein NMR to 35 kDa (22).  

In the latest nineties, the availability of higher field magnets (1H frequency of 800 MHz) 

has allowed the development of new experimental improvements such as TROSY-type 

experiments (22), which show significantly narrower linewidth and higher sensitivity.  

New recently developed experiments, in combination with extensive protein deuteration, 

have successfully been used for the detection of amide resonances in systems up to 900 kDa 

(23). New improvements of the experimental as well as technological aspects of NMR are 

constantly increasing the protein size limit observable through this technique with the aim of 

making most proteins accessible to NMR analysis. 
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Fig. 14   Advances in NMR spectroscopy and isotopic labeling have extended the size limit of protein 

NMR. 
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Abstract

There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.
kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are
spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients,
which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as
pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular
dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show
here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of
oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to
the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6
and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the
mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric
species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor
toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for
SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many
SOD1 mutants, of different nature and distributed all over the protein.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurological disease that

causes the death of motor neurons with consequent muscular

paralysis [1]. Although it is predominantly a sporadic disease, 10%

of the ALS cases are described as familial (fALS). A link between

fALS and mutations in the SOD1 gene was first suggested in 1993

[2], and over 100 fALS-linked mutations, distributed throughout

the SOD1 gene, are now associated with approximately 20% of

the fALS cases [1,3,4]. The pathogenicity of SOD1 mutants has

been demonstrated to be due to the gain of a toxic function and

not to the loss of the normal function. Thus SOD1 knock-out mice

do not show any ALS symptoms, whereas transgenic mice,

expressing, for example, the fALS associated mutant G93A human

SOD1, develop the symptoms, despite expression of endogenous

mouse SOD1 [1,5]. Studies of the properties of the isolated ALS-

mutant SOD1 proteins have not revealed the nature of their toxic

properties. Some of the mutations differently affect protein

stabilities, metal ion affinities and SOD1 activities, while others

do not [3,6,7,8]. Thus the molecular mechanisms by which the

mutations cause fALS are currently unknown.

Protein aggregates and inclusions are a common pathological

feature of many neurological disorders such as Huntington’s,

Alzheimer’s and Parkinson’s diseases [9]. In these neurodegenerative

diseases, misfolding, aggregation, and precipitation of proteins seem

to be directly related to neurotoxicity. The finding of proteinaceous

aggregates containing SOD1 in motor neurons of postmortem fALS

patients and transgenic mice was therefore a major advance in the

field since it suggested that aggregation of SOD1 is related to the

pathology of SOD1-linked fALS [10]. As in the other neurodegen-

erative diseases, it appears unlikely that the visible SOD1-containing

inclusions themselves are toxic; rather their presence suggests that

smaller, soluble high molecular weight oligomeric precursor species

containing SOD1 are being generated in vivo [11].

Eukaryotic copper, zinc superoxide dismutase (SOD1) is a 32-

kDa homodimeric metalloenzyme, found predominantly in the

cytosol, but also in the mitochondrial intermembrane space,

nucleus, and peroxisomes. Each of the two subunits of SOD1

forms an eight-stranded Greek key b-barrel and contains an active

site that binds a catalytic copper ion (binding residues: His46,

His48, His63 and His120) and a structural zinc ion (binding

residues: His63, His71, His80 and Asp83). Its functional role is

that of catalyzing the dismutation of superoxide radical to

dioxygen and hydrogen peroxide [12,13]. The mature, correctly

folded and enzymatically active form of SOD1 is obtained in vivo

through several post-translational modifications: acquisition of
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zinc and copper ions, disulfide bond formation, and dimerization

[3,14,15]. Attention has been focused on how mutations could

affect these steps of SOD1 maturation. We have recently shown that

wild type (WT) human SOD1, when lacking both its metal ions,

forms large, stable, soluble, amyloid-like protein oligomers in

solutions exposed to air, under physiological conditions (37uC, pH

7, and 100 mM protein concentration) [16]. Oligomerization was

shown to occur through a combination of oxidation of Cys 6 and Cys

111 and formation of amyloid-like interactions between beta strands,

as judged by the ability of the oligomers to bind the amyloid-binding

dye thioflavin T (ThT), a benzothiazole dye that exhibits increases in

fluorescence intensity upon binding to amyloid fibers [17].

The next question therefore was to discover whether fALS-

linked mutations in SOD1 oligomerize through the same,

common mechanism and, if so, whether this mechanism can be

proposed as generally associated to the ALS pathology.

With this aim, we selected a number of mutants, most of which

related to fALS. All of them were characterized in the apo and

zinc-reconstituted states with respect to their ability to form soluble

large molecular weight oligomers. Just as in the WT SOD1, we

found that demetallation is the key factor for fALS-mutant SOD1

oligomerization and that intersubunit disulfide bonds involving the

free Cys residues, Cys6 and Cys111, as well as formation of ThT-

binding non-covalent interactions, uniquely characterize the

soluble oligomeric species formed. This sheds a new light on the

entire story of ALS and its familial cases. It may be suggested that

metal-free SOD1 itself is a cause of ALS and that a number of

mutants associated with fALS may be more prone to oligomer-

ization in vivo. We found that all of the fALS mutant SOD1

proteins tested, just like WT SOD1, form these high molecular

weight oligomers, and that some, but not all, of the fALS mutant

SOD1 proteins form them at remarkably fast rates.

Results

We have recently reported that apo WT SOD1 gives rise to

soluble oligomers under aerobic conditions when the protein is

kept at 37uC and at a concentration and pH close to physiological,

i.e., 100 mM and pH 7. The resulting soluble oligomers are formed

by intermolecular disulfide covalent bonds and by non-covalent

interactions between beta strands, forming amyloid-like structures

capable of binding ThT [16].

The SOD1 mutants (figure 1), which are reported to be linked

to fALS disease, were selected following the criteria indicated in

Table 1. We selected mutants spread over the entire protein: some

of the mutations are located at the subunit-subunit interface, some

add a positively charged residue, others substitute an hydrophobic

residue with an hydrophilic one, or some produce a simple side

chain size variation. Other mutations are on residues either

located on secondary structural elements, namely b strands, or just

outside them, with change to residues favoring a helical

conformation. We also selected a mutation, on a residue in a

loop, which introduces a negative charge in the hydrophobic core

of the protein. Finally, we introduced two mutations not reported

to be related to fALS. Each of these mutant proteins was analyzed

with respect to its behavior toward oligomerization, and

correlations were sought between the mutant behavior, the nature

of the mutation, and its location on the sequence. We purposely

introduced the mutations on the ‘‘real’’ WT SOD1 and not on the

thermostable form where the two free cysteines (6 and 111) are

changed to alanine and serine, respectively (so-called AS SOD1)

[18]. This is an essential condition as we have shown that the

presence of these two cysteines is the key for SOD1 oligomeri-

zation [16].

Each of the mutants, in the zinc-reconstituted as well as in the apo

form, retained the dimeric quaternary structure, as assessed by gel

filtration chromatography, which also demonstrated the absence of

any significant amount of high molecular weight species. Circular

dichroism (CD) spectra on both metallated and apo proteins

indicated that the secondary structure present in WT SOD1 was

fully conserved in all of the mutants. It has been shown previously

that reduction of the intramolecular disulfide bond of apo WT

SOD1 causes complete monomerization [15]. We therefore

inferred, from the dimeric state of the apo form of all the mutant

proteins, that the intrasubunit disulfide bond was intact. For some of

the mutants (T54R, V97M and I113T), the folded state of the

proteins and the intact disulfide bond were also experimentally

confirmed from their 1H-15N HSQC NMR spectra since their

cysteine residues 57 and 146 have shifts very close to those observed

for oxidized WT SOD1, but far from those of reduced WT.

Optical and fluorescence spectroscopies, the latter with the use

of the ThT, coupled with gel chromatography, showed that the

zinc-bound proteins did not give rise to any oligomeric species

Figure 1. SOD1 investigated mutations. Location of the investi-
gated mutations (red spheres) mapped on the (Cu,Zn) WT SOD1
structure (pdb-ID 1l3n).
doi:10.1371/journal.pone.0001677.g001

Table 1. Mutants studied in this work and their criteria of
selection

Mutations Criteria of choice

Thr54Arg Dimer interface, charge change to positive amino acid

Val87Met Amino acid with a propensity within b strand

Asp90Ala Amino acid at the protein surface

Gly93Ala Amino acid with a propensity just outside b strand

Gly93Asp Charge variation (to negative residue) on buried amino acid

Val97Met Amino acid with a propensity within b strand

Ile113Phe Dimer interface, still hydrophobic amino acid

Ile113Thr Dimer interface, change to hydrophilic amino acid

Leu144Phe Amino acid with decreased a propensity just outside b strand

Ile35Thr Non-ALS mutation located on the only SOD1 b strand without
mutations; mutation from polar hydrophobic amino acid to
non-polar hydrophilic amino acid

Leu67Val Non-ALS mutation on a pathogenic site located on the zinc-
binding loop

doi:10.1371/journal.pone.0001677.t001
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when they are incubated at pH 7, 37uC, 100 mM concentration,

for periods of time longer than a month. The absence of formation

of any large molecular weight species was confirmed by gel

filtration chromatography. Consistently, turbidity at 400 nm

showed no insoluble precipitate. These data indicate that, similar

to WT SOD1 [16], the zinc-bound forms of any SOD1 mutant are

stable even under prolonged incubation at 37uC.

By contrast, the behavior of the metal-free (apo) form was

dramatically different. Upon incubation at 37uC in the air, a

progressive increase in ThT-binding fluorescence was observed for

the apo form of all the mutants. Figure 2 shows the ThT-binding

behavior of the eleven SOD1 mutants, together with that of apo

WT SOD1, over a period of more than one year. The temperature

dependence of this process was tested for incubations ranging from

15 to 40uC. While at 15uC the oligomerization process is much

slower starting after 5–6 days, in the range 36–40uC a difference of

one degree Celsius almost doubles the detected rates (data not

shown). When a reducing agent such as DTT was added to the

solutions of the mutants (tested for T54R, V87M, D90A, G93A,

V97M, I113T and L144F), the oligomeric species were destroyed,

leading to monomeric species, thus showing that the oligomeriza-

tion occurs through disulphide bonds. The soluble oligomers,

which appear to have a similar amyloid-like structure, as judged by

their ThT-binding behavior, are stabilized by H-bond interactions

between beta strands of SOD1 subunits. To test further for the

existence of these non-covalent interactions, GdnHCl, a cauthropic

agent that breaks hydrogen bonds, was added to the oligomers. For

each of the mutants tested (T54R, V87M, D90A, I113F, I113T

and L144F), the ThT-binding fluorescence was quenched in few

minutes, whereas gel filtration of the resulting solutions showed that

high-molecular-weight species remained present. While the loss of

ThT-binding ability is due to the disruption of the amyloid-like

structure of the oligomeric assemblies, the persistence of the

oligomeric state is due to the covalent disulfide bonds between the

free cysteines of the monomeric subunits.

The rates of oligomerization and consequently of fluorescence

increase, is found to depend on the nature of the mutation, being for

some mutants strikingly different from that of apoWT SOD1. In

particular, three mutants (G93A, V97M and I113T) showed a very

fast initial rate of oligomerization, more than twice that of WT

SOD1. I35T, a mutant not currently linked to fALS, showed a

significantly slower rate of oligomer formation than these three, but

the rate was still higher relative to the WT SOD1 protein. The other

mutants showed rates of oligomer formation very similar to apo WT

SOD1 or, in one case, i.e., T54R SOD1, slightly lower than it. Thus

the rates of aggregation for the fALS mutant proteins studied can be

divided in two groups, some with rates of oligomerization very similar

to that of apo WT SOD1 and three others much faster, with one,

non-ALS mutant SOD1 oligomerizing at an intermediate rate. It is

important to stress that in no case did a human SOD1 apoprotein fail

to form soluble, high molecular weight oligomers. Repeated trials of

each of the mutants also established that the kinetics of oligomer

formation were highly reproducible as monitored by increases in

ThT fluorescence. The data for T54R, D90A, I113T SOD1, and

WT SOD1 apoproteins are shown in figure S1.

It is not only the location of the mutation, but also the nature of

the amino acid substitution that determines the oligomerization

rate. For example, mutation of Ile113 induces a very fast rate of

oligomerization, much faster than WT, when is substituted with

Thr, but close to that of WT when Ile is replaced by Phe.

Similar oligomerization behavior is also observed for the two

mutants, up to now not reported to be involved in ALS. The I35T

mutant, located in b3 strand, showed a fast increase in ThT

fluorescence (figure 2), and therefore in the rate of oligomerization,

as also evidenced by the gel chromatographic analysis (data not

shown), while the other mutant here investigated, L67V,

ologomerizes with a slower rate, similarly to WT SOD1. The

oligomerization of mutants I35T and L67V, in their apo forms,

supports our mechanism suggesting that the process would take

place for any mutation only when the protein is in the apo form,

but not in the zinc-bound form, as we have extensively verified.

In any case, it is important to note that, despite the different

aggregation rates, the fluorescence limits at very long times (about

1 year) are similar, indicating the formation of very large

molecular weight oligomers for WT and all of the mutant

SOD1 proteins studied (figure 2 and figure S1).

The pattern of oligomerization, detected through fluorescence,

was paralleled by gel filtration data. The data for the two mutants

with the two extreme oligomerization rates, as observed in the

fluorescence experiments, (I113T and T54R) are shown in figures 3

and 4. After about 100 hours, while I113T was mostly in high

molecular weight states, even if not yet as the final, highest molecular

weight ones, mutant T54R was still essentially all in the dimeric state.

