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Seeing the three-dimensional structure of a biological molecule for the first time 

can be a revelation. For example, James Watson and Francis Crick's model of the DNA 

double helix offers immediate insight into how the molecule copies itself. The minute 

you see it, you can oversee how heredity works and one look gives you the idea. Since 

this achievement in 1953, the study of molecular structures has grown into a critically 

important science that is shaping much of biomedical research. When scientists can see 

the location of the individual atoms that make up a protein and examine just how the 

entire structure relates to the structures of other proteins, they can begin to understand the 

protein's function. They are no longer flying blind. The brightly colored images of newly 

solved structures now appear in leading science journals nearly every week, and the rate 

of discoveries in structural biology is accelerating rapidly. X-ray crystallography—the 

technique Max Perutz used in his painstaking, 22-year effort to find the structure of 

hemoglobin—has seen such dramatic improvements that structures can sometimes be 

solved within a few months. Nuclear magnetic resonance (NMR) spectroscopy, which 

previously could be used only with very small molecules, can now analyze 

macromolecules of 1 kDa to 50 kDa. Since it carries out this analysis while the molecules 

are in solution, it bypasses the lengthy and sometimes erratic process of making crystals 

of the proteins. At the same time, computer power is increasing geometrically, enabling 

scientists to tackle more difficult problems. This massive progress is changing the nature 

of structural biology. Whereas in the past researchers concentrated on solving the 

structures of whatever proteins yielded suitable crystals, now their main goal is to solve 

interesting biological problems. Increasingly, they define themselves by their subject 

matter: not as crystallographers or NMR spectroscopists, but as biologists who want to 
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find out how genes are turned on, for instance, or how drugs bind to enzymes. There has 

been an explosive increase in the number of structures that open up new areas of analysis 

and these structures often serve as springboards for other biological experiments. In the 

post genomic era, structural biology will become a central discipline for the explanation, 

linking and exploitation of biological data in the life sciences, in academic research as 

well as in applications in the biotechnological, agricultural and pharmaceutical industry. 

To bridge the widening gap between rapidly increasing information on genome 

sequences and limited knowledge on the function of gene products, a quantitative 

understanding of the three-dimensional structure of proteins, their folding and biogenesis, 

and their interactions with other molecules is required and will be the pivotal challenge in 

molecular biological sciences in the years ahead. Efficient experimental structure 

determination of soluble and membrane proteins and the biophysical study of the protein 

folding process will be a central component and provide the basis for the future 

development of basic research and practical applications such as drug design and 

delivery. The structure determination can be complemented, with NMR spectroscopy, by 

dynamic characterization. Local mobility of the protein could have a relevant correlation 

with the functional behavior of the proteins. Indeed, it is now widely recognized that 

fluctuations of macromolecules play a relevant role in determining their stability, their 

function and recognition with biological partners. NMR has given a great contribution to 

the study of local dynamics. In particular, analysis of 15N spin relaxation has now become 

a powerful method to determine local mobility of the backbone. Local dynamics of side 

chains, despite seldom characterized, can also give very interesting information. Indeed, 

side chains have more degrees of freedom easily accessible than the backbone, and thus 
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residues on the surface of the protein can modulate the protein surface itself by changing, 

for example, the electrostatics of charged residues or by leaving internal regions more 

solvent exposed. This can affect the protein stability or the interaction with biological 

partners. In this work we combined protein expression and biosynthetic isotopic 

enrichment, which could be achieved by recently developed methods of biotechnology, 

with NMR spectroscopy. 

Aims and overview of the research 
 

The work carried out over three years of doctoral studies has been devoted to 

cloning, expression, purification and structural characterization of metalloproteins, and in 

particular cytochrome c variants, copper and zinc binding proteins. Metalloproteins 

contain a metal ion that confers peculiar features to the protein. The use of metals in 

living organisms is mainly due to their redox and acid/base properties and to the 

relatively easy feasibility of metal ion transfer in different locations or compartments of 

the cell, where they can be employed in various biological processes, such as electron 

transfer reactions, oxygen transport, and in a large variety of catalytic processes. This 

kind of proteins constitute a significant share of the total genome products (30-40% 

expected), but on the other hand they are not very much structurally studied; for instance, 

only the 0.5% of the structures deposited in the PDB are copper binding proteins (1). 

Therefore the structural characterization of this type of protein is an important aspect of 

structural biology.  
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The cytochromes c plays important roles in electron transfer in a large variety of 

eukaryotic and prokaryotic organisms. Despite the similarity of essential function of the 

molecule - passing of an electron by changing the oxidation state of the iron - there is 

significant divergence of sequence and structure of the protein as it appears in different 

organisms. It has been suggested that these differences are due to diverse adaptation to 

the metabolism in which the cytochromes function (2). Class I cytochrome c (covalent 

attachment of the c-type heme at two Cys residues, and His and Met ligation of the iron) 

can be broadly separated into two major families based on the size of the molecule. The 

structural and sequential similarity between eukaryotic cytochromes c and prokaryotic 

cytochromes c2, essentially from photosynthetic bacteria, groups these cytochromes to 

form a single category of large cytochromes (Ia). 

In most of Gram-positive microorganisms cytochromes belonging to Ia subclass is 

usually membrane-bound proteins due to the lack of a true periplasmic space. The 

difficulties associated with the study of such water insoluble proteins may explain why 

knowledge of the properties and physiological role of c-type cytochromes in Gram-

positive bacteria is very limited as compared to the information available for Gram-

negative bacteria and eukaryotes [3]. 

Recently both solution (4) and crystal structure (5) of minimal 71-residue mono-

heme cytochrome c: the soluble fragment of cytochrome c553 from Bacillus pasteurii 

(Bpcytc) was undertaken. There is practically no differences between the backbone 

conformations of reduced and oxidized states of the wild-type (WT) protein [6]. Also the 

dynamic properties of Bpcytc in the two physiologically relevant oxidation states are 

similar [6], with reduced Bpcytc being slightly more rigid, as commonly observed 
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(although to a larger extent) for c-type cytochromes [7]. WT oxidized Bpcytc features 

unchanged His/Met heme axial coordination at pH values up to 12, at variance with 

mitochondrial cytochromes c [8, 9]. Heme mis-ligation is induced at neutral pH by high 

concentration (>4 M) of guanidinium chloride (GdmCl), and occurs concomitantly with 

extensive unfolding of the polypeptide chain [8]. There are several elements of evidence, 

including the significant analogy of the organization of opening units across the protein 

structures [11], suggesting that the relatively uncommon stability of the Met loop in 

oxidized Bpcytc is mainly dependent on the local properties of the loop region itself, i.e. 

its primary sequence rich in Gly and Pro residues, its short size and the low number of 

long-range contacts with the remainder of the protein [11]. Since the binding of the axial 

Met represents a crucial and yet not fully understood aspect of the biochemistry of 

cytochromes c.  

Trying to rationalize the increase of the stability of the Met loop region of Bpcytc, 

the first part of my PhD work is consisted of developing Bacillus pasteruii cytochrome c 

mutants at three locations within the Met loop. These appeared indeed to be residues 

potentially capable of affecting the loop stability (8). These sites have been probed 

through site-directed mutagenesis and the generated mutants (Q68K, P72A, P72G, I75A 

and I75V) have been investigated in the oxidized state through a combination of CD and 

NMR spectroscopy. 

The second part of my work was focused on the study of copper and zinc binding 

proteins which are involved in the metal trafficking within bacterial organisms. 

Copper is indeed a micronutrient that plays an essential role in biology, serving as 

a co-factor for several enzymes that include Cu, Zn-superoxide dismutase, cytochrome 
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oxidase, lysyl oxidase, and ceruloplasmin (11, 12). Dietary copper limitation studies in 

animals, as well as the existence of human genetic diseases of copper homeostasis such as 

Menkes and Wilson disease, underscore critical roles for proper copper absorption in the 

intestine and distribution to the organs and tissues to serve as an essential biochemical co-

factor for enzymatic activities and other important biological processes (13-16). At the 

cellular level, copper is transported at the plasma membrane and distributed to cellular 

proteins and compartments for the incorporation of copper into copper-dependent 

proteins. Studies in yeast cells first identified genes encoding high affinity copper ion 

transport proteins in the plasma membrane. Either prior to or concomitant with high 

affinity uptake, Cu(II) is reduced to Cu(I) by one or more metalloreductases encoded by 

the FRE1 through FRE7 genes (17,18). Cu(I) is delivered across the plasma membrane by 

the high affinity transporter Ctr1 or Ctr3 in S. cerevisiae (19-22). After crossing the 

plasma membrane, copper is delivered to the secretory compartment, mitochondria, and 

cytosolic enzymes by the target-specific copper chaperone proteins, Atx1/Atox1, Cox17, 

and CCS, respectively (23-27). Similarly, bacteria utilize metallochaperone and metal 

transporters as heavy P1-type of ATPases in copper and zinc trafficking and/or 

detoxification of process.  

Cyanobacteria Synechocystis PCC 6803 contain internal thylakoid membranes 

where oxygen-evolving photosynthetic electron transport occurs. Respiratory electron 

transport occurs in both thylakoid and plasma membranes (28). Thylakoid membranes 

contain two protein complexes that include photosystems II and I. Within 

photosynthetically active cells, mobile soluble carriers shuttle electrons between these 

two complexes. Some cyanobacteria and green algae (29, 30) adapt to copper deficiency 
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by exploiting alternative carriers. In copper-sufficient Synechocystis PCC 6803, electrons 

transfer between the complexes via copper in plastocyanin (PetE) whereas under copper 

deficiency heme iron in cytochrome c6 (PetJ) is used (31). Both PetE and PetJ are located 

"inside" the thylakoid lumen. One subset of proteins is imported into cyanobacterial (and 

plant chloroplast) thylakoids via the Sec system, whereas others are imported via a pH-

dependent pathway (32). The latter transports folded proteins, and its substrates tend to be 

proteins that require complex cofactors, thereby avoiding separate thylakoid import of the 

cofactors. Plastocyanin is imported using Sec indicating that a copper delivery system 

into this compartment is required when Synechocystis PCC 6803 switches from PetJ to 

PetE. Higher plant chloroplasts rely exclusively on plastocyanin for electron transport 

between the two photosystems (29), and therefore thylakoid copper import is predicted to 

be especially important in higher plants.  

 Ion transport proteins in subcellular compartments allow specialized 

biochemistry requiring specific ionic conditions. The integral membrane P-type ATPases 

are an important class of ion transport proteins that serve to maintain suitable ionic 

conditions. More than 100 P-type ATPases have been identified so far; they play critical 

roles in ion homeostasis in species as diverse as bacteria and humans, in a variety of 

membrane types and involve a number of different cations. Recently two such copper 

transporters in Synechocystis PCC 6803 have been described, CtaA and PacS. Both 

ATPases contains an N-terminal region with a conserved metal binding motif CXXC 

(34). They are required for efficient switching to the use of copper in plastocyanin rather 

than heme iron in cytochrome c6 for photosynthetic electron transport (35). Disruption of 

ctaA gene reduced the total amount of copper cell 1, whereas disruption of PacS gene 
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conferred copper sensitivity indicating that one ATPase contribute to copper import 

where the other one contributes to copper compartmentalization (Fig.1). This organism 

also contains two additional CPx-type ATPases, ZiaA and CoaT, which are known to be 

expressed in response to and required for growth in (elevated) zinc (36) and cobalt (37), 

respectively (Fig.1).Also these two ATPases possess a N-terminal tail containing 

potential metal binding motifs (34). 

 

Figure 1.  Copper transport and trafficking in Synechocystis PCC 6803. 

 

Synechocystis PCC 6803 also contains soluble copper metallochaperone, Atx1 (ScAtx1) 

which is required for normal photosynthetic electron transfer via plastocyanin and for the 
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activity of a second thylakoid located copper protein, a caa3-type cytochrome oxidase 

(33, 34). ScAtx1 directly interacts with soluble amino-terminal domains of P1-type copper 

ATPases. 

This simple bacterial organism represents an attractive model to investigate the 

metal selectivity and the action of ATX1 like metallochaperone in relation to 

understanding the mechanism of copper acquisition and release. In the second part of my 

research work I have therefore cloned, expressed and structurally characterized the N-

terminal metal binding domain of PacS and ZiaA (here after PacSN and ZiaAN, 

respectively) as well as performed protein-protein interaction studies to investigate the 

copper transfer between ScAtx1 and PacSN. 
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A. Genome browsing for analysis of protein sequences 
 

A number of bioinformatics web servers with databases and programs have been 

created before and after the advent of genome sequences with the aim of providing the 

scientific community with tools for searching gene banks, for the analysis of protein 

sequences, for the prediction of a variety of protein properties. 
Some available databases and softwares used for genome browsing and sequence analysis 

are; 

•  NCBI (www.ncbi.nlm.nih.gov/Entrez/) - This web site integrates information 

from several databases (Swissprot, EMBL, all gene Bank, etc) 

•  Pfam (http://pfam.wustl.edu) - A collection of different protein family 

organized for different domain obtained from multiple alignment 

• BLAST (www.ncbi.nlm.nih.gov/BLAST/): Standard BLAST (Basic Local 

Alignment Search Tool) is a set of similarity search programs designed to explore 

all of the available sequence databases regardless of whether the query is protein 

or DNA. PHI-BLAST is designed to search for proteins that contain a pattern 

specified by the user, and simultaneously are similar to the query sequence. 

• PROSITE (www.expasy.org/prosite/) SCANPROSITE allows to scan a protein 

sequence, provided by the user, for the occurrence of patterns and profiles stored 

in the PROSITE database, or to search in protein databases all sequences with a 

user entered pattern. 

• STRING (dag.embl-heidelberg.de) STRING is a database of predicted 

functional associations among genes/proteins. Genes of similar function tend to 

be maintained in close neighborhood and tend to be present or absent together. 

http://www.ncbi.nlm.nih.gov/Entrez/)
http://pfam.wustl.edu)
http://www.ncbi.nlm.nih.gov/BLAST/)
http://www.expasy.org/prosite/)
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• SMART: SMART (a Simple Modular Architecture Research Tool) allows the 

identification and annotation of genetically mobile domains and the analysis of 

domain architectures. 
These tools have been widely utilized during my PhD research work in order to select 

the protein constructs which I have studied. 
B. Cloning, Expression and Purification of Recombinant Proteins 

Structural genomics (1) or structural proteomics (2, 3) can be defined as the quest 

to obtain the three-dimensional structures of all proteins. However, the preparation of 

excellent protein sample for structural characterization remains a significant problem for 

this new field. The development of better and faster methods to clone, express and purify 

proteins is expected to generate new methods and reagents (clones, proteins, and 

purification procedures) that will benefit the general biological community as well as 

structural genomics projects.  

In the following sections I will describe the main techniques related to the 

production of recombinant proteins. 

 

1. Cloning strategy 

To speed up protein production it’s generally better to adopt a strategy of parallel 

cloning and expression. The gene of interest is cloned in parallel into a variety of 

expression vectors containing different tags and/or fusion partners, and into vectors for a 

variety of expression systems. This approach should not only gain us a lot of time but 

also result in a larger number of successfully expressed proteins. 

The cloning strategy consists of the following steps: 

• the gene of interest is amplified by PCR.  

• the PCR product is cloned into a specific cloning or expression vector using one 

of the cloning methods described below.  

• the sequence of a positive clone is checked by sequence analysis.  
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• the gene of interest is subcloned into a variety of expression vectors (for different 

expression systems) using a fixed set of restriction enzymes or specific 

recombination sites. 

Cloning methods which are commonly used are; 

1. Cloning using restriction enzymes 

2. TA cloning and TOPO TA cloning 

3. Recombination cloning systems 

• GATEWAY Cloning Technology (Invitrogen) 

• Creator (BD Clontech) 

4. Dicistronic cloning  

1.1. Cloning using restriction enzymes 

 
Restriction enzymes (restriction endonucleases) are proteins that cut DNA at (or 

close to) specific recognition sites. Two types of restriction enzymes exist that differ in 

the way they cut the target DNA:  

• Blunt end cutters. These enzymes cut both strand of the target DNA at 

the same spot creating blunt ends. 

• Sticky end cutters. These enzymes cut both strand of the target DNA at 

different spots creating 3'- or 5'-overhangs of 1 to 4 nucleotides (so-called 

sticky ends). 

To be able to clone a DNA insert into a cloning or expression vector, both have to 

be treated with two restriction enzymes that create compatible ends. At least one of the 

enzymes used should be a sticky end cutter to ensure that the insert is incorporated in the 

right orientation. It will save a lot of time when we could carry out the two digestions 

simultaneously (double digestion). Not all restriction enzymes work equally well in all 

commercially available buffers and, therefore, it is worthwhile to check (e.g. in the 
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reference appendix of the New England Biolabs catalog) which enzymes are compatible 

and in which buffer. To ensure efficient digestion the two recognition sites should be 

more than 10 base pairs apart. If one of the enzymes is a poor cutter or if the sites are 

separated 10 base pairs or less, the digestions should be performed sequentially. The first 

digest should be done with the enzyme that is the poorest cutter and the second enzyme 

added after digestion has been verified by running a sample of the reaction mix on an 

agarose gel. 

1.1.1 Methylation of DNA  
 

Methylation of DNA by the host strain can have a great effect on DNA cleavage 

and/or transformation. Most laboratory strains of E. coli contain 3 DNA methylases that 

methylate distinct nucleotides in specific DNA sequences:  

• Dam methylase    : methylates adenine residues in the sequence GATC 

• Dcm methylase    : methylates the internal cytocine residues in the sequence  

                                             CCAGG and CCTGG 

• EcoK1 methylase: methylates adenine residues in the sequence AAC(N6)GTGC   

                                       and GCAC (N6) GTT 

 
 

When the DNA is isolated from strains expressing one of these methylases, especially 

Dam or Dcm methylase because their sites are much more common than EcoK1 sites, 

some or all sites for a restriction enzyme may be resistant to cleavage. This occurs 

because DNA is protected from cleavage when a particular base in the recognition site of 

the restriction enzyme is methylated. For example, plasmid DNA isolated from Dam+ E. 

coli is completely resistant to cleavage by Mbo I, which cleaves GATC sites. Not all 

restriction enzymes are sensitive to methylation. For example, BamHI still cleaves 
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GGATCC sites of plasmid DNA from Dam+ E. coli. Further, methylation of plasmid 

DNA can affect the frequency of transformation in special situations. For example, the 

transformation efficiency is reduced when Dam-modified plasmid DNA is introduced 

into Dam- strains or when Dam- or Dcm-modified DNA is introduced into certain other 

bacterial species. In some cases it will be necessary to use a Dam- and/or Dcm-negative 

E. coli strain, for instance GM48 and JM110. 

 

1.1.2 Vector preparation  

• Digestion of vector DNA using (preferably) two restriction enzymes. 

• Dephosphorylation of the ends using calf intestine or shrimp alkaline 

phosphatase. This reduces the background of non-recombinants due to self-

ligation of the vector (especially when a single site was used for cloning). 

• Purification of the digested vector by agarose electrophoresis to remove residual 

nicked and supercoiled vector DNA and the small piece of DNA that was cut out 

by the digestions. This usually reduces strongly the background of non-

recombinants due to the very efficient transformation of undigested vector. 

1.1.3 Insert preparation 

• Digestion of insert DNA using (preferably) two restriction enzymes. 

• Purification of the digested insert: Purification should be carried out by agarose gel 

electrophoresis when the insert is subcloned into a vector from a vector with the same 

selective marker or PCR amplified from a vector with the same selective marker. 

Otherwise, it can be purified using a commercial kit (such as Qiagen's PCR 

purification kit). 
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1.1.4 Ligation 

The next step is the ligation of the insert into the linearized vector. This involves 

the formation of phosphodiester bonds between adjacent 5'-phosphate and 3'-hydroxyl 

residues, which can be catalyzed by two different ligases: E. coli DNA ligase and 

bacteriophage T4 DNA ligase. The latter is the preferred enzyme because it can also join 

blunt-ended DNA fragments. 

The efficiency of the ligation reaction depends on:  

• The absolute DNA concentration. The concentration should be high enough to 

ensure that intermolecular ligation is favored over self-ligation but not so high as 

to cause extensive formation of oligomeric molecules. 

For pET vectors, good results are obtained at a vector DNA concentration or 

approx. 1 nM (i.e. 50-100 ng vector DNA per 20-ml ligation mix).  

• The ratio between vector and insert DNA. The maximum yield of the right 

recombinants is usually obtained using a molar ratio of insert to vector DNA of 

approx. 2. If the concentration of insert DNA is substantially lower than that of 

the vector, the ligation efficiency becomes very low. 

In practice, we set-up ligation reactions with a molar ratio of insert to vector DNA 

from 2:1 to 6:1. 

• The cloning strategy. Higher yields of the right recombinant are obtained when 

the vector and insert have been prepared using two restriction enzymes and the 

digested vector has been gel-purified before the ligation reaction (as shown in the 

figure on the right).  
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The ligation of blunt-ended fragments is less effective than that of sticky-ended ones.   

Blunt end ligation may be enhanced by:  

• high concentrations of blunt-ended DNA fragments. 
 

• a high concentration of ligase (10,000 NEB units/ml). 
 

• a low concentration of ATP (0.1 mM). 
 

