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We develop a mathematical theory needed for moment estimation of
the parameters in a general shifting level process (SLP) treating, in
particular, the finite state space case geometric finite normal (GFN)
SLP. For the SLP, we give expressions for the moment estimators
together with asymptotic (co)variances, following, completing, and
correcting CLINE (Journal of Applied Probability 20, 1983, 322–337);
formulae are then made more explicit for the GFN-SLP. To illustrate
the potential uses, we then apply the moment estimation method to a
GFN-SLP model of array comparative genomic hybridization data. We
obtain encouraging results in the sense that a segmentation based on
the estimated parameters turns out to be faster than with other currently
available methods, while being comparable in terms of sensitivity and
specificity.

Keywords and Phrases: shifting level process, moment estimator,
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1 Introduction

We develop here a mathematical theory related to moment estimations of the param-
eters in a shifting level process (SLP) or shifting level model (Chernoff and Zacks,
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1964; Salas and Boes, 1980). In the a mathematical paper on such moment estima-
tion, CLINE (1983) considered a general SLP Y ¼ Yaf g1a¼1, constructed as a concate-
nation of segments of random length, randomly selected from a family of processes
(all of the mechanisms describing such randomness being identified as the underlying
processes), and derives, under very general conditions, asymptotic properties of the
empirical moments

1
a
S f
a ¼ 1

a

Xa
i¼1

f Yi;Yiþ1 . . . ;Yiþkð Þ

with f : Xkþ1 ! RP . In particular, CLINE (1983) managed to derive, under suitable
but very general conditions, a law of large numbers and a central limit theorem
(CLT) for 1

aS
f
a as functions of the moments of the underlying processes. In Section 2

and Appendix A, we recall Cline’s main results, obtaining then more explicit and
readable formulae when f is a polynomial (which amounts to all what is needed
in our intended main application) and correcting two mistakes in Cline’s paper
(Appendix B).
CLINE (1983) then specialized to an SLP with geometrically distributed segment

lengths and other underlying processes being normal (a geometric normal normal or
GNN-SLP), and provides, without showing the very long calculations, explicit formu-
lae for asymptotic moments and their (co)variances.
Here, instead, we specialize in a different direction, namely to a geometric finite

normal shifting level process or GFN-SLP, in which segment lengths are still geomet-
rically distributed and errors are normally distributed, but the state space is finite. For
such case, we obtain more explicit formulae in Section 3 for the asymptotics of the
empirical moments. Detailed calculations are demonstrated in the Appendix, where
we also correct two errors in Cline’s paper. In particular, we manage to invert the
asymptotic expressions in Lemma 2 for the first moments and 2-autocovariances
and 3-autocovariances as functions of the model parameters. This allows to explicitly
determine moment estimators and their asymptotic (co)variances. These are the main
results of this paper.
To illustrate the potential applications of the moment estimations in the GFN-SLP,

we consider the segmentation problem in array comparative genomic hybridization
(array-CGH) data.
Array-CGH (OOSTLANDER, MEIJER and YLSTRA (2004)) is a microarray tech-

nique that allows detection and mapping of genomic alterations (see CARTER

(2007)). Test and reference DNA are differently fluorescent labeled, arrays of clones
are accurately spotted (following human genome) onto glass slides, and then the
mixed fluorescent DNA is hybridized to the array. The resulting fluorescent ratio is
then measured, clone by clone, with measurements affected by a non-negligible noise;
currently, one array can contain up to 106 probes, each of the order of 20–100monomers
(LIU (2007)). A function (the log base 2) of the fluorescent ratio is then plotted as
function of the clone number, giving a discrete time jump process. In the
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subsequent array-CGH analysis, one needs to detect the breakpoints where there
is DNA copy-number variations (CNVs) and then identify for each connected region the
copy number, calling neutral for the physiological two copies, loss for less, and gain formore
copies. The task is complicated by the high level of noise in the measurement process,
which confuses short segments with CNV with a noisy but physiologically normal tract.
After several segmentation methods have been devised (HUPE et al. 2004; PICARD

et al. 2005; OLSHEN et al. 2004; MYERS et al. 2004), in MAGI et al. (2010), the GNN
version of the SLP (GNN-SLP) has been successfully used to model and analyze
array-CGH data. In the approach of MAGI et al. (2010), array-CGH data are
modeled by a GNN-SLP, and the analysis consists of assigning a preliminary
segmentation and then carrying out an iterative approach similar to the pseudo-
expectation–maximization algorithm for hidden Markov models (HMMs) FORTIN

and KEHAGIAS (2006): a partly iterative estimation of number of states and model
parameters (FORNEY (1973)) is performed in the E step and, finally, the best seg-
mentation is obtained in the M step by using the Viterbi algorithm. The E and M
steps are repeated until an identical result is obtained. The algorithm is approximately
quadratic in the number of probes, and, although it is not yet the case, this might turn
out to be a critical issue as the number of probes is dramatically increasing with
technological advances.
We follow here a similar approach, which is presented in Section 5. However, we

start in Section 4 by noticing that the state space of the SLP is not arbitrary, as it
reflects the possible values of (the log of) the fluorescent ratio of DNA copy number
against normal; such ratio can only be 0,1/2,1,3/2,. . ., with some noise due to the
color reading mechanism, and occasional minor alterations due to genetic reasons.
Notice that level 1 reflects normality. By these remarks, the state space of the
SLP contains only few rather well-determined values, which can be separately
determined at the start of the analysis, possibly using previous genetic informa-
tion; to avoid missing unusual values, it is also possible to include extra states
(as long as this does not burden running time, this has no lasting effect as
probabilities estimations permit to identify irrelevant states). We are then
modeling the array-CGH data as an SLP with geometric waiting time (G)
between switches, a finite distribution (F) over the previously identified states,
and a normal independent noise (N) with constant variance. This amounts to a
GFN-SLP, as described in Section 4.
In Section 5, we describe how to apply our method to the segmentation problem

in array-CGH. Starting from the fixed set of possible states, we obtain the model
parameters by using the moment estimators, and then we can apply just one step of
the Viterbi algorithm to obtain a segmentation. The detailed theory of moment
estimation, which we develop in this paper, would allow also to determine confidence
intervals (CI): we only give one example in Section 5, as the evaluation of the error in
asymptotic approximation requires more investigation.
We then report the results of systematic comparisons of the segmentation based on

moment estimation with some other currently used segmentation methods. Tests are
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performed using synthetic chromosomes generated by LAI et al. (2005). In Section 6,
we compare the receiver operating characteristic (ROC) curves generated by our
method (with several different choices for the initial state) with those of other
methods, and find that they are comparable.
In Section 7, we compare the execution times, revealing that the moment segmen-

tation is faster than the other methods.
The results on the proposed method are thus extremely encouraging, in particular

because the rapid growth of microarray size and resolution requires segmentation
algorithms with high computational performance.
An additional issue, raised by an anonymous reviewer of the manuscript, concerns

the normality assumption for the noise. In this work, the normality is assumed as it
appears to be a good approximation for normalized read counts data; see YOON

et al. (2009); on the other hand, it is conceivable that other distributions could be
more adequate. As the crucial mathematical step in our procedure is Lemma 2, which
shows that the map from parameters to statistics is continuously invertible, it would
be interesting to find general conditions for the noise distribution under which such
invertibility is ensured.

2 Results for general SLP

In this section, we recall the definition of SLP together with some results from CLINE

(1983); we then write some general expressions of useful moments.
Let X;Xð Þ, Λ;Lð Þ, and N;Nð Þ be measurable spaces, with N= {1, 2, 3 . . .}, and let

Ω;F ; Pð Þ be the underlying probability space.

Definition 1. If X lð Þ
j

n o1

j¼1
; l 2 Λ

� �
is a family of stochastic processes on Ω;F ; Pð Þ

with elements in X, and Nn;Λnf g1n¼1 is a stochastic process in Ω;F ; Pð Þ with elements
in N�Λ, then the process

Yaf g1a¼1 ¼ X Λ1ð Þ
1 ;X Λ1ð Þ

2 ; . . . ;X Λ1ð Þ
N1

;X Λ2ð Þ
1 ; . . . ;X Λ2ð Þ

N2
;X Λ3ð Þ

1 ; . . .
n o

¼ X Λnð Þ
j

n oNn

j¼1

� �1

n¼1

(1)

is called a Shifting Level Process or SLP with epochs ‘shift’ Tnf g1n¼1 ¼
N1 þ . . .þNnf g1n¼1, levels Λnf g1n¼1, and underlying process X lð Þ

j

n o1

j¼1
; l 2 Λ.

See CLINE (1983) for comments on the definition. The SLP generally depends on
the parameters in the distributions of the Xj’s and Nn;Λnf g1n¼1 , which can be
estimated through the observable process Yaf g1a¼1 . Notice that for all a2ℕ, the

random variable Ya takes value in X, so that if f : Xkþ1 ! R, the sample moments are

1
a
S f
a ¼ 1

a

Xa
i¼1

f Yi;Yiþ1; . . . ;Yiþkð Þ: (2)
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As mentioned in CLINE (1983), we only consider real-valued sample moments as
the results are easily extended to vector-valued or continuous functions of the sample
moments. The main estimation results will be expressed in terms of the auxiliary,
unobservable random variables

Rf
n ¼

XTn

i¼Tn�1þ1

f Yi; . . . ;Yiþkð Þ ¼
XNn

j¼1

f X Λnð Þ
j ;X

Ljþ1ð Þ
Ijþ1

; . . . ;X
Ljþkð Þ

Ijþk

� �

where

Lj ¼ Λmj

Ij ¼ j � Tmj � Tn

� �
and mj satisfies

Tmj � Tn

� �
< j ≤ Tmjþ1 � Tn

� �
:

For instance, if f : X3 ! R, then

Rf
n ¼

XNn�2

j¼1

f X Λnð Þ
j ;X Λnð Þ

jþ1 ;X Λnð Þ
jþ2

� 	
þ f X Λnð Þ

Nn�1
;X Λnð Þ

Nn
;X Λnþ1ð Þ

1

� 	
þf X Λnð Þ

Nn
;X Λnþ1ð Þ

1 ;X LNnþ2ð Þ
INnþ2

� 	
:

(3)

For later convenience, we indicate

f nð Þ
j ¼ f X Λnð Þ

j ;X
Ljþ1ð Þ

Ijþ1
; . . . ;X

Ljþkð Þ
Ijþk

� �

and

Uf
n ¼

Xn
j¼1

R f
j :

CLINE (1983) presented some general sufficient conditions for the law of large
numbers and the CLT for 1

aS
f
a . We recall here Corollaries 2.1 and 3.1 only, as they

are enough to deal with the discrete version used in the applications discussed later.
It is these results that are used by Cline in the second part of his paper, where there
are some errors corrected in Appendix B:

Proposition 1. (Corollary 2.3 in CLINE (1983)). Let Yaf g ¼ X Λnð Þ
j

n oNn

j¼1

� �
be an SLP

such that

1. {Nn, Λn} is a sequence of random elements in N�Λ with P[Λn=Λm] = 0, n 6¼m.
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2. X lð Þ
j

n o
, l 2 Λ is a family of independent stochastic processes and independent

of {Nn, Λn}.

