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Abstract

Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for
their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested
by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance
hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this
gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions.

Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sight-
allowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque)
partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed
and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive
days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs
composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time
elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were
used as proxies for recognition.

Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at least
one day. To the best of our knowledge, this is the first experimental study showing the occurrence of a form of IR in
cephalopods. Future studies should clarify whether this is a ‘‘true’’ IR.
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Introduction

Individual recognition (IR) is regarded as to be an important

prerequisite for the evolution of a wide range of social behaviours,

from mate choice and parental care to territorial defence and

dominance hierarchies. The intrinsic complexity of the phenom-

enon, along with the wide diversity of its expression across the

animal kingdom, has generated a debate on the defining features

that make up the process [1–8]. The dichotomy between ‘‘true’’

IR and ‘‘binary’’ or ‘‘class-level’’ IR has been proposed. In true

IR, the receiver learns the individual-distinctive features of the

signaller and associates these characteristics with individual-

specific information about it [9,10]. Apparently, this is a

sophisticated task that requires specific perceptual and discrimi-

nation abilities by the receiver to identify a ‘‘unique set of cues’’ [9]

emitted by the signaller [11,12]. As a consequence, such ability has

been assigned to taxa characterized by complex nervous systems

or cognitive adaptations, such as fish, birds, and mammals

(reviewed in [10]). Recent studies, however, have extended its

occurrence to some invertebrate species (insects [13,14] and

decapod crustaceans [15–19]; reviewed in [10]). Indeed, research

in invertebrates has been hampered by the scarcity of experimen-

tal tests capable of discriminating between true IR and other forms

of recognition [10]. The majority of studies conducted thus far has

been able, at the best, to document the existence in invertebrates

of a second form of IR, the binary or class-level IR. In this case,

the receiver classifies the signaller into heterogeneous subgroups,

such as familiar/unfamiliar or dominant/subordinate [1,20–22].

However, as pointed out by Barnard & Burk [3], a strict distinction

between true and binary IR appears fallacious if the ability to

recognise conspecifics is regarded as a skill that acts on a gradient

of ‘‘cue complexity ranging from simple cues to complexes possibly

beyond the level of the individual’’ (pg. 66). Similarly, Steiger &

Müller [7] suggest a less restrictive definition of IR, where class-

level recognition should be viewed as a form of IR.

Among invertebrates, octopuses are an ideal model organism to

explore IR for several reasons. Octopuses exhibit highly

sophisticated behaviours and complex learning capabilities

together with a well-developed central nervous system with

intriguing analogies to the mammalian brain [23] (reviewed in

[24]). A well refined neuronal organization [24,25] is the

‘‘hardware’’ regulating their vertebrate-like behavioural machin-
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ery that mirrors unusual cognitive abilities for an invertebrate,

such as the use of tools for defence [26] (reviewed in [27,28]),

communication with visual cues [29], personality [30], problem

solving and social learning [31–33], point-to-point arm move-

ments [34,35] and long-term memory in both visual and tactile

tasks (reviewed in [24,36]). Octopuses show different tempera-

ments, have eye and arm preferences, play, and recognise their

caretakers in the laboratory [37–39]. Despite the plethora of

information documenting their extremely rich behavioural

repertoire (reviewed in [24,40]), knowledge of the social behaviour

of octopuses (and of cephalopods in general) is as yet scanty. The

existence of IR in cephalopods has been only hypothesized

whereas dedicated studies on the issue are still absent (for

exceptions see [21]; reviewed in [29]).

Contrary to squids that are known to form fish-like schools

(reviewed in [29]), octopuses are typically regarded as solitary

animals (reviewed in [29], except Eledone moschata [41]), although

some species may live in high densities (e.g. Octopus joubini, O.

briareus, O. bimaculoides reviewed in [29]). The paucity and

simplicity of their reciprocal interactions, such as avoidance or

physical contact, have led researchers to categorize octopuses as

‘‘asocial’’ ([42] and reviewed in [29]). There are, however, a

number of clues in favour of the octopuses’ ability for IR.

Octopuses produce a large number of body patterns that are not

only used as defence systems (e.g. camouflage [43]) but also as an

intraspecific means of communication, particularly in the contexts

of fighting and mating (reviewed in [40,44]). In natural conditions,

some species are considered territorial sensu [45]: they occupy

home dens for days or weeks and defend them from conspecifics.