Gel filtration data also indicated that the final status (after about one

year) contains a distribution of high MW species, up to the column

cut off (76106 Da). The presence of intermediate MW species is also

observed during the long period of the aggregation process; they

eventually evolve towards the final very high MW species. Multi-

angle light scattering analyses of the samples along the oligomeri-

zation process also showed that the average molecular weight was

increasing as a function of time (figure 3, Table S1), with a decrease

of the fraction of the dimeric species and the increase of that of the

oligomers. The increase in ThT-fluorescence and that in molecular

weight from light scattering go in parallel, with a linear correlation

between the fraction of aggregated specie (non-dimer) and the ThT-

binding fluorescence at each period of incubation (figure 5). This

correlation indicates that similar increase in fluorescence corre-

sponds to similar increase in oligomeric species. Multi-angle light

scattering data of samples after long periods of incubation, when they

reach a steady state condition, provide very similar average

molecular weights for all the mutants (of the order of 106 Da),

indicating that the oligomers eventually have essentially the same

size, independently of the rate of aggregation.

Figure 2. Formation of ThT-binding structures when apo SOD1
mutants and WT are incubated at 37uC. Fluorescence due to ThT
binding to SOD1 mutants (presented as arbitrary units, A.U.) for apo
T54R SOD1 (N); apo L67V SOD1 (D), apo D90A SOD1 (=), apo I113F SOD1
(%), apo V87M SOD1 (.), apo WT SOD1 (O), apo L144F SOD1 (&), apo
I35T SOD1 (m), apo V97M SOD1 (m), apo G93A SOD1 (e), apo I113T
SOD1 (¤), during the incubation of the samples at 37uC. Apo G93D
SOD1 mutant is not reported because the oligomeric species formed
precipitates after about 30 hours of incubation.
doi:10.1371/journal.pone.0001677.g002

SOD1 Mutants and Oligomers

PLoS ONE | www.plosone.org 3 February 2008 | Volume 3 | Issue 2 | e1677



Discussion

It is now well assessed that, in neuronal tissues of SOD1-linked

fALS patients, visible protein aggregates are present that contain

aggregated SOD1 and that these aggregates are essentially

associated to mitochondria [19,20]. What is still not understood

are the factors and the mechanisms inducing this aggregation.

fALS-related SOD1 mutations have been found distributed all

over the entire protein and of every possible nature (i.e. charge

reversal, charge increase or decrease, from hydrophobic to

hydrophilic, different residue size, etc.) with no reasonable

correlation/rational between the mutation and the ability to give

rise to aggregates. It was already suggested that metal-deficient

forms of SOD1 mutants might have a role in fALS [21,22] but no

general relation has been suggested up to now between lack of

metal ion and protein aggregation.

Our data on WT SOD1 and on its mutants would then suggest

a general feature in the relation between SOD1 and ALS: the apo

protein, before it is metalated, is susceptible to oligomerization.

Lack of oligomer formation for the metallated proteins shows that

metallation is a key factor to inhibit oligomerization. SOD1 or its

mutants enter mitochondria as demetallated [23,15] and, as such,

may undergo an abundant oxidation and consequently oligomer-

ization on the way to maturity i.e. before metal binding.

Therefore, independent of the presence and of the nature of the

mutation, factors that prevent SOD1 from being efficiently and

quickly metalated could lead to protein oligomerization and

consequently to disease onset. While it has been shown that the

metal-loaded forms of most of the mutant SOD1’s are stable and

hardly lose the metal ions once metalated as also holds for WT

SOD1 [24], several ALS mutations have instead the largest effect

on the most immature forms of SOD1; some mutations destabilize

the metal-free and disulfide-reduced polypeptide to the point that

these forms are unfolded at physiological temperatures [7,25].

Not all fALS-related mutants enhance the oligomerization

process. Actually most of them behave quite similarly to apo WT

(figure 2). Only three mutants, out of the eleven investigated, show

a significant increase in the initial oligomerization rates compared

to the WT protein. We therefore suggest that the presence of a

mutation and its location and type would only modulate the rate of

Figure 3. Formation of oligomeric structures when apo I113T SOD1 mutant is incubated at 37uC. (A) Fluorescence due to ThT binding to
SOD1 mutants (presented as arbitrary units, A.U.) for apo I113T SOD1 during the incubation of the samples at 37uC. Panels (B) and ( C ) shows the size
exclusion chromatograms on a G2000SWXL and a G4000SWXL Tosoh columns respectively, corresponding to the samples analyzed by light scattering. The
void volume is labeled V0. (D) Variation in species distribution during incubation of apo I113T SOD1. Each curve shows the molecular weight distribution
detected by light scattering for the sample after different incubation times at 37uC. In all four panels the samples can be identified according to the
following colors: before incubation (—), after 16 hours (—), 40 hours (—), 62 hours (—), 4 days (—) and 6 months (—) of incubation at 37uC.
doi:10.1371/journal.pone.0001677.g003
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the aggregation process. This modulation could occur in two ways:

1) the mutation could influence the local structural and dynamical

properties of the apo state, exposing areas of the protein that make

it prone to oligomerization through disulfide bond formation

between the free cysteines of different SOD1 molecules [16]. The

lack of metal ions leads, indeed, to a more disordered SOD1

structure, thus making the free cysteines more exposed, solvent

accessible, and less structurally constrained than in the metallated

form, as observed in the solution structure of the apo form of a

stable monomeric species, characterized by a dramatic increase in

protein flexibility, with regions experiencing random coil structural

features. This acquired freedom could be affected differently by

the various mutations. 2) the mutations could modulate the rate of

metalation. If the protein remained for an abnormally long period

of time in the apo state, our results suggest that the SOD1

apoprotein, WT or mutant, would be more prone to aggregation.

The aggregation process we observe is strongly sensitive to

temperature and obviously to the redox conditions of the

environment. Because of the involvement of disulfide bond

formation, an oxidative stress would be expected to favor the

process, while a reducing environment would prevent aggregation.

Indeed, it has been suggested that the redox state of the cell may

play a role in the aggregation process [26]. SOD1 is mainly

present in two different cell compartments, i.e. cytoplasm and

mitochondria, where it independently acquires metal ions. These

two cell compartments have quite different redox properties,

which could further modulate the aggregation process in vivo. It has

been proposed that an important toxic property of most

mutSOD1s derives from their high level of accumulation in

mitochondria in an aggregated state with cross-linked mutSOD1s

and that this localization is caused by the aberrant reactivity of

cysteines driven by the more oxidizing redox environment of these

mitochondria [26]. Recent studies suggest that a non-physiological

intermolecular disulfide bond between cysteines at positions 6 and

111 of mutant SOD1 is important for high molecular weight

aggregate formation in cells [27].

Our results show that WT, as well as all the SOD1 mutants here

studied, form similar high molecular weight oligomers when these

proteins, in the apo dimeric form with the intramolecular disulfide

bonds intact, are kept in conditions very close to the physiological

ones (figure 6). The finding that WT and all the mutants,

independently of the nature and location of the mutation, undergo

the same type of oligometization suggest a general, unifying

picture of SOD1 aggregation that could operate when either wild

type or mutant SOD1 proteins are in the metal-free state.

Although we cannot exclude other mechanisms in SOD1-linked

familial ALS, the one proposed here has the strength of explaining

how a large and diverse set of SOD1 mutant proteins all could

lead to disease through the same mechanism.

Despite our efforts to build up a correlation between our results

and the severity of the disease, the data on the latter are few. The

number of cases documented, in particular for the mutations

reported by us, is not exhaustive and broad enough to build up a

relationship. Still our approach has the potentiality to establish

such correlation as soon as enough data become available.

Figure 4. Formation of oligomeric structures when apo T54R
SOD1 mutant is incubated at 37uC. (A) Fluorescence due to ThT
binding to SOD1 mutants (presented as arbitrary units, A.U.) for apo
T54R SOD1 during the incubation of the samples at 37uC. Panels (B)
and ( C ) shows the size exclusion chromatograms on a G2000SWXL and
a G4000SWXL Tosoh columns respectively, corresponding to the
samples analyzed by light scattering. The void volume is labeled V0.
In all four panels the samples can be identified according to the
following colors: before incubation (—), after 66 hours (—), 4.8 days (—
), 6.8 days (—),7.5 days (—), and 13 months (—) of incubation at 37uC.
In panel (B) the zinc reconstituted sample (—) is also reported.
doi:10.1371/journal.pone.0001677.g004

Figure 5. Correlation between percentage of aggregated
species and ThT-binding fluorescence. Percentage of aggregated
species (non-dimer), determined by light scattering measurements, vs
ThT-binding fluorescence for apo WT SOD1 (O) and apo I113T SOD1 (¤)
during the incubation of the samples at 37uC. Error bars are derived
from the molecular mass errors of the light scattering experiments.
doi:10.1371/journal.pone.0001677.g005
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Materials and Methods

Sample Preparation—WT SOD1 and its mutants were expressed

in the Escherichia coli BL21(DE3) strain. Mutations were performed

using a QuikChangeTM site-directed mutagenesis kit (Stratagene).

The proteins, obtained from cells grown in LB medium, were

isolated by osmotic shock in a 20 mM Tris, 5 mM dithiothreitol

(DTT) buffer at pH 8. After incubation for 30 minutes at 37uC,

the proteins were centrifuged at 40000 rpm for 20 minutes.

Supernatants were purified following a reported procedure [28]

modified by the addition of 1 mM DTT to each chromatographic

buffer. The proteins obtained with this procedure contained

substoichiometric amounts of the metal ions (Table S2). The metal

ions were completely removed, at 25uC, to prepare the

demetallated (apo) form, according to previously published

protocols [29], and the zinc reconstituted forms were prepared,

as well, as previously described [15]. Metal content of the various

forms of SOD1 was checked by inductively coupled plasma mass

spectrometry (ICP-MS) using a Thermo Jarrell Ash Atomscan

Model 25 Sequential inductively coupled spectrometer (Table S2).

The dimeric state of the apo form of the mutants at time zero of

the incubation was checked through gel filtration chromatography.

Spectroscopic characterization—Protein samples were 100 mM in

SOD1 concentration (as dimer) in 20 mM phosphate buffer at pH

7. The proteins were incubated at 37uC to mimic physiological

conditions. Optical and fluorescence spectroscopies, coupled with

gel filtration chromatography, were used to monitor the formation

of oligomeric species at these sample conditions. The analysis were

carried out in both the zinc-bound and apo forms of the proteins.

Far-UV CD spectra (190–250 nm) of SOD1 were recorded on

JASCO J-810 spectropolarimeter. A cell with a path length of

1 mm was used for the measurement, and the parameters were set

as follows: bandwidth, 2 nm; step resolution, 1 nm; scan speed,

20 nm/min; and response time, 2 s. Each spectrum was obtained

as the average of four scans. The protein concentration was

typically around 8–10 mM. Prior to the calculation of the mean

residue molar ellipticity, all of the spectra were corrected by

subtracting the contributions from the buffer. Spectra were then

smoothed using adjacent averaging or Fast Fourier transform

filter. Quantitative estimations of the secondary structure contents

were made using the DICROPROT software package [30].

Fluorescence was followed with Thioflavin T, (ThT) probe, which

specifically binds to amyloid-like structures [17]. Free ThT has

excitation and emission maxima at 350 nm and 450 nm, respec-

tively. However, upon binding to amyloid-like oligomers, the

excitation and emission maxima change to 450 and 485 nm,

respectively. 54 ml aliquots of sample were added to 646 ml of a

215 mM ThT solution in a 20 mM phosphate buffer at pH 7. The

solution fluorescence emission was measured, over time of

incubation,with a Cary 50 Eclipse Spectrophotometer supplied with

a Single cell Peltier thermostatted cell holder regulated at 37uC. The

background fluorescence spectrum of the buffer was subtracted. The

excitation wavelength was 446 nm (bandwidth 10 nm) and the

emission was recorded at 480 nm (bandwidth 10 nm). Fluorescence

intensity at 483 nm was plotted against time of incubation.

Turbidity was measured at 400 nm to detect possible formation

of insoluble precipitate. Solution turbidity was measured as

apparent absorbance at 400 nm using a Cary UV-visible

spectrophotometer. Experiments were performed by diluting

120 ml of the incubation SOD1 stock solution into 280 ml of

20 mM phosphate buffer at pH 7. A 1 cm quartz cuvette was

used. Instrumental detection limit was 0.001 at 400 nm.

NMR data were acquired at 288 and 298 K on a 700 or a 900

Bruker spectrometer operating at proton nominal frequencies of

700.13 and 900.13 MHz, respectively. A triple resonance Cryo-

probe equipped with pulsed field gradients along the z-axis was used.

The two-dimensional 1H-15N HSQC spectra, performed to monitor

Figure 6. Mutants SOD1 aggregation. Formation of soluble oligomers occuring when apo WT SOD1 protein is kept close to physiological
conditions for an extended period of time. In the absence of metal ions, SOD1 proteins form abnormal disulfide cross-links though the two free
cysteines (Cys 6 and Cys 111) and noncovalent associations with other SOD1 monomers or dimers.
doi:10.1371/journal.pone.0001677.g006
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the folding of the protein mutants, were collected on 100 mM

samples of 15N-labeled E,E- and E,Zn-hSOD1SS mutant proteins in

20 mM sodium phosphate buffer (pH 7).

Monitoring SOD1 Aggregation by Gel Filtration and Light Scattering—

100 ml aliquots of the incubated proteins at 37uC were periodically

taken and analyzed by gel filtration on Superdex 75 HR 10/30

(Amersham Biosciences) at room temperature. The column was

preequilibrated with 20 mM potassium phosphate, pH 7.0, and

the flow rate was 0.6 ml/min. The chromatogram, which

monitors the species formed during incubation, was obtained by

monitoring the absorbance at 280 nm. 20 ml aliquots of the

incubated proteins at 37uC were also periodically taken and

analyzed by gel filtration on G2000SWXL and G4000SWXL

(Tosoh Bioscience) columns at room temperature. The columns

were preequilibrated with 20 mM potassium phosphate, pH 7.0,

and the flow rates were 0.7 and 1 ml/min respectively. The

chromatogram, which monitors the species formed during

incubation, was obtained by monitoring the absorbance at

280 nm. A species, present in small amount, was observed in the

chromatographic spectra of mutants I113T and T54R, eluting

after about 12.0 ml. This species might be due to a fragment from

some degradation, which takes place during the aggregation

process. We can exclude that it is due to a monomeric species

either folded or unfolded as they elute only slightly later than the

dimeric species (folded) or even earlier than it (unfolded) (data not

shown). Further studies are underway to elucidate this issue.