• the addition of PEG 4000 [5% (w/v)]. (Ref) 

 
1.2. TA and TOPO TA cloning  
 

The TA cloning method takes advantage of the terminal transferase activity of 

some DNA polymerases such as Taq polymerase. This enzyme adds a single, 3'-A 

overhang to each end of the PCR product. This makes it possible to clone this PCR 

product directly into a linearized cloning vector with single, 3'-T overhangs. DNA 

polymerases with proofreading activity, such as Pfu polymerase, can not be used because 

they provide blunt-ended PCR products. TA cloning kits are available from different 

manufacturers. The TOPO TA cloning method combines the advantages of TA cloning 

with the ligation activity of topoisomerase I. This allows direct ligation of PCR products 

in just 5 minutes. TOPO TA cloning kits are available from Invitrogen (Fig. 2). 
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Figure 2. Map of pTA Plus 

1.3. Recombination cloning systems 
1.3.1 GATEWAY Cloning technology 

The GATEWAY Cloning Technology is based on the site-specific recombination 

system used by phage l to integrate its DNA in the E. coli chromosome. Both organisms 

have specific recombination sites called attP in phage l site and attB in E. coli. The 

integration process (lysogeny) is catalyzed by 2 enzymes: the phage l encoded protein Int 

(Integrase) and the E. coli protein IHF (Integration Host Factor). Upon integration, the 

recombination between attB (25 nt) and attP (243 nt) sites generate attL (100 nt) and attR 

(168 nt) sites that flank the integrated phage l DNA (Fig.3).  
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Figure 3. Phage l recombination into the E. coli chromosome 

The process is reversible and the excision is again catalyzed Int and IHF in combination 

with the phage l protein Xis. The attL and attR sites surrounding the inserted phage DNA 

recombine site-specifically during the excision event to reform the attP site in phage l and 

the attB site in the E. coli chromosome. The GATEWAY reactions are in vitro versions 

of the integration and excision reactions. To make the reactions directional two slightly 

different and specific site were developed, att1 and att2 for each recombination site. 

These sites react very specifically with each other. For instance in the BP Reaction attB1 

only reacts with attP1 resulting in attL1 and attR1, and attB2 only with attP2 giving 

attL2 and attR2. The reverse reaction (LR Reaction) shows the same specificity. The 

ultimate goal of the GATEWAY reactions is to make an expression clone. This is often 

a two step process:  
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Step 1 Cloning the gene of interest into an Entry Vector via the BP Reaction. 

Step 2 Subcloning the gene of interest from the Entry Clone (Step 1) into a Destination 

Vector via the LR Reaction creating the Expression Clone. 

In the LR Reaction of Step 2 (Fig.4) the gene of interest is cloned into an Entry Vector 

and flanked by the attL1 and attL2 recombination sites. The Entry Vector is 

transcriptionally silent and contains the gene for kanamycin resistance (Kmr). To produce 

the Expression Clone the gene has subcloned into a Destination Vector that contains all 

the sequence information necessary for expression, the gene for ampicillin resistance 

(Apr), and two recombination sites (attR1 and attR2) that flank a gene for negative 

selection, ccdB (the encoded protein is toxic for the standard E. coli strains). The two 

plasmids are mixed and the LR CLONASE Enzyme Mix is added. The reaction is 

directional and specific, so that attL1 only reacts with attR1 and attL2 with attR2. The 

recombination yields two constructs: the intended Expression Clone and a by-product 

(labelled in Figure 4 as Donor Vector). The produced expression clone is under two 

forms of selection: the antibiotic resistance and the negative selection by the toxic ccdB 

protein. As a result high levels of positive clones (typicaly more than 90 - 99%) are 

obtained after transformation to a standard cloning or expression strain like DH5a or 

BL21 (DE3). One of the main advantages of the GATEWAY Cloning Technology is that 

once we made an Entry Clone the gene of interest can be easily subcloned into a wide 

variety of Destination Vectors using the LR Reaction (Figure 5). 



 31 

 

Figure 4. The GATEWAY reactions 

 

Figure 5. Subcloning an Entry Clone into multiple Destination Vectors 

 



 32 

Usually the Destination Vectors do not contain a protease cleavage site. In order 

to have a protease cleavage site in our fusion protein to enable the removal of the fusion 

partner and/or tag, protease sequence was be incorporated into the appropriate primer and 

it has done  in-frame with the gene of interest. 

1.3.2 Creator (BD Clontech) 
Creator is more efficient than conventional restriction enzyme-based cloning 

methods because it utilizes only one enzyme, Cre Recombinase, to shuttle a gene from a 

donor vector into an expression vector. 

Cre Recombinase avoids problems associated with conventional cloning, such as: 

• restriction enzyme site compatibility 

• presence of cloning sites within the gene of interest 

• the need to retain reading frame in translational fusions 

• insert directionality 

• restriction digestion and ligation efficiency  

• gel purification 

• the cost of maintaining a large restriction enzyme collection 

Cre recombinase facilitates site-specific recombination at loxP sites. It recognizes and 

binds to inverted repeats that flank the spacer region where recombination occurs. The 

enzyme then uses a reactive tyrosine within its active site to cleave the DNA in the spacer 

region, creating a staggered cut with sticky ends. Cre then reattaches the 5' end of one 

loxP site to the 3' end of the other loxP at the site of the staggered cut, thus recombining 

the DNA from two different vectors. Multiple reactions between the loxP site in pDNR 
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and the two loxP sites in the acceptor vector occur simultaneously to transfer your gene 

and the chloramphenicol resistance gene into the acceptor vector. 

1.4. Di- or multi-cistronic cloning 
 

It is possible to co-express two or more proteins from the same vector.  

There are two possible strategies: 

• The proteins are expressed under the regulation of different promoters. In this 

case, the genes are cloned sequentially into a vector containing different multiple 

cloning sites, e.g. pFastBac DUAL (Invitrogen), a baculovirus expression vector. 

• The proteins are cloned under the regulation of one promoter. In this case, the 

genes are cloned into a normal expression vector containing one promoter and one 

multiple cloning site (di- or multi-cistronic cloning). Each gene should have its 

own Shine-Dalgarno sequence and start codon. 

For the dicistronic cloning pET vector are also available. The order in which the genes 

are cloned into the vector is important for the expression levels of the different proteins. 

2. Transformation 

Transformation is the process of getting the recombinant vector from a reaction 

mixture or vector solution into E. coli cells. To enable the cells to take up circular vector 

DNA they have to be made competent. The method for the preparation of competent 

cells depends on the transformation method used and transformation efficiency required. 
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The choice of the E. coli host strain depends on the goal of the transformation: 

• The transformation of a ligation mix was done in a recA- cloning strain, such as 

DH5a, NovaBlue or XL1-Blue. Depending on the background of non-

recombinants (from a ligation mix containing only digested vector) a number of 

transformants (3-12 colonies) should be picked and checked for the presence of 

the right insert by restriction analysis or colony PCR. 

• The transformation of a vector for multiplication was also be done in a recA- 

strain, such as DH5a, NovaBlue or XL1-Blue. 

• The transformation of a vector for protein expression was done in the appropriate 

expression host. 

           pET vectors in BL21 (DE3)  
       pBAD vectors in  Top10, LMG194 

3. Choice of expression system 
 

Once we decided which protein or which domain(s) of a protein we would like to 

clone and express, we have to think also about which expression system we would like to 

use. At present there are many different expression systems available, but we limit 

ourselves to the following three systems since they are most suited for large-scale 

production of proteins: 
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3.1. Escherichia coli 

The expression of proteins in E. coli is the easiest, quickest and cheapest method. 

There are many commercial and non-commercial expression vectors available with 

different N- and C-terminal tags and many different strains which are optimized for 

special applications. One of the major advantages of E.coli is production of isotope 

labeled protein for NMR is very easy in compare to other systems. 

3.2. Yeast 

Yeast is a eukaryotic organism and has some advantages and disadvantages over 

E. coli. One of the major advantages is that yeast cultures can be grown to very high 

densities, which makes them especially useful for the production of isotope labeled 

protein for NMR. The two most used yeast strains are Saccharomyces cerevisiae and the 

methylotrophic yeast Pichia pastoris. 

3.3. Baculovirus infected insect cells 

Insect cells are a higher eukaryotic system than yeast and are able to carry out 

more complex post-translational modifications than the other two systems. They also 

have the best machinery for the folding of mammalian proteins and, therefore, give you 

the best chance of obtaining soluble protein when you want to express a protein of 

mammalian origin. The disadvantages of insect cells are the higher costs and the longer 

duration before you get protein (usually 2 weeks). 
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4. Protein Purification 

There are many purification methods available for the separation of 

macromolecules. To effectively resolve a crude mixture of substances, it may be 

necessary to use a combination of techniques. Some examples of liquid chromatographic 

techniques are; 

 
4.1. Ion-Exchange Chromatography 

Proteins are made up of twenty common amino acids. Some of these amino acids 

possess side groups ("R" groups) which are either positively or negatively charged. A 

comparison of the overall number of positive and negative charges will give a clue as to 

the nature of the protein. If the protein has more positive charges than negative charges, it 

is said to be a basic protein. If the negative charges are greater than the positive charges, 

the protein is acidic. When the protein contains a predominance of ionic charges, it can 

be bound to a support that carries the opposite charge. A basic protein, which is 

positively charged, will bind to a support which is negatively charged. An acidic protein, 

which is negatively charged, will bind to a positive support. The use of ion-exchange 

chromatography, then, allows molecules to be separated based upon their charge. 

Families of molecules (acidics, basics and neutrals) can be easily separated by this 

technique. This is perhaps the most frequently used chromatographic technique used for 

protein purification.  
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4.2. Hydrophobic Interaction Chromatography ("HIC") 

Not all of the common amino acids found in proteins are charged molecules. 

There are some amino acids that contain hydrocarbon side-chains which are not charged 

and therefore cannot be purified by the same principles involved in ion-exchange 

chromatography. These hydrophobic ("water-hating") amino acids are usually buried 

away in the inside of the protein as it folds into its biologically active conformation. 

However, there is usually some distribution of these hydrophobic residues on the surface 

of the molecule. Since most of the hydrophobic groups are not on the surface, the use of 

HIC allows a much greater selectivity than is observed for ion-exchange chromatography. 

These hydrophobic amino acids can bind on a support which contains immobilized 

hydrophobic groups. It should be noted that these HIC supports work by a "clustering" 

effect; no covalent or ionic bonds are formed or shared when these molecules associate.  

4.3. Gel-Filtration Chromatography 

This technique separates proteins based on size and shape. The support for gel-

filtration chromatography are beads which contain holes, called "pores," of given sizes. 

Larger molecules, which can't penetrate the pores, move around the beads and migrate 

through the spaces which separate the beads faster than the smaller molecules, which may 

penetrate the pores. This is the only chromatographic technique which does not involve 

binding of the protein to a support.  
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4.4. Affinity Chromatography  

This is the most powerful technique available to the chromatographer. It is the 

only technique which can potentially allow a one-step purification of the target molecule. 

In order to work, a specific ligand (a molecule which recognizes the target protein) must 

be immobilized on a support in such a way that allows it to bind to the target molecule. A 

classic example of this would be the use of an immobilized protein to capture it's receptor 

(the reverse would also work). This technique has the potential to be used for the 

purification of any protein, provided that a specific ligand is available. Ligand availability 

and the cost of the specialized media are usually prohibitive at large-scale.  

4.5. Other Methods 

While the methods above are typically chosen for use in a purification process, 

there are in fact many others that can be used. Each of these methods or techniques takes 

advantage of a specific part of the protein being purified. The commonality is that all of 

the techniques employed are based on the protein's structure.  

5. Isotope labeling of proteins for structural determination  

For the isotope enrichment the protein is usually overexpressed in a bacterial 

system. Fully isotope labeled proteins can be produced by growing the bacteria on 

minimal medium containing 15NH4Cl and 13C-glucose as sole nitrogen and carbon 

sources.  
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6. Protein Characterization 

Proteins are composed of complex polypeptide chains with unique 3-dimensional 

structures. These structures are stabilized by a combination of electrostatic and 

hydrophobic interactions, combined with a large degree of flexibility inside the structure 

of the molecule.  

Popular biophysical protein characterization techniques are:  

• Circular dichroism (CD).  

• Nuclear magnetic resonance (NMR). 

6.1. Circular Dichroism (CD) 

Circular Dichroism (CD) is an excellent method for analyzing protein and nucleic 

acid secondary structure in solution. It can be used to follow the changes in folding as a 

function of temperature or denaturant, and is also useful for measuring protein-ligand and 

nucleic acid-ligand interactions.  

Circular dichroism spectroscopy is particularly good for: 

• determining whether a protein is folded, and if so characterizing its secondary 

structure and the structural family to which it belongs. 

• comparing the structures of a protein obtained from different sources (e.g. species 

or expression systems) or comparing structures for different mutants of the same 

protein. 
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• studying the conformational stability of a protein under stress –thermal stability, 

pH stability, and stability to denaturants -- and how this stability is altered by 

buffer composition or addition of stabilizers. 

• determining whether protein-protein interactions alter the conformation of 

protein.   

 

6.2 Nuclear magnetic resonance (NMR) 

 

In many cases it will be necessary to know the three-dimensional (3D) structure 

of a protein to understand its function, and two techniques play a dominant part: x-ray 

crystallography and nuclear magnetic resonance (NMR). These are the two main 

techniques that can provide structures of macromolecules at atomic resolution. Several 

features of solution-state NMR make it particularly suitable for structure-function 

analysis. Structural analysis by NMR does not require protein crystals. Most ( 75%) of 

the NMR structures in the Protein Data Bank (PDB) do not have corresponding crystal 

structures, and many of these simply do not provide diffraction quality crystals. 

Moreover, NMR studies can be carried out in aqueous solution under conditions quite 

similar to the physiological conditions under which the protein normally functions. While 

most crystal structures are determined under physiologically relevant conditions, in many 

cases somewhat exotic solution conditions are required for crystallization. NMR 

measurements not only provide structural data but reach much further and can supply 

information on dynamics, conformational equilibrium, folding and intra- as well as 

intermolecular interactions (4-8). The power of NMR over other spectroscopic techniques 
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results from the fact that every NMR active nucleus gives rise to an individual signal 

(resonance line) in the spectrum that can be resolved by multi-dimensional NMR 

techniques. This becomes more difficult for larger molecular structures and puts a 

practical limit to the molecular size that can be studied in detail by NMR (9-11). The 

principles of a NMR structure determination can be summarized as follows: preparation 

of the protein solution, the NMR measurements, the assignment of NMR signals to 

individual atoms in the molecule, identification of conformational constraints (e.g. 

distances between hydrogen atoms), the calculation of the 3D structure on the basis of the 

experimental constraints. The first step to solve the three dimensional structure of 

biological macromolecules in solution by NMR is the preparation of the protein solution. 

An efficient structure determination by NMR requires a highly purified protein 

preparation. The macromolecule under study should be stable in the chosen conditions 

for many weeks. The pH, ionic strength, and temperature can often be adjusted to mimic 

physiological conditions. Any buffers, cosolvents and additives (e.g. detergent 

molecules) used should be preferentially hydrogen-free or deuterated. For the NMR 

measurements the protein is dissolved in 0.25 to 0.5 ml of aqueous buffer that contains 

about 5 % of D2O which is necessary for the stabilization of the NMR instrument during 

the measurement. The inherent low sensitivity of the technique requires protein 

concentrations of about 1 mM. Proteins with a molecular weight larger than 10 kDa must 

be isotope enriched in 15N and 13C for an efficient structure determination. The natural 

abundance of 15N and 13C is only 0.37% and 1.1%, respectively, whereas levels close to 

100% are required for efficient NMR experiments with macromolecules. The sensitivity 

obtainable with these types of nuclei greatly varies even if the sample is fully isotope 
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labelled with 13C or 15N. The proton offers the best sensitivity and hence constitutes the 

preferred nucleus for detection of the NMR signal. The other nuclei are usually measured 

during evolution periods of multidimensional NMR experiments and their information is 

transferred to protons for detection. For unlabelled proteins smaller than 10 kDa the 

combination of the two 2D spectra, [1H, 1H]- COSY and [1H, 1H]-NOESY often allows 

the assignment of most proton NMR signals (12).The first experiment, the [1H, 1H]-

COSY, detects through-bond interactions between protons and correlates protons, which 

are separated by up to three chemical bonds. With this experiment the protons within an 

amino acid can be correlated, however, neighboring amino acids in the polypeptide 

sequence cannot be connected. The set of correlated proton nuclei is referred to as spin 

system. However, as soon as an amino acid occurs more than once in a polypeptide chain 

a direct assignment to a specific sequence position is not possible through COSY 

experiment. For this purpose the second experiment, the [1H, 1H]-NOESY (14), is 

measured, where NOESY stands for NOE spectroscopy (13, 14). NOEs connect pairs of 

hydrogen atoms separated by less than 0.5 nm. In contrast to COSY-type experiments the 

nuclei involved in the NOE correlation can belong to amino acid residues that may be far 

apart along the protein sequence but close in space. For larger proteins extensive signal 

overlap prevents complete assignments of all 1H signals in proton spectra. This barrier 

can be overcome with 2D and 3D NMR techniques and uniformly 13C and 15N labelled 

proteins. With these methods, systems with molecular weights up to approximately 35 

kDa can be studied. In [13C, 15N]-labelled proteins a sequential assignment strategy can 

be used which is based on through-bond correlations across the peptide-bond between 

sequential amino acids. After the assignment of all, or nearly all, resonances of a protein 
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has been performed, experiments for the extraction of structural parameters have to be 

analyzed. The most important parameter for NMR-based structure determination are H-H 

distances, which are derived from NOE intensities, and dihedral angles, which are 

obtained from 3J coupling constants. Programs available for the calculation of three-

dimensional structures utilize, together with experimental constraints, information about 

the covalent structure of the protein - the amino acid sequence, bond lengths, bond 

angles, chiralities, and planar groups - as well as by steric repulsion between non-bonded 

atom pairs. It must be kept in mind that the experimental constraints do not uniquely 

describe one exact 3D structure because NMR-derived constraints typically describe a 

range of possible values and many distances cannot be determined. The structure 

calculation is thus repeated many times to determine an ensemble of structures consistent 

with the input data set. For this reason the NMR structures are usually represented by a 

bundle of structures. The quality of structures is assessed by the calculation of the root 

mean square deviation (RMSD) between the atoms of individual conformers in the 

bundle. At present not many structures of proteins above 30 kDa molecular weight have 

been solved by NMR. One can anticipate, however, that in the not too distant future many 

more NMR structures of larger proteins and protein complexes will become available by 

the widespread use of novel NMR experiments and creative isotope labeling schemes. In 

addition, development of higher magnetic fields and improved spectrometer hardware 

will result in gains in resolution and sensitivity and will further increase the upper 

molecular weight limit for structural studies by NMR. 
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7. Advent of recombinant DNA technology  

Numerous methods have been developed or exploited to mutate DNA to make a 

large number of variants of proteins. Initially all approaches focused on the generation of 

random mutations in chromosomal DNA such as those induced by X-rays (29) and 

chemicals (15). While these methods of random mutagenesis provided a valuable tool for 

classical genetic studies, they were limited by their inability to target the mutation to a 

specific gene or genetic element. Techniques for randomly mutagenizing a genome 

required screening or selection from massive numbers of mutants to obtain the desired 

mutation (16, 17). The ability to manipulate DNA in vitro, through the use of plasmid 

vectors, became a driving force for newer technologies, which allowed precise changes in 

discrete, manageable segments of the genome with relatively little effort.  

Recombinant DNA technology removes the limitations imposed by biological 

systems and allows a variety of in vitro techniques to be used to create these alterations 

and, in many cases, alterations beyond those that could be made by a biological system. 

Strictly speaking, the common procedure of sub-cloning could be considered a 

mutagenesis technique. We will limit our discussion to those techniques designed to alter 

DNA for the sake of studying the effect of that alteration on a regulatory element or gene 

product. Site-directed mutagenesis methods first benefited from recombinant DNA 

technology in the 1970s when isolated genes were exposed to conditions such as 

nucleotide analog incorporation or chemical agents to localize their mutagenic effects. 

During this time, the use of plasmid vectors for DNA replication greatly enhanced the 

study of mutations. Mutagenesis targeted to a defined region of DNA includes many 

techniques, some more popular than others. In vitro approaches to site-directed 
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mutagenesis can be grouped generally into three categories (18): 

i) methods that restructure fragments of DNA, such as cassette mutagenesis 

(19); 

ii) localized random mutagenesis; and  

iii) oligonucleotide-directed mutagenesis.  

Of these methods, oligonucleotide-directed mutagenesis is by far the most commonly 

used method.  

