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Abstract. This paper revisits some very classical initial-boundary value problems for

parabolic equations, providing simple examples in which the occurrence of flux disconti-

nuities at the boundary when the unknown function reaches some critical value may give

rise to a waiting time phenomenon. A physical interpretation could be a modification of

the surface of the considered body taking place at the mentioned critical value, affecting

the way the body interacts with the surroundings. The waiting time, whose lenght (finite

or infinite) is a-priori unknown allows the system to evolve gradually through the critical

state. Some numerical simulations are also presented.

1. Introduction. It is well known that the propagation of a gas in a porous medium,

governed by the so-called porous medium equation, may exhibit a phenomenon of waiting

time, in the sense that, if the gas is initially confined in a bounded region with a suitable

density distribution, a finite time will elapse before any motion of the boundary can be

observed [3], [1] .

In that case the waiting time phenomenon (as well as the finite speed of propagation of

the invasion front) is related to the degeneracy of the governing differential equation.
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In this paper we want to deal with a different class of phenomena, in which the governing

equation is uniformly parabolic (e.g. the heat equation), or even elliptic, and the origin

of waiting time is to be found in some non-linear condition imposed on the boundary.

In most cases we will refer to boundary value problems on prescribed domains, but we

will also consider free boundary problems. In the latter case the condition producing the

waiting time phenomenon may be given either at a known part of the boundary, or on

the free boundary itself (see section 6).

A situation leading to the occurrence of a waiting time in a heat conduction problem

with phase change has been pointed out in [6]. However, such a phenomenon is by no

means necessarily related to phase change and we want to illustrate this fact through

several examples.

Generally speaking the waiting time phenomenon in heat conduction problems occurs

when boundary conditions exhibit the following situation:

• the entering heat flux at the boundary has a jump when the boundary tempera-

ture crosses a critical value u0.

• the jump is negative when temperature increases through u0.

When these circumstances occur, if at some time t0 the boundary temperature reaches

the critical value u0 e.g. from below, then it is forced to stay at this critical value for some

time - the waiting time - during which the heat flux passes from the value corresponding

to u−
0 to the value corresponding to u+

0 .

We can interpret this waiting time as the time needed by the boundary surface to adjust

its thermal properties to the new value compatible with the variation of the boundary

temperature.

Since the occurrence of waiting time is a local phenomenon, in the following examples we

will refer to one-dimensional model problems generally in the half space where it will be

easy to estimate the waiting time. The analysis can be easily adapted to finite domains.

2. A first example of boundary condition generating waiting time phenom-

ena. We consider the following model problem in normalized variables:

uxx − uτ = 0, x ∈ (0,+∞), τ > 0, (2.1)

u(x, 0) = φ(x), x ∈ (0,+∞), (2.2)

ux(0, τ) =

{

−A, u < 0

−A + B, u > 0
, τ > 0. (2.3)

where A and B are positive constants, φ has at most a polynomial growth as x → ∞
and we look for solutions that have the same property.

Suppose φ is continuous for x ≥ 0 and φ(0) < 0 and assume that a first instant τ = τ0 > 0

exists such that u(0, τ0) = 0. Classical properties of the heat equation ensure that (see

e.g. [9])

i. u ∈ C∞ ([0,+∞) × (0, τ0]),

ii.
∂2 u

∂x2
− ∂ u

∂τ
= 0 also for x = 0, 0 < τ < τ0,
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iii.
∂2k u

∂x2k
− ∂k u

∂τk
= 0, x ≥ 0, 0 < τ ≤ τ0, k = 1, 2, . . . ,

iv.
∂k

∂τk

∂ u

∂x

∣

∣

∣

∣

x=0

=
∂2k+1 u

∂x2k+1

∣

∣

∣

∣

x=0

= 0, τ ∈ (0, τ0], k = 1, 2, . . . ,

v. u(x, τ) is analytic w.r.t. x ∈ [0,+∞), for any τ ∈ (0, τ0].

