
G
P

C
i

V
a

b

c

d

e

a

A
R
R
1
A

K
O
G
L
G
B
M

c

0
d

ARTICLE IN PRESSModel
REVET-2889; No. of Pages 9

Preventive Veterinary Medicine xxx (2010) xxx–xxx

Contents lists available at ScienceDirect

Preventive Veterinary Medicine

journa l homepage: www.e lsev ier .com/ locate /prevetmed

ovariate selection in multivariate spatial analysis of ovine parasitic
nfection

. Musellaa, D. Catelanb,c, L. Rinaldid, C. Lagazioe, G. Cringolid,∗, A. Biggerib,c

Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Italy
Department of Statistics “G. Parenti”, University of Florence, Italy
Biostatistics Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
Department of Pathology and Animal Health, University of Naples Federico II, Via della Veterinaria, 1, 80137 Naples, Italy
Department of Statistical Sciences, University of Udine, Italy

r t i c l e i n f o

rticle history:
eceived 12 October 2009
eceived in revised form
5 November 2010
ccepted 15 November 2010

eywords:
vine parasitic diseases
IS
and use
eolithological features
ayesian covariate selection
ultivariate geographical models

a b s t r a c t

Gastrointestinal (GI) strongyle and fluke infections remain one of the main constraints on
health and productivity in sheep dairy production. A cross-sectional survey was conducted
in 2004–2005 on ovine farms in the Campania region of southern Italy in order to evaluate
the prevalence of Haemonchus contortus, Fasciola hepatica, Dicrocoelium dendriticum and Cal-
icophoron daubneyi from among other parasitic infections. In the present work, we focused
on the role of the ecological characteristics of the pasture environment while accounting for
the underlying long range geographical risk pattern. Bayesian multivariate spatial statistical
analysis was used.

A systematic grid (10 km × 10 km) sampling approach was used. Laboratory procedures
were based on the FLOTAC technique to detect and count eggs of helminths. A Geographi-
cal Information System (GIS) was constructed by using environmental data layers. Data on
each of these layers were then extracted for pasturing areas that were previously digital-
ized aerial images of the ovine farms. Bayesian multivariate statistical analyses, including
improper multivariate conditional autoregressive models, were used to select covariates
on a multivariate spatially structured risk surface.

Out of the 121 tested farms, 109 were positive for H. contortus, 81 for D. dendriticum, 17
for C. daubneyi and 15 for F. hepatica. The statistical analysis highlighted a north–south long
range spatially structured pattern. This geographical pattern is treated here as a confounder,
because the main interest was in the causal role of ecological covariates at the level of each
pasturing area.

A high percentage of pasture and impermeable soil were strong predictors of F. hepatica
risk and a high percentage of wood was a strong predictor of C. daubneyi. A high percent-
age of wood, rocks and arable soil with sparse trees explained the spatial distribution of D.
dendriticum. Sparse vegetation, river, mixed soil and permeable soil explained the spatial
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

distribution of the H. contortus. Bayesian multivariate spatial analysis of parasitic infections
with covariates from remote sensing at a very small geographical level allowed us to identify
relevant risk predictors. All the covariates selected are consistent with the life cycles of the
helminths investigated. This research showed the utility of appropriate GIS-driven surveil-
lance systems. Moreover,
sampling fraction can be a
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spatial features can be used to tailor sampling design where the
function of remote sensing covariables.
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1. Introduction

Sheep dairy production has a prominent role in the
economy of several countries, in particular those in the
Mediterranean Basin. However, it is influenced by several
factors such as breeding methods, infectious diseases and
parasitic diseases (Park and Haenlein, 2006).

Among the latter, gastrointestinal (GI) strongyle and
fluke infections remain one of the main constraints to
sheep production both in temperate and tropical countries
(Rinaldi et al., 2007). The GI strongyle species of pri-
mary concern is Haemonchus contortus, a highly pathogenic
blood-feeder helminth that causes anaemia and reduced
productivity and can lead to death in heavily infected ani-
mals (Burke et al., 2007). H. contortus has a direct life cycle
in the environment involving three larval stages (L1–L3).
The most common flukes found in sheep in Italy are the
liver flukes Fasciola hepatica, Dicrocoelium dendriticum and
the rumen fluke Calicophoron (Paramphistomum) daubneyi
(Cringoli et al., 2002, 2004a).