While Superdex 75 HR 10/30 is a semi-preparative gel filtration

columns, the G2000/4000SWXL are analytical ones. Their void

volumes are 75 kDa, 150 kDa and 7,000 kDa respectively. The

Superdex column was used when a separation of the dimer from the

rest of the oligomeric species was necessary for further analysis. The

G2000SWXL analytical column was used to monitor the very initial

steps of the oligomerization process while the successive time points,

in which a larger oligomer, with MW higher than 150 kDa, was

formed, were better observed with the G4000SWXL column.

The G2000SWXL and G4000SWXL columns were also

connected to a light scattering spectrometer. The online multi-

angle light scattering (MALS) detector (DAWN EOS, Wyatt

Technology, Santa Barbara, CA) and differential refractive index

(DRI) detector (Optilab DRI, Wyatt Technology) setup was used

to measure the light scattered as a function of angle and absolute

protein concentration of fractions eluting from the size-exclusion

chromatography column. The Zimm/Debye approximations were

used in the Astra software (Wyatt Technology) to estimate molar

mass. Data were fit using a second-order polynomial. The analysis

was performed for each one of the 20 ml aliquots periodically taken

from the incubation batches so as to monitor the increase in

molecular weight of the soluble species formed during aggregation.

Supporting Information

Figure S1 Formation of ThT-binding structures when apo

SOD1 mutants and WT are incubated at 37 uC. Fluorescence due

to ThT binding to SOD1 mutants (presented as arbitrary units,

A.U.) for apo T54R SOD1 (N apo D90A SOD1 (Ñ), apo I113T

SOD1 (¤) and apo WT SOD1 (O), during the incubation of the

samples at 37 uC. Error bars are standard deviations values

obtained from two/three repeats of the experiments.

Found at: doi:10.1371/journal.pone.0001677.s001 (0.34 MB

DOC)

Table S1 Light Scattering analysis. ThT binding fluorescence,

as well as species distribution (dimer and aggregate) and average

molecular weights of the aggregated species, as detected by light

scattering measurements, of apo I113T SOD1 after different

periods of incubation.

Found at: doi:10.1371/journal.pone.0001677.s002 (0.02 MB

DOC)

Table S2 Extraction from E. coli cells and metal reconstitution

with zinc. The metal contents of the proteins are shown as

equivalents of each metal per enzyme dimer.

Found at: doi:10.1371/journal.pone.0001677.s003 (0.02 MB

DOC)
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Abstract                                            

The structural and dynamical properties of the metal free form of WT human SOD1 and 

its fALS-related mutants, T54R and I113T, were characterized both in solution, through NMR, 

and in the crystal, through X-ray diffraction. We found that all three X-ray structures show 

significant structural disorder in two loop regions which are, at variance, well defined in the 

fully metalated structures. Interestingly, the apo state crystallizes only at low temperatures, 

while all three proteins, in the metalated form, crystallize at any temperature suggesting that 

crystallization selects one of the most stable conformations among the manifold adopted by the 

apo form in solution. Indeed, NMR experiments show that the protein in solution is highly 

disordered sampling a large range of conformations. The large conformational variability of the 

apo state allows the free reduced cysteine Cys6 to become highly solvent accessible in 

solution, while it is essentially buried in the metalated state as well as in the crystal structures. 

Such solvent accessibility, together with that of Cys111, accounts for the tendency to 

oligomerization of the metal free state. The present results suggest that the investigation of the 

solution state coupled with that of the crystal state can provide major insights into SOD1 

pathway towards oligomerization in relation to fALS. 
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Over 100 different variants of human copper-zinc superoxide dismutase ((Cu2 Zn2) SOD, 

SOD1) have been identified and linked to the neurodegenerative disease familial amyotrophic 

lateral sclerosis (fALS) by a gain-of-function mechanism (1, 2). Although the mechanism of 

the toxicity is unknown, aberrant SOD1 protein oligomerization has been strongly implicated 

in disease causation (3, 4). Several recent publications have presented compelling evidence that 

in vivo abnormal disulfide-crosslinking of ALS-mutant SOD1 plays a role in this 

oligomerization (5–7), and disulfide-linked SOD1 multimers, which are presumed to be 

components of higher molecular weight species or intermediates (7), have been detected 

mainly in mitochondria of neuronal tissues of SOD1-linked fALS patients and transgenic mice 

(8–10).  

Wild type (WT) human SOD1 is an exceptionally stable, homodimeric 32kDa protein, 

located mainly in the cytoplasm, but also present in the peroxisomes, in the mitochondrial 

intermembrane space and in the nucleus of eukaryotic cells (11–13). Each subunit of the dimer 

binds one copper (binding residues: His46, His48, His63 and His120) and one zinc ion 

(binding residues: His63, His71, His80 and Asp83) and folds as an eight-stranded Greek-key 

β-barrel that is stabilized by an intra-subunit disulfide bond (Cys57, Cys146) near the active 

site (14). In vivo, in the highly reducing cytoplasm environment, the existence of this 

intrasubunit disulfide bond points to its very low reduction potential. WT human SOD1 

actually contains four cysteine residues per monomer. Besides the two cysteines involved in 

the formation of the intramolecular disulfide bond, two reduced cysteines Cys6 and Cys111 are 

located on β strand 1 and loop VI respectively. Among the loops connecting the eight β 

strands, two have structural and functional role. The electrostatic loop (loop VII, residues 121–

144) contains charged residues that contribute to guide the negatively charged superoxide 

substrate towards the catalytic copper site. The long zinc loop (loop IV, residues 49–84) 

contains all the zinc binding residues including His63, which acts as a ligand to both metals 

(14). 

We have recently reported (15, 16) that oxidized WTSOD1 and several of its mutants, 

only when they are in the metal free form, give rise, in vitro, to soluble oligomers under 

aerobic conditions when the proteins are kept at 37°C and at a concentration and pH close to 

physiological, i.e., 100μM and pH=7.0. The resulting soluble oligomers are formed by 

intermolecular disulfide covalent bonds, involving Cys6 and Cys111, and by non-covalent 

interactions between β strands, forming amyloid-like structures capable of binding ThT (15, 

16). The rates of protein oligomerization are different for the various mutants, but eventually 

they give rise to the same type of soluble oligomeric species.  
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SOD1 enters the mitochondria in the metal free (apo) state (17, 18) and mitochondria are 

cellular compartments where oxidative stress may easily occur. The soluble oligomeric species, 

formed by the apo form of both WTSOD1 and its mutants through an oxidative process, might 

represent the precursor toxic species, whose existence would also suggest a common 

mechanism for ALS and fALS. 

In order to investigate the mechanism for SOD1 oligomerization, a detailed study of the 

protein behaviour in the absence of metals is required. The structural and dynamical features of 

the metal free state of SOD1 for both WT and some ALS-related mutants were here 

characterized both in solution, through NMR, and in the crystal, through X-ray diffraction. We 

found that the metal free state is significantly disordered in the crystal for two pathogenic 

SOD1 mutants as already reported for the WT protein (19, 20), at variance with what observed 

in the metalated state. In solution, the highly disordered and dynamical metal free state allows 

the free cysteines to become accessible for oxidation and subsequent oligomerization, at 

variance with what occurs in the metal-bound form. 
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Results and Discussion 

 
In the present study we characterized the metal free form (apo) of WTSOD1 and of two, 

ALS-related mutants with two extreme behaviors in terms of oligomerization rates: T54R 

oligomerizes with rates slightly slower than WTSOD1 while I113T has an oligomerization rate 

more than twice that of WTSOD1 (16).  

In the crystal structures of the metal free form of WTSOD1 and of its mutants T54R and 

I113T, the asymmetric unit contains two biologically relevant dimers. While one has a very 

well defined electron density throughout the entire sequence, the other dimer has clear breaks 

in the electron density in the regions encompassing residues 68–78 (loop IV) and 125–140 

(loop VII). Overall, the structures are very similar to each other. Only few minor local 

differences in terms of conformation, buried surface areas and residues involved in H-bond 

interactions are detected (Table S1). Peculiar for apo T54R SOD1 is a mutation-related 

hydrogen bond, which is formed at the dimer interface, i.e. between NH2 of Arg54 of each 

monomer and OD1 of Asn19 of the other monomer in the same dimer. This interaction might 

lead to a partial stabilization of the dimeric state with respect to the WT protein and might 

correlate with the slightly slower oligomerization rates for apo T54R compared to the WT 

protein (16), as oligomerization presumably occurs through monomerization (21). The free 

Cys6, in all three apo SOD1 structures, is essentially buried due to the constraints imposed by 

two H-bonds with Ile18, while the other free cysteine, Cys111, has a considerably high (75%) 

solvent exposed side chain (thiol group). 

The three structures here determined clearly resemble the already available partially apo 

(20% zinc in one of the two dimers) WTSOD1 structure (PDB code 1HL4) (20). Similarly, 

also the same electron density breaks were found in only one of the two dimers. On the 

contrary, the fully metalated ((Cu2, Zn2); holo) structures of both WTSOD1 (PDB code 1HL5, 

(20)) and I113T SOD1 mutant (PDB code 1UXL, (22)) show a well defined electron density 

throughout the entire sequence for each dimer present in the asymmetric unit.  The backbone 

RMSD between the holo and apo form of both WT and I113T SOD1 is about 0.45 Å. The main 

structural differences between the holo and apo states are observed in the loops connecting the 

β strands, where the electron density is broken in one of the dimers in the structures of the apo 

state. Similar electron density breaks were also observed for the structure of  the apo state of 

the H46R SOD1 mutant (23), the only, up to now published structure of a completely metal 

free SOD1 mutant. On the contrary, the structures of ALS-related SOD1 mutants, in the fully 

metalated state are very similar to each other, and particularly well ordered throughout the 

sequence (22–27).  
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WTSOD1 and its mutants T54R and I113T, in the apo state, form a continuous, extended 

arrangement of β-barrels stacked up along a direction (crystallographic b-axis) perpendicular to 

the dimer interface; orthogonal to this direction, the β-strands form a zig-zag array of 

filaments. This behaviour is similar to that already observed for 1HL4 (20) and is common to 

amyloid-like fibrils (28). 

The comparison between the structures of WTSOD1 and ALS-related mutants was 

unable to shed light on the structural basis of different behaviors between WT and pathogenic 

mutants, although pointing at some conformational disorder as a consequence of the lack of 

metal ions. At this stage, therefore, a characterization of the apo state in solution of WTSOD1 

and its mutants is necessary.  

The 1H-15N HSQC spectra of the apo forms of both WTSOD1 and of the two 

pathological mutants i.e. T54R and I113T, have reduced signal dispersion with respect to those 

of the metalated form (Figure 1) indicating that some parts of the protein do not have a well 

defined conformation. High protein instability as well as strong tendency to form high 

molecular weight oligomers (15) prevented us from collecting the triple resonance NMR 

experiments necessary to achieve a specific resonance assignment. Therefore a protein sample 

analysis aiming at finding the best compromise between protein stability towards 

oligomerization and line broadening effects led us to acquire all the spectra at 0.6 mM protein 

concentration and 288K. In these experimental conditions, dimeric apo SOD1 is stable for 

periods of time long enough to collect some of the triple resonance NMR experiments 

necessary to achieve an almost complete sequence specific resonance assignment (see Material 

and Methods section). More than one sample was needed, however, to complete NMR data 

collection. Unfortunately, the I113T mutant is too unstable and oligomerizes so fast to prevent 

further analysis, beyond recording a simple 1H-15N HSQC spectrum. 

Through the NMR experiments, 68% of the backbone atoms (N, HN and Cα) were 

assigned for apo WTSOD1. The non assigned peaks were all clustered in the central part of the 

HSQC spectrum, thus experiencing severe resonance overlap; they were mainly located in 

loops connecting the β strands, in particular in loop IV which contains most of the metal 

binding residues. This spectral pattern was already observed in the apo state of a monomeric 

form of SOD1 obtained through residue mutations at the subunit-subunit interface (19). Further 

mutation of the two free cysteines (6 and 111) (AS WTSOD1) in the monomeric form 

prevented oligomerization, allowing to reach a much higher protein concentration; this 

combined with the half molecular weight led to a more complete assignment, which was here 

used for comparison purposes.  
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From the analysis of the assigned chemical shift resonances it appears that some of the 

secondary structural elements present in the holo protein exist also in the metal free state, while 

β strands 4, 5, and 7, are much shorter. The NH-NH long range NOEs are present within one of 

the two β sheets, which form the SOD1 β barrel, i.e. that formed by β1, β2, β3, β6, while they 

are essentially missing in the other β sheet, which contains some of the metal ligand residues 

(Figure 2). From the analysis of the NOESY spectrum, it appears also that most of the long 

range 1H-1H NOEs, involving side chain protons, are missing even within the secondary 

structural elements. 

Combined chemical shift variations of backbone amide moieties between the dimeric apo 

SOD1 and its fully metallated form (Figure 3a) reflect significant structural changes in loop 

VII, similarly to what already observed for the monomeric apo SOD1 form (19). Furthermore, 

a number of NH groups in this loop show, mainly at low temperature, another set of signals 

with lower intensity due to a minor conformation or a group of fast exchanging conformers in 

slow exchange with the rest of the conformations. Analysis of the chemical shift variations 

between the apo state of the monomeric and dimeric forms of SOD1 (Figure 3b) confirms that 

the absence of metal ions similarly affects the two forms. The only few detected differences 

can be ascribed to the mutation of the two free cysteines residues (C6A and C111S) and of two 

interface residues (F50E, G51E), these four mutations being present only in this “artificial” 

monomeric form. 