Now, evaluate

vs :=
ds

dτ s
u(0, τ)

∣

∣

∣

∣

τ=τ0

, s = 1, 2, . . .

and let n be the first value of s such that vs 6= 0 (the existence of n follows from (iii),(iv)

and (v)).

By definition of τ0 it is necessarily

vn > 0,

because of (v), and of the assuption φ(0) < 0.

Consequently, defining Φ(x) = u(x, τ0), we have

Φ′(0) = −A,

Φ(2k+1)(0) = 0, k = 1, 2, . . . ,

Φ(2k)(0) = 0, k < n,Φ(2n)(0) > 0.

Hence we can write

u(x, τ0) = Φ(x) = −Ax + ax2n + o(x2n), a > 0. (2.4)

Setting t = τ − τ0, consider the equation

uxx − ut = 0, x > 0, t > 0, (2.5)

with initial datum

u(x, 0) = Φ(x), x > 0. (2.6)

It is immediately seen that if we impose the boundary condition

ux(0, t) = −A (2.7)

in a time interval t ∈ (0, t1), then for any t1 > 0 there exists an interval (0, t̄) such that

u(0, t) > 0 in (0, t̄) (remember a > 0), and hence condition (2.3) is not fulfilled.

On the other hand, imposing the condition

ux(0, t) = −A + B (2.8)

in some interval, then the solution of (2.5), (2.6), (2.8) in the same time interval is given

by (see [4], [5])

u(x, t) = (−A+B)x+

∫ +∞

0

(−Bξ+aξ2n +o(ξ2n)) [Γ(x, t; ξ, 0) + Γ(−x, t, ξ, 0)] dξ, (2.9)

where

Γ(x, t; ξ, τ) =
1

2
√

π(t − τ)
exp

[

− (x − ξ)2

4(t − τ)

]

, (2.10)

is the fundamental solution of the heat equation and the integral in (2.9) represents the

solution of the heat equation with zero flux on x = 0 and initial value Φ(x) = (−A+B)x.
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Thus we have immediately

u(0, t) = − 2√
π

B
√

t + O(tn), (2.11)

so that u(0, t) is negative in a right neighborhood of t = 0 (i.e. of τ = τ0), again

contradicting (2.3).

Thus neither imposing (2.7), nor (2.8) for τ > τ0 provides a solution to the given problem.

In other words, we are not allowed to switch instantaneously at τ = τ0 to the reduced

flux −A + B, nor to keep the same flux −A for τ > τ0.

From this elementary example it comes out that the boundary condition (2.3) is not well

formulated, but it has to be rewritten as

ux(0, t) ∈ −A + BH(u), (2.12)

where H(u) is the Heaviside graph

H(u) =







0, u < 0,

[0, 1], u = 0,

1, u > 0.

(2.13)

This amounts to solving (2.5), (2.6) with the boundary condition

u(0, t) = 0, 0 < t < tw (2.14)

where tw is the waiting time (which is one of the unknowns of the problem), i.e. the first

time such that

ux(0, tw) = −A + B. (2.15)

After tw we switch to (2.8). In other words the waiting time is the time during which

the vertical part of the graph H(u) is entirely covered.

It is a simple exercise to solve (2.5), (2.6), (2.14) and evaluate ux(0, t) as

ux(0, t) = 2

∫ +∞

0

Φ′(ξ)Γ(0, t; ξ, 0) dξ. (2.16)

For instance if we truncate (2.4) to Φ = −Ax + ax2n then we have

ux(0, t) = −A +
22nn!√

π
atn−

1

2 , (2.17)

which provides the length of the waiting time

tw =

( √
πB

22nan!

)
2

2n−1

. (2.18)

Back to case (2.4), it remains to show that solving the problem for t > tw, with condition

(2.8), we find u(0, t) positive in a neighborhood tw < t < t̂.

But this is immediately verified from the definition of tw. Indeed by an argument similar

to the one that we used to write (2.4) we find that

u(x, tw) = (−A + B)x + αx2m+1 + o(x2m+1). (2.19)
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Fig. 1. Waiting time in problem a.

for some integer m ≥ 1 and α > 0. Therefore

u(x, t) = (−A + B)x + U(x, t),

where U solves a problem with zero flux on x = 0 and initial datum that is positive in a

neighborhood of x = 0.

