
07 May 2024

From 2D Orthographic views to 3D Pseudo-Wireframe: an Automatic Procedure /
R.Furferi;L.Governi;M.Palai;Y.Volpe. - In: INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. - ISSN
0975-8887. - STAMPA. - 5(6):(2010), pp. 18-24. [10.5120/918-1296]

Original Citation:

From 2D Orthographic views to 3D Pseudo-Wireframe: an Automatic
Procedure

Published version:
10.5120/918-1296

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/391901 since:

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

18

From 2D Orthographic views to 3D Pseudo-Wireframe:

An Automatic Procedure

Rocco Furferi*

rocco.furferi@unifi.it

Lapo Governi*
lapo.governi@unifi.it

Matteo Palai*

matteo.palai@unifi.it

Yary Volpe*

yary.volpe@unifi.it

* Università degli Studi di Firenze
DMTI – Department of Mechanics and Industrial Technologies

ABSTRACT

Three-dimensional CAD models are usually used by designers

because of their multiple uses (visualization, simulation,

machining). However, nowadays, multi orthographic view

engineering drawings are still widely used. Accordingly, a

conversion tool for obtaining 3D CAD models from 2D drawings

(known as the ”reconstruction problem”) is a very useful approach

in a broad range of applications. The significant interest for the

reconstruction problem is witnessed by the large number of works

presented in the last three decades. The main object of the present

work, by integrating different approaches suggested by a number

of authors and rearranging them into an orderly, unambiguous and

automatic procedure, is to provide a tool to help researchers and

practitioners who want to deal with the reconstruction problem.

In detail the authors propose a systematic tool that allows the

reconstruction of a 3D pseudo-wireframe starting from a 2D

vectorial input. Such a tool is discussed in detail and has been

implemented into MatLab® environment in order to validate and

test the procedures. Extensive testing, carried out on a number of

case studies, has demonstrated the effectiveness of the presented

approach.

Keywords

3D reconstruction, pseudo-wireframe, engineering drawings,

computational geometry.

1. INTRODUCTION
3D CAD modelers are recognized as one of the mostly used tool

in engineering design. Both solid and surface CAD models have

become crucial for a large number of CAE techniques (e.g.

visualization, simulation, CNC machining, …). Anyway, multi

orthographic view engineering drawings have been widely used

up to latest decade and still are, so they play an essential role in

traditional engineering. Actually, many products are still designed

by means of orthographic views. Moreover, many engineering

tasks involve modification of existing design, thus an automatic

tool for reconstructing a 3D CAD model, starting from multi

orthographic view engineering drawings, would prove to be

particularly useful in many applications. In addition to its research

significance, this kind of tool would ease a number of practical

issues, mostly in the field of automatic conversion of digitized

engineering drawings into 3D CAD models.

In the past three decades many scientific studies have been carried

out confronting this topic, that has come to be known as

geometrical reconstruction or simply reconstruction problem. The

reconstruction problem has been studied since the first 1970s and

a large number of works can be found in scientific literature.

These can be divided in two different families:

1. wireframe-oriented approaches, that are also known as

B-rep (Boundary representation) methods;

2. volume-oriented approaches, also called CSG

(Constructive Solid Geometry) methods.

A useful review of relevant published works, regarding both B-rep

and CSG approaches, is provided by two recent publications [1,

2]. Recently the preferred approach for performing 3D

reconstruction has been the B-rep based one. This is mainly due to

the fact that the CSG approach is less suitable to support complex

shapes and usually requires heavier user interaction compared to

the B-rep one.

It is commonly accepted that the reconstruction problem can be

split into two main phases: the first is the reconstruction of the

pseudo-wireframe model (set of all possible wireframe models

that can be originated by an assigned set of orthographic views

[3]); the second is the reconstruction of the 3D solid (or surface)

model(s) from the obtained pseudo-wireframe model and coherent

with the assigned orthographic views [4].

This work focuses on the first phase, i.e. the reconstruction of the

pseudo-wireframe model. In spite of the huge literature on the

reconstruction problem, almost all methods, proposed by several

different authors, are mainly described by a conceptual point of

view, so that to derive an orderly procedure covering the

necessary steps from 2D data to pseudo-wireframe model always

requires a great effort and a considerable amount of work. The

most challenging tasks that are to be faced, when trying to derive

such a procedure are related to the presence of ambiguities in the

methodology description and to the lack in enumerating all

possible cases that can be found when having to deal with real-life

drawings. For instance, Yan et al. [5] describe a conceptually

flawless method to detect 3D edges on the basis of a table of

possible configurations; nevertheless such a method has to be

improved by adding more new configurations in order to derive a

comprehensive and unambiguous operative procedure.

