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Equation with general nonhomogeneous Φ-Laplacian, including classical and singular Φ-
Laplacian, is investigated. Necessary and sufficient conditions for the existence of nonoscillatory
solutions satisfying certain asymptotic boundary conditions are given and discrepancies between
the general and classical Φ are illustrated as well.

1. Introduction

The aim of this paper is to investigate asymptotic properties for second-order nonlinear
differential equation

(
a(t)Φ

(
x′))′ + b(t)F(x) = 0, (t ≥ t0), (1.1)

where

(i) Φ is an increasing odd homeomorphismus,Φ : (−ρ, ρ) → (−σ, σ) such thatΦ(0) = 0
and 0 < ρ ≤ ∞, 0 < σ ≤ ∞;

(ii) F is a real continuous increasing function on R such that F(u)u > 0 for u/= 0;

(iii) a, b are positive continuous functions for t ≥ t0 such that

∫∞

t0

b(t)dt < ∞, (1.2)
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and, whenever σ < ∞,

inf{σa(t)} > 0 for any t ≥ t0. (1.3)

For sake of simplicity we will assume also that F is an odd function.
Equation (1.1) is called equation with general Φ-Laplacian because DomΦ and/or

ImΦ are possibly bounded and it is not required that Φ satisfies the homogeneity property

Φ(u)Φ(v) = Φ(uv) for any u, v ∈ DomΦ. (1.4)

Obviously, (1.4) holds for equations with the classical Φ-Laplacian, that is, for

Φp(u) = |u|p−2u (
p > 1

)
. (1.5)

Prototypes of Φ, for which (1.4) does not hold, are the function ΦC : R → (−1, 1)

ΦC(u) =
u

√
1 + |u|2 , (1.6)

which determines the curvature operator div (ΦC(∇u)), and the function ΦR : (−1, 1) → R

ΦR(u) =
u

√
1 − |u|2

, (1.7)

which determines the relativity operator div(ΦR(∇u)). Boundary value problems on compact
intervals for equations of type (1.1) are widely studied. The classicalΦ-Laplacian is examined
in [1, 2], see also references therein; the cases of the curvature or the relativity operator
are considered in [3–5]; finally, equations of type (1.1) with nonhomogeneous Φ-Laplacian
defined in the whole R are studied in [6]. As claimed in [6, page 25], the lack of the
homogeneity property of Φ causes some difficulties for this study.

Oscillatory and asymptotic properties for (1.1) with classical Φ-Laplacian have
attracted attention of many mathematicians in the last two decades; see, for example, [7–
17] and references therein. Other papers deal with the qualitative behavior of solutions of
systems of the form

x′ = A(t)f1
(
y
)
,

y′ = −B(t)f2(x),
(1.8)

see, for example, [18–21]. Since the homogeneity property (1.4) can fail, (1.1) is not equivalent
with system (1.8) and so oscillatory and asymptotic properties of (1.1) with general Φ-
Laplacian cannot be obtained, in general, from results concerning (1.8).

The aim of this paper is to consider (1.1) with general Φ-Laplacian and to study
the existence of all possible types of nonoscillatory solutions of (1.1) and their mutual



Boundary Value Problems 3

coexistence.We show that the lack of the homogeneity property ofΦ can produce several new
phenomena in asymptotic behavior of solutions of (1.1). The discrepancies on the asymptotic
properties of solutions of (1.1) with classical and general Φ-Laplacian are presented and
illustrated by some examples, as well.

Our main tools for solving the asymptotic boundary value problems are based on
topological methods in locally convex spaces and integral inequalities.