In figure 1 we show u(0, t) (solid line) and u(1, t) (dashed line), found by solving numer-

ically probem a: the heat equation in the slab x ∈ (0, 1) with the following conditions,

u(x, 0) = x2 − 2x − 1, ux(1, r) = 0, ux(0, t) ∈ −2 + H(u(0, t)).

In figure 2 we show u(x, t) for fixed t (step 0.2) with a zoom close to x = 0, u = 0, in

this example the inital condition condition is u(x, 0) = −1 (problem b).

Remark 2.1. Of course, cases of infinite waiting time can occur in bounded domains.

The same remark also applies to the problem stated in the sequel.

Remark 2.2. Depending on the initial condition or on the conditions at other boundaries,

the waiting time phenomenon may occur more then once, figure 3 shows a case of multiple

occurrence, when u(1, t) = −sin(πt).

3. Robin’s law with discontinuous heat exchange. We will see that waiting

time may also occurs when the boundary condition is of Robin-type as, for instance

ux(0, t) = h(u(0, t))(u(0, t) − 1), (3.1)
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Fig. 2. Waiting time in problem b.

and h is a discontinuous function of u(0, t) with a negative jump at some critical value.

Assume i.e. (2.2) with φ(0) < 0 and

h =

{

A, u(0, t) < 0,

A − B, u(0, t) > 0,
(3.2)

with A,B > 0, A − B > 0.

The physical interpretation of (3.1), (3.2) can be as follows: the surface x = 0 changes its

heat transmission properties when the temperature u = 0 is crossed, and consequently

the heat exchange coefficient with a thermostat kept at temperature ū = 1 is reduced

from A to A − B.

As in the previous case, we want to show that a waiting time is produced. We still refer

to the domain x > 0. Using the same notation of section 2 we will have to solve (2.5),

(2.6) with Φ(x) given by (2.4). We neglect for simplicity the term o(x2n) and we take

n = 1, but the argument is valid in general.

We have to show that for any t̂ > 0, there exists t̃ > 0 such that:

i. if we impose

ux(0, t) = A[u(0, t) − 1], t ∈ (0, t̂), (3.3)

we get u(0, t) > 0 in (0, t̃);

ii. if we impose

ux(0, t) = (A − B)[u(0, t) − 1], t ∈ (0, t̂), (3.4)

then u(0, t) < 0 in (0, t̃).

Statement (i) is immediately verified, since imposing condition (3.3) (i.e. the same con-

dition holding for t < 0, that means τ < τ0) makes ut(x, t) be continuous in (0, 0) and

hence positive and equal to a.
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Fig. 3. Multiple occurrence of waiting time, see remark 2.2.

To prove (ii) we have to write the solution of (2.5), (2.6), (3.4), and prove that u(0, t) < 0

in some (0, t̃).

We look for the solution in the form

u(x, t) =

∫ +∞

0

Φ(ξ)G(x, t; ξ, 0) dξ +

∫ t

0

µ(τ)Γ(x, t; 0, τ) dτ, (3.5)

where

G(x, t; ξ, τ) = Γ(x, t; ξ, τ) − Γ(−x, t; ξ, τ), (3.6)

is the Green’s function for the half-plane x > 0 and µ(t) will be chosen so that (3.4) is

satisfied.

Since

u(0, t) =

∫ t

0

µ(τ)

2
√

π(t − τ)
dτ, t > 0 (3.7)

and

ux(0, t) =
1√
πt

∫ ∞

0

Φ′e−
ξ2

4t dξ − 1

2
µ(t) (3.8)

(recall the jump relation for the double-layer heat potential, see [8]), we find that µ(t)

has to solve the following Volterra integral equation



8 A. FASANO, A. MANCINI, M. PRIMICERIO, AND B. ZALTZMAN

1

2
µ(t) + (A − B)

∫ t

0

µ(τ)

2
√

π(t − τ)
dτ = −B +

2a√
π

√
t, (3.9)

showing that µ(t) is negative in some neighborhood of t = 0. Thus (ii) is true.

