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Abstract

We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who
moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting
it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and
the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with
perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to
determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an
‘‘inverse optics’’ model that takes head motion information into account, and a probabilistic model that ignores extra-retinal
signals. We compare these two approaches within the framework of the Bayesian theory. The ‘‘inverse optics’’ Bayesian
model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error;
because of the influence of a ‘‘prior’’ for flatness, the slant estimates become systematically biased as the measurement
errors increase. The Bayesian model, which ignores the observer’s motion, always produces distorted estimates of surface
slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical
findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic
processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better
measurement of retinal information.
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Introduction

The current models of active Structure-from-Motion (SfM) are

based on the Helmholtzian account of perception as inverse

inference [1–5]. According to this approach, the goal of the

perceptual system is to infer from the sensory evidence the

environmental three-dimensional (3D) shape most likely to be

responsible for producing the sensory experience. In order to

obtain this goal, the current approach inverts the generative model

for the optic flow. Mathematically, this corresponds to an

application of Bayes’ rule in which first-order optic flow

information is combined with information about the observer’s

motion provided by proprioceptive and vestibular signals [6]. The

solution of this ‘‘inverse-optics’’ problem can produce the correct

result if some assumptions about the distal objects are satisfied and

if the extra-retinal signals are measured with high precision [3].

An alternative theory hypothesizes that the visual system

estimates the metric properties of local surface orientation by

using retinal information alone. Retinal information ‘‘directly’’

specifies the 3D affine properties of the distal object (such as the

parallelism of local surface patches or the relative-distance

intervals in parallel directions), but it does not allow a unique

determination of its Euclidean metric properties, such as slant [7]

(see Figure 1). [8] proposed that the perception of local surface

slant can be understood in terms of a probabilistic estimation

process. Consider a property A of the optic flow which is related to

the distal property S through a one-to-many mapping. Any

estimate S’~f (A) based solely on A will produce an error equal to

S{f (A). Through learning, however, the visual system may select

the function f that minimizes
P

i jf (A){Sij, where i indexes the

instances S that could have produced A. This approach has

proven adequate to explain human passive SfM, but it could be

applied to active SfM as well.

A fundamental difference between these two approaches is that

only the first one makes use of information about ego-motion. This

difference is very important. In fact, empirical results show that

perceived surface tilt depends critically on ego-motion informa-

tion. A particularly convincing demonstration in this respect has

been provided by [9]. In the ‘‘active’’ condition, the observer

translated along the z-axis while fixating a planar surface with 900

tilt and undergoing rotation about the horizontal axis. The

rotation of the surface was paired with the observer’s motion, so as

to generate a pure compression optic flow. In the ‘‘passive’’

condition, the same optic flow was ‘‘replayed’’ to a stationary

observer. Tilt perception was veridical when ego-motion informa-

tion was available (perceived tilt was 900), but not for the passive

observer (perceived tilt was either 00 or 1800) – see also [10–13].

The purpose of the present investigation is to determine

whether observers use information about the speed of head

motion to estimate surface slant. To this purpose, we compared

the judgments of local surface slant provided by active and passive

observers to the estimates provided by two Bayesian models. The

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18731



two models were constructed (a) by taking into account

information about the observer head motion, and (b) without

taking into account information about the observer head motion.

The empirical data were obtained by asking observers to judge the

local slant of virtual and physical planar surfaces from the optic

flows generated by normal or slower head translation velocities.

Surface slant and first-order optic flow
Consider a coordinate system centered at the observer’s

viewpoint, with the z axis orthogonal to the observer’s frontal-

parallel plane (see Figure 2). Suppose that the observer fixates the

surface’s point located at 0,0,{zf

� �
, where zf is the viewing

distance. If the observer translates in a direction orthogonal to the

line of sight, with translational velocity To, or the surface rotates

with angular velocity vS , then the texture elements on the surface

will project onto the image plane a velocity field which can be

locally described by the following equation:

vx&vr
z

zf

, ð1Þ

where vx is the retinal angular velocity, vr is the angular velocity

resulting from the relative rotation between the observer and the

surface, and z is the relative depth of each surface point with

respect to the fixation point.

In the present investigation, we only consider planar surfaces

slanted by an angle atan(s) along the vertical (y) dimension. Such

surfaces are defined by equation

z~sy ð2Þ

which, substituted in Eq. 1, gives:

v&vrays, ð3Þ

where ay&
y

zf
is the vertical elevation of a generic feature point.