In the adult stage, F. hepatica is found in the bile
ducts and in the immature stage in the liver parenchyma;
whereas D. dendriticum lives in the bile ducts and gall blad-
der. The economic and health significance of liver fluke
infection is due to the direct losses occasioned by the con-
fiscation of altered livers and also to the indirect ones
caused by the digestive disorders derived from the hep-
atobiliary alterations, such as decreased animal weight,
growth delay, and reduced milk production (Cringoli et al.,
2006).

Adult rumen flukes (C. daubneyi) inhabit the rumen
and/or reticulum of the host. Immature flukes, which can
cause serious morbidity and even death, are found in the
upper small intestine. Both adult and immature rumen
flukes can lower nutrient conversion; can cause weight
loss and/or decrease milk production; all of which have an
important economic impact (Rinaldi et al., 2005b).

Prevalence of F. hepatica and C. daubneyi would be
related to the presence of water, which represents a
favourable environment for their intermediate hosts, i.e.,
amphibious snails.

Favourable biotopes for D. dendriticum are connected
with dry and calcareous or alkaline soils. In fact, it has a very
complex life cycle, because it involves numerous species
of land mollusks and ants as first and second intermediate
hosts, respectively (for a review, see Manga-González et al.,
2001).

Because the above described helminth infections have
important significance from an animal health and eco-
nomic point of view, it is necessary to have accurate and
reliable data about their distribution in areas where there
is a high concentration of pastured sheep.

The spatial distribution of helminth infections depends
on abiotic and biotic environmental factors. Climate, veg-
etation and soil characteristics interact with the parasite,
host and vector biology.
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

In the present paper, we report the results of a
cross-sectional survey aimed at investigating the spatial
distribution of H. contortus, F. hepatica, D. dendriticum and
C. daubneyi in ovine farms from the Campania region in
southern Italy.
 PRESS
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In a previous article, we investigated the long range spa-
tial trend of risk of the four parasitic diseases (Biggeri et al.,
2007). In the present work, while accounting for the under-
lying long range geographical risk pattern, we focus on the
role of the ecological characteristics of the pasture environ-
ment. We take advantage of a Geographical Information
System (GIS) on the Campania region that includes sev-
eral appropriate environmental data layers (e.g., land use
and geolithological features). Bayesian multivariate spatial
statistical analysis was used. We aim to contribute a new
methodological approach that makes use of remote sensing
covariates for small scale epidemiological surveillance.

2. Methods

2.1. Study area and farm sampling

The survey was conducted in the Campania region
in southern Italy (Latitude = 39◦59′15′′–41◦30′25′′; Longi-
tude = 13◦45′25′′–15◦48′23′′) which extends over an area
of 13,590 km2. The region is mainly hilly and extends from
0 to 1890 m above sea level. The climate is Mediterranean
with dry summers and rainy winters.

A complete list of ovine farms, georeferenced within
a GIS, was available from the regional project MAP-
ZOO (Cringoli, 2006). Since we were interested in the
geographical disease pattern, we uniformly sampled the
farms throughout the entire region with a systematic
grid sampling approach (Cressie, 1991; Rinaldi et al.,
2006). Specifically, within the GIS, a grid of quadrants
of 10 km × 10 km was overlaid on the region map. While
maintaining a good spatial resolution, the size of the grid
cells was determined in order to limit the number of empty
quadrants (i.e., quadrants with no farm). As a result, the ter-
ritory of the Campania region was divided into 135 equal
quadrants. The centroid of each quadrant was identified
and, among all the farms present in the GIS database, the
farm closest to the centroid in each quadrant was selected.

No information was collected outside the study area,
because the coverage of the farms database was limited to
the Campania region.

Only pastured farms with more than 50 animals were
included in the sample, because smaller farms were not
considered in this kind of parasitological surveillance
(Cringoli et al., 2002). Out of the total of 135 quadrants, 121
(89.6%) have at least one farm. All GIS databases were devel-
oped using Arc-GIS 9.2 GIS software (ESRI, Redlands, CA,
USA). The parasitological survey was done in 2004–2005.

2.2. Animal sampling and laboratory procedures

Rectal faecal samples were collected from animals on
the selected ovine farms.

