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Modelling a slow smoldering combustion
process

A. Fasanoa∗ M. Mimurab, M. Primicerioa

We present a mathematical model for the slow and partial combustion process of a sheet of paper ignited on one side

and in the presence of a flow of air confined in a narrow gap above the paper. The model includes mass and thermal

balance for the various components. After having introduced some simplifications, a suitable rescaling is performed and

some limit cases are examined. Two classes of travelling wave solutions are analyzed, corresponding to the opposite cases

of a sufficiently large or of a moderate air flow. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

We model the process of slow and partial combustion (smoldering) of a sheet of paper exposed to a flow of air confined in a

narrow gap above the paper.

We consider a particularly simple geometry in which the sheet is ignited on one side rising the local temperature by means of

a heat pulse, and the combustion front proceeds keeping the form of a straight line x = s(t) travelling from the ignition front

x = 0 to the opposite side x = L. The air flow is parallel to the paper sheet, orthogonal to the combustion front and in the

opposite direction. The experimental apparatus is shown in Fig. 1.

Experiments show that if the speed of the gas is large enough, then the combustion front is flat and the problem is one-

dimensional with very good approximation.

Unlikely the expanding growth in normal gravity, it is observed in microgravity that smolder spreading over a thin filter paper

exhibits a complex and unexpected fingering growth pattern [1]. In order to study more qualitatively, E. Moses and his group

made the 2D experimental device of Hele-Shaw geometry where the fuel is filter paper. A rectangular sheet of the paper is put

between two plates. Here the oxidizing gas is supplied in a uniform flow, opposite to the direction of the front propagation as

shown in Fig. 1 (see [2], [3] for more precise explanation). Taking the oxygen flow velocity Vo2 as a control parameter, diverse

char growth patterns are observed. For Vo2 = 11.4 cm/s, the growing front is even (Fig. 2a). As the value of Vo2 is decreasing,

for Vo2 = 10.2 cm/s, the front becomes uneven (Fig. 2b) and for Vo2 = 9.2 cm/s, the front is periodic (Fig. 2c). While for Vo2
= 1.3 cm/s, the pattern exhibits fingers with tip splitting (Fig. 2d). Finally for Vo2 = 0.1 cm/s, it exhibits fingers without tip

splitting (Fig. 2e) [2]. Consequently, we found that fingering instability in smoldering combustion.

The purpose of this paper is to model smoldering combustion introduced in the above. Particularly, for simplicity only, we

consider the 1 dimensional problem which corresponds to the case where the gas flow velocity is large enough, as shown in Fig.

2a. We consider the situation where the combustion front proceeds from the ignition point x = 0 to the opposite side x = L.

The combustion reaction takes place between cellulose and oxygen as e.g.

C6H10O5 + 6O2 −→ 6CO2 + 5H2O, (1)

the reaction rate being a function of temperature.

For our purposes, the state of the paper is described by the quantities
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Figure 1. Schematic representation of the setup. 1, glass top; 2, variable gap between top and bottom plates h; 3, outflow of combustion products; 4, spacers to

control h; 5, ignition wire; 6, heat conducting boundaries; 7, flame front; 8, fuel; 9, interchangeable bottom plate; 10, uniform flow of O2/N2; 11, gas diffuser;

12, gas inlet. (from [2]).

T (x, t), paper temperature [K]

µ(x, t), linear molar density of cellulose [mole/cm].

The flowing gas has variable composition, due to reaction (1) and we distinguish the following components: oxygen (O2),

reaction production (CO2 and H2O in scheme (1)), gases not entering the reaction (N2 etc., including e.g. CO2 injected with

fresh air). We define

TG(x, t), gas temperature [K]

µ0(x, t), µ1(x, t), µ2(x, t) linear molar densities of oxygen, reaction products and inert gases, respectively [mole/cm].