Let f : Xkþ1 ! R and define Rf
n and Sf

a as before.

1. If {Nn, Λn} is stationary, ergodic and E[Nn] = �<1, E Rf
n


 � ¼ �θ < 1, then
1=að ÞS f

a ! θ a.s.
2. If {Nn, Λn} is l-dependent and E[Nn]! �, E R f

n


 �! �θ , E R fj j
n

h i
! �z , and

V R f
n


 �
≤Knb, V R fj j

n

h i
≤Knb, V[Nn]≤Kn

b, b< 1, then 1=að ÞS f
a ! θ a.s.

Proposition 2. (Corollary 3.1 in CLINE (1983)). Let Yaf g ¼ X Λnð Þ
j

n oNn

j¼1

� �
be an SLP

and f : Xkþ1 ! R be such that:

1. {Nn,Λn} is a strictly stationary, #-mixing of random elements in N�Λ with P
[Λn=Λm] = 0 for n 6¼m and

X1
j¼1

# jð Þ1=2 < 1.

2. X lð Þ
j

n o
, l2Λ is a family of independent stochastic processes and independent

of {Nn,Λn}
3. V Rf

n


 �
< 1, V[Nn]<1, V R f�θj j

n

h i
< 1.

If

� ¼ E Nn½ �;
�θ ¼ E Rf

n


 �
;

�wj ¼ Cov Rf
n � θNn;R

f
nþj � θNnþj

h i
; j≥0

then

ffiffiffi
a

p 1
a
Sf
a � θ

� �
! N 0; g2

� �
in distribution; (4)

where

g2 ¼ w0 þ 2
X1
j¼1

wj : (5)

The preceding two results express the asymptotic values of the sample moments in
terms of the moments of Nn andRf

n. In turn, CLINE (1983) provided in Section 4 some

formulae without derivation for the moments ofRf
n in terms of the moments ofNn and

f X Λnð Þ
1 ; . . .

� 	
, provided that enough moments of f exist, but these are not directly

computable in explicit examples as the moments of f require some careful direct
computation depending on their different arguments. We give here some more
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explicit and directly computable formulae for the moments ofRf
n, for polynomial f, in

terms of the moments of Nn and the join moments of the X Λnð Þ
i ’s. This makes the

derivation and verification of explicit expression much easier.
We now derive various formulae under the following hypothesis:

1. X lð Þ
j

n o
, l 2 Λ, is a family of independent stochastic processes, each of which is

a sequence of exchangeable random elements of X.
2. {Nn} and {Λn} are sequences of i.i.d. random elements of N and Λ, respec-

tively, and are independent of each other and of X lð Þ
j

n o
.

The limit theorems require computing the moments of Rf
n. We compute them for

f x1 . . . ; xrð Þð Þ ¼
Yr

l¼1
xhll in terms of the moments of Nn and of those of X lð Þ

j

n o
:

1. ai ¼ E Ni
n


 �
,

2. bi lð Þ ¼ E X lð Þ
j

� 	i �
, and

3. mi=E[li];

the last expression is not used in the first results below. Note that bi(l) are
random variables, and actually, the formulae are functions of the expected values
of products of the bi(l)’s. Later, when we consider X lð Þ

j

n o
to be normally distrib-

uted, we can substitute such expected values by formulae depending only on the
moments of {Λn}.
We start with f : X ! R, that is, f(x) = xh. At the price of additional complications

in the formulae, we could deal with any analytic f, but we avoid such details here as
they are not needed in the main applications below. Let

Sk;r ¼ f k1; . . . ; kr; s1; . . . ; srð Þ : ki 2 N; si 2 N; 1≤ k1 < k2 < . . . < kr≤ k;
Xr
i¼1

kisi ¼ kg:

and

Sk;r;Nn ¼ f k1; . . . ; kr; s1; . . . ; srð Þ 2 Sk;r : s ¼
Xr
i¼1

si ≤Nng:

Then we have the following:

Theorem 1.

E Rxh
n

� 	k �
¼
Xk
r¼1

X
k1;...;kr;s1;...;srð Þ2Sk;r;Nn

k!
k1!ð Þs1 �...� kr!ð Þsrð Þ s1!�...�sr!ð Þ

�E bs1k1h � . . . � b
sr
krh

h i
as þ

Xs�1

m¼1

as�m �1ð Þm
X

1≤i1<...<im≤ s�1

Ym
j¼1

ij

 !
:
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Proof

E Rxh
n

� 	k �
¼ E

XNn

i¼1

X lð Þ
i

� 	h !k
2
4

3
5

¼ E

"Xk
r¼1

X
k1;...;kr;s1;...;srð Þ2Sk;r

k!
k1!ð Þs1 � . . . � kr!ð Þsrð Þ s1!� . . . �sr!ð ÞX

i1;...;is2 1;...;Nnf g; diffferent
X1 lð Þ

i

� 	hk1 � . . . � X lð Þ
is1

� 	hk1
X lð Þ

is1þ1

� 	hk2

� . . . � X lð Þ
is1þs2

� 	hk2 � . . . � X lð Þ
is1þs2þ...sr�1þ1

� 	hkr � . . . � X lð Þ
is

� 	hkr#

¼
Xk
r¼1

X
k1;...;kr;s1;...;srð Þ2Sk;r

k!
k1!ð Þs1 � . . . � kr!ð Þsrð Þ s1!� . . . �sr!ð Þ

�E bs1k1h� . . . �bsrkrh
h i

E Nn Nn � 1ð Þ� . . . � Nn � sþ 1ð Þ½ �

¼
Xk
r¼1

X
k1;...;kr;s1;...;srð Þ2Sk;r;Nn

k!
k1!ð Þs1 � . . . � kr!ð Þsrð Þ s1!� . . . �sr!ð Þ

�E bs1k1h� . . . �bsrkrh
h i

as þ
Xs�1

m¼1

as�m �1ð Þm
X

1≤ i1<...<im ≤ s�1

Ym
j¼1

ij

 !

where the third equality holds as the Xl
i ’s are conditionally independent given l, the

number of i1, . . ., is2 {1, . . .,Nn}, different from each other, is Nn(Nn� 1) � . . . � (Nn�
s+1), and the variables Nn’s are also independent. The last equality holds as
Nn(Nn� 1) � . . . � (Nn� s+ 1) = 0 for s>Nn. □

For the GNN model considered in CLINE (1983), ai is the ith moment of a geomet-
ric random variable with parameter p, bi(l) is the ith moment of a N(l, (1�r)s2)
distribution, and l is itself N(m, rs2) with ith moment mi. The four parameters of
the model, r, s, m, and p, satisfy

rs2 ¼ m2 � m21
1� rð Þs2 ¼ E b2 lð Þ½ � � E b1 lð Þ½ �ð Þ2
m ¼ m1
p ¼ a�1

8>><
>>:

from which we obtain their expression in terms of the moments b1, b2, m1, m2, and a:

s2 ¼ E b2 lð Þ½ � � E b1 lð Þ½ �ð Þ2 þ m2 � m21

r ¼ m2 � m21
E b2 lð Þ½ � � E b1 lð Þ½ �ð Þ2 þ m2 � m21m ¼ m1

p ¼ a�1

:

8>>>><
>>>>:

Then with the preceding formulae, it is easy to recompute (see Cline (1983) p. 334)
for the function f(x) = x

234 A. Gandolfi et al.

© 2013 The Authors. Statistica Neerlandica © 2013 VVS.



E Rx
n


 � ¼ E b1 lð Þ½ �a1 ¼ E l½ � 1
p
¼ 1

p
m

V Rx
n � mNn


 � ¼ E Rx
n � mNn

� �2h i
¼ E Rx

n

� �2h i
� 2mE NnRx

n


 �þ m2E Nnð Þ2
h i

¼ E½ b2 lð Þð �a1 þ E b1 lð Þð Þ2
h i

a2 � a1ð Þ � 2ma2E b1 lð Þ½ � þ m2a2

¼ E l2 þ 1� rð Þs2
 �
a1 þ E l2


 �
a2 � a1ð Þ � 2ma2E l½ � þ m2a2

¼ 1� rð Þs
2

p
þ m2 þ rs2
� � 2� p

p2
� m2

2� p
p2

¼ 1
p
s2 þ 2

1� p
p2

rs2;

and for f(x) = x2 (denoted by f0 in CLINE (1983))

E Rx2
n

h i
¼ 1

p
s2 þ m2
� �

V Rx2
n � s2 þ m2

� �
Nn

h i
¼ E Rx2

n

� 	2 �
� 2 s2 þ m2
� �

E NnR
x2
n

h i
þ s2 þ m2
� �2

E Nnð Þ2
h i

¼ m2 þ 1� rð Þs2� �2
a21 � 2 s2 þ m2

� �
a2 m2 þ 1� rð Þs2� �þ a2 s2 þ m2

� �2
¼ 1

p
2s4 þ 4m2s2
� �þ 2

1� p
p2

2r2s4 þ 4rm2s2
� �

:

3 The GFN-SLP model

We now specialize to another particular SLP: the geometric finite normal or GFN-

SLP. In the GFN-SLP, {Nn}� i.i.d. geometric (p); given l, X lf g
n

n o
� i.i.d. N(l,t2);

and {Λn}� i.i.d. with a finite distribution on {b1, . . .,bT} with parameters
p={p1, . . .,pT}; all processes being independent. To avoid trivialities and simplify
the later formulae, we assume T> 1 and p< 1, which is to say, that {Yi} is not
independent. The GFN-SLP is simple enough that Propositions 1 and 2 apply. In
particular, ai’s, bi’s, and mi’s can be explicitly written in terms of the parameters of
the model. In fact, we have a1 = 1/p, a2 ¼ 2�p

p2 ,

bi lð Þ ¼
Xbi=2c
j¼0

rj ið Þli�2jt2j;

the ith moment of a normal (l, t2) distribution, for which there exist explicit
expressions for the rj(i); and, finally, mi= mi(p1, . . .,pT) is the ith moment of the finite
distribution of the {Λn}’s.
We now intend to estimate the T+1 parameters p1, . . ., pT� 1, p and t2; for conve-

nience, we consider the T+2 parameters p, p, and t2 subject to the constraint
P

i pi=1.
The statistics used will be sample moments of the form given in (2) for the functions
f(x) =xi, f1(x1,x2) =x1 � x2, and f2(x1,x2,x3) =x1 � x2 � x3. More precisely, we use
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m̂i ¼ 1
n
Sxi
n ; i ¼ 1; . . . ;T � 1

m̂f1 ¼
1
n
Sx1�x2
n

m̂f2 ¼
1
n
Sx1�x3
n :

(6)

The next lemma computes the asymptotics of the statistics in terms of the model
parameters, together with the asymptotic variances. Then the subsequent lemma
shows how to explicitly invert such asymptotics to retrieve the model parameters;
the final theorem gives the explicit form of the parameter estimators with their
asymptotic variance.