In each ovine farm, the animals were divided into two
age groups: lambs (4–18 months) and adult sheep (older
than 18 months). The choice of the cut-off age was based
lection in multivariate spatial analysis of ovine parasitic

on zoo-technical conventional definitions (Cringoli et al.,
2004b). Five individual faecal samples were collected from
lambs, and 15 from adults. This was done to get the same
level of precision of the prevalence estimates. The sample
size was then equal for all the farms. The total number

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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Table 1
Cross sectional survey on ovine parasitic diseases. Campania region
2004–2005. Land use variables.

Land use variable Kind of variable

Drinking trough Presence/absence
Arable Percentage
Sparse vegetation Presence/absence
Wood Percentage
Sparse trees Percentage
Pasture Percentage
Woody farming Percentage
Permanent meadows Percentage
Rocks Presence/absence
Riparian vegetation Presence/absence
Thin wood Presence/absence
River Presence/absence
Wooded pasture Percentage
Arable with sparse trees Presence/absence
Lake Presence/absence
Torrent canal Presence/absence
Pond Presence/absence
ARTICLEModel
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f animals investigated from the 121 ovine farms was
420.

Five private veterinarians working in the study area
ere trained for sampling and received a list of ovine farms

rom which to collect the study samples. Each veterinar-
an was provided with a copy of the study protocol, and
niform materials for faeces collection and transport.

Once at the laboratory, faecal samples were pooled into
our groups of composite samples for each farm (3 compos-
tes from adults and 1 composite from lambs) (Nicholls and
bendorf, 1994). Each composite sample was formed from
ve equal parts by weight of individual faecal samples. The
otal number of ovine composite samples was 484.

Copromicroscopic examinations were performed using
he FLOTAC dual technique (Cringoli et al., 2010), which
s based upon the use of two flotation solutions that have
omplementary specific gravity, and are used in paral-
el on the same faecal composite. In particular, a sucrose
ased solution (specific gravity = 1.250) was used in order
o detect nematode and eggs, and a zinc sulphate based
olution (s.g. = 1.450) was used in order to detect trematoda
ggs (Cringoli et al., 2004b).

The analytic sensitivity of the FLOTAC dual technique
as 2 eggs per gram (EPG) of faeces. For further details, see
ringoli et al. (2010). In addition, cultures from the pooled
omposite were made and third stage larvae of H. contortus
ere identified using the morphological keys by van Wyk

t al. (2004).

.3. Geographical information system

A GIS of the Campania region, southern Italy, was con-
tructed utilizing:

I. a layer of administrative provincial and municipal
boundaries at a scale of 1:25,000 provided by the Italian
Military Geographical Institute (IGM) as the topographic
base map; and digital aerial images collected in the
year 2001 and obtained from the Cartographic Office of
the Campania region, at a 1.0 m spatial resolution. The
images were geo-referenced and then they were merged
and the resulting mosaic corrected geometrically when
necessary;

II. the monthly and annual normalized difference vegeta-
tion index (NDVI), obtained from Landsat TM 5 images
(spatial resolution = 30 m × 30 m);

II. the elevation, slope and aspect of the study area
obtained from the digital elevation model (DEM) (spa-
tial resolution = 40 m) (source: Cartographic Office of the
Region Campania);

. the land use, obtained from the photo-interpretation of
the digital aerial images described before (point I) and
divided into 34 classes;

. the geolithological map of the study area (spatial reso-
lution = 10 m) (source: Cartographic Office of the Region
Campania), divided into 27 classes, and then grouped
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

into three factors. These data were published in the year
2001.

For data analysis, on the basis of biological consid-
rations briefly reported in the introductory section, we
Permanent meadows with
sparse trees

Percentage

NDVI vegetation index Continuous

considered a priori 18 covariates that described land use.
Two different measurement scales were used. Some of
the covariates (e.g., sparse vegetation) were expressed in
terms of presence/absence and corresponding binary vari-
ables with 1 indicating presence that were included in the
statistical models being fitted. Others (e.g., arables) were
expressed as the percentage of image pixels with the char-
acteristic of interest. In this last case, variables were then
standardized for the statistical analysis. The only continu-
ous variable used was NDVI (Table 1).