7.1 Oligonucleotide-directed mutagenesis  

All oligonucleotide-directed mutagenesis is based on the same concept an 

oligonucleotide encoding the desired mutation(s) is annealed to one strand of the DNA of 

interest and serves as a primer for initiation of DNA synthesis. In this manner, the 

mutagenic oligonucleotide is incorporated into the newly synthesized strand. Mutagenic 

oligonucleotides incorporate at least one base change but can be designed to generate 

multiple substitutions, insertions or deletions. In vitro site-directed mutagenesis is an 

invaluable technique for studying protein structure-function relationships and gene 

expression, and for carrying out vector modification. Several approaches to this technique 

have been published, but these methods generally require single-stranded DNA (ssDNA) 

as the template (20-23) and are labor intensive or technically difficult. Stratagene’s 

Quick-Change site-directed mutagenesis kit allows site specific mutation in virtually any 

double-stranded plasmid, thus eliminating the need for sub cloning into M13-based 

bacteriophage vectors and for ssDNA rescue (24). In addition, the Quick-Change site-

directed mutagenesis system requires no specialized vectors, unique restriction sites, or 

multiple transformations. This rapid four-step procedure generates mutants with greater 
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than 80% efficiency. The protocol is simple and uses either miniprep plasmid DNA or 

cesium-chloride-purified DNA. For long (~8 kb) or difficult targets, Stratagene offers the 

Quick-Change XL site directed mutagenesis kit (Catalog #200516).The Quick-Change 

site-directed mutagenesis kit is used to make point mutations, switch amino acids, and 

delete or insert single or multiple amino acids. The Quick-Change site-directed 

mutagenesis method is performed using PfuTurbo DNA polymerase and a temperature 

cycler. PfuTurbo DNA polymerase replicates both plasmid strands with high fidelity and 

without displacing the mutant oligonucleotide primers. The basic procedure utilizes a 

super coiled double-stranded DNA (dsDNA) vector with an insert of interest and two 

synthetic oligonucleotide primers containing the desired mutation (Fig.6). The 

oligonucleotide primers, each complementary to opposite strands of the vector, are 

extended during temperature cycling by PfuTurbo DNA polymerase. Incorporation of the 

oligonucleotide primers generates a mutated plasmid containing staggered nicks. 

Following temperature cycling, the product is treated with Dpn I. The Dpn I 

endonuclease (target sequence: 5´-Gm6ATC-3´) is specific for methylated and 

hemimethylated DNA and is used to digest the parental DNA template and to select for 

mutation-containing synthesized DNA (25). DNA isolated from almost all E. coli strains 

is dam methylated and therefore susceptible to Dpn I digestion. The nicked vector DNA 

containing the desired mutations is then transformed into XL1-Blue supercompetent 

cells. The small amount of starting DNA template required to perform this method, the 

high fidelity of the PfuTurbo DNA polymerase, and the low number of thermal cycles all 

contributes to the high mutation efficiency and decreased potential for generating random 

mutations during the reaction.  
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Mutated plasmid contains 
nicked circular strands 

Step 1  
Plasmid preparation  

Step 2 
Temperature Cycling 

Step 3 
Digestion 

Step 4 
Transformation 
 

Figure 6.Overview of Quick change site directed mutagenesis method 



 48 

8. References 
 
1. Kim, S.H. 1998. Nature Struct. Biol. 5, 643−645. 

2. Christendat, D. et al.2000. Nature Struct. Biol. 7, 903−909. 

3. Christendat, D. et al. 2000 Progr. Biophys. and Mol. Biol. in the press. 

4. Dyson, H.J. and Wright, P.E. (1996)  Annu.Rev.Phys.Chem. 47,369-395. 

5. Farrow, N.A., Zhang, O., Forman-Kay, J.D., and Kay, L.E. (1997) Biochemistry 36, 

    2390-2402. 

6. Kay, L.E. (1998), Nature Struct.Biol. 513-517. 

7. Palmer, A.G., III (1997), Curr Opin Struct Biol 7, 732-737. 

8. Wuthrich, K., Billeter, M., Guntert, P., Luginbuhl, P., Riek, R., and Wider, G. (1996), 

     Faraday Discuss. 245-253. 

9. Clore, G.M. and Gronenborn, A.M. (1998), Trends Biotechnol. 16, 22-34. 

10 Kay, L.E. and Gardner, K.H. (1997) Curr.Opin.Struct.Biol.7, 722-731. 

11. Wuthrich, K. (1998), Nat.Struct.Biol. 5 Suppl, 492-495. 

12. Wider, G., Macura, S., Kumar, A., Ernst, R.R., and Wüthrich, K. (1984), 

      J.Magn.Reson. 56, 207-234. 

13. Jeener, J., Meier, B.H., Bachmann, P., and Ernst, R.R. (1979), J.Chem.Phys. 71, 

      4546-4553. 

14. Kumar, A., Ernst, R.R.,Wuthrich, K. (1980), Biochem.Biophys.Res.Commun. 95,1-6. 

15. Muller, H.J. (1927) Science 66, 84. 

16. Auerbach, C. and Robson, J.M. (1947) Proc. R. Soc. Edinburgh B 62, 279. 

17. Hong, J.S. and Ames, B.N. (1971) Proc. Natl. Acad. Sci. USA 68, 3158. 

18. Botstein, D. and Shortle, D. (1985) Science 229, 4719. 



 49 

19. Lo, K.-M. et al. (1984) Proc. Natl. Acad. Sci. USA , 81, 2285. 

20. Kunkel, T. A. (1985) Proc Natl Acad Sci U S A 82(2):488–92. 

21. Vandeyar, M. A., Weiner, M. P., Hutton, C. J. and Batt, C. A. (1988)  

     Gene 65(1):129–33. 

22.Sugimoto, M., Esaki, N., Tanaka, H. and Soda, K. (1989) Anal Biochem179(2) 

    :309–11. 

23. Taylor, J. W., Ott, J. and Eckstein, F. (1985) Nucleic Acids Res 13(24):8765–85. 

24. Papworth, C., Bauer, J. C., Braman, J. and Wright, D. A. (1996) Strategies 9(3):3–4. 

25. Nelson, M. and McClelland, M. (1992) Methods Enzymol 216:279–303. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 50 

In the following sections I will describe in detail the methodologies used for the proteins 

I have studied;  

A .Bacillus pasteruii Cytochrome c Mutants (Bpcytc) 

B. Copper Transporting ATPases PacSN of Cyanobacteria Synechocystis PCC 6803 

C. Zinc Transporting ATPases ZiaA of Cyanobacteria Synechocystis PCC 6803 

D. Cellular Nucleic Acid Binding/ Zinc Finger 9 (CNBP/ZNF9) 

E. Catalytic Domain of A Disintegrin and Metalloprotease 10 (ADAM10) 

 

A. Bacillus pasteruii Cytochrome c Mutants (Bpcytc) 

A.1. Experimental Methods 

The plasmids used to produce protein samples were generated from the pAT1 

plasmid encoding WT Bpcytc. To generate the mutants Q68K, P72A, P72G and I75A 

(Fig.10) the Bpcytc gene was mutated following the procedure of the Quick-Change site-

directed mutagenesis kit. 

 

 

Figure 10. Residues selection from Met loop of B.pasteruii cytochrome c 

Gln68 
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A.1.1. Primer Design Guidelines 
 

The mutagenic oligonucleotide primers used in this protocol have designed 

individually according to the desired mutation. The following considerations have taken 

care while designing the mutagenic primers: 

♦ both of the mutagenic primers must contain the desired mutation and anneal to 

the same sequence on opposite strands of the plasmid. 

♦ primers should be between 25 and 45 bases in length, with a melting 

temperature (Tm) of ≥78°C. Primers longer than 45 bases may be used, but using 

longer primers increases the likelihood of secondary structure formation, which 

may affect the efficiency of the mutagenesis reaction. The following formula was 

used for estimating the Tm of primers: 

 
Tm= 81.5 + 0.41(%GC) − 675/N-% mismatch 

 

• N is the primer length in bases 

• values for %GC and % mismatch are whole numbers 

For calculating Tm for the primers intended to introduce insertions or deletions 

following modified formula was used: 

Tm=81.5+0.41(%GC)-675/N 

where N does not include the bases which are being inserted or deleted. 

♦ the desired mutation (deletion or insertion) should be in the middle of the 

primer with ~10–15 bases of correct sequence on both sides. 

♦ the primers optimally should have a minimum GC content of 40% and should     

terminate in one or more C or G bases. 
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A.1.2 Mutant Strand Synthesis Reaction (Thermal Cycling) 

 
For carrying the thermal cycle for mutagenesis plasmid DNA template was 

isolated from a dam+ E. coli strain. The majority of the commonly used E. coli strains are 

dam+. Plasmid DNA isolated from dam– strains (e.g. JM110 and SCS110) is not suitable. 

To maximize temperature cycling performance thin-walled tubes were used, these ensure 

ideal contact with the temperature cycler’s heat blocks.  

The following protocol was optimized using thin walled tubes; 

1. Two complimentary oligonucleotides containing the desired mutation were synthesized 

which are flanked by unmodified nucleotide sequence.  

2. Control and Sample reaction (s) were prepared by following the instructions in 

stratgene’s site directed mutagenesis kit. 

3. Each cycle was done by using cycling parameters mentioned in Table 2. 

 
Segment Cycles Temperature Time 

1 1 95 0C 30 seconds 

95 0C 30 seconds 

55 0C 1 minute 

2 12-18 

68 0C 1 min/kb plasmid 
length 

 
4. Segment two of the cycling parameters were adjusted according to the type of mutation 

Type of Mutation Desired Number of Cycles 

Point Mutation 12 

Single amino acid change 16 

Multiple amino acid deletions or additions 18 
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5. Dpn I Digestion of the Amplification Products 
 
    Dpn I restriction enzyme (10 U/µl) was added directly to each amplification and 

reaction mixture was spin down in  microcentrifuge for 1 minute and immediately 

incubated each reaction at 37°C for 1 hour to digest the parental (i.e., the nonmutated) 

supercoiled dsDNA. 

6. Transformation to XL1-Blue Supercompetent Cells 
 
7. 5-6 colonies were picked from each plate and mutation was analyzed by sequencing     

   results, positive clones were further used for protein expression. 

 

A.1.3 Expression and Purification of Bacillus pasteurii cytochrome c mutants  
 
 

For protein expression all the mutated clones were transformed in C41 competent 

cells which were co-transformed with pAT1 and pEC86, kindly provided by Dr. Thony 

Meyer. Plasmid pEC86 encodes the complete ccmA-H gene cluster from E. coli, which is 

needed for incorporation of the heme moiety in the expressed cytochrome, under the 

control of the Tet promoter, [29] and carries a marker for chloramphenicol. Cells 

harboring both plasmids were selected for their ability to grow on 2xYT plates containing 

ampicillin (100 µgmL-1) and chloramphenicol (50 µgmL-1). Rich media cultures were 

performed with the 2xYT culture medium supplemented with antibiotics. Cultures were 

usually incubated overnight with shaking at 370C, then induced with IPTG (IPTG; 

0.5mM) and finally harvested after 24 h by centrifugation at 40C. For preparation of 15N-

enriched samples, cultures were grown on minimal medium consisting of M9 salts 

supplemented with MgSO4, trace metal, and vitamin solutions, and also containing δ-

aminolevulinic acid (0.1 mM) and 2-mercaptoethanesulfonic acid (1 mM).The nitrogen 
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source was (15NH4)2SO4 (1.2 gL-1) and the carbon source was glucose (4 gL-1).The 

protein was extracted from E. coli cells by isolating the periplasmic contents, which were 

loaded directly onto a DE52 column equilibrated with 2 mM sodium ascorbate and 0.1M 

tris (hydroxymethyl) aminomethane (Tris)-HCl at pH 8.0 and eluted with a 0 ±300 mM 

NaCl gradient in the same buffer. Red fractions were concentrated, applied to a gel 

filtration column, and then eluted with 15 mM sodium phosphate buffer (pH 7.5). 

Samples for NMR spectroscopy were at a concentration of 1.0 ± 1.5 mM protein in the 

elution buffer of the gel filtration column. Immediately prior to NMR experiments on 

oxidized Bpcytc, O2 was bubbled into the sample solution for 15-30 minutes. Reduction 

of Bpcytc was achieved by addition of an equimolar amount of sodium dithionite to the 

solution under anaerobic conditions. 

 
A.1.4 Denaturation studies with GdmCl 

 

Complete oxidation of the protein was achieved by washing samples with a five- 

to tenfold excess of K3Fe(CN)6. Protein samples in GdmCl were prepared by pipetting 

aliquots of stock GdmCl solutions into phosphate-buffered ([phosphate] =100 mM) 

protein solutions. Stock solutions of GdmCl were freshly prepared prior to each 

experiment. All unfolding measurements were carried out at pH 7.0. The pH of the final 

solutions was always checked after addition of the denaturant, and, when necessary, 

adjusted again to the desired value with concentrated NaOH or HCl. In all cases, the pH 

of the solutions was checked also after completion of the experiments. Samples for NMR 

spectroscopy were 0.5–1.5 mM in protein. Samples for CD studies were 5–20 μM in 

protein. Titrations with denaturant were followed on unlabelled samples through 1H-1D 
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spectra at 700 MHz and CD spectra were acquired on a Jasco J-800 spectropolarimeter at 

room temperature. 

A.1.5 NMR and CD Experiments 

Detailed experimental procedure on NMR experiments and CD study were 

explained in the attached paper in results section (Chapter 3). 

 

B. Copper Transporting ATPases PacS of Cyanobacteria Synechocystis 

PCC 6803 

B.1 Experimental Methods 

B.1.1 Cloning, Expression and Purification PacSN 

Amino terminal protein Sequence of PacSN; 

MAQTINLQLEGMRCAACASSIERAIAKVPGVQSCQVNFALEQAVVSYHGETTPQI

LTDAVERAGYHARVLKQQVLSSQQTEDRKPVFSAKLVTGL (NCBI P73241) 

Synechocystis PCC 6803 genomic DNA was used as template for PCR with primers 

 5'-GAACATATGGCCCAAACCATC-3' and 5'-GAAGAATTCTCATAACCCC 

GTTACCAATTTGGCCGA-3'. The amplified fragment of DNA containing codons 1-95 

encoding the entire amino-terminal region of PacSN was ligated into the NdeI/EcoRI sites 

of pET29a to create pETPacSN (Fig.16).  
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Recombinant protein was expressed as a soluble protein in E. coli. The entire 

expression tests were conducted in Minifor fermentor. To obtain unlabelled protein, 

BL21 cells harboring the pETPacSN  plasmid were grown at 37°C, exposed to 1mM 

IPTG (isopropyl-1-thio-D-galactopyranoside) and 1 mM of copper sulfate in case of rich 

media. For expression of labeled PacSN, M9 minimal medium (16) supplemented with 

[13C] glucose and   (
15

NH4)2SO4   as only sources of carbon and nitrogen was used. Cells 

were grown at 37°C to an A600 nm of 0.6 prior to induction with 1 mM isopropyl-1-thio-

D-galactopyranoside (IPTG), copper sulfate was added to the growth medium to a final 

concentration of 50 µM. Cells were harvested after 6 hrs in case of rich media (LB) and 7 

hrs in case of minimal medium. Cells were then lysed by freeze-thawing and repeated 

sonication. The lysate was clarified by centrifugation at 100,000 × g for 40 min at 4 °C. 

The supernatant was filtered through a low protein-binding 0.45 µm filter and loaded 

EcoRI 

pET29a Nde I 

Figure 16.Cloning of amino terminal gene PacSN in pET29a 

PacSN coding gene 
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onto a 5ml HiTrap Q XL column (Amersham Pharmacia Biotech) which was pre-

equilibrated with Tris 25 mM pH 9. Chromatography was done using a Pharmacia fast 

protein liquid chromatography (FPLC) unit. The protein was eluted by a 100 ml 50mM 

NaCl step. The fractions containing PacSN were concentrated and subjected to size 

exclusion chromatography on a HiLoad 16/60 Superdex 75 column (Amersham 

Pharmacia Biotech) equilibrated in 25 mM Tris pH 9. To prevent disulfide formation, 

which might occur because of the presence of two cysteines, the protein samples were 

kept in anaerobic conditions. In these conditions the buffer was changed by an ultra 

filtration device (Amicon) against sodium phosphate pH 7.0 with the addition of reducing 

agent dithiothreitol (DTT) at a final concentration of 4 mM. Protein expression and 

purification was monitored by sodium dodecyl phosphate-polyacrylamide (SDS) gel 

electrophoresis in 17% polyacrylamide gels stained with Coomasie brilliant blue R-250 

against Perfect Protein marker (Novagen). 

B.1.2 Metallation of PacSN with Cu (I) 

ApoPacSN was diluted to 200 µM in 20 mL of Tris-MES (100mM, pH 8.0) in 

presence of 5 mM DTT in the glove box. 1.5 equivalents of [Cu (CH3CN) +PCl-] was 

added to the protein solution and allowed to equilibrate for ~ 30 min. The unbound metal 

was washed away with three buffer exchanges without DTT (50:1 dilutions each time). 

Then protein was concentrated to 1 mM by using amicon ultrafiltration cell..  

B.1.3 NMR Experiments and Structure Calculations of apoPacSN 

Detailed experimental procedures on NMR experiments, structural calculation, 
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mobility studies and protein–protein interaction were explained in the attached paper 

(Chapter 3). 

 

C. Zinc Transporting ATPases ZiaA of Cyanobacteria Synechocystis 

PCC 6803 

C.1 Experimental Methods 

C.1.1 Cloning, expression and structural characterization of ZiaAN  

Protein Sequence of amino terminal ZiaAN; 

MTQSSPLKTQQMQVGGMDCTSCKLKIEGSLERLKGVAEASVTVATGRLTVTYD

PKQVSEITIQERIAALGYTLAEPKSSVTLNGHKHPHSHREEGHSHSHGAGEFNLK

QEL (NCBI: BAA17301) 

Synechocystis PCC 6803 genomic DNA was used as template for PCR with primers 

 5'-GGATCCATGACCCAATCTTCACCGCTCAAAAC-3' with 5'-CTCGAGT 

AGTTCTTGTTTCAGATTAAATTC-3’. The amplified fragment of DNA containing 

codons (1-111 residue) encoding the entire amino-terminal region of ZiaA was ligated 

into the BamHI/XhoI sites of pET29a to create pETZiaA (Fig.17).          
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Recombinant protein was expressed as a soluble protein in E. coli. The entire expression 

test was conducted in Minifor fermentor in order increase the protein yield. To obtain 

unlabelled protein, BL21 cells harboring the pETZiaAN  plasmid were grown at 37°C, 

exposed to 0.5mM IPTG (isopropyl-1-thio-D-galactopyranoside) and 1 mM of zinc 

sulfate in case of rich media. For expression of labeled ZiaAN, M9 minimal medium  

supplemented with [13C] glucose and (
15

NH4)2SO4 as only sources of carbon and 

nitrogen was used. Cells were grown at 37°C to an A600 nm of 0.6 prior to incubation 

with 1 mM IPTG, zinc sulfate was added to the growth medium to a final concentration 

of 75 µM. Cells were harvested after 6 hrs in case of rich media and 7 hrs in case of 

minimal media. Cells were then lysed by freeze-thawing and repeated sonication. The 

lysate was clarified by centrifugation at 100,000 × g for 40 min at 4 °C. The supernatant 

was filtered through a low protein-binding 0.45 µm filter and loaded onto a 5ml Hi-Trap 

BamHI 

XhoI 

pET29a 

 
ZiaAN coding gene 

 Figure 17. Cloning of amino terminal domain of  ZiaAN in pET29a 
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Q XL column (Amersham Pharmacia Biotech) equilibrated with Tris 25 mM pH 9. 

Chromatography was done using a pharmacia fast protein liquid chromatography (FPLC) 

unit. The protein was eluted by a 100 ml 50mM NaCl step. The fractions containing 

ZiaAN were concentrated and subjected to size exclusion chromatography on a Hi-Load 

16/60 Superdex 75 column (Amersham Pharmacia Biotech) equilibrated with 25 mM 

Tris pH 9. To prevent disulfide formation, which might occur because of the presence of 

two cysteines, the protein samples were kept in anaerobic conditions. In these conditions 

the buffer was changed by an ultra filtration device (Amicon) against sodium phosphate 

pH 7.0 with the addition of reducing agent dithiothreitol (DTT) at a final concentration of 

4 mM. Protein expression and purification was monitored by sodium dodecyl phosphate-

polyacrylamide (SDS) gel electrophoresis in 17% polyacrylamide gels stained with 

Coomasie brilliant blue R-250 against Perfect Protein marker (Novagen).   

C.1.2 Preparation of Zn-ZiaA samples 

ZiaAN was diluted to 200 µM in 10 mL HEPES (100mM, pH 7.0) buffer in presence of 5 

mM DTT. One equivalent of ZnSO4 was added to the protein solution and allowed to 

equilibrate for ~30 minutes. The unbound metal was washed away by passing the 

solution again in PD10 desalting column. Finally, the sample was concentrated to 500 µl 

and 10% D2O was added. 

 C.1. 3 NMR Experiments and Structure Calculations of ZiaAN 

Detailed experimental procedures on NMR experiments, structural modeling and 

mobility studies were explained in the Chapter 3. 
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D.  Zinc Finger 9 /Cellular Nucleic Acid Binding (CNBP/ZNF9) 

D.1 Experimental Methods 

D.1.1 Cloning and Expression of ZNF9 protein 

Protein sequence of ZNF9  

MSSNECFKCGRSGHWARECPTGGGRGRGMRSRGRGGFTSDRGFQFVSSSLPDICYRCGESGHLAK

DCDLQEDACYNCGRGGHIAKDCKEPKREREQCCYNCGKPGHLARDCDHADEQKCYSCGEFGHIQ

KDCTKVKCYRCGETGHVAINCSKTSEVNCYRCGESGHLARECTIEATA  

 

The genes encoding human ZNF9 (1-177 residues) was PCR amplified from human brain 

cDNA library. The PCR amplificate was first cloned into an entry vector, 

pENTR/TEV/D-TOPO (Invitrogen) and further sub-cloned into an expression vector 

(pDEST-17), able to express N-terminal His-tagged protein (Fig.18). Bacterial clones 

were screened by either restriction digestion and/or PCR amplification by using a mixture 

of vector plasmid specific M13 forward primer and the gene specific reverse primer. 

