
Communications in Applied Analysis 15 (2011), no. 2, 3 and 4, 341–352

A BOUNDARY VALUE PROBLEM ON A HALF-LINE

FOR DIFFERENTIAL EQUATIONS WITH INDEFINITE WEIGHT
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ABSTRACT. The boundary value problem on the half-line for the second order differential

equation with general Φ-Laplacian

(

a(t)Φ(x′)
)

′

= b(t)F (x), t ≥ 0,

x(0) = c > 0, 0 < lim
t→∞

x(t) < ∞, x(t) > 0, lim
t→∞

x′(t) = 0,

is considered, where a, b are continuous functions on [0,∞), a is positive and b can change its sign.

The cases of regular variation, slow variation, and rapid variation of the inverse function Φ∗ of Φ

are considered. Some applications of the main results complete the paper.

AMS (MOS) Subject Classification. 34B40, 34B18, 34C11.

1. INTRODUCTION

Consider the second order nonlinear differential equation

(

a(t)Φ(x′)
)′

= b(t)F (x), t ≥ 0, (1.1)

where Φ is an increasing odd homeomorphism defined on an open interval (−ρ, ρ), 0 <

ρ ≤ ∞, and Im Φ = (−σ, σ), 0 < σ ≤ ∞, F is a real continuous nondecreasing

function on R such that F (u)u > 0 for u 6= 0 and a, b are continuous functions for

t ≥ 0 such that

a(t) > 0, lim inf
t→∞

a(t) > 0.
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We are interested in solving the boundary value problem on the whole half-line

associated to (1.1)

x(0) = c > 0, x(t) > 0, 0 < lim
t→∞

x(t) < ∞, lim
t→∞

x′(t) = 0, (1.2)

especially when the weight b changes its sign, that is, if there exist t1, t2 ≥ 0 satisfying

b(t1)b(t2) < 0.

Let b+, b− be respectively the positive and the negative part of b, i.e.,

b+(t) = max {b(t), 0} , b−(t) = −min {b(t), 0} .

Clearly b(t) = b+(t) − b−(t).

Many papers deal with the existence of eventually positive solutions of (1.1) when

the weight b does not change sign. We refer, for instance, to [7, 8] and references

therein for the case b− ≡ 0. Similar results for the opposite case b+ ≡ 0 can be

found in [5, 19] and references therein. Some results can be obtained from papers

dealing with coupled first order differential systems, see, e.g., [3, 4, 16]. Finally, other

contributions can be found in the monographs [1, 13, 18].

When Φ is the classical Φ-Laplacian, i.e.,

Φ(u) = Φα(u) = |u|αsgn u, α > 0, (1.3)

and b(t) ≥ 0 on [0,∞), it is well-known that (1.1) has nonnegative nonincreasing

solutions x such that x(0) = c for any c > 0, see, e.g., [13, 18]. These solutions

are called Kneser solutions and are widely studied in the literature, see, e.g., [3]

and references therein. Thus, the existence of these solutions, tending to non-zero

constants, is a special case of the boundary value problem (1.1), (1.2).

When b takes negative values, the existence of globally positive solutions of (1.1),

that is solutions which are positive for any t ≥ 0, is a difficult problem and very few

is known. As far as our knowledge, the only result on this topic is [6, Theorem 3.2],

which deals with the particular case

Φ(u) = ΦC(u) =
u

√

1 + |u|2
, (1.4)

which arises in studying radially symmetric solutions of partial differential equations

with the mean curvature operator.

Motivated by the previous quoted papers, our aim here is to study the solvability

of the boundary value problem (1.1), (1.2), in particular when the weight b changes

its sign. Our results give also the global positiveness of certain solutions of (1.1) and,

in this sense, generalize the previous quoted papers. The paper is completed by some

applications concerning the particular cases of the classical Φ-Laplacian (1.3), of the

map ΦC and its inverse

ΦR(u) =
u

√

1 − |u|2
, (1.5)

which, similarly to ΦC , arises in searching radial solutions of partial differential equa-

tions with the relativity operator.
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Our approach is based on the Tychonov fixed point theorem and, in order to

focus the behavior of Φ near zero, on the notion of Karamata functions [11, 12].