As regards the geolithological variables, which are all
expressed as percentages, we defined three new factors,
labelled impermeable soil, mixed soil and permeable soil
and computed a weighted average of the observed vari-
ables. First of all, each geological feature was assigned to a
single factor (e.g., clayey to impermeable soil) and the clas-
sification is described in Table 2. The factor score was then
computed defining an appropriate factor model embedded
in the more general model used to analyse data (see below).

Data on all variables were extracted from the GIS and
refer only to the pasturing area of the sheep farms. The
pasturing area was identified with the help of the farmer
by inspecting the digital aerial images.

2.4. Statistical analysis

Data analysis was based on the square root trans-
formation of total eggs counted per farm, Yik, where
i = 1,. . .,I = 121 indexes farms and k = 1,. . .,4 indexes the par-
asites. Let’s assume that for each i-th farm the response
vector Yi = {Yi,k=1, Yi,k=2, Yi,k=3, Yi,k=4} follows a multivariate
normal distribution with vector mean �i and covariance
matrix�i.
lection in multivariate spatial analysis of ovine parasitic

2.4.1. MCAR model for underlying spatial pattern
We first specified a random effects model for �i:

�i = ˛+ i (1)

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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Table 2
Cross sectional survey on ovine parasitic diseases. Campania region
2004–2005. Geolithological variables with indication of the classification
into factors.

Geolithological variables Factor

Clay–limestone–arenaceous Impermeable soil
Arenaceous–clay–limestone–conglomerate Impermeable soil
Clay Impermeable soil
Marl–clay–limestone Impermeable soil
Alluvial Impermeable soil
Pilitico–gravel–mining lake Impermeable soil

Arenaceous–conglomerate Mixed soil
Quarzarenitico–limestone–marble Mixed soil
Limestone–marl–silica Mixed soil
Limestone–marl–arenaceous Mixed soil
Gravelly–sandy–silty alluvial Mixed soil
Limosa–sandy–pebble Mixed soil
Pyroclastic–detrital Mixed soil
Tafacea Mixed soil

Lime Permeable soil
Dolomitic Permeable soil
Conglomerate Permeable soil
Sandy Permeable soil
Sands of coastal current Permeable soil

Travertine Permeable soil
Detrital–eterometrica Permeable soil
Pyroclastic-inconsistent Permeable soil
Lava Permeable soil

where ˛= {˛k=1, ˛k=2, ˛k=3, ˛k=4} is a parasite specific
intercepts vector whose elements are a priori independent
improper uniformly distributed and  i is a random terms
vector modelled as multivariate conditionally autoregres-
sive (MCAR; Jin et al., 2005).

This specification is a generalization of the univariate
CAR model (Besag, 1974) and can be viewed as a flexible
nonparametric way to take into account hidden long range
spatially structured confounders (Clayton et al., 1993).

In detail, the multivariate specification assumes that

 i
∣
∣ j∈ Si dist MVN ̄j∈ Si ,

˙i
nj∈ Si

that is the conditional distribution of i given j∈ Si , where
Si represents the set of adjacent areas to the i-th one, is mul-
tivariate normal with a vector mean  ̄j∈ Si =˙j∈ Si j/nj∈ Si ,
and precision matrix ˙i/nj∈ Si , proportional to the num-
ber n of areas in Si. In words, for each k-th parasite, we
are assuming that its random terms conditional mean is
the average of the random terms of the adjacent quadrants
and that these conditional means for all four parasites are
correlated.

2.4.2. The selection step: modelling covariate effects
Model Eq. (1) is completed by modelling the vector

mean as a function of random effects and geolithological
and land use variables. Let’s assume we have information
on a large number p of covariates and we want to flexibly
select the subset of predictors that better describe the vari-
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

ability of faecal egg counts among parasites and farms. This
is necessary, because the number of covariates is large. The
model becomes:

�i = ˛+ i + ˇ1 Xi1 + ˇ2 Xi2 + · · · + ˇpXip
 PRESS
Medicine xxx (2010) xxx–xxx

where the vector ˇj = {ˇj,k=1, ˇj,k=2, ˇj,k=3, ˇj,k=4} represents
the effect of the j-th covariate (j = 1,. . .,p) on each of the k-
th parasite, and Xij = {Xij,k=1, Xij,k=2, Xij,k=3, Xij,k=4} the vector
of j-th covariate values for i-th farm. Let � jk be an indicator
variable which takes the value 1 if the j-th covariates for the
k-th parasite is in the model and 0 otherwise. The vector of
indicators � = 1 identifies the subset of predictors in the
model and X� the design matrix of the covariates for which
� jk = 1.