Usually, the area around a den is not defended (Abdopus aculeatus

[46], O. briareus, O. cyanea, O. bimaculoides, O. dofleini reviewed in

[29]), but the inhabitants of neighbouring dens only seldom

interact between each other [47]. This is likely the expression of

the ‘‘dear enemy’’ phenomenon, which explains the reduced

aggression between neighbours in territorial animals [48]. A

similar phenomenon has also been described in crabs, stomato-

pods, frogs, lizards, fish, birds, and mammals (see [10,49]).

Individuals of distant areas (the ‘‘strangers’’) may be regarded by a

given animal to be potentially more dangerous than individuals

from neighbouring areas (the ‘‘dear enemies’’) because they are

more likely in search of a new territory [50]. On the contrary, the

relatively peaceful coexistence between neighbouring individuals is

adaptive in that it avoids the costs of frequent fights [49]. As a

consequence, IR can be a prerequisite of the dear enemy

phenomenon.

Finally, laboratory groups of octopuses have been described to

form and maintain dominance hierarchies (E. moschata, O.

bimaculoides, O. cyanea, O. joubini, O. maya, O. rubescens, O. vulgaris;

reviewed in [29]), although these may be artefacts due to the

laboratory setting when compared to their natural territorial

behaviour. Several taxa, including decapods, lizards, canaries and

cats, may switch from being solitary or territorial in the field to

forming dominance hierarchies when they are confined in

laboratory groups [51–52]. Under similar conditions, octopuses

alter their social organization from solitary to hierarchical.

Based on the above premises, we hypothesised here that

octopuses are capable of IR in the broad sense (i.e. either true or

binary IR) and that they can recognise familiar neighbours. We

thus investigated the agonistic behaviour of size-matched pairs of

Octopus vulgaris (Cuvier, 1797, Mollusca, Cephalopoda) in labora-

tory conditions. Octopus vulgaris, a benthic species distributed

worldwide in temperate and tropical waters, is well-known for its

complex learning abilities and highly sophisticated nervous system

(reviewed in [24]). We designed an experiment composed of three

phases (acclimatization, cohabitation, and test) to assess whether

this species could recognise a conspecific previously met. Longer

latencies (i.e. the time elapsed from the first interaction) and fewer

physical contacts were used here as proxies for IR.

Results

Phase 1: acclimatization
During Phase 1, all octopuses attacked the offered crab but the

latency of attack was longer in sight-allowed rather than in isolated

pairs (data not shown). All animals improved their performance

over time as the octopuses became more adapted to the

experimental setting [53].

Phase 2 (cohabitation): sight-allowed vs isolated pairs
Overall, female-male and male-male pairs did not differ for any

variable among days in both sight-allowed pairs (two-way repeated

measures MANOVA: L pairs = 0.70, df = 7,24, P = 1.30; L
days = 0.80, df = 14,48, P = 0.36; L days 6 pairs = 0.52,

df = 14,48, P = 1.16) and isolated pairs (two-way repeated

measures MANOVA: L pairs = 0.95, df = 7,24, P = 0.98; L
days = 0.61, df = 14,48, P = 0.50; L days 6 pairs = 0.65,

df = 14,48, P = 0.63). The subsequent univariate analyses con-

firmed the above results but only for sight-allowed pairs (Table

S1). Dominance in isolated pairs significantly increased over time,

being higher in female-male rather than in male-male pairs, and

the number of physical contacts and ink jets decreased without any

difference between types of pair (Table S1).

After having merged the data from female-male and male-male

pairs, a significant difference was found among days and between

sight-allowed and isolated pairs (but not for the interaction days/

pairs) (two-way repeated measures MANOVA: L pairs = 0.44,

df = 16,118, P,0.001; L days = 0.43, df = 8,59, P,0.001; L days

6 pairs = 0.72, df = 16,118, P = 0.11). Specifically, dominance

and the percentage of avoidance increased over time, whereas the

number of physical contacts and ink jets decreased (Tables 1, S2–

S3; Figs 1–2).