The aim of the present work is to provide researchers and

practitioners with an orderly and automatic procedure enabling a

straightforward implementation of the pseudo-wireframe model

reconstruction. The works proposed by the scientific literature,

which confront the reconstruction problem for curvilinear objects

usually present, quite ''tricky'' approaches, generally involving

heavy user interaction [6, 7, 8, 9]. At the moment, though very

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

19

interesting and promising, such approaches are not well

established in the scientific community. Since existing approaches

are certainly better recognized in the case of polyhedric objects,

the authors decided to confront the reconstruction problem for

this kind of geometric entities. The proposed method, though

inspired by a number of studies [3, 4, 5, 10], makes use of an

original approach oriented to the implementation task mentioned

above.

Since the method developed by the authors, based on the B-rep

approach, is oriented toward a systematic (step by step)

description, computational optimization is intentionally neglected

in order to make the procedure as more comprehensible and

intuitive as possible.

In the paper, after the description of the procedure (from 2D data

input to pseudo-wireframe model reconstruction), obtained results

are presented by means of some reconstruction examples. Finally,

some hints to possible future work are provided.

2. METHOD
As described in the previous section, the main objective of the

present work is to provide an automatic procedure for

reconstructing a pseudo-wireframe model starting from a set of

2D projections. More in detail, the devised method uses a DXF

file, as input, and provides, as output, a 3D pseudo-wireframe

model. According to [11], a representation of a drawing can be

generated in some neutral file formats such as DXF (Drawing

Exchange Format) developed by Autodesk. This format, compiled

in binary or ASCII formats, allows to share CAD drawings among

several different CAD software packages.

Given three projections of an object in the DXF format, the

detection of each entity (line, circle, etc.) composing it is

straightforward.

Unfortunately, such a file format does not provide topological

information, i.e. the entities in a DXF file are in no logical order

so that no explicit information regarding their connectivity is

accessible. In other words the information regarding the spatial

position of each projection (and of all the edges lying on it) is not

available in the DXF file. For such a reason, a method for

separating the drawing into three views is needed before further

processing can take place. If i
Π is defined as the thi projection

(1,2,3i) in the orthographic view system, several approaches

for separating the three views can be used (e.g. [11]).

By using one of these approaches, the result is the creation of two

families of sets:

1. iV , with 1,2,3i , represent the three sets of vertices, each

one corresponding to a projection in the orthographic view

system (i.e. iV is the set of vertices of i
Π).

2. i
E , with 1,2,3i , represent the three sets of edges, each

one corresponding to a projection in the orthographic view

system (i.e. i
E is the set of edges of i

Π).

On the basis of the six sets described above,

() [, ,]i i i i i

j j j jj x y zV ν represents the thj vertex in the thi

orthographic view.

By definition, each vertex lies on one of the coordinate planes.

Consequently, one of the elements of i

jν is always equal to zero

(see Figure 1).

Figure 1. 3D projected object

The thj edge in the thi orthographic view is identified by its two

vertices i

hν and i

kν as follows:

2 3

i

i h

j i

k

ν
e

ν
 (1)

The three views can be expressed as follows:

1 1 1 1

1 2

2 2 2 2

1 2

3 3 3 3

1 2

, ,...,

, ,...,

, ,...,

T

a
a

T

b
b

T

c
c

Π e e e

Π e e e

Π e e e

 (2)

where a , b and c are, respectively, the number of edges in 1
Π ,

2
Π and 3

Π .

Finally the set of orthographic projections may be defined as:

 1 2 3, ,
T

OBJ Π Π Π (3)

where the size of matrix OBJ is 2 2 2 3a b c .

In this pre-processing task, three more matrices are generated,

one for each projection, containing the coordinates of the

projection vertices. These structures can be represented as

follows:

1 1 1 1

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 2 3

[, ,...,]

[, ,...,]

[, ,...,]

T

T

T

V ν ν ν

V ν ν ν

V ν ν ν

 (4)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

20

Where , and are respectively the number of vertices in
1

Π , 2
Π and 3

Π .

It is important to emphasize that the data structure described

above may also be obtained starting from a different data source

like, for instance, a vectorial database provided by the use of

image processing techniques. In this case the only difference is in

the edge extraction procedure. For this reason the approach

described in the next task may be considered as stand-alone.

2.1 3D reconstruction of edges and vertices
Pre-processed data may be manipulated in order to generate a

mathematical representation of the 3D pseudo-wireframe model.

