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22 ). Andreucct A. Fasano and M. Primicerio

z(s(t)t) = —3(t), 0<t<T,. (5)
Remark 1.1 Equation (1) is the heat equation 1, —Au =0 in cylindrical
symn otry. Writing the equation in the form

N.IN_._.‘LI.mllnin % = 05 n=123,

encornpasses the hree cases of planar, cylindrical and spherical symmetry
respe: tively. In vhat follows we will consider n=2 with no loss of

gener ity,

Rema'k 1.2 The problem with Neumann data
Z{%t) = gt) 5. g Ty (2)

can | rreated tv the methods developed here for problem (P). In the
follov 'nr we restr ot ourselves to the case of Dirichlet data. the extension to

the ¢ « 12) beire <traightforward.

When { >0, (P)is a classical one-phase Stefan problem. On the

other 'vind, when o sign restrictions are imposed on the data, we can not

attac! 1o (P) the meaning of a model of change of phase. Here we note that
probl i1 (P) has wen considered in *' in connection with the motion of the
liquic 11 a Hele 3haw cell " *. The cell is formed by two parallel plates and
a liqud can be 1oected or extracted from the space between them through a
horifi: » which v+ assume to be a circle of radius ry, > 0. Here 2z is the

press 1+ in the 1 1d. Then the zone z =0 (the zone to the right of the free
boun v r=sit | is the “dry” zone, while when 2z >0 the liquid is being
inject -4, and whiot 2 <0 it is being extracted.

learly, 1uder appropriate assumptions on the state of the system at
the 1 1t1al time. '\ problem is radially symmetric, accounting for the form
taker 1 v the equi 10n of conservation of mass (for the liquid) in (1).

o '' the nalitative properties of solutions to (P) and to similar

scher i have beot considered.

HHere we «cusider the problem of existence of (local in time) solutions
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to (P), when h(b) # 0. and especially in the case h(b) <0. This subject is
not trivial; it is known that, in the case of planar symmetry a solution exists,
roughly speaking, if and only if h(r)>-1 in some left neighbourhood of
r=b 7\ As far as we know, solutions to problem (P) are known to exist if
h(b) =0. and h is Hélder continuous near r=>b 3 Moreover, in D it is
proved that if h(r)< —1 in (b—eb) for some ¢ >0, then no solution to

(P) may exist. =

Our main purpose here is to prove the following more general

existence result,

Theorem 1.3 Let
hir) = . b=e<r<h, (6)

for some €€ (0.h —r,|. Then a solution to (P) ezists.

Remark 1.4 We remark explicitly that h(b) = —1 is allowed in Theorem
1.3 as long as (6) is fullified. This case is of some interest in the framework of
the general theory of free boundary problems: this fact also illustrates the

interest of Theorem 1.3.

Remark 1.5 Uniqueness of solutions to (P), under assumption (6) and for

given T,, can be proved as in 7'; we omit the details.

i/
The proof of Theorem 1.3, given in Section 3 below, relies on two
main ingredients. The first one is a monotone approximation technique
following the ideas of 7. The second one is a new suitable a priori estimate of

5|, independent of the boundary data. that is proved in Section 2 in a more

general setting.
2. A PRIORI ESTIMATES

In this section we establish some estimates of |5(t)] not depending on the

behaviour of either the initial or the boundary data. Under this respect our

estimates differ from those given in ® 1),
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Let s€CY0T], T>0, andlet d>0 be a i Bt A 4, for (r,t) € E;. We define

sit)~rg2d forall 0<t<T. Define _ ay = max_ [§(t)], a:= (go+2e(t —tg) +Bo) ap " . (14)

- E<teT
E = {(rt)|s(t)-d<r<s(t), 0<t<T}. (7)

— . It is easily checked that, with this choice of a we have
Consider a furction z € C*YE)n C'Y(E), satisfying