For all variables, sight-allowed and isolated pairs differed at Day

1 (one-way MANOVA: L = 0.19, df = 8,15, P,0.001), but not at

Day 2 (one-way MANOVA: L = 0.47, df = 8,15, P = 0.10) and

Day 3 (one-way MANOVA: L = 0.48, df = 8,15, P = 0.11)

(Table 2, S2). Octopuses of sight-allowed pairs were less prone

to interact and more often avoided each other (Tables 1–2, S2–S3;

Figs 1,3), whereas octopuses of isolated pairs interacted for longer

and executed more numerous physical contacts and ink jets

(Tables 1–2, S2–S3; Fig. 2)

Phase 3 (test): familiar vs unfamiliar pairs
Overall, the different types of pair significantly differed for all

variables (two-way MANOVA: L sight allowed/isolated

pairs = 0.41, df = 7,14, P = 0.04; L familiar/unfamiliar = 0.15,

df = 7,14, P,0.001; L pairs 6 pairs = 0.70, df = 7,14, P = 0.56).

Familiar and unfamiliar pairs differed for all the variables analysed

except for the number of the behavioural patterns executed

(Table 3). In familiar pairs, latency was longer, dominance was

significantly higher and octopuses avoided each other more

frequently. On the contrary, unfamiliar individuals interacted for

longer and more often executed physical contacts (Table 3).

In familiar pairs, sight-allowed pairs had a longer latency and a

higher percentage of avoidance than isolated pairs as shown by

both univariate analyses (Table 3) and the one-way MANOVA

(L = 0.17, df = 4,7, P = 0.16; latency: F = 11.12, df = 1,20,

P = 0.008; avoidance: F = 5.38, df = 1,20, P = 0.04; other variables:

F between 0.17 and 2.13, df = 1,20, P between 0.18 and 0.69;

Individual Recognition in Octopus
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Table S4). On the contrary, in unfamiliar pairs no difference was

found between sight-allowed and isolated pairs for all variables

(one-way MANOVA: L = 0.48, df = 4,7, P = 0.73; F between 0.00

and 4.80, df = 1,20, P between 0.07 and 1.00; Table S4).

Dominance hierarchies established were maintained with time

in familiar pairs; on the contrary, eight former alphas of unfamiliar

pairs became betas and three former alphas remained alphas,

while dominance remained undetermined in the last pair. No ink

jet was ever recorded in this phase.

Discussion

This study reports the first experimental evidence of O. vulgaris’

ability to recognise a familiar conspecific and to remember it for at

least one day. As shown during the test phase, unfamiliar pairs, i.e.

pairs composed of individuals that have had no previous

experience of each other, executed more numerous physical

contacts and showed shorter latencies than familiar pairs, being

thus more aggressive and prone to interact. Besides, reversals of

dominance (i.e. alphas switched to betas and, consequently, betas

to alphas) were only observed in unfamiliar pairs. Taken together,

these results seem to support our hypothesis that O. vulgaris can

discriminate familiar from unfamiliar conspecifics, meaning that it

is able of, at least, class-level or binary IR sensu [10]. To the best of

our knowledge, such an ability was never found in other

cephalopods. For example, in groups of cuttlefish (Sepia officinalis),

dominance hierarchies are maintained by the ‘‘winner & loser

effects’’: the behaviour of a cuttlefish is independent of the

familiarity or the identity of the opponent but results from its

personal experience of wins and losses [21]. Previous studies on

octopuses revealed the formation of dominance hierarchies in

groups of, for example, O. bimaculoides [54], but did not investigate

the mechanisms underlying the maintenance of such hierarchies

over time. Binary IR should have an adaptive value for O. vulgaris

being the likely proximate mechanism regulating the ‘‘dear enemy

phenomenon’’. Indeed, the recognition of a familiar neighbour

might explain the scarcity of interactions between octopuses, as

observed in the field [47].

The comparison between sight-allowed and isolated pairs (i.e.

pairs composed by octopuses seeing each other or isolated from

each other, respectively, during acclimatization) also revealed

some intriguing results. Sight-allowed, rather than isolated, pairs

showed longer latencies during the cohabitation phase, reaching

also higher dominance and exhibiting more numerous avoidances.

The explanation of these result is twofold. On the one hand, they

suggest that the two octopuses recognise each other as familiar

Table 1. Comparisons between sight-allowed and isolated pairs for the recorded variables during cohabitation (Phase 2).