The deformation (def) component (i.e., the gradient) of the velocity

field – which is zero along the horizontal dimension for our stimuli

– is given by

def ~
dv

day

~vrs: ð4Þ

Figure 1. The two degrees of freedom of surface orientation. A
set of circular patches is used to illustrate the slant (s) and tilt (t)
components of surface orientation [40]. The line at the center of each
patch is aligned in the direction of the surface normal. The slant s is
defined by the tangent of the angle between the normal to the surface
and the line of sight (0ƒtan) sƒ?. The tilt t is defined as the angle
between the x-axis of the image plane and the projection into the
image plane of the normal to the surface ({1800ƒtƒ1800). The dotted
lines identify patches with same slant but different tilt magnitudes.
doi:10.1371/journal.pone.0018731.g001

Figure 2. Schematic of stimulus geometry. Top panel: bird-view of
the viewing geometry. The x and the z axes represent the horizontal
image dimension and the line of sight, respectively; zf is the viewing
distance, To is the horizontal head translation velocity, and vo is the
relative angular velocity produced by the motion of the observer’s
head. Bottom panel: side view of the viewing geometry. z represents
the relative depth of the point P with respect to the fixation point; ay

represents the elevation of the point P with respect to the optical axis;
s is the tangent of the angle between the surface (represented by the
red segment) and the fronto-parallel plane.
doi:10.1371/journal.pone.0018731.g002

Bayesian Modeling of Perceived Surface Slant
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Eq. 4 is a good approximation of the local velocity field produced

by a surface patch subtending up to 80 of visual angle. Importantly,

Eq. 4 reveals that the gradient of the velocity field is not sufficient to

specify the slant of the surface. In order to specify s, in fact, the

knowledge of the relative rotation vr between the observer and the

planar surface is required. Note that, in general, vr depends both

on the surface’s rotation about the vertical axis (vS ) and on the

translation of the observer:

vr~vS{vo, ð5Þ

where vo~
To

zf

denotes the relative velocity of the surface resulting

from the movement of the observer in an egocentric reference

frame.

In general, the ambiguity of def could be solved if the visual

system were able to accurately measure the second-order optic

flow (i.e., the image accelerations), but several studies show that

this is not the case [14–18]. Alternatively, def can be disambiguated

by combining the information provided by the first-order optic

flow and the extra-retinal signals, if some assumptions are met (see

next Section).

Bayesian slant estimation from retinal, vestibular, and
proprioceptive information

The ambiguity of def can be overcome by the active observer

under the assumption that the object is stationary – a reasonable

assumption in many real-world situations [12]. If the object is

stationary, vS~0 and the relative rotation between the observer

and the surface is equal-and-opposite to the observer’s motion:

vr~{vo. If information about vo is obtained from propriocep-

tive and vestibular signals, it is thus possible to estimate s.

The Bayesian model presented by Colas and collaborators

formalizes this idea [6]. The uncertainty in the estimation of the

relative motion Vr is described by a Gaussian distribution

P Vrjvoð Þ centered at {vo and having an arbitrary standard

deviation svo
(here and in the following we use capital letters to

indicate random variables). The spread of this Gaussian

distribution encodes the noise in the measurement of the vestibular

and proprioceptive signals and the possibility that the surface

undergoes a rotation independent from the observer’s motion. By

centering this probability distribution at {vo, Colas et al.

implement the stationarity assumption, that is, they favor the solutions

in which the optic flow is produced by the observer’s motion [12].

Colas et al. also consider the possibility that the optic flow is not

measured accurately, or is produced by some degree of non-rigid

motion. Under these circumstances, the surface slant s combined

with the relative motion vr does not produce a unique def value.

This further source of uncertainty is described by a Gaussian

distribution P def jVr,Sð Þ centered at vrs with an arbitrary

standard deviation sdef . By centering this probability distribution

at vrs, Colas et al. implement the rigidity assumption, that is, they

favor the solutions in which def is produced by a rigid rotation. A

further assumption is that the slant of the surface does not depend

on the relative motion between the surface and the observer.

Under these assumptions, the problem of estimating local

surface slant given the knowledge of def and vo (the observer’s

motion) becomes the problem of identifying the density function

P Sjdef ,voð Þ. This probability density function can be found

through Bayes’ theorem by applying the rules of marginalization

and probability decomposition.