Consequently, we will have to state (3.1) in the form

ux(0, t) ∈ [A − BH(u(0, t))](u(0, t) − 1). (3.10)

The waiting time is found solving (2.5), (2.6) with the boundary condition

u(0, t) = 0, 0 < t < tw (3.11)

and tw is the first time such that

ux(0, tw) = −A + B, (3.12)

i.e.

tw = π
B2

16a2
. (3.13)

For t > tw we impose

ux(0, t) = (A − B)[u(0, t) − 1].

If we prove that u(0, t) > 0 in some neighborhood (tw, tw + δ), the solution found by

means of the above procedure satisfies (3.10).

Thus, we have to prove that the solution of the heat equation in the region x > 0, t′ > 0

with condition

u(x, 0) = −Dx + αx2n+1 + o(x2n+1), x > 0, (3.14)

ux(0, t′) = D(u(0, t′) − 1), t′ > 0 (3.15)

is positive in x = 0 for some interval t′ ∈ (0, t̂).

In (3.14), (3.15) we have written t′ = t − tw and D = A − B, m integer, m ≥ 1 and

α > 0.

But writing

u = −Dx + v,

we see that v satisfies the heat equation with

vx = Dv for x = 0

and

v(x, 0) = αx2n+1 + o(x2n+1).

By continuity there exist two constants x0, t0 such that v(x, 0) > 0 for x ∈ (0, x0),

v(x0, t) > 0 for t ∈ (0, t0).

Now, if v(0, t) where not positive for 0 < t ≤ t0, then it would assume a non positive

minimum somewhere in the same interval. At that point, vx would also be non positive,

thus contradicting Hopf’s lemma.
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Remark 3.1. Condition (3.10) can be slightly generalized by replacing the constant 1

with a smooth function of t, ū(t). In this case, one can easily see that the occurrence of

a waiting time is guaranteed in the case ū(t) ≥ c > 0.

4. Heat exchange with a well-stirred fluid. The mathematical formulation of

this kind of boundary conditions (sometimes called condition of fourth or fifth type, see

e.g. [12], [13]) involve a new unknown function V (t), the temperature of the well-stirred

fluid and the conditions to be imposed are:

a) conditions on the thermal contact between the medium under consideration and

the well stirred fluid,

b) energy balance in the well stirred fluid.

Moreover, the initial value V ∗ of V (t) has to be given.

We refer to one-dimensional heat conduction in the cylinder x > 0 with unitary cross

section and isolated local surface, and we assume that the well stirred fluid only exchanges

energy across x = 0. We have that condition a can be stated either as a perfect thermal

contact

u(0, t) = V (t), t > 0 (4.1)

or as a boundary layer condition

u(0, t) − V (t)

δ
= Kux(0, t), t > 0. (4.2)

Considering condition b, we can write

dE

dt
= Kux(0, t), E(0) = E∗ (4.3)

(both in (4.2) and (4.3) we will set K = 1 consistently with the normalization we used

in writing the heat conduction equation in the form (2.1)).

In (4.3) E(t) is the thermal energy stored in the well stirred fluid and thus

E(t) = CV (t), (4.4)

where C is the thermal capacity of the fluid, possibly dependent on V .

If we are in the case of perfect thermal contact, so that

ux(0, t) = CV̇ , u(0, t) = V (t), V (0) = V ∗, (4.5)

the phenomenon of waiting time cannot take place even if C has a jump for some V = V0.

Indeed, this would mean that u(0, t) = V0, ux(0, t) = 0 over a finite time interval,

implying
∂m

∂xm
u(x, t)

∣

∣

∣

∣

x=0

= 0, for m = 1, . . . (4.6)

and, by the analyticity of u, this is compatible only with u(x, t) ≡ V0.