The set of {� jk} and {ˇjk} coefficients are unknown
and so we followed the Bayesian approach of George and
McCulloch (1993) to make inference about them. In par-
ticular, we assumed that ˇjk are a priori independent and
distributed as:

ˇjk∼(1 − �jk)N(0, �2) + �jkN(0, c2�2)

That, a priori, is a mixture of two normal distributions,
when � jk is 1 or when � jk is 0. The variance parameter �2

is chosen to be sufficiently small (0.001) in such a way that
if � jk = 0, then the corresponding regression coefficients
are a priori constrained to be nearly equal to 0. The con-
stant c2 is fixed sufficiently large, so that if � jk = 1 the prior
distribution is almost flat and the corresponding regres-
sion coefficient is unconstrained and the variable will be
included in the final model if it contributes to better fit of
the data. The model is completed by assuming a hyperprior
distribution for � jk as Bernoulli, with parameter�� ,jk equal
to 0.5.

2.4.3. The multivariate CAR model with latent factors
In order to improve the model flexibility and parsi-

mony when considering the geolithological characteristics,
we included a factor analysis step in the previous model.
Geolithological features were modelled as a function of
latent traits that were then treated as covariates in the
selection step. To clarify the notation, we assumed that the
p covariates are divided into two groups: the first one {Xjk}
with index j from 1 to J refers to land use covariates, the
second {Xj+1,k} with index from J + 1 to p refers to geolitho-
logical features. The covariates for geolithological features
are then summarized by three latent factors. We a priori
fixed the number of factors and the geolithological vari-
ables that belong to each of them (as explained before, see
Table 2 for the classification).

A “measurement model” for the observed geolitholog-
ical variables was then defined following the Bayesian
specification of Congdon (2003):

Xij∼N(�ij, �2
j )

where j = J + 1,. . .,p indexes geolithological covariates. We
assume that the expected value �ij is modelled as (l = 1,2,3
the latent factors):

�ij = ˛j + qj,l=1�il=1 + 	j,l=2�il=2 + 	j,l=3�il=3
lection in multivariate spatial analysis of ovine parasitic

where 	jl indicates the loading coefficient of the factor anal-
ysis, �il is the common factor to be used as covariates in the
full response model and ˛j an intercept. The prior distribu-
tion of the latent factor �il is normal N(0,1) and we put also
flat normal N(·,·) prior distributions on ˛j and 	jl.

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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ig. 1. Observed spatial distributions of four helminths infection (EPG q
egion 2004–2005.

The “full response model” then becomes:

i∼MVN(�i ˙i)

i = ˛+ i + [ˇ1Xi1 + ˇ2Xi2 + · · · + ˇJXiJ] + [ˇJ+1�i1

+ˇJ+2�i2 + ˇJ+3�i3]

here Xij j = 1,. . .,J are the vectors of observed land use
ovariates �il are the latent factors that summarize the
eolithological covariates. As in Section 2.4.2ˇjk are a priori
odelled as:

jk∼(1 − �jk)N(0, �2) + �jkN(0, c2�2)

All the models were estimated by Markov Chain Monte
arlo methods using the WinBugs software (Lunn et al.,
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

000). For each model, we have run two independent
hains and the convergence of the algorithm was then eval-
ated according to Gelman and Rubin (1992). We discarded
he first 100,000 iterations (burn-in) and stored 50,000 iter-
tions for estimation of parameters.

able 3
ross sectional survey on ovine parasitic diseases. Campania region 2004–2005. P
eatures obtained as latent factors.