These functions are widely employed in many fields, like, for instance, probability

theory, number theory, complex analysis. Recently, in [17] the role of the Karamata

functions in studying asymptotic qualitative problems associated to second order

Emden-Fowler type differential equations has been pointed out. Other contributions

concerning ordinary differential equations, in which the Karamata functions have

been used to describe the growth of nonoscillatory solutions at infinity, can be found

in [10, 14, 15] and references therein. The definition and the main properties of these

functions are recalled in Section 2. The regular variation case is treated in Section 3,

and in Section 4 the solvability of (1.1), (1.2) is considered in case of rapid variation

or slow variation. Some applications complete the paper.

2. PRELIMINARIES

In this section we give the definition and the main properties of Karamata func-

tions in the form that is useful for our aim, even if this theory has been formulated

in a more general context.

Let g be a positive continuous function, defined on the right neighborhood (0, δ)

of zero. Following [11, 12], see also [2], the function g is called regularly varying at

u = 0 of index p > 0 if, for any λ > 0,

lim
u→0+

g(λu)

g(u)
= λp.

If

lim
u→0+

g(λu)

g(u)
= 1,

then g is called slowly varying at u = 0. Finally, g is said to be rapidly varying at

u = 0 if

lim
u→0+

g(λu)

g(u)
=

{

0 for 0 < λ < 1

∞ for λ > 1.

For example, the functions g1(u) = up, g2(u) = up/| logu|, are regularly varying at

u = 0 of index p. The functions g3(u) = | log u|, g4(u) = | log u|−1, are slowly varying

at u = 0, and g5(u) = e−1/u, is rapidly varying at u = 0. We refer to [2, 17] for more

sophisticated examples.

The following properties of the Karamata functions will be useful in our later

considerations.

Lemma 2.1. i1) If L is a slowly varying function at u = 0, then lim
u→0+

uεL(u) = 0,

lim
u→0+

u−εL(u) = ∞ for every ε > 0.

i2) If g is a regularly varying function at u = 0 with index p > 0, then g can be

represented in the form

g(u) = upL(u), (2.1)
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where L is a slowly varying function at u = 0. Moreover, for any ε, T with 0 < ε < p

and 0 < T < δ, there exists M = Mε,T such that

g(u) ≤ Mup−ε on (0, T ].

i3) If R is a rapidly varying function at u = 0 and increasing in a right neighbor-

hood of zero, then limu→0+ u−εR(u) = 0 for every ε > 0.

Proof. Claim i1). It follows from [2, Proposition 1.3.6.], with minor changes.

Claim i2). Since g is regularly varying with index p, the function g(u)/up is slowly

varying, and the representation formula (2.1) follows. In virtue of Claim i1) we

have limu→0+ uεL(u) = 0 for every ε > 0. Thus, the function uεL(u) is bounded

on (0, T ], i.e., there exists a positive constant M , depending on ε and T , such that

L(u) ≤ Mu−ε, and the assertion follows.

Claim i3). Since the inverse of R is slowly varying [2, Theorem 2.4.7], the assertion

follows from Claim i1).

Let g be regularly varying at u = 0 with index p > 0, and set

G(λ, u) =
g(λu)

λpg(u)
, λ ∈ (0, 1], u ∈ (0, δ). (2.2)

Then G can be unbounded in the square Q = (0, 1]× (0, δ), as the following example

shows.

Example 2.2. Consider the function

g(u) = u3| logu|, u ∈ (0, 1),

which is regularly varying at u = 0 with index 3. Since

G(λ, u) =
g(λu)

λ3g(u)
=

∣

∣

∣

∣

log λ

log u
+ 1

∣

∣

∣

∣

,

choosing 0 < λ < 1 and

u = e−
√

| log λ|

we obtain G(λ, e−
√

| log λ|) =
√

| log λ| + 1, showing that G is unbounded on Q.

Since the boundedness of the function G given by (2.2) plays a role in the sequel,

we close this section with sufficient conditions assuring this boundedness.

Lemma 2.3. Let g be regularly varying at u = 0 with index p > 0. Assume that the

function

L(u) =
g(u)

up
(2.3)

satisfies on (0, T ], 0 < T < δ, any of the following assumptions:

i1) There exist m1, m2 > 0 such that m1 ≤ L(u) ≤ m2 ;

i2) The function L is nondecreasing.

Then there exists M = MT > 0 such that

g(λu) ≤ Mλpg(u) for u ∈ (0, T ], λ ∈ (0, 1]. (2.4)
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Proof. In view of (2.3) we have

g(λu) = λpg(u)
L(λu)

L(u)
. (2.5)

If the assumption i1) holds, then the inequality (2.4) immediately follows. If the

assumption i2) holds, then L(λu) ≤ L(u). Thus from (2.5) we obtain (2.4) with

M = 1.