On the contrary, it is easily seen that in the case of imperfect thermal contact we can

have waiting time.

For instance
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





















ux(0, t) = CV̇ (t),

V (0) = V ∗ > 0,

u(x, 0) = φ(x) < 0, x ≥ 0,

ux(0, t) = 1
δ [u(0, t) − V (t)],

(4.7)

can produce waiting time if
∫ +∞

0

φ(x) dx + CV ∗ > 0, (4.8)

1

δ
=

{

A, u < 0,

A − B, u > 0, A,B > 0.
(4.9)

Indeed u(0, t) is forced to vanish for the first time at some instant t̂ while V (t̂) > 0

because of the Hopf’s lemma.

Remark 4.1. Of course in case of “very large” C the “well-stirred fluid” becomes a ther-

mostat and (4.1),(4.5) reduce to a constant Dirichlet datum whereas (4.2),(4.5) become

a Robin-type condition.

Moreover, note that condition (4.3) can be generalized if we assume the presence of heat

sources in the fluid.

5. Remarks on existence and uniqueness. We confine to the problem described

in section 2. For simplicity we consider as initial datum

Φ(x) = −Ax + ax2, x > 0, (5.1)

where A and a are positive constants.

We take a linear approximation of the Heaviside graph

Hε =







0, u ≤ 0,
u
ε , u ∈ [0, ε],

1, u ≥ ε,

(5.2)

and, for any ε ∈ (0, 1) we solve the problem







uε
xx − uε

t = 0, x > 0, t > 0,

uε(x, 0) = Φ(x), x > 0,

uε
x(0, t) = −A + Hε(uε(0, t))B, t > 0,

(5.3)

and we note that uε
t (0, t) is necessarily positive because of the maximum principle and

the Hopf’s lemma.

As long as uε(0, t) < ε we can write

uε(x, t) = −Ax + ax2 + 2at + W (x, t), (5.4)

where W solves a diffusion problem with vanishing initial datum and with boundary

condition
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Wx(0, t) − B

ε
W (0, t) =

2Bat

ε
. (5.5)

Now we set

z(x, t) = Wx(x, t) − B

ǫ
W (x, t), (5.6)

vanishing for t = 0 and satisfying the boundary condition

z(0, t) =
2Bat

ε
. (5.7)

Elementary calculations yield

z(x, t) =
2Ba

ε

{

(t +
x2

2
)erfc

x

2
√

t
− x

√

t

π
e−

x2

4t

}

. (5.8)

We can integrate (5.6) (using the implicit condition that both W and z go to zero as

x → +∞) and obtain

W (x, t) = −e−
B
ε

x

∫ +∞

x

e−
B
ε

ξz(ξ, t) dξ, (5.9)

implying in particular

W (0, t) = −a

∫ +∞

0

{

e−η

[

2t +
( ε

B
η
)2

]

erfc
εη

2B
√

t
− εη

B

√

t

π
e−

ε2η2

4B2t

}

dη. (5.10)

After some manipulations we find

uε(0, t) =
4a

√
t

B
√

π
ε + o(ε), as long as uε < ε (5.11)

and, at first order in ε, we get that the time tεw such that uε(0, x) = ε is given by

√

tεw =
B
√

π

4a
+ o(ǫ), (5.12)

in accordance with (2.18).

Obviously the above procedure can be repeated for any smooth approximation of the

Heaviside graph.

More generally, we consider the problem






ut = uxx, x > 0, t > 0,

u(x, 0) = ψ(x), x > 0,

ux(0, t) ∈ G
(

u(0, t)
)

, t > 0,

(5.13)

where G(u) is a piecewise continuous monotonically increasing graph for u ∈ R. We

define the classical solution to (5.13) in the usual way: u ∈ C2,1
(

(0,+∞) × (0,+∞)
)