From the definition of the conditional probability P Sjdef ,voð Þ,
by marginalizing over Vr, we obtain

P Sjdef ,voð Þ~ P S,def ,voð Þ
P def ,voð Þ ð6Þ

~
1

P def ,voð Þ

ð
Vr

P S,def ,vo,vrð Þdvr: ð7Þ

By the chain rule, we can write

P S,def ,vo,Vrð Þ~P def jS,vo,Vrð ÞP S,vo,Vrð Þ: ð8Þ

Moreover,

P def jS,vo,Vrð Þ~P def jS,Vrð Þ, ð9Þ

because, under the rigidity assumption, def depends only on the

distal slant S and the relative rotation Vr;

P S,vo,Vrð Þ~P Sð ÞP vo,Vrð Þ, ð10Þ

because surface slant is independent from the observer’s relative

motion and from the egocentric motion;

P vo,Vrð Þ~P Vrjvoð ÞP voð Þ, ð11Þ

because of the chain rule. Therefore, P S,def ,vo,Vrð Þ can be re-

written as

P S,def ,vo,Vrð Þ~P def jS,Vrð ÞP Sð ÞP Vrjvoð ÞP voð Þ: ð12Þ

By virtue of Eq. 12, Eq. 7 takes the form

P Sjdef ,voð Þ~ P voð Þ
P def ,voð ÞP Sð Þ

ð
Vr

P def jS,vrð ÞP vrjvoð Þdvr ð13Þ

!P Sð Þ
ð
Vr

P def jS,vrð ÞP vrjvoð Þdvr: ð14Þ

In conclusion, Eq. 14 provides a possible solution to the ‘‘inverse

optics’’ problem of estimating local surface slant from the

deformation of the optic flow (see Figure 3). If vo and def are

measured with no error, then P Sjdef ,voð Þ peaks at the true slant

value (j) when the distal surface is stationary. In the presence of

measurement errors, instead, the estimated slant will be biased.

The magnitude of this bias depends on the precision with which

vo (the observer’s motion) and def are measured: the larger svo ,

the larger the under-estimation of slant.

Bayesian slant estimation from retinal information alone
We propose that the visual system estimates surface slant

without considering the information about head translation

velocity (see Figure 4). With reference to the Bayesian model

discussed in the previous section, this means that

P Vrjvoð Þ~P Vrð Þ, where P Vrð Þ is the a priori distribution of a

random variable representing the amount of relative rotation

between the observer and the surface. In this case, Eq. 14 reduces

to

Bayesian Modeling of Perceived Surface Slant
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P Sjdefð Þ!P Sð Þ
ð
Vr

P def jS,vrð ÞP vrð Þdvr: ð15Þ

Domini and Caudek showed that this account is sufficient for

predicting perceived slant from the optic flow in the case of the

passive observer [19–28]. They showed that the center of mass of

the distribution described by Eq. 15 is equal to k
ffiffiffiffiffiffiffi
def

p
, with k

depending on the spreads of the prior distributions of S and of Vr

[8]. The center of mass as an estimate of S is equivalent to the

posterior median, which is the Bayes estimator for the absolute

error loss. Indeed, it has been shown that Eq. 15 is a particular

case of Eq. 14: The two accounts are indistinguishable when

information about the head’s translation is unavailable, like in the

case of the passive observer [6]. Eqs. 14 and 15, instead, make

Figure 3. Recovery of surface slant according to Eq. 14. Intensity corresponds to probability. The values reported in the plot refer to the case
of a static plane slanted by 800 (sv) around the horizontal axis and viewed by an active observer performing a lateral head translation at a speed that
produces a relative angular-rotation velocity of 0.32 rad/s (vo). Panels a - e: method for calculating the posterior distribution. a. Prior for frontal-
parallel P(S) modeled as a (half) Gaussian distribution centered at zero. b. Likelihood function P def jS,Vrð Þ generated by assuming that the def
measurements are corrupted by Gaussian noise. c. Uncertainty of the relative rotation between the observer and the planar surface P Vrjvoð Þ
modeled as a Gaussian distribution centered on the true value Vr . d. Product of the likelihood, the prior for Vr , and the prior for S. e. Posterior
distribution produced by the marginalization over Vr . The median of the posterior distribution (dotted line) gives the optimal estimate of surface
slant based on the knowledge of def and vo. The model’s prediction (the value 5 in the figure) gets more and more close to the ‘‘true’’ value of the
slant (j) as svr

decreases.
doi:10.1371/journal.pone.0018731.g003

Bayesian Modeling of Perceived Surface Slant
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different predictions for the active observer, when head translation

velocity is manipulated.

The importance of
ffiffiffiffiffiffiffi
def

p
for the perceptual recovery of local

surface slant from the optic flow has been highlighted by [8,24]. def is

a one-parameter family of s (surface slant) and vr (relative angular

rotation) pairs, but not all possible s, vr pairs are equally likely.

Under the assumption of uniform prior distributions (bounded

between 0 and smax, and between 0 and vrmax
) for s and vr, the

conditional probability of a s, vr pair given def is not uniform, but it

has a maximum equal to k
ffiffiffiffiffiffiffi
def

p
, with k~

ffiffiffiffiffiffiffiffiffiffi
smax

vrmax

r
(see [24]).