The following example illustrates Lemma 2.3.

Example 2.4. The functions g6(u) = ue−u, u > 0, and g7(u) = u/(log u)2, 0 < u < 1,

are regularly varying at u = 0 with index p = 1. Clearly, g6(u)/u and g7(u)/u satisfy

the assumptions i1) and i2) of Lemma 2.3, respectively. Then (2.4) holds for both the

functions g6 and g7.

3. THE REGULAR VARIATION CASE

Denote by Φ∗ the inverse map of Φ. We start by considering the existence of

solutions of (1.1), (1.2), when Φ∗ is regularly varying at u = 0 of index p > 0. The

following holds.

Theorem 3.1. Let Φ∗ be regularly varying at u = 0 with index p > 0, and assume

that there exists q, 0 < q < p, such that

lim
u→0+

F (u)

u1/q
= 0, (3.1)

and for some ε, 0 < ε < p − q

I+ =

∫ ∞

0

(

1

a(s)

∫ ∞

s

b+(r)dr

)p−ε

ds < ∞

I− =

∫ ∞

0

(

1

a(s)

∫ ∞

s

b−(r)dr

)p−ε

ds < ∞.

(3.2)

Then the boundary value problem (1.1), (1.2) is solvable for any small positive c.

Moreover, every solution is of bounded variation on [0,∞).

Proof. Choose µ > 0 such that

Tµ = µ max

{

max
t≥0

(

1

a(t)

∫ ∞

t

b+(s)ds

)

, max
t≥0

(

1

a(t)

∫ ∞

t

b−(s)ds

)}

< σ. (3.3)

Since Φ∗ is regularly varying with index p > 0 at x = 0, from Lemma 2.1, fixed

ε < p − q, a positive constant M exists such that

Φ∗(u) ≤ Mup−ε (3.4)

for 0 < u ≤ Tµ. Choose c > 0 sufficiently small such that

F (2c) < µ (3.5)
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and consider the Fréchet space C[0,∞) of all continuous functions on [0,∞), endowed

with the topology of uniform convergence on compact subintervals of [0,∞). Let Ω

be the subset of C[0,∞) given by

Ω =
{

u ∈ C[0,∞) :
c

2
≤ u(t) ≤ 2c

}

(3.6)

and define in Ω the operator T as follows

T (u)(t) = c +

∫ t

0

Φ∗

(

1

a(s)

(
∫ ∞

s

b−(r)F (u(r))dr −
∫ ∞

s

b+(r)F (u(r))dr

))

ds. (3.7)

In view of (3.3) and (3.5), we have

1

a(s)

∫ ∞

s

b−(r)F (u(r))dr ≤ µ
1

a(s)

∫ ∞

s

b−(r)dr ≤ Tµ < σ, (3.8)

and
1

a(s)

∫ ∞

s

b+(r)F (u(r))dr ≤ Tµ < σ. (3.9)

So, the operator T is well defined. Hence

T (u)(t) ≤ c +

∫ ∞

0

Φ∗

(

F (2c)
1

a(s)

∫ ∞

s

b−(r)dr

)

ds

T (u)(t) ≥ c −
∫ ∞

0

Φ∗

(

F (2c)
1

a(s)

∫ ∞

s

b+(r)dr

)

ds.

(3.10)

In view of (3.8) and (3.9), from (3.4), we obtain

Φ∗

(

F (2c)
1

a(s)

∫ ∞

s

b−(r)dr

)

≤ M (F (2c))p−ε

(

1

a(s)

∫ ∞

s

b−(r)dr

)p−ε

Φ∗

(

F (2c)
1

a(s)

∫ ∞

s

b+(r)dr

)

≤ M (F (2c))p−ε

(

1

a(s)

∫ ∞

s

b+(r)dr

)p−ε

.

(3.11)

Thus, from (3.10), we get

c − M (F (2c))p−ε I+ ≤ T (u)(t) ≤ c + M (F (2c))p−ε I−

Since p − ε > q, in view of (3.1) we have

lim
u→0+

(F (u))p−ε

u
= lim

u→0+

{[

(F (u)

(u)1/q

]q

F (u)p−q−ε

}

= 0,

and a sufficiently small c > 0 exists, such that

(F (2c))p−ε

2c
≤ min

{

1

2MI−
,

1

4MI+

}

.