We close the introduction by noticing that (1.1) covers a large class of second-order
ordinary differential equations which arise in the study of radially symmetric solutions of
partial differential equations of the type

div(G(∇u)) + B(|x|)F(u) = 0, x ∈ E, (1.9)

where G : R
n → R

n is continuous homeomorphismus, x = (x1, . . . xn) ∈ R
n, n ≥ 2, ∇u =

(D1u, . . . , Dnu), Di = ∂/∂xi, i = 1, . . . , n, |x| =
√∑n

i=1 x
2
i , E = {x ∈ Rn : |x| ≥ c}, c > 0. Denote

r = |x| and du/dr = ur the radial derivative of u. If there exists an odd function g : R → R

such that

G(x) =
x

r
g(r) x ∈ E, (1.10)

then a direct computation shows that u is a radially symmetric solution of (1.9) if and only if
the function y = y(r) = u(|x|) is a solution of the ordinary differential equation

(
rn−1g

(
y′)
)′

+ rn−1B(r)F
(
y
)
= 0, (r ≥ c). (1.11)

2. Homogeneity Property of Φ

We start by discussing the homogeneity property (1.4) and the consequences when it fails. To
this aim, consider the functional equation

X(u)X(v) = X(uv). (2.1)

The following holds.

Proposition 2.1. Any continuous and increasing solution X of (2.1) has the form X(u) = |u|μu for
some μ > −1.

Proof. Denote for u > 0

Y (u) = lnX(eu). (2.2)

Then (2.2) transforms (2.1) into the Cauchy functional equation

Y (u + v) = Y (u) + Y (v), (2.3)
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whose continuous solutions are of the form Y (u) = λu, λ ∈ R, see, for example, [22]. From
here we have X(u) = uλ for u > 0 and, because X is increasing, it results λ > 0. Moreover, the
continuability of X at 0 gives X(0) = 0. If u < 0, then from (2.1) we have X(u) = X(−1)(−u)λ.
Because X is increasing, we have X(−1) < 0 and from the fact X2(−1) = 1 it follows X(−1) =
−1. Consequently, X(u) = |u|λ sgn(u), where λ > 0, for u ∈ R.

Let Φ∗ be the inverse function to Φ and

Λ =
⋂

t≥t0
(0, σa(t)). (2.4)

In view of (1.3), Λ is a nonempty interval and, if σ = ∞, then Λ = (0,∞).
As wewill show later, a crucial role for the behavior of nonoscillatory solutions of (1.1)

is played by the integral

Iλ =
∫∞

t0

Φ∗
(

λ

a(t)

)
dt, λ ∈ Λ. (2.5)

IfΦ satisfies the homogeneity property (1.4), then Iλ is either divergent or convergent for any
λ > 0. If (1.4) does not hold, the convergence of (2.5) can depend on the choice of λ, as the
following examples illustrate.

Example 2.2. Consider the continuous odd function Φ : (−1, 1) → R given by

Φ(u) = −(logu)−1 if 0 < u < 1. (2.6)

Thus

Φ∗(w) = e−1/w if 0 < w < ∞. (2.7)

Clearly, Λ = (0,∞). Setting

a(t) = log t on [2,∞), (2.8)

we have

Φ∗
(

λ

a(t)

)
=

1
t1/λ

, (2.9)

and so (2.5) converges for λ < 1 and diverges for λ ≥ 1.

Example 2.3. Consider the continuous odd function Φ : R → (−σ, σ), σ = 1 + e, given by

Φ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

−(logu)−1 if 0 < u <
1
e
,

(1 + e)u
(u + 1)

if
1
e
≤ u < ∞.

(2.10)
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Thus

Φ∗(w) =

⎧
⎪⎨

⎪⎩

e−1/w if 0 < w < 1,
w

(1 + e −w)
if 1 ≤ w < 1 + e.

(2.11)

Setting

a(t) = log t on
[
e4,∞

)
, (2.12)

we have Λ = (0, λ), where λ = 4(1 + e). For λ ∈ Λ we get (2.9) and thus the same conclusion
as in Example 2.2 holds.

Observe that in the above examples the change of the convergence of Iλ depends only
on the behavior of Φ∗ near zero and thus they can be modified in order to include functions
Φwith Dom Φ = Im Φ = R.

We close this section by recalling that in the study of oscillatory properties of (1.1)with
the classical Φ-Laplacian it is often assumed

∫∞

t0

Φ∗
p

(
1

a(t)

)
dt = ∞. (2.13)

In this case the operator L1x ≡ (a(t)Φp(x′))′ is said to be in the canonical form and it can
be reduced by the transformation of the independent variable s =

∫ t1/Φ∗
p(a(τ))dτ to the

operator with a(t) ≡ 1. In particular, the Sturm-Liouville operator L2x ≡ (a(t)x′)′ in the
canonical form can be transformed to the binomial operator Lx ≡ d 2x/ds2. The lack of the
homogeneity property (1.4)makes this approach impossible for a general Φ.