With the aim of obtaining such a model, a series of tasks has to be

carried out:

1. labeling of vertices;

2. topological representation of edges;

3. intermediate vertices and collinear edges;

4. vertices and edges in the 3D space.

Though the first task allows to label 2D vertices, is necessary to

verify that vertex sets of each projection are complete. Due to the

drawing procedure, as a matter of fact, it is possible that some

intersecting edges do not share any vertex. For such a reason,

before labeling vertices, is necessary to check for the existence of

possible additional 2D ones. In order to perform this task, in each

projection, each couple of edges is checked for intersection and

the sets are consequently updated.

2.1.1 Labeling of vertices
Once known the set of orthographic projections, it is possible to

perform a reconstruction of vertices and edges in the 3D space.

Anyway the data structure defined above may result in a large

amount of data to be treated, especially for complex polyhedric

objects. In order to reduce the information to be processed, a

conversion of the geometric data into topological ones is

mandatory in order to obtain an acceptable computational

efficiency.

Accordingly, it is possible to create a topological data structure

starting by labeling each vertex of each projection with a

progressive number. As a result we obtain:

 , ,i i i i i

n n n n nx y z nν ν (5)

2.1.2 Labeling of edges
Each edge may be defined by means of the set of labels of its

vertices. As a consequence each edge i

je can be rewritten as

follows:

1 2

2 3

, ,
,

, ,

i i i

i i i ih h h

j ji i i

k k k

x y z
h k

x y z
e e (6)

Accordingly, only 3 parameters (, ,h k i) are now used to properly

identify each edge instead of 7 parameters previously defined

(, , , , , ,i i i i i i

h h h k k kx y z x y z i).

Moreover the size of the matrix OBJ becomes () 2a b c

instead of 2 () 3a b c .

2.1.3 Intermediate vertices and collinear edges
Though an object is represented by a univocal set of projections,

these can be drawn by using different combination of geometric

entities: the segment highlighted in Figure 2b (as shown, for

instance, in a printed copy of the drawing) in the DXF file can be

made up of a number of straight vectors (from 1 to 8 as shown in

Figure 3a).

Such combination of vectors, anyway, is uncorrelated with the

one which would be generated by the projection of the object's 3D

edges lying on the plane orthogonal to the view and whose trace

contains the original segment (Figure 2a). In other words, the

same projection can be represented by different DXF files.

Therefore, an approach for the processing of different DXF files

of the same drawn object is provided, in order to obtain a

univocally defined vectorial representation, comprising all the

possible configurations.

First, for each edge, an iterative procedure checks for the possible

existence of intermediate vertices. If no intermediate vertex is

found, the procedure stops. Otherwise the found intermediate

vertex causes the creation of two new edges (unless one of them

already exists). This task, called ''segmentation'', is performed for

each set of edges belonging to a projection, thus adding new

edges to the original set. Referring to Figure 2b, supposing that

the portion of projection highlighted is represented by the

configuration ''B'' of Figure 3a, the ''segmentation'' process

produce the results shown in Figure 3b.

(a) Plane of projection (b) Projected view

Figure 2. Projection on an orthogonal view

Particularly, it is important to note that two new edges,

highlighted in Figure 3b, have been generated in the projection.

Note that any of the old edges is substituted or deleted after the

''segmentation'' procedure. For each projection 1
Π , 2

Π and 3
Π

the dimension of the sets of edges is updated.

(a) Possible combinations of edges (b) ”Segmentation” procedure

Figure 3. “Segmentation” procedure

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

21

According to the above procedure, the results of the segmentation

task applied to the highlighted part of the projection in Figure 2b,

are shown in Figure 3b. Thus, the two highlighted edges in have

been added to the set of edge.

After the ''segmentation'' task, a check of collinearity of edges is

performed. As shown in Figure 4, this phase is fundamental when

two non contiguous vertices are linked by two or more edges all

collinear one with each other.

Figure 4. “Collinearity” procedure

If this check is neglected (or inaccurate) it could happen that two

visually identical projections are described by two different

datasets. When a collinearity of edges is detected, a new set of

edges is added to the original one as described below. The

collinearity can be detected as the logical product of

concatenation (two edges sharing the same vertex) and

parallelism. This logical process allows a reliable and

straightforward approach for collinearity detection.

In order to describe the concatenation and parallelism relationship

among the edges, the following two matrices has been defined:

1. the concatenation matrix iCM of the projection i
Π ;

2. the parallelism matrix i
PM of the projection i

Π .

Since a single projection can be considered as a planar graph [12],

matrices iCM are defined similarly to the adjacency matrix in

graph theory.