2. Mass balance in the gas

The mass balance equations for the three classes of gaseous components can be written

∂µi
∂t
+
∂qi
∂x
= (−1)iαi

∂µ

∂t
, i = 0, 1, 2, (2)

where ∂µ
∂t
≤ 0 is the cellulose consumption rate [mole/(cm sec)] and α0, α1 are positive constants involving the stoichiometric

ratios in the reaction, while α2 = 0. Functions qi(x, t) are the molar mass fluxes of the components

qi(x, t) = −V µi(x, t)−Di
∂µi
∂x
, (3)

where V (x, t) is the speed of the gas (flowing from x = L to x = 0) and Di are the diffusivities.

For each component we can introduce the linear density [g/cm] as ρi = Miµi . Here Mi is the molar weight when dealing with

a single species, otherwise it represents suitable combination of molar weights. Therefore, introducing mass fluxes Qi = Miqi we

write

∂ρi
∂t
+
∂Qi
∂x
= (−1)iβi

∂ρ

∂t
, (4)

where β0, β1 > 0, β2 = 0 and
∂ρ
∂t is the linear mass consumption rate of cellulose [g/(cm sec)].

So far we have disregarded the presence of moisture in the paper and its possible evaporation due to the air flow and the

increase of temperature due to combustion.

3. Thermal balance in the gas

Let c0, c1, c2 be the specific heats of the gaseous components which we assume to be constant and let KG be the heat

conductivity of the gas.
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Figure 2. Various patterns of burned paper which appear in the experiment ([2])

The overall thermal balance in the gas can be written

∂

∂t

 

2
X

i=0

ciρiTG

!

+
∂

∂x

„

X

ciQiTG −KG
∂TG
∂x

«

= SE + c0β0TG
∂ρ

∂t
− c1β1T

∂ρ

∂t
. (5)
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At the r.h.s. of (5) SE describes the heat exchange rate (per unit length) with the paper and the surroundings and will be specified

soon. The second and the third term take into account the fact that oxygen is taken from the gas at the temperature TG , while

the reaction products are delivered to the gas at the temperature T of the paper. From the point of view of physical dimensions

it is important to remember that we are considering heat fluxes through the whole paper or gap cross section. Therefore heat

conductivities are such that

»

K
∂T

∂x

–

= cal sec−1,

i.e.

[K] = cal cm sec−1 K−1.

Defining

ρGcG =

2
X

i=0

ciρi (6)

and using (4) we get

ρGcG
∂TG
∂t
− ρGcGV

∂TG
∂x
−KG

∂2TG
∂x2

−
X

ciDi
∂ρi
∂x

∂TG
∂x
= SE − c1(T − TG)β1

∂ρ

∂t
, (7)

which emphasises the contribution of the of hot gases produced in the reaction to the increase of the gas temperature.

Passing to SE , we split it into two parts: the rate of heat exchange by radiation with the surroundings of the apparatus

(through the plate 1 of fig. 1), namely

SA = γ1(TA − TG), (8)

(TA is the ambient temperature), and the rate of heat exchange with the paper,

SP = γ2(T − TG). (9)

We are not going to investigate the full fluid dynamics of the problem. The flow in the narrow gap could be considered of

Darcy type (i.e. driven by pressure gradient). This requires the introduction of one more unknown (gas pressure), for which

the boundary conditions are fairly obvious. The real complication however is represented by the thermal expansion of the gas.

Even though the densities ρi could be taken independent of pressure (the flow is largerly subsonic) they should be treated as

ρi(x, t, TG(x, t)), making the determination of V quite difficult.

Since the attempts of using an over-simplified model to compute approximate solutions proved to be rather successful, see

[4], there is a strong evidence that it makes sense to avoid the intricacy of the fluid dynamical problem, just assuming that V

is a given constant. The key point justifying this approximation is that in the regime we are considering the mass flow rate is

much larger than the mass exchange rate due to combustion, so that V is practically not much perturbed by the combustion.

In the same spirit diffusive and conductive terms in (7) will be neglected.

Note that, even if ρ(x, t) and T (x, t) were known, equation (7) would not be sufficient for the determination of TG , also in

the simplified scheme in which V is a given constant and the third and fourth term on the l.h.s. are neglected.

Indeed, ρG = ρG(x, t) should also be considered among the unknowns of the problem and equation (4) should be used for its

determination. Since neglecting the variation of the composition of the gas is clearly a less drastic approximation than neglecting

thermal expansivity, we will take ρG =constant from now on.