Rationale of the Experiments
Eqs. 14 and 15 provide two alternative models for the

perceptual derivation of surface slant from the optic flow in active

vision. The purpose of the present investigation is to contrast them

by comparing their predictions to the behavioral data obtained

when head translation velocity is manipulated.

In the present experiments, observers were required to produce

two different head translation velocities. The first was comparable

to the peak horizontal head velocity during normal locomotion

[29], the second was 80% slower. This experimental manipulation

Figure 4. Recovery of surface slant according to Eq. 15. The values reported in the figure refer to the stimulus conditions used in Figure 3.
Differently from the ‘‘inverse-optics’’ approach, in this case the distribution P(Vrjvo) is non-informative. Note that, after computing the product of
the likelihood, the prior for Vr , and the prior for S, the marginalization over Vr produces a posterior distribution that is very different from what is
shown in Figure 3. The estimate of surface slant is given by the median of the posterior distribution (dotted line). The posterior median corresponds
the point on the hyperbola closest to the origin of the Cartesian axes. The Bayesian posterior median estimator (which is equal to k|

ffiffiffiffiffiffiffi
def

p
) is

represented by the red dot in panel d .
doi:10.1371/journal.pone.0018731.g004

Bayesian Modeling of Perceived Surface Slant
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(a) does not affect the estimate of local surface slant according to

Eq. 14 (by assuming that the measurement noise of vo remains

unaltered), and (b) can strongly affect the estimate of local surface

slant according to Eq. 15 (because head translation velocity is

proportional to
ffiffiffiffiffiffiffi
def

p
).

Results

Perceived surface slant
Active and passive observers judged the perceived slants of

virtual or physical planar surfaces. The results indicate that the

judgements made by the observers are systematically biased by the

head translation velocity (see Figure 5). The same qualitative

trends are found for the active and passive viewing of a virtual

surface, and for the active viewing of a physical surface.

According to the Bayesian model described in Eq. 15, perceived

surface slant depends only on the square root of def. For the active

and passive viewing of virtual planar surfaces, the observers’

judgments of slant complied with this prediction (see Figure 6). For

the active viewing of physical surfaces,
ffiffiffiffiffiffiffi
def

p
was not the only

determinant of the perceptual response, but the additional

contribution of the head translation velocity was negligible. In

the present investigation, therefore, there is no evidence that

simulated slant contributes to the perceptual response beyond

what
ffiffiffiffiffiffiffi
def

p
can explain.

Implementation of the Bayesian models
Estimation of surface slant by taking into account head

translation velocity. Figure 7 illustrates the process of slant

estimation according to Eq. 14: The Bayesian estimator is plotted

as a function of simulated slant (bottom left panel) and as a

function of
ffiffiffiffiffiffiffi
def

p
(bottom right panel). When the head translation

velocity vo is measured accurately, the Bayesian estimator is

veridical; as the uncertainty about vo increases, the Bayesian

estimator becomes more and more biased. The slant estimates

expressed as a function of
ffiffiffiffiffiffiffi
def

p
lie on two different curves,

regardless of the size of sbvvr
(bottom right panel). The offset

between these two curves depends on the amount of measurement

error and on the mean of the distribution P(Vrjvo), which

depends on the head translation velocity.

Estimation of surface slant from retinal information

alone. Figure 8 illustrates the process of slant estimation

according to Eq. 15: The Bayesian estimator is plotted as a

function of simulated slant (bottom left panel) and as a function offfiffiffiffiffiffiffi
def

p
(bottom right panel). When plotted as a function of

ffiffiffiffiffiffiffi
def

p
,

the slant estimates for the two translation velocities lie on the same

straight line. The parameter r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sS=sVr

p
is the slope of the linear

relation between perceived slant and
ffiffiffiffiffiffiffi
def

p
.

Perceived surface slant and Bayesian modeling. Eq. 15

offers a clear advantage over Eq. 14 in predicting the observers’

responses (see Figure 9). If the uncertainty about vo is not

negligible, the Bayesian estimates of Eq. 14 expressed as a function

of
ffiffiffiffiffiffiffi
def

p
lie on two separate curves and are unable to reproduce

the qualitative trends in the experimental data (see Figures 5, 6,

and 7, 8). This lack of fit can be contrasted with the excellent

correspondence between the slant estimates of Eq. 15 and the

observers’ judgments.