Accordingly, each matrix iCM is a logical matrix whose

elements ,s ti
CM are equal to 1 when the ths and the tht edges of

i
Π are concatenated and equal to 0 elsewhere. Matrices i

PM are

also logical and their elements ,s ti
PM are equal to 1 when

parallelism subsists between the ths and the tht edges of i
Π and

0 elsewhere.

In order to further clarify the structure of these matrices an

example is provided in Figure 5. More in detail the example is

referred to the projection depicted in Figure 5a.

The collinearity between edges may be defined by the matrices
iC (Figure 5d) obtained as the element by element product

between matrices iCM and i
PM , as illustrated in the example of

Figure 5. Obviously, the collinearity between the ths and the tht

edges in the i
Π projection subsists only when the element of

matrix iC (i.e. ,s ti
C) is equal to 1.

(a) Input data (b) CM matrix

(c) CP matrix (d) C matrix

Figure 5. “Collinearity” datasets

It is important to remark that the elements of the matrices iC

represent the collinearity relationship only for a couple of adjacent

edges. In order to check such relationship for more than two

adjacent edges, further processing is necessary. If matrices iC are

all zero matrices, no collinear edges exists in the three projections.

Otherwise each non zero matrix iC has to be checked column by

column, starting from the top of the matrix, in order to detect all

the collinear set of edges.

The final result of this procedure is to redefine the matrices iC so

that the position of nonzero elements in each column represent the

collinear edges. All the permutations of the collinear edges that

are not already stored in the matrices i
Π are then appended as

new edges.

2.1.4 Vertices and edges in the 3D space
Once obtained a database of edges and vertices for each

projection view, it is possible to build a pseudo vertex skeleton.

According to the widely known approach proposed by Wesley

and Markowsky [3] the set of vertices found by means of this

approach is a super-set of the real vertices defining all the possible

solutions of 3D models. This set, represented by Λ matrix, is

known as the pseudo vertex skeleton.

An additional check verifies the possible presence of multiple

identical rows λ Λ ; these possible row groups are so simplified

and only one of them is preserved inside the matrix Λ . The result

of this task is a new dataset structured as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

22

1 2 3

1 1 1 1 1 1

1 2 3

6

x y z v v v

x y z v v v

Λ (7)

where, for each row, the first three elements represent the spatial

coordinates of the 3D vertex while the 4th, 5th and the 6th element

identify, respectively, the 3D vertex projection on 1
Π , 2

Π and
3

Π .

Once the matrix Λ has been compiled, four additional phases are

required to accomplish the 3D edges construction task:

1. Construction of 3D edges that are not orthogonal to any

projection;

2. Construction of 3D edges that are orthogonal to 1
Π ;

3. Construction of 3D edges that are orthogonal to 2
Π ;

4. Construction of 3D edges that are orthogonal to 3
Π .

In order to construct 3D edges that are not orthogonal to any

projection, for each 3D vertex λ a set of edges of 1
Π , sharing the

4 2D vertex, is stored in a temporary vector ω . For each 2D

edge
1

4 , h ω , the procedure extracts all the rows λ so

that 1

4 h
 and stores them in the Ξ temporary matrix, defined

as follows:

1 2 3

1 1 1 1 1 1 1

1 2 3

7

t x y z v v v

t x y z v v v

Ξ T | Λ (8)

where T allows to link each row between matrices Ξ and Λ .

For all the combination between λ and each row ζ Ξ the

following conditions are evaluated:

1. 2

5 6,e Π (9)

2. 3

6 7,e Π (10)

If these two conditions are verified, the 3D edge, delimited by λ

and ζ , is appended to the list of 3D edges Θ .

At the end of the above procedure, matrix Θ contains only 3D

edges that are not orthogonal to any projection; therefore a further

procedure to construct 3D edges that are orthogonal to each

coordinate planes (1
Π , 2

Π , 3
Π) has to be performed.

For instance, referring to 1
Π , such a procedure can be explained

as follow. For each 3D vertex λ the procedure extracts all the

rows λ Λ so that 4 4 and stores them in the Ξ temporary

matrix, defined in eq. 8.

For all the combination between two rows ,h kζ ζ Ξ the

following conditions are evaluated:

1. 2

,5 ,5,h ke Π (11)

2. 3

,6 ,6,h ke Π (12)

If these two conditions are verified, the 3D edge, delimited by
hζ

and
kζ , is appended to the list of 3D edges Θ .

The result of these phases consists of two sets. One of them, Λ ,

represents the list of 3D vertices, while the second one, Θ ,

represent the list of 3D edges.

Such sets mathematically represent, eventually, the pseudo-

wireframe model of the object.