3. Unbounded Solutions

Throughout this paper, by solution of (1.1), we mean a function x which is continuously
differentiable together with its quasiderivative x[1]

x[1](t) = a(t)Φ
(
x′(t)

)
, (3.1)

on some ray [tx,∞), where tx ≥ t0, and satisfies (1.1) for t > tx. As usual, a solution x of (1.1),
defined on some neighborhood of infinity, is said to be nonoscillatory if x(t)/= 0 for any large t,
and oscillatory otherwise.

Since we assume that F is an odd function, we will restrict our attention only to
eventually positive solutions of (1.1) and we denote by S the set of these solutions.
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Let x ∈ S: we say x ∈ M
+ or M

−, if x is eventually increasing or eventually decreasing.
If x is eventually positive, then x[1] is decreasing for large t. If x[1] becomes negative for t ≥ T,
because we can suppose also x(t) > 0 for t ≥ T , integrating (1.1)we obtain

x[1](t) ≥ x[1](T) − h

∫ t

T

b(s)ds, (3.2)

where h = supt≥TF(x(t)).Hence, (1.2) gives that x[1] is bounded.
Unbounded solutions of (1.1) are in the class M

+ and can be a priori divided into the
subclasses:

M
+
∞,� =

{
x ∈ M

+ : lim
t→∞

x(t) = ∞, lim
t→∞

x[1](t) = dx, 0 < dx < ∞
}
,

M
+
∞,0 =

{
x ∈ M

+ : lim
t→∞

x(t) = ∞, lim
t→∞

x[1](t) = 0
}
,

(3.3)

while bounded solutions of (1.1) can be a priori divided into the subclasses

M
+
�,0 =

{
x ∈ M

+ : lim
t→∞

x(t) = �x, lim
t→∞

x[1](t) = 0, 0 < �x < ∞
}
,

M
+
�,� =

{
x ∈ M

+ : lim
t→∞

x(t) = �x, lim
t→∞

x[1](t) = dx, 0 < �x < ∞, 0 < dx < ∞
}
,

M
−
�,� =

{
x ∈ M

− : lim
t→∞

x(t) = �x, lim
t→∞

x[1](t) = dx, 0 < �x < ∞, −∞ < dx < 0
}
,

M
−
0,� =

{
x ∈ M

− : lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = dx, −∞ < dx < 0
}
.

(3.4)

In the sequel, we give necessary and sufficient conditions for the existence of
unbounded solutions of (1.1). Let Iλ be defined by (2.5) and set

Kλ =
∫∞

t0

b(t)F

(∫ t

t0

Φ∗
(

λ

a(s)

)
ds

)

dt,

Jμ =
∫∞

t0

Φ∗
(
μ

1
a(t)

∫∞

t

b(s)ds
)
dt,

(3.5)

where λ ∈ Λ and μ > 0. The following holds.

Theorem 3.1. (i1) If there exist positive constants λ, L ∈ Λ such that

L < λ, IL = ∞, Kλ < ∞, (3.6)
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then there exist solutions of (1.1) in M
+
∞,� satisfying

lim
t→∞

x(t) = ∞, lim
t→∞

x[1](t) = L. (3.7)

(i2) Let Iλ = ∞ for any λ ∈ Λ. If for some λ ∈ Λ and μ ∈ ImF

Kλ < ∞, Jμ = ∞, (3.8)

then there exist solutions of (1.1) in M
+
∞,0.

