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ABSTRACT 

Three-dimensional CAD models are usually used by designers 

because of their multiple uses (visualization, simulation, 

machining). However, nowadays, multi orthographic view 

engineering drawings are still widely used. Accordingly, a 

conversion tool for obtaining 3D CAD models from 2D drawings 

(known as the ”reconstruction problem”) is a very useful approach 

in a broad range of applications. The significant interest for the 

reconstruction problem is witnessed by the large number of works 

presented in the last three decades. The main object of the present 

work, by  integrating different approaches suggested by a number 

of authors and rearranging them into an orderly, unambiguous and 

automatic procedure, is to provide a tool to help researchers and 

practitioners who want to deal with the reconstruction problem.  

In detail the authors propose a systematic tool that allows the 

reconstruction of a 3D pseudo-wireframe starting from a 2D 

vectorial input. Such a tool is discussed in detail and has been 

implemented into MatLab®  environment in order to validate and 

test the procedures. Extensive testing, carried out on a number of 

case studies, has demonstrated the effectiveness of the presented 

approach. 

Keywords 

3D reconstruction, pseudo-wireframe, engineering drawings, 

computational geometry. 

1. INTRODUCTION 
3D CAD modelers are recognized as one of the mostly used tool 

in engineering design. Both solid and surface CAD models have 

become crucial for a large number of CAE techniques (e.g. 

visualization, simulation, CNC machining, …). Anyway, multi 

orthographic view engineering drawings have been widely used 

up to latest decade and still are, so they play an essential role in 

traditional engineering. Actually, many products are still designed 

by means of orthographic views. Moreover, many engineering 

tasks involve modification of existing design, thus an automatic 

tool for reconstructing a 3D CAD model, starting from multi 

orthographic view engineering drawings, would prove to be 

particularly useful in many applications. In addition to its research 

significance, this kind of tool would ease a number of practical 

issues, mostly in the field of automatic conversion of digitized 

engineering drawings into 3D CAD models.  

In the past three decades many scientific studies have been carried 

out confronting this topic, that has come to be known as 

geometrical reconstruction or simply reconstruction problem. The 

reconstruction problem has been studied since the first 1970s and 

a large number of works can be found in scientific literature. 

These can be divided in two different families: 

1. wireframe-oriented approaches, that are also known as 

B-rep (Boundary representation) methods; 

2. volume-oriented approaches, also called  CSG 

(Constructive Solid Geometry) methods. 

A useful review of relevant published works, regarding both B-rep 

and CSG approaches, is provided by two recent publications [1, 

2]. Recently the preferred approach for performing 3D 

reconstruction has been the B-rep based one. This is mainly due to 

the fact that the CSG approach is less suitable to support complex 

shapes and usually requires heavier user interaction compared to 

the B-rep one.  

It is commonly accepted that the reconstruction problem can be 

split into two main phases: the first is the reconstruction of the 

pseudo-wireframe model (set of all possible wireframe models 

that can be originated by an assigned set of orthographic views 

[3]); the second is the reconstruction of the 3D solid (or surface) 

model(s) from the obtained pseudo-wireframe model and coherent 

with the assigned orthographic views [4].  

This work focuses on the first phase, i.e. the reconstruction of the 

pseudo-wireframe model. In spite of the huge literature on the 

reconstruction problem, almost all methods, proposed by several 

different authors, are mainly described by a conceptual point of 

view, so that to derive an orderly procedure covering the 

necessary steps from 2D data to pseudo-wireframe model always 

requires a great effort and a considerable amount of work. The 

most challenging tasks that are to be faced, when trying to derive 

such a  procedure are related to the presence of ambiguities in the 

methodology description and to the lack in enumerating all 

possible cases that can be found when having to deal with real-life 

drawings. For instance, Yan et al. [5] describe a conceptually 

flawless method to detect 3D edges on the basis of a table of 

possible configurations; nevertheless such a method has to be 

improved by adding more new configurations in order to derive a 

comprehensive and unambiguous operative procedure. 

The aim of the present work is to provide researchers and 

practitioners with an orderly and automatic procedure enabling a 

straightforward implementation of the pseudo-wireframe model 

reconstruction. The works proposed by the scientific literature, 

which confront the reconstruction problem for curvilinear objects 

usually present, quite ''tricky'' approaches, generally involving 

heavy user interaction [6, 7, 8, 9]. At the moment, though very 
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interesting and promising, such approaches are not well 

established in the scientific community. Since existing approaches 

are certainly better recognized in the case of polyhedric objects, 

the authors decided to confront the reconstruction problem for 

this kind of geometric entities. The proposed method, though 

inspired by a number of studies [3, 4, 5, 10], makes use of an 

original approach oriented to the implementation task mentioned 

above.  