,

u ∈ C
(

[0,+∞) × [0,+∞)
)

with ux continuous up to x = 0 (with appropriate growing

conditions as x → ∞). We prove the following
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Theorem 5.1. Assume ψ ∈ C2[0,+∞), ψ′(0) ∈ G(ψ(0)). Then (5.13) admits one unique

solution and moreover

u(x, t) ∈ Lip ([0,+∞) × [0,+∞)) , (5.14)

ux(x, t) ∈ H1,1/2 ([0,+∞) × [0,+∞)) (5.15)

where H1,1/2 denotes the space of functions that are Lipschitz-continuous w.r.t. x and

Hölder-continuous (with exponent 1
2 ) w.r.t. t

Proof. We start with a proof of existence. We consider a sequence of regularized

problems






uε
t = uε

xx, x > 0, t > 0,

uε(x, 0) = ψ(x), x > 0,

uε
x(0, t) = Gε

(

uε(0, t)
)

, t > 0,

(5.16)

where regularized functions Gε(u) are continuously differentiable in u,

ψ′(0) = Gε(ψ(0)), (5.17)

lim
ε→0

Gε(u) = G(u). (5.18)

Then the time derivative vε = ue
t is a solution to the following problem















vε
t = vε

xx, x > 0, t > 0,

vε(x, 0) = ψ′′(x), x > 0,
vε

x(0, t)

vε(0, t)
=

dGε(uε)

d uε
≥ 0, t > 0,

(5.19)

Applying maximum principle to the problem (5.19), we conclude that

|vε(x, t)| ≤ max
x≥0

|ψ′′(x)|. (5.20)

This estimate yields

uε(x, t) ∈ Lip ([0,+∞) × [0,+∞)) , (5.21)

uε
x(x, t) ∈ Lip ([0,+∞)) , ∀t ≥ 0. (5.22)

Applying Lemma 3.1 ch. II of [11] we conclude that embedding (5.14), (5.15) holds for

the sequence uε uniformly in ε > 0. Hence the proof of existence and of (5.14), (5.15)

follows at once from a compactness argument.

The uniqueness result follows sraightforwardly from the following energy estimate:
∫ ∞

0

(

u1(x, t) − u2(x, t)
)2

dx ≤
∫ ∞

0

(

ψ1(x) − ψ2(x)
)2

dx, (5.23)

where u1(x, t) and u2(x, t) are solution to the problem (5.13) with initial values ψ1 and

ψ2.

Remark 5.2. Of course, assumptions of the previous theorem can be considerably weak-

ened using estimates local in time. In this case properties (5.14) and (5.15) are to be

modified accordingly, requiring that they hold for any [0,+∞) × [δ,+∞) and that the

Lipschitz and Hölder constants are bounded by Cδ−γ , for some positive C and γ.
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Remark 5.3. If the multi-valued function Ψ is monotonic decreasing, waiting time does

not occur (except in the trivial case described in the following remark). To show it in a

simple example

ux(0, τ) =

{

−A, u < 0,

−A − B, u > 0
(5.24)

consider, as in section 2, the first τ0 such that u(0, τ0) = 0 and take n = 1 in (2.4) (it

means that uτ (0, τ0) > 0). The heat equation with u0(0, t) = −A − B and u(x, 0) =

−Ax + ax2 + o(x2) is such that

u(x, t) = −(A + B)x + v(x, t) (5.25)

when v(x, t) has zero flux on x = 0 and v(x, 0) = +Bx + o(x), and thus positive.

On the other hand, imposing a waiting time we will have a boundary flux −ux(0, t) that

becomes less than A.

Remark 5.4. It is easily seen that boundary condition (5.24) may produce non-uniqueness.

Consider again the heat equation in R × R and assume

u(x, 0) = −Ax. (5.26)

Of course u(x, t) = −Ax is a solution, but another solution is obtained by adding to −Ax

the solution of a diffusion problem with zero initial datum and entering flux equal to B,

which is locally positive on x = 0.

6. Occurrence of waiting times in some free boundary problem. In this sec-

tion we give two simple examples of free boundary problems in which waiting times may

occur.

The first is a generalization of the well-known Green-Ampt solution [10] for the pene-

tration of water in non-capillary soils, while the second is a diffusion problem with a

threshold.