Lemma 1. If Yaf g ¼ X Λnð Þ
j

n oNn

j¼1

� �
is a GFN-SLM, then for all i=1, . . .,T� 1

m̂i ¼ 1
n
Sxi
n ! mi :¼

Xbi=2c
j¼0

rj ið Þmi�2jt
2j a:s: (7)

and

ffiffiffi
n

p 1
n
Sxi
n �mi

� �
! N 0; g2i

� �
in distribution;

where

g2i ¼
1
a1

E Rxi
n

� 	2 �
� a2m2

i

 �
¼ 1

a1
a2 � a1ð ÞE b2i lð Þ
 �þ a1m2i � a2m2

i


 �
:

Moreover,

m̂f1 ¼
1
n
Sf1
n ! mf1 :¼

1
a1

a1 � 1ð Þm2 þ m21

 � ¼ 1

a1
a1 � 1ð Þ m2 � t2

� �þm2
1


 �
a:s:

and

ffiffiffi
n

p 1
n
S f 1
n �mf1

� �
! N 0; g2f1

� 	
in distribution;

where

g2f1 ¼
1
a1

(
a2 � 2a1 þ 1ð Þm4 þ 2a2 � 7a1 � 2pþ 6þ a2

a21

� �
t4

þ 2a1 � a2 � 1þ a2
a21

� �
m2

2 þ 12a1 � 4a2 þ 2p� 8� 2
a2
a21

� �
m2t2

þ a2
a21

� 4

� �
m4

1 þ 4 a1 � 1ð Þm1m3 þ 2 4� 2a1 � a2
a21

� �
m2m

2
1

�2 4a1 þ p� 4� a2
a21

� �
m2

1t
2

�
:
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Finally,

m̂f 2 ¼
1
n
Sf2
n ! mf2 :¼

1
a1

a1 � 2þ pð Þm2 þ 2� pð Þm21

 �

¼ 1
a1

a1 � 2þ pð Þ m2 � t2
� �þ 2� pð Þm2

1


 �
a:s:

and ffiffiffi
n

p 1
n
Sf2
n �mf2

� �
! N 0; g2f2

� 	
in distribution;

where

g2f2 ¼
1
a1

(
a2 � 4a1 þ 4� pð Þm4

þ 2a2 � 11a1 � 2 p3 � 5p2 þ 9p� 8
� �þ 2� pð Þ2 a2

a21
þ 2p 2� pð Þ 1

a1

 �
t4

þ 4a1 � a2 þ 2p2 � 3p� 4þ 2p 2� pð Þ 1
a1

þ 2� pð Þ2 a2
a21

 �
m2

2

þ2 10a1 � 2a2 þ p3 � 6p2 þ 12p� 12� 2p 2� pð Þ 1
a1

� 2� pð Þ2 a2
a21

 �
m2t2

þ 2 p2 þ 4p� 8
� �þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

 �
m4

1 þ 8 a1 þ p� 2½ �m1m3

�2 4a1 þ 2 p2 þ 3p� 8
� �þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

 �
m2m

2
1

�2 8a1 þ p3 � 6p2 þ 12p� 12� 2p 2� pð Þ 1
a1

� 2� pð Þ2 a2
a21

 �
m2

1t
2g:

Notice that, by the definition in (7), the vectors {m1, . . .,mT� 1} and {m1, . . ., mT� 1}
are linked by a linear transformation. We actually use the vectorsm={1,m1, . . .,mT� 1}
and m={1,m1, . . .,mT� 1}, which are related by

m ¼ Ut2 �m
with Ut2 a T�T lower triangular matrix depending on t2 of the form

Ut2 ¼
1 0 0 0 . . .
0 1 0 0 . . .
t2 0 1 0 . . .
. . .

2
664

3
775:

More explicitly, one obtains from (7)

mi ¼
Xi
‘¼0

I ‘¼i mod2ð Þri�‘
2
ið Þti�‘m‘ ¼

Xi
‘¼0

Ut2 i; ‘½ �m‘ (8)

for i=1, . . .,T� 1, where IA indicates the indicator function of A. The matrixUt2 can
be inverted, and the explicit inverse relations we will use in the following asymptotic
theory are
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m1 ¼ m1

m2 ¼ m2 � t2

m3 ¼ m3 � 3m1t2

m4 ¼ m4 � 6m2t2 þ 3t4:

Proof. The a.s. convergence of m̂i , for i=1, . . .,T� 1, m̂f 1 , and m̂f2 follows from
Proposition 1. It is only needed to compute an explicit expression for θxi , which is
easily obtained from Theorem 1 with k=1: for all i=1, . . .,T� 1

θxi ¼ E Rxi
n

h i
=E Nn½ � ¼ E bi lð Þ½ �

¼ E
Xbi=2c
j¼0

rj ið Þli�2jt2j
 !

¼
Xi=2
j¼0

rj ið Þmi�2jt
2j

 !
¼ mi:

The corresponding expressions for θf1 and θf2 can be computed from the formulae
for generic moments of functions f : X2 ! R and f : X3 ! R (see Appendix A),
respectively. Using the relationship between m and m, we obtain

θf1 ¼ E Rf1
n


 �
=E Nn½ � ¼ 1

a1
a1 � 1ð ÞE b21 lð Þ
 �þ E b1 lð Þ½ �ð Þ2

h i

¼ 1
a1

a1 � 1ð ÞE l2

 �þ E l½ �ð Þ2

h i
¼ 1

a1
a1 � 1ð Þm2 þ m2

1


 �
¼ 1

a1
a1 � 1ð Þ m2 � t2

� �þm2
1


 �
θf2 ¼ E Rf2

n


 �
=E Nn½ �

¼ 1
a1

a1 � 2� pð ÞE b21 lð Þ
 �þ 1� pð Þ E b1 lð Þ½ �ð Þ2 þ p E b1 lð Þ½ �ð Þ2 þ 1� pð Þ E b1 lð Þ½ �ð Þ2
h i

¼ 1
a1

a1 � 2þ pð ÞE l2

 �þ 2� pð Þ E l½ �ð Þ2

h i
¼ 1

a1
a1 � 2þ pð Þm2 þ 2� pð Þm2

1


 �
¼ 1

a1
a1 � 2þ pð Þ m2 � t2

� �þ 2� pð Þm2
1


 �
:

The convergence in distribution of m̂i, for i=1, . . .,T� 1, m̂f1, and m̂f2 follows from
Proposition 2, which also tells us how to calculate the variance of normal asymp-
totic distribution.
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The asymptotic variances m̂i’s can be computed from Theorem 1:

g2i ¼ w0 ¼
V Rxi

n � θxiNn

h i
E Nn½ �

¼ 1
a1

E Rxi
n � θxiNn

� 	2 �
� E Rxi

n � θxiNn

h i� 	2 �

¼ 1
a1

E Rxi
n � θxiNn

� 	2 � �

¼ 1
a1

E Rxi
n

� 	2 �
þ θ2xiE N2

n


 �� 2θxiE NnR
xi
n

h i �

¼ 1
a1

E Rxi
n

� 	2 �
þ a2m2

i � 2mia2E bi lð Þ½ �
 �

¼ 1
a1

E Rxi
n

� 	2 �
� a2m2

i

 �

¼ 1
a1

a2 � a1ð ÞE b2i lð Þ
 �þ a1E b2i lð Þ½ � � a2m2
i


 �
¼ 1

a1
a2 � a1ð ÞE b2i lð Þ
 �þ a1m2i � a2m2

i


 �
:

The asymptotic variances g2f1 and g2f2 require long calculations, which are sketched in
Appendix A. □

By the definition of the mi’s, m=V � p with V the Vandermonde matrix

V ¼
1 1 1 . . .
b1 b2 b3 . . .
b21 b22 b23 . . .
. . .

2
664

3
775 (9)

of size T�T. For vectors a and b, let (a,b) represent the concatenated vector. Then we
can invert first moments and 2-autocovariances and 3-autocovariances as functions of
the model parameters:

Lemma 2. The RTþ2 ! RTþ2 map

p; p; t2
� �! m; mf1 ;mf2

� �
;

is invertible, and its inverse is given by the continuous functions:

p ¼ 1�mf2 �m2
1

mf1 �m2
1

(10)

t2 ¼ m2 �m2
1 �

mf1 �m2
1

� �2
mf2 �m2

1

(11)
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p ¼ V�1U�1
t2 m;mf1 ;mf2ð Þ�m: (12)

Proof The first two equalities are obtained by solving the system

mf1 ¼
1
a1

a1 � 1ð Þm2 þ m2
1


 �
mf2 ¼

1
a1

a1 � 2þ pð Þm2 þ 2� pð Þm2
1


 �
8><
>:

or, expressing the moments mi through sample moments mi,

mf1 ¼
1
a1

a1 � 1ð Þ m2 � t2
� �þm2

1


 �
mf2 ¼

1
a1

a1 � 2þ pð Þ m2 � t2
� �þ 2� pð Þm2

1


 �
8><
>:

with respect to the variable p and t2. Such inverses are continuous in the parameter
range of the model because mfi �m2

1 ¼ 1� pð Þi m2 � m2
1

� � 6¼ 0 for i=1, 2 being p 6¼ 1
by hypothesis and the states variance different from zero by the model (otherwise, we
would have only one level).
The vector p is obtained inverting the systemm ¼ Ut2m ¼ Ut2Vp. Such inverse exists

because U is a lower triangular matrix with all ones on the diagonal and V is a
Vandermonde matrix with elements bi 6¼ bj if i 6¼ j, for i, j= 1, . . .,T� 1, and it is
continuous in the model parameters. □

The next theorem is the main result of our paper and gives the moment estimation
of the model parameters:

Theorem 2. If Yaf g ¼ X Λnð Þ
j

n oNn

j¼1

� �
is a GFN-SLM, then

p̂n ¼ 1� m̂f2 � m̂2
1

m̂f1 � m̂2
1

! p a:s: (13)

and ffiffiffi
n

p
p̂n � pð Þ ! N 0; g2p

� �
in distribution;

where

g2p ¼ JFC m̂1;...;m̂T�1ð ÞJt
F 1; 1ð Þ

with

JF ¼

2m1 mf1 �mf2

� �
mf1 �m2

1

� �2 0
mf2 �m2

1

mf1 �m2
1

� �2 � 1
mf1 �m2

1

� 2m1 mf1 �mf2

� �2
mf2 �m2

1

� �2 1 � 2 mf1 �m2
1

� �
mf2 �m2

1

mf1 �m2
1

� �2
mf2 �m2

1

� �2

2
66664

3
77775:

and C m̂1;...;m̂T�1ð Þ explicitly calculable:
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C m̂1;...;m̂T�1ð Þ t; rð Þ ¼ 1
a1

a2 � a1ð ÞE bt lð Þbr lð Þ½ � þ a1mtþr � a2mtmrf g;

t̂2n ¼ m̂2 � m̂2
1 �

m̂f1 � m̂2
1

� �2
m̂f2 � m̂2

1

! t2 a:s: (14)

and ffiffiffi
n

p
t̂2n � t2
� 	

! N 0; g2t2
� �

in distribution;

where
g2t2 ¼ JFC m̂1;...; m̂T�1ð ÞJt

F 2; 2ð Þ
with JF and C m̂1;...; m̂T�1ð Þ as above; finally,

p̂n ¼ V�1Ut̂2
�1�m̂n ! p a:s: (15)

where m̂n ¼ 1; m̂1; . . . ; m̂T�1f g; and for t ¼ 1; . . . ;T

ffiffiffi
n

p
p̂t � ptð Þ ! N 0; g2pt

� 	
in distribution;

where

g2pt ¼ JGC m̂1;...;m̂T�1ð ÞJtG t; tð Þ

with C m̂1...;m̂T�1ð Þ as above and JG explicitly calculable in terms of the moments of the
normal distribution, as indicated in the proof.

Proof The a.e. convergences are simply a consequence of the a.e. convergence of
m̂n; m̂f1 ; m̂f2

� �
to m; mf1 ;mf2

� �
and the continuity of the functions in the previous Lemma.

By Lemma 1, we know the asymptotics of the statistics m̂n, m̂f1, and m̂f2 so that the
asymptotic variances of the present theorem follow from a multidimensional delta
method as follows. We evaluate all functions in the asymptotic values mn, mf1 , and
mf2 of m̂n, m̂f1 , and m̂f2 .

In order to derive the asymptotic variances of p and t2, we consider the function

F : R4 ! R2

m̂1; m̂2; m̂f1 ; m̂f2

� �
↦ p̂n ¼ 1� m̂f2 � m̂2

1

m̂f1 � m̂2
1

; p̂2
n ¼ m̂2 � m̂2

1 �
m̂f1 � m̂2

1

� �2
m̂f2 � m̂2

1

 !

whose Jacobian calculated in the asymptotic value of the vector m̂1; m̂2; m̂f 1 ; m̂f 2Þ
�

is
given by

JF ¼

2m1 mf1 �mf2

� �
mf1 �m2

1

� �2 0
mf2 �m2

1

mf1 �m2
1

� �2 � 1
mf1 �m2

1

� 2m1 mf1 �mf2

� �2
mf2 �m2

1

� �2 1 � 2 mf1 �m2
1

� �
mf2 �m2

1

mf1 �m2
1

� �2
mf2 �m2

1

� �2

2
66664

3
77775:
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If we denote with C m̂1;m̂2;m̂f1 ;m̂f2ð Þ the covariance matrix of the vector
m̂1; m̂2; m̂f1 ; m̂f2

� �
, we have

C m̂1;m̂2;m̂ f1 ;m̂ f2ð Þ 1; 1ð Þ ¼ g21
C m̂1;m̂2;m̂ f1 ;m̂ f2ð Þ 2; 2ð Þ ¼ g22
C m̂1;m̂2;m̂ f1 ;m̂ f2ð Þ 3; 3ð Þ ¼ g2f1
C m̂1;m̂2;m̂ f1 ;m̂ f2ð Þ 4; 4ð Þ ¼ g2f2

with the expression of the variances given in Lemma 1.
The off-diagonal terms are explicitly computed in Appendix A.
Using the multidimensional delta method, the variances of p̂and t2̂ are the diagonal

terms of the matrix JFCðm1m2mf1
mf2

ÞJtF, that is

g2p ¼ 4m2
1 mf1 �mf2

� �2
mf1 �m2

1

� �4 g21 þ
4m1 mf1 �mf2

� �
mf2 �m2

1

� �
mf1 �m2

1

� �4 Cov m̂1; m̂f1


 �

� 4m1 mf1 �mf2

� �
mf1 �m2

1

� �3 Cov m̂1; m̂f2


 �þ mf2 �m2
1

� �2
mf1 �m2

1

� �4 g2f1
� 2 mf2 �m2

1

� �
mf1 �m2

1

� �3 Cov m̂f1 ; m̂f2


 �þ 1

mf1 �m2
1

� �2 g2f2
g2t2 ¼

4m2
1 mf1 �mf2

� �4
mf2 �m2

1

� �4 g21 �
4m1 mf1 �mf2

� �2
mf2 �m2

1

� �2 Cov m̂1; m̂2½ �

þ 8m1 mf1 �mf2

� �2
mf1 �m2

1

� �
mf2 �m2

1

� �3 Cov m̂1; m̂f1


 �

� 4m1 mf1 �mf2

� �2
mf1 �m2

1

� �2
mf2 �m2

1

� �4 Cov m̂1; m̂f2


 �

þg22 �
4 mf1 �m2

1

� �
mf2 �m2

1

� � Cov m̂2; m̂f1


 �þ 2 mf1 �m2
1

� �2
mf2 �m2

1

� �2 Cov m̂2; m̂f2


 �

þ 4 mf1 �m2
1

� �2
mf2 �m2

1

� �2 g2f1 �
4 mf1 �m2

1

� �3
mf2 �m2

1

� �3 Cov m̂f1 ; m̂f2


 �þ 4 mf1 �m2
1

� �4
mf2 �m2

1

� �4 g2f2 :

For the variances vector g2p, we have to consider the function

G : RT�1 ! RT

m̂1; . . . ; m̂T�1ð Þ ↦ p̂
¼ V�1U�1

t̂2
m̂:

If we denote with JG the Jacobianmatrix of the functionG evaluated in (m1, . . .,mT� 1)
and with C m̂1;...;m̂T�1ð Þ the variance–covariance matrix of the vector m̂1; . . . ; m̂T�1ð Þ ,
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then the main diagonal of the matrix JGC m̂1;...;m̂T�1ð ÞJtG consists of the variances g2pt ,
for t=1, . . .,T� 1.

Notice that for t=1, . . .,T� 1 we haveC m̂1;...;;m̂T�1ð Þ t; tð Þ ¼ g2t , whose expression is
given in Lemma 1, whereas for t, r=1, . . .,T� 1 with t 6¼ r, we have

C m̂1...;m̂T�1ð Þ t; rð Þ ¼ Cov m̂t; m̂r½ �
¼ 1

a1
a2 � a1ð ÞE bt lð Þbr lð Þ½ � þ a1mtþr � a2mtmrf g:

□

We end this section by observing that the variances given by the previous theorem
allow us to obtain CIs for segmentation parameters. Denoting by a the confidence
level and considering the normal asymptotic distribution of estimators, we can derive
the following CIs for p, t2, and p, respectively:

p̂n � za=2

ffiffiffiffiffi
g2p
n

r
; p̂n þ za=2

ffiffiffiffiffi
g2p
n

r !

t̂2n � za=2

ffiffiffiffiffiffi
g2t2
n

s
; t̂2n þ za=2

ffiffiffiffiffiffi
g2t2
n

s0
@

1
A

p̂i � za=2

ffiffiffiffiffi
g2pi
n

s
; p̂i þ za=2

ffiffiffiffiffi
g2pi
n

s0
@

1
A i ¼ 1; . . . ;T :

4 A discrete model for array-CGH data

Array-CGH is a microarray technology that allows one to detect and map geno-
mic alterations. The goal of array-CGH analysis is to identify the boundaries of
the regions where the number of DNA copies changes and then to label each
region as loss, neutral, or gain. The genomic profile obtained from an array-
CGH experiment can be considered as a signal made of noisy segments with dif-
ferent lengths and with mean levels that shift their values according to the DNA
copy number.
In the mathematical model of MAGI et al. (2010), this signal has been considered as

generated by the sum of two processes: a biological process due to a real variation of
the number of DNA copies and a white noise process that mimics experimental error.
We thus consider sequential observations Y= (Y1, . . .,YN) to be realizations of the
sum of two independent stochastic processes:

Yi ¼ Λi þ ei

where ei is normally distributed white noise with variance t2, ei � N 0; s2e
� �

, and Λi is
the unobserved mean level.
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In MAGI et al. (2010), the Λi’s have been taken to be normally distributed with the
values taken in a specific sample estimated during the statistical analysis; however, we
make here the additional observation that these values are not arbitrary, as they
reflect the possible values of (the log of) the fluorescent ratio of DNA copy number
against absence of aberration. For deleted regions, the normalized log2-ratio is
log2(1/2) =�1, whereas for amplified regions, the normalized log2-ratio is log2
(3/2) = 0.5849 or log2(4/2) = 1 for four copies amplification. The value 0 corre-
sponds to no aberrations. Hence, the possible states of Λi can be determined at
the start of the analysis and chosen to be taken from a finite distribution on
b= {b1, . . .,bT} with parameters p= {p1, . . .,pT}. To avoid missing unusual values,
one can, as we actually do, insert additional values of the bj’s with probability 0: this will
be recognized during the analysis and thus such states can be later removed. We then
believe that, as long as the relevant biologically justified values are considered, simple
variations in the choice of the vector b are not likely to alter the statistical analysis we
are going to perform; we verified such claim with a systematic investigation of the
synthetic Lai et al. data set by using different choices of the state vector b (Section 6).