Finally, positive bacterial clones were confirmed by DNA sequencing and one clone was 

chosen for expression. Bacterial cultures were induced with 0.2% L-arabinose at OD600 

reached 0.6. Over-expression of the protein was seen after 6 hrs in rich medium. 
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PCR Fragment 

TOPO Cloning 

Entry Vector 

Expression in E.coli cells, BL21 AI 

Figure 18. Schematic representation of the strategy of cloning of human ZNF9 protein 
in E.coli 
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D.1.2 Refolding of ZNF9 polypeptide 
 
 

ZNF9 was expressed in inclusion bodies. Protein was purified under denaturing 

condition by using 8M urea. Since the protein was expressed with 6X Histidine tag, His-

tag was exploited for purification and refolding. Hi-trap chelating column charged with 

Ni (SO4) was used for purification and urea was removed by running a gradient. The final 

concentration of urea in the protein was 2 M. 

Finally protein was refolded by using following additives; 

1. Glycerol (10%) 

2. Sarcosine(0.5M) 

3. N-acetyl glucosamine (NAG) (1M) 

4. Sulphobetaines (0.5M) 

5. Tween (0.5M) 

6. L-Arginin (1M) 

 

E. Catalytic Domain of A Disintegrin and Metalloprotease 10 

(ADAM10) 

E.1 Experimental Methods 

E.1.1 Cloning, Expression and Purification of ADAM10 protein 

Protein sequence of ZNF9  

QLYIQTDHLFFKYYGTREAVIAQISSHVKAIDTIYQTTDFSGIRNISFMVKRIRINTTADEKDPTNPFR

FPNIGVEKFLELNSEQNHDDYCLAYVFTDRDFDDGVLGLAWVGAPSGSSGGICEKSKLYSDGKKK

SLNTGIITVQNYGSHVPPKVSHITFAHEVGHNFGSPHDSGTECTPGESKNLGQKENGNYIMYARAT

SGDKLNNNKFSLCSIRNISQVLEKKRNNCFVESG  
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The genes encoding human ADAM10 (1-234 residues) was PCR amplified from human 

brain cDNA library. ADAM 10 was cloned and expressed by similar cloning and 

expression strategy to that of ZNF9, with slight modification in the induction time. The 

expression of ADAM 10 was maximized at 4 hours of post L-arabinose induction. 

ADAM 10 was purified by using Hi-trap chelating column charged with Ni(SO4).In 

addition  size exclusion chromatography was used here. The protein was very pure at the 

end of second column. The preliminary protein folding was checked by 1D NMR. 

Further 15N labeled sample was prepared by using (
15

NH4)2SO4 as only nitrogen 

source.1H-15N HSQC was performed to check the folding secondary folding of the 

protein. 
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First part of my research work during the period of my doctorate was expression, 

purification and structural characterization of Bacillus pasteruii cytochrome c mutants.  

Second part of my work was cloning, expression, purification and structural 

characterization of N-terminal copper and zinc binding domains of P1-type of ATPases 

PacS and ZiaA from Synechocystis PCC 6803.In addition to these proteins I have also 

worked with cloning, expression and purification of two more human zinc binding 

proteins, ZNF9 and ADAM10. 

A. Cytochrome c Mutants of Bacillus pasteruii  

A.1 Overview 

Bacillus species are Gram-positive microorganisms lacking a true periplasm and 

are obliged to store electron-transfer proteins as membrane-bound forms. Three types of 

class I c-type cytochromes have been identified in Gram-positive bacteria: (i) 

cytochromes fused as integral domains of subunit II in membrane-bound aa3-type 

terminal oxidases, (ii) cytochromes bound to the membrane through an N-terminal 

hydrophobic polypeptide, and (iii) cytochromes bound to the membrane via a diacyl-

glyceryl-cysteine moiety (1). The difficulties associated with the study of such water-

insoluble proteins may explain why only a few c-type cytochromes have been isolated 

from Gram-positive bacteria (2-13). As a consequence, their properties and functional 

roles are scarcely known, and no structural information is available, in contrast with 

cytochromes from Gram-negative bacteria and eukaryotes (14-15). The Gram-positive 

alkaliphilic soil bacterium Bacillus pasteurii produces large amounts of membrane-bound 

cytochromes of the b- and c-types, as well as a terminal oxidase of the aa3-type (16-17). 

The soluble form of a c-type cytochrome (named cytochrome c553) has been purified (12). 
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B. pasteurii cytochrome c553 is a small (9.6 kDa) acidic (pI = 3.3) protein (12), having a 

chain length of 92 amino acids and a single heme-binding sequence pattern (Cys-X-X-

Cys-His) located in the first half of the polypeptide chain (18). These features indicate 

that the protein belongs to class I cytochromes (19). Its amino acid sequence suggests that 

in vivo cytochrome c553 is bound to the cytoplasm membrane through a diacyl-glyceryl-

cysteine anchor located at the N-terminus tail and that the soluble form is obtained by 

cleavage of this tail during cell disruption (18). A paramagnetic NMR spectroscopic 

study on the oxidized Fe(III) form confirmed the presence of a c-type heme and 

additionally allowed the identification of a hexacoordinate low-spin Fe ion axially bound 

to His and Met residues (Figure 7) (20). The thermodynamic parameters for the one-

electron reduction process suggested that the heme group is highly exposed to the solvent 

and that extrusion of water molecules from the protein hydration shell occurs upon 

reduction (20). The function of cytochrome c553 in B. pasteurii is unknown, but it 

probably plays a role in respiratory metabolism (18). For most members of this class the 

heme binding site is preceded by an N-terminal peptide stretch of 12 to 18 residues. In 

those class I proteins of which the 3D-structure has been determined, this region appears 

to form the so-called N-terminal helix. B. pasteurii c553 therefore can be said to contain 

an N-terminal extension of a 15 residues compared to the N-terminal helix region of most 

class I cytochromes. The occurrence of a methionine residue as the sixth heme ligand in 

the second part of the polypeptide chain, 34 residues downstream the fifth heme ligand 

histidine of the heme binding site, suggests that B. pasteurii c553 is a member of the 

cytochrome c subclass as occurs in the prototype sequence of Pseudomonas aeruginosa 

cytochrome c-551 [21,22].  
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Figure 7. Scheme of the heme prosthetic group as detected in B. pasteurii 

cytochrome c553 by paramagnetic NMR spectroscopy. Top and side views are shown. 

 

There is, however, very little sequence similarity with the latter cytochrome, 

except for a few residues. In Fig. 8 we can see the sequence of B. pasteurii c553 with the 

sequences of all other Bacillus cytochromes c known so far. The comparison starts from 

Thr19, because this position corresponds to the N-terminal residue of most of the other 

Bacillus cytochromes. If we consider the chain length between the two heme axial ligand 

binding residues His and Met (positions 36 and 71 in B. pasteurii c553), there appear to 

be two groups of Bacillus cytochromes c: those with around 35 (subgroup S, sequences 

(7)–(13)) and those with around 50 residues between these sites (subgroup L, sequences 

(1)–(6)).  
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Figure 8. Amino acid sequence of the cytochromes c from several Bacillus 
strains starting the alignment with Thr19 of B.pasteruii c553.The heme 
binding residues are indicated by . Sequence (14) is from Pseudomonas 
aeurigonasa cytochrome c-551 for which also the 3D structure is known. 
 
 (1) Bacillus subtilis CTAC                         (12) Bacillus subtilis PS3 c-551 
 (2)  Bacillus stearothermophilus                (13) Bacillus pasteurii c553 
 (3)  Bacillus sp PS3 CTAC                         (14) Pseudomonas aeurigonasa c-551 
 (4)  Bacillus sp YN2000 
 (5)  Bacillus firmus CTAC 
 (6)  Thermus thermophilus CTAC 
 (7)  Bacillus stearothermophilus QCRC 
 (8)  Bacillus subtilis QCRC 
 (9)  Bacillus subtilis c-550 
(10) Bacillus subtilis c-551 
(11) Bacillus licheniformis c-551 
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B. pasteurii cytochrome c553 belongs to subgroup S, even without having to 

consider insertions or deletions compared to the other members of that group. A slightly 

decreased similarity is observed with Bacillus sp. PS3 cytochrome c-551 (45%) and B. 

subtilis cytochrome c-551 (41%), while much less similarity is detected with the B. 

subtilis cytochrome c-550 (23%). 

 
 
 

        

 

 

Figure 9. Solution (A) and Crystal structure (B) of Bacillus pateruii cytochrome 

c553. 

The solution structure (Fig.9A) of oxidized Bacillus pasteurii cytochrome c553 

was reported (24) and compared with the available crystal structure (Fig.9B) (23). The 

solution structure closely resembles the fold observed in the crystal structure. At variance 

with mitochondrial cytochrome c proteins, this protein does not experience pH-dependent 

coordination equilibria (24). Detailed characterization of the unfolding mechanisms and 

of the factors determining the thermodynamic stability of a cytochrome c553 was also 

(A) (B) 
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deeply investigated [24, 25, 26, 27, and 28]. Since the binding of the axial Met represents 

a crucial and yet not fully understood aspect of the biochemistry of cytochromes c, we 

have investigated the structural properties of the loop containing the iron axial ligand 

Met71 in oxidized Bpcytc using site directed mutagenesis at different sequence positions, 

in order to obtain better insight into the determinants of the peculiar high stability of the 

axial coordination towards GdmCl and alkaline pH. 

The aim of this research work was to undertake a detailed characterization of the 

unfolding mechanisms and of the factors determining the thermodynamic stability of a 

minimal 71-residue mono-heme cytochrome c. The other objective of this research work 

was to gain insight into the general factors and system-specific variations associated with 

the folding properties of the very widespread cytochrome c fold. 
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A.3 Cloning, expression and characterization of the mutants 

 The plasmid used to produce mutants was generated from the pAT1 plasmid 

encoding WT Bpcytc. Following are the mutants developed by using the Quick-Change 

Site-directed mutagenesis kit (Stratagene); 

1. Q68K (Glutamine       Lysine) 

2. P72A  (Proline           Alanine) 

3. P72G  (Proline           Glycine) 

4. I75A   (Isoleucine       Alanine) 

Two clones were selected from each mutant for screening by DNA sequencing. The 

positive clone from each mutant was selected for the protein expression. I75V mutant 

was selected for test expression and the culture was induced at O.D600 reaching 1.2 with 

0.5 mM IPTG at 37 0C. Samples were collected at different time intervals (0h, 4h, 6h, 8h, 

16h and 24 h).The protein was well expressed after 24 hrs (Figure 19). The other three 

mutants were also expressed with the same procedure. All the mutants were purified by 

using anion exchange chromatography and size exclusion chromatography. In all the 

mutants the protein was pure at the end of final column more than 90% (Fig.20). Folding 

status of I75V was checked by 1D NMR (Fig. 21) using unlabelled protein. 1H-15N 

HSQC was done at 298 K to follow up the state of fold of I75V mutant (Fig.22) and 

compared with wild type 1H-15N HSQC.  
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Figure 20.17% SDS PAGE showing the purity of protein after size exclusion. 

M-Marker, FT-Flow through, W-Wash, 1&2-I75V protein samples. 
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Figure 19.17% SDS PAGE profile of test expression for I75V mutant, (1) 0 hr 

(2) 4 hr (3) 6 hr (4) 8 hr (5) 16 hr (6) 24 hr. M-Protein Marker. 
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Figure 21.1D NMR spectra of I75V mutant at 298 K 

 

Figure 22.1H-15N HSQC of I75V mutant at 298 K  
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A.4 NMR and CD results  

Further all four mutants were used to study the unfolding by using GdmCl. 

Stability of each mutant was analyzed by using CD and NMR techniques. All the results 

were described in the following attached article; 
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Abstract The minimal mono-heme ferricytochrome c
from Bacillus pasteurii, containing 71 amino acids, has
been further investigated through mutagenesis of dif-
ferent positions in the loop containing the iron ligand
Met71. These mutations have been designed to sample
different aspects of the loop structure, in order to obtain
insights into the determinants of the stability of the ir-
on(III) environment. In particular, positions 68, 72 and
75 have been essayed. Gln68 has been mutated to Lys to
provide a suitable alternate ligand that can displace
Met71 under denaturing conditions. Pro72 has been
mutated to Gly and Ala to modify the range of allowed
backbone conformations. Ile75, which is in van der
Waals contact with Met71 and partly shields a long-
lived water molecule in a protein cavity, has been
substituted by Val and Ala to affect the network of inter-
residue interactions around the metal site. The different
contributions of the above amino acids to protein
parameters such as structure, redox potential and the
overall stability against unfolding with guanidinium
hydrochloride are analyzed. While the structure remains
essentially the same, the stability decreases with muta-
tions. The comparison with mitochondrial c-type cyto-
chromes is instructive.

Keywords Cytochrome c Æ NMR spectroscopy Æ
Protein unfolding Æ Site-directed mutagenesis Æ
Water-protein interaction

Abbreviations Bpcytc: soluble fragment of cytochrome
c553 from Bacillus pasteurii Æ GdmCl: guanidinium
chloride Æ I75A: Ile75 to Ala mutant Æ I75V: Ile75 to Val
mutant Æ P72A: Pro72 to Ala mutant Æ P72G: Pro72 to
Gly mutant Æ Q68K: Gln75 to Lys mutant Æ WT: wild
type

Introduction

We have recently undertaken a detailed characterization
of the unfolding mechanisms and of the factors deter-
mining the thermodynamic stability of a minimal 71-
residue mono-heme cytochrome c: the soluble fragment
of cytochrome c553 from Bacillus pasteurii (Bpcytc
hereafter) [1, 2, 3, 4, 5]. The aim of this research is to
obtain information that can be used, in comparison also
with the intensely studied mitochondrial c-type cyto-
chromes, to gain insight into the general factors and
system-specific variations associated with the folding
properties of the very widespread cytochrome c fold.

There are practically no differences between the
backbone conformations of reduced and oxidized states
of the wild-type (WT) protein [3]. Also the dynamic
properties of Bpcytc in the two physiologically relevant
oxidation states are similar [3], with reduced Bpcytc
being slightly more rigid, as commonly observed (al-
though to a larger extent) for c-type cytochromes [6].
Recently, we have identified within the protein frame of
Bpcytc a long-lived water molecule [4], which does not
correspond to any of the buried waters bound to mito-
chondrial cytochromes c. This water molecule is not
significantly affected by variations in the redox state of
the heme iron [4], probably as a consequence of its being
involved in three hydrogen bonds with the polypeptide
chain (as suggested by inspection of the high-resolution
crystal structure of oxidized Bpcytc [7]).
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WT oxidized Bpcytc features unchanged His/Met
heme axial coordination at pH values up to 12, at var-
iance with mitochondrial cytochromes c [2, 8]. Heme
mis-ligation is induced at neutral pH by high concen-
tration (>4 M) of guanidinium chloride (GdmCl), and
occurs concomitantly with extensive unfolding of the
polypeptide chain [2]. There are several elements of
evidence, including the significant analogy of the orga-
nization of opening units across the protein structures
[5], suggesting that the relatively uncommon stability of
the Met loop in oxidized Bpcytc is mainly dependent on
the local properties of the loop region itself, i.e. its pri-
mary sequence rich in Gly and Pro residues, its short size
and the low number of long-range contacts with the
remainder of the protein [2]. Since the binding of the
axial Met represents a crucial and yet not fully under-
stood aspect of the biochemistry of cytochromes c, we
have investigated some of the key factors relevant to it.

In this work, three locations within the Met loop have
been identified which appeared potentially capable of
directly affecting the loop stability: Gln68, Pro72 and
Ile75. These sites have been probed through site-directed
mutagenesis; the mutants generated (Q68K, P72A,
P72G, I75A, I75V) have been investigated in the oxi-
dized state through a combination of UV-Vis, CD and
NMR spectroscopy. In addition, the reduction thermo-
dynamics for the WT species and some mutants
have been determined through direct electrochemistry
experiments and compared with those of other class I
cytochromes c.

Materials and methods

The plasmids used to produce protein samples was
generated from the pAT1 plasmid encoding WT Bpcytc.
To generate the mutants Q68K, P72A, P72G and I75A,
the Bpcytc gene was mutated following the procedure of
the QuickChange site-directed mutagenesis kit (Strata-
gene). Protein production and purification was done as
previously reported [1]. All mutants were studied in the
oxidized state in 100 mM phosphate buffer at pH 7.0
unless otherwise stated.

The approach used for resonance assignment and
structure calculation was the same as in previous works
[1, 3]. 1D 1H NOE measurements were performed with
the methodology described earlier [9], and with param-
eters analogous to those used for WT oxidized Bpcytc
[1]. Structure calculations were run with the program
CYANA [10], using CANDID [11] for automated NO-
ESY assignment.

Protein dynamics and backbone amide proton ex-
change rates were characterized using data acquired at
400 MHz and/or 600 MHz. The sub-nanosecond and
milli- to microsecond time scales are characterized based
on the measured values of 15N nuclear relaxation rates
and 1H–15N heteronuclear NOEs. R1 and R2 values and
exchange rates were obtained by fitting the cross peak

intensities to a single exponential as a function of the
relaxation delay. The errors on the fit were estimated
by repeating the fit 500 times while varying the data
randomly within the error range of the experiment.
Heteronuclear NOE values were calculated as the ratio
of peak volumes in spectra recorded with and without
saturation. The error in NOE values was calculated by
recording a second data set and repeating the analysis.
Only relaxation data for which the error was lower than
20% were used in the fit. Overlapping signals have been
discarded.

Protein–water interactions were probed through
CLEANEX, TrROESY and ePHOGSY experiments, as
described elsewhere [4].

Samples for protein unfolding studies were prepared
as described previously [2]. All unfolding measurements
were carried out at pH 7.0. Titrations with denaturant
were followed on unlabelled samples through 1H 1D
spectra at 700 MHz, acquired using spectral windows
between 70 and 200 ppm and recycle times between 0.5
and 1.0 s. UV-Vis spectra were acquired on a Varian
Cary 3 UV-visible scanning spectrophotometer at room
temperature. CD spectra were acquired on a Jasco J-800
spectropolarimeter at room temperature. Denaturation
profiles were obtained by UV-Vis and CD spectroscopy
at pH 7.0 as described previously [2], and analyzed
through the well-known linear extrapolation method
[12]:

DGD ¼ DGH2O � m GdmCl½ � ð1Þ

where DGD is the free energy difference between the
folded and unfolded forms (called respectively LS and
LS1 in [2]) at a specific concentration of GdmCl, defined
by [GdmCl], DGH2O is the free energy difference between
the folded and unfolded forms in the absence of dena-
turant, and m is a constant that relates to the increase in
the degree of exposure of the protein during the transi-
tion [13]. This equation holds in the assumption of only
two states being present, each insensitive to changes in
[GdmCl].

Cyclic voltammetry (CV) experiments were performed
with a potentiostat/galvanostat PAR model 273A at
different scan rates (m=0.02–0.5 V/s) using a small-vol-
ume cell (V=0.5 mL) under argon. A 2-mm diameter
gold disc was used as the working electrode, while a
calomel and a platinum sheet were used as the reference
and counter electrodes, respectively. The electric contact
between the SCE electrode and the sample solution was
obtained with a Vycor set. Potentials were calibrated
against the MV2+/MV+ couple (MV=methylviologen).
All reduction potentials reported in this paper are re-
ferred to the standard hydrogen electrode (SHE). The
working electrode was polished with an alumina (particle
size of about 0.015 lm) water slurry on cotton wool
subsequent to immersion in absolute ethanol for 10 min,
then the electrode was treated in a ultrasonic pool for
10 min. Finally, the electrode was subjected to 10 vol-
tammetric cycles between +0.7 and )0.6 V (scan rate
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0.1 V/s) to minimize residual adsorbed impurities.
Modification of the electrode surface was performed by
dipping the polished electrode into a 1 mM solution of
4-mercaptopyridine for 30 s, then rinsing it with nano-
pure water. A 100 mM sodium chloride solution (in the
presence of 10 mM phosphate buffer) was used as base
electrolyte. Protein solutions were freshly prepared
before use and their concentration, varying over
0.1–0.3 mM, was checked spectrophotometrically. The
temperature dependence of the reduction potential was
determined with a ‘‘nonisothermal’’ cell [14], in which the
reference electrode is kept at constant temperature
(20±0.1 �C), while the half-cell containing the working
electrode and the Vycor junction to the reference elec-
trode is under thermostatic control with a water bath.
With this experimental configuration, the reaction
entropy for reduction of the oxidized protein (DS�¢rc) is
given by [14, 15]:

DS�
0

rc ¼ S�
0

red � S�
0

ox ¼ nF dE�
0
=dT

� �
ð2Þ

Thus, DS�¢rcwas determined from the slope of the plot
of E�¢ versus temperature, which turns out to be linear
under the hypothesis that DS�¢rc is constant over the
limited temperature range investigated. With the same
assumption, the enthalpy change (DH�¢rc) was obtained
from the Gibbs–Helmholtz equation, namely from the
slope of the E�¢/T versus 1/T plot. The nonisothermal
behavior of the cell was carefully checked by determin-
ing the DH�¢rc and DS�¢rc values of the ferricyanide/fer-
rocyanide couple [14, 15, 16]. For each species, the
experiments were performed at least two times and
the reduction potentials were found to be reproducible
within ±2 mV.