4. Thermal balance in the paper

In (9) we implicitly assumed that K is a constant, disregarding not only its dependence on temperature but also the possible

influence of moisture. In the sequel we will also assume that the heat conduction through a cross section of the paper along the

direction x can be simply expressed as

qTH(x, t) = −KTx(x, t), (10)

with K constant, neglecting the fact that it should be taken dependent on ρ, since the amount of heat transported in the paper

through a cross section depends on the local value of the residual paper volume fraction (and on its composition). As a matter

of fact, we will always consider processes in which the combustion affects just a small portion of the paper (possibly also because

of components different from cellulose that do not take part in the combustion process).

In the same spirit we take the heat capacity independent of ρ and we write

ρ̄c̄
∂T

∂t
−K∂

2T

∂x2
= S′A − SP +R (11)

4 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–11

Prepared using mmaauth.cls



A. Fasano et al.

Mathematical
Methods in the
Applied Sciences

where ρ̄c̄ is an average heat capacity of the paper and

S′A = σ(T
4
A − T 4). (12)

The term

R = −R(T )∂ρ
∂t

(13)

encompasses all the thermal effect of the combustion also accounting for the discrepancy between the capacitive thermal energy

of the reactants and the one of the products of combustion. In principle function R in (13) should depend on TG as well, so to

account for the energy needed to heat the oxygen from temperature TG to temperature T , but the latter is of course negligible

w.r.t. the heat of reaction.

5. Mass balance of the cellulose

Let us go back to formula (13) defining the rate of heat release. The basic quantity entering R (and driving the whole process)
is the mass consumption of cellulose. This can be expressed as

∂ρ

∂t
= −λA(T )ρρ0, (14)

where A(T ) is a non-dimensional Arrhenius type factor, vanishing below a critical temperature TI and that, to be specific, we

will take as

A(T ) =



0, T < TI
A, T > TI ,

(15)

with A positive constant.

In (14) λ [sec−1] measures the speed of the reaction.

6. Governing equations and initial/boundary conditions

As we said, we assume that the thermal balance in the gas is governed by the following version of (7)

ρGcG

„

∂TG
∂t
− V ∂TG

∂x

«

= γ1(TA − TG) + γ2(T − TG) + c1(T − TG)β1λA(T )ρρ0, (16)

where (14) has been used and ρG , cG , V , σ, K, δ, c1 and β1 are given positive constants.

We write the mass balance of oxygen (see (4)) in the form

∂ρ0

∂t
− V ∂ρ0

∂x
−D∂

2ρ0

∂x2
= −β0λA(T )ρρ0, (17)

where D is the oxygen diffusivity in air and β0 is the dimensionless constant appearing in (4).

The heat balance in the paper is

ρ̄c̄
∂T

∂t
−K∂

2T

∂x2
= σ(T 4A − T 4)− γ2(T − TG) + λR(T )A(T )ρρ0, (18)

where, as pointed out above, ρ̄, c̄ can be taken as given positive constants, at least in the assumption that the paper contains

many inert components and/or the combustion involves just a small fraction of it.

The problem is completed by equation (14).

The initial conditions for 0 < x < L are:

ρo = ρ̃o , ρ = ρ̃,

(19)

TG = TA, T = TA,

where ρ̃o is the density of oxygen in air in the experiment room and ρ̃ is the linear concentration of cellulose in the paper sample

at the beginning of the experiment.

The boundary conditions are

ρo(L, t) = ρ̃o (fresh air injection), (20)

∂ρo

∂x
(0, t) = 0 (purely convective outflow), (21)

Math. Meth. Appl. Sci. 2009, 00 1–11 Copyright c© 2009 John Wiley & Sons, Ltd. 5
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences A. Fasano et al.

TG(L, t) = TA, (22)

∂TG
∂x
(0, t) = 0, (23)

T (L, t) = TA (can be different but not very influential), (24)

T (0, t) = T ∗H(ǫ− t), (25)

where T ∗ > TI , ǫ is some sufficiently small time and H(·) is the Heaviside function. Condition (25) mimics the impulsive onset
of combustion.