Lw(rt) < 0. (rt) €E,. (15)
Lz ;= 2 —a(rt)z, + B(rt)z, +9(rt)z = 0in E, (8) A fsi + L < T
AMoreover lor fy; © h
z(s(tit) = 0, z(s(t),t) = —s(t), 0<t<T), (9)
. “Eli-d
where wis{t).t) = - }ﬁ 1-e™ :+V s zls(t)y) = 0, (28
a. 1.7 € CE) -4}
(19) wis()—d.t) = ~ _;ly_. (1-ee o ") g -5%. (17)
alrt' 2ag >0, [B(rt) <B,, (rt)>0, (11) -
wi'h ag, By > ) given constants. Also. for s(t,) —d <1 <s(ty). we have
In the f)llowing we denote x, = max(x.0 = —x, : A ._
3 0), x.=max(-x,0), xeR. ST 4@!; | o ) v € =iy, (18)
We pro e the following o

provided we select ¢ =d(t —t,) * >0, so that, owing to (14),
Theorem 2.1 /et 2z, 5 be as above, and assume
a o= (a4 2d(t — 1yl _+ ,W_L :__m_ . :.OV
zZ(rt) > =z, , (rt)eE,
(12) Thus we invoke the maximum principle to infer from (15)-(18) that w<z
fo: some 0. ' <a, Then there exists a positive constant K, depending

| i Enft =) if aoe >0 are chosen as above. Using this lower estimate
only on 24, 04 )y such that

for z, and the .;_:.._::.

=4 1 d .
i< XT +In_.. 4 lnlv. te(0,T). (13) wis(t).r) = 0 = z(s(t)t) .  t<St<T,
Proof We conider the function we get
’ azg -
()], = lzdstt)lt)]. < w(s(t).t) = , t<t<T. (20
Wit = = < (lexp AGRt),  (et) € B, Bl = latsttitlly < WY = =Cg, ESE<T. (20)
where Next, for #2010 to be chosen. we set t, =t#. and we define for all
Alrt) = a(r—s(t)—e(®-t)}), E, = EN{t>ty}. D<t<T .
Here T€(0.T) is given. and a, € >0, to € (0,f) are to be chosen later. af = max{[i(r)] |t<r<T}.
Standard calenlations show that 7, = max{[§(r)]. [t#<T <t}
_ 7o 1 2 Let us assnme for the moment
w o= |m|.I...”Hﬂuav..»*wAnwlmmnl—.v++°Wlm|4 |3A|>w

= t s A (21)



6 D. Anireucci - A 1 usano and M. Primicerio

then oy < o 8%, and (20) implies, setting § = 7

az, . % s +07'¢ . (22
(I—e™) = % l-exp{—ag'd(6+¢)}

. &<

._ where we dcnote
". co= 2t A 4, > 0.

We restar - 122) as

: .ﬂmk.f Zn P~ .rlb ‘...“.wg
*.Iﬁﬂ H.ﬂvl ry )

We fix no . zgaq' < # < 1 (this is possible by virtue of (12)). and distinguish

between e two cis

i) 1= nf)™

If the fore o holds., & irectly 1nplies

|_‘~_,,:‘W,_.T_l,. (24)

I the tne ooodity (i anstied, we combine it with (23) to ge

!
AL 1 i (25
5 .wﬁ\. ' i = 3|_L w |u;
Collectin+ 4) and * 51 we find
t g i ). .
= Nk L+ l_ Aaﬁ.g 126)

where | WP comstant depending on 2, 00 A, and  # chosen as

above. b wot on

Let us 1+ .0 that o te 1261 has been proved under assumption (21).

If(21) i oo tulfilled oo if

~ B n 127)

———
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et us define

a¥ ot 3 = e
iy =0m . A, = Ogen

Since & is continuous over [0.T], we have

o ay = ;u.:.u.zqmp:; > [5(0)). = lim a, .

Flins there exists a unigue positive integer m > 1 such that a¥ > 8 a;, .

and ab o #a, forall 0<u<m. Tuen

.
> H \1:__: .
and the proot above snarantees that

SN 1 (28)

+t i oo HE o 1 mmn
1o | + 1 v
The proot of (13) 15 comnleted.,
O
Ony next resalt provides us with an estimate of §, .
Theorem 2.2 Let v« fulfil (TV011) and assume
qtE) € M. irt)eE. / (29)

cliere N =0z given, Then there enists a w_a.ﬁ,r.zm constant K >0 such that
MRS H_f_ +a). 0<t<T, (30)

wirere

Fhe consrant W ddvpenids om M. ag. J,. but not on t or s, the dependence

o N heing linear

Proof  Weantroduce the function, for ¢ € (0T) given,

e, ]
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w(r,t) = Toed (1 —expA(r,t)) . (rt) € Eq .,