Proof. Claim (i1). Denote

A(t; t0) =
∫ t

t0

Φ∗
(

λ

a(s)

)

ds. (3.9)

Obviously, limt→∞A(t; t0) = ∞. Let ε > 0 be such that L + ε ≤ λ. Fixed H > 0, choose t1 > t0
large so that

∫∞

t1

b(t)F(A(t; t0))dt < ε, A(t1; t0) ≥ H + ε. (3.10)

Denote with C[t1,∞) the Fréchet space of all continuous functions on [t1,∞) endowed with
the topology of uniform convergence on compact subintervals of [t1,∞) and consider the set
Ω ⊂ C[t1,∞) given by

Ω = {u ∈ C[t1,∞) : H + ε ≤ u(t) ≤ H + ε +A(t; t1)}. (3.11)

Define in Ω the operator T as follows:

T(u)(t) = H + ε +
∫ t

t1

Φ∗
(

1
a(s)

(
L +
∫∞

s

b(τ)F(u(τ))dτ
))

ds. (3.12)

Obviously, T(u)(t) ≥ H + ε. From (3.10)we have for s ≥ t1

∫∞

s

b(τ)F(u(τ))dτ ≤
∫∞

s

b(τ)F(H + ε +A(τ ; t1))dτ ≤
∫∞

t1

b(τ)F(A(τ ; t0))dτ < ε, (3.13)

and so, because L + ε ≤ λ,

T(u)(t) ≤ H + ε +
∫ t

t1

Φ∗
(
L + ε

a(s)

)
ds ≤ H + ε +A(t; t1), (3.14)
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that is, T mapsΩ into itself. Let us show that T(Ω) is relatively compact, that is, T(Ω) consists
of functions equibounded and equicontinuous on every compact interval of [t1,∞). Because
T(Ω) ⊂ Ω, the equiboundedness follows. Moreover, in view of the above estimates, for any
u ∈ Ω we have

0 <
d

dt
T(u)(t) ≤ Φ∗

(
L + ε

a(t)

)
, (3.15)

which proves the equicontinuity of the elements of T(Ω). Now we prove the continuity of
T in Ω. Let {un}, n ∈ N, be a sequence in Ω which uniformly converges on every compact
interval of [t1,∞) to u ∈ Ω. Because T(Ω) is relatively compact, the sequence {T(un)} admits
a subsequence {T(unj )} converging, in the topology of C[t1,∞), to zu ∈ T(Ω). Because

∫ t

t1

Φ∗
(

1
a(s)

(
L +
∫∞

s

b(τ)F(un(τ))dτ
))

ds ≤
∫ t

t1

Φ∗
(
L + ε

a(s)

)
ds, (3.16)

from the Lebesgue dominated convergence theorem, the sequence {T(unj )(t)} pointwise
converges to T(u)(t). In view of the uniqueness of the limit, T(u) = zu is the only cluster
point of the compact sequence {T(un)}, that is, the continuity of T in the topology of C[t1,∞).
Hence, by the Tychonov fixed point theorem there exists a solution x of the integral equation

x(t) = H + ε +
∫ t

t1

Φ∗
(

1
a(s)

(
L +
∫∞

s

b(τ)F(x(τ))dτ
))

ds. (3.17)

Clearly, x is a solution of (1.1). Using (3.6) and

H + ε +
∫ t

t1

Φ∗
(

L

a(s)

)
< x(t) ≤

∫ t

t0

Φ∗
(

λ

a(s)

)

, (3.18)

we get limt→∞x(t) = ∞, limt→∞x[1](t) = L, and the Claim (i1) is proved.
Claim (i2). Let {Ln}n≥1 be a decreasing sequence such that

lim
n

Ln = 0, 0 < L1 < λ. (3.19)

Choose ε > 0 such that L1 + ε < λ. Since {Ln} is decreasing and λ ∈ Λ, we have Ln ∈ Λ and
Ln + ε < λ. Fixed H such that H > F−1(μ), using the argument of the claim (i1), for any n ≥ 1
there exists xn ∈ M

+
∞,� such that limt→∞x

[1]
n (t) = Ln. In virtue of the proof of claim (i1), we

have xn ∈ Ω and

xn(t) = H + ε +
∫ t

t1

Φ∗
(

1
a(s)

(
Ln +

∫∞

s

b(τ)F(xn(τ))dτ
))

ds. (3.20)
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Since T(Ω) is compact (in the topology of C[t1,∞)), there exists a subsequence of {xn}
converging to x in any compact interval of C[t1,∞). For sake of simplicity, let {xn} be such a
sequence, that is, limnxn = x. Because