7. Rescaling

We rescale densities ρo , ρ by their initial values and set:

w =
ρo

ρ̃0
, p =

ρ

ρ̃
, (26)

and the temperatures by the temperature TA

u =
T

TA
, z =

TG
TA
. (27)

The independent variables x , t will be rescaled by L and

tD =
L2

D
, (28)

respectively.

Still using the same symbols x , t for the rescaled variables and setting Â(u) = A(TAu), we obtain from (16):

∂z

∂t
− V L
D

∂z

∂x
=
γ2L

2

DρGcG
(u − z) + c1β1λÂ(u)L

2

DρGcG
ρ̃ρ̃0(u − z)pw +

γ1

DρGcG
L2(1− z4). (29)

Thus it is natural to introduce the following characteristic times;

tG = (λρ̃)
−1, tR =

„

γ1

ρ̄c̄

«−1

, tA =

„

γ1

ρGcG

«−1

, tP =

„

γ2

ρGcG

«−1

, (30)

associated to the respective processes: gas heating by combustion, heat radiation, heat exchange to the paper and the

surroundings. So we write

∂z

∂t
− Pe ∂z

∂x
=
tD
tP
(u − z) + tD

tG
β1
ρ̃0c1

ρGcG
Â(u − z)pw + tD

tA
(1− z), (31)

where Pe = V L/D is the Pclet number.

Similarly, the non-dimensional form of (17) and (18) are

∂w

∂t
− Pe ∂w

∂x
− ∂

2w

∂x2
= −β0

tD
tG
pwÂ(u) (32)

∂u

∂t
− Le ∂

2u

∂x2
=
tD
tR
(1− u) + ρ̃0

ρ̂

tD
tG
ÂR̂pw − tD

tP

ρGcG
ρ̄c̄
(u − z), (33)

where we set

R̂(u) =
R(TAu)

c̄TA
, and

Le =
K

ρ̄c̄D

is the Lewis number (the ratio between tha equivalent heat diffusivity of paper and oxygen diffusivity).

Finally, (14) becomes
∂ρ

∂t
= −Â ρ̃0

ρ̃

tD
tG
pw. (34)
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The initial and boundary conditions are now

z(x, 0) = z(1, t) = 1 (35)

w(x, 0) = w(1, t) = 1, wx(0, t) = 0 (36)

u(x, 0) = u(1, t) = 1, u(0, t) = T ∗

TA
H
“

ǫ
tD
− t
”

. (37)

8. Special cases

We consider two particular limit cases of large speed V .

Assume that Pe >> 1, while the remaining coefficients in the equations (31)-(34) remain O(1). Then, (32) implies w ≈ 1.
Since, in addition, γ2 tends to infinity as V →∞, we will have also u ≈ z ≈ 1. This means that the temperature of the system
stays close to TA, then extinguishing the reaction, as expected.

Another important particular case is when V is such that the thermal contact between gas and paper may be considered

perfect, but the convective term Pe ∂w∂x is not so important to remove all the heat produced by the reaction and is of the same

order of magnitude as the r.h.s of (32). In that case we may reformulate the entire problem defining a cumulative linear density

of enthalpy

E = (ρ̄c̄dP + ρGcGdG)T, (38)

where dP and dG measure the relative widths of the paper sheet and the gas channel (dP + dG = 1) and the enthalpy flux is

defined as

qTH = −(kdP +KGdG)Tx(x, t)− V ρGcGdGT (x, t). (39)

Consequently, we will have a single equation expressing the energy balance in the form

ρ̂ĉ
∂T

∂t
− K̂ ∂

2T

∂x2
− ρGcGdGV

∂T

∂x
= λR(T )A(T )ρρ0 + Q̂A, (40)

where

ρ̂ĉ = ρ̄c̄dP + ρGcGdG ,

K̂ = KdP +KGdG ,

and Q̂A is the heat exchange rate with the surroundings, which from now on we linearize to D(1− u) while λR(T )A(T )ρρ0 is
the rate of heat release by combustion. To (40) we must couple equations (14), (17).