DAYS PAIRS DAYS 6PAIRS

F df P Hierarchy F df P Hierarchy F df P

Latency of first interaction (s) 1.69 2, 69 0.19 1 = 2 = 3 8.68 1, 70 0.005 SP.IP 1.00 2, 66 0.91

Number of interactions 0.29 2, 69 0.75 1 = 2 = 3 1.81 1, 70 0.72 SP = IP 0.72 2, 66 0.49

Length interactions (s) 0.10 2, 69 0.86 1 = 2 = 3 5.68 1, 70 0.02 IP.SP 0.48 2, 66 0.62

Number of all behavioural patterns 0.66 2, 69 0.52 1 = 2 = 3 0.84 1, 70 0.35 SP = IP 0.83 2, 66 0.44

Physical contacts (%) 3.50 2, 69 0.04 1.2 = 3 3.38 1, 70 0.04 IP.SP 1.08 2, 66 0.34

Avoidance (%) 3.37 2, 69 0.04 1 = 2 = 3* 3.32 1, 70 0.04 SP.IP 1.61 2, 66 0.21

Dominance (%) 5.64 2, 69 0.002 2 = 3.1 3.68 1, 70 0.03 SP.IP 4.70 2, 66 0.01

Number of ink jets 14.32 2, 69 0.001 1.2 = 3 3.35 1, 70 0.04 IP.SP 3.68 2, 66 0.04

Comparisons among the three days of cohabitation (1 = Day 1, 2 = Day 2, 3 = Day 3), and between pairs (sight-allowed: SP, n = 12; isolated: IP, n = 12) for the recorded
variables after a two-way repeated measures MANOVA followed by univariate tests for between-subjects effects (statistic: F; factors: days and sight-allowed/isolated
pairs), followed by Tukey’s HSD. Significant differences are denoted in bold. * means no significant difference after Tukey’s HSD.
doi:10.1371/journal.pone.0018710.t001

Figure 1. Percentages of avoidance in sight-allowed and isolated pairs. Mean (6 SE) percentage of interactions with no physical contacts
(avoidance) in sight-allowed (n = 12) and isolated (n = 12) pairs for each of the three days of cohabitation (Phase 2). *: P,0.05.
doi:10.1371/journal.pone.0018710.g001
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individuals and that such recognition is mediated by sight; on the

other, it might be interpreted as a form of habituation to the

presence of a conspecific whatever its identity is. For habituation,

we mean here a type of learning in which repeated applications of

a stimulus to an animal leading to no consequences for it result in

decreased responsiveness [55]. Other experiments are thus needed

to disentangle the role of the putative sight-mediated IR from

habituation in making O. vulgaris less aggressive when allowed to

interact with a conspecific.

The importance of sight in O. vulgaris’ social interactions is

however revealed when we analyse the behaviour exhibited by

familiar pairs, and in particular when we compare sight-allowed

and isolated individuals. The former octopuses showed longer

latencies and executed more numerous avoidances than isolated

individuals. This might be due to the longer time that sight-

allowed individuals have been visually exposed to the same

conspecific with respect to isolated individuals. In fact, while in

isolated pairs the two conspecifics could see each other for 15 min

only per day during the 3-d cohabitation phase, sight-allowed

octopuses have been kept in visual contact with the same

individual for six days in continuum (between each cohabitation

they were returned to the original tank with transparent

partitions). Vision seems to reinforce the effect of physical

encounters with a conspecific (as found in many other taxa

[56]). The importance of sight in octopuses is thus confirmed.

Thanks to their refined eyes [57,58], cephalopods have an

excellent visual ability, rivalling that of higher vertebrates; they

use sight to respond to many environmental and biological

demands (e.g. predation, navigation, discrimination, learning

[28,59,60]) and even to communicate with each other, particularly

by adopting several body patterns (e.g. passing cloud, zebra

crouch, reviewed in [40]).

As also found in O. bimaculoides [53] and in other invertebrates

(hermit crabs [61] and clawed lobsters [62]), the process of

cohabitation between O. vulgaris individuals is quick: a 15-min

cohabitation is sufficient for an octopus to label the conspecific as

familiar and to remember it for at least 1 day. In fact, dominace

and avoidances began to reach higher values starting from Day 2

of cohabitation, particularly in isolated pairs. Excellent memory

capabilities are well known in octopuses for other cognitive

processes: they quickly learn a task [32] and remember it over

time, ranging from 5 days for observational learning [32] and 1

week or more for spatial navigation [60] (see [24]). A long memory

is certainly advantageous in the case of repeated encounters with

the same individual, as was observed in vertebrates (e.g. several

months or 1 year in birds: see [10]) and in other invertebrates (e.g.