Results

NMR spectroscopy under native conditions

Figure 1 shows a comparison of the 1D 1H spectra of
WT Bpcytc and the mutants generated in this work.
There are two patterns of distribution of the paramag-
netically shifted signals of the heme substituents and of
the axial ligands: the first pattern is that of the WT,
Q68K, P72A and P72G proteins, while the second pat-
tern is characteristic of the two Ile75 mutants. The two
patterns differ mostly for the chemical shifts of the me-
thyl groups of the heme and for the signals of the axial
Met71 (Fig. 1). Figure 2 shows combined chemical shift
differences of the backbone amide moieties (Dd) [17] with
respect to WT for P72G and I75A, derived from 1H–15N
HSQC spectra. We show results on these mutants be-
cause they are representative of the different behavior
with respect to GdmCl (described in the next section).
Chemical shift data are very similar for the P72G and
P72A mutants. It is apparent that the vast majority of
the polypeptide chain is essentially unaffected by the
various mutations considered, with Dd values well within

0.15 ppm. The largest chemical shift variations are ob-
served for the mutated amino acid and/or its neighbors,
with other significant variations being confined within
the Met loop. The only consistent exception to this
general behavior is observed for the amide moiety resi-
due His36 (one of the two iron ligands), which generally
appears more sensitive to mutations than that of the
other ligand, Met71. Overall, these data indicate that
differences in the three-dimensional structure of WT and
the mutants Bpcytc, if any, should be very small.

Denaturation with GdmCl

Figure 3 shows the denaturation profiles of the various
mutants, measured through CD spectroscopy. Best-fit

Fig. 1 1D NMR proton spectra of oxidized WT Bpcytc and of
various mutants studied in this work. Signals in the spectra of WT
and I75A Bpcytc, which are representative of the two different
patterns observed, are labeled with the assignment of some
hyperfine shifted signals. The labeled signals belong to the heme
cofactor and to the axial ligands His36 and Met71. The spectra are
recorded at 296 K. The samples were in 100 mM phosphate buffer,
pH 7.0
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thermodynamic parameters are given in Table 1. The
results for the WT protein and the Q68K mutant are
essentially the same, while the two I75 mutants are
similar to one another but different from WT in that
unfolding is more easily induced (i.e. lower DGH2O). The
two P72 mutants are strikingly more different with sig-
nificantly lower DGH2O and m. Analogous titrations by
UV-Vis spectroscopy yield, within error, essentially the
same thermodynamic parameters as the above-men-
tioned titrations by CD spectroscopy. CD and UV-Vis
spectroscopy monitor different processes, as the first
detects variations in the secondary structure of the
protein, while the second is sensitive to variations in the
coordination sphere of the heme iron. The good agree-
ment between CD and UV-Vis data indicates that the
loss of secondary structure and the variation of the heme
coordination environment take place simultaneously, as
already observed for the WT protein [2].

NMR titrations with GdmCl are in good agreement
with the denaturation profiles obtained by CD and UV-
vis spectroscopy. Figure 4 shows the NMR spectra at
pH 7.0 and high (i.e. sufficient to induce >50% dena-
turation) [GdmCl] for WT, I75A, P72G and P72A oxi-
dized Bpcytc. It appears that under denaturing
conditions these four systems display the same pattern of

Fig. 2 Combined chemical shift variation with respect to WT
Bpcytc (Dd) [17] for backbone amide groups (top: I75A mutant;
bottom: P72G mutant), derived from 1H–15N HSQC spectra

Fig. 3 Logarithm of the [LS]/[LS1] ratio estimated from CD
spectra as a function of GdmCl concentration. Asterisks: WT;
open circles: Q68K; stars: I75A (open) and I75V (filled); triangles:
P72A (open) and P72G (filled). The samples were in 100 mM
phosphate buffer, pH 7.0. The thermodynamic parameters result-
ing from the best fit of the data to a line are given in Table 1

Table 1 Thermodynamic parameters for denaturation of oxidized
Bpcytc induced by GdmCl. The parameters have been obtained
from a best fit of the data in Fig. 3

DGH2O (kJ mol)1) m (kJ mol)1 M)1)

WT 26.5±0.68 )6.50±0.17
Q68K 25.5±0.90 )6.50±0.38
I75A 22.6±0.51 )6.99±0.17
I75V 22.2±0.23 )6.89±0.10
P72A 4.90±0.34 )1.60±0.12
P72G 8.1±1.2 )2.62±0.45

Fig. 4 Comparison of 1D NMR proton spectra at high [GdmCl].
The pH of all samples was 7.0
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hyperfine shifted signals. Given the sensitivity of the
hyperfine shift to the chemical environment of the
iron(III) ion [18, 19, 20, 21, 22], this finding strongly
suggests that the metal coordination under denaturing
conditions is the same in the WT and mutant proteins.

Solution structure and solvation of the I75A mutant

NMR resonance assignments of the oxidized I75A mu-
tant were performed with the same strategy used for
both oxidized and reduced WT Bpcytc [1, 3], yielding an
assignment with a comparable degree of completeness
(95% of all resonances of the I75A mutant have been
assigned). The solution structure of I75A was obtained
using 1010 meaningful upper distance limits, yielding an
average target function of 0.6±0.1 Å2 within the family
of the 20 best conformers. The structure is very similar
to that of oxidized WT Bpcytc, with an RMSD for the
backbone atoms of only 0.7 Å (Fig. 5). In the present
mutant, the loop containing residues 42–47 features
extensive conformational mobility on the sub-microsec-
ond time scale, which hinders observation of NOEs.
Therefore, these residues have not been used for the
superposition. All elements of secondary structure ob-
served in the WT protein are also present in I75A
(Fig. 5). Some differences are observed in the loop
region containing the axial Met and the mutation.

Dipolar interactions between the redox-independent
long-lived water molecule detected in WT Bpcytc [4] and
the amide protons of residues 74 and 75 are also detected
in the P72A and I75A mutants. Consequently, it can be
concluded that the water molecule is still present in the
mutants (not shown). There are also no changes in the
positions at which amide protons of the polypeptide
chain are in fast exchange with the solvent, as detected
by CLEANEX.

Dynamics of the I75A and P72A mutants

Figure 6 shows a per-residue comparison of the 15N R2/
R1 ratios for WT, P72A and I75A oxidized Bpcytc. The

values for WT and I75A are comparable, and thus
indicative of only small, local variations in the dynamics
of the protein backbone. Such small variations can be
highlighted by a detailed model-free [23] analysis of the
data (not shown), and suggest enhanced mobility in the
I75A mutant with respect to the WT protein in helix a1
and the following loop, and in helix a5. For the P72A
mutant a strikingly different behavior is instead ob-
served, with a generalized increase of the R2/R1 ratio
over essentially the entire sequence. The present data for
P72A are quite similar to the data obtained on WT
Bcytc in the presence of 3.75 M GdmCl [2]. A possible
indication from these measurements is thus that the
P72A mutation makes largely unfolded conformations
accessible also under native conditions, while the I75A
mutation does not.

Backbone amide exchange rates can provide infor-
mation on the processes of structural opening taking
place on time scales of minutes and longer [24, 25]. The
opening reactions are determined by local, segmental
and global unfolding reactions [26, 27, 28]. By using a
widely accepted model for amide proton exchange, it is
possible to derive residue-specific equilibrium constants
for the opening process [25]. Figure 7 shows the ratio
between the exchange rates (Rex) measured for the I75A
and P72A mutants and the rates measured for the WT
protein [5] (plotted on a logarithmic scale, so that the
value is proportional to the DDG of the opening reac-
tion). For the I75A mutant, the largest systematic vari-
ations are observed for the C-terminal part of the
terminal helix a5, which opens up more readily than for
WT. Easier opening, but to a smaller extent than for
helix a5, is also observed in I75A for residues 30–32,
which are in between the first two helices. These patterns
of variation are also observed for P72A, with a similar
magnitude in the region 30–32, and with much larger
magnitude in helix a5. In addition, the P72A mutant

Fig. 5 Comparison of the solution structures of I75A (left) and WT
(right) Bpcytc, showing the main structural elements. The heme
cofactor and the axial ligands are indicated: His36 and the heme in
cyan, Met71 in green. This figure was prepared with the program
MOLMOL [43]

Fig. 6 Comparison of the R2/R1 ratios obtained from 15N
relaxation measurements for oxidized Bpcytc. Filled squares: WT
protein; open triangles: I75A mutant; open circles: P72A mutant
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features strongly enhanced exchange (i.e. equilibrium
shifted towards the open conformation) also in the
region of helix a4 (residues 60–66).

Note that helix a5 exchanges through global opening
[5], so the exchange reaction for the residues in this re-
gion is expected to become faster the lower the DGH2O of
the system, as it is indeed observed (compare Fig. 7 and
Table 1). Helix a4 is an independent opening unit, with
local folding/unfolding kinetics different from that of the
neighboring residues and the C-terminal helix [5]. In
mitochondrial cytochrome c, helix a4 has been shown to
constitute an independent folding unit along the folding
pathway [26]. The differential effect of mutations at
position 72 or 75 on the amide exchange properties in
this region could reflect a variation in the interaction
between the different folding units. It is also relevant
that the long-lived internal water molecule of Bpcytc
forms hydrogen bonds with both Pro72 and Ile64, and
this may provide a pathway by which a mutation at
position 72 can affect the 60–65 region.

Reduction thermodynamics

Bpcytc yields a one-electron, quasi-reversible voltam-
metric wave (CV) on the gold modified electrode, due to
the Fe3+/Fe2+ equilibrium of the heme iron [29, 30, 31,
32]. Peak separation in CV experiments varied from 70
to 120 mV within the range of scan rates investigated.
Anodic and cathodic peak currents were found to be
almost identical, and both were proportional to the
protein concentration and m1/2 (m=scan rate), indicating
a diffusion-controlled electrochemical process. Given
the quasi-reversibility of the electrochemical process,
the symmetrical shape of the voltammograms and the
almost negligible influence of the scan rate on the
half-wave potential, the E1/2 values can be confidently

assumed to represent the E�¢ values. Analogous results
were obtained for the mutants investigated. The tem-
perature dependence of E�¢ for the WT protein and the
P72A and I75 mutant proteins was measured from 10 to
40 �C (Fig. 8). However, at 40 �C the signal for the
P72A mutant deteriorated so much as to make the data
unreliable. The reduction entropies and enthalpies (the
latter from the E�¢/T vs. 1/T) determined from these
plots turn out to be the same within experimental error
except for the P72A mutant (Table 2).

All Bpcytc variants show negative reduction enthal-
pies and entropies, as is typical for class I cytochromesc
[29, 30, 31, 32]. The negative enthalpy change is mainly
the result of the selective stabilization of the reduced
over the oxidized state due to ligand binding interactions
(especially the axial methionine ligation), the hydro-
phobic heme environment and the limited accessibility of
the heme to the solvent. The entropy loss on reduction is
predominantly due to solvent reorganization effects
within the hydration sphere of the molecule, together
with the decrease in conformational (vibrational, tor-
sional) degrees of freedom of the polypeptide chain
indicated by a number of NMR solution structures [3, 6,
33, 34, 35].

The reduction potential of WT Bpcytc (+68 mV) is
less positive than that of mitochondrial and other bac-
terial cytochromes (namely cytochromes c2 from Rho-
dopseudomonas palustris, Rhodobacter sphaeroides and
Rhodobacter capsulatus), which feature E�¢ values of
approximately +260 mV and + 350 mV, respectively
[29, 30, 31, 32]. From Table 2 and the above-mentioned
published data it is apparent that such a decrease in E�¢
is totally enthalpic in origin. This effect can be rather
confidently ascribed to the much higher solvent acces-
sibility of the heme in Bpcytc as compared with the
above species (the solvent exposition of the heme varies
from 135 to 160 Å2 [1, 7] against less than 50–60 Å2 in
mitochondrial cytochrome c), which favors the ferri-
heme (bearing a net charge of +1 against the null net

Fig. 8 Temperature dependence of the reduction potential of
Bpcytc. WT protein (triangles); P72A (squares); I75A mutant
(circles). Base electrolyte, 100 mM NaCl, 10 mM phosphate buffer,
pH 7

Fig. 7 Logarithmic plot of the ratio between backbone amide
hydrogen exchange rates for mutant and WT oxidized Bpcytc.
Hatched bars: P72A; filled bars: I75A. The secondary structure is
schematically represented
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charge of the ferrous form). The increased solvent
exposure of the heme in the present species is consistent
with the less negative DS�¢rcvalues featured by Bpcytc as
compared with other class I cytochromes c (in the range
)40 to )60 J K)1 mol)1). In fact, the greater the expo-
sure of the heme to the solvent, the more effective the
mechanism that leads to a decreased ordering of the
water molecules in the surroundings of the heme fol-
lowing the one unit decrease in the positive heme charge
upon reduction. Within the above context, the data of
Table 2 for the P72A mutant can be interpreted as due
to an enhanced solvent exposure in this system with
respect to WT Bpcytc.

Discussion

An interesting characteristics of Bpcytc is that it does
not present any pH-dependent variation in iron(III)
ligation over the pH range 2–13 [2, 8]. In particular, it
does not experience the so-called alkaline transition,
observed for mitochondrial c-type cytochromes as well
as cytochromes c2, in which the native Met ligand is
replaced by another endogenous iron(III) with apparent
pKa values in the range 8.5–9.5. In practice, an equilib-
rium is obtained involving different alkaline forms with
different alternate ligands. Alkaline isomerization is
facilitated by chemical denaturants and/or elevated
temperatures, thereby suggesting a connection with the
mechanism of folding/unfolding. This correlation has
been directly demonstrated through kinetic studies
based on native-state hydrogen exchange methods [36].
The latter study has indeed shown that the events lead-
ing to Met replacement in mitochondrial cytochrome c
are the same as the early steps in the cooperative protein
unfolding reaction (induced by denaturant) [36, 37]. This
result is of particular interest also because mitochondrial
cytochrome c and Bpcytc share the same organization of
folding units, thus suggesting that similar reaction
mechanisms could be operative [5].

At first glance, the absence of an alkaline transition in
Bpcytc could be attributed to the absence of a suitable
alternate ligand (typically a Lys side chain) in the
proximity of the metal site. In this work, the Q68K

mutant was produced, which introduces a Lys well
within reach of the iron(III) ion, in a position corre-
sponding to that of an alternate ligand in the alkaline
form(s) of mitochondrial cytochrome c. Q68 is the N-
terminal residue of the Met loop in Bpcytc. However, the
properties of the Q68K mutant are indistinguishable
from that of WT Bpcytc both at alkaline pH and in the
presence of GdmCl, thereby excluding that the mere
presence of an alternate ligand [even though in principle
better suited than Met for binding an iron(III) ion]
makes cytochrome c structural rearrangements readier.

The alkaline transition in mitochondrial cytochrome c
starts with the unfolding of the so-called nested yellow
loop [36] (residues 40–57 in mitochondrial cytochrome
c). It has been proposed that this event allows a proton
acceptor to enter into the protein core, leading to
deprotonation of an internal group. This first step is
needed for the subsequent replacement of the axial
ligand. The above loop is absent altogether in the shorter
Bpcytc sequence. This should favor, at least kinetically,
the alkaline transition. As this is not observed, it can be
postulated that in Bpcytcthere are some specific factors
preventing the structure change necessary to physically
remove the native Met71 ligand from the iron(III) ion
and bring in the alternate ligand. In mitochondrial
cytochrome c this structure change has been identified
with unfolding of the Met loop, both from equilibrium
structural data [38] and from kinetic measurements [36].

In Bpcytc, two possible determinants for extra sta-
bilization of the Met loop (residues 68–76) could be its
peculiar amino acid composition and/or the presence a
long-lived water molecule, which plays a central role in
a hydrogen-bond network connecting different regions
of the Bpcytc structure through the involvement of
Ile64, Pro72 and Ile75 [4]. With respect to the first
point, Pro72 is of particular interest, as it is strictly
conserved in all Bpcytc homologs [1], whereas in
mitochondrial c-type cytochromes the corresponding
residue is generally Ile, Val or Ala [39]. With respect to
the long-lived water molecule, its close contacts with
the hydrophobic side chain of Ile75 could play a sig-
nificant role in determining the energetics of folding.
Mutation of Pro72 could also in principle have an ef-
fect on this water molecule.

Table 2 Thermodynamic parameters for the reduction of the soluble fragment of cytochrome c553 from WT B. pasteurii and its I75A
mutanta

Species E�¢b (mV) DS�¢rc (J mol)1 K)1) DH�¢rc
(kJ mol)1)

TDS�¢rc/Fb,c (mV) )DH�¢rc/Fb,c (mV)

WT Bpcytc +68 )28 )15 )85 +155
Q68K +65 )26 )14 )78 +146
P72A +21 )36 )13 )113 +134
I75A +72 )30 )16 )93 +164

aAll values obtained in 100 mM NaCl, 10 mM phosphate buffer.
Average errors on DH�¢rc and DS�¢rc values are ±2 kJ mol)1and
±6 J mol)1 K)1, respectively
bThe reduction potentials are measured at 25 �C and are referred to
SHE

c)DH�¢rc/F and TDS�¢rc/F often do not sum up exactly to E�¢ since,
because of the experimental error, the DH�¢rc and DS�¢rc values are
rounded to the closest integer
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The I75V and I75A mutants show a reduced sta-
bility towards GdmCl with respect to the WT protein
(Table 1), but direct measurements clearly show that
the equilibrium position of the long-lived water is
essentially unaffected. It is thus more reasonable to
assume that this decreased stability is due to the re-
moval of a number of long-range hydrophobic contacts
with the axial ligand Met71 as well as with the rest of
the polypeptide chain. This is also in qualitative
agreement with the observed enhancement of protein
mobility in helix a1 and the following loop, and in helix
a5. Note that in the I75V mutant only the contact with
Met71 should be removed; however, it cannot be ruled
out that, because of the space available to the smaller
Val side chain, also the other contacts of residue 75 are
loosened. Indeed, the similar distribution of hyperfine-
shifted signals observed for the two I75 mutants
strongly suggests that the conformation of the axial
Met71 should be the same in both systems. This is
because the lone pair of the Sd atom of the axial Met
appears to be most important in determining the in-
plane directions of the magnetic susceptibility axes for
the iron(III) ion [40], and therefore even slight struc-
tural variations in the conformation of the Met side
chain are expected to result in significant changes of the
hyperfine shifts.

The most striking effect on protein stability occurs
upon mutation of Pro72 (Fig. 3). Mutation of Pro72
does not affect significantly the 1D 1H spectrum (Fig. 1),
indicating that in the absence of denaturant the con-
formation at the iron(III) site is unchanged with respect
of WT. As mentioned, the small variation of the chem-
ical shifts of backbone amide groups excludes major
rearrangements of the polypeptide chain conformation,
as was also the case for the I75A mutant. CLEANEX
experiments show that also the long-lived water mole-
cule is unaffected by the P72A mutation. Prolines have
been reported to contribute favorably to the stability of
the native fold of proteins in some specific cases where
they occur in rigid loops. This is most likely accom-
plished by reducing the entropic cost of the restriction of
the conformational space available to the polypeptide
chain that occurs upon protein folding [41, 42]. In the
present system the Met71 loop must adopt a well-defined
and relatively rigid conformation to allow proper metal
ion coordination, and thus the presence of a Pro in the
loop should be beneficial to stabilize the protein fold. In
this context, it is also important that the conformation
of Pro72 in Bpcytc is within the allowed conformational
space of Gly and Ala. At high [GdmCl], the iron(III)
coordination appears to be the same in the Pro72 mu-
tants as for WT. However, we do not expect a significant
effect of Pro72 on metal coordination in the denatured
state, also because replacement of Met71 by a Lys resi-
due requires significant unfolding of the entire poly-
peptide chain. Denaturation of the two Pro72 mutants is
characterized also by a somewhat reduced m value
(Table 1). Backbone dynamics data show quite clearly
that the P72A mutant in the native state can access

largely unfolded conformations much more easily than
the WT or I75A mutant. The 15N relaxation data of
Fig. 6 in fact indicate that the existing conformational
exchange events are not localized but involve the entire
polypeptide chain. Backbone amide exchange data
(Fig. 7) show that exchange rates are enhanced in the
two most slow-exchanging regions, i.e. helix a4 and a5,
despite the fact that in the WT protein these two regions
do not open coordinately for exchange [5]. However, this
is in agreement with the idea that the P72A significantly
samples largely unfolded conformations under native
conditions, thereby strongly enhancing the contribution
of global unfolding to the amide exchange reaction at all
protein amide moieties. This picture is also in agreement
with electrochemical measurements on P72A, which
suggest that the heme is more solvent accessible than in
WT Bpcytc.

The low m value of the P72A mutant can thus be
rationalized on the same basis used above to interpret
the backbone dynamics data: if the protein samples ex-
tended conformations already under native conditions,
which does not hold for WT Bpcytc, the variation in
solvent accessibility of the polypeptide chain upon
complete denaturation will be somewhat lower for P72A
than for WT Bpcytc. In turn, this results in a somewhat
lower m, as observed.

Conclusions

In summary, we have investigated the loop containing
the iron axial ligand Met71 in oxidized Bpcytc using site-
directed mutagenesis of different positions, in order to
obtain better insight into the determinants of the high
stability of the axial coordination towards GdmCl and
alkaline pH. It appears that one of the main determi-
nants of this stability is the high energy barrier for the
rearrangement of the Met loop conformation, as indi-
cated by the fact that a mutant (Q68K) where a Lys has
been introduced at the N-terminus of the Met loop is as
stable as the WT protein. The Met loop rearrangement is
a necessary step for replacement of the axial ligand [36,
38]. Met71 is in close contact with Ile75, which is
important to tune the conformation of the side chain of
the former residue. Mutation of Ile75 with less bulky
amino acids results in a subtle rearrangement of the
Met71 side chain and a small but significant destabili-
zation of the protein fold. A key role is instead played by
Pro72, which is conserved also in Bpcytc homologs. Its
mutation in fact dramatically affects the stability of
Bpcytc towards denaturants and makes largely unfolded
conformations much more readily accessible even under
native conditions.