Equation (40) can be rescaled to

∂u

∂t
− L̂e ∂

2u

∂x2
− Pe ρGcG

ρ̂ĉ
dG
∂u

∂x
=
tD
tG

ρ̃0

ρ̂
R̂(u)Â(u)pw +

tD
tA

ρGcG
ρ̂ĉ
(1− u4), (41)

where L̂e is defined using the global diffusivity K̂ρ̂ĉ and R̂(u) is defined replacing c̄ by ĉ .

Note that the presence of the residual convection term still allows to have flame extinction in the limit Pe →∞.

9. Travelling wave solution

In this section we consider two classes of travelling waves in the situation described by (41). The first class deals with sufficiently

large air flux, so that in equation (41) we keep the convective term and correspondingly we neglect diffusion in the oxygen

transport. In the second class we deal with the converse situation of moderate gas flow, hence neglecting convection in (41)

while keeping the whole second order equation for oxygen transport.

9.1. Sufficiently large flow

We recall that the product R̂(u)Â(u) is a step function vanishing for u < uI =
TI
TA
. Instead of u we take v = u − 1, vI = uI − 1.

We set ξ = x − ct and we look for a solution of the form v = v(ξ), w = w(ξ), p = p(ξ) (for simplicity we keep the same
symbols) satisfying

L̂ev ′′ + γPev ′ + cv ′ = −H(v − vI)Γ1pw +Dv , (42)

Pew ′ + cw ′ = H(v − vI)Γ2pw, (43)

cp′ = H(v − vI)Γ3pw, (44)
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where the constants Γ1, Γ2, Γ3 are easily deducible from the original system, and H, is the Heaviside function. In addition we

impose

v −→ 0, as ξ −→ ±∞ (45)

p −→ 1, as ξ −→ +∞ (46)

w −→ 1, as ξ −→ +∞ (47)

With no loss of generality we take ξ = 0 as the rightmost point of the closure of supp{H(v − vI)}.
We start by solving for ξ > 0, where H(v − vI) ≡ 0. Let us define ω(c) = c+γPe

L̂e
. Then we immediately have

w ≡ 1, p ≡ 1, ξ > 0 (48)

and the equation for v is

v ′′ + ωv ′ − r v = 0, ξ > 0 (49)

with r = D

L̂e
. Hence, setting ω± =

−ω±
√
ω2+4r

2

v(ξ) = vIe
ω−ξ, ξ > 0 (50)

which implies v ′(0) = ω−vI .

Now we solve for ξ < ξ0 where ξ0 < 0 is the still unknown inf{supp{H(v − vI)}}. Here w and p will take some unknown
constant values w ∗, p∗, while the solution of (49) has to be

v(ξ) = vIe
ω+(ξ−ξ0), ξ < ξ0. (51)

Let us consider the interval ξ0 < ξ < 0.

We rewrite (43) in the form

w ′ = Ω(c)p′, Ω(c) =
c

Pe + c

Γ2

Γ3

whence w = 1−Ω(1− p), which, put back into (44), provides

p′ =
Γ3

c
p[1−Ω +Ωp],

to be integrated in (ξ0, 0) with the condition p(0) = 1.

Supposing Ω 6= 1, we have

p(ξ) = (1−Ω)


exp

»

−Γ3
c
(1−Ω)ξ

–

−Ω
ff−1

, (52)

whence

w(ξ) = (1−Ω)


1−Ωexp
»

Γ3

c
(1−Ω)ξ

–ff−1

(53)

and finally

pw = exp

»

Γ3

c
(1−Ω)ξ

–

"

1−Ω
1−Ωexp

ˆ

Γ3
c (1−Ω)ξ

˜

#2

≡ F (ξ). (54)

When Ω = 1, we have p = w =
`

1− Γ3
c ξ
´−1
, so that F (ξ) in (54) becomes

`

1− Γ3
c ξ
´−2
.

We have to solve

v ′′ + ωv ′ − r v = −Γ̂1F (ξ) for ξ ∈ (ξ0, 0) (55)

where Γ̂1 = Γ1/L̂e. We note that F (0) = 1, and F is bounded for negative values of ξ.