2 weeks in crayfish [63]; 1–2 weeks in clawed lobsters [62]; 4 days

in hermit crabs [61]).

Figure 2. Percentage of physical contacts in sight-allowed and isolated pairs. Mean (6 SE) percentage of physical contacts in sight-allowed
(n = 12) and isolated (n = 12) pairs for each of the three days of cohabitation (Phase 2). *: P,0.05.
doi:10.1371/journal.pone.0018710.g002

Table 2. Comparisons between sight-allowed and isolated pairs for each of the three days of cohabitation (Phase 2).

1st Day 2nd Day 3rd Day

F P Hierarchy F P Hierarchy F P Hierarchy

Latency of first interaction (s) 5.07 0.04 SP.IP 2.30 0.14 SP = IP 3.48 0.08 SP = IP

Number of interactions 0.09 0.93 SP = IP 2.31 0.14 SP = IP 1.10 0.31 SP = IP

Length interactions (s) 5.80 0.03 IP.SP 1.81 0.19 SP = IP 0.90 0.33 SP = IP

Number of all behavioural patterns 0.08 0.93 SP = IP 0.02 0.87 SP = IP 1.80 0.19 SP = IP

Physical contacts (%) 25.61 ,0.001 IP.SP 0.42 0.69 SP = IP 3.70 0.07 SP = IP

Avoidance (%) 15.00 0.001 SP.IP 0.65 0.43 SP = IP 0.48 0.50 SP = IP

Dominance (%) 2.25 0.04 SP.IP 0.03 0.86 SP = IP 0.04 0.84 SP = IP

Number of ink jets 4.81 0.04 IP.SP 2.20 0.15 SP = IP 3.67 0.07 SP = IP

Comparisons for each of the three days of cohabitation between sight-allowed (SP: n = 12) and isolated pairs (IP: n = 12) for the recorded variables after a one-way
MANOVA, followed by univariate tests for between-subjects effects (statistic: F). Significant differences are denoted in bold.
doi:10.1371/journal.pone.0018710.t002
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Familiarity between individuals may be achieved through

physical contacts, recorded in both the cohabitation and the test

phase. Physical contacts were more numerous in unfamiliar pairs

(both isolated and sight-allowed) and in isolated pairs, particularly

at Day 1, but decreased over time as familiarity between the two

individuals increased. The sense of touch, possibly associated with

taste [64], seems thus to have a role in binary IR of octopuses as

found for other abilities. For example, Boyle [42] suggested that O.

vulgaris estimates the relative size of a conspecific by the tactile

information obtained through Arm Alignement. The importance

of the sense of touch for octopuses is confirmed by the large

dimension of the subfrontal lobe, the brain region specialized for

tactile learning [65].

Another sense that can be involved in the process of

familiarization is olfaction. Since visibility is often limited in

water, chemical cues are reliable sources of information to aquatic

animals even regarding the identity of conspecifics (e.g. in crayfish,

lobsters and hermit crabs; see [56]). The potential for chemore-

ception in octopuses is still understudied (except [66–68] and [29]),

but there are evidence in the literature that indicate its importance

in the life of this taxon. Octopus vulgaris, for example, forages

through chemotactile exploration [60], detects chemical substanc-

es at a distance [69,70] and, similarly to cuttlefish and squids, uses

chemical signals to coordinate its reproductive behaviour [29,66].

Sepia officinalis females seem to rely on chemical cues to select mates

[67]. Recently, it has been demonstrated that Enteroctopus dofleini

learns to open a jar in the presence of chemicals produced by

rubbing a herring on it [71].

Of difficult interpretation is the higher threshold for ink jets

that we have recorded in isolated rather than in sight-allowed

pairs, particularly during the first day of cohabitation, and its

decrease during that phase. Typically, ink is used by most

cephalopods and by some other molluscs [72] as a means to

escape from the attack of either a predator or a conspecific

intruder by diverting its attention [68,73]. Ink also serves as a

conspecific alarm substance [68] or as a chemical defence against

predators [74]. In our case, the observed decrease in the number

of ink jets over time might be due to octopuses being less in

danger in the presence of a familiar conspecific. However, we

cannot completely discard the hypothesis on the potential use of

ink as a social signal, as suggested by Fiorito & Gherardi [75] for

Aplysia fasciata.