6.1. Imbibition of a filter. Consider a domain Ω := {(x, y, z) : y2 + z2 ≤ R2, x > 0}
occupied by a porous medium of porosity ε and with negligible capillarity.

In the sequel we refer to the specific case in which the volume of the liquid occupying

the unit volume of the porous medium m(x, y, z, t) is such that

m(x, y, z, t) =

{

0, p(x, y, z, t) ≤ 0,

ε, p(x, y, z, t) > 0.
, (6.1)

that corresponds to a porous medium without capillarity.

In (6.1) p(x, y, z, t) is the pressure and p = 0 the atmospheric pressure.

We consider a one-dimensional problem with no gravity and we assume

p(x, 0) = 0, x > 0, (6.2)

i.e. the porous medium is initially dry.

We also assume that the boundary x = 0 (that can be taken of unit cross section) is in

contact with a reservoir in which the pressure is a prescribed positive function of time
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p0(t) and we suppose that the inflow discharge at x = 0 is proportional to the pressure

difference p0(t) − p(0, t). According to Darcy’s law we can write:

−px(0, t) = α[p0(t) − p(0, t)], t > 0. (6.3)

This corresponds to assuming that the flow from the reservoir has to cross a porous

junction whose hydraulic resistivity is proportional to 1
α .

From the continuity equation we have

pxx = 0, where p > 0, (6.4)

i.e. in the water saturated region.

Thus the solution of our problem is given by:

i. a function s(t) denoting the interface between the dry and wet porous medium

(s(0) = 0 because of (6.2)).

ii. a function p(x, t) that depends linearly on x ∈ (0, s(t)).

Moreover on x = s(t) we have

p(s(t), t) = 0, t > 0, (6.5)

Kpx(s(t), t) = −εṡ(t), t > 0, (6.6)

where the latter condition expresses the mass balance if K is the hydraulic conductivity.

The situation just described is a simple generalization of the classical Green-Ampt model

[10] in which hydraulic contact between the porous medium and the reservoir is assumed

to be perfect, so that

p(0, t) = p0(t), (6.7)

and thus

s2(t) = 2
K

ε

∫ t

0

p0(τ)dτ, t > 0, (6.8)

p(x, t) = p0(t)

(

1 − x

s(t)

)

, x ∈ (0, s(t)), t > 0, (6.9)

(the classical Green-Ampt solution corresponds to p0 = const.).

If the boundary condition is (6.3) we have, after obvious normalization, that s(t) has to

solve the O.D.E.

ṡ + αsṡ = αp0(t) (6.10)

so that

s(t) =
−1 +

√

1 + 2απ(t)

α
, ṡ =

αp0(t)
√

1 + 2απ(t)
(6.11)

and

p(x, t) = ṡ(t)(s(t) − x), x ∈ (0, s(t)), t > 0, (6.12)
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where

π(t) = α

∫ t

0

p0(τ)dτ. (6.13)

Thus

p(0, t) = −p0(t)

[

1 − 1
√

1 + 2απ(t)

]

. (6.14)

Now consider the case in which the junction “collapses” when p(0, t) reaches some critical

value p∗ and its resistivity jumps from the value 1
α to the value 1

β > 1
α

1.

If we assume that p0(t) is monotonic and that p(0, t) crosses p∗ at some t0 > 0, we can

see that the free boundary has to stop for some finite waiting time .

Indeed, keeping a resistivity
1

α
after t0 would lead to (see (6.14)) a pressure p(0, t) larger

than p∗ (forcing the resistivity to
1

β
). On the contrary, taking

1

β
after t0 produces a

discontinuity in the speed of the free boundary

ṡ(t+0 ) − ṡ(t−0 ) = p0(t0)

[

β

1 + βs(t0)
− α

1 + αs(t0)

]

= −γ < 0, (6.15)

and thus p(0, t+0 ) would drop below p∗:

p(0, t+0 ) = p(0, t−0 ) + s(t0)
[

ṡ(t+0 ) − ṡ(t−0 )
]

= p∗ − s(t0)γ. (6.16)

We conclude that, starting from t0 the condition to be imposed is

p(0, t) = p∗, t0 < t < t0 + t̂ (6.17)

and t̂ is such that −px(0, t) reaches the value β(p0(t) − p∗), i.e.