We have recently shown (15) that oligomerization of apo SOD1 involves oxidation of the 

two free cysteines (6 and 111) with the formation of inter-subunit disulfide bonds, thus linking 

a high number of protein molecules in high molecular weight species. In the X-ray structure of 

apo WTSOD1 and of apo T54R and I113T, Cys6 and Cys111 appear as reduced, while Cys57 

and 146 are oxidized. The actual oxidation state of the four cysteines (Cys6, 57, 111 and 146), 

in the dimeric form of apo SOD1, was also investigated by NMR on a 13C, 15N, 2H Cys sample. 

The shift of the Cβ nuclei confirmed the presence of two oxidized (Cys146 and Cys57, ~ 43.9 

and ~ 35.1 ppm respectively) and two reduced (Cys6 and Cys111, ~ 27.7 and ~ 24.03 ppm 

respectively) cysteine residues (Figure S1). At low temperature, double forms, possibly due to 

cis-trans intrasubunit disulfide bond isomerization, were detected for the Cβ carbon signals of 

both Cys57 and 146. Broadening of the Cys146 NH signal as well as disappearance of the NH 

signal of Cys57 at high temperatures (data not shown) support this hypothesis, already 

observed for disulfide bond isomerization in other systems (29). 

The dynamical properties of apo dimeric SOD1 are also dramatically affected by the 

absence of the metals (Figure 4). The 15N relaxation rates of backbone NHs, measured in the 
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temperature range 288–310K, are consistent with the protein being essentially only in the 

dimeric state, with its tumbling rate increasing with decreasing temperature. The relaxation 

rates and 15N{1H}-NOEs, which are homogeneous in the β strand structures, are sizably altered 

in the loop regions. In particular, the electrostatic loop VII has, at 298K, lower than average R2, 

higher than average R1 values and lower 15N{1H}-NOEs, which become even negative at 

310K, indicating that the relative residues experience motions faster than the overall protein 

tumbling, i.e. faster than nanosecond. Internal motions in the subnanosecond time scale were 

also observed for loop VII in monomeric apo SOD1 (19), confirming that the absence of metal 

ions similarly affects the dynamical properties of both monomeric and dimeric apo forms. The 

spectral features in solution for loop VII suggest that this region, as well as the non assigned 

residues located in the other loop regions, sample a wide range of conformations which 

interconvert each other very fast on the chemical shift time scale (i.e. >10-3s-1), confirming that 

the absence of the metals dramatically affects the protein dynamic properties. This is also 

consistent with the much lower values of the 15N{1H}-NOEs detected for apo versus metalated 

form. 

Consistent with the increased flexibility of the apo form with respect to the metalated 

ones, the solvent accessibility of the former is dramatically higher with respect to the latter. 

Indeed, the overall number of NH protons exchanging fast with the bulk solvent, as measured 

from H2O/D2O exchange processes, is much higher than in the metalated state. In the apo form, 

after twenty minutes the sample has been dissolved in D2O, about sixty residues were 

completely exchanged while only about thirty are exchanged in the metalated one. Indeed, the 

increased protein flexibility of the apo state makes larger regions of the protein more solvent 

exposed and the solvent exchange process more efficient.  

Particularly striking with respect to the oligomerization process which the apo state is 

undergoing at physiological conditions (15), is the solvent exposure of the free cysteines (Cys6 

and Cys111). While Cys111 is highly solvent exposed in both protein forms, Cys6 has a 

dramatically different solvent accessibility (Figure S2). In the metalated form its NH is 

essentially buried and protected from the solvent and indeed its NH signal is still present after 

five days in D2O. On the contrary, in the apo form it completely disappears after only four 

hours. Also, the NH signals of adjacent residues (4–8, β strand l) all disappear in four hours, 

suggesting a high solvent accessibility of the region around the free Cys6. The highly solvent 

accessibility of Cys6 and of the region around is observed in the T54R mutant as well, which 

has the same behavior of WTSOD1, i.e. the metalated form is rigid and solvent protected, 
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while the lack of metal ions makes this region and the entire protein highly dynamic and 

accessible to the solvent.  

All the features described here indicate that the apo state of SOD1 in solution is 

characterized by a distribution of conformations, particularly for β strands 4 and 5 and loop 

VII.  

Analogous behavior was observed in the superoxide dismutase-like protein from Bacillus 

subtilis (30), where its NMR properties indicate a conformational mobility for most of the 

protein, characterized by defined secondary-structure elements and a dynamic tertiary structure, 

at variance with the X-ray crystal structure of the same protein, which shows a well ordered 

tertiary structure. 

The overall studies here presented for the apo state of SOD1 and its mutants in solution 

also explain the behaviour of these proteins with respect to crystallization. Crystallization trials 

were performed at two different temperatures on both the apo and metalated forms of 

WTSOD1 and the two mutants (Table S2), i.e. at 288K, which is the temperature at which the 

crystals discussed above were obtained, and at 310K, which is the temperature at which the 

oligomerization studies were carried out (15, 16). Crystals of the apo state of WTSOD1 and of 

the two mutants can be obtained at 288K only, while crystals for the metalated forms of 

WTSOD1 and the mutants were obtained at both temperatures. This indicates that temperature 

has a major influence on the crystallization of the apo state while it is almost negligible on the 

metalated one. This overall behaviour is consistent with the dynamic properties and 

conformational disorder of the apo state. As the protein is intrinsically disordered and samples 

a range of conformations, at higher temperatures the interconversion among them is faster and 

new conformations could be sampled, thus making the lowest energy state less populated and 

therefore lowering the probability of crystallization. A decrease in temperature slows down the 

interconversion process among the various conformations and increases the population of the 

most stable states, which can therefore crystallize. Mutations do not seem to affect the chance 

of obtaining crystals at either temperatures. 

 

Concluding remarks 

We have recently shown (15) that oligomerization of apo SOD1 involves oxidation of the 

two free cysteines (6 and 111) with the formation of inter-subunit disulfide bonds, thus linking 

a high number of protein molecules in high molecular weight species. Someone suggested that 

the formation of SOD1 aggregates are the consequence of both covalent disulfide cross-linking 

and non-covalent interactions (31), while others proposed that extensive disulfide cross-linking 
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is not required for the formation of mutant SOD1 aggregates (32). Recent studies showed the 

importance of non-physiological intermolecular disulfide bond between cysteines 6 and 111 in 

mutant SOD1 for high molecular weight aggregate formation and also for protein 

ubiquitylation and neurotoxicity, which are all dramatically reduced when the pertinent 

cysteines are replaced (33). Nevertheless, there is a general agreement on a critical role played 

by cysteines 6 and 111, particularly the latter, in the modulation of human SOD1 aggregation 

(31–33). 

We have shown that only the lack of metal ions makes SOD1 oligomerization possible 

(15). The reason for the dramatic different behavior of apo and metalated forms of SOD1 is 

now better understood. Indeed, the solvent exposure of the reduced cysteines changes 

dramatically from the metallated form to the apo one. Only in the latter state a free cysteine can 

bind another one of a different monomer to form the soluble oligomer. The crystal structures, 

on the contrary, are not informative on this respect as they clearly represent only one of the 

multiple conformations taken in solution by the protein. Consistently, the apo form of both WT 

and the mutants fail to crystallize at physiological temperature due to the high disorder and 

internal mobility.  

The information obtained from the NMR spectra indicate that in solution apo WTSOD1 

samples a range of conformations, highly disordered in some parts.  Higher temperatures 

accelerate exchange among these conformations and could populate new ones. This behaviour 

explains why only the disordered, partially unfolded, metal free state has a dramatic protein 

flexibility which makes accessible conformations prone to oligomerize, while the rigid 

structure of the metalated protein is unable to do it. 

Overall the present extensive structural and dynamical characterization of the apo state of 

WTSOD1 and some of its mutants showed that the lack of metal ions and the subsequent 

protein flexibility allows the free cysteines (Cys6 and Cys111) to become exposed and 

therefore ready to get oxidized and to form the disulfide bonds which give rise to the soluble 

oligomers. 
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Materials and Methods 

 

Protein expression and purification 

The sod1 gene was cloned by PCR and inserted in Gateway pENTR/TEV/D-TOPO 

plasmid (Invitrogen). The plasmid was propagated and purified by MINI KIT (Invitrogen) and 

the sequence was verified. The LR recombination reaction was performed in order to transfer 

the sod1 gene from pENTR/TEV/D-TOPO plasmid into pTH34 plasmid codifying for GB1 

fusion tag. Mutations were performed using a QuikChangeTM site-directed mutagenesis kit 

(Stratagene). WTSOD1 and mutant proteins were over expressed in the Escherichia coli 

Origami pLysS strain (Novagen). The fusion proteins were obtained by growing the cells in 

minimal medium, in shaking flasks at 37 ºC until OD600 = 0.7 and then induced with 0.7 mM 

IPTG for twelve hours at 25 ºC. Proteins were isolated by sonication in a 5mM imidazol buffer 

at pH=8.0 and centrifuged at 165,000 × g for 20 minutes. Purification was performed by 

affinity chromatography using a nickel chelating (His-Trap) column (Armersham Bioscience) 

and by digestion with AcTEV protease. Protein purity was checked on a 17% polyacrilamide 

gel and concentration was determined by optical spectroscopy. The metal free protein was 

prepared according to previously published protocols (34). Zinc reconstitution was carried out 

as described in (17). 

The 15N-labeled, 13C-, 15N-labeled proteins were obtained by growing cells in minimal 

medium containing 3g/l 13C-Glucose and 1g/l 15N-(NH4) 2SO4 and induced at 25°C overnight. 

The deuterium enriched protein (13C-, 2H-, 15N- labelled WT SOD1) was expressed under 

similar conditions except for the growth of the E. coli strain, which was carried out in minimal 

medium containing 90% (volume) of deuterated water (2H2O, D2O). In order to obtain 80% of 

deuterium incorporation into WTSOD1 protein, the E. coli cells were subjected to growth 

conditions of increasing D2O content.  

To produce (13C, 2H, 15N)Cys-selectively labeled protein, WTSOD1 was also expressed in 

a cysteine auxotrophic E. coli strain, BL21(DE3)cysE according to an already published 

protocol (35). 

 
Crystallization, data collection and structure solution 

Crystals of metal free SOD1 (WT, T54R and I113T) were obtained using the vapour 

diffusion technique at 288K from 0.1 mM protein solutions containing 0.1 M MES (pH=6.5) or 

0.1 M HEPES (pH=7.0), 20% PEG 3350.   

The metal free WT and I113T SOD1 crystal diffraction patterns were measured with a 

PX-Ultra copper sealed tube source (Oxford Diffraction) equipped with an Onyx CCD 
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detector, whereas the diffraction pattern of the metal free T45R mutant was measured using 

synchrotron radiation at BW7A beamline (DESY, Hamburg, Germany). All datasets were 

collected at 100K and the crystals used for data collection were cryo-cooled using 20% 

ethylene glycol in the mother liquor. Apo WT and apo I113T SOD1 crystals diffracted to 1.9 Å 

resolution while apo T54R SOD1 diffracted to 2.1 Å; they all belong to the spacegroup C2 

with four molecules (two functional dimers) in the asymmetric unit, a solvent content of about 

50% and a mosaicity of 0.8°–0.9°.  

All data were processed using the program MOSFLM (36) and scaled using the program 

SCALA (37). Table S2 shows the data collection and processing statistics for all datasets.  

The structures were solved using the molecular replacement technique with the program 

MOLREP (38, 39); the model used for the WT dataset was 1HL5 whereas the two mutants 

were solved using the apo WT as the template. The isotropic refinement was carried out using 

REFMAC5 (40) on all datasets. In between the refinement cycles the models were subjected to 

manual rebuilding by using XtalView (41). Water molecules have been added by using the 

standard procedures within the ARP/WARP suite (42). The stereochemical quality of the 

refined models was assessed using the program Procheck (43). The Ramachandran plot is in all 

cases of good quality.  

The three crystal structures are deposited in the Protein Data Bank (accession codes 

3ECU, 3ECV, 3ECW for apo WT, apo I113T and apo T54R SOD1 structures, respectively).  

 
NMR experiments 

NMR spectra were acquired at 288K on Avance 900 Bruker spectrometer equipped with 

cryogenically-cooled probe. Resonance assignments of apo WTSOD1 form were performed 

through conventional multi-dimensional NMR techniques based on triple resonance 

experiments summarized in Table S1.  

The dynamic properties of the apo dimeric form of WTSOD1 were directly sampled 

through 15N relaxation measurements. 15N longitudinal and traverse relaxation rates and 
15N{1H}-NOEs were recorded at 288, 298 and 310K at 500 MHz, using a protein concentration 

of about 0.6 mM. R1 and R2 relaxation rates were obtained by fitting the cross peak volumes 

(I), measured as a function of the relaxation delay, to a single exponential decay as described in 

the literature (44). Heteronuclear NOE values were calculated as the ratio of peak volumes in 

spectra recorded with and without saturation. In all experiments the water signal was 

suppressed with the ‘water flipback’ scheme (45). 

The average backbone 15N longitudinal R1 and transversal R2 relaxation rates and 
15N{1H}-NOEs values were 0.64 ± 0.04 s-1, 34.0 ± 1.6 s-1 and 0.70 ± 0.03, respectively at 
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288K, 0.81 ± 0.05 s-1, 27.1 ± 1.2 s-1 and 0.72 ± 0.03 at 298 K and 1.15 ± 0.06 s-1, 19.4 ± 0.9 s-1 

and 0.75 ± 0.03 at 310K. A correlation time for protein tumbling (τc) of 22.6 ± 1.9 ns at 298K 

was estimated from the R2/R1 ratio excluding those residues exhibiting below-average 
15N{1H}-NOEs values and those experiencing conformational processes. The result is 

consistent with that obtained with the HYDRONMR program for apo WTSOD1 being only in a 

dimeric state.   