∫ t

t1

Φ∗
(

1
a(s)

(
Ln +

∫∞

s

b(τ)F(xn(τ))dτ
))

ds ≤
∫ t

t1

Φ∗
(

λ

a(s)

)

ds, (3.21)

using the Lebesgue dominated convergence theorem, it results for t ≥ t1

x(t) = H + ε +
∫ t

t1

Φ∗
(

1
a(s)

(∫∞

s

b(τ)F(x(τ))dτ
))

ds. (3.22)

Hence x is a solution of (1.1) and limt→∞x[1](t) = 0. Because x(t) ≥ H + ε and F,Φ are
increasing, we have F(x(t)) ≥ F(H + ε) > μ and

x(t) ≥ H + ε +
∫ t

t1

Φ∗
(

μ

a(s)

(∫∞

s

b(τ)dτ
))

ds. (3.23)

Since Jμ = ∞, the solution x is unbounded and the proof is complete.

Remark 3.2. If Iλ = ∞ for any λ ∈ Λ and there exists λ ∈ Λ such that Kλ < ∞, then (1.1) has
solutions in M

+
∞,� satisfying limt→∞x[1](t) = L for any L < λ. In some particular situations,

the existence of solutions x ∈ M
+
∞,�

, satisfying the limit case limt→∞x[1](t) = λ, is examined in
[23]. See also Example 3.4 below.

The following result is the partial converse of Theorem 3.1.

Theorem 3.3. If there exists a nonoscillatory unbounded solution x of (1.1) such that
limt→∞x[1](t) = L ≥ 0, then Iλ = ∞ for any λ ∈ Λ, λ > L, and

∫∞

t0

b(t)F

(

μ

∫ t

t0

Φ∗
(

L

a(s)

)
ds

)

dt < ∞ (3.24)

for any μ, 0 < μ < 1.

Proof. Let ε > 0 be such that L < λ − ε. Without loss of generality, we can suppose x(t) > 0,
0 < x[1](t) < L + ε for t ≥ T . Thus

x(t) < x(T) +
∫ t

T

Φ∗
(
L + ε

a(s)

)
ds < x(T) +

∫ t

T

Φ∗
(

λ

a(s)

)
ds. (3.25)

Since x is unbounded, the first assertion follows.
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Clearly, (3.24) holds for L = 0. Now, assume L > 0. Since x[1] is decreasing for t ≥ T,
we have

x(t) ≥
∫ t

T

Φ∗
(

L

a(s)

)
ds. (3.26)

Integrating (1.1), we obtain

x[1](t) ≥ L +
∫∞

t

b(s)F
(∫s

T

Φ∗
(

L

a(τ)

)
dτ

)
ds. (3.27)

If IL < ∞, from (1.2) inequality (3.24) follows. If IL = ∞, using l’Hopital rule, we have

lim
t→∞

∫ t
TΦ

∗(La−1(s)
)
ds

∫ t
t0
Φ∗(La−1(s)

)
ds

= lim
t→∞

Φ∗(La−1(t)
)

Φ∗(La−1(t)
) = 1. (3.28)

Thus we have for large s, say s ≥ T ,

∫ s

T

Φ∗
(

L

a(τ)

)
dτ ≥ μ

∫s

t0

Φ∗
(

L

a(τ)

)
dτ. (3.29)

From here, inequality (3.27) yields

x[1](t) ≥
∫∞

t

b(s)F

(

μ

∫s

t0

Φ∗
(

L

a(τ)

)
dτ

)

ds. (3.30)

Since x[1] is bounded, (3.24) again follows.

The following example illustrates Theorem 3.1 and a possible discrepancy between
equations with nonhomogeneous Φ-Laplacian and ones with Φp. More precisely, if x, y ∈
M

+
∞,�

, then it may happen

lim
t→∞

x(t)
y(t)

= 0, (3.31)

while, whenΦ is the classicalΦ-Laplacian, in view of the l’Hopital rule and the homogeneity
property (1.4), the limit in (3.31) is finite and different from zero, that is, solutions in the class
M

+
∞,�

have the same growth at infinity when Φ = Φp.