Discussion

Under some assumptions, the optic flow can be used, together

with other signals, to infer both the ordinal properties (e.g., tilt) and

the Euclidean metric properties (e.g., slant) of the visual scene. By

using sophisticated head-tracking techniques with high spatiotem-

poral resolution, we manipulated the information content of the

stimuli to generate optic flows corresponding to (a) the active

viewing of a virtual surface, (b) the passive viewing of a virtual

surface, and (c) the active viewing of a physical surface. We also

Figure 5. Perceived slant as a function of simulated slant. Fast
and slow head translation velocities are coded by red and black,
respectively. The values are expressed in terms of the tangent. The
dashed lines indicate veridical performance. Vertical bars represent + 1
standard error of the mean. (a) Passive-viewing with a virtual surface. The
interaction Slant | Velocity is significant, x2

4 = 51.04, p = .001. The
marginal effect of the head’s translation velocity is significant, x2

1 = 7.48,
p = .006: On average, the amount of reported slant is 51% lower for the
slow than for the fast head’s translation velocity. (b) Active-viewing with
a virtual surface. The interaction Slant | Velocity is significant,
x2

4 = 47.31, p = .001: The effect of simulated slant on the response is
larger for the faster head’s translation velocity. The marginal effect of
head’s translation velocity is significant, x2

1 = 5.62, p = .018: On average,
the amount of reported slant is 60% lower for the slow than for the fast
head’s translation velocity. (c) Active-viewing with a physical surface. The
interaction Slant | Velocity is significant, x2

3 = 40.81, p = .001. The
marginal effect of head’s translation velocity is significant, x2

1 = 12.96,
p = .001: On average, the amount of reported slant is 75% lower for the
slow than for the fast head’s translation velocity.
doi:10.1371/journal.pone.0018731.g005

Bayesian Modeling of Perceived Surface Slant
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varied the head translation velocity (normal or slower). The

observers’ judgments of perceived surface slant were then

compared to the Bayesian estimates computed with and without

taking into account the translational velocity of the head (Eqs. 14

and 15, Figures 7 and 8).

The observers’ responses are markedly different from the

Bayesian estimates derived by combining optic flow and head

velocity information (Eq. 14, Figures 5 and 6). The empirical

data from the active and passive viewing of virtual planar

surfaces, conversely, are consistent with the Bayesian estimates

computed without considering head velocity information (Eq. 15,

Figures 9).

For the slant judgments of physical planar surfaces, the Bayesian

model of Eq. 15 explains a large amount of the variance, but a

very small portion of additional variance is accounted for by the

head translation velocity (Figure 6, bottom panel). The Bayesian

model of Eq. 14, which takes head velocity into account, fits the

data much worse. In the present research, this effect is small but

warrants further research. In a follow-up experiment (not

described here), we found that the monocular cues provided by

our physical stimuli were not sufficient for an immobile observer to

successfully discriminate between two surfaces slanted +45 0 or

245 0 (surface tilt was constant). Together with the findings of our

main experiment, these results suggest that, although uninforma-

tive by themselves, monocular cues can produce some form of

‘‘enhancement’’ of the perceptual response, when they are

presented together with the optic flow and with vestibular and

proprioceptive information [30].

The slope of the linear relation between perceived surface slant

and
ffiffiffiffiffiffiffi
def

p
varies across the three viewing conditions: it is

shallower for the passive viewing of a virtual planar surface, it

increases for the active viewing of a virtual surface, and it is the

largest for the active viewing of a physical surface. We may expect

a different visual performance for passive and active SfM, and for

virtual and physical stimuli. The present results suggest, however,

that more complete stimulus information does not necessarily

result in better (more veridical) performance: A stronger effect of def

does not guarantee a more accurate response. Perceived slant is

strongly affected by def despite the fact that there is no a ‘‘one-to-

one’’ correspondence between def and distal surface slant.

Animal studies [31] and human experiments [32,33] identify

MT (MT+ in humans) as the brain area involved in SfM

processing. It has also been shown that MST integrates MT inputs

with vestibular signals originating from a different (currently

unidentified) neural pathway [34,35]. The integration of visual

and vestibular information in MSTd is consistent with both the

Bayesian models discussed here (Eqs. 14 and 15). Such integration

could mean that (a) the visual system uses extra-retinal signals to

discount head motion from the optic flow in order to encode a

world-centered representation of the 3D objects [11], or (b) non-

visual information about self-motion is used as a retinal

stabilization factor for a better measurement of the optic flow

Figure 6. Perceived slant as a function of
ffiffiffiffiffiffiffiffi
def
p

. Fast and slow
head translation velocities are coded by red and black, respectively. The
values are expressed in terms of the tangent. Vertical bars represent +
1 standard error of the mean. (a) Passive-viewing with a virtual surface.
There is no significant interaction between