The present results demonstrate that the amino acid
composition of the axial Met loop and the correspond-
ing network of inter-residue interactions are crucial for
the stability of c-type cytochromes through a complex
interplay of conformational propensities, hydrogen
bonds (also with the solvent) and hydrophobic contacts.
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B. The N-terminal domain of the copper(I) transporting ATPase PacS   

     from Synechocystis PCC 6803 

B.1 Overview 

Copper provides a challenge to biological systems. It is indeed essential to all 

organisms, but it’s useful redox properties, become potentially toxic when copper is 

present in excessive amounts. The ability of Cu to cycle between a stable oxidised, 

Cu(II), and unstable reduced, Cu(I), states is used by cuproenzymes involved in redox 

reactions, e.g. Cu/Zn superoxide dismutase and cytochrome oxidase. However, the Cu 

(II) ↔ Cu (I) transitions can in certain circumstances also result in the generation of 

reactive oxygen species, e.g. superoxide radical and hydroxyl radical, which, if not 

detoxified efficiently, can damage susceptible cellular components. Copper can also bind 

with high affinity to histidine, cysteine and methionine residues of proteins which can 

result in their inactivation. The need to provide Cu to essential enzymes without ensuing 

cellular toxicity has necessitated evolution of tightly regulated Cu homeostatic 

mechanisms some of which have been identified only recently. Maintenance of non-toxic 

but physiologically essential intracellular concentrations of Cu can be achieved through a 

Cu homeostasis system that involves regulated Cu uptake, vectorial intracellular 

transport, Cu sequestration/storage and regulated efflux. While these principles can be 

relatively well assimilated within a single cell system (bacteria and yeast), the regulation 

of Cu homeostasis in multicellular organisms or humans appears to be more complex, 

primarily because the efflux of Cu is not only essential for detoxification but is also vital 

for intercellular Cu transport. This complexity was recognized only recently, when novel 

mechanisms and pathways of Cu regulation were identified. Although the 
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characterization in more evoluted organisms is far from complete, the investigation of 

copper homeostasis in simple organisms is largely improving the comprehension of 

copper trafficking at molecular level.  

B.1.1 Cyanobacteria command an evolutionary transition in metal 
availability 

Cyanobacteria altered the solubility of metals on a global scale as a by-product of 

dioxygen-evolving photosynthesis. Anaerobic earth was ‘polluted’ with dioxygen some 

2.7×109 years ago according to broadly accepted theory [1]. This closely correlates with 

the appearance of cyanobacteria and hence dioxygen-generating photosynthesis. 

Synechocystis PCC 6803 genome was among the first to be fully sequenced and has been 

followed by several other cyanobacteria: Anabaena PCC 7120, Prochlorococcus marinus 

MED4, Synechococcus WH 8102 and Thermosynechococcus elongatus BP-1. At least 

five more are in progress and nearing completion at the time of writing: Gloeobacter 

violaceus PCC 7421, Nostoc punctiforme, Trichodesmium erythraem, Synechococcus 

PCC 7002, Synechococcus PCC 6301 and Synechococcus PCC 7942 (Fig.11).  

 

Figure 11. Various species of cyanobacteria 
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In cynobacteria the existence of thylakoids creates special metal-trafficking 

requirements peculiar to these bacteria. For example, four atoms of manganese are 

required to generate the holo-form of the water-splitting oxygen-evolving complex 

associated with the luminal face of PSII (Fig.12). Manganese acquisition in Synechocystis 

PCC 6803 involves MntABC, an ABC-type permease that mediates high-affinity 

transport under starvation conditions [2], a second high-affinity transporter for 

manganese-sufficient conditions [3] and a low-affinity transporter, the latter being 

indirectly observed from transport kinetics but the proteins involved are currently 

unknown. Manganese uptake is controlled via a two-component signal transduction 

pathway [4]. 

 

 

 

Figure 12. A simplistic representation of photosynthetic and respiratory 

electron transport in Synechocystis PCC 6803. 
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It is feasible that trafficking of the manganese cofactor is a late step in assembly 

of the photosynthetic electron transport machinery, which dictates the site of activity 

(thylakoidal versus plasma membrane). The thylakoids of Synechocystis PCC 6803 also 

contain two copper proteins, plastocyanin and a caa3-type cytochrome oxidase, raising 

similar questions about how this metal cofactor is supplied to these enzymes, and the 

extent to which copper trafficking determines/controls their sites of activity.  

B.1.2 Cyanobacterial Metallochaperone 

 
Synechocystis PCC 6803 mutants analysis showed that Atx1 (ScAtx1) is required 

for normal photosynthetic electron transfer via plastocyanin and for the activity of a 

second thylakoid-located copper protein, a caa3-type cytochrome oxidase (5, 6). In 

common with related polypeptides from other bacteria, yeast, and man (7-10), ScAtx1 

directly interacts with soluble amino-terminal domains of P1-type copper ATPases (114). 

However, unlike other copper metallochaperones, ScAtx1 from Synechocystis PCC 6803 

associates with two such proteins, and there is a presumption that the vectors for copper 

transfer alternate in each of these two interactions. In Synechococcus PCC 7942, PacS is 

located in thylakoid membranes (11), whereas CtaA is thought to import copper at the 

plasma membrane (12). The phenotypes of ctaA and PacS mutants of Synechocystis 

PCC 6803 are consistent with both ATPases transporting copper in an inward direction 

into the cytosol and then into the thylakoid lumen (6). This provides an attractive system 

for studying the process of copper transfer between a copper metallochaperone and its 

partners.  
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Solution structure of ScAtx1 (Fig.13) shows that the overall folding of the copper-

free and the copper-bound forms of ScAtx1 are almost identical (13). In Cu(I)ScAtx1 the 

copper(I) is coordinated by two cystein residues (in loop 1) and one His (C-terminus).    

Localized surface charge suggests how ScAtx1 may recognize soluble domains of copper 

ATPases but avoid a zinc ATPase (Fig.14) (13). The resulting specificities of these 

partnerships, rather than the inherent metal-binding preferences of each N-terminal 

domains may select which metals become available for transport. Metal-ligand 

arrangements of Cu(I)ScAtx1 coupled with observed backbone motions provide insight 

into how copper ions can pass from the plasma membrane to an intracellular compartment 

along a ligand gradient, without release into the cytosol (7) (Fig.15). Cys-12 and -15 are 

part of an α -helix in Cu (I) ScAtx1 but not in apoScAtx1. Characterization of 

Cu(I)ScAtx1 helped to point out that it forms a stable homodimer where the two subunits 

are linked through coordination bonds between the copper(I) ions and one bridge ligand 

(7). 

 

 

Figure 13. Solution structure of apoScAtx1; the side chains of His-61, Cys-12, and 
Cys-15 are shown. 
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Figure 15. Proposed pathway for copper transfer from CtaA to PacS through 
ScAtx1.  

Figure 14. Electrostatic potential surface of ScAtx1 (A) and, of the structural models 

of PacSNN (B), CtaAN (C), and ZiaAN (D) 
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The functional relevance of dimerization remains to be addressed, although the 

apo form is clearly monomeric, and it is speculated that dimerization may only occur at 

high concentrations in vitro.  Structural data, showed that a third donor atom belonging to 

the N-terminus of P1-type of ATPases enters the Cu(I)S2
 coordination sphere of various 

eukaryotic and bacterial copper(I) chaperones in order to obtain an efficient transfer of 

the metal ion (17). This is consistent with digonal copper (I) tending to expand its 

coordination number. Most intriguing, a model of the soluble parts of PacSN does not 

display an evident extensive electrostatic complementary surface with ScAtx1 (Fig.14). It 

has been hypothesized that His-61 in ScAtx1 may influence the directionality of copper(I) 

transfer with respect to the two different P1-type ATPases, PacS and CtaA (13). Greater 

structural flexibility of loop 1 suggests that one or other Cys residue of apoScAtx1 is 

more likely to first invade the copper-loaded site of CtaAN, as proposed for Atx1 and 

Ccc2a from S. cerevisiae (14), rather than His-61. Subsequently, entrance of His-61 into 

the copper(I) site will nonetheless promote copper(I) acquisition by the copper 

metallochaperone with the concomitant displacement of CtaA. His-61 can render the 

copper(I) coordination environment more favorable in ScAtx1 than in CtaA because of 

formation of a coordination bond with N 2 of His-61. 

B.1.3  How is this process reversed upon interaction with PacSN?  

When Cu(I)ScAtx1 approaches apoPacSN, it is speculated that His-61 is somehow 

displaced from the coordination sphere allowing one of the two cysteine residues of 

PacSN to encroach into a shared copper(I) site as proposed for Atx1/Ccc2a. Thus the 

favored order of copper (I) association with ScAtx1 ligands is 1) Cys-12, 2) Cys-15, and 
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finally 3) His-61 at acquisition from CtaA with the converse order of release at 

interaction with PacSN. Localized negative charge from Glu-13, close to the metal-

binding Cys residues of ScAtx1, could support interaction with complementary Arg and 

Lys in equivalent locations in PacSN and CtaA (Fig. 15). Lys/Arg residues are only 

adjacent to these Cys in metal-transporting P1-type ATPases of Synechococcus PCC 

7942, Synechocystis PCC 6803, and Caulobacter crescentus (16). So trafficking via 

sequential ligand exchange (Fig.15) will prevent copper from entering thermodynamic 

traps, adventitious high affinity copper (I) sites, while en route to thylakoids. Such sites 

are likely to include ones that should be occupied by other metals but that nonetheless 

have tighter affinity for copper (I).  

In this work cloning, expression and structural characterization of N-terminal 

PacSN from Synechocystis PCC 6803 was performed. In addition, interaction studies 

between ScAtx1 metallochaperone and PacSN was also performed to understand the role 

of His-61 in the copper transfer mechanism at molecular level. 
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B. 2 Cloning, Expression, Purification and Characterization of PacSN 

The gene encoding the N-terminal tail (1-95 amino acids) of PacSN was PCR 

amplified from Synechocystis PCC 6803 genomic DNA and digested with EcoRI/NdeI 

prior to ligation into pET29a vector (Novagen) to create pETPacSN. Bacterial clones after 

ligation were screened by DNA sequencing and positive clone was transformed to BL21 

(DE3) expression cells. Cells were grown in minimal medium and were induced at 

O.D600 reaching 0.6 with 0.5 mM and 1 mM IPTG concentration. Protein was well 

expressed after 6 hrs (Fig.23) at 1 mM concentration of IPTG. The entire test expression 

was done in minifor fermentor by using minimal medium. Protein was purified under 

native condition by using anion exchange chromatography and size exclusion 

chromatography in 25 mM Tris buffer pH 9.0. Protein purity was checked through SDS-

PAGE gel (Fig. 24)           
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Figure 23.17% SDS-PAGE profile of over-expression of PacSN at different 

intervals of time in minimal medium (hrs), M-Marker. 

 

                                                                                                     

  

 

Figure 24.17% SDS-PAGE profile showing the purity of PacSN after size 

exclusion chromatography, M-Marker. 
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NMR samples were prepared by exchanging Tris with phosphate (Pi) buffer 

at pH 7.0 in the presence of 4M DTT in glove box. The final purified PacSN was 

concentrated and protein folding was checked by 1D NMR (Fig.25) and 1H-15N 

HSQC (Fig.26). Both 1D and 2D spectra shows that protein is well folded in the 

apo form. Double labeled 15N and 13C sample was prepared by using labeled 

nitrogen and carbon sources. Both single and double labeled samples were used 

for NMR experiments to derive the apoPacSN structure (Fig.27). 
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Figure 25.1D NMR spectra of apoPacSN at 298 K. 
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                          (A)                                                      (B) 

Figure 26.1H-15N HSQC of apoPacSN recorded at 800 MHz with 298 K. 
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     Figure 27. (A)Solution structure of apoPacSN showing Ferrodoxin-like fold βαββαβ 

     (B) Backbone structure of apoPacSN. 
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B.2.1 NMR experiments, Structure calculation and Dynamics for apoPacSN 

Details on the apoPacSN NMR structure calculation, mobility studies and 

interaction with copper metallochaperone ScAtx1 is explained in the following 

attached article: 
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Introduction 

Most of the biosphere is either directly, or indirectly, reliant upon effective copper delivery to the 

thylakoids of primary producers. The conversion of light into useful chemical energy by cyanobacteria 

and plants involves the transfer of electrons within the thylakoid lumen between two membraneous 

photosystems.  Electrons are commonly transferred via plastocyanin-bound copper.  Plastocyanin is 

located within the thylakoid lumen and is imported as an unfolded protein (1), necessitating a separate 

copper supply in order to form the holoenzyme.  

 Analyses of mutants of the cyanobacterium Synechocystis PCC 6803 established that two 

copper transporting P1-type ATPases, PacS and CtaA, plus a small soluble copper metallochaperone, 

Atx1 (herein referred to as ScAtx1) are required for normal photosynthetic electron transfer via 

plastocyanin and for the activity of a second thylakoid located copper protein, a caa3-type cytochrome 

oxidase (2;3).  In common with related polypeptides from other bacteria, yeast and man (4-7), ScAtx1 

directly interacts with soluble, amino-terminal domains of P1-type copper ATPases (3). However, 

unlike other copper metallochaperones, ScAtx1 from Synechocystis PCC 6803 associates with two such 

proteins, PacS and CtaA.  In Synechococcus PCC 7942, PacS is located in thylakoid membranes (8), 

while CtaA is thought to import copper at the plasmamembrane (9), and the phenotypes of ∆ctaA and 

∆pacS mutants of Synechocystis PCC 6803 are consistent with both ATPases transporting copper in an 

inward direction into the cytosol and then into the thylakoid lumen (3).  This provides an attractive 

system for studying the process of copper transfer between a copper metallochaperone and its partners.  

In addition to PacS and CtaA, Synechocystis PCC 6803 also contains a P1-type ATPase, ZiaA, that 

transports zinc and not copper (10), but has an amino terminal domain with higher affinity for copper 

than for zinc (11).  A sub-domain of ZiaA (ZiaAN) is predicted to form a ferredoxin-like fold analogous 

to the amino-terminal regions of the two copper transporters, but ScAtx1 gave no detectable two-hybrid 
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interaction with this sub-domain of ZiaA (11) nor with the entire soluble amino-terminal region of 

ZiaA (3).  Provided there is no freely available cytosolic copper in Synechocystis PCC 6803, as implied 

for E. coli (12), lack of ScAtx1-ZiaAN interaction will impose a kinetic barrier to discourage formation 

of otherwise thermodynamically favored copper-ZiaAN complexes (11) while copper trafficks to the 

thylakoid. 

 There is considerable interest in understanding the sub-molecular processes by which copper is 

handed between partner proteins in cellular trafficking pathways to avoid intracellular metal release.  

Recently, NMR derived solution structure of ScAtx1 (13) and EXAFS data  revealed that loop 1, 

containing Cys-ligands, and loop 5, containing His 61, are involved in copper coordination, 

approaching themselves to form a symmetrical copper-bridge homodimer.  In yeast, it has been 

proposed that the observed flexibility in loop 1 and 5 of apoAtx1 may provide a trigger for copper 

release and allow the chaperone to adapt to its two partners; downstream of CTR1 and upstream of 

Ccc2 (15).  Loop 1 of copper-CopZ from Bacillus subtilis assumes the conformation of apo- rather than 

copper-CopZ, upon contact with the N-terminal domain of CopA (16).  This implies copper release 

from the metallochaperone to the exporter and ∆copZ mutants were subsequently shown to be copper 

sensitive (17), consistent with a role in export rather than import.  It presumed that any analogous 

mechanism for ScAtx1 must be somehow adapted to encourage copper transfer to the 

metallochaperone from one P1-type ATPase, as well as release to another, and His 61 has been 

suggested to play a significant role to drive this copper transfer mechanism. Indeed, conversion of His 

61 to Arg altered two-hybrid interaction with PacS, but not with CtaA, implying that the His 61 can 

interact differently with the complementary surfaces of the two different copper-ATPases (18).  

Here we determined the solution structure of the N-terminal region of PacS (PacSN) in its apo 

form and studied the protein-protein interaction between apoPacSN and Cu(I)ScAtx1 in order to 



 4 

investigate the role of His 61 in the copper transfer mechanism. We establish that apoPacSN is 

organized into a ferrodoxin-like fold comprising residues 1-72, while residues 74-95, constituting the 

linker between the ferrodoxin-like domain and the first transmembrane helix of PacS ATPase, are not 

structured and flexible. We also establish that apoPacSN forms a heterodimeric complex with 

Cu(I)ScAtx1, by breaking the homodimeric state of Cu(I)ScAtx1, and that the copper ion is largely 

associated in the protein complex with PacSN rather than with ScAtx1, being His 61 no more involved 

in copper coordination.  

Experimental Procedures 

PacS and ScAtx1 protein expression and purification 

Synechocystis PCC 6803 genomic DNA was used as template for PCR with primers 5'-GAACAT 

ATGGCCCAAACCATC-3' and 5'-GAAGAATTCTCATAACCCCGTTACCAATTTGGCCGA-3'. 

The amplified fragment of DNA containing codons 1-95 encoding the entire amino-terminal region of 

PacS was ligated into the NdeI/EcoRI sites of pET29a to create pETPacS. Recombinant protein was 

expressed as a soluble protein in E. coli. The entire expression tests were conducted in Minifor 

fermentor. BL21 cells harboring the pETPacS plasmid were grown at 37°C, exposed to 1mM IPTG 

(isopropyl-1-thio-D-galactopyranoside) and 50 µΜ of copper sulfate. M9 minimal medium (19) 

supplemented with [13C] glucose and   (
15

NH4)2SO4   as only sources of carbon and nitrogen was used. 

Cells were grown at 37°C to an A600 nm of 0.6 prior to induction with 1 mM isopropyl-1-thio-D-

galactopyranoside (IPTG), copper sulfate was added to the growth medium to a final concentration of 

50 µM. Cells were then lysed by freeze-thawing and repeated sonication. The lysate was clarified by 

centrifugation at 100,000 × g for 40 min at 4 °C. The supernatant was filtered through a low protein-

binding 0.45 µm filter and loaded onto a 5ml Hi-Trap Q XL column (Amersham Pharmacia Biotech) 

which was pre-equilibrated with Tris 25 mM pH 9. Chromatography was done using a Pharmacia fast 
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protein liquid chromatography (FPLC) unit. The protein was eluted by a 100 ml 50mM NaCl step. The 

fractions containing PacS were concentrated and subjected to size exclusion chromatography on a 

HiLoad 16/60 Superdex 75 column (Amersham Pharmacia Biotech) equilibrated in 25 mM Tris pH 9. 

To prevent disulfide formation, which might occur because of the presence of two cysteines, the 

protein samples were kept in anaerobic conditions. In these conditions the buffer was changed by an 

ultra filtration device (Amicon) against sodium phosphate pH 7.0 with the addition of reducing agent 

dithiothreitol (DTT) at a final concentration of 4 mM. Protein expression and purification was 

monitored by sodium dodecyl phosphate-polyacrylamide (SDS) gel electrophoresis in 17% 

polyacrylamide gels stained with Coomasie brilliant blue R-250 against Perfect Protein marker 

(Novagen). Isotopic labeling, protein expression, purification and metallation of ScAtx1 was performed 

as previously described (13).  

 

NMR experiments and structure calculations 

NMR spectra were performed on Avance 800, 700, 600 and 500 Bruker spectrometers operating 

at proton nominal frequencies of 800.13 MHz, 700.13 MHz, 600.13 MHz and 500.13 MHz, 

respectively. All the triple resonance (TXI 5-mm) probes used were equipped with Pulsed Field 

Gradients along the z-axis. The 800 and 500 MHz machines are equipped with a triple resonance 

cryoprobe. 

The NMR experiments, reported on Table 1 of the Supplementary Material, were recorded on 

13C/15N and 15N labelled and unlabelled samples. To identify the coordination mode of copper(I) 

binding histidine, a 1H-15N HSQC experiment was performed for measuring 2JNεHδ, 2JNεHε, 2JNδHε, and 

3JNδHδ coupling constants (20). In this experiment, the INEPT delay was set to 22 ms. All 3D and 2D 
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spectra were collected at 298 K, processed with the standard Bruker software (XWINNMR) and 

analysed with CARA program..  

An automated CANDID approach combined with DYANA torsion angle dynamics algorithm 

(21) was used to assign the ambiguous NOE cross-peaks and to have a preliminary apoPacSN structure. 

Structure calculations were then performed through iterative cycles of DYANA (22) followed by 

Restrained Energy Minimization with AMBER 5.0 (23) applied to each member of the family. The 

quality of the structures was evaluated using the programs PROCHECK-NMR (24). The figure was 

generated with the program MOLMOL (25). 

The atomic coordinates of apoPacSN have been deposited in the Protein Data Bank. 

 

Relaxation Measurements and Analysis 

Relaxation experiments were performed on Bruker Avance 600 MHz spectrometers at 298 K. 