Example 3.4. Consider the equation

(
t + 1
t

ΦC(x′)
)′

+ 3

√
9
4

1

2t2
√
t2 + t

F(x) = 0, t ≥ 1, (3.32)
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where ΦC is given by (1.6) and F(u) = |u|2/3 sgnu. We have Λ = (0, 1] and for λ ∈ Λ

Φ∗
C

(
λt

t + 1

)
=

λt
√
(1 − λ2)t2 + 2t + 1

. (3.33)

Obviously, Iλ = ∞ for any λ ∈ (0, 1]. One can verify that y(t) = (2/3)t3/2 is a solution
of (3.32) in the class M

+
∞,�

and limt→∞y[1](t) = 1. Because Kλ < ∞ for λ ∈ (0, 1], from
Theorem 3.1, (3.32) has solutions x in M

+
∞,�

satisfying limt→∞x[1](t) = L for any L ∈ (0, 1).
Since limt→∞a(t) = 1, we get limt→∞x′(t) = Φ∗(L) > 0 and so (3.31) holds.

4. Bounded Solutions

Here we study the existence of bounded solutions of (1.1). The following holds.

Theorem 4.1. (i1) If there exists a solution x of (1.1) in the class M
+
�,0 such that limt→∞x(t) = L,

then Jμ < ∞ for any μ, 0 < μ < F(L).
(i2) If there exists a positive constant μ ∈ ImF such that Jμ < ∞, then (1.1) has solutions

satisfying

lim
t→∞

x(t) = L, lim
t→∞

x[1](t) = 0, (4.1)

where L = F−1(μ).

Proof. Claim (i1). Let Lε such that L > Lε > F−1(μ). We can suppose, without loss of generality,
x(t) > Lε, x[1](t) > 0 for any t ≥ T ≥ t0.We have for t ≥ T

x′(t) = Φ∗
(

1
a(t)

∫∞

t

b(τ)F(x(τ))dτ
)

(4.2)

or

L − x(t) ≥
∫∞

t

Φ∗
(

1
a(s)

∫∞

s

b(τ)F(Lε)dτ
)

≥
∫∞

t

Φ∗
(

μ

a(s)

∫∞

s

b(τ)dτ
)

(4.3)

which gives the assertion.
Claim (i2). The assertion follows by applying the Tychonov fixed point theorem to the

operator T given by

T(u)(t) = L −
∫∞

t

Φ∗
(

1
a(t)

∫∞

t

b(τ)F(u(τ))dτ
)
ds (4.4)

in the set Ω ⊂ C[t1,∞)

Ω =
{
u ∈ C[t1,∞) :

1
2
L ≤ u(t) ≤ L

}
, (4.5)
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where

∫∞

t1

Φ∗
(

μ

a(t)

∫∞

t

b(τ)dτ
)
dt ≤ L

2
. (4.6)

The argument is similar to the one given in the proof of Theorem 3.1(i1), with minor changes.

From Theorem 4.1, we have the following.

Corollary 4.2. It holds M
+
�,0 /= ∅ if and only if there exists μ ∈ ImF, μ > 0 such that Jμ < ∞.

If there exists λ ∈ Λ such that Iλ < ∞, then, in view of Theorem 3.3, solutions in the
class M

+
∞,0 do not exist. Now we show that, in this case, (1.1) has bounded solutions both in

M
− and M

+
�,� .

Theorem 4.3. (i1) If there exists λ ∈ Λ such that Iλ < ∞, then

M
−
�,� /= ∅, M

−
0,� /= ∅, M

+
�,� /= ∅, M

+
�,0 /= ∅. (4.7)

(i2) Conversely, if any subclass M
−
�,�
,M−

0,� ,M
+
�,�

is nonempty, then there exists λ ∈ Λ such
that Iλ < ∞.

Proof. Without loss of generality, we assume λ small so that λ ∈ Im F.