Then we consider the process X lð Þ
i

n o
, whose elements are given by

X lð Þ
i ¼ lþ ei;

which corresponds to the process {Yi}, with the fixed value Λi= l. The random
variables X lð Þ

i are i.i.d., and as the stochastic processes Λi and ei are independent,
we obtain that E[Yi] =E[Λi] = m1, Var[Yi] =V[Λi] + t2, and consequently

E X lð Þ
i

h i
¼ l

V X lð Þ
i

h i
¼ t2;

therefore,

X lð Þ
i � N l; t2

� �
:

Sequences of observations of given lengths with the same mean correspond to
chromosomal aberrations, and their lengths Ni’s have been taken in MAGI et al.
(2010) to be i.i.d. geometrically distributed stochastic process Ni � G pð Þ, with
mean p, independent from the Λj’s and ej’s. As pointed out by an anonymous
referee, this might not be a very appropriate model in a number of cases in
which high amplitude gains are often of small genomic size: in such a case,
the Ni’s would no longer be identically distributed and the parameter p should
depend on Λi. However, this is not case in various other situations, including
primarily cancer genomic analysis (Bayani et al. (2007)). In addition to this,
the assumption of constant p simplifies the mathematical analysis while produc-
ing very good results in terms of segmentation (Section 6). For these reasons,
we stick to the assumption that the Ni’s are i.i.d. with Ni � G pð Þ. A more general
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method of moments than the one described here could very likely be able to
deal with varying p’s, but this requires extensions of the mathematical results,
and we are currently investigating such possibility.
With the assumptions made so far, the data originated by an array-CGH experi-

ment can be described through the GFN-SLP with

Nif g � G pð Þ i:i:d:

Λif g � F p1; . . . ; pTð Þ i:i:d:

X lð Þ
i

n o
� N l; t2ð Þ i:i:d:

where the processes are mutually independent.

5 GFN-SLP analysis and segmentation of array-CGH data

From the results of the previous sections, we have an algorithm to estimate the
parameter vector {p,p,t2} = {p,p1, . . .,pT,t

2} of the aforementioned model once
assigned the state vector {b1, . . .,bT}. The main difference with existing estimation
methods is that we can estimate all the parameters {p,p1, . . .,pT,t

2} in one step,
whereas most methods require assigning some of the parameters and often need
iterative steps. For this reason, our method is likely to be faster than any other
currently available algorithm (Section 7).
Collecting formulae for reader’s convenience, the method consists of evaluating

m̂i ¼ 1
n
Sxi
n ; i ¼ 1; . . . ;T � 1

m̂f1 ¼
1
n
Sx1�x2
n

m̂f2 ¼
1
n
Sx1�x3
n :

as in (6) and m̂n ¼ 1; m̂1; . . . ; m̂T�1f g from the data. Then the GFN-SLP parameter
estimators based on the method of moments are

p̂ ¼ 1� m̂f2 � m̂2
1

m̂f1�m̂2
1

from (13),

t̂2¼ m̂2 � m̂2
1 �

m̂f1 � m̂2
1

� �2
m̂f2 �m̂2

1

from (14) and

p̂ ¼ V�1Ut̂2
�1�m̂n

from (15) with Ut̂2 from (8) and V from (9).
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Once the parameter estimation is performed, the segmentation can be completed by
some of the existing methods. In the following simulations, we apply once a Viterbi
algorithm based on the HMM representation of the GFN-SLM. Following SALAS

AND BOES (1980),

Λi ¼ 1� zi�1ð ÞΛi�1 þ zi�1 m1 þ dið Þ;
where

• z1, z2, . . . are i.i.d. random variables taking the values 0, 1 with probabilities Pp

[zi=1] = p and Pp[zi=0] = 1� p.
• d1, d2, . . . are i.i.d. random variables with finite distribution F(p1, . . .,pT),

which is a one-step Markov chain with initial distribution p={p1, . . .,pT}, and
transition matrix is P ¼ Pij

� �T
i;j¼1 given by

Pij ¼ P Λt ¼ bjjΛt�1 ¼ bi

 � ¼ 1� pð Þ þ ppj i ¼ j

ppj i 6¼ j

�
(16)

and emission matrix is E ¼ Ebkyj

� �
, with

Ebkyj ¼ P Yt ¼ yjjΛt ¼ lk

 � ¼ e�

yj�bkð Þ2
2t2ffiffiffiffiffiffiffiffiffiffi

2pt2
p : (17)

Some tests have been performed, and results are presented below. All figures show
the segmentations (black lines) over the observed log 2-ratio (light gray point). X axis
runs along the entire genome, according to the physical mapping.
The first test has been performed on the data set V22711-4Q provided by the

Diagnostic Genetic Unit, Careggi Hospital, University of Firenze, consisting of
approximately 44 000 clones and a very noisy signal. Tomitigate noise, we used thewaves
aCGH correction or WACA algorithm (Lepretre et al., 2010) to de-wave the signal.
The state vector we gave as input contains values that are equispaced and symmet-

ric around the origin: {�2.1,� 1.8,� 1.5,� 1.2,� 0.9.� 0.6,� 0.3, 0, 0.3, 0.6, 0.9, 1.2,
1.5, 1.8, 2.1}. This certainly contains extra states, but it is likely to contain all states of
interest. Parameters were subsequently estimated at

p̂ ¼ 0:02830132

t̂2 ¼ 0:04843138

p̂1; . . . ; ; p̂15f g ¼ f0; 0; 0:0003295399; 0:0003663509; 0; 0:0111484618;
0:3862741556; 0:2337560497; 0:3038405335; 0:0626967030;

0; 0:0010005048; 0:0005817476; 0; 0g;
and the resulting segmentation is shown in Figure 1. Notice that many states
have been indicated to have negligible probability. With a cutoff at 1%, only five
states remain.
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In particular, we can focus on the first chromosome, made of about 4000 clones, to
see better what happens in detail (Figure 2).
The same data, analyzed with the SLM algorithm (see Magi et al. (2010)),

freely available on R environment, produce the segmentation shown in Figure 3;
and highlighting the first chromosome as before, we obtain the segmentation in
Figure 4.
The second test has been performed on the genomic profile of chromosome 7 in

sample GBM29 of the BREDEL et al. (2005) data set; the results are plotted in Figure 5
together with the SLM segmentation. Figure 5b shows that GFN-SLP is not able to
correctly estimate the value of the state at the extremes. However, the principal aim of
a segmentation method is to predict the breakpoints of each segment. In fact, the fine
estimation of the level of each state may be assessed by the usage of array-CGH
calling methods, such as FastCall (BENELLI et al., 2010) or CGHcall (VAN DE WIEL

et al., 2007).
A comparison with other segmentations of the same data set appears in MAGI

et al. (2010).
Numerical tests seem to indicate that our estimation method is quite sensitive, as

it identifies even small CNV regions, which are overlooked by other methods. The
main reason is the size of the estimated p, which is generally larger than other
values usually adopted. Nonetheless, our method is able to identify large deletions
or amplifications.
The asymptotic results of Theorem 2 allow, in principle, to write CIs for the

parameters. This is a relevant difference with other estimation methods, but its
application requires some accurate estimates on the sample size in order to be able
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Fig. 1. GFN segmentation of V22711-4Q data along the entire genome.
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to guarantee applicability of asymptotic variances. We do not pursue this direction in
this paper, but simply show one numerical test on the data set V22711-4Q, whose
point estimations are listed in the succeeding paragraph. Only CIs for p and t are
meaningful, as the CIs for the pi’s are too wide. Results are reported in Table 1.
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Fig. 3. SLM segmentation of V22711-4Q data along the entire genome.
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Fig. 2. GFN segmentation of the first chromosome of V22711-4Q data.
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6 Comparison with state-of-the-art algorithms

To estimate the accuracy of the GFN-SLP algorithm in identifying the aberrations at
the boundaries, we applied our algorithm on the synthetic chromosomes generated by
LAI et al. (2005) (the data are freely available for download at http://www.chip.org/
~ppark/Supplements/Bioinformatics05b.html).

0 50 100 150 200

−
2

0
2

4

Segmentation

Observations

Lo
gR

at
io

(a) SLM segmentation

0 50 100 150 200

−
2

0
2

4

Segmentation

Observations

Lo
gR

at
io

(b) GFN segmentation

Fig. 5. Comparison between the SLM and GFN segmentations on genomic profile of chromosome 7 in
sample GBM29 of BREDEL et al. (2005) data set.
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Fig. 4. SLM segmentation of the first chromosome of V22711-4Q data.
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The LAI et al. (2005) data set is made of synthetic chromosomes with four
different aberration widths (5, 10, 20, and 40 probes) and four different signal-
to-noise ratio (SNR) levels (1, 2, 3, and 4). For each aberration width and
SNR, there are 100 independently simulated chromosomes with 100 probes in
total. Here, we considered the most challenging situation where SNR= 1 and
SNR=2.
We applied GFN-SLP with four different settings of state vector, all with 15

equally spaced states taken between the indicated extremes:

• b1= {�1.0, . . . , 1.0}

• b2= {�1.5, . . . , 1.5}

• b3= {�2.1, . . . , 2.1}

• b4= {�2.5, . . . , 2.5}

We also used the circular binary segmentation (CBS; OLSHEN et al., 2004), SLM
(MAGI et al., 2010), and HMM (Fridlyand et al., 2004) methods on these data,
and we compared their performance by generating the ROC curve. To generate
ROC curves, we calculated the true-positive rates (TPRs) and the false-positive
rates (FPRs) as in LAI et al. (2005). TPR is defined as the number of probes inside
the aberration whose fitted values are above the threshold level divided by the
number of probes in the aberration. FPR is defined as the number of probes
outside the aberration whose fitted values are above the threshold level divided
by the total number of probes outside the aberration. The results reported in
Figure 6 demonstrate that GFN-SLP outperforms the HMM algorithm in terms
of both sensitivity and specificity and obtains comparable performance than the
CBS method. The SLM algorithm by MAGI et al. (2010) outperforms the other
methods for both SNR=1 and SNR=2. The simulation study we performed also
indicates that changing the state vector b has little effect on the global performance
of our GFN-SLP algorithm.

7 Computational performance

A common drawback of segmentation algorithms is the long running time required to
segment real high-density arrays. The rapid growth of microarray size and resolution

Table 1. Confidence intervals for p and t on data set V22711-4Q

Parameter CI lower bound CI upper bound

p (99%) 0.0195 (99%) 0.0370
t (99%) 0.0472 (99%) 0.0496
p (95%) 0.0216 (95%) 0.0349
t (95%) 0.0474 (95%) 0.0493
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requires segmentation algorithms with high computational performance. For this
reason, we have tested the speed of GFN-SLP algorithm through an extensive
experimentation on synthetic chromosomes and have compared its performance with
respect to that of the other three methods. To this end, we generated synthetic
chromosomes with different numbers of alterations (from 1 to 10) and different
SNR (from 1 to 4).
We have tested the computational performances of the three algorithms on

chromosomes with sizes from 500 to 32,000 clones (and with aberration width fixed
to 30 clones).
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Fig. 6. ROC curves and area under the curve bar plot for GFN, CBS, SLM, and HMM on the synthetic
chromosomes of LAI et al. (2005) data set.
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The results of all the simulations are summarized in Figure 7. Each value of the
figure is calculated by averaging the times taken by each algorithm to segment the
chromosomes: GFN-SLP outperforms the other three segmentation methods.