Since the method developed by the authors, based on the B-rep 

approach, is oriented toward a systematic (step by step) 

description, computational optimization is intentionally neglected 

in order to make the procedure as more comprehensible and 

intuitive as possible. 

In the paper, after the description of the procedure (from 2D data 

input to pseudo-wireframe model reconstruction), obtained results 

are presented by means of some reconstruction examples. Finally, 

some hints to possible future work are provided. 

2. METHOD 
As described in the previous section, the main objective of the 

present work is to provide an automatic procedure for 

reconstructing a pseudo-wireframe model starting from a set of 

2D projections. More in detail, the devised method uses a DXF 

file, as input, and provides, as output, a 3D pseudo-wireframe 

model. According to [11], a representation of a drawing can be 

generated in some neutral file formats such as DXF (Drawing 

Exchange Format) developed by Autodesk. This format, compiled 

in binary or ASCII formats, allows to share CAD drawings among 

several different CAD software packages. 

Given three projections of an object in the DXF format, the  

detection of each entity (line, circle, etc.) composing it is 

straightforward.  

Unfortunately, such a file format does not provide topological 

information, i.e. the entities in a DXF file are in no logical order 

so that no explicit information regarding their connectivity is 

accessible. In other words the information regarding the spatial 

position of each projection (and of all the edges lying on it) is not 

available in the DXF file. For such a reason, a method for 

separating the drawing into three views is needed before further 

processing can take place. If i
Π  is defined as the thi projection 

( 1,2,3i ) in the orthographic view system, several approaches 

for separating the three views can be used (e.g. [11]). 

By using one of these approaches, the result is the creation of two 

families of sets: 

1. iV , with 1,2,3i , represent the three sets of vertices, each 

one corresponding to a projection in the orthographic view 

system (i.e. iV  is the set of vertices of i
Π ). 

2. i
E , with 1,2,3i , represent the three sets of edges, each 

one corresponding to a projection in the orthographic view 

system (i.e. i
E  is the set of edges of i

Π ). 

On the basis of the six sets described above, 

( ) [ , , ]i i i i i

j j j jj x y zV ν  represents the thj  vertex in the thi  

orthographic view. 

By definition, each vertex lies on one of the coordinate planes. 

Consequently, one of the elements of i

jν  is always equal to zero 

(see Figure 1). 

 

 

Figure 1. 3D projected object 

 

The thj  edge in the thi  orthographic view is identified by its two 

vertices i

hν  and i

kν as follows: 
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The three views can be expressed as follows: 
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where a , b  and c  are, respectively,  the number of edges in 1
Π , 

2
Π and 3

Π .  

Finally the set of orthographic projections may be defined as: 

 1 2 3, ,
T

OBJ Π Π Π  (3) 

where the size of matrix OBJ  is 2 2 2 3a b c .  

In this pre-processing task, three more matrices   are generated, 

one for each projection, containing the coordinates of the 

projection vertices. These structures can be represented as 

follows: 
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Where ,  and  are respectively the number of vertices in 
1

Π , 2
Π   and 3

Π .  

It is important to emphasize that the data structure described 

above may also be obtained starting from a different data source 

like, for instance, a vectorial database provided by the use of 

image processing techniques. In this case the only difference is in 

the edge extraction procedure. For this reason the approach 

described in the next task may be considered as stand-alone. 

2.1 3D reconstruction of edges and vertices 
Pre-processed data may be manipulated in order to generate a 

mathematical representation of the 3D pseudo-wireframe model. 

With the aim of obtaining such a model, a series of tasks has to be 

carried out: 

1. labeling of vertices; 

2. topological representation of edges; 

3. intermediate vertices and collinear edges; 

4. vertices and edges in the 3D space. 

Though the first task allows to label 2D vertices, is necessary to 

verify that vertex sets of each projection are complete. Due to the 

drawing procedure, as a matter of fact, it is possible that some 

intersecting edges do not share any vertex. For such a reason, 

before labeling vertices, is necessary to check for the existence of 

possible additional 2D ones. In order to perform this task, in each 

projection, each couple of edges is checked for intersection and 

the sets are consequently updated. 

2.1.1 Labeling of vertices 
Once known the set of orthographic projections,  it is possible to 

perform a reconstruction of vertices and edges in the 3D space. 