Claim (i1). Choose λ1, 0 < λ1 ≤ λ such that λ1
∫∞
t b(s)ds ≤ λ. Thus

λ1
a(t)

∫∞

t

b(s)ds ≤ λ

a(t)
, (4.8)

and so the class M
+
�,0 is nonempty in virtue of Theorem 4.1.

Let us show that M
−
�,� /= ∅. Choose t1 large so that

F
(
λ
)∫∞

t1

b(s)ds <
λ

2
,

∫∞

t1

Φ∗
(

λ

a(t)

)

dt <
λ

4
. (4.9)

In the Fréchet space C[t1,∞) consider the set Ω given by

Ω =
{
u ∈ C[t1,∞) :

3
4
λ ≤ u(t) ≤ λ

}
(4.10)

and define in Ω the operator

T(u)(t) = λ +
∫ t

t1

Φ∗
(

1
a(s)

(

−λ
2
−
∫s

t1

b(ξ)F(u(ξ))dξ

))

ds. (4.11)
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Clearly T(u)(t) ≤ λ. Moreover

∫s

t1

b(ξ)F(u(ξ))dξ ≤ F
(
λ
)∫∞

t1

b(ξ)dξ <
λ

2
. (4.12)

Thus

T(u)(t) ≥ λ −
∫ t

t1

Φ∗
(

λ

a(s)

)

ds > λ − λ

4
=

3
4
λ. (4.13)

Hence T(Ω) ⊂ Ω. Using an argument similar to the one given in the proof of Theorem 3.1-
(i1), withminor changes, we get that T(Ω) is relatively compact. Applying the Tychonov fixed
point theorem we obtain that M

−
�,� /= ∅.

In a similar way, we can prove that M
+
�,� /= ∅.Choose t1 ≥ t0 satisfying (4.9) and consider

in the set Ω given by (4.10) the operator

T1(u)(t) =
3
4
λ +
∫ t

t1

Φ∗
(

1
a(s)

(

λ −
∫ s

t1

b(ξ)F(u(ξ))dξ

))

ds. (4.14)

We have

∫s

t1

b(ξ)F(u(ξ))dξ ≤ F
(
λ
)∫∞

t1

b(ξ)dξ <
λ

2
, (4.15)

and so T1(u)(t) ≥ 3λ/4.Moreover

T1(u)(t) ≤ 3
4
λ +
∫ t

t1

Φ∗
(

λ

a(s)

)

ds ≤ λ. (4.16)

Hence T1(Ω) ⊂ Ω and applying the Tychonov fixed point theorem we obtain the existence of
a solution of (1.1) in the class M

+
�,�
.

To show that M
−
0,� /= ∅, it is sufficient to choose the same t1 ≥ t0 satisfying (4.9) and

consider, into the set Ω given by

Ω =
{
u ∈ C[t1,∞) : 0 ≤ u(t) ≤ λ

}
, (4.17)

the operator

T2(u)(t) =
∫∞

t

Φ∗
(

1
a(s)

(
λ

2
+
∫s

t1

b(ξ)F(u(ξ))dξ

))

ds. (4.18)
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Clearly T2(u)(t) > 0. Moreover

λ

2
+
∫s

t1

b(ξ)F(u(ξ))dξ ≤ λ

2
+ F
(
λ
)∫∞

t1

b(ξ)dξ ≤ λ, (4.19)

and so

T2(u)(t) ≤
∫∞

t

Φ∗
(

λ

a(s)

)

ds ≤ λ

4
< λ. (4.20)

Hence T(Ω) ⊂ Ω. From the Tychonov fixed point theorem we get M
−
0,� /= ∅.

Claim (i2). By contradiction, assume Iλ = ∞ for any λ ∈ Λ. Let x ∈ M
−
�,�

∪ M
−
0,� and

assume x(t) > 0, x[1](t) < 0 for t ≥ T ≥ t0. Since x[1] is decreasing for t ≥ T , we have
x[1](t) < x[1](T) or

x′(t) < Φ∗
(

x[1](T)
a(t)

)

. (4.21)

Integrating this inequality, we get a contradiction with the positiveness of x.
Now let x ∈ M

+
�,�

and assume x(t) > 0, x[1](t) > 0 for t ≥ T ≥ t0 and limt→∞x[1](t) =
�x > 0. Since x[1] is decreasing for t ≥ T , it results x[1](t) > �x, or

x(t) ≥ x(t) +
∫ t

T

Φ∗
(

�x
a(s)

)
ds, (4.22)

which contradicts the boundedness of x.