Table 3. Comparisons between familiar/unfamiliar pairs and between sight-allowed/isolated pairs for the recorded variables
during the test (Phase 3).

Sight allowed/Isolated pairs Familiar/Unfamiliar pairs Pairs 6Pairs

F df P Hierarchy F df P Hierarchy F df P

Latency of first interaction (s) 8.90 1, 20 0.007 SP.IP 8.90 1, 20 0.007 FA.UN 7.49 1, 20 0.01

Number of interactions 3.67 1, 20 0.07 SP = IP 8.07 1, 20 0.01 FA.UN 1.26 1, 20 0.27

Length interactions (s) 0.07 1, 20 0.80 SP = IP 15.20 1, 20 0.001 UN.FA 0.89 1, 20 0.36

Number of all behavioural patterns 2.04 1, 20 0.17 SP = IP 3.49 1, 20 0.08 FA = UN 0.22 1, 20 0.64

Physical contacts (%) 2.07 1, 20 0.17 SP = IP 14.89 1, 20 0.001 UN.FA 0.06 1, 20 0.81

Avoidance (%) 6.78 1, 20 0.02 SP.IP 17.32 1, 20 ,0.001 FA.UN 0.38 1, 20 0.54

Dominance (%) 0.06 1, 20 0.81 SP = IP 13.16 1, 20 0.002 FA.UN 0.06 1, 20 0.81

Comparisons between familiar (FA, n = 12) and unfamiliar (UN, n = 12) pairs and between sight-allowed (SP, n = 12) and isolated pairs (IP, n = 12) for the recorded
variables after a two-way measured MANOVA followed by univariate tests for between-subjects effects (statistic: F; factors: sight-allowed/isolated pairs and familiar/
unfamiliar pairs). Significant differences are denoted in bold.
doi:10.1371/journal.pone.0018710.t003

Figure 3. Latency of the first interaction in sight-allowed and isolated pairs. Mean (6 SE) latency of first interaction in sight-allowed (n = 12)
and isolated (n = 12) pairs for each of the three days of cohabitation (Phase 2). *: P,0.05.
doi:10.1371/journal.pone.0018710.g003
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A final intriguing hypothesis that merits to be tested in the near

future is that sight, touch and olfaction are part of a multimodal

system of information transfer [76], as found in other invertebrates

(e.g. the stomatopod Gonodacytlus festai, the crayfish Procambarus

clarkii, the American lobster Homarus americanus and the wolf spider

Schizocosa ocreata [56,77–80]; reviewed in [78]). Indeed, the

synchronous use of different media (i.e. multimodality sensu [81])

has the clear advantage of improving detection, recognition,

discrimination and memorability of signals by the receivers

[82,83].

Further studies are needed to clarify whether O. vulgaris is able of

true IR –and not simply of binary IR. The role of the different

sensory channels involved in this process should be also detailed.

Despite the long way ahead to entirely solve the issue, we have

shown here, for the first time in cephalopods, that O. vulgaris

discriminates between familiar and unfamiliar conspecifics. In

general, our study has raised new, stimulating questions on the

cognitive abilities of this taxon, opening novel scenarios for future

comparative research.

Methods

Ethics statement
The experiment was carried out in accordance with the Code of

Ethics of the World Medical Association (Declaration of Helsinki)

for animal experiments, the Proposal for a Directive of the

European Parliament and of the Council on the protection of

animals used for scientific purposes (Brussels, 5.11.2008), recently

passed as bill (Directive 2010/63/EU), and the Uniform

Requirements for manuscripts submitted to biomedical journals.

Subjects, collection, and housing
Sixty individuals of O. vulgaris were collected from the Bay of

Naples (Italy) and immediately transported to the laboratory of the

Stazione Zoologica Anton Dohrn during the summers of 2005 and

2007. Housing followed the standardized protocol as reported in

[53]. Immediately upon arrival, each octopus was weighed (range:

114–324 g). Sex was determined at the end of the experiments,

through the analysis of the gonads (42 males, 18 females). Octopus

pairs were matched by weight.