Then
c

2
≤ T (u)(t) ≤ 2c,

i.e., T (Ω) ⊂ Ω.
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Let us show that T (Ω) is relatively compact, i.e. T (Ω) consists of functions

equibounded and equicontinuous on every compact interval of [0,∞). Since T (Ω)

⊂ Ω, the equiboundedness follows. Moreover, for any u ∈ Ω we have

−Φ∗

(

F (2c)
1

a(t)

∫ ∞

t

b+(r)dr

)

≤ d

dt
T (u)(t) ≤ Φ∗

(

F (2c)
1

a(t)

∫ ∞

t

b−(r)dr

)

which proves the equicontinuity of the elements of T (Ω).

Now we prove the continuity of T in Ω. Let {un}, n ∈ N, be a sequence in

Ω which uniformly converges on every compact interval of [0,∞) to ū ∈ Ω. Since

T (Ω) is relatively compact, the sequence {T (un)} admits a subsequence {T (unj
)}

converging, in the topology of C[0,∞), to z̄ ∈ T (Ω). In addition, since Φ∗ is odd, we

have
∣

∣

∣

∣

Φ∗

(

1

a(t)

(

∫ ∞

t

b(τ)F (un(τ))dτ
)

)
∣

∣

∣

∣

≤ Φ∗

(

F (2c)
1

a(t)

(

∫ ∞

t

|b(τ)|dτ
)

)

and, in view of (3.2) and (3.11), the function

Φ∗

(

F (2c)
1

a(t)

(

∫ ∞

t

|b(τ)|dτ
)

)

belongs to L1[0,∞). Thus, from the Lebesgue dominated convergence theorem, the

sequence {T (unj
)(t)} pointwise converges to T (ū)(t). In view of the uniqueness of

the limit, T (ū) is the only cluster point of the compact sequence {T (un)}, and so

T (ū) = z̄. The continuity of T in the topology of C[0,∞) is proved.

Applying the Tychonov fixed point theorem, we get the existence of x ∈ Ω such

that x(t) = T (x)(t), i.e. x is a solution of (1.1). Clearly,

x′(t) = Φ∗

(

1

a(t)

(
∫ ∞

t

b−(r)F (x(r))dr −
∫ ∞

t

b+(r)F (x(r))dr

))

and so

−Φ∗

(

F (2c)

a(t)

∫ ∞

t

b+(r)dr

)

≤ x′(t) ≤ Φ∗

(

F (2c)

a(t)

∫ ∞

t

b−(r)dr

)

.

Since 1/a(t) is bounded as t → ∞, we have limt→∞ x′(t) = 0 and, from (3.2), x′ ∈
L1[0,∞). Thus x is of bounded variation on [0,∞) and the limit

lim
t→∞

x(t)

is finite. Since x belongs to the set Ω, the assertion follows.

Remark 3.2. Condition (3.1) is satisfied, for instance, if F is regularly varying at

u = 0 with index β > 1/q.

If Φ∗ satisfies the assumptions on g in Lemma 2.3, then the following holds.

Theorem 3.3. Let Φ∗ be regularly varying at u = 0 with index p > 0, such that the

function

L(u) = Φ∗(u)/up
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satisfies any of the conditions i1), i2) in Lemma 2.3. Assume that

lim
t→0+

F (u)

u1/p
= 0, (3.12)

and that a constant k > 0 exists, such that

Jk
+ =

∫ ∞

0

Φ∗

(

k

a(s)

∫ ∞

s

b+(r) dr

)

ds < ∞,

Jk
− =

∫ ∞

0

Φ∗

(

k

a(s)

∫ ∞

s

b−(r) dr

)

ds < ∞.

(3.13)

Then the boundary value problem (1.1), (1.2) is solvable for any small positive c.

Moreover, every solution is of bounded variation on [0,∞).

Proof. The argument is similar to the one given in the proof of Theorem 3.1.

From Lemma 2.3, a positive constant M exists, such that

Φ∗(λu) ≤ MλpΦ∗(u), (3.14)

for 0 < u ≤ T, 0 < λ ≤ 1. Since Φ∗ is monotone increasing, without loss of generality

we can assume that k satisfies

k max

{

max
t≥0

(

1

a(t)

∫ ∞

t

b+(s)ds

)

, max
t≥0

(

1

a(t)

∫ ∞

t

b−(s)ds

)}

≤ T.