3. RESULTS
The mathematical procedure provided in section 2 has been

implemented into the MatLab® environment. The resulting

software has been thoroughly tested with a large number of case

studies.

The test process has been carried out as follows:

Step 1: development of a 3D model for each object selected for

the test (see Figure 6);

Figure 6. 3D model (Step 1)

Step 2: extraction of the orthographic projections from the 3D

model, in the form of a DXF file, (see Figure 7);

Figure 7. Orthographic projections (Step 2)

Step 3: processing of the DXF file by means of the presented

reconstruction procedure thereby obtaining the test object's

pseudo-wireframe (see Figure 8);

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

23

Figure 8. Pseudo-wireframe model (Step 3)

Step 4: comparison between the test object's actual wireframe

model and its pseudo-wireframe one.

More in detail, in Step 4, it is necessary to prove that:

- the actual wireframe model is a subset of the obtained

pseudo-wireframe one;

- the exceeding edges (which can be found in the second

model, but not in the first) can be projected on segments

actually existing in the orthographic projections

obtained in Step 2.

In Figure 9 and Figure 10, the results of pseudo-wireframe model

reconstruction for a small selection of examples are presented.

(a) 3D model (b) Orthographic projections

(c) Pseudo-wireframe model (d) Wireframe model
Figure 9. Reconstruction example - case A

(a) 3D model (b) Orthographic projections

(c) Pseudo-wireframe model (d) Wireframe model
Figure 10. Reconstruction example- case B

4. CONCLUSIONS
In this work an orderly, unambiguous and automatic procedure to

cope with the reconstruction problem from the implementation

point of view is provided. Particularly, the proposed method

allows the reconstruction of the pseudo-wireframe starting from

2D vectorial data.

 The presented procedure has been designed like a support tool for

researchers who want to deal with the reconstruction.

In order to assess its effectiveness, the procedure has been

implemented using Matlab programming language and tested on a

number of case studies. The presented results demonstrate the

functionality and the reliability of the provided method. Future

work will be addressed to the second phase of the reconstruction

problem; accordingly it will deal with the reconstruction of 3D

solid (or surface) model(s) starting from the pseudo-wireframe

ones, obtained by means of the presented procedure.

REFERENCES
[1] Company, P., Piquer, A., and Contero M, Mnaya, F., 2005.

“A survey on geometrical reconstruction as a core

technology to sketch-based modeling”. Computers &

Graphics, 29(6), pp. 892–904.

[2] Fahiem, M. A., Haq, S. a., and Saleemi, F., 2007. “A Review

of 3D Reconstruction Techniques from 2D Orthographic

Line Drawings”. Geometric Modeling and Imaging (GMAI

’07), July, pp. 60–66.

[3] Wesley, M., and Markowsky, G., 1981. “Fleshing out

projections”. IBM Journal of Research and Development,

25(6), pp. 934–954.

[4] Wesley, M., and Markowsky, G., 1980. “Fleshing out wire

frames”. IBM Journal of Research and Development, 24(5),

pp. 582–597.

[5] Yan, Q., Chen, C., and Tang, Z., 1994. “Efficient algorithm

for the reconstruction of 3D objects from orthographic

projections”. Computer-Aided Design, 26(9), pp. 699–717.
[6] Gong, J., Zhang, G., Zhang, H., and Sun, J., 2006.

“Reconstruction of 3D curvilinear wire-frame from three

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.6, August 2010

24

orthographic views”. Computers & Graphics, 30(2), pp. 213–

224.

[7] Zhang, A., Xue, Y., Sun, X., Hu, Y., Luo, Y.,Wang, Y.,

Zhong, S.,Wang, J., Tang, J., and Cai, G., 2004.

Reconstruction of 3D Curvilinear Wireframe Model from 2D

Orthographic Views.

[8] Inoue, K., Shimada, K., and Chilaka, K., 2003. “Solid Model

Reconstruction of Wireframe CAD Models Based on

Topological Embeddings of Planar Graphs”. Journal of

Mechanical Design, 125(3), September, pp. 434–442.

[9] Liu, S. et Al., 2001. “Reconstruction of curved solids from

engineering drawings”. Computer-Aided Design, 33(14), pp.

1059–1072.

[10] Gujar, U. G., and Nagendra, I., 1989. “Construction of 3D

solid objects from orthographic views”. Computers &

Graphics, 13(4), pp. 505–521.

[11] Meeran, S., and Pratt, M., 1993. “Automated feature

recognition from2D drawings”. Computer-Aided Design,

25(1), pp. 7–17.

[12] Diestel, R., 2006. Graph Theory. Springer.