Appendix A. Calculating moments

Here is the calculation of generic moments required by Propositions 1 and 2, in terms
of the moments of Nn andRf

n. We provide formulae (without derivation) also reported
in Cline’s paper, for f :X!ℝ and f :X2!ℝ, and add formulae for f :X3!ℝ, which
will be used in the proof of Lemma 1. As in Cline, we do this under the following
assumption:

1. X lð Þ
j

n o
, l 2 Λ, is a family of independent stochastic processes, each of which is

a sequence of exchangeable random elements of X.
2. {Nn} and {Λn} are sequences of i.i.d. random elements of N and Λ, respec-

tively, and are independent of each other and of X lð Þ
j

n o
Here are the formulae:
(1) for f : X ! R

E Rf
n


 � ¼ E Nn½ �E f X Λnð Þ
1

� 	h i

V Rf
n � θNn


 � ¼ E Nn½ �V f X Λnð Þ
1

� 	h i
þ E Nn Nn � 1ð Þ½ �Cov f X Λnð Þ

1

� 	
; f X Λnð Þ

2

� 	h i
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Fig. 7. Computational time comparison (in seconds) between GFN, CBS, SLM, and HMM methods.
Each value of the table is calculated by averaging the times taken by each algorithm to segment
synthetic chromosomes. We compared all the methods on chromosomes with sizes that ranges

from 500 to 32,000 clones.
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We observe that in this case the autocovariances between Rf�θ
i are all zero.

(2) for f : X2 ! R:

E Rf
n


 � ¼ E Nn � 1½ �E f X Λnð Þ
1 ;X Λnð Þ

2

� 	h i
þ E f X Λnð Þ

1 ;X Λnþ1ð Þ
1

� 	h i
:

V Rf
n � θNn


 � ¼ E Nn � 1½ �V f X Λnð Þ
1 ;X Λnð Þ

2

� 	h i
þ2E Nn � 2ð Þþ


 �
Cov f X Λnð Þ

1 ;X Λnð Þ
2

� 	
; f X Λnð Þ

2 ;X Λnð Þ
3

� 	h i

þE Nn � 2ð Þþ Nn � 3ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnð Þ

2

� 	
; f X Λnð Þ

3 ;X Λnð Þ
4

� 	h i
þV f X Λnð Þ

1 ;X Λnþ1ð Þ
1

� 	h i
þ2P Nn > 1½ �Cov f X Λnð Þ

1 ;X Λnð Þ
2

� 	
; f X Λnð Þ

2 ;X Λnþ1ð Þ
1

� 	h i

þ2E Nn � 2ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnð Þ

2

� 	
; f X Λnð Þ

3 ;X Λnþ1ð Þ
1

� 	h i

þV Nn½ � E f X Λnð Þ
1 ;X Λnð Þ

2

� 	
� θ

h i� 	2
:

The autocovariances betweenRf�θ
i are all zero, except whenRf�θ

i are consecutive
elements of the process.

Cov Rf�θ
n ;Rf�θ

nþ1

h i
¼ P Nnþ1 ¼ 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	h i

þP Nnþ1 > 1½ �Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2

� 	h i

þE Nnþ1 � 2ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ1ð Þ
3

� 	h i

þP Nnþ1 > 1½ �Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ2ð Þ
1

� 	h i
(3) for f : X3 ! R

E Rf
n


 � ¼ E Nn � 2ð Þþ

 �

E f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnð Þ
3

� 	h i
þP Nn > 1½ �E f X Λnð Þ

1 ;X Λnð Þ
2 ;X Λnþ1ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	h i
þP Nnþ1 > 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	h i
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V Rf�θ
n


 � ¼ E Nn � 2ð Þþ

 �

V f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnð Þ
3

� 	h i

þ2E Nn � 3ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnð Þ
3

� 	
; f X Λnð Þ

2 ;X Λnð Þ
3 ;X Λnð Þ

4

� 	h i

þ2E Nn � 4ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnð Þ
3

� 	
; f X Λnð Þ

3 ;X Λnð Þ
4 ;X Λnð Þ

5

� 	h i

þ2E Nn � 4ð Þþ

 �

E Nn � 5ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnð Þ
3

� 	
; f X Λnð Þ

4 ;X Λnð Þ
5 ;X Λnð Þ

6

� 	h i

þP Nn > 1½ �V f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnþ1ð Þ
1

� 	h i

þP Nnþ1 ¼ 1½ �V f X Λnð Þ
1 ;X Λnþ1ð Þ
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1
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:

In this case, there are two non-zero covariances:
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3 ;X Λnþ2ð Þ

1

� 	h i

þP Nn > 1½ �P Nnþ1 ¼ 1½ �P Nnþ2 ¼ 1½ �Cov f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnþ1ð Þ
1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1 ;X Λnþ3ð Þ

1

� 	h i

þP Nn > 1½ �P Nnþ1 > 1½ �P Nnþ2 ¼ 1½ �Cov f X Λnð Þ
1 ;X Λnð Þ

2 ;X Λnþ1ð Þ
1

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ2ð Þ
1 ;X Λnþ3ð Þ

1

� 	h i
þP Nn > 1½ �P Nnþ1 ¼ 1½ �P Nnþ2 > 1½ �Cov f X Λnð Þ

1 ;X Λnð Þ
2 ;X Λnþ1ð Þ

1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1 ;X Λnþ2ð Þ

2

� 	h i
þP Nn > 1½ �P Nnþ1 > 1½ �P Nnþ2 > 1½ �Cov f X Λnð Þ

1 ;X Λnð Þ
2 ;X Λnþ1ð Þ

1

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ2ð Þ
1 ;X Λnþ2ð Þ

2

� 	h i
þP Nnþ1 > 2½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2 ;X Λnþ1ð Þ

3

� 	h i
þP Nnþ1 > 3½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ1ð Þ
3 ;X Λnþ1ð Þ

4

� 	h i
þE Nn � 4ð Þþ

 �

Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2

� 	
; f X Λnþ1ð Þ

3 ;X Λnþ1ð Þ
4 ;X Λnþ1ð Þ

5

� 	h i
þP Nnþ1 ¼ 2½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2 ;X Λnþ2ð Þ

1

� 	h i
þP Nnþ1 ¼ 3½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ1ð Þ
3 ;X Λnþ2ð Þ

1

� 	h i
þP Nnþ1 > 3½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

3 ;X Λnþ1ð Þ
4 ;X Λnþ2ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 ¼ 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1 ;X Λnþ3ð Þ

1

� 	h i
þP Nnþ1 ¼ 2½ �P Nnþ2 ¼ 1½ �Cov f X1ð Λnð Þ;X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2 ; f X Λnþ1ð Þ

2 ;X Λnþ2ð Þ
1 ;X Λnþ3ð Þ

1

� 	h i
þP Nnþ1 > 2½ �P Nnþ2 ¼ 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

3 ;X Λnþ2ð Þ
1 ;X Λnþ3ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 > 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	
; f X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1 ;X Λnþ2ð Þ

2

� 	h i
þP Nnþ1 ¼ 2½ �P Nnþ2 > 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

2 ;X Λnþ2ð Þ
1 ;X Λnþ2ð Þ

2

� 	h i
þP Nnþ1 > 2½ �P Nnþ2 > 1½ �Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	
; f X Λnþ1ð Þ

3 ;X Λnþ2ð Þ
1 ;X Λnþ2ð Þ

2

� 	h i
þθP Nn ¼ 1½ � E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	h i
� E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	h in o
þ P Nn ¼ 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	h i
þ P Nn > 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	h in o2

�E f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ1ð Þ
2

� 	h i
� P Nn ¼ 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	h i
þ P Nn > 1½ �E f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ1ð Þ

2

� 	h in o
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Cov Rf�θ
n ;Rf�θ

nþ2


 � ¼ P Nnþ1 ¼ 1½ �P Nnþ2 > 2½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

1 ;X Λnþ2ð Þ
2 ;X Λnþ2ð Þ

3

� 	h i
þ P Nnþ1 ¼ 1½ �E Nnþ2 � 3ð Þþ


 �
�Cov f X Λnð Þ

1 ;X Λnþ1ð Þ
1 ;X Λnþ2ð Þ

1

� 	
; f X Λnþ2ð Þ

2 ;X Λnþ2ð Þ
3 ;X Λnþ2ð Þ

4

� 	h i
þ P Nnþ1 ¼ 1½ �P Nnþ2 ¼ 2½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

1 ;X Λnþ2ð Þ
2 ;X Λnþ3ð Þ

1

� 	h i
þ P Nnþ1 ¼ 1½ �P Nnþ2 > 2½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

2 ;X Λnþ2ð Þ
3 ;X Λnþ3ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 ¼ 1½ �P Nnþ3 ¼ 1½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

1 ;X Λnþ3ð Þ
1 ;X Λnþ4ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 ¼ 1½ �P Nnþ3 > 1½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

1 ;X Λnþ3ð Þ
1 ;X Λnþ3ð Þ

2

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 > 1½ �P Nnþ3 ¼ 1½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

2 ;X Λnþ3ð Þ
1 ;X Λnþ4ð Þ

1

� 	h i
þP Nnþ1 ¼ 1½ �P Nnþ2 > 1½ �P Nnþ3 > 1½ �

�Cov f X Λnð Þ
1 ;X Λnþ1ð Þ

1 ;X Λnþ2ð Þ
1

� 	
; f X Λnþ2ð Þ

2 ;X Λnþ3ð Þ
1 ;X Λnþ3ð Þ

2

� 	h i
:

The preceding formulae can be used to compute the asymptotic variances g2f1 and g
2
f2

in Lemma 1; here is a sketchy derivation:

g2f1 ¼ w0 þ 2w1

¼ 1
a1

V Rf1
n � θf1Nn


 �þ 2Cov Rf1
n � θf1Nn;R

f1
nþ1 � θf1Nnþ1

h in o

¼ 1
a1

(
a2 � 2a1 þ 1ð Þm4 þ 2a2 � 7a1 � 2pþ 6þ a2

a21

� �
t4

þ 2a1 � a2 � 1þ a2
a21

� �
m2

2 þ 2 6a1 � 2a2 þ p� 4� a2
a21

� �
m2t2 þ a2

a21
� 2

� �
m4

1

þ2 a1 � 1ð Þm1m3 þ 2 2� a1 � a2
a21

� �
m2m

2
1 þ 2 �2a1 þ 2� pþ a2

a21

� �
m2

1t
2

þ2

"
�m4

1 þ a1 � 1ð Þm1m3 þ 2� a1ð Þm2m
2
1 þ 2 1� a1ð Þm2

1t
2

#)