βs(t0 + t̂) = αs(t0). (6.18)

After t0 + t̂ the condition to be imposed is

−px(0, t) = β (p0(t) − p(0, t)) , t > t0 + t̂. (6.19)

Therefore the correct form of the boundary condition holding for any t > 0 is

−px(0, t) ∈ {α + (β − α)H(p(0, t) − p∗)} (p0(t) − p(0, t)) . (6.20)

6.2. Free boundary with Signorini type condition. Consider a substance that diffuses

in a substrate following Fick’s law, so that if c(x, t) is the (normalized) concentration of

the substance

cxx − ct = 0, in the penetrated region, (6.21)

where we confine to a one-dimensional problem, using directly non-dimensional variables.

Penetration occurs if the concentration at the penetration front exceeds a threshold value

c∗, and the penetration speed depends on the concentration on the front. This problem

has been described e.g. in [2], [7].

1The limit case β → 0 corresponds to the clogging of the junction.
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Accordingly, if x = s(t) denotes the location of the penetration front, we have that (6.21)

holds - say - for x ∈ (0, s(t)), t > 0 and

ṡ(t) =

{

0, if c(s(t), t) < c∗,

f(c(s(t), t)) if c > c∗.
(6.22)

In addition, conservation of mass at the free boundary reads

−cx(s(t), t) = ṡ(t)c(s(t), t). (6.23)

In order to illustrate the occurrence of a waiting time we consider a model problem where

f ≡ 1 and we assume that, at the time t = 0 when the front concentration reaches the

value c∗, the penetrated region is x < 0.

Moreover we take

c(x, 0) = c∗ + ax2, x < 0 = s(0), (6.24)

with a > 0. If we apply (6.22), (6.23) with

cx(0, t) = 0, t > 0, (6.25)

we see that ct(0, t) = 2a > 0 for t > 0, implying c(0, t) > c∗ and contradicting (6.22).

On the other hand, consider the problem







cxx − ct = 0, x < t, t > 0,

c(x, 0) = c∗ + ax2, x < 0

cx(t, t) + c(t, t) = 0, t > 0.

(6.26)

Problem (6.26) is obtained assuming that c(s(t), t) > c∗, and hence ṡ(t) = 1 so that

(6.23) is equivalent to the third condition.

If we show that c(t, t) < c∗ in some interval (0, t̃) it will be clear that (6.22) is contradicted

again and there will be some waiting time for the transition from the first condition in

(6.22) to the second (with f ≡ 1).

Consider for ε > 0 and γ > 0 to be determined the function

Uε(x, t) = c∗ + ε + ax2 − γx + 2at.

We have

Uε(x, 0) > c(x, 0)

Uεx(t, t) + Uε(t, t) = 2at − γ + c∗ + ε + at2 − γt + 2at =: Rε(t),

and if γ < c∗, Rε(t) > 0 in [0, t0], ∀ε > 0.

This means (apply once again the boundary point principle)

Uε(t, t) > c(t, t) in [0, t0] ∀ε.

Consequently,

c(t, t) < U0(t, t) = c∗ + at2 − γt + 2at, t ∈ [0, t0]

and if γ > 2a we conclude that

c(t, t) < c∗

in some interval. Thus, by this simple argument we have produced an example (c∗ > 2a)

in which waiting time occurs.
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Remark 6.1. Thus, again, the correct way of formulating condition (6.22) is

ṡ(t) ∈ f(c(s(t), t))H(c(s(t), t) − c∗), (6.27)

and note that during the waiting time, when we “freeze” c(s(t), t) to c∗ the free boundary

conditions become

{

c(s(t), t) = c∗,

−cx(s(t), t) = c∗ṡ,
(6.28)

i.e. conditions of Stefan type.
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