H2O/D2O exchange properties were analyzed on samples obtained by diluting 

concentrated apo SOD1 and (Zn2, Zn2) SOD1 solutions, for WT and the T54R proteins,  

rapidly with 2H2O to a final 2H2O/H2O ratio of 0.90. H/D exchange rates were investigated 

through a series of 1H-15N HSQC experiments performed from 20 minutes after dilution up to 

five days. 
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Figure legends 

 

Figure 1 

1H-15N HSQC spectra of a) (Zn2, Zn2) WTSOD1 and b) apo WTSOD1. Spectra recorded at 
298K, 0.1mM protein concentration, pH7. 
 

Figure 2 

Secondary structural elements (red) based on the chemical shift index analysis for the apo 
WTSOD1 protein. Backbone long range NOEs (blue sticks) determined from 15N-edited 
NOESY spectra. The locations of the free cysteines Cys6 and Cys111 are represented by green 
and yellow spheres respectively. 
 

Figure 3 

Combined chemical shift variations of backbone amide resonances between a) dimeric apo WT 
SOD1 and dimeric (Cu2, Zn2) AS WTSOD1; b) dimeric apo WTSOD1 and monomeric apo AS 
WTSOD1. The combined chemical shift variations Δavg(HN) were calculated as [((ΔH)2 + 
(ΔN/5)2)/2]1/2, where ΔH and ΔN are chemical shift differences for 1H and 15N, respectively. 
 

Figure 4 

Backbone 15N(H) relaxation parameters and heteronuclear 1H-15N NOEs for apo WTSOD1 at 
288K (a), 298K (b) and 310K (c). 
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Supplementary Material  

 
 
Table S1. NMR experiments performed on apoWTSOD1 

 
Dimension of acquired data points 

(nucleus) 
Spectral width 

(ppm) 
na Refs Experiments 

       t1               t2                  t3    F1          F2            F3   
1H-15N-HSQCb 128(15N) 1024(1H)  40 13  8 (1) 

CBCA(CO)NHb,c 112(13C) 40(15N) 1024(1H) 80 56 11 8 (2) 

CBCANHb,c 112(13C) 40(15N) 1024(1H) 80 56 11 16 (2) 

HNCOb,c 80(13C) 40(15N) 1024(1H) 17 56 11 8 (2) 

HN(CA)COb,c 80(13C) 40(15N) 1024(1H) 17 56 11 16 (2) 
15N-edited [1H-1H]-

NOESYb 

264(1H) 40(15N) 2048(1H) 11 56 11 16 (3) 

a number of acquired scans. b Data acquired on a 900 MHz spectrometer, which was equipped with a riple 
resonance cryoprobe. The triple resonance (TXI 5-mm) probe used was equipped with Pulsed Field Gradients 
along the z-axis. c Triple resonance experiments run on a 2H, 13C, 15N labeled protein via TROSY. 
All 3D and 2D spectra were collected at 288 K, processed using the standard Bruker software (TopSpin) and 
analyzed through the XEASY program ((4)). 
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Table S2. Data collection and refinement statistics of apo WTSOD1, apo T54R and apo 
I113T mutants. 

 
 APO_WT APO_T54R APO_I113T 

Spacegroup C2 C2 C2 

Cell dimensions (Å, °) a= 156.51 

b= 33.43 

c= 114.67 

β= 112.25 

a= 156.94 

b= 34.03 

c= 114.58 

β= 112.14 

a= 155.90 

b= 34.40 

c= 115.00 

β= 112.09 

Resolution (Å) 30.4 – 1.9 39.2 – 2.1 106.6 – 1.9 

Unique reflections 42822 (5880) 29951 (4106) 44670 (5864) 

Overall completeness (%) 97.5 (92.8) 96.0 (91.2) 98.4 (90.0) 

Rsym (%) 16.0 (43.1) 9.8 (44.3) 11.2 (36.0) 

Multiplicity 6.4 (4.8) 3.3 (2.6) 5.4 (2.9) 

I/(σI) 4.3 (1.8) 6.4 (1.6) 6.0 (2.1) 

Wilson plot B-factor (Å2) 10.63 29.83 12.24 

Rcryst  / Rfree (%) 23.8 / 32.9 20.0 / 29.7 23.8 / 27.7 

Protein atoms 4027 4028 4042 

Water molecules 312 426 269 

RMSD bond lengths (Å) 0.027 0.025 0.024 

RMSD bond angles (º) 2.56 2.25 2.24 

Mean B-factor  (Å2) 18.28 26.25 16.85 
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 Table S3. Crystallographic structure analysis and comparison among apo WTSOD1, apo 

T54R and apo I113T mutants. 

 
 APO_WT APO_T54R APO_I113T 

Mean B-factor  (Å2) 18.28 26.25 16.85 

RMSD between monomers (Å) 0.26 (A-B) 

0.42 (A-C) 

0.34 (A-D) 

0.36 (B-C) 

0.31 (B-D) 

0.29 (C-D) 

0.24 (A-B) 

0.38 (A-C) 

0.29 (A-D) 

0.36 (B-C) 

0.30 (B-D) 

0.38 (C-D) 

0.28 (A-B) 

0.40 (A-C) 

0.37 (A-D) 

0.28 (B-C) 

0.28 (B-D) 

0.24 (C-D) 

Close contacts (cutoff 3.5 Å) 16 (A-B) 

0 (A-C) 

2 (A-D) 

8 (B-C) 

0 (B-D) 

17 (C-D) 

22 (A-B) 

0 (A-C) 

7 (A-D) 

10 (B-C) 

0 (B-D) 

19 (C-D) 

16 (A-B) 

0 (A-C) 

7 (A-D) 

11 (B-C) 

0 (B-D) 

19 (C-D) 

Buried surfaces (Å2) 1397 (A-B) 

19 (A-C) 

243 (A-D) 

897 (B-C) 

4 (B-D) 

1926 (C-D) 

1524 (A-B) 

0 (A-C) 

254 (A-D) 

798 (B-C) 

0 (B-D) 

1528 (C-D) 

1396 (A-B) 

0 (A-C) 

332 (A-D) 

841 (B-C) 

2 (B-D) 

1403 (C-D) 

Symmetry related contacts (cutoff 3.5 Å) 122 108 98 

Density breaks 68-78, 125-140 (C) 

67-79, 125-141 (D) 

68-79, 125-141 (C) 

67-78, 125-141 (D) 

68-78, 125-140 (C) 

68-78, 125-141 (D) 
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Table S4. Schematic layout of the temperature-dependence of crystallization trials for apo 

WTSOD1, apo T54R and apo I113T mutants, where + indicates the obtainment of single 

crystals and  indicates their absence. 

 
 288K 310K 

Apo WT + - 

(Cu2, Zn2) WT + + 

Apo T54R + - 

(Cu2, Zn2) T54R + + 

Apo I113T + - 

(Cu2, Zn2) I113T + + 
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Figure S1 
13 C 1D spectra of 13C, 15N, 2H Cys labelled SOD1 samples in the a) metallated (Zn2, Zn2) 
and b) metal free apo forms as a function of temperature: 288K (blue), 298K (red), 310K 
(green). 
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Figure S2 

Comparison of the NH amide signals of Cys6 and Cys111 from 1H-15N HSQC spectra 
taken before (blue) and after twenty minutes (magenta), four hours (cyan) and twenty hours 
(black) the sample has been dissolved in D2O. (a, b) (Zn2, Zn2) WTSOD1 and (c, d) apo 
WTSOD1. 
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3.3.1 Structural and biophysical characterization of apo D90A SOD1 mutant 

3.3.2 Fluorescence detected guanidinium-induced protein denaturation 

3.3.3 Potential intermediate in the early steps of the oligomerization process 

3.3.4 Further structural investigations on apo dimeric SOD1 
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The research work described in the two manuscripts reported in sections 3.1 and 3.2 of 

this PhD thesis and the open issues risen during the described studies, led our investigations to 

evolve in different directions.  

As part of my research activities during the PhD studies have performed further research 

investigations, which are presented in the following paragraphs and, which are, in part, still in 

progress. Even though such results have not yet been included in a formal publication, they 

represent an integral part of my work and a clear exemplification of how this research field, 

while progressing, constantly opens new and challenging issues to be faced. 

In the recent years, amyotrophic lateral sclerosis (ALS) has been tightly linked, as most 

neurodegenerative diseases, to the presence of proteinaceous inclusions found in the tissues of 

FALS transgenic mice and post-mortem patients (1–3). In particular, the presence of a 

significant fraction of insoluble SOD1 aggregates, containing multimers cross-linked via 

intermolecular disulfide bonds, has been observed in spinal cords of ALS-model transgenic 

mice (4).  

In the first article presented in this thesis (section 3.1), we have shown that WTSOD1 and 

its mutants, when lacking both their metal ions, form large, stable, soluble protein oligomers 

under physiological conditions by intermolecular disulfide bonds between the two free 

cysteines Cys6 and Cys111. These soluble oligomers may represent the toxic species 

responsible for the formation of aggregates found in in vivo studies. According to out findings, 

single point mutations in the gene codifying for the SOD1 protein induce different 

oligomerization rates even though all the mutated proteins give eventually rise to the same type 

of soluble oligomeric species when Cys6 and Cys111 are present.  

The proposed mechanism has the strength of explaining how a large and diverse set of 

SOD1 mutant proteins all could lead to disease through the same mechanism. However, the 

effect of each single point mutation on the oligomerization rate has to be elucidated. The 

conformational properties of the apo SOD1 form with respect to the metalated one, analyzed 

through NMR spectroscopy (section 3.2) rationalize the propensity of the former state to 

oligomerize at variance with the latter, but still they do not rationalize the modulation of the 

oligomerization rates by the individual point mutations. 

The achievements of the latter results led us to focus our research efforts into four 

different, but at the same time complementary, topics with the unique goal of achieving more 

specific and detailed information on the mechanism, which underlies the oligomerization 

process. The following paragraphs will present a brief description and discussion of the 

experiments, which have been performed on: 
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- biophysical characterization and oligomerization of apo D90A SOD1 mutant, the only 

ALS-related SOD1 mutation, reported to be recessive, at variance with the dominant nature of 

all the other pathogenic SOD1 mutations (paragraph 3.3.1). 

- fluorescence detected guanidinium-induced protein denaturation, performed on the 

metal free form of WTSOD1 and a peculiar SOD1 mutant, namely T54R, characterized by the 

slowest oligomerization rates (paragraph 3.3.2). 

- isolation of a potential intermediate in the early steps of the oligomerization process 

(paragraph 3.3.3). 

- further preliminary structural investigations on apo dimeric SOD1 through Solid State 

NMR (SSNMR) spectroscopy (paragraph 3.3.4). 

 

3.3.1 Structural and biophysical characterization of apo D90A SOD1 mutant  

Among the ALS-related metal-free SOD1 mutants, which we have already shown to 

oligomerize at physiological conditions (section 3.1), we chose to further characterize the apo 

D90A protein since it is the only one mutation showing a dominant pattern of heredity among 

more than 100 pathogenic mutations all characterized by a dominant behavior. Uniquely, 

D90A SOD1 has been identified in recessive, dominant and apparently sporadic pedigrees and 

it mostly causes ALS as a recessive trait. The phenotype of homozygotes is stereotyped with an 

extended survival, whereas that of affected heterozygotes varies. 

The disease, in the recessive cases, shows a slowly progressive stereotypic phenotype (5), 

at variance with the dominant cases, which always manifest an aggressive and variable 

phenotype (6). Still, D90A mutant SOD1 isolated from D90A homozygous ALS patients 

shows normal activity, normal Cu-binding properties, and only a minor reduction in physical 

stability (7). 

Up to 1998 genotypic analysis of dominant and recessive D90A families indicated 

separate founders for recessive and dominant ALS and a disease-modifying factor linked to the 

recessive mutation was proposed as a possible explanation (8). Only in 2002 it has been shown 

that D90A homozygotes and heterozygotes are all descended from a single ancient founder. It 

has also been suggested that a hypothetical cis-acting regulatory polymorphism arisen close to 

D90A SOD1 in the recessive founder, reducing the transcription of D90A SOD1 in motor 

neurons, appears to influence penetrance and disease phenotype, acting as a second, disease-

modifying mutation and therefore decreasing ALS susceptibility in heterozygotes and slowing 

disease progression (9). 
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Given the peculiar recessive nature of D90A, among the other dominant SOD1 mutations 

distributed throughout the all protein sequence, we performed a specific investigation, at 

molecular level, of the structural and biophysical properties of this SOD1 variant. 

In the broad investigation, comprising eleven SOD1 mutants, reported in section 3.1, we 

have shown that also D90A, only in the demetallated form and in conditions close to 

physiological (37°C,100 μM protein concentration and pH=7.0), forms soluble, high molecular 

weight oligomers. The oligomerization rate of this mutant is comparable to the one observed 

for the WT protein or for mutants such as T54R, but it is significantly slower compared to 

other SOD1 mutants such as I113T (Figure 1). 

 

 

 

 

 

 

 

 

 

 
Figure 1 Formation of ThT-binding structures when apo SOD1 mutants and WT are incubated at 37 

ºC. Fluorescence due to ThT binding to SOD1 mutants (presented as arbitrary units, A.U.) for apo T54R (Δ); 

apoD90A SOD1 (●); apoWT (O) and  apo I113T SOD1 (♦) during the incubation of the samples at 37°C. 

 

The D90A mutation is located at the protein surface on a short loop connecting β strands 

5 and 6. The D90 residue is at the protein surface opposite to the dimeric interface and only 

one beta strand (β5) far from the zinc binding loop. The mutation implies the substitution of a 

residue having a solvent exposed polar acidic side chain with a non polar one. 

The pattern of oligomerization of D90A, detected through ThT-binding fluorescence and 

already reported in (section 3.1) and Figure 1, is here investigated also through gel filtration 

and light scattering measurements. After about 40 hours of incubation mutant D90A, as also 

observed from ThT-binding measurements (Figure 1), is still essentially in the dimeric state 

(Figure 2A). Gel filtration data show that during the oligomerization process intermediates 

containing a broad distribution of high MW species can be detected. After about one year 

barely any dimeric species is observable, while the protein has almost completely evolved 

towards significantly higher molecular weights (Figure 2A). 
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Figure 2 Formation of oligomeric structures when apo D90A SOD1 mutant is incubated at 37°C. 