¼ 1
a1

(
a2 � 2a1 þ 1ð Þm4 þ 2a2 � 7a1 � 2pþ 6þ a2

a21

� �
t4 þ 2a1 � a2 � 1þ a2

a21

� �
m2

2

þ 12a1 � 4a2 þ 2p� 8� 2
a2
a21

� �
m2t2 þ a2

a21
� 4

� �
m4

1 þ 4 a1 � 1ð Þm1m3

þ2 4� 2a1 � a2
a21

� �
m2m

2
1 � 2 4a1 þ p� 4� a2

a21

� �
m2

1t
2

)
;
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g2f2 ¼ w0 þ 2w1 þ 2w2

¼ 1
a1

V Rf2
n � θf2Nn


 �þ 2 Cov Rf2
n � θf2Nn;R

f2
nþ1 � θf2Nnþ1

h i
þ 2Cov Rf2

n � θf2Nn;R
f2
nþ2 � θf2Nnþ2

h in o

¼ 1
a1

n
a2 � 4a1 þ 4� pð Þm4 þ

h
2a2 � 11a1 � 2 p3 � 5p2 þ 9p� 8

� �þ 2p 2� pð Þ 1
a1

þ 2� pð Þ2 a2
a21

i
t4

þ
h
4a1 � a2 þ 2p2 � 3p� 4þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

i
m2

2

þ
h
20a1 � 4a2 þ 2 p3 � 6p2 þ 12p� 12

� �� 4p 2� pð Þ 1
a1

� 2 2� pð Þ2 a2
a21

i
m2t2

þ
h
4 p� 2ð Þ þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

i
m4

1 þ 4 a1 þ p� 2ð Þm1m3

þ
h
� 4a1 � 2 p� 2ð Þ pþ 4ð Þ � 4p 2� pð Þ 1

a1
� 2 2� pð Þ2 a2

a21

i
m2m

2
1

þ
h
� 8a1 þ 2 2� pð Þ p2 � 3pþ 3

� �þ 4p 2� pð Þ 1
a1

þ 2 2� pð Þ2 a2
a21

i
m2

1t
2

þ2
h
� 4 1� pð Þm4

1 þ a1 2� pð Þ � 2� pð Þ2
h i

m1m3 þ a1 p� 2ð Þ þ p2 � 8pþ 8

 �

m2m
2
1

þ2 a1 p� 2ð Þ þ p2 � 3pþ 3

 �

m2
1t

2
i

þ 2
h
p p� 2ð Þm4

1 þ ½pa1 þ p p� 2ð Þ�m1m3

þ �pa1 þ 2p 2� pð Þ½ �m2m
2
1 þ �2pa1 þ p 3� pð Þ½ �m2

1t
2
io

¼ 1
a1

n
a2 � 4a1 þ 4� pð Þm4 þ

þ
h
2a2 � 11a1 � 2 p3 � 5p2 þ 9p� 8

� �þ 2� pð Þ2 a2
a21

þ 2p 2� pð Þ 1
a1

i
t4

þ
h
4a1 � a2 þ 2p2 � 3p� 4þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

i
m2

2

þ2
h
10a1 � 2a2 þ p3 � 6p2 þ 12p� 12� 2p 2� pð Þ 1

a1
� 2� pð Þ2 a2

a21

i
m2t2

þ
h
2 p2 þ 4p� 8
� �þ 2p 2� pð Þ 1

a1
þ 2� pð Þ2 a2

a21

i
m4

1 þ 8 a1 þ p� 2½ �m1m3

�2
h
4a1 þ 2 p2 þ 3p� 8

� �þ 2p 2� pð Þ 1
a1

þ 2� pð Þ2 a2
a21

i
m2m

2
1

�2
h
8a1 þ p3 � 6p2 þ 12p� 12� 2p 2� pð Þ 1

a1
� 2� pð Þ2 a2

a21

i
m2

1t
2
o
:

Finally, we compute the explicit expression of the off-diagonal terms of
C m̂1;m̂2;m̂f1 ;m̂f2ð Þ.

C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 1; 2ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 2; 1ð Þ ¼ Cov m̂1; m̂2½ �
¼ 1

a1
Cov Rx

n � θxNn;R
x2
n � θx2Nn

h i
¼ 1

a1
a2m3 � a2m1m2 þ 2m1t2 a1 � a2ð Þ� �
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C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 1; 3ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 3; 1ð Þ ¼ Cov m̂1; m̂f1


 �
¼ 1

a1

n
Cov Rx

n � θxNn;R
f1
n � θf1Nn


 �þ Cov Rx
nþ1 � θxNnþ1;R

f1
n � θf1Nn


 �o

¼ 1
a1

nh
a2 � a1ð Þm3 � a1m3

1 þ 2a1 � a2ð Þm1m2

þ 3a1 � 2a2 � 1ð Þm1t2� þ ½�a1m3
1 þ a1m1m2 þ 1� a1ð Þm1t2

io
¼ 1

a1

n
a2 � a1ð Þm3 � 2a1m3

1 þ 3a1 � a2ð Þm1m2 þ 2 a1 � a2ð Þm1t2
o

C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 2; 3ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 3; 2ð Þ ¼ Cov m̂2; m̂f1


 � ¼ 1
a1

n
Cov Rx2

n � θx2Nn;R
f1
n � θf1Nn

h i
þCov Rx2

nþ1 � θx2Nnþ1;R
f1
n � θf1Nn

h io
¼ 1

a1

nh
a2 � a1ð Þm4 þ 2 a2 � 3a1 þ 2ð Þt4 þ a1 � a2ð Þm2

2

þ4 2a1 � a2 � 1ð Þm2t2 þ a1m1m3 � a1m2m
2
1 þ 2 1� a1ð Þm2

1t
2
i

þ
h
aim1m3 � a1m2m

2
1 þ 2 1� a1ð Þm2

1t
2
io

¼ 1
a1

n
a2 � a1ð Þm4 þ 2 a2 � 3a1 þ 2ð Þt4 þ a1 � a2ð Þm2

2

þ4 2a1 � a2 � 1ð Þm2t2 þ 2a1m1m3 � 2a1m2m
2
1 þ 4 1� a1ð Þm2

1t
2
o

C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 1; 4ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 4; 1ð Þ ¼ Cov m̂1; m̂f2


 �
¼ 1

a1

n
Cov Rx

n � θxNn;R
f2
n � θf2Nn


 �þ Cov Rx
nþ1 � θxNnþ1;R

f2
n � θf2Nn


 �
þCov Rx

nþ2 � θxNnþ2;R
f2
n � θf2Nn


 �o
¼ 1

a1

nh
a2 � 2a1 þ pð Þm3 � 2a1 � pð Þm3

1 þ 4a1 � a2 � 2pð Þm1m2

þ2 2a1 � a2 � 1ð Þm1t2
i
þ
h
pa1 � 2a1 þ pð Þm3

1

þ 2a1 � pa1 � pð Þm1m2 þ pa1 � 2a1 þ 2� pð Þm1t2
i

þ
h
� pa1m3

1 þ pa1m1m2 þ p 1� a1ð Þm1t2
io

¼ 1
a1

n
a2 � 2a1 þ pð Þm3 � 4a1 � 2pð Þm3

1 þ 6a1 � a2 � 3pð Þm1m2

þ2 a1 � a2ð Þm1t2
o

C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 2; 4ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 4; 2ð Þ ¼ Cov m̂2; m̂f2


 �
¼ 1

a1

n
Cov Rx2

n � θx2Nn;R
f2
n � θf2Nn

h i
þ Cov Rx2

nþ1 � θx2Nnþ1;R
f2
n � θf2Nn

h i
þCov Rx2

nþ2 � θx2Nnþ2;R
f2
n � θf2Nn

h io
¼ 1

a1

nh
a2 � 2a1 þ pð Þm4 þ 2 a2 � 4a1 � pþ 4ð Þt4 þ 2a1 � a2 � pð Þm2

2

þ4 3a1 � a2 � 2ð Þm2t2 þ 2a1 � pð Þm1m3 þ p� 2a1ð Þm2m
2
1

þ4 1� a1ð Þm2
1t

2
i
þ
h
2a1 � pa1 � pð Þm1m3 þ pa1 � 2a1 þ pð Þm2m

2
1

þ2 pa1 � 2a1 � pþ 2ð Þm2
1t

2
i

þ
h
pa1m1m3 � pa1m2m

2
1 þ 2p 1� a1ð Þm2

1t
2
io

¼ 1
a1

n
a2 � 2a1 þ pð Þm4 þ 2 a2 � 4a1 � pþ 4ð Þt4 þ 2a1 � a2 � pð Þm2

2

þ4 3a1 � a2 � 2ð Þm2t2 þ 2 2a1 � pð Þm1m3 þ 2 p� 2a1ð Þm2m
2
1

þ8 1� a1ð Þm2
1t

2
o
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C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 3; 4ð Þ ¼ C m̂1;m̂2;m̂f1 ;m̂f2ð Þ 4; 3ð Þ ¼ Cov m̂f1 ; m̂f2


 �

¼ 1
a1

(
Cov Rf1

n � θf1Nn;R
f2
n � θf2Nn


 �þ Cov Rf1
nþ1 � θf1Nnþ1;R

f2
n � θf2Nn

h i

þCov Rf1
nþ2 � θf1Nnþ2;R

f2
n � θf2Nn

h i

þCov Rf1
n�1 � θf1Nn�1;R

f2
n � θf2Nn

h i)