Alrt) = a(r—s(t)—e(t—t)}),

where Eg=En|t>%}. and a, e are given by

e = ot 4, FH.HM._-—D.‘TA.: _*.m:HZ:F
L8
Rea ming as alv ve, we see that
Lw 2 7. (r.t) € Ey . (31)
wis(tl.l) 2 0 = zls(t)t) . _.ﬂ..... i <T. (32)
wis(t) dt) = M > z(sit)=dit). L<t<T. (33)
wir.§) 2 M 2 an ), ._Tl;«‘.qm.ﬁmv. (34)
Therotore w > » o E;,. Again we note that
wisit .t) = 00 = zis(t).t) . t<t<T.
Hen
i) ~z(5(t)t) < —ws(t)t) = ﬂkﬂ@ﬂ i<t<T.
G
Thr . owing ro the definition of a,
? . | .
6 0 Mafl-e VTS K(L4 ksS40,

and e prootf i+ ompleted.
O
We ronelude tho . section stating the estimates for |3 in a form more precise

and pore suiti' ¢ to OUr purposes.

Theorem 2.3 7 ¢ 2 satisfy the assumptions of Theorem 2.1: then

=TT K, (1 - wwl. (35)
with Iy =R - coegedgd)-
If vourvover = - M on E, then

! . 1

sl K, (1 = l:uv (36)
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with K, = K,(M.zg,00,50.d).

Proof It is obvious that, for 0 <t <d?, we may take d =+ in (13), so
proving (35) in this case. Indeed it suffices to note that for t < d?,

E' = {(r.t)|s(t)-Jt<r<s(t), 0<t<T) c E.
When T >t >d. (13) trivially implies (35).

If z<M in E. (36) follows from combining (35) with Theorem 2.2 and the
reasoning above.

]
Remark 2.4 We note that estimate (36) is sharp in the sense that explicit
solutions to Stefan-like problems are known with §(t) =ct™/? t>0, with

either ¢ >0 or ¢ < (),

Moreover, assumption (12) is necessary to get a bound below for § . We
also remark that. even in planar symmetry, the case 2z, =a, is known to

produce an asvmptotic hehaviour (as t[0) which is worse than a parabola.

3. PROOF OF THE EXISTENCE THEOREM

We look first at the case
:E.wwm hir) > —1; (37)

the case when equality holds in (37) will be considered later. Due to (37) we

may assume

hir) 2 =k > =1, r<r<b, (38)

for a snitable 0 <k <1, ry<r, <b. Next we fix a constant k' such that

= k"< 1, and we consider the solution 7 to

Z,-(Zo+ 12) = 0. rg<r< +00, 0<t<T, (39)
min{ — k.h(r)), m<r<h,

Zir0) = (40)
0. r>hb
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Z(rgt) = —If(t)]., 0<t<T. (41)
Clearly Z <0, and, redefining r, if necessary, we may find 0<t, <T

such that

Zrt) > =K > -1, r<r< 400, 0<t<t,. (42)

Next we introduce a suitable sequence of approximating problem. Let
(ZpsSp. 1,,) be, for n > 1, the solution to

Zat = (Zpe + WN.L =0, < <E(t), 0<t < Ty, (43)
2,(roit) = f(t) . 0<t<T,, (44)
zAr 08 = hy(r) . p<r<hy, (45)
z (mult)d =10, 0<t<T,. (46)
ZaelBaltht) = —5,(t) . D<t<T, . (47)
i t)(0] by (48)

here - ecial care | oo to be taken in the choice of h, b, Namely, we choose
two siences {o, |, {b,} s<uch that a_, b,—b-. n—sc and

]

|ty <a, b, <boy, (bR —-bl) 2k (ad, —al) Va0 (49)

n

(such «auences <1 be constructed easily). Then we define

0. a, Lr<h,,
hlr) = “ -k. ., <r<a,, (50)
hi(r) . By STS A4 4

forall o 2 1; (1) (70) are used in the proof of Lemma 3.1 helow.

Since t,(b,)=10. .nd h, is smooth near r=b,, existence and uniqueness
of a = intion to [ 11)(48) follow from the techniques of ). As a consequence of

the m o imum prr cple we have

Zalr,t) Art) ., ra<r<s(t), 0<t< T,
thus. @ we set
T! = w{te(0T) [ t<t,, su{r) >, O<T -t} < ¢y,

it folliws

7
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za(rit) 2 =K' > =1, r<r<a(t), 0<t<T,. (51)

We give below a monotonicity result which will be instrumental in proving
the convergence of the approximating sequence {s,}.

Lemma 3.1 For all n>1. we have s ,,(t)>s,(t), 0<t<8,, where
A, =min(T,,TL,,) .