Panel (A) shows the size exclusion chromatograms on a Superdex 75 HR 10/30 (Amersham Biosciences) column 

corresponding to the samples reported in panel (B), where molecular weight distribution detected by light 

scattering is shown. The void volume is labeled V. In all four panels the samples can be identified according to the 

following colors: before incubation (black), after 3 hours (blue), 10 hours (magenta), 5.5 days (green) and 1 year 

(brown) of incubation at 37°C.  

 

Multi-angle light scattering analyses of specific intermediate samples along the 

oligomerization process also evidence that the average molecular weight is increasing as a 

function of time, with a decrease of the fraction of the dimeric species and the increase of that 

of the oligomers (Figure 2B). Multi-angle light scattering data of D90A shows that after about 

5 days of incubation, even though about 50% of the sample is still in the dimeric state, a small 

amount of oligomeric species with molecular weight of the order of 106 Da has already been 

formed, in agreement with what already observed for the WTSOD1 protein (10), confirming 

that D90A and WT have similar oligomerization rates. 

The oligomerization rate of apo WTSOD1 and some of its mutants, such as apoD90A, 

has been defined slower compared to other fast oligomerizing SOD1 mutants (section 3.1), but 

further explanation of such slowness has not yet been provided. 

Fitting of ThT binding fluorescence data of SOD1 mutants suggests that the kinetic 

profile of apoD90A may be interpreted as a two-phase sigmoidal reaction profile, at variance 

with fast oligomerizing SOD1 mutants, such as I113T, which shows a kinetic profile better 

fitted with a single-phase exponential (Figure 3). The kinetic profile of the oligomerization 

process of apo T54R mutant can be similarly best fitted with a two-phase sigmoidal curve (data 

not shown). 

 

 

en
ce

 (a
.u

.)

100

120

140

160



 105

 

 

 

 

 

 

 

 

 
Figure 3 Formation of ThT-binding structures when apo D90A and apo I113T SOD1 mutants are 

incubated at 37ºC. Fluorescence due to ThT binding to SOD1 mutants (presented as arbitrary units, A.U.) for apo 

D90A SOD1 (●) and  apo I113T SOD1 (♦) during the incubation of the samples at 37°C. Lines shown are fits to 

exponential and sigmoidal equations, respectively. 

 

These results suggest that the initial slow rate of slow oligomerizing SOD1 mutants (apo 

D90A and apo T54R) may be determined by the existence of a rate-limiting step in which 

change of the dimeric structure occurs to a high-energy intermediate. In many systems such as 

actin, collagen, and microtubules, such high-energy intermediate is modeled as an oligomeric 

species that is in a highly unfavorable equilibrium with the initial structure (11–13), even 

though it may also be a high-energy conformation of such initial structure, as reported for 

polyglutamine (14). Regardless, the rate-limiting step involves such high-energy intermediate, 

which is defined as the species with the highest free energy and therefore lowest population 

(11). The initial lag phase is then followed by a period of more rapid growth. Therefore, the 

initial lag time may be associated to a structural rearrangement, which some mutants need to 

undergo, while other specific mutations facilitate/favors this initial step converting the overall 

process to a single step reaction. On this regard it has to be taken into account that for SOD1 it 

has been already reported that oligomerization most likely takes place through monomerization 

(15). Mutations, which facilitate protein monomerization may have faster oligomerization 

rates; on the contrary mutations, which favors dimer stability should show slower 

oligomerization rates. The crystal structure of mutant T54R in the apo state (3ECW, section 

3.2) has already evidenced the existence of a mutation-related hydrogen bond, which is formed 

at the dimer interface, i.e. between NH2 of Arg54 of each monomer and OD1 of Asn19 of the 

other monomer in the same dimer (Figure 4). This interaction might lead to a partial 

stabilization of the dimeric state with respect to the WT protein and might correlate with the 
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slightly slower oligomerization rates for apo T54R compared to the WT protein (section 3.1), 

as oligomerization presumably occurs through monomerization (15). 

 

 

 

 

 

 

 

 
 

Figure 4 Mutation-related hydrogen bond formation in apo T54R. An hydrogen bond is formed at the 

dimer interface between NH2 of Arg54 (red) of a monomeric subunit and OD1 of Asn19 (green) belonging to the 

second monomeric subunit of the same dimer. 

 

From a preliminary analysis of SOD1 crystal structure, we may predict that substitution 

of Asp90 with alanine, in the D90A mutant, would jeopardizes the existence of some H-

bonding between the substituted residue and the backbone NHs of residues 92, 93 and 94 

located on the same loop connecting β strands 5 and 6. Residue 90 is only one β strand away 

from the zinc-binding loop where also residue T54 is located. Destabilization of the interaction 

between β strands 5 and 6 may be reflected on the closeby metal binding loop affecting the 

stability of the dimer interface. In order to verify and support this hypothesis, crystallization 

trials on apo D90A are in progress. 

It has already been shown that WTSOD1 hastens the ALS-like phenotype in transgenic 

mice overexpressing an ALS-associated human SOD1 mutant (G93A SOD1), shortening their 

lifespan. Formation of insoluble SOD1 dimers and multimers crosslinked through 

intermolecular disulfide bonds, via oxidation of SOD1 cysteine residues, was then observed in 

the mitochondrial fraction of the spinal cord of these transgenic mice (16). 

In order to test if the mechanism proposed by us (10) for the oligomerization of both WT 

and mutants, could find support in these in vivo data, the kinetic of oligomerization of samples 

prepared by mixing different amount of WT and D90A mutant proteins, both in the 

demetalated form, was followed by monitoring the ThT-binding fluorescence increase during 

incubation in condition close to physiological (37°C, 100μM protein concentration and 

pH=7.0). Figure 5 shows that, comparing the kinetic profiles in the initial 80 hours of protein 

incubation, a mixture of equal amounts of WT and D90A mutant induces a 2.5-times increase 
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in oligomerization rate compared to the D90A mutant alone. Furthermore, as previously shown 

for the WT protein, the oligomerization rate of the mixture shows a linear dependence on the 

overall protein concentration. 

 

 

 

 

 

 

 

 

 
 

Figure 5 Formation of ThT-binding structures when apo D90A SOD1 mutant and WT are incubated 

at 37ºC. Fluorescence due to ThT binding to SOD1 mutants (presented as arbitrary units, A.U.) for apo D90A 

SOD1 (●); apo WTSOD1 (O), and a mixture apo D90A : WTSOD1 in 1:1 ratio at 100μM protein concentration 

(■) and 200μM protein concentration (▲) during the incubation of the samples at 37°C.  

 

These results provide evidence for a possible relationship between the soluble oligomeric 

species formed during incubation of WTSOD1 and its mutants, in the demetallated form, and 

the aggregated multimers found in mitochondria of transgenic mice affected by ALS. As a 

consequence, the soluble oligomeric species, formed by the apo form of both WTSOD1 and its 

mutants through an oxidative process, might represent the precursor toxic species suggesting a 

common mechanism for ALS and fALS. 

The results presented in Figure 5, in the specific case of the D90A mutation, may find 

support in clinical data, which evidence a slowly progressive stereotypic phenotype for D90A 

homozygous patients, contrasting with a more aggressive phenotype for heterozygous cases 

phenotype (5, 6). An alternative explanation to the cis-acting regulatory polymorphism close to 

D90A in the recessive cases (9), may simply be the possible co-expression of the WT SOD1 

protein in heterozygous cases which would hasten the disease phenotype compared to the 

homozygous cases. 

The structural and biophysical characterization of D90A in the demetalled form, support 

the hypothetical toxicity of the oligomer formed during incubation of SOD1, WT and mutants, 

which leads to a common mechanism for ALS and fALS and at the same time may suggest a 
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possible explanation for the modulation of the oligomerization rate induced by the different 

ALS-related SOD1 mutations. 

 

3.3.2 Fluorescence detected guanidinium-induced protein denaturation 

In order to rationalize the modulation of the oligomerization rates induced by the 

individual point mutations on this process, which takes place when any SOD1 protein lacks the 

metal ions, we investigated and compared the stability of dimeric apo WTSOD1 and one of its 

mutants upon addition of a denaturing agent. In particular, the effect of guanidinium 

hydrochloride (GdnHCl) on the metal free form of the proteins under investigation, was 

monitored through tryptophan fluorescence spectroscopy. The already proposed idea of a 

common aggregation prone monomeric intermediate for WTSOD1 and fALS-associated SOD1 

mutants (15), suggests that differences in monomerization propensity of the dimeric proteins or 

in oligomerization propensity of the intermediate monomeric species among the SOD1 mutant 

proteins may be responsible for the observed modulation in their oligomerization rates. 

We have selected the T54R mutant, which oligomerizes with a slightly slower rate 

compared to the WTSOD1 protein (section 3.1). 

Investigations of the folding and thermodynamic properties though a GdnHCl analysis 

have been already reported for both the metallated and apo forms of the thermostable construct 

of WTSOD1 in which the free cysteines at positions 6 and 111 have been replaced by alanine 

and serine, respectively (AS form) (17, 18). In the latter article it is shown that the shape of the 

curve obtained for the guanidinium-induced denaturation of apo WTSOD1 is similar to the one 

obtained for the metalated form, but the former is shifted by >2 M to lower GdnHCl 

concentrations, suggesting a strong destabilization of the metal free form compared to the 

metalated one. Analysis of apo SOD1 concentration dependence of GdnHCl curves reveals the 

formation of a monomer intermediate in equilibrium with native dimer and unfolded monomer 

(18).  

Figure 6 shows a comparison of the guanidinium-induced denaturation curves, which we 

obtained for the apo WT protein and the selected apo mutant T54R, in which the free cysteines 

Cys6 and Cys111 are present.  
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Figure 6 Equilibrium denaturation curves monitored by tryptophan fluorescence for apo WT (black) 

and apoT54R (blue), in 20mM phosphate buffer, pH=7.0, 25°C, 10μM protein concentration. The lines 

correspond to fittings to a sigmoidal model (5 parameters). Multiple datasets for each sample were collected. 

 

A qualitative analysis of the presented data show that the shape of the apo WT unfolding 

profile, here reported, is similar to the one presented by Vassall et al (18) with the exception of 

an overall curve shift of about 0.5M to lower GdnHCl concentrations. This result evidences the 

net instability of WTSOD1 compared to the thermostable form (AS form), being both in their 

demetalated state.  

It has also been suggested that according to similar studies performed on four ALS-

related SOD1 mutants in their metal free form, mutations decrease protein stability, mainly by 

destabilizing the monomer intermediate, but also by weakening dimerization. According to 

these results, the effects of such mutations would propagate through the apo protein, and result 

in increased population of both intermediate and unfolded monomers (18). 

Despite the latter results, there are no data available on the unfolding properties of mutant 

T54R in its metalated or demetalated state. A qualitative analyses of our preliminary results 

shows that the initial phase of unfolding of this mutant significantly differs from the WT. A 

slow progressively increasing unfolding rate of the apo T54R is observed compared to a much 

net steeper increase for the WT protein. This observation is in agreement with the additional 

mutation-related hydrogen bond observed at the dimer interface in the X-ray structure of the 

metal free T54R mutant (3ECW, section 3.2). At variance with what has been observed for 

other SOD1 mutations (18), dimer dissociation would be, in this case, positively affected by 

the mutation, i.e. disfavoured by the T54R mutation. An additional amount of energy may be 

required to overcome the extra bond cleavage during unfolding from native dimer to unfolded 

monomers in the apo T54R mutant compared to the apo WT protein.  
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This additional interaction leading to a partial stabilization of the dimeric state with 

respect to the WT protein, might correlate with the unusual apo T54R unfolding profile and, 

thereby, with the slightly slower oligomerization rate observed for apo T54R compared to the 

WT protein (section 3.1). 

A quantitative analysis, comprising curve fitting of multiple sets of guanidinium-induced 

unfolding data collected at five different protein concentrations for both WT and the T54R 

mutant is in progress. Analysis and fitting of the obtained data will allow a better analysis and 

understanding of the unfolding process undergone by the apo T54R mutant compared to both 

the WT protein. 

 

3.3.3 Potential intermediate in the early steps of the oligomerization process 

In order to pursue and clarify the details of the oligomerization mechanism of apo 

WTSOD1 and its mutants, we aimed at the identification, isolation and characterization of the 

first building blocks of such process. According to the oligomerization process proposed by us 

(10), the initial dimeric oxidized apo SOD1 species should, in the early oligomerization steps, 

form a covalently-bound dimeric intermediate through an intermolecular disulfide bond 

between two apo SOD1 monomeric subunits. If the only two SOD1 free cysteines (Cys6 and 

Cys111) are the residues involved in the disulfide bonds formation, the incubation at 37ºC of 

the apo form of any of the two mutants, C6A or C111S, should induce only the formation of a 

covalent dimer, being their oligomerization process confined by the mutations to the 

initial/early steps. The identification of this apo SOD1 covalent dimer, would not only be an 

unprecedented peculiar SOD1 structure, but would also let us validate the suggested 

oligomerization process, as well as characterize the initial steps of such process. 

Incubation of metal free C6A SOD1 at physiological conditions (37°C, pH=7.0, and 

100μM protein concentration) for extended periods of time, showed an almost complete 

conversion of the initial SOD1 dimer, characterized by a hydrophobic interface, to the final 

covalent dimeric species,  estimated to be above 90% of the initial protein content from SDS 

gel analysis. 