F. hepatica C. da

Land use variables
Drinking trough 0.24 0.30
Arable 0.02 0.05
Sparse vegetation 0.07 0.15
Wood 0.19 0.70
Sparse trees 0.07 0.05
Pasture 0.99 0.04
Woody farming 0.08 0.13
Permanent meadows 0.04 0.08
Rocks 0.10 0.11
Riparian vegetation 0.12 0.19
Thin wood 0.16 0.15
River 0.14 0.19
Wooded pasture 0.03 0.14
Arable with sparse trees 0.05 0.14
Lake 0.55 0.24
Torrent canal 0.23 0.21
Pond 0.23 0.15
Permanent meadows

with sparse trees
0.07 0.05

NDVI vegetation index 0.01 0.01

Geolithological features
Impermeable soil 0.99 0.53
Mixed soil 0.07 0.14
Permeable soil 0.03 0.22
see text). Cross sectional survey on ovine parasitic diseases. Campania

3. Results

Out of the 121 tested farms, 109 (90.1%; 95% confidence
interval CI = 82.9–94.5, EPG mean = 79.0, median = 39) were
positive for H. contortus, 81 (66.9%; 95% CI = 57.7–75.1,
EPG mean = 33.1, median = 8) for D. dendriticum, 17 (14.0%;
95% CI = 8.6–21.8, EPG mean = 3.5, median = 0) for C. daub-
neyi and 15 (12.4%; 95% CI = 7.3–19.9, EPG mean = 4.2,
median = 0) for F. hepatica.

The Pearson’s correlation coefficients (
) between
raw infection prevalence data were significantly posi-
tive between F. hepatica and C. daubneyi (
 = 0.277; 95%
CI = 0.103–0.434) and almost zero for all the other pairs of
parasites.

The observed spatial distributions of EPG of the four
helminths investigated are reported in Fig. 1.
lection in multivariate spatial analysis of ovine parasitic

When the MCAR model without covariates was fitted,
it gave a residual correlation among responses of 0.89
(95% credibility interval – CrI = 0.59–0.98) between F. hep-
atica and C. daubneyi and almost zero for all the other
helminths. The MCAR model with the pasture-specific

osterior probability of inclusion for each land use and geolithological soil

ubneyi D. dendriticum H. contortus

0.42 0.43
0.14 0.15
0.28 0.90
0.77 0.28
0.10 0.12
0.11 0.40
0.10 0.23
0.21 0.41
0.70 0.34
0.22 0.48
0.26 0.34
0.48 0.68
0.18 0.28
0.79 0.23
0.51 0.54
0.49 0.44
0.48 0.34
0.07 0.15

0.03 0.01

0.15 0.14
0.26 0.85
0.15 0.99

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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Fig. 2. Spatial distribution of the spatial random terms  ik (tertiles, see text) for four helminths infection. Multivariate CAR model. Cross sectional survey
on ovine parasitic diseases. Campania region 2004–2005.

ence of f
Fig. 3. Spatial distribution of the land use covariates affecting the preval
on ovine parasitic diseases. Campania region 2004–2005.

covariates showed a residual correlation among responses
of 0.88 (95% CrI = 0.52–0.98) between F. hepatica and C.
daubneyi and almost zero for the other combinations of
parasites. The MCAR model, which included the factor anal-
ysis step to better summarize the role of geolithological
soil features, completely explained the correlation among
parasites EPG; the residual correlation among responses
was around zero. The importance of each covariate and
latent factor in predicting parasite-specific EPG was evalu-
ated inspecting the posterior probability of inclusion�� ,jk|Y
(pp) (Table 3).

Pasture and impermeable soil have a posterior proba-
bility higher then 0.99 to be included in the model for F.
hepatica; in fact the ratio of average EPG (RR) for farms
with large pasture areas vs. farms with small pasture areas
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

(categorized as lesser or greater of 20% of the pasturing
area of the flock) is 11.3 (95% CI = 9.5–13.4) and extremely
high for those with impermeable soil vs. those without
(RR = 156; 95% CI = 114–215). Here impermeable soil is the
latent factor which was dichotomized by setting a cut-

Fig. 4. Spatial distribution of the latent factors for geolithological soil features. M
Campania region 2004–2005.
our helminths infection. Multivariate CAR model. Cross sectional survey