ffiffiffiffiffiffiffi
def

p
and head translation

Velocity, x2
1 = 0.43, p = .513. There is no significant effect of head

translation Velocity, x2
1 = 0.57, p = .449. In a no-intercept model withffiffiffiffiffiffiffi

def
p

as the only predictor, the slope is 1.04, t535 = 20.95, p = .001, and
rc = .74. No improvement of fit is found if simulated slant is added to
such model, t535 = 0.455. For a baseline model with only the individual
differences, rc is equal to .45. (b) Active-viewing with a virtual surface.
There is no significant interaction between

ffiffiffiffiffiffiffi
def

p
and head translation

Velocity, x2
1 = 2.50, p = .114; there is not significant effect of head

translation Velocity, x2
1 = 0.25, p = .620. In a no-intercept model withffiffiffiffiffiffiffi

def
p

as the only predictor, the slope is 1.88, t535 = 16.46, p = .001, and
rc = .69. No improvement of fit is found if simulated Slant is added to
such model, t535 = 20.22. For a baseline model with only the individual
differences, rc is equal to .33. When analyzing together the data of the
passive and active viewing of the virtual surfaces, significant effects are
found for

ffiffiffiffiffiffiffi
def

p
, t1007~6:164, p = .001, and condition (indicating a

smaller response for the passive observer), t1007~{7:188, p = .001. For
this model, rc is equal to .90. When controlling for

ffiffiffiffiffiffiffi
def

p
, the effect of

simulated Slant is not significant, t1007~1:134. For a baseline model
with only the individual differences, rc is equal to .43. The estimated
standard deviation of the residuals is equal to 0.218 on the scale of the
tangent of the slant angle. Given that mean perceived slant is 0.493, the
coefficient of variation is equal to cv = 0.44. (c) Active-viewing with a

physical surface. For a no-intercept model with the square root of def as
the only predictor, rc = .72. For a baseline model with only the individual
differences, rc = .44. If head translation velocity is added to the model
including def as predictor, rc increases to .74; rc increases to .75 if the
interaction between the two predictors is allowed. Even though this
increase in the model’s fit is statistically significant, x2

3 = 30.15, p = .001,
the effect size (as measured by rc) is very small. No improvement of fit is
found when adding the simulated Slant predictor, x2

1 = 0.42, p = .518. In
the simpler (no-intercept) model with the

ffiffiffiffiffiffiffi
def

p
predictor, the slope is

2.41, t535 = 12.29, p = .001.
doi:10.1371/journal.pone.0018731.g006

Bayesian Modeling of Perceived Surface Slant

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18731



[36,37]. The present behavioral results, however, favor this second

hypothesis.

In conclusion, the present data and simulations do not indicate

so much that, by disregarding vestibular and proprioceptive

information, the visual system uses a suboptimal strategy for

estimating surface slant from the self-generated optic flow. Instead,

they suggest that, even though it does not always guarantee a

veridical solution to the SfM problem, the mapping between the

deformation component of the optic flow and the perceived

surface slant may be the most efficient choice for a biological

system [38,39]. An issue that remains to be investigated is whether

and how learning provides effective visual and haptic feedback for

scaling def information.

Methods

Ethics Statement
Experiments were undertaken with the understanding and

written consent of each subject, with the approval of the Comitato

Etico per la Sperimentazione con l’Essere Umano of the University

of Trento, and in compliance with national legislation and the Code

of Ethical Principles for Medical Research Involving Human

Subjects of the World Medical Association (Declaration of Helsinki).

Participants
Thirty-four undergraduate students at the University of Parma,

Italy, participated in this experiment. All participants were naı̈ve

Figure 7. Monte Carlo simulation for the model of Eq. 14. Top panels: posterior distributions P(Sjdef ,vo) for five simulated slant
magnitudes. Intensity corresponds to probability. The posterior distributions are computed by setting the mean of the Gaussian distribution P(Vrjvo)
to the values of 0.32 or 0.07 rad/s. These values correspond to the empirical average of, respectively, the normal (right) or slow (left) head translation
velocity in our experiment. Middle panels: marginalization of the posterior distributions over Vr . The simulated slant magnitudes are coded by
color, ranging from black (200) to saturated blue/red (800). The dotted lines identify the medians of the marginalized posterior distributions. Bottom
panels. Optimal estimation for surface slant plotted as a function of the simulated slant magnitudes (left) and

ffiffiffiffiffiffiffi
def

p
(right). Full lines: results

obtained by setting svr
~10 ; dashed lines: results obtained by setting svr

~0:10 or svr
~70 . Blue and red colors code the slow and fast head

translation velocities, respectively.
doi:10.1371/journal.pone.0018731.g007
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to the purposes of the experiment and had normal or corrected-to-

normal vision.