15N R1, R2, and steady-state heteronuclear NOEs were measured with pulse sequences as described by 

Farrow et al (30). In all experiments the water signal was suppressed with ‘water flipback’ scheme 

(26). R1 and R2 experiments were acquired with 8 or 16 scans, while {1H}–15N NOE spectra were 

acquired with 64 scans. Duplication of measurements was performed to estimate the experimental 

uncertainty. A recycle delay of 3 seconds was used for R1 and R2 relaxation experiments except for the 

NOE experiments in which the recycle delay was 5 seconds. A total of 2048 K (1H) × 128 (15N) data 

points were collected. All spectra were processed with the XWINNMR program (Bruker) and analyzed 

with CARA software. Relaxation rates R1 and R2 were determined by fitting the cross-peak intensities 

measured as a function of the delay within the pulse sequence, to a single-exponential decay. Errors on 

the rates were estimated through a Monte Carlo approach. The heteronuclear NOE values were 

obtained from the ratio of the peak intensity for 1H-saturated and unsaturated spectra. The experimental 
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relaxation rates were used to map the spectral density function values, J(ωH), J(ωN), J(0), following a 

procedure available in literature (27).  

The overall rotational correlation time τm values were estimated from the R2/R1 ratio using the 

program quadric_diffusion, available from the Web site of A. G. Palmer, III (28). In this analysis, care 

was taken to remove from the input relaxation data those NHs having an exchange contribution to the 

R2 value or exhibiting large-amplitude internal motions on a time scale longer than a few hundred 

picoseconds, identified from low NOE values, as inclusion of these data would bias the calculated 

tensor parameters (29,30). The input structure for quadric diffusion is the energy-minimized average 

solution structure of apoPacSN. 

 

NMR Titration of the Two Proteins 

Titrations of Cu(I)15NScAtx1 with unlabeled apoPacSN and of apo15NPacSN with unlabeled 

Cu(I)ScAtx1 was performed with NMR spectroscopy, following the spectral changes in the 1H-15N 

HSQC spectra upon the addition of increasing amounts of the unlabeled partner. Aliquots were added 

in a Coy chamber under nitrogen atmosphere at 298 K. Two-dimensional TOCSY and NOESY, and 

three-dimensional NOESY-15N HSQC experiments were recorded on 15NScAtx1/PacSN and 

15NPacSN/ScAtx1 mixtures with protein concentration ratios of 1:0.5 and 1:1. 
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Results and Discussion 

Solution structure and mobility of apoPacSN 

  The 1H-15N HSQC spectrum of the apo form of PacSN (95 amino acids) shows a good spreading 

of signals, typical of proteins with a structural organization. However, several peaks are clustered in a 

spectral region typical of unfolded polypeptides (amide proton resonances clustered between 8 and 8.5 

ppm). 78 out of the expected 91 15N backbone amide resonances were observed and assigned. The 

backbone NH resonances are missing for residues belonging to loop regions (Ala 15, Ala 16, Gly 49, 

Glu 50, Thr 51 and 52) and to the C-terminal tail (Ser 77, Gln 78, Gln 79, Val 86, Phe 87, Leu 91). The 

1H, 13C and 15N resonance assignments of apoPacSN are reported in Table 1 of the Supplementary 

Material. 

The solution structure of apoPacSN was obtained by using 1356 meaningful upper distance 

limits and 86 angle restraints for 42 φ and 44 ψ angles. After Restrained Energy Minimization with 

AMBER program on each of 20 lowest target function structures, obtained from DYANA calculations, 

the RMSD (root mean square deviation) for protein backbone and heavy atoms to the mean structure 

(for residues 4-70) is 0.63 Å (with a variability of 0.19 Å) and 1.08 Å (with a variability of 0.22 Å), 

respectively. The penalties for distance constraints and angle constraints are 0.15 ± 0.06 Å2 and 0.02 ± 

0.01 rad2, respectively. The statistical analysis of the REM family of apoPacSN structures are reported 

in Table 2 of the Supplementary Material. The structure displays the following secondary structure 

elements: 3-10 (β1), 17-26 (α1), 31-37 (β2), 41-48 (β3), 54-62 (α2), 66-68 (β4) in accordance with the 

3JHNHα coupling constants, the dαN(i-1,i)/dNα(i,i) ratios and the NOEs patterns. In Fig. 1, the 20 

conformer structure of apoPacSN is shown as a tube, whose radius is proportional to the backbone 

RMSD of each residue. 
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15N R1, R2, and 1H-15N NOE values, which provide information on internal mobility, were 

measured at 600 MHz for all assigned backbone NH resonances. Such average values are 2.00 s-1 (with 

a variability of 0.17 s-1), 8.44 s-1 (with a variability of 1.71 s-1) and 0.75 s-1 (with a variability of 0.09 s-

1), respectively, calculated excluding the C-terminal tail (residues 71-95).  The experimental relaxation 

data are reported in the Fig. 2 of the Supplementary Material. The correlation time for molecular 

reorientation (τm), as estimated from the R2/R1 ratio, is 5.6 ± 0.4 ns, as expected for a protein of this 

size in a monomeric state (15). R1, R2 and 1H-15N NOE values were mostly homogeneous along the 

polypeptide sequence from residues 1 to 70, with the exception of a few residues mainly located in loop 

regions, while the C-terminal tail encompassing residues 71-95 shows very low or negative 1H-15N 

NOEs values. From the spectral density function analysis (Fig. 3), it appears that the apoPacSN protein 

can be considered as a rigid body with a C-terminal flexible region, which have J(ωΗ) significantly 

higher than average, thus indicating for these residues the presence of local motions in ns-ps timescale, 

i.e. faster than the overall protein tumbling rate. In addition, considering that the NHs belonging to the 

C-terminal tail are all clustered in the spectral region typical of unfolded polypeptides, it can be 

concluded that the C-terminal tail of the protein is fluctuating in solution in a random coil 

conformation. A certain degree of local backbone flexibility on both ns-ps and ms-µs timescales (J(0) 

and J(ωΗ) values higher than the average (Fig.3) is also observed for some residues located close to the 

metal binding motif, in loop 1,3 and at the beginning of helix α1. 

 

Titration of Cu(I)15NScAtx1 with unlabeled apoPacSN and of apo15NPacSN  with unlabeled apoScAtx1 

The interaction between the copper chaperone ScAtx1 and the N-terminal metal binding domain 

PacSN has been investigated recording 1H-15N HSQC spectra on Cu(I)15NScAtx1 and apo15NPacSN 

samples titrated with the unlabelled partner apoPacSN and Cu(I)ScAtx1, respectively. In both titrations, 
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the 1H and 15N resonances showed the formation of a new species which increase in intensity upon 

increasing amounts of unlabeled proteins. In both titrations the 1H-15N HSQC spectra of the new 

species is not fully reproducing the 1H-15N HSQC spectra of the isolated apoScAtx1 and Cu(I)PacSN 

proteins, respectively. Furthermore, in both titrations 1H-15N resonances of a few residues close to the 

metal binding site experience some broadening. Such spectral changes suggest that (i) ScAtx1 is 

interacting with PacSN and (ii) the new species represents the complex ScAtx1/PacSN, whose lifetime is 

long relative to the difference between δcomplex and δfree, indicating that the proteins in the complex are 

in slow exchange with the free proteins in solution.  

The spectral changes were followed up to a final protein ratio of 1:2. Fig. 4 shows the 1H-15N 

HSQC of the isolated Cu(I)15NScAtx1 protein or apo15NScAtx1 (blue contours) overlaid onto that of 

the ScAtx1/PacSN mixture containing equal concentrations of the two proteins (red contours). Cross-

peaks of Cu(I)ScAtx1 residues 11-14, comprising the copper ligand Cys 12, broadened beyond 

detection. Comparing the spectra A with B in Fig. 4, it results that the 1H and 15N resonances of ScAtx1 

in the complex are more similar to the apoScAtx1 form than to the Cu(I)ScAtx1. This data suggests 

that ScAtx1 in the complex is present in a conformation similar to the apo form. Accordingly, the 1H 

and 15N chemical shift differences between Cu(I)ScAtx1 or apoScAtx1 alone and the ScAtx1/PacSN 

1:1 mixture (Fig. 4) shows that major changes are present in the first chemical shift comparison, 

Cu(I)ScAtx1-ScAtx1/PacSN 1:1 mixture. In particular, the NHs chemical shifts of loop 3 (residues 38-

41), which is in close contact with the metal binding site (Fig. 1), are the same observed in the 

apoScAtx1 (Fig. 4), suggesting that ScAtx1 in the complex resembles to a conformation similar to 

apoScAtx1. In addition, in both cases the chemical shift changes are mainly localized in two regions of 

the protein corresponding to stretches 9-25 and 55-64 (Fig. 4). These stretches constitute loop 1, helices 
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α1 and α2, and C-terminus. The same regions are involved in the protein-protein interaction between 

the yeast and bacterial homologuos complexes Atx1/Ccc2a and CopZ/CopAb, respectively (31).  

Fig. 4 shows the 1H-15N HSQC of the isolated apo15NPacSN protein or Cu(I)15NPacSN (blue 

contours) overlaid onto that of the ScAtx1/PacSN mixture containing equal concentrations of the two 

proteins (red contours). Cross-peaks of apoPacSN residues 13, 14, 17, 19-21 comprising the copper 

ligands Cys 15 and Cys 17, broadened beyond detection. Ala 18 is the only residue in the metal binding 

region whose NH is still detectable and its chemical shift, which is different with respect to apo and 

Cu(I)PacSN, clearly suggests the formation of the protein-protein complex (Fig.5). Comparing spectra 

A with B in Fig. 5, it results that there is not drastic difference between the 1H and 15N resonances of 

PacSN in the complex and isolated apo or Cu(I)PacSN forms. Accordingly, the 1H and 15N chemical 

shift differences between Cu(I)PacSN or apoPacSN alone and the ScAtx1/PacSN 1:1 mixture shows that 

major changes are localized in two regions of the protein corresponding to stretches 13-24 and 61-64 

(Fig. 4). These stretches constitute loop 1, helices α1 and loop 5, which are on par with yeast 

Ccc2a/Atx1 complex (31).  

EXAFS data indicate that one His (His-61 in loop 5) and two Cys (Cys-12 and -15 in loop 1) of 

ScAtx1 are involved in copper(I) coordination. 1H-15N HSQC experiments optimized for the detection 

of the 2JNH couplings in the imidazole ring, performed on apo and copper(I) forms to investigate the 

coordination status of His-61 at room temperature in solution, are consistent with the presence of a 

coordination bond between N 2 of His-61 and copper(I) in a dimeric structural arrangement . In order to 

follow the coordination state of His 61 in the ScAtx1/PacSN protein interaction studies, 2JNH 1H-15N 

HSQC experiments were performed during the titration between Cu(I)15NScAtx1 and apoPacSN. From 

these data, it results that the typical pattern of His 61 bound to copper(I) disappears during the additions 

of apoPacSN and a broad peak in the 2JNH 1H-15N HSQC spectrum appears whose intensity increases 
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upon additions of apoPacSN and its chemical shift is similar to that observed in the pattern of apoPacSN 

(Fig. 6). These data suggest that His 61 is no more involved in copper coordination in the 

ScAtx1/PacSN complex. It is likely that 1H resonance of Hε1 of His 61 is not observed in the complex 

as a consequence of broadening beyond detection after the interaction with its protein partner.  

Dynamic Characterization of the complex of Cu(I)ScAtx1 with apoPacSN 

The 15N longitudinal (R1) and transverse (R2) relaxation rates are very sensitive to 

intermolecular association processes and the calculated correlation tumbling from the ratio of R2 and R1 

could be a indicator to molecular aggregation in solution state. R2 and R1 experiments, performed on 

the Cu(I)15NScAtx1/apoPacSN mixture in the two steps of the titration (2:1 and 1:1 ScAtx1/PacSN 

ratio) showed that, overall, the transverse relaxation rates are increased with respect to pure apoScAtx1 

while it remains unchanged with respect to the pure Cu(I)ScAtx1 (Table 3). For Cu(I)-15NScAtx1 in 

the mixture, τm was estimated using the R2/R1
 ratio and found to be 7.1± 0.4 ns at 1:1 protein ratio. The 

resulted solution of Cu(I)ScAtx1 and PacSN was checked with BCS, a strong cuprous ligand. BCS can 

take the copper out from the mixture of Cu(I)ScAtx1 and PacSN, producing the apo proteins. In 

presence of 1mM BCS, the complex formed by 0.38 mM CuScAtx1 and 0.34mM PacSN was turned 

into apo forms, resulting in a red color BCS-copper complex. The 2D 1H-15N HSQC spectrum is almost 

identical to apoScAtx1. Furthermore, the addition of the copper(I) chelator BCS determines a decrease 

of the correlation time τm becoming similar to that of a monomeric state of apoScAtx1 (Table 3). These 

data indicates that a protein complex is formed and the picture of adduct formation is consistent with 

that coming out from the titration. 

R2 and R1 experiments, performed on the apo15NPacSN/Cu(i)ScAtx1 mixture in the final step of 

the titration showed that, overall, the transverse relaxation rates are increased with respect to pure 

apo15NPacSN and the correlation time τm of Cu(I)-15NPacSN in the mixture, as estimated using the R2/R1
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ratio, was found to be 7.9 ± 0.9 ns at 1:1 protein ratio. The latter value increases with respect to the 

pure apoPacSN (5.6 ± 0.4 ns), indicating the formation of the protein adduct. 

 

Conclusions 

In conclusion, we have structurally characterized the N-terminal metal binding region of the 

copper(I) ATPase PacS in its apo state and characterized its interaction with the copper(I) 

metallochaperone ScAtx1. From our data it emerges a picture of the copper transfer between the two 

protein partners and how His 61 mediates the copper(I) transfer in the protein complex. Indeed, its 

removal from metal coordination sphere upon interaction with PacSN can be the determinant for 

triggering the copper transfer from the metallochaperone to the metal binding site of PacSN. 
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Table 2. Statistical quality analysis of the REM family and the mean structure of apoPacSN from 

Synechocystis PCC 6803a 

RSM violations per experimental    REM    <REM> 

distance constraint (Å)b    (20 structures) 

Intraresidue (204)     0.0148 ± 0.0021  0.0153 

Sequential (299)     0.0080 ± 0.0017  0.0097 

Medium rangec (241)     0.0115 ± 0.0027  0.0151 

Long range (273)     0.0134 ± 0.0019  0.0110 

Total (1017)      0.0120 ± 0.0011  0.0125 

Phi (44) (deg)      0    0 

Average number of violations per structure 

Intraresidue      4.65 ± 1.65   2 

Sequential      2.75 ± 0.88   5 

Medium rangec     4.90 ± 1.4   3 

Long range      6.70 ± 1.62   4 

Total       19.00 ± 3.00   14 

Phi        0.2 ± 0.05   0 

 

Average no. of NOE violations larger than 0.3 Å 0    0 

Total NOE square deviations (Å2)   0.15 ± 0.06   0.15 

Average torsion deviations (rad2)   0.02 ± 0.01   0 

RMSD to the mean structure (3-64) (Å)  0.49 ± 0.12 Å (BB)             

 0.83 ± 0.14 (HA) 
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Structural analysisd 

% of residues in most favourable regions  75.5    74.6 

% of residues in allowed regions   21.4    20.3 

% of residues in generously allowed regions  2.8    3.4 

% of residues in disallowed regions   1.0    1.3 

H-bond energy (kJ mol-1)    3.63 ± 0.12   3.63 

Overall G-factor     -0.22 ± 0.02   -0.30 

aREM means the energy minimized ensemble of 20 structures, <REM> is the energy minimized 

average structure of the ensemble. 

bThe number of experimental constraints for each structure is reported in the ensemble. 

cMedium range distance constraints are those within residues (i,i+2), (i,i+3), (i,i+4) and (i,i+5). 

dresulted from the Ramachandran plot analysis over the assigned residues. In the PROCHECK 

statistics, the average hydrogen-bond energy within 2.5-4.0 kJ mol-1 and overall G-factor over -0.5 is 

expected to be a good-quality structure.  
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Table 3. Average R1 and R2 relaxation rates (s-1) for amide 15N nuclei measured for apo and 

Cu(I)ScAtx1 from Synechocystis PCC 6803 and for Cu(I)ScAtx1 in the presence of apoPacSN. 

Correlation time for molecular tumbling τm(ns) as estimated from the R2/R1 ratio is also reported. 

 

 R1(s-1) R2(s-1) τm(ns) 

ApoScAtx1(0.6mM) 2.46 ± 0.07 7.09 ± 0.19 4.3 ± 0.3 

Cu(I)ScAtx1(0.8mM) 1.66 ± 0.14 10.98 ± 0.40 7.6 ± 0.7 

aCu(I)ScAtx1 in presence of 

apoPacSN at 2:1 ratio  

2.53 ± 0.14 10.52 ± 0.44 6.8 ± 0.4 

aCu(I)ScAtx1 in presence of  of 

apoPacSN at 1:1 ratio 

2.42 ± 0.18 10.90 ± 0.22 7.1 ± 0.4 

Cu(I)ScAtx1 in presence of  of 

apoPacSN at 1:1 ratio  

+ 1.0mM BCS 

2.62  ± 0.20  7.36 ± 0.35 4.1 ± 0.4 

 
a performed at 500MHz. 
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C. The N-terminal domain of the zinc transporting ATPase ZiaA 

     from Synechocystis PCC 6803 

C.1 Overview 

Despite the essential role of zinc as a structural and catalytic cofactor in numerous 

metalloproteins, mechanisms of zinc homeostasis in bacteria are poorly understood (1,2). 

As for other essential metal ions, it is likely that both the uptake and efflux of zinc are 

tightly regulated in response to availability. Zinc uptake and efflux proteins have recently 

been identified in several bacteria, including Synechocystis PCC 6803 (6), and 

Escherichia coli (3, 4, 5). Expression of these transporters, where known, seems to be 

regulated by zinc-sensing metalloregulatory proteins (6, 7). 

The ziaA gene in Synechocystis PCC 6803 encodes a polypeptide with sequence 

similarity to metal-transporting P1-type ATPases [6]. Transcription of ziaA is induced by 

zinc, but not by other metal ions, and is mediated by the SmtB-related zinc-responsive 

repressor ZiaR [6]. Mutants deficient in ziaA have reduced tolerance to zinc and show 

reduced export of zinc to the periplasm. ziaA-mediated restoration of zinc tolerance can 

be used as a selectable marker supporting a role as a zinc exporter. ziaA mutants also 

show reduced tolerance to lead but transcription of ziaA is not induced by lead, even at 

inhibitory concentrations, indicating that lead detoxification is not the primary role for 

ZiaA. 

 The amino-terminal region of ZiaA contains a single GMXCXXC metal binding 

motif within a predicted ferrodoxin-like domain, followed by a region containing seven 

histidine residues arranged in HXH motifs. However, neither the amino-terminal region 
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ZiaAN nor CoaTN (a 38-amino acid region that does not contain an obvious metal-binding 

motif) formed detectable two-hybrid interactions with Atx1. The detected ScAtx1 

interactions are specific to the amino-terminal regions of the copper transporters. There is 

no free zinc in the cytosol of E. coli (8), and it is anticipated that the same is true for 

Synechocystis PCC 6803 and for cobalt, raising questions about what molecules interact 

with and supply metals ions to ZiaAN, and CoaTN. It is unclear how widespread 

metallochaperones are and how significant their associations are in defining which 

inorganic elements are acquired by metalloproteins in vivo. 

In order to address this question I have performed cloning, expression, 

purification and structural characterization of N-terminal domain of zinc transporting 

ATPases ZiaAN from Synechocystis PCC 6803.  

C.1.2 References 
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    M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:  

     Cellular and molecular biology, 2nd ed. American Society for Microbiology,  

     Washington, D.C.  

2. Silver, S., and M. Walderhaug. 1992. Microbiol. Rev. 56:195-228. 

3. Beard, S. J., R. Hashim, J. Membrillo-Hernandez, M. N. Hughes, and R. K. Poole.   
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C. 2 Cloning, Expression, Purification and Characterization of ZiaAN 

 

Gene encoding the N-terminal tail (1-111 amino acids) of ZiaAN was PCR 

amplified from Synechocystis PCC 6803 genomic DNA and digested with  BamHI/XhoI  

site to create  pETZiaAN. Bacterial clones after ligation were screened by DNA 

sequencing and positive clone was transformed to BL21 (DE3) expression cells. Cells 

were grown in minimal medium and were induced at O.D 600 reaching 0.6 with 1 mM 

IPTG. Expression test was done to scale up the expression time and was expressed very 

well after 6 hrs (Fig.28). The entire test expression was done in minifor fermentor by 

using minimal medium. Protein was purified under native condition by using anion 

exchange chromatography and size exclusion chromatography in 25 mM Tris buffer pH 

9.0. Purity of the protein was checked by SDS-PAGE gel (Fig. 29).          
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Figure 29.17% SDS-PAGE profile showing the purity of protein after size 

exclusion chromatography, M-Protein Marker. 

 

Protein folding was checked by 1D NMR (Fig. 30) and 1H-15N HSQC (Fig. 

31) at 303 K. Results from both spectra shows that protein is well folded. In both 

cases the protein was reduced with 4 mM DTT. For backbone and sidechain 

assignment 13C and 15N labeled sample was prepared by using labeled carbon and 

nitrogen source.   