off at one theoretical standard deviation from the mean,
and 7% of the farm was classified at a high risk. Wood
(Yes/No RR = 4.9; 95% CI = 4.1–6.0) is selected for C. daub-
neyi (pp of 0.70). Wood (Yes/No RR = 2.8; 95% CI = 2.7–3.0),
rocks (Yes/No RR = 2.7; 95% CI = 2.5–2.9) and arable with
sparse trees (Yes/No RR = 2.0; 95% CI = 1.9–2.1) for D. den-
driticum (posterior probabilities were 77%, 70% and 79%
respectively) and sparse vegetation (Yes/No RR = 1.4; 95%
CI = 1.47–1.50), river (RR = 2.6; 95% CI = 2.5–2.7), mixed soil
(having dichotomized the latent factor as less than or
greater than zero, 33% of farms were classified in this cat-
egory: RR = 4.8; 95% CI = 4.6–5.0) and permeable soil (we
dichotomize the latent factor lesser or greater than zero;
47% of farm was classified in the category less than zero:
RR 5.9; 5.6–6.3) are chosen for H. contortus (posterior prob-
lection in multivariate spatial analysis of ovine parasitic

abilities: 90%, 68%, 85%, 99%, respectively).
Fig. 2 shows the posterior means of the spatial ran-

dom terms  ik for the four helminths. This represents
the residual long range spatial pattern. The maps high-
light a spatially structured variability with a long range

ultivariate CAR model. Cross sectional survey on ovine parasitic diseases.

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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orth–south gradient common to all four of the parasites
onsidered (see Biggeri et al., 2007 for further details).
ig. 3 shows the spatial distribution of the selected land use
ovariates. The spatial distributions of the latent variables
re reported in Fig. 4.

. Conclusion and discussion

We studied the multivariate spatial distribution of the
I strongyle H. contortus, the liver flukes F. hepatica and
. dendriticum and the rumen fluke C. daubneyi in pastured
heep farms with more than 50 animals from the Campania
egion in southern Italy.

In ecological studies which utilize GIS and remote sens-
ng (RS) tools, environmental data are usually extracted
rom buffer zones centered on the farm (Cringoli et al.,
004a) or centroids of the main pasture (Rinaldi et al.,
005a). However, the smaller the area in which parasito-

ogical and environmental data were collected, the greater
he possibility for making accurate inferences, because
verages over large areas may introduce strong ecological
ias in correlation studies with survey-based data. For this
eason, in the present study, ecological analysis was made
y including only the values of environmental data that
ell into the pasturing areas of sheep digitalized on aerial
mages within the GIS.

In a previous study, GIS and RS were used to iden-
ify environmental features that influenced the distribution
f C. daubneyi in sheep from the southern Italian Apen-
ines (Cringoli et al., 2004a). Specifically, a multivariate
tepwise discriminant analysis model was developed that
ncluded moors and heathland, sclerophyllous and conifer-
us forest vegetation, autumn–winter NDVI and presence
f streams, springs and brooks on pastures. However, it
hould be noted that the data-layers utilized in that study
ere characterized by a lower resolution compared to

hose used in the present study. For example, the DEM in
ringoli et al. (2004a) had a spatial resolution of 100 m com-
ared to the 40 m utilized in the present study. In addition,

and cover data were obtained from the Corine land cover
ap (1:100,000), which described land cover (and partly

and use) according to a nomenclature of 44 classes; on
he contrary, in the present study we used more accurate
andscape data based on the photo-interpretation of aerial
igital images.

Another difference between the two studies is that in
ringoli et al. (2004a) the environmental variables were
xtracted from 3 km buffer zones centered on the sheep
arms. In the present study, for each of the 121 ovine farms,
he environmental variables were extracted, with the help
f the farmer, from the sheep pasturing area digitalized on
he aerial images.

With regard to statistical issues, we used a Gaussian
ikelihood on square root transformation of egg counts
nd an improper MCAR prior for the area specific spa-
ial random terms (Jin et al., 2005). The Bayesian MCAR
Please cite this article in press as: Musella, V., et al., Covariate se
infection. PREVET (2010), doi:10.1016/j.prevetmed.2010.11.012

odel highlighted a long range spatial trend, covari-
tes, and latent factors that summarized geolithological
oil features and explained the residual conditional cor-
elation between the helminths. If they are spatially
tructured and provided the model is correctly specified,
 PRESS
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spatial random terms may also account for farm-level
factors.

Data were very ill-defined with a high percentage of
zero counts for F. hepatica and C. daubneyi and posterior
inference was expected to be sensitive to prior specifica-
tions. A zero-inflated spatial Poisson regression model on
egg count is an alternative (Lambert, 1999; Biggeri et al.,
2006), although it is at the cost of a very heavy computa-
tional burden. A sensitivity analysis showed that the square
root transformation was robust and gave results close to
those obtained by zero inflated models (Biggeri et al., 2006).