Twenty four octopus pairs (maximum weight difference: 15%)

were isolated in contiguous PVC tanks (maintenance tanks:

656100650 cm) covered with a translucent PVC lid to limit

animals from escaping. Dark sand was used as substratum at the

bottom of each tank and two bricks were placed in a corner to

serve as the octopus’s den. Tanks were supplied with constant

running sea water (38 ppm; depth: 45 cm) at the temperature of

24uC (60.5uC), under a natural 14:10 h light:dark cycle regime

that mimicked the light intensity at 2–6 m sea depth at the latitude

of the Bay of Naples. Only individuals in apparently good

conditions and without any injury were used for the subsequent

experiments.

Experimental design
Experiments were conducted between 1000 h and 1700 h on a

weekly basis (from Monday to Sunday) and consisted of three

distinct phases, described as follows (see also Fig. 4).

Phase 1 (Days 1–3, acclimatization): octopuses of contiguous

tanks were either allowed or not to visually interact with each

other. Twelve sight-allowed (and 12 isolated) pairs were main-

tained in contiguous tanks for three consecutive days separated by

a transparent (and opaque) partition that allowed (and blocked) the

vision of the conspecific, respectively. In both sight-allowed and

isolated pairs, water did not flow between contiguous tanks,

excluding the possibility of any exchange of chemical cues.

Animals were fed every day in the morning with a live crab

(Carcinus mediterraneus, mean carapace width: 40 mm). Each

octopus was identified by naturally occurring scars and mantle

lesions; we avoided the use of tags, numbers or hypodermal ink

that could interfere with body patterning.

Phase 2 (Days 4–6, cohabitation): individuals of each pair (from

both sight-allowed and isolated pairs) were transferred into an

experimental tank (see below) and allowed to interact with each

other for 15 min every day for 3 consecutive days. The

experimental tank consisted of an ellipsoid opaque PVC container

(606100650 cm; water depth: 45 cm) with dark sand placed on

the bottom, as for the maintenance tanks. Bricks were not

provided as den to avoid the octopuses using them as shelter

during interactions. Cohabitation was limited to 15 min since

preliminary observations had shown that this time in the absence

of a den does not cause injury and stress to the animals and is

sufficient to establish hierarchies. Here we only analyzed ‘‘physical

interactions’’ between the octopuses of each pair and several

behavioural categories (see the ‘‘Data recorded’’ section below for

details). An interaction began when an octopus approached the

conspecific within a few centimetres and ended when one of the

individuals retreated at a distance of at least 15 cm. At the start of

the cohabitation phase, the experimental tank was divided into

two equal compartments separated by an opaque PVC divider

with the octopus of each pair occupying a compartment. After

1 min, the experiment started with the removal of the divider. The

behaviour of each pair was video-recorded (Sony DCR-TRV33E

camera) for subsequent analysis. During the experiment, an

experienced observer (ET) recorded the number of interactions

and the winner of each interaction; the winner was deemed as the

octopus that did not retreat by the end of the interaction.

Dominants or alphas (and subordinates or betas) were the

octopuses winning more (and less) than 60% of the total

interactions executed. Dominance averaged 76%. At the end of

the observations, each octopus was returned to its own

maintenance tank and fed. The same procedure was adopted for

Days 5 and 6.

Phase 3 (Day 7, test): in both sight-allowed and isolated pairs,

half of the pairs were subject to a sham switch while the other half

to a real switch; thus the dominant octopus within each pair was

allowed to encounter either a familiar (in the case of sham

switches) or an unfamiliar conspecific (in the case of real switches).

Both types of switch were followed by a period of 15-min

cohabitation in the experimental tank as Phase 2.

At the end of the experiment (Day 7), octopuses were deeply

anaesthetized and sacrificed following [84]. As a result of sex

determination, analyses were conducted on 12 sight-allowed pairs

(6 female-male and 6 male-male pairs) and 12 isolated pairs (7

female-male and 5 male-male pairs).

Data recorded
During Phases 2 and 3, other than dominance (defined as the

percentage of interactions won by an octopus over the total

interactions), we also recorded the following variables:

(1) Latency, in seconds (s), as the time elapsed between the

removal of the divider and the first interaction between the two

conspecifics.

(2) Number and total length of interactions in seconds (s).

(3) Percentage of avoidance. Avoidance is an interaction without

contact between the two conspecifics; individuals approach each

other to a distance of a few centimetres but do not enter into

physical contact. An octopus either swerves and changes the
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direction of its movement just before contact or moves away from

its resting position to avoid the conspecific.