The new species formed characterized by a molecular weight of about 32kDa, could be 

reduced to the monomeric form only in the presence of a reducing agent (DTT), as evidenced 

by SDS gel analysis (data not shown). The addition of trifluoroacetic acid (TFA) to the protein 

sample or boiling the sample in the presence or absence of TFA, which usually induce 

monomerization of the apo WT native hydrophobic SOD1 dimer, did not affect the dimeric 

nature of the apo C6A new species. The latter observations, which suggest a covalent nature of 
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the new apo C6A dimeric species, were also supported by fluorescence detected guanidinium-

induced denaturation experiments run on the freshly purified apo C6A sample and on a second 

aliquot of the same sample after prolonged incubation at physiological conditions. While the 

guanidinium-induced denaturation curves of the freshly prepared dimeric apo C6A mutant 

closely resemble the sigmoidal profile presented in the previous section for the apo WTSOD1 

dimeric protein, the incubated species does not show any denaturation effect up to 3M 

guanidinium addition. 

Puzzling results were obtained from the mass spectrometry (ESI-MS and MALDI-TOF) 

analysis, run under non-reducing conditions, on the incubated apo C6A sample. At variance 

with the results obtained from the previous experiments, mass spectrometry did not evidence 

the presence of a predominant covalently modified species. 

Further analysis, besides replicate of the experiments above described, are in progress in 

order to shed light on this conundrum. 

In order to achieve the formation of a covalent SOD1 dimeric species alternative 

experiments are in progress. In analogy with the experiments performed on the apo C6A 

mutant, similar incubation tests are attempted on the metal free form of the C111S SOD1 

mutant. Moreover, a more interesting and promising experiment will be performed incubating 

a mixture containing equal amounts of C6A and C111S mutants both in their demetalated 

forms. If the latter experiment shows the formation of a covalent dimer at variance with the 

incubation of each of the single mutants alone, it would suggest that the SOD1 oligomerization 

process takes place through the formation of covalent bonds between cysteines Cys6 and 

Cys111 belonging to adjacent monomers rather than between the same cysteines (namely Cys6 

with Cys6 or Cys111 with Cys111) belonging to closeby monomeric subunits. 

Preparation of 15N labeled samples of the single cysteine mutants (C6A and C111S) is in 

progress in order to investigate, through NMR spectroscopy, the behavior in solution of these 

mutant proteins during oligomerization. 

 

3.3.4 Further structural investigations on apo dimeric SOD1 

In the second article reported in section 3.2 of this thesis, we have investigated the apo 

form of the dimeric oxidized WTSOD1 protein both through X-ray diffraction in crystals and 

NMR spectroscopy in solution. We thoroughly investigated the protein in these two physical 

states, observing that in solution apo WTSOD1 samples a range of conformations, highly 

disordered in some parts and that the solvent exposure of the reduced cysteines (Cys6 and 

Cys111) changes dramatically from the metallated form to the apo one. The crystal structure, 
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on the contrary, seems representing only one of the multiple conformations taken in solution by 

the protein, most likely the one, which is more similar to the one adopted by the fully 

metallated and more rigid form of the protein. 

In order to further characterize the apo dimeric SOD1 species and to obtain additional 

information on its behavior towards oligomerization, we are investigating this protein form 

also through SSNMR spectroscopy.  

A sample of 13C, 15N-labeled, dimeric SOD1 sample was prepared and demetallated 

according to the procedures described in the Material and Methods section. Microcrystals were 

obtained from a 0.2mM protein solution containing 0.1M MES buffer (pH=7.0), 20% PEG 

6000. 

Preliminary SSNMR spectra have been collected on the prepared microcrystalline 

samples and comparisons with the already published spectra, obtained for the fully metallated 

SOD1 protein by solution state NMR (19) and by SSNMR (20) spectroscopies are reported 

below in figures 7 and 8 respectively . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: overlap of SSNMR spectra of microcrystalline dimeric apo WTSOD1 (13C-13C DARR; 50ms 

mixing; MAS frequency 14 kHz) (red), and the reconstructed picks coming from the solution assignment of 

dimeric fully metalated WTSOD (blue) (20). Panel B and C are partial enlargements of A. 
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C)
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Figure 8 overlap of SSNMR spectra of microcrystalline dimeric apo WTSOD1 (13C-13C DARR; 50ms 

mixing; MAS frequency 14 kHz) (red), and dimeric fully metalated WTSOD1 (13C-13C PDSD 15ms (analogous 

to DARR)) (blue) (21). Panel B and C are partial enlargements of A. 

Further spectra will be collected in order to pursue the SSNMR assignment of the apo 

SOD1 dimeric protein and to obtain additional and valuable information on the behaviour of 

the apo dimeric SOD1 form prone to oligomerize. 

Materials and Methods 

Sample Preparation – D90A SOD1 mutant was expressed in the Escherichia coli 

BL21(DE3) strain. Mutation was performed using a QuikChangeTM site-directed mutagenesis 

kit (Stratagene). The protein, obtained from cells grown in LB medium, was isolated by 

osmotic shock in a 20mM Tris, 5mM dithiothreitol (DTT) buffer at pH=8.0. After incubation 

for 30 minutes at 37ºC, the protein was centrifuged at 40000 rpm for 20 minutes. Supernatant 

was purified following a reported procedure (21) modified by the addition of 1 mM DTT to 

each chromatographic buffer. The protein obtained with this procedure contained 

substoichiometric amounts of the metal ions. The metal ions were completely removed, at 

25ºC, to prepare the demetallated (apo) form, according to previously published protocols (22), 

and the zinc reconstituted form was prepared, as well,  as previously described (23). Metal 

content was checked by inductively coupled plasma mass spectrometry (ICP-MS) using a 

Thermo Jarrell Ash Atomscan Model 25 Sequential inductively coupled spectrometer. The 

A)

C)
B)

A)

C)
B)
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dimeric state of the apo form of the mutant at time zero of the incubation was checked through 

gel filtration chromatography. 

The following procedure was adopted for the preparation of WTSOD1 protein and the 

two SOD1 mutants T54R and I113T. The sod1 gene was cloned by PCR and inserted in 

Gateway pENTR/TEV/D-TOPO plasmid (Invitrogen). The plasmid was propagated and 

purified by MINI KIT (Invitrogen) and the sequence was verified. The LR recombination 

reaction was performed in order to transfer the sod1 gene from pENTR/TEV/D-TOPO plasmid 

into pTH34 plasmid codifying for GB1 fusion tag. Mutations were performed using a 

QuikChangeTM site-directed mutagenesis kit (Stratagene). WTSOD1 and mutant proteins were 

over expressed in the Escherichia coli Origami pLysS strain (Novagen). The fusion proteins 

were obtained by growing the cells in minimal medium, in shaking flasks at 37ºC until OD600 = 

0.7 and then induced with 0.7 mM IPTG for twelve hours at 25ºC. Proteins were isolated by 

sonication in a 5mM imidazol buffer at pH 8 and centrifuged at 165,000 × g for 20 minutes. 

Purification was performed by affinity chromatography using a nickel chelating (His-Trap) 

column (Armersham Bioscience) and by digestion with AcTEV protease. Protein purity was 

checked on a 17% polyacrilamide gel and concentration was determined by optical 

spectroscopy. The metal free protein was prepared according to previously published protocols 

(22). Zinc reconstitution was carried out as described in (23). 

Spectroscopic characterization – Protein samples were 100μM in mutant SOD1 

concentration (as dimer) in 20mM phosphate buffer at pH 7. The protein was incubated at 

37°C to mimic physiological conditions. Optical and fluorescence spectroscopies, coupled with 

gel filtration chromatography, were used to monitor the formation of oligomeric species at 

these sample conditions. The analysis were carried out in both the zinc-bound and apo forms of 

the proteins. 

Fluorescence was followed with Thioflavin T, (ThT) probe, which specifically binds to 

amyloid-like structures (24). Free ThT has excitation and emission maxima at 350 nm and 450 

nm, respectively. However, upon binding to amyloid-like oligomers, the excitation and 

emission maxima change to 450 and 485 nm, respectively. 54μl aliquots of sample were added 

to 646μl of a 215μM ThT solution in a 20mM phosphate buffer at pH=7.0. The solution 

fluorescence emission was measured, over time of incubation, with a Cary 50 Eclipse 

Spectrophotometer supplied with a Single cell Peltier thermostatted cell holder regulated at 

37ºC. The background fluorescence spectrum of the buffer was subtracted. The excitation 

wavelength was 446 nm (bandwidth 10 nm) and the emission was recorded at 480 nm 

(bandwidth 10 nm). Fluorescence intensity at 483 nm was plotted against time of incubation. 
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Monitoring SOD1 Aggregation by Gel Filtration and Light Scattering – 100µl aliquots of 

the incubated protein at 37ºC were periodically taken and analyzed by gel filtration on 

Superdex 75 HR 10/30 (Amersham Biosciences) at room temperature. The column was 

preequilibrated with 20mM potassium phosphate, pH=7.0, and the flow rate was 0.6 ml/min. 

The chromatogram, which monitors the species formed during incubation, was obtained by 

monitoring the absorbance at 280 nm. The Superdex 75 HR 10/30 column was also connected 

to a light scattering spectrometer. The online multiangle light scattering (MALS) detector 

(DAWN EOS, Wyatt Technology, Santa Barbara, CA) and differential refractive index (DRI) 

detector (Optilab DRI, Wyatt Technology) setup was used to measure the light scattered as a 

function of angle and absolute protein concentration of fractions eluting from the size-

exclusion chromatography column. The Zimm/Debye approximations were used in the Astra 

software (Wyatt Technology) to estimate molar mass. Data were fit using a second-order 

polynomial. The analysis was performed for each one of the 20µl aliquots periodically taken 

from the incubation batches so as to monitor the increase in molecular weight of the soluble 

species formed during aggregation. 

Fluorescence experiments – Steady state fluorescence measurements were made using a 

Cary 50 Eclipse Spectrophotometer supplied with a Single cell Peltier thermostatted cell holder 

regulated at 25ºC. Samples were prepared in phosphate buffer 20mM, pH=7.0 with the 

addition of different amount of guanidinium hydrochloride (GdnHCl) to reach a final protein 

concentration of 10μM. The excitation wavelength was 282 nm (bandwidth 10 nm) and the 

emission was recorded at 358 nm (bandwidth 10 nm). The background fluorescence spectrum 

of the buffer and GdnHCl was subtracted. Fluorescence intensities at 358 nm, recorded after 24 

hours incubation at room temperature, were plotted against GdnHCl concentrations.  

SSNMR spectroscopy – All experiments were carried out on a Bruker Avance 850 MHz 

Wide Bore (WB) spectrometer using a 3.2 mm triple tuned (1H, 13C, 15N) CP-MAS probe, at 

various sample spinning speeds (between 10 kHz and 20 kHz), on a microcrystalline, 

uniformly labelled [15N, 13C] sample of human dimeric metal free WTSOD1. The effective 

sample temperature was about + 7.5°C. 

Double resonance CP experiments were acquired at 14.0 kHz MAS frequency. 1H 90° 

pulse was set to 2.65μs, and during cross-polarization 13C B1 was 78 kHz with a mixing time of 

1.2 ms. A 100%/50% ramp was applied on the proton channel with a 100% power level of 101 

kHz. 1H decoupling power level was set to 92 kHz by using SPINAL64 (25). The DARR (26) 

spectrum was acquired at 14.0 kHz MAS frequency. CP conditions, pulse length, and 1H 

decoupling conditions were analogous to those reported above. 13C 90° pulse was set to 4.0 μs. 
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A weak 1H CW radio frequency optimized at 14 kHz (Dipolar-assisted rotational resonance), 

was used during the 50 ms mixing time. The experiment was acquired with 64 scans for 

increments and t1
max 11.3 ms and t2 24.1 ms. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117

Reference List 
 

 
1. Pasinelli P., Belford M. E., Lennon N., Bacskai B. J., Hyman B. T., Trotti D., Brown R. 

H. Jr. (2004) Amyotrophic lateral sclerosis-associated sod1 mutant proteins bind and 
aggregate with Bcl-2 in spinal cord mitochondria Neuron 43, 19–30. 

2. Ohi T., Nabeshima K., Kato S., Yazawa S., Takechi S. (2004) Familial amyotrophic 
lateral sclerosis with his46arg mutation in Cu/Zn superoxide dismutase presenting 
characteristic clinical features and lewy body-like hyaline inclusions J. Neurol. Sci. 
225, 19–25. 

3. Ferri A., Cozzolino M., Crosio C., Nencini M., Casciati A., Gralla E. B., Rotilio G., 
Valentine J. S., Carri M. T. (2006) Familial ALS-superoxide dismutases associate with 
mitochondria and shift their redox potentials Proc. Natl. Acad. Sci. U. S. A 103, 13860–
13865. 

4. Furukawa Y., Fu R., Deng H. X., Siddique T., O'Halloran T. V. (2006) Disulfide cross-
linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide 
dismutase aggregates in spinal cords of model mice Proc. Natl. Acad. Sci. U. S. A 103, 
7148–7153. 

5. Andersen P. M., Nilsson P., Ala-Hurula V., Keranen M. L., Tarvainen I., Haltia T., 
Nilsson L., Binzer M., Forsgren L., Marklund S. L. (1995) Amyotrophic lateral 
sclerosis associated with homozygosity for an Asp90Ala mutation in Cu, Zn-superoxide 
dismutase Nat. Genet. 10, 61–66. 

6. Mezei M., Andersen P. M., Stewart H., Weber M., Eisen A. (1999) Motor system 
abnormalities in heterozygous relatives of a D90A homozygous Cu, Zn-sod ALS 
patient of finnish extraction J. Neurol. Sci. 169, 49–55. 

7. Marklund S. L., Andersen P. M., Forsgren L., Nilsson P., Ohlsson P. I., Wikander G., 
Oberg A. (1997) Normal binding and reactivity of copper in mutant superoxide 
dismutase isolated from amyotrophic lateral sclerosis patients J. Neurochem. 69, 675–
681. 