¼ 1
a1

nh
a2 � 3a1 þ 2ð Þm4

þ 2a2 � 10a1 þ 2p2 � 8pþ 12þ p
1
a1

þ 2� pð Þ a2
a21

� �
t4

þ 3a1 � a2 � 2p� 2þ p
1
a1

þ 2� pð Þ a2
a21

� �
m2

2

þ2 8a1 � 2a2 � p2 þ 5p� 8� p
1
a1

� 2� pð Þ a2
a21

� �
m2t2

þ p� 4þ p
1
a1

þ 2� pð Þ a2
a21

� �
m4

1 þ 3a1 þ p� 4ð Þm1m3

þ 8� 3a1 � 2p
1
a1

þ 2 p� 2ð Þ a2
a21

� �
m2m

2
1

þ2 �3a1 þ p2 � 4pþ 4þ p
1
a1

þ 2� pð Þ a2
a21

� �
m2

1t
2
i

þ
h
p� 2ð Þm4

1 þ a1 � 1ð Þ 2� pð Þm1m3 þ 2� pð Þ 2� a1ð Þm2m
2
1

þ 2a1 p� 2ð Þ þ 5� 3p½ �m2
1t

2
i

þ
h
� pm4

1 þ p a1 � 1ð Þm1m3 þ p 2� a1ð Þm2m
2
1 þ 2p 1� a1ð Þm2

1t
2
i

þ
h
p� 2ð Þm4

1 þ a1 þ p� 2ð Þm1m3 � a1 þ 2p� 4ð Þm2m
2
1

þ �2a1 � pþ 3ð Þm2
1t

2
io

¼ 1
a1

(
a2 � 3a1 þ 2ð Þm4

þ 2a2 � 10a1 þ 2p2 � 8pþ 12þ p
1
a1

þ 2� pð Þ a2
a21

 �
t4

þ 3a1 � a2 � 2p� 2þ p
1
a1

þ 2� pð Þ a2
a21

 �
m2

2

þ2 8a1 � 2a2 � p2 þ 5p� 8� p
1
a1

� 2� pð Þ a2
a21

 �
m2t2

þ 2p� 8þ p
1
a1

þ 2� pð Þ a2
a21

 �
m4

1

þ2 3a1 þ p� 4ð Þm1m3 � 2 3a1 þ p� 8þ p
1
a1

þ 2� pð Þ a2
a21

 �
m2m

2
1

þ2 �6a1 þ p2 � 5pþ 8þ p
1
a1

þ 2� pð Þ a2
a21

 �
m2

1t
2

)
:
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Appendix B. Correcting Cline’s error

CLINE’s paper (1983) assumes normality of the level distribution and thus derives
formulae under that assumption. Such formulae can be derived by those computed
here, in particular from those expressed only in terms of p, which appears also in
CLINE (1983), t, appearing in CLINE (1983) with a different parametrization, and
mi’s, which are the moments of the level distribution and can thus be derived in terms
of Cline’s parameters. The needed parameter change is thus

p ¼ p
t2 ¼ 1� rð Þs2

m1 ¼ m1 ¼ m
m2 ¼ m2 þ t2 ¼ m2 þ s2

m3 ¼ m3 þ 3m1t
2 ¼ m3 þ 3ms2

m4 ¼ m4 þ 6m2t
2 þ 3t4 ¼ m4 þ 6m2s2 þ 3s4:

We thus checked all of Cline’s expressions, finding two errors, which we report to
make Cline’s formulae directly usable.
The first error concernsCov Rx

n � θxNn;Rf1
n � θf1Nn


 �
, and it is simply a typo because

the subsequent formulae use the correct expression:

Cov Rx
n � θxNn;Rf1

n � θf1Nn


 � ¼ a2 � a1ð Þm3 � a1m3
1 þ 2a1 � a2ð Þm1m2

þ 3a1 � 2a2 � 1ð Þm1t2

¼ 1
p

2� pð Þ þ r
1� pð Þ 4� pð Þ

p

 �
ms2

where the first equality follows from the GFN model , whereas the second is the one
with GNN parameters.
Instead, the second error is not directly comparable with one of our asymptotic

value as it appears in calculation of asymptotic distribution of the second
autocovariances present in Cline but not in our model. However, it can be retrieved
by calculating the asymptotic variance of the autocovariance g2, as it is denoted in
Cline paper, through a multidimensional delta method characterized by the following
elements: the function

g2 : R2 ! R
m̂1; m̂f2

� �
↦ g2 ¼ m̂f2 � m̂2

1

whose gradient is rg2 m1; ;mf2

� � ¼ �2m1; 1ð Þ and the variance–covariance matrix

C m̂1;;m̂f2ð Þ ¼
g21 Cov m̂1; ; m̂f2


 �
Cov m̂1; ; m̂f2


 �
g2f2

 �
:

where all elements are already known. Then it follows that
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V g2½ � ¼ 1
n
rg2C m̂1;;m̂f2ð Þrgt2 ¼

s4

n
1þ 1� pð Þ4 2r� 5r2

� �þ 4
1� pð Þ2

p
r2

" #

where the second equality is obtained by replacing the GFN-SLM parameters with
the GNN-SLM ones.
We finally verify that the formula in CLINE (1983) is incorrect. This can be easily

observed in the case p=1; this is a perfectly acceptable range of parameters for the
GNN-SLM model, whereas our derivation, albeit carried out on the assumption that
p< 1, does not actually depend on that assumption for V[g1] and V[g2]. In such case,
the Xi’s are independent, and thus, there should be no difference between the two
autocovariances defined by Cline, g1 and g2. As a consequence, the asymptotic distri-
butions of ĝ1 and ĝ2 should be the same, and in particular, the two asymptotic vari-
ances should be the same, that is, V[g1] =V[g2]. We report in the following the two
expressions as they appear in Cline:

V g1½ � ¼ s4

n
1þ 2r� 3r2

� �
1� pð Þ2 þ 2 1� pð Þ 2� pð Þ

p
r2

 �

V g2½ � ¼ s4

n
1þ 2r� 5r2

� �
1� pð Þ4 þ 2r2

1� pð Þ2 þ 2� pð Þ2 � 1� pð Þ4
p 2� pð Þ

" #( )

If we evaluate the latter expression for p=1, we obtain thatV g2½ � ¼ 1þ 2r2ð Þs4n , in-
stead of the value V g1½ � ¼ s4

n , which coincides with that of the variance V[g2] that we
have calculated earlier.

REFERENCES

BAYANI, J., S. SELVARAJAH, G. MAIRE, B. VUKOVIC, K. AL-ROMAIH, M. ZIELENSKA and
J. A. SQUIRE (2007), Genomic mechanisms and measurement of structural and numerical
instability in cancer cells, Seminars in Cancer Biology 17, 5–18

BENELLI, M., G. MARSEGLIA, G. NANNETTI, R. PARAVIDINO, F. ZARA, F. D. BRICARELLI,
F. TORRICELLI and A. MAGI (2010), A very fast and accurate method for calling aberrations
in array-CGH data, Biostatistics 11, 515–518

BREDEL, M., C. BREDEL, D. JURIC, G. R. HARSH, H. VOGEL, L. D. RECHT and B. I. SIKIC
(2005), High-resolution genomic-wide mapping of genetic alterations in human glial brain
tumors, Cancer Research 65, 4088–4096.

CARTER N. P. (2007), Methods and strategies for analyzing copy number variation using DNA
microarrays, Nature Genetics 39, S16–S21.

CHERNOFF, H. and S. ZACKS (1964), Estimating the current mean of a normal distribution
which is subjected to change in time. The Annals of Mathematical Statistics 35, 999–1018.

CLINE, D. B. H. (1983), Limit theorems for the shifting level process, Journal of Applied
probability 20, 322–337.

FORNEY, G. D. (1973), The Viterbi algorithm, Proceedings of the IEEE 61, 268–278.
FORTIN, V. and A. KEHAGIAS (2006), Time series segmentation with shifting means hidden
Markov models. Nonlinear Processes in Geophysics 13, 135–163.

FRIDLYAND, J., A. M. SNIJDERS, D. PINKEL, D. G. A. ALBERTSON and A. N. JAIN (2004),
HiddenMarkov models approach to the analysis of array-CGH data, Journal of Multivariate
Analysis 90, 132–153.

GFN-SLP moment estimation 261

© 2013 The Authors. Statistica Neerlandica © 2013 VVS.



HUPE P., N. STRANSKY, J. P. THIERY, F. RADVANYI and E. BARILLOT (2004), Analysis of
array CGH data: from signal ratio to gain and loss of DNA regions, Bioinformatics 20,
3413–3422.

LAI, W. R. R., M. D. D. JOHNSON, R. KUCHERLAPATI and P. J. J. PARK (2005), Compara-
tive analysis of algorithms for identifying amplifications and deletions in array-CGH data,
Bioinformatics 21, 3763–3770.

LEPRETRE, F., C. VILLENET, S. QUIEF, O. NIBOUREL, C. JACQUEMIN, X. TROUSSARD,
F. JARDIN, F. GIBSON, J. P. KERCKAERT, C. ROUMIER and M. FIGEAC (2010), Waved
aCGH: to smooth or not to smooth, Nucleic Acids Research 38, e94.

LIU, X. S. (2007), Getting started in tiling microarray analysis, PLoS Computational Biology
3, e183, 1842–1844.

MAGI, A., M. BENELLI, G. MARSEGLIA, G. NANNETTI, M. R. SCORDO and F. TORRICELLI
(2010), A shifting level model algorithm that identifies aberrations in array-CGH data.
Biostatistics 11(2), 265.

MYERS C. L., M. J. DUNHAM, S. Y. KUNG and O. G. TROYANSKAYA (2004), Accurate detec-
tion of aneuploidies in array CGH and gene expression microarray data, Bioinformatics 20,
3533–3543.

OLSHEN, A. B., E. S. VENKATRAMAN, R. LUCITO and M. WIGLER (2004), Circular
binary segmentation for the analysis of array-based DNA copy number data, Biostatistics
5, 557–72.

OOSTLANDER, A. E., G. A. MEIJER and B. YLSTRA (2004), Microarray-based comparative
genomic hybridization and its applications in human genetics, Clinical Genetics 66, 488–495.

PICARD, F., S. ROBIN, M. LAVIELLE, C. VAISSE and J.-J. DAUDIN (2005), A statistical
approach for array CGH data analysis, BMC Bioinformatics 6, 1–14.

SALAS, J. D. and D. C. BOES (1980), Shifting level modelling of hydrologic time series,
Advances in Water Resources 3, 59–63.

VAN DE WIEL, M., I. K. KIM, S. J. VOSSE, W. N. VAN WIERINGEN, S. M. WILTING and
B. YLSTRA (2007), CGHcall: calling aberrations for array CGH tumor profiles, Bioinformatics
7, 892–894.

YOON, S., Z. XUAN, V. MAKAROV, K. YE and J. SEBAT (2009), Sensitive and accurate detec-
tion of copy number variants using read depth of coverage, Genome Research 19, 1586–1592.

Received: 30 January 2011. Revised: 31 January 2013.

262 A. Gandolfi et al.

© 2013 The Authors. Statistica Neerlandica © 2013 VVS.