(4) Five behavioural categories (following, in part [85]):

Approach (including following), Withdrawal (retreat and run-

away), Incomplete contact (an individual extends an arm, but

withdraws it before touching the other), Weak contact (contact is

made by extending one or two arms), Strong contact (Arm

alignment and Oppose: the arms are applied, sucker to sucker,

along their length, in the former, including also part of the web in

the latter). For physical contacts we indicate the sum of weak and

strong contacts.

(5) Number of ink jets. Octopuses usually jet ink against an

intruder when they are in danger [40].

The comparisons between sight-allowed vs. isolated pairs and

between familiar vs. unfamiliar pairs were made by summing, per

each pair, the number of behavioural patterns, strong contacts and

ink jets separately, as performed by both octopuses in the pair.

Pairs (and not individuals) were here taken as sample units for

comparison purposes.

Statistical analyses
The data were tested for normality using the Kolmogorov–

Smirnov test and for homogeneity of variance using the Levene

test. Percentages were first normalized using the arcsine square

root transformation. To correct temporal autocorrelations arising

from measurements repeated in time, to prevent temporal

pseudoreplication and to control Type I error, a two-way repeated

multivariate analysis of variance MANOVA (statistic: Wilk’s

Lambda L) was used to compare all the recorded variables

between sight-allowed and isolated pairs through time in Phase 2

(factors: days and sight-allowed/isolated pairs). MANOVA was

followed by univariate tests for between-subjects effects (statistic: F)

and then by a post hoc Tukey’s Honest Significant Differences

(HSD). Prior to this test, female-male and male-male pairs within

both sight-allowed and isolated pairs were compared to check for

possible differences within each of the recorded variables during

the cohabitation phase with a two-way repeated measures

MANOVA (factors: days and female-male/male-male pairs),

followed by univariate tests and Tukey’s HDS. If differences were

not significant, data from female-male and male-male pairs within

both sight-allowed and isolated pairs were merged. A one-way and

a two-way MANOVAs, followed by univariate tests, were

performed for Phase 2 (factor: sight-allowed/isolated pairs) within

each day and for Phase 3 (factors: sight-allowed and isolated pairs,

familiar and unfamiliar pairs), respectively. Figures give means 6

SE. The level of significance was set at a = 0.05.

Figure 4. Scheme of the experimental design. Phase 1 (Days 1–3, acclimatization): sight-allowed (and isolated) pairs were maintained in
contiguous tanks for three consecutive days separated by a transparent (and opaque) partition that allowed (and blocked) the vision of the
conspecific. Phase 2 (Days 4–6, cohabitation): individuals of each pair (both sight-allowed and isolated) were transferred into an experimental tank
and were allowed to interact with each other for 15 min every day and for three subsequent days. Phase 3 (Day 7, test): each pair (both sight-allowed
and isolated) was subject to either a sham or a real switch; thus, the dominant octopus within the pair encountered either a familiar (in the case of
sham switches) or an unfamiliar conspecific (in the case of real switches). Both types of switch were followed by a cohabitation of 15-min.
doi:10.1371/journal.pone.0018710.g004
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Supporting Information

Table S1 Comparisons among the three days of cohabitation

(1 = Day 1, 2 = Day 2, 3 = Day 3), and between female-male (fm)

and male-male (mm) pairs for the recorded parameters in (A)

social (n = 12; n fm = n mm = 6) and (B) isolated pairs (n = 12; n

mf = 7, n mm = 5) after a two-way repeated measures MANOVA

followed by univariate tests for between-subjects effects (statistic: F;

factors: days and female-male/male-male pairs), followed by

Tukey’s HSD. Significant differences are denoted in bold.

* means no significant difference after Tukey’s HSD.

(DOC)

Table S2 Means and SE of all the analyzed variables for the

sight-allowed pairs (SP, n = 12) and the isolated pairs (IP, n = 12) in

the cohabitation phase.

(DOC)

Table S3 P-values of the Tukey’s HSD tests following the

univariate analyses of Table 1. Significant differences are in bold.

(DOC)

Table S4 Means and SE of all the analyzed variables for the

familiar (FA) and unfamiliar pairs (UN) divided in sight-allowed

pairs (SP, n = 12) and the isolated pairs (IP, n = 12) in the test

phase.

(DOC)
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