Let c > 0 sufficiently small, such that F (2c) ≤ k. Consider in C[0,∞) the subset

Ω given by (3.6), and let T be the operator given by (3.7). In view of (3.14) the

estimate

Φ∗

(

F (2c)
1

a(s)

∫ ∞

s

b−(r)dr

)

= Φ∗

(

F (2c)

k

k

a(s)

∫ ∞

s

b−(r)dr

)

≤ M

(

F (2c)

k

)p

Φ∗

(

k

a(s)

∫ ∞

s

b−(r)dr

)

holds. Clearly, also the corresponding estimate involving b+ instead of b−, is valid.

Thus, from (3.10), we obtain

c − M

(

F (2c)

k

)p

Jk
+ ≤ T (u)(t) ≤ c + M

(

F (2c)

k

)p

Jk
−.

From (3.12), a sufficiently small c > 0 exists, such that

(F (2c))p

2c
≤ min

{

kp

2MJk
−

,
kp

4MJk
+

}

.

Then c
2
≤ T (u)(t) ≤ 2c, i.e., T (Ω) ⊂ Ω. To conclude, it is sufficient to use the same

argument to the one given in the proof of Theorem 3.1.

Remark 3.4. Let Φ∗ be regularly varying at u = 0 with index p > 0. Since the

function

f(t) =
1

a(t)

∫ ∞

t

b+(s)ds

tends to zero as t → ∞, we have Jk
+ < ∞ for some k > 0 if and only if Jm

+ < ∞ for

any m > 0 such that maxt≥o mf(t) < σ. A similar statement holds for Jk
−.
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A comparison between Theorem 3.1 and Theorem 3.3 is given by the following

examples.

Example 3.5. Consider equation (1.1) with

Φ∗(u) = u| log u|, 0 < u < e−1, F (u) = u|u|,

and

b+(t) ≡ 0,
1

a(t)

∫ ∞

t

b−(t) dt =
1

(t + 1)2
.

Thus Theorem 3.1 can be applied, but not Theorem 3.3, since Φ∗ does not satisfy

either i1) or i2) of Lemma 2.3.

Example 3.6. Consider equation (1.1) with

Φ∗(u) =
u

(log u)2
, 0 < u < 1, F (u) = u|u|,

and

b+(t) ≡ 0,
1

a(t)

∫ ∞

t

b−(t) dt =
1

t + 2
.

Then Theorem 3.3 can be applied, since Φ∗ satisfies i2) of Lemma 2.3, and
∫ ∞

0

Φ∗(1/(t + 2)) dt < ∞.

Nevertheless, Theorem 3.1 cannot be applied because
∫ ∞

0

1/(t + 2)1−ǫ dt = ∞, for any ε > 0.

Remark 3.7. In both Theorems 3.1 and 3.3, the assumptions on the behaviour of

F in a neighborhood of zero, i.e., assumptions (3.1) and (3.12), respectively, play a

fundamental role in assuring the existence of a globally positive solution on [0,∞),

as it appears from the proofs. Without these assumptions, the same argument of the

proofs leads to the existence of an eventually positive solution of (1.1), with a positive

limit as t → ∞, and such that its derivative has zero limit as t → ∞.

4. THE RAPID AND SLOW VARIATION CASE

If Φ∗ is rapidly varying at u = 0, an analogous result to Theorem 3.1 holds.

Theorem 4.1. Let Φ∗ be rapidly varying at u = 0, and assume that there exists

q > 0, such that (3.1) is verified, and

∫ ∞

0

(

1

a(s)

∫ ∞

s

b+(r)dr

)q

ds < ∞,

∫ ∞

0

(

1

a(s)

∫ ∞

s

b−(r)dr

)q

ds < ∞. (4.1)

Then the boundary value problem (1.1), (1.2) is solvable for any small positive c.

Moreover, every solution is of bounded variation on [0,∞).
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Proof. If Φ∗ is rapidly varying at u = 0, then by Lemma 2.1 we have

lim
u→0+

Φ∗(u)

uq
= 0.

Therefore for T > 0 fixed, a positive constant M exists, such that

Φ∗(u) ≤ Muq, for u ∈ [0, T ].

The argument is therefore analogous to the one given in the proof of Theorem 3.1.

The case of slow variation of Φ∗ at u = 0 is more delicate, since in this case,

in general, is not possible to have a good upper bound for the function Φ∗ in a

neighborhood of zero. A general result for the solvability of (1.1), (1.2) is the following.

Clearly, this result makes sense in case Φ∗ is slowly varying at u = 0.