Proof Define for j =n. n+l. ro<r<si(t), 0<t <4,

L
._:

%M_.m

(1)

w(r.t) ¥iz(y,t) +1) dy .

m——

Then

" - |11,

W) = =1, r e (rys(t)) . te(08,),

1t
wis(ehtl = 0. agdsit)t) = 0, te(0.4,).
alfat) = wirel) 4 _:1 dr . te(08,),
mlrt) > 0. r€(r.g(t) , te(08,).

Define w =, —n,. Thus, setting §(t) = min(s,(t),s,4:(t)) .
ﬁl_s.:+w=,1_uc. ; To<r<it), O<t<é,,
Wirgt) =m0 (rg)) = ny(rg,0) 20, 0D<t<d,,
wir,0) =, (r,0) = u,(r,0) 20, rp<r<bh
wisg(t).t) = ngy (sa(t)t) >0 . 0<t<t®,
where

tr=sup{t e (0.8,) | s, (r)>s,(7), D<T <t}

indeed  n (000 > u(r.0) follows from a direct calculation employing (49)-
1500 (see the Appendix).

IF s 007) =<, (t7). we get, by the boundary point principle,
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we(s,(t"'t") < 0,
cont: udicting

awﬁm:?.,_n.w = Upp ..Au._..._:..u.a-v = Y, Lm:?-w,n.v = 0.

Therefore t* =4, and s,,,(t) >s,(t), 0<t<4,.

Next we prove a bound below for T/, uniform on n.

Lemmn 3.2 For il n>1, TL>T).
Proo! Owing to Lemma 3.1, and to the results of ', to show T: 12T, we
only lizve to rule ot

liminf & ,,(t) = —o0. (52)

But. <timate (71) and Theorem 2.3 zuarantee that (52) can not hold. Herce
fer o TL %Y1 o1 and the claim follows.

8]
Define 1, =T}/2.

Lemma 3.3 For -0, s,(t) Ts(t), t€[0.T,). s€CUD.T,), «(0)=h,
8 m H ..,..ﬁacw.H.:H J

Proo! Theorem 2 2. together with (51) imply ¥ n>1

Baft)] = cpte ¢ 0<t<T,. (53)

wher «,, ¢; >0 do not depend on n. Hence the limit s of {s,} is locally
Lipschitz contimu us in (0,T,).

Zon_f:,n.au,._.:::..m:_wﬂ_&am:E.cmm_._annon:::::mce..._. E..H.c_.
uniformly with 1 jpect to n. Thus the limit s is continuous even at t =0,
and the claim follows.

8]

Finallv we remurk that existence of a solution to (P) follows from standard

argurcnts by virtne of the regularity of the free boundary s.

The supercooled Stefan problem in radial symmetry 33

To complete the proof of Theorem 1.3, we have to remove

assumption (37), i.e., we let

::._Wm».E: = =1, hir) > -1, b-e<r<b,
r—

(we may assume that (b —eb) is an interval of continuity of h(r)).

We start considering the family of approximating problems given by
(43)-(44), (46)-(48), coupled with
2o0,0) = hir), rp<r<b,; (45)

existence of a solution (7,,5,.T,,) follows from the first part of the proof.

“ny

Consider also the solution Z to (39)-(41), where we now let k=0.

Though (42) can not hold any more, we have
z'(tg) = inf{Z(rt) |r;<r< 400, tg<t <y} > -1,

for all 0 < t, <ty where 1, € (rob), ty € (0,T) are suitably chosen. Then

for all 0 < ty < ta,

ziet) 2 20y) > ~1, mEr<at) LEELT,, (54)

where

T = sup{t e (D,T,) | t<ty, su(r) >, 0T <t}

Lemma 3.1 still holds; the proof. which is similar to the one given

above, relies on the inequality

.,:: —.:v_
ey (50) % . _.__._ v (h(y) +1) dy >
by b, Ammw
a p ' dp _ v (h(y) +1) dy = u,(r.0),

r,<r<hb, (using the notation of Lemma 3.1). Indeed h(r)+1>0 when

h—e<h, <r<b,,,

I'ie proot of Lemma 3.2 can be reproduced without changes, with the
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help of (54); thus Th,, > T, .
A different approach is needed in the proof of Lemma 3.3. In fact,
estimate (53) is now replaced by
Balt)] < clta) . to<t<To=Ti/2, (56)
which is a consequence of (54) and Theorem 2.3. Note that c(t,) becomes

unbounded as t —0.

The bourd (56) vields s € Lip((0,Ty]), but we have to use an
additional argument to show that s is continuous at t = 0.

Let
w = liminf s(t) .
jmis.