It is known that, for equations with classicalΦ-Laplacian in the canonical form, the set
S is given by M

+
�,0 ∪ M

+
∞,0 ∪ M

+
∞,� (see [13, 21]). Theorem 4.3(i2) shows that this remains valid

for equations with the general Φ-Laplacian, when Iλ = ∞ for any λ ∈ Λ.

Remark 4.4. The converse of Theorem 4.3(i1) does not hold for the class M
+
�,0. Indeed, in view

of Corollary 4.2, it may happen M
+
�,0 /= ∅ also when Iλ = ∞ for any λ ∈ Λ, as the following

example shows.

Example 4.5. Consider the equation

(
tΦR

(
x′))′ + t−2F(x) = 0, t ≥ 1, (4.23)

where ΦR is defined in (1.7). Since σ = ∞, it results Λ = (0,∞). Moreover we have for any
λ > 0

Iλ =
∫∞

1

λ√
t2 + λ2

dt = ∞ (4.24)
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and Jμ < ∞ for any μ > 0. Hence, in virtue of Corollary 4.2, (4.23) has solutions in the class
M

+
�,0.

From Theorems 3.1, 4.1, and 4.3, the following coexistence results hold.

Corollary 4.6. Let Iλ = ∞ for any λ ∈ Λ. Assume that there exist λ, μ, ν such that 0 < μ < ν, μ ∈
ImF, λ ∈ Λ, and

Jμ < ∞, Jν = ∞, Kλ < ∞. (4.25)

Then

M
+
�,0 /= ∅, M

+
∞,0 /= ∅, M

+
∞,� /= ∅. (4.26)

Corollary 4.7. Let λ1, λ2 ∈ Λ such that Iλ1 < ∞, Iλ2 = ∞. If there exists λ ∈ Λ, λ > λ2 such that
Kλ < ∞, then

M
−
�,� /= ∅, M

−
0,� /= ∅, M

+
�,0 /= ∅, M

+
�,� /= ∅, M

+
∞,� /= ∅. (4.27)

Due to the homogeneity property (1.4), the coexistence described in Corollaries
4.6 and 4.7 is impossible for (1.1) with classical Φ-Laplacian. Hence Corollaries 4.6 and
4.7 illustrate a discrepancy between equations with classical or general Φ-Laplacian. The
following examples illustrate that this kind of coexistence can occur for (1.1).

Example 4.8. Consider the equation

(
t − 1
t

Φ
(
x′)
)′

− d

dt

(
t − 1
t log t

)√
log|x| sgnx = 0 (t ≥ e), (4.28)

where Φ is as in Example 2.2. Hence Λ = (0,∞). Since limt→∞a(t) = 1, we have Iλ = ∞ for
any λ > 0. Because

1
a(t)

∫∞

t

b(s)ds =
1

log t
, (4.29)

reasoning as in Example 2.2, we get Jλ1 < ∞ and Jλ2 = ∞ for 0 < λ1 < 1 and λ2 > 1. Moreover,

K1 ≤
∫∞

e

− d

dt

(
t − 1
t log t

)
(
log t

)1/2
dt ≤

∫∞

e

1

t log3/2t
dt < ∞. (4.30)

Hence, from Corollary 4.6, we obtain the existence of solutions of (4.28) in the classes M
+
∞,� ,

M
+
�,0, and M

+
∞,0 .
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Example 4.9. Consider the equation

(
log tΦ

(
x′))′ + t−3x2 sgnx = 0 (t ≥ 2), (4.31)

where Φ is as in Example 2.2. Reasoning as in Example 2.2, we have I1/2 < ∞, I1 = ∞. Since

K2 ≤ 4
∫∞

2
t−2dt, (4.32)

we can apply Corollary 4.7 to (4.31), and obtain existence of solutions as stipulated in (4.27).
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