We write

v(ξ) = α+e
ω+ξ + α−e

ω−ξ + v̄(ξ) (56)

where α+ and α− are unknown constants and

v̄(ξ) = C+e
ω+ξ + C−e

ω−ξ, (57)

and

C±(ξ) = ±
Γ̂1√
ω2 + 4r

Z 0

ξ

F (η)e−ω±ηdη (58)

and we note that

v̄(0) = v̄ ′(0) = 0. (59)
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Thus imposing v(0) = vI and v
′(0) = ω−vI according to (49), we find

v(ξ) = vIe
ω−ξ + v̄(ξ), ξ ∈ (ξ0, 0) (60)

and, imposing v(ξ0) = vI , ξ0 is found (as a function of c) as the root of

v̄(ξ0) = vI(1− eω−ξ0). (61)

To find the speed c we impose the continuity of v ′ across ξ0, namely

ω+vI = ω−(vI + C−(ξ0))e
ω−ξ0 + ω+C+(ξ0)e

ω+ξ0 +
Γ̂1√
ω2 + 4r

F (ξ0){e−ω−ξ0 − e−ω+ξ0},

which reduces to

vI = C+(ξ0)e
ω+ξ0 +

Γ̂1

ω2 + 4r
F (ξ0){e−ω−ξ0 − e−ω+ξ0}. (62)

9.2. Moderate flow

In stead of (42)-(44), we have

L̂ev ′′ + cv ′ = −H(v − vI)Γ1pw +Dv (63)

w ′′ + Pew ′ + cw ′ = H(v − vI)Γ2pw (64)

cp′ = H(v − vI)Γ3pw (65)

with the boundary conditions (45)-(47).

We divide the line ξ ∈ (−∞,+∞) into three parts (−∞, 0), [0, Z] and (Z,+∞).
Setting

ρ± =
−c ±

p

c2 + 4DL̂e

2L̂e
, (66)

we have

v(ξ) = vIe
ρ+ξ, p = p∗, w = w ∗, ξ ∈ (−∞, 0), (67)

where p∗, w ∗ are constants to be determined. Moreover,

8

<

:

v(ξ) = vIe
ρ−(ξ−Z), p = 1

w(ξ) = w(Z) + w ′(Z)
Pe+c −

w ′(Z)
Pe+c e

−(Pe+c)(ξ−Z), ξ ∈ (z,+∞)
(68)

in (68), w(Z) and w ′(Z) are such that

w(Z) +
w ′(Z)

Pe + c
= 1. (69)

Introducing

V = v ′, W = w ′, (70)

we have to look for a solution of

8

>

>

>

>

<

>

>

>

>

:

v ′ = V

V ′ = −cV +Dv−Γ1pw

L̂e

p′ = Γ3pw
c

ξ ∈ [0, Z]
w ′ = W

W ′ = −(Pe + c)W + Γ2pw

(71)

that connects the point

(vI , ρ+vI , p
∗, w ∗, 0) for ξ = 0

with the point

(vI , ρ−vI , 1, w(Z), W (Z)) for ξ = Z,

where the constants p∗, w ∗, c and Z are to be determined along with w(Z) and W (Z) satisfying (69), i.e.

w(Z) +
W (Z)

Pe + c
= 1. (72)
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Figure 3. Horizontal axis Pe, vertical axis c.

Figure 4. Profiles of two solutions at Pe = 5.0 with c = 1.436 (figure to the left) and c = 0.060 (figure on the right).

In conclusion, we have six equations for six unknowns. Solving this system is by no means trivial. In a forthcoming paper we

will describe a numerical shooting method and will analyze how the solution depends on the parameters.

Here we just anticipate one of the most interesting results: for each Pe beyond some lower threshold there exist two solutions:

a fast wave and a slow wave. The corresponding bifuration diagram is shown in Fig. 3 . The two waves have peculiar qualitative

differences (see Fig. 4). In particular the low waves are unstable and the fast waves are stable. The fast waves tend to stabilize

for large values of Pe.
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