8. Al Chalabi, A., Andersen, P. M., Chioza, B., Shaw, C., Sham, P. C., Robberecht, W., 
Matthijs, G., Camu, W., Marklund, S. L., Forsgren, L. et al. (1998) Recessive 
amyotrophic lateral sclerosis families with the D90A sod1 mutation share a common 
founder: Evidence for a linked protective factor Hum. Mol. Genet. 7, 2045–2050. 

9. Parton M. J., Broom W., Andersen P. M., Al Chalabi A., Nigel L. P., Powell J. F., 
Shaw C. E. (2002) D90A-sod1 mediated amyotrophic lateral sclerosis: a single founder 
for all cases with evidence for a cis-acting disease modifier in the recessive haplotype 
Hum. Mutat. 20, 473. 

10. Banci L., Bertini I., Girotto S., Martinelli M., Vieru M., Whitelegge J., Durazo A., 
Valentine J. S. (2007) Metal-free superoxide dismutase forms amyloid-like oligomers: 
A possible general mechanism for familial ALS Proc. Natl. Acad. Sci. USA 104, 
11263–11267. 



 118

11. Ferrone F. (1999) Analysis of protein aggregation kinetics Methods Enzymol. 309, 256–
274. 

12. Flyvbjerg H., Jobs E., Leibler S. (1996) Kinetics of self-assembling microtubules: an 
"inverse problem" in biochemistry Proc. Natl. Acad. Sci. U. S. A 93, 5975–5979. 

13. Goldstein R. F., Stryer L. (1986) Cooperative polymerization reactions. Analytical 
approximations, numerical examples, and experimental strategy Biophys. J. 50, 583–
599. 

14. Chen S., Ferrone F. A., Wetzel R. (2002) Huntington's disease age-of-onset linked to 
polyglutamine aggregation nucleation Proc. Natl. Acad. Sci. U. S. A 99, 11884–11889. 

15. Rakhit R., Crow J. P., Lepock J. R., Kondejewski L. H., Cashman N. R., Chakrabartty 
A. (2004) Monomeric Cu, Zn-superoxide dismutase is a common misfolding 
intermediate in the oxidation models of sporadic and familial amyotrophic lateral 
sclerosis J. Biol. Chem. 279, 15499–15504. 

16. Deng H. X., Shi Y., Furukawa Y., Zhai H., Fu R., Liu E., Gorrie G. H., Khan M. S., 
Hung W. Y., Bigio E. H. et al. (2006) Conversion to the amyotrophic lateral sclerosis 
phenotype is associated with intermolecular linked insoluble aggregates of sod1 in 
mitochondria Proc. Natl. Acad. Sci. U. S. A 103, 7142–7147. 

17. Rumfeldt J. A., Stathopulos P. B., Chakrabarrty A., Lepock J. R., Meiering E. M. 
(2006) Mechanism and thermodynamics of guanidinium chloride-induced denaturation 
of als-associated mutant Cu, Zn superoxide dismutases J. Mol. Biol. 355, 106–123. 

18. Vassall K. A., Stathopulos P. B., Rumfeldt J. A., Lepock J. R., Meiering E. M. (2006) 
Equilibrium thermodynamic analysis of amyotrophic lateral sclerosis-associated mutant 
apo Cu, Zn superoxide dismutases Biochemistry 45, 7366–7379. 

19. Banci L., Bertini I., Cramaro F., Del Conte R., Viezzoli M. S. (2002) The solution 
structure of reduced dimeric copper zinc sod: the structural effects of dimerization Eur. 
J. Biochem. 269, 1905–1915. 

20. Pintacuda G., Giraud N., Pierattelli R., Böckmann A., Bertini I., Emsley, L. (2007) 
Solid-state NMR of a paramagnetic protein: assignment and study of the human 
dimeric oxidized Cu(II), Zn(II) superoxide dismuatse Angew. Chem. Int. Ed. 46, 1079–
1082. 

21. Banci L., Benedetto M., Bertini I., Del Conte R., Piccioli M., Viezzoli M. S. (1998) 
Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase. 
why is sod a dimeric enzyme? Biochemistry 37, 11780–11791. 

22. McCord J. M., Fridovich, I. (1969) Superoxide dismutase. Enzymic function for 
erythrocuprein. J. Biol. Chem. 244, 6049–6055. 

23. Arnesano F., Banci L., Bertini I., Martinelli M., Furukawa Y., O'Halloran T. V. (2004) 
The unusually stable quaternary structure of human sod1 is controlled by both metal 
occupancy and disulfide status J. Biol. Chem. 279, 47998–48003. 

24. Krebs M. R., Bromley E. H., Donald A. M. (2005) The binding of Thioflavin-T to 
amyloid fibrils: localisation and implications J. Struct. Biol. 149, 30–37. 



 119

25. Fung B. M., Khitrin A. K., Ermolaev K. (2000) An improved broadband decoupling 
sequence for liquid crystals and solids J. Magn. Reson. 142, 97–101. 

26. Takegoshi K., Nakamura S., Terao, T. (2001) 13C 1H dipolar-assisted rotational 
resonance in magic-angle spinning NMR Chem. Phys. Lett. 344, 631–637. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 120

 
 
 
 
4 
 

Final conclusions and 
perspectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121

In the recent years, the detection of protein inclusions strongly immunoreactive to SOD1 

in motor neuronal cells and astrocytes of SOD1 mutant transgenic mice and  ALS patients, 

makes aberrant SOD1 protein oligomerization one of the most accredited ALS mechanism, in 

agreement with similar mechanisms proposed for most neurodegenerative diseases (1–4). 

Furthermore, the diverse character of ALS-associated variant SOD1 proteins, shown by 

biophysical, biochemical and bioinorganic investigations, led to the hypothesis that SOD1 

variants are likely to aggregate for different reasons or for distinct combinations of reasons (5, 

6). Which are all these factors, how and in which steps of the post-translational modifications 

they interfere making all SOD1 mutants prone to oligomerize, eventually forcing them to give 

rise to the same ALS pathology, are still mysteries which need to be revealed.  

Several recent publications have also presented compelling evidence that in vivo 

abnormal disulfide-crosslinking of ALS-mutant SOD1 plays a role in the oligomerization of 

this protein (7–9), and disulfide-linked SOD1 multimers, which are presumed to be 

components of higher molecular weight species or intermediates (9), have been detected 

mainly in mitochondria of neuronal tissues of SOD1-linked fALS patients and transgenic mice 

(10–12).  

In chapter 3.1 we have shown that the rates of oligomerization of a set of SOD1 proteins 

carrying a single point mutation are different but eventually they give rise to the same type of 

soluble oligomeric species formed by intermolecular disulfide covalent bonds, involving Cys6 

and Cys111, and by non-covalent interactions between β strands, forming amyloid-like 

structures capable of binding ThT (13, 14). These soluble oligomers may represent the toxic 

species responsible for the formation of the disulfide-linked SOD1 aggregates found in in vivo 

studies (10–12). 

Our results suggest a general, unifying picture of SOD1 oligomerization that could 

operate when wild-type or mutant SOD1 proteins lack their metal ions. Although other 

mechanisms cannot be excluded for SOD1-linked fALS oligomerization, the one proposed by 

us has the strength of explaining how a large and diverse set of SOD1 mutant proteins all could 

lead to disease through the same mechanism (13, 14). 

After optimizing yield of expression, protein extraction and purification of WTSOD1 and 

some of its mutants in the new expression plasmid codifying for the GB1 fusion tag we 

investigated their structural and dynamic features through NMR spectroscopy and X-ray 

diffraction (chapter 3.2). 

We found that the metal-free state of two pathogenic mutants, T54R and I113T, is 

partially disordered in the crystal, at variance with what was observed in the metalated state. In 
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the crystal structures of the metal-free proteins, the asymmetric unit contains two biologically 

relevant dimers. While one of these dimers has a very well defined electron density throughout 

the entire sequence, the other one has clear breaks in the electron density in the regions 

encompassing most residues of the zinc binding (loop IV) and of the electrostatic (loop VII) 

loops. Cys6, involved in the formation of the intermolecular disulfide bonds during the 

oligomerization process, is essentially buried in the X-ray structures of all three metal-free 

SOD1 proteins. Even though few minor structural differences allowed us to speculate on 

possible explanations for the peculiar behavior towards oligomerization of some specific 

mutants, no general explanation was found for the broad range of oligomerization rates shown 

by the pathogenic SOD1 mutants.  

The information obtained from the NMR spectra indicate that in solution apo WTSOD1 

and the mutants samples a range of conformations, highly disordered in some parts.  Higher 

temperatures accelerate exchange among these conformations and could populate new ones. 

This behaviour explains why only the disordered, partially unfolded, metal-free state has a 

dramatic protein flexibility which makes accessible conformations prone to oligomerize, while 

the rigid structure of the metalated protein is unable to do it. 

Particularly striking with respect to the oligomerization process, which the apo state is 

undergoing at physiological conditions (13, 14), is the solvent exposure of the free cysteines 

(Cys6 and Cys111) observed for mutant T54R as well as for the WTSOD1 protein. While 

Cys111 is highly solvent exposed in both metalated and apo forms, Cys6 has a dramatically 

different solvent accessibility being buried and protected from the solvent in the metalated 

form and becoming higly solvent exposed in the apo form. Unfortunately, the I113T mutant is 

too unstable and oligomerizes too fast to prevent further analysis, beyond recording a simple 
1H-15N HSQC spectrum. 

Crystallization trials, performed at two different temperatures (289K and 310K) on both 

the apo and metalated forms of WTSOD1 and the two mutants, explained the apparent 

discrepancy between the different degrees of protein disorder detected for the apo proteins by 

X-ray and NMR investigations. While crystals of the metalated form of WTSOD1 as well as of 

its mutants were obtained at 288K and 310K, which is the temperature at which the 

oligomerization studies were carried out, the same proteins in their metal free form crystallized 

only at 288K. This indicates that temperature has a major influence on the crystallization of the 

apo state while it is almost negligible on the metalated one. This overall behaviour is consistent 

with the dynamic properties and conformational disorder of the apo state. As the protein is 

intrinsically disordered and samples a range of conformations, at higher temperatures the 



 123

interconversion among them is faster and new conformations could be sampled, thus making 

the lowest energy state less populated and therefore lowering the probability of crystallization. 

A decrease in temperature slows down the interconversion process among the various 

conformations and increases the population of the most stable states, which can therefore 

crystallize.  

Overall the present extensive structural and dynamic characterization of the apo state of 

WTSOD1 and its mutants showed that the lack of metal ions and the subsequent protein 

flexibility allows the free cysteines (Cys6 and Cys111) to become exposed and therefore ready 

to get oxidized and to form the disulfide bonds, which give rise to the soluble, potentially toxic, 

oligomers. 

The research projects pursued, after the above described achievements, were all 

conceived in order to get more insights into the mechanism of SOD1 proteins oligomerization. 

The biophysical characterization and the oligomerization propensity tests performed on 

apo D90A SOD1 mutant, provided us valuable suggestions for an alternative interpretation of 

the kinetic profile of the slow oligomerizing mutants (chapter 3.3.1). Fitting of the kinetic 

profile of apo D90A (ThT binding fluorescence) suggests that the oligomerization of this 

mutant may be interpreted as a two-phase process, at variance with fast oligomerizing SOD1 

mutants, such as I113T, which shows a kinetic profile better fitted with a single-phase process. 

Similar considerations can be done for the kinetic profile of mutant T54R, which is another 

slow oligomerizing SOD1 variant. These results are in agreement with structural 

considerations obtained from the X-ray crystal structure of the latter mutant. The presence, in 

the T54R protein, of an additional mutation-related hydrogen bond at the dimer interface may 

slow down monomerization, which has already been suggested as a required intermediate step 

towards protein oligomerization (15). Therefore, mutations, which facilitate protein 

monomerization should show faster oligomerization rates compared to mutations, which favors 

dimer stability. A structural analysis of apo D90A, which is in progress, may provide new 

insights to further support these suggestions. 

D90A is the only ALS-related SOD1 mutation, reported to be recessive, at variance with 

the dominant nature of all the other pathogenic SOD1 mutations. Oligomerization tests 

performed on mixtures of D90A mutant and WTSOD1, both in their metal-free form, are in 

agreement with already published in vivo data, which show that WTSOD1 hastens the ALS-

like phenotype in transgenic mice overexpressing an ALS-associated human SOD1 mutant 

(16). Moreover, these results may also suggest an explanation for the more aggressive 
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phenotype observed for D90A heterozygous cases compared to the homozygous recessive ones 

(16, 17).  

Preliminary data collected from tryptophan-detected guanidinium unfolding experiments 

performed on apo WTSOD1 and the T54R mutant are in agreement with the structural 

information provided by X-ray crystallography (chapter 3.3.2). The different unfolding curves 

observed for the two apo proteins may be due to an additional amount of energy required, 

during the unfolding process from native dimer to unfolded monomer, by the T54R protein to 

overcome the cleavage of an additional mutation-related bond observed at the dimer interface 

of this protein compared to the WT. 

Preliminary results have also been acquired on a possible intermediate of the 

oligomerization process, which is a SOD1 covalent dimer (chapter 3.3.3). We are in the 

process of isolating this intermediate using specific SOD1 mutants to stop the oligomerization 

process at the initial stages. The aim of this project is the structural characterization of this 

peculiar SOD1 covalent dimer, which may provide us with valuable information on the early 

steps of the oligomerization process. 

Preliminary SSNMR spectra have also been collected on a microcrystalline samples of 

double labeled metal-free dimeric WTSOD1. Further spectra will be collected in order to 

pursue the SSNMR assignment of the apo WTSOD1 dimeric protein in order to obtain 

additional and valuable information on the behaviour of the apo dimeric SOD1 form prone to 

oligomerize. 

SOD1 protein can be described as a “double-edged sword” to the extent that it can 

function as either a beneficial antioxidant or, due to a failure in metal uptake, form protein 

oligomers, which most likely depending upon the quality control machinery and the amount of 

excess apo SOD1 protein produced, may prove toxic to the cell. 
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