Apparatus
The orientation of the participant’s head and the translational

head displacements were recorded by an Optotrak 3020 Certus

system. Two sensors recovered the 3D position data of two

infrared emitting diodes (markers on an eyeglass frame) aligned

with the observer inter-ocular axis. The signals emitted by the

markers were used to calculate the x, y, z coordinates of the

observers’ viewpoints in order to update the geometrical projection

of a random-dot planar surface in real time. Displays were

monocularly viewed through a high-quality front-silvered mirror

(150 | 150 mm) placed at eye-height in front of the observer’s

central viewing position and slanted 45 0 away from the monitor

and the observer’s inter-ocular axis. The effective distance from

the pupil to the center of the screen was 860 mm. Only the central

portion of the surface was left visible to the observer through a

black mask with an irregularly-shaped central aperture (about

70 | 70 mm) superimposed on the screen. A chin-rest was used to

prevent head movements in the passive-vision condition.

A custom Visual C++ program supported by OpenGL libraries

and Optotrak API routines was used for stimulus presentation and

response recording. The same program also controlled the

orientation of a physical planar surface that, in a separate block

of trials, was placed at a distance of 760 mm in front of the

Figure 8. Monte Carlo simulation for the model of Eq. 15. The Monte Carlo simulation was carried out by setting the stimulus parameters to
the same values as in Figure 7. Top panels: posterior distributions P(Sjdef ). The outputs of the simulations for the slow and fast head translation
velocities are shown on the left and on the right, respectively. Middle panels: marginalization of the posterior distributions over Vr. The dotted lines
identify the medians of the marginalized posterior distributions. Bottom panel: estimates of surface slant plotted as a function of simulated slant
(left) and as a function of

ffiffiffiffiffiffiffi
def

p
(right). Blue and red colors code the slow and fast head translation velocities, respectively. The parameter r represents

the square root of the ratio between the standard deviations of the prior distributions for S and Vr.
doi:10.1371/journal.pone.0018731.g008
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observer. The boundary of the physical surface was occluded by

the same mask used for the virtual displays. This aperture was

closed when the surface’s orientation was changed.

Stimuli
The simulated displays were random arrangements of (1 |

1 mm) antialiased red dots simulating the projection of a static

planar surface centered on the image screen and with a variable

slant about the horizontal axis (virtual planar surfaces: 200, 350,

500, 650, and 800; physical planar surfaces: 100, 200, 400, and 500).

The surface tilt was constant (900). About 100 dots were visible

through the irregular aperture occluding the outer part of the

screen. To remove texture (non-motion) cues, the dots were

randomly distributed into the projected image (not on the

simulated surface). On each frame of the stimulus sequence, the

2D arrangement of the dots was varied depending on the

observer’s head position and orientation with respect to the

simulated surface. The dots on the simulated planar surface were

projected onto the image plane (CRT screen) by using a

generalized perspective pinhole model with the observer’s right

eye position as the center of projections. The position of the

observer’s right eye was sampled at the same rate as the monitor

refresh and stimulus update rate.

The translation of the observer’s head produced a relative

rotation of the simulated planar surface of about 3.320 about the

vertical axis, regardless of surface slant. The maximum lateral

head shift was equal to 50 mm. In the passive-vision condition, the

optic flows were generated by replaying the 2D transformations

generated by the corresponding active-vision trials. The horizontal

translation component of the optic flow was removed by assuming

that the cyclopean line of sight of the active observers was always

aligned with the centre on the planar surface, regardless of actual

head position and surface slant [37].

The physical planar surface was painted black and randomly

covered with phosphorescent dots. With respect to the virtual

surface, the physical surface was covered by larger dots (about

5 mm) having an irregular shape, a lower density (about 13 dots

were visible through the irregular aperture), and providing texture

cues (i.e., dot foreshortening) consistent with a slanted 3D planar

surface. Given the smaller viewing distance (760 mm), the constant

amount of lateral head shift produced a relative rotation of the

surface about the vertical axis of 3.760.

During the experiment, the room was completely dark. Peak

head translation velocity was either 285.6 mm/s or 57.7 mm/s.

Depending on the head translation velocity, on each trial the

stimulus was visible for about 3.0 s or 11.1 s.