We did not apply any correction for the edge effect, i.e.,
the bias due to missing information at the border of the
study area. Among the possible solutions, the use of an
external buffer area was not feasible, because of the cover-
age of the list of farms, while the use of an internal buffer
area would have strongly limited our inferences, which
in this case would have been restricted to only the inner
region. An edge effect cannot be excluded, even if we do
not expect it to be strong on covariates’ effects, which was
the main focus of the present study.

From a parasitological point of view it is interesting to
note that the distribution of the four studied helminths in
sheep farms was strongly spatially structured. The expla-
nation of this long range geographical pattern, modelled
by the multivariate CAR random terms, was not the main
purpose of the present analysis, which is indeed the role
of ecological covariates at the level of each pasturing
area. However, in a previous paper we investigated the
presence of a common pattern among the four parasites.
This spatial structure was driven by the two more severe
parasitic infections and may be attributable to the cov-
erage of veterinary preventive or prophylactic treatments
(Biggeri et al., 2007). Our model, which includes spatially
structured random effects ( ik), is therefore adjusting for
hidden confounders such as management practice and
demographic factors. Effect estimates of environmental
covariates should then not be biased by the exclusion of
that information.

Pasture and impermeable soil (at a lesser degree lake,
pp = 0.55) were strong predictors of F. hepatica risk and
wood (at a lesser degree impermeable soil pp = 0.53) of C.
daubneyi. These findings are highly consistent with the life
cycle of these two trematoda which involves amphibious
snails (e.g., Lymnaea truncatula) as intermediate hosts, and
thus has strong environmental determinants and strong
needs of water. In particular, the land use (i.e., pasture
and wood) and geolithological (impermeable soil) types
entered in the model are indicators of zones where typically
there is a presence of water (permanently or temporarily).
These results are also in agreement with those previously
obtained in ruminants by Cringoli et al. (2004a) for C. daub-
neyi and by Malone et al. (1998) for F. hepatica.

The risk of infection by these two flukes is thus influ-
enced by environmental determinants as well as the
number and distribution of animals, the presence of
lection in multivariate spatial analysis of ovine parasitic

infected snails, and grazing management, which allows
animals to access herbage or water containing metacer-
cariae (Tum et al., 2004, 2007).

Variables wood, rocks and arable with sparse trees
explained the spatial distribution of the lancet fluke D.

dx.doi.org/10.1016/j.prevetmed.2010.11.012
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dendriticum. These findings are again consistent with the
complex life cycle of this fluke. Indeed, it is usually found
where dry and calcareous or alkaline soils are present,
because they represent a favourable biotope for its inter-
mediate hosts, i.e., several species of land mollusks and
various ants (Manga-González et al., 2001; Otranto and
Traversa, 2003; Díaz et al., 2007).

Finally, sparse vegetation and river, mixed and per-
meable soil explained the spatial distribution of the GI
strongyle H. contortus. The life cycle of this parasite involves
a series of larval stages (L1–L3) in the environment. The
susceptibility of H. contortus pre-infective stages to desicca-
tion (Rose, 1963; Waller and Donald, 1970; Rossanigo and
Gruner, 1995) is highly characteristic of this GI strongyle
species, limiting its distribution to areas with warm, moist
summers and creating a natural barrier to development
that results in sporadic development of the free-living
stages (O’Connor et al., 2007).

A priori, our results using remote sensing covariates
were not obvious. The retrieval of known associations,
obtained by different study designs and covariates, con-
firms the validity of our approach. We expect that our
research stimulates the set-up of appropriate GIS-driven
surveillance systems. Moreover, spatial features can be
used to tailor sampling design where the sampling frac-
tion can be a function of remote sensing covariables (see
for example Theobald et al., 2007).

The use of multivariate analysis of spatial distribution
of veterinary parasitic infections together with a covari-
ate from RS on a very small geographical level proved to
be a useful tool to investigate the biology of parasites and
for epidemiological surveillance. Land use variables were
useful to evaluate characteristics of intermediate hosts
in parasitic diseases and geolithological features provided
useful information to investigate environmental attributes
for monitoring purposes.
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