If o < b, therr wists a sequence t_ | 0, m > 1, such that

Sy(tm) s(ty) < (b4+w)/2 < b, Yn.m>1

On letting 10 --c0, we have s,(0)<(b+4w)/2., a contradiction to
$p(01 == by—b s n—eo. Therefore, to prove
._l_mmrm__. = :ﬁwﬂ.ﬁ s{E) = '8 ;

it will be enoug1 to prove s,(t) <S(t) for all n>1, te[0,T,), where
S€ CU0,T,), S(C)=b,

We chocs: S as the free boundary of a Stefan problem posed for the
heat cquation v plane symmetry, with constant, positive (and sufficiently
larg::) houndary ‘lata.

If the data are suitably chosen, inequality S(t) >s,(t), 0<t < Ty,
follow+ from a st:ndard application of the maximum principle.

The proof of Theorem 1.3 is completed.
0

Remark 3.4 A fow comments on the second part of the proof are perhaps in
order. Clearly (57) (and even (54), under additional assumptions on the data)
still liolds if hit = —1 in a left neighbourhood of r=bh. Nevertheless, we

know '/ that in uch a case, no solution to problem (P) exists. Indeed, the
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proof given above fails, since in it we exploit the strict inequality
h(b,) > =1 to apply the existence result proved earlier. On the other hand,
if we approximate h near r=b, in order to guarantee local existence, the
ordering u,,,(r.0) > u,(r,0) is no longer granted. Then we cannot infer the
monotonicity of {s,}, which was essential in proving the continuity of the
limit function s at t=0. In this connection, it is perhaps of some interest
mentioning that two sequences {a,}, {b,} obeying the requirements in (49)

can not be found if k = 1.

Remark 3.5 In order to clarify the remarks above, let us consider the case
where =0, 0>h(r)> -1 in (rg,b), h(r)= =1 in (b)), with
r,<b<hb Let {h,} beany approximating sequence satisfying h,(r)—h(r)
in (rgb) n—oc. h<h, <0, hy(b)> —1, h, smooth near r=b. Let
(2,5, 1,) be the solution to the corresponding approximating problem, and

let (725.T) be the solution to the problem obtained from (P) by substituting

b owith b (i.e. 2(0) = b); we denote this problem (P).
Then, reasoning as in Lemma 3.1 (see also (55) above), we get
s (t) > 3(t), 0<t<T, =min(T,T).

Owing to Theorem 2.3 and to suitable estimates below for z,, proved as

..L...Oa-m. we —;:uL
l5,(t)) € Clty), 0<te<t<T,—ty, n>1. (57)

As a first consequence of (57) (and of the results of '), note that s, and §
can be continuated until they hit the boundary r=r, (so that T,>T);
also note that &,.5 <0, t>0.

Moreover, by virtue of (57), there exists a subsequence ?:L converging to

s*. 5" € Lipjo((0.T)), s* decreasing and

b < lims*(t) =:0" < b.
L=+
The inequality ¢* >b would lead us to an inconsistency, by virtue
of the non existence result mentioned in Remark 3.4. Hence ¢* =b. Then

s* is the free boundary of a solution to (P). By uniqueness, it follows s* =
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in (0.1). Thus, tle whole sequence {s.} converges to 3 in (0,T), though
$x(0) == b Yn>1.

4. APPENDIX

We outline below t}e proof of the ordering

v=+_ v=+_

@0 = [ dp [y () +1) dy >

r: b
2 [0 [y ()41 dy = uyr0).,

n

ToSrt< b, that i vssential in proving Lemma 3.1,

Actualls. the calcuiation are cumbersome, and we do not reproduce them

here entitely. Let u; note again that (49)-(50) play a basic role in proving
(58). |

By usine b, (r) = | (1) if Iy =1 £ a,, one can show that

.,.._.f_ﬂ—.‘cu = __.:..C_w N :AHV + ﬂmﬂ_-v L] -.O m r m .—u—_ * AUOW
where
¢ 1 S V:.._
lir) = _ :_m: ;..::.Zw+% H..&;
T L1 rn
U Sa4
[ (r) = * - :T_n”l dy — % ¥ by (y) :_lwwl dy .
b W L "

Since b ,,(y)= k<0 if Y €(aq2041), we have I(r)>0 in (59).
Moreove:. I,(r) >0 if 149)-(50) hold; indeed

bt 841
b3 = b _‘ vdy > |% Y hoyy(y)dy = wﬁtlmc.

! LY
n n

Therefore 1 33) is prow.d.

3

4
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