Theorem 4.2. Assume k > 0 exists, such that (3.13) holds, and

max
{

F (3Jk
+), F (2Jk

−)
}

< k. (4.2)

Then the boundary value problem (1.1), (1.2) has solution for infinitely many c > 0.

Moreover, every solution is of bounded variation on [0,∞).

Proof. In virtue of (4.2), taking into account that F is nondecreasing, there exist

infinitely many positive constants η such that

η ≥ max{3Jk
+, 2Jk

−}, F (η) ≤ k. (4.3)

Fixed c such that η = 2c satisfies (4.3), consider in C[0,∞) the set Ω given by

Ω = {u ∈ C[0,∞) : 0 ≤ u(t) ≤ 2c} .

Define in Ω the operator T given by (3.7). Hence (3.10) holds and, since F (2c) ≤ k,

we obtain

c − Jk
+ ≤ T (u)(t) ≤ c + Jk

−.

Taking into account that Jk
+ ≤ 2c/3, and Jk

− ≤ c, we have

1

3
c ≤ T (u)(t) ≤ 2c,

i.e., T (Ω) ⊂ Ω and T (u) is bounded from below away from zero for any u ∈ Ω. Using

a similar argument to the one given in the final part of the proof of Theorem 3.1, the

assertion follows.

5. APPLICATIONS

A prototype of Φ is the classical Φ-Laplacian given by (1.3). In this case Φ∗
α is

regularly varying at u = 0 of index 1/α. So, for the generalized Emden-Fowler type

equation (α > 0, β > 0)
(

a(t)Φα(x′)
)′

= b(t)Φβ(x), (5.1)

Theorem 3.3 reads as follows
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Corollary 5.1. If α < β and
∫ ∞

0

(

1

a(s)

∫ ∞

s

b−(r)dr

)1/α

ds < ∞, (5.2)

∫ ∞

0

(

1

a(s)

∫ ∞

s

b+(r)dr

)1/α

ds < ∞, (5.3)

then the boundary value problem (5.1), (1.2) is solvable for any small positive c and

the solutions are of bounded variation on [0,∞).

Remark 5.2. When b+ ≡ 0, the condition (5.2) is necessary and sufficient for the

existence of eventually increasing solutions of (5.1) tending to a positive constant, the

so-called subdominant solutions, see, e.g., [9]. The assumption α < β in Corollary

5.1 plays the role of ensuring the global positivity of these solutions. Similarly, when

b− ≡ 0, the condition (5.3) is necessary and sufficient for the existence of solutions of

(5.1) tending to a positive constant, see, e.g., [7, Proposition 1, Proposition 2] with

minor changes.

Other prototypes of Φ are the maps ΦC and ΦR, given by (1.4) and (1.5), respec-

tively. Consider the equations
(

a(t)ΦC(x′)
)′

= b(t)F (x), (5.4)
(

a(t)ΦR(x′)
)′

= b(t)F (x). (5.5)

We have Φ∗
C = ΦR and Φ∗

R = ΦC , and both the functions Φ∗
C , Φ∗

R are regularly varying

at u = 0 of index 1. Since for u ∈ [0, 1/2] we have

u ≤ Φ∗
C(u) ≤ 2√

3
u,

2√
5
u ≤ Φ∗

R(u) ≤ u,

in view of condition i1) in Lemma 2.3 and Theorem 3.3, we obtain the following result.

Corollary 5.3. If
∫ ∞

0

1

a(s)

∫ ∞

s

b−(r)drds < ∞,

∫ ∞

0

1

a(s)

∫ ∞

s

b+(r)drds < ∞,

and

lim
u→0+

F (u)

u
= 0,

then both the boundary value problems (5.4), (1.2), and (5.5), (1.2), are solvable for

any small positive c. Moreover, every solution is of bounded variation on [0,∞).

Remark 5.4. The problem (5.4), (1.2), together with its uniqueness, has been inves-

tigated in [6, Theorem 3.2] in case b+(t) ≡ 0 and lim inft→∞ a(t) = 0.
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352 Z. DOŠLÁ, M. MARINI, AND S. MATUCCI

REFERENCES

[1] R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation Theory for Second Order Linear, Half-

Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dor-

drecht, 2002.

[2] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of Mathematics

and its Applications 27, Cambridge University Press, Cambridge, 1987.

[3] M. Cecchi, Z. Došlá, I. T. Kiguradze, M. Marini, On nonnegative solutions of singular boundary

value problems for Emden-Fowler type differential systems, Differential Integral Equations 20

(2007), 1081–1106.
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