Figure 30. 1D NMR spectra of apoZiaAN at 800 MHz, 303 K  

1H 
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C.2.1 NMR experiments and Relaxation studies 

Detailed results on NMR experiments and mobility study were mentioned in the 

following attached section:  

 

 

 

 

 

 

 

Figure 31. 1H-15N HSQC of apoZiaAN at 800 MHz, 303 K 
1H 

15N 
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Introduction 
 
 

Zinc is an essential nutrient: it forms the catalytic center in numerous enzymes 

and has an important structural role in a wide range of proteins. However, it can be toxic 

if its level and distribution is not carefully regulated, and its inappropriate binding may 

compromise cellular function. Therefore, organisms maintain cytoplasmatic zinc 

concentration at a nontoxic level that is sufficient for growth and homeostatic systems 

create the cellular environments in which the metal is acquired by metalloproteins 

{Frausto da Silva, 2001 8060 /id}. 

Cyanobacteria have metal requirements often absent in other bacteria. It has been 

argued that cyanobacteria altered the solubility of metals on a global scale as a by-

product of dioxygen-evolving photosynthesis. It is reasonably to suppose that the great 

autonomy provided by photosynthesis allowed early cyanobacteria to colonize vast 

vacant habitats of anaerobic earth some 2.7 x 109 years ago, life previously being 

restricted to niches with exploitable sources of chemical energy. In the absence of 

competition, rapid evolutionary divergence of ancestral cyanobacteria was likely to occur 

under minimal constraint {Cavet, 2003 8595 /id}. Moreover, at a time when 

cyanobacteria were evolving rapidly, the requirements for metal homeostasis were 

changing swiftly {Frausto da Silva, 2001 8060 /id}.  

Metal-transporting P1-type ATPases include numerous bacterial transporters 

commonly associated with resistance to excess Cd2+, Zn2+, Pd2+, Ag2+, Co2+ and copper. 

Features of this family of ATPases are an intramembranous metal binding site (the CPC 

motif) and a soluble amino-terminal metal-binding domain typically containing the motif 

CXXC. 
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The ziaA gene in Synechocystis PCC 6803 encodes a polypeptide with sequence 

similarity to metal-transporting P1-type ATPases {Thelwell, 1998 8988 /id}. 

Transcription of ziaA is induced by zinc, but not by other metal ions, and is mediated by 

the zinc-responsive repressor ZiaR {Thelwell, 1998 8988 /id}.Mutants deficient in ziaA 

have reduced tolerance to zinc and show reduced export of zinc to the periplasm. ZiaA-

mediated restoration of zinc tolerance can be used as a selectable marker supposing a role 

as a zinc exporter {Thelwell, 1998 8988 /id}. It has been shown that this P1-type 

ATPases, ZiaA, transports zinc and not copper {Thelwell, 1998 8988 /id} and has an 

amino-terminal domain (ZiaAN) with higher affinity for copper than for zinc (4). 

High metal specificity is a common feature of all the four related P1-type ATPases found 

in Synechocystis PCC 6803: CtaA, CoaT, PacS and ZiaA. A model for the action of each 

of these ATPases is pictured in Figure 1. At present, the metal ion transported and the 

direction of transport cannot be predicted from the sequence of the P1-type ATPase  

{Tottey, 2001 7684 /id}. 

Here we want to investigate the structural basis of the observed selective metal 

acquisition/exclusion by ZiaAN.  

 
Materials and Methods 
 

Cloning, Production, and Purification of Recombinant ZiaAN— 

 

Synechocystis PCC 6803 genomic DNA was used as template for PCR with primers  

5'-GGATCCATGACCCAATCTTCACCGCTCAAAAC-3' with 5'-CTCGAGTAGTTCT 

TGTTTCAGATTAAATTC-3’ (the latter annealing to DNA 3' of the ZiaA stop codon). 

The amplified fragment of DNA containing codons 1-111 encoding the entire amino-

terminal region of ZiaA (Fig. 2) was ligated into the NdeI/EcoRI sites of pET29a to 
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Figure 1. (A) A model for the action of each of the four related CPxt-type 

transporters in Synechocystis PCC 6803. Arrows indicate the direction of transport. 

Metals for which homeostasis is known to be altered following deletion of the 

respective transporter are shown. The model locates PacS within thylakoid 

membranes supplying copper for plastocyanin, PetE, in the thylakoid lumen. 

Shaded ovals represent a single amino-terminal metal-associated motif (CXXC), and 

a nonshaded oval (ZiaA) represents an additional HXH motif. (B) Sequence of the 

soluble amino-terminal region of ZiaA (ZiaAN). 

 

 
create pETZiaA. Recombinant protein was generated in E. coli (BL21) exposed to zinc 

(75 µM). Lysates were applied to Hi-Trap Q XL (Amersham) column and protein was 

eluted with one step 100 ml 50 mM NaCl. Fractions were collected and checked on 17% 

SDS-PAGE gel and low molecular weight protein fractions were applied on Sephadex G-

75 (1.5 × 20 cm), and fractions were eluted in 50 mM potassium phosphate buffer, pH 7.0. 

A single prominent band of the anticipated size was detected by PAGE. An aliquot of 

protein was hydrolyzed and analyzed for amino acid composition (Alta Bioscience) to 

allow calibration of colorimetric estimation of ZiaAN.  
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Figure 2. Alignment of predicted hydrophilic amino-terminal regions of the CPx-

type transporters PacS, CtaA, ZiaA, and CoaT from Synechocystis PCC 6803. 

 

NMR Experiments. 

   NMR spectra were acquired on Avance 800, 700, 600 and 500 Bruker 

spectrometers operating at proton nominal frequencies of 800.13, 700.13, 600.13 and 

500.13 MHz, respectively. All the triple resonance (TXI 5-mm) probes used were 

equipped with pulsed field gradients along the z axis. The 800 and 500 MHz 

spectrometers were equipped with a triple resonance cryoprobe. 

The NMR experiments were recorded on 15N,13C-labeled and 15N-labeled apoZiaAN 

samples. The NMR experiments used for the backbone and the aliphatic side-chain 

assignment and for obtaining structural restraints are summarized in Table 1. The 1H, 13C 

and 15N resonance assignments of apoZiaAN are reported in Table 1. 
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Dimension of acquired data     

(Nucleus) 

   Spectral Width (ppm) 

 

 

           Experiments 

     t1                    t2             t3    F1           F2             F3 NS 

[1H-1H]-NOESY 1024(H) 2048(H)  15 15  64 

[1H-1H]-TOCSY 1024(H) 2048(H)  15 15  64 

[1H-15N]-HSQC 512(15N) 1024(H)  40 7  8 

[1H-13C]-HSQC 256(13C) 2048(H)  70 14  8 

CBCA(CO)NH 124(13C) 48(15N) 1024(H) 88 40 16 8 

CBCANH 124(13C) 48(15N) 1024(H) 88 40 16 8 

HNCO 64(13C) 48(15N) 1024(H) 16 40 12 8 

HN(CA)CO 64(13C) 48(15N) 1024(H) 16 40 12 16 

13C(H)CCH-TOCSY 272(13C) 68(13C) 1024(H) 88 88 12 16 

15N-edited-[1H-1H]-

NOESY 

272 (1H) 48(15N) 1024(H) 15 40 15 16 

13C-edited-[1H-1H]-

NOESY 

272 (1H) 96(13C) 1024(H) 13 86 13 16 

HNHA 128 (1H) 40(15N) 1024(H) 15 40 15 16 

 

Table 1. Acquisition parameters for NMR experiments performed on apoZiaAN. 
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 A structural model of the soluble domain of ZiaA, which shows a sequence 

identity with ZntA (32%), was calculated using the program MODELLER, version 

4.0{Sali, 1993 4645 /id} and is shown in Figure 3. 15N R1, R2 and steady-state 

heteronuclear NOEs were measured using the pulse sequences proposed by Farrow et al. 

{Farrow, 1994 7528 /id}. R2 were measured using a refocusing delay of 450 µs. In all 

experiments the water resonance was suppressed with a “water flip-back” scheme 

{Grzesiek, 1993 3805 /id}.        

 

                                       

Figure 3. Structural model of the soluble domain of ZiaA (residues 1-73), which 

shows a sequence identity with ZntA (32%), calculated using the program 

MODELLER, version 4.0{Sali, 1993 4645 /id} 

 

The experimental relaxation rates were used to map the spectral density functions, J(ωH), 

J(ωN) and J(0) following the procedure reported in literature {Peng, 1992 4549 /id}.Fast 

amide proton exchange rates were measured using 15N-(CLEANEX-PM)-FHSQC 

C-terminal 

N-terminal 
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{Hwang, 1998 4450 /id;Hwang, 1998 4448 /id} experiments with a mixing time of 100 

ms 

Calculation of Chemical Shift Index (CSI) for apoZiaAN 

 Once the assignment of the backbone atoms had been completed, the chemical 

shift values of 1Hα, 13Cα, 13Cβ and 13CO were used for the chemical shift index (CSI) 

analysis according to Wishart and Sykes [13]  

 Results and Discussion 
Backbone Assignment and Dynamic Characterization of apoZiaAN.  

 

The 1H-15N HSQC spectrum of apoZiaAN show well dispersed resonances indicative of 

an essentially folded protein (Figure 4). However, only 62% (69 out of 111) of the 

expected 15N backbone amide resonances were possible to assign for apoZiaAN.  

 

Figure 4. 1H-15N HSQC spectrum of apoZiaAN recorded at 700 MHz, 303 K, on a 1.0 

mM sample in 20mM phosphate buffer pH 7 with 5 mM DTT. 
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15N R1, R2 and 1H-15N NOE values can provide information on internal mobility as well 

as on the overall protein tumbling rate. From the analysis of 60 backbone HN signals, 

which are well resolved in the 1H-15N HSQC spectra of apoZiaAN, average 15N R1, R2 and 
1H-15N NOE values of 2.00 ± 0.23, 8.22 ± 1.81 and 0.42 ± 0.68 s-1 are found, 

respectively, at 600 MHz. The experimental relaxation data are shown in Figure 5 and 

look essentially homogeneous along the polypeptide chain, with the exception of residues 

located at the C and N termini. The correlation time for the molecule tumbling (τm) as 

estimated from the R2/R1 ratio is 5.69 ± 0.93 ns, as expected for a protein of this size in a 

monomeric state {Stokes, 1956 258 /id}{Einstein, 1956 261 /id}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Experimental relaxation data R1, R2 and heteronuclear NOEs measured at 

600 MHz for apoZiaAN at 303 K on a 1.0 mM sample in 20mM phosphate buffer pH 

7 with 5 mM DTT. 
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Conformational exchange phenomena that open parts of the protein backbone and 

expose it to bulk solvent are expected to give rise to relatively fast amide proton 

exchange kinetics. Residues affected by such amide proton exchange with solvent can be 

determined by the use of the 15N-(CLEANEXPM)-FHSQC approach, as shown in Figure 

6. A remarkable amount of assigned peaks clearly shows fast solvent exchange, as well as  

a few new peaks appearing only in the CLEANEX spectrum.  

 

 

 
 

 

Figure 6. Superposition of a 1H-15N HSQC spectrum (red) and a 15N-

(CLEANEXPM)-FHSQC spectrum (blue) of apoZiaAN recorded at 700 MHz, 303 

K, on a 1.0 mM sample in 20mM phosphate buffer pH 7 with 5 mM DTT. 

 

 

1H 

15N 
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CSI analysis has been performed (Fig.7) .It results that ZiaAN possesses βαββα 

secondary structural elements, in agreement with the derived structural model and as 

expected for N-terminal domains of P1-type of ATPases (4).CSI analysis shows that the 

last b strand is absent, at variance of the typical ferredoxin-like fold of homologous 

domains (4). 
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Figure 7. Consensus CSI result obtained from 1H , 13C , 13C  and 13CO chemical  

shifts apoZiaAN, where an index of +1 or -1 indicates elements of -strand or -

helical structure, respectively, while zero value predicts a random coil 

conformation. 
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D.  Zinc Finger 9 /Cellular Nucleic Acid Binding (CNBP/ZNF9) 

D.1 Overview 

Myotonic dystrophy is autosomal-dominant multisystemic diseases (1) with 

peculiar phenotypic features affecting skeletal muscle, heart, eye and endocrine system. 

There are two kind of Myotonic dystrophy, namely type 1(DM1) and type 2 (DM2). 

DM1 is caused by an expanded CTG repeat in the 3′ UTR of the dystrophia myotonica 

protein kinase gene (DMPK) on chromosome 19q13.3 (2) and the protein involve is 

MBNL. Where as DM2 is caused by a dominantly transmitted CCTG repeat expansion in 

intron 1 of the zinc finger protein 9 (ZNF9) gene on chromosome 3q (3). In both cases 

the number of repeats depends on the severity of disease. In DM2 these repeat ranges in 

size from 5–37 repeats in the normal population, 50–1000 repeats in mild to classical 

symptom adult-onset patients with premature cataract formation, myotonia and muscle 

weakness, and >1000 repeats in severely affected congenital individuals (CDM) with 

neonatal respiratory distress, hypotonia and mental retardation. Huntington's disease is 

example for this class of disease which is caused by expansion of CAG repeat in a region 

of the gene that is translated into protein. The accumulation of these transcripts in 

numerous intranuclear foci has led to the search for proteins that interact with the repeats. 

One such protein is ZNF9, which co-localize with RNA foci in the cells (3). There is no 

structural information available either on MBNL or ZNF9.  
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This work includes cloning, expression, purification and characterization of ZNF9 

protein. 

D.1.1  References 

 1 Ranum, LP and J.W. Day, (2002). Curr Neurol Neurosci Rep 2, 465–470. 
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    Wolfram Kress, Susan L. Naylor, John W. Day, Laura P. W. Ranum (2001), Science,   

    293, 5531, 864-867. 

3. Yoshihiro Kino, Daisuke Mori, Yoko Oma, Yuya Takeshita, Noboru Sasagawa and  

    Shoichi Ishiura (2004), Human Molecular Genetics, 13, 5: 495-507. 

 

D. 2 Cloning, Expression, Purification and Characterization of ZNF9 

Protein was purified from under denaturing condition by utilizing N-terminal His-

Tag of the protein. Impurities after first column were removed by size exclusion 

chromatography. Protein was enough pure after first column (Fig. 32). 

Protein was refolded in the presence of several additives and additives were 

removed in several steps of slow dialysis. Primary protein folding checked by 1D NMR 

shows that the protein is partially folded (Fig. 33). ZNF9 was titrated with Zn2+ and 1D 

NMR spectra was collected during the titration steps. The addition of Zn2+ does not 

dramatically improve the fold of the protein (Fig.34), suggesting that the protein is not 

well structured in the absence of RNA repeats. 
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Figure 32. 17% SDS-PAGE of ZNF9 after size exclusion chromatography. 
 

 

Figure 33. 1D NMR spectra of ZNF9 protein. 
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Figure 34. 1D NMR spectra of ZNF9 before (A) and after (B) adding 

zinc (1:7) 

 

E. Catalytic Domain of A Disintegrin and Metalloprotease 10 

(ADAM10) 

E.1 Overview  
 

The ADAM (A Disintegrin And Metalloprotease) family includes proteins 

containing disintegrin-like and metalloprotease-like domains (1). They are also referred 

to as MDC (Metalloprotease, Disintegrin, Cysteine-rich) proteins. The extracellular 

domains of a diverse range of cell proteins are cleaved and released from cells in a 

soluble form by a process known as ectodomain shedding. Membrane anchored proteins 

that undergo such cleavage include cytokines, cytokine receptors, growth factors, growth 

factor receptors, cell adhesion molecules (1), and proteins of unknown function, including 

the amyloid precursor protein (APP) (2). The ectodomain shedding of these proteins 

(A) 

(B) 
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exhibits three main characteristics. First, shedding is enhanced by agents, such as phorbol 

esters, that activate protein kinase C (3, 4). Second, shedding is sensitive to hydroxamic 

acid-based metalloproteinase inhibitors (5, 6). Third, shedding appears to occur at or near 

the cell surface (7). Proteolytic processing of the APP appears to be central to the etiology 

of Alzheimer's disease (AD). Recently it was reported that metalloprotease, ADAM10 is 

involved in this process. However, it has been suggested that inhibition metalloprotease 

(ADAM10) could have value as an alternative strategy in the treatment of Alzheimer's 

disease (8). 

To address this challenge I have attempted to clone and express catalytic domain 

of ADMA10 protein. 
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E. 2 Cloning, Expression, Purification and Characterization of 

ADAM10 

Catalytic domain of ADAM10 was expressed in BL21 AI cells. Protein was 

expressed as soluble form. Purification was done by using His-tag and protein was 

enough pure after first column (Fig.35). His -tag was cleaved by using Factor Xa enzyme. 

                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. 17% SDS-PAGE of ADAM10 after Hi-Trap affinity column. 
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15N labeled sample for NMR was prepared by using M9 medium. Folding of 

ADAM10 was checked by 1D NMR and 1H-15N HSQC spectra. Protein results well 

folded. 1H-15N NMR spectra showed (Fig. 36) indeed well dispersed number of peaks. 

However the protein is very unstable in these conditions; it completely precipitates after 

6-8 hrs. This protein has also high auto-proteolytic activity and screening to find an 

efficient inhibitor is now under investigation. 

                

 

 

Figure 36.1H-15N HSQC of ADAM10 at 800 MHz with 298 K 
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Structural biology provides a detailed analysis at atomic level of the structure of 

biological macromolecules, with the ultimate goal of investigating the relationship 

between structure and function. In the case of metalloproteins one of the most relevant 

aspects is to understand the role of the metal cofactor and to investigate the structural 

changes induced by the binding of the metal ion. Structural biology of metalloproteins 

can be utilized to explore the numerous modes of coordination of metals found in the 

protein matrix, for example as found in metal ion transporters. In fact, in this sense, a 

protein can be seen as a big complicated ligand chelating the metal and subtle 

conformational changes can affect the metal ion specificity. The protein matrix exerts 

more control than a small synthetic metal complex because there are also tertiary 

interactions, electrostatic and conformational features, which modulate metal uptake and 

release. 

 During the PhD course my attention was focused on to understand protein 

stability in the axial methionine loop of a minimal cytochrome c of Bacillus pasteurii and 

structural characterization metal binding soluble domains of P1-type of  ATPAses PacS 

and ZiaA.  In addition, I have also attempted to characterize two human zinc binding 

proteins ZNF9 (Zinc Finger 9) and ADAM10 (A Disintegrin and Metalloprotease). 

In the first part of my PhD research work we have investigated the loop 

containing the iron axial ligand Met71 in oxidized Bpcytc using site directed mutagenesis 

at different sequence positions, in order to obtain better insight into the determinants of 

the high stability of the axial coordination towards GdmCl and alkaline pH. It appears 

that one of the main determinants of this stability is the high energy barrier for the 

rearrangement of the Met loop conformation. The Met loop rearrangement is a necessary 
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step for replacement of the axial ligand [1]. Met71 is in close contact with Ile75, which is 

important to tune the conformation of the side chain of the former residue. Mutation of 

Ile75 with less bulky amino acids results in a subtle rearrangement of the Met71 side 

chain and a small but significant destabilization of the protein fold. A key role is also 

played by Pro72, which is conserved also in Bpcytc homologs. Its mutation in fact 

dramatically affects the stability of Bpcytc towards denaturants and makes largely 

unfolded conformations much more readily accessible even under native conditions.  

 

This work demonstrates that the amino acid composition of the axial Met loop 

and the corresponding network of inter-residue interactions are crucial for the stability of 

c-type cytochromes through a complex interplay of conformational propensities, 

hydrogen bonds (also with the solvent) and hydrophobic contacts.  

 

In the second part of PhD research work I have studies copper and zinc proteins 

involved in metal trafficking within cyanobacteria Synechocystis PCC 6803.This work 

addressed the mechanism of copper transfer from the metallochaperone ScAtx1 to the 

PacSN domain, particularly investigating the role of His-61.Furthermore structural 

characterization of ZiaAN is the starting point for investigating the metal binding 

properties and the metal selectivity with respect to PacSN and ScAtx1. 

The interaction studies of Cu(I)ScAtx1 with apoPacSN show indeed that a 

heterodimeric complex is formed and, if the spectrum of the complex is compared with 

those of the apo and copper bound forms of ScAtx1 protein, it may be concluded that 

ScAtx1 in the complex is largely present in the apo form. In addition, comparing the 
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mobility properties in the absence and presence of BCS, it can be concluded that the 

copper transport between Cu(I)ScAtx1 and PacSN is mainly copper affinity dependent. 

His 61 of ScAtx1 (that is involved in copper binding together with Cys12 and Cys15) is 

likely no more bound to copper(I) in the protein complex. These data on therefore  in 

agreement with the following mechanism,  when Cu(I)ScAtx1 approaches apoPacSN, His 

61 is somehow displaced from the coordination sphere allowing one of the two cysteine 

residues of PacSN to encroach into a shared copper(I) site as proposed for Atx1/Ccc2a 

(2). Thus the favored order of copper(I) dissociation of ScAtx1 ligands during the 

interaction with PacSN is (I) His 61 (II) Cys 15 finally (III) Cys 12. 

 

Interaction of Synechocystis PCC 6803 Atx1 with ZiaAN domain will indeed 

exemplifies how the specificity of the contact surfaces between the metallochaperone and 

soluble metal binding domain, as opposed to the inherent metal-binding preferences of 

the latter, could dictate which metals are removed from the cytosol. This may be as 

important for preventing the ‘wrong’ metals from binding to a protein as facilitating 

delivery of the correct metals. For example, in the absence of copper metallochaperones 

(at least within the cytosol of copper-requiring organisms) copper might displace zinc 

from a sub-set of zinc proteins.  
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