Design
Each observer participated in three experimental blocks in the

following order: Active-Vision with a Virtual surface (AVV),

Passive-Vision with a Virtual surface (PVV), and Active-Vision

Figure 9. Perceived slant as a function of the predictions of Eq.
15. Points of the same color represent different simulated Slant
magnitudes. The predicted values are obtained by setting r (the square
root of the ratio between the standard deviations of the prior
distributions for S and Vr) equal to the slope of the linear relation
between perceived slant and

ffiffiffiffiffiffiffi
def

p
in each viewing condition. AVV:

Active Viewing of a Virtual surface; PVV: Passive Vision of a Virtual
surface; AVP: Active Viewing of a Physical surface. For the data in the
figure, the least-squares regression line has an intercept of 20.03, 95%
C.I. [20.09, 0.02], and a slope of 1.07, 95% C.I. [0.97, 1.16]; R2 = .95.
doi:10.1371/journal.pone.0018731.g009

Figure 10. Temporal structure of the sequence in each trial. Schematic representation of one trial of our experiment. Here we consider the
case of the acting viewing of a virtual surface.
doi:10.1371/journal.pone.0018731.g010
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with a Physical surface (AVP). Participants were randomly

assigned either to the ‘‘normal’’ or to the ‘‘slow’’ head translation

velocity conditions. Each AVV and PVV block comprised 25 trials

(5 repetitions of 5 simulated slants magnitudes). The AVP block

comprised 16 trials (4 repetitions of 4 slant magnitudes). In the

PVV block, the stimuli generated in the AVV block were shown

again in random order. The completion of each block of trials

required about 30 minutes.

Procedure
Participants were tested individually in total darkness, so that only

the stimulus displays shown on the CRT screen, or the luminous dots

on the physical surface, were visible. In the AVV and AVP blocks,

observers viewed the stimuli while making back-forth lateral head

translations. The observer’s head was supported by an horizontally

extended chin-rest allowing lateral movements of + 60 mm. An

acoustic feedback signaled whether the average head shift velocity

exceeded the range of 83 mm/s + 40 mm/s (‘‘normal’’ speed) or

20 mm/s + 10 mm/s (‘‘slow’’ speed). The stimulus display appeared

on the screen when participants completed 2 consecutive back-and-

forth translations at the required velocity and disappeared after 5.5

back-and-forth translations. After the stimulus disappeared, partici-

pants stopped moving their head and provided a verbal judgment of

the amount of perceived surface slant (0u indicating a frontal-parallel

surface, 90u indicating a surface parallel to the x,z plane) – see

Figure 10. In the PVV condition, participants were required to

remain still for the entire duration of each trial.

Each experimental session was preceded by a preparatory

session in which the participant’s inter-pupillary distance was

measured, the instructions were provided, and training about the

appropriate head translation velocity and the magnitude estima-

tion task was provided. Participants were trained in the magnitude

estimation task by completing two blocks of 20 trials each. In one

block, they were required to generate an angle between two

segments on a computer screen after being prompted by a random

number in the range 0–360. In the other block, they were required

to estimate a random angle depicted to the screen. The

relationship between the response and the test values was analyzed

with a linear regression. Only participants who met performance

criteria of a slope in the interval [0.9, 1.1] and an intercept in the

interval [20.3, 0.3] entered the experimental session.

The maximum value of def was extracted in each trial from the

instantaneous profile of the deformation component of the optic

flow by following the procedure illustrated in Figure 11. These def

values were then used to test the prediction of Eq. 15.

Statistical Analyses
Statistical analyses were performed by means of Linear Mixed-

Effects models with participants as random effects and
ffiffiffiffiffiffiffi
def

p
,

simulated slant, and head translation velocity (‘‘normal’’, ‘‘slow’’) as

fixed effects. We evaluate significance by computing the deviance

statistic (minus 2 times the log-likelihood; change in deviance is

distributed as chi-square, with degrees of freedom equal to the

number of parameters deleted from the model) and with the help of

10,000 samples from the posterior distributions of the coefficients

using Markov chain Monte Carlo sampling. From these samples, we

obtained the 95% Highest Posterior Density confidence intervals,

and the corresponding two-tailed p-values. Several indexes have

been proposed to measure the prediction power and the goodness-

of-fit for linear mixed models (e.g., Sun, Zhu, Kramer, Yang, Song,

Piepho, & Yu, 2010). Here, we measure the goodness of fit as

rc~1{
(y{ŷy)’(y{ŷy)

(y{�yy)’(y{�yy)z(ŷy{~yy)’(ŷy{~yy)zn(ŷy{~yy)2
, where y is an

n | 1 vector, ŷy are the fitted values, �yy is the mean of y, and ~yy is the

mean of ŷy (Vonesh, Chinchilli, & Pu, 1996). The rc statistic can be

interpreted as a measure of the degree of agreement between the

observed values and the predicted values. The possible values of rc

lie in the range {1ƒrcƒ1.
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