Anyway the data structure defined above may result in a large 

amount of data to be treated, especially for complex polyhedric 

objects. In order to reduce the information to be processed, a 

conversion of the geometric data into topological ones is 

mandatory in order to obtain an acceptable computational 

efficiency. 

Accordingly, it is possible to create a topological data structure 

starting by labeling each vertex of each projection with a 

progressive number. As a result we obtain: 

 , ,i i i i i

n n n n nx y z nν ν  (5) 

2.1.2 Labeling of edges 
Each edge may be defined by means of the set of labels of its 

vertices. As a consequence each edge i

je  can be rewritten as 

follows: 

 
1 2

2 3

, ,
,

, ,

i i i

i i i ih h h

j ji i i

k k k

x y z
h k

x y z
e e  (6) 

Accordingly, only 3 parameters ( , ,h k i ) are now used to properly 

identify each edge instead of 7 parameters previously defined 

( , , , , , ,i i i i i i

h h h k k kx y z x y z i ). 

Moreover the size of the matrix OBJ  becomes ( ) 2a b c  

instead of 2 ( ) 3a b c . 

2.1.3 Intermediate vertices and collinear edges 
Though an object is represented by a univocal set of projections, 

these can be drawn by using different combination of geometric 

entities: the segment highlighted in Figure 2b (as shown, for 

instance, in a printed copy of the drawing) in the DXF file can be 

made up of a number of straight vectors (from 1 to 8 as shown in 

Figure 3a). 

Such combination of vectors, anyway, is uncorrelated with the 

one which would be generated by the projection of the object's 3D 

edges lying on the plane orthogonal to the view and whose trace 

contains the original segment (Figure 2a). In other words, the 

same projection can be represented by different DXF files. 

Therefore, an approach for the processing of different DXF files 

of the same drawn object is provided, in order to obtain a 

univocally defined vectorial representation, comprising all the 

possible configurations. 

First, for each edge, an iterative procedure checks for the possible 

existence of intermediate vertices. If no intermediate vertex is 

found, the procedure stops. Otherwise the found intermediate 

vertex causes the  creation of two new edges (unless one of them 

already exists). This task, called ''segmentation'', is performed for 

each set of edges belonging to a projection, thus adding new 

edges to the original set. Referring to Figure 2b, supposing that 

the portion of projection highlighted is represented by the 

configuration ''B'' of Figure 3a, the ''segmentation'' process 

produce the results shown in Figure 3b.  

 

 
 

(a) Plane of projection (b) Projected view 

Figure 2. Projection on an orthogonal view 

 

Particularly, it is important to note that two new edges, 

highlighted in Figure 3b, have been generated in the projection. 

Note that any of the old edges is substituted or deleted after the 

''segmentation'' procedure. For each projection 1
Π , 2

Π   and 3
Π  

the dimension of the sets of edges is updated. 

 

 

  

(a) Possible combinations of edges (b) ”Segmentation” procedure 

Figure 3. “Segmentation” procedure 
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According to the above procedure, the results of the segmentation 

task applied to the highlighted part of the projection in Figure 2b, 

are shown in Figure 3b. Thus, the two highlighted edges in have 

been added to the set of edge. 

After the ''segmentation'' task, a check of collinearity of edges is 

performed. As shown in Figure 4, this phase is fundamental when 

two non contiguous vertices are linked by two or more edges all 

collinear one with each other.  

 

 

Figure 4.  “Collinearity” procedure 

 

If this check is neglected (or inaccurate) it could happen that two 

visually identical projections are described by two different 

datasets. When a collinearity of edges is detected, a new set of 

edges is added to the original one as described below. The 

collinearity can be detected as the logical product of 

concatenation (two edges sharing the same vertex) and 

parallelism. This logical process allows a reliable and 

straightforward approach for collinearity detection. 

In order to describe the concatenation and parallelism relationship 

among the edges, the following two matrices has been defined: 

1. the concatenation matrix iCM  of the projection i
Π  ; 

2. the parallelism matrix i
PM  of the projection i

Π . 

Since a single projection can be considered as a planar graph [12], 

matrices iCM  are defined similarly to the adjacency matrix in 

graph theory.  

Accordingly, each matrix iCM  is a logical matrix whose 

elements ,s ti
CM  are equal to 1 when the ths  and the tht  edges of 

i
Π  are concatenated and equal to 0 elsewhere. Matrices i

PM  are 

also logical and their elements ,s ti
PM  are equal to 1 when  

parallelism subsists between the ths  and the tht   edges of i
Π  and 

0 elsewhere.  

In order to further clarify the structure of these matrices an 

example is provided in Figure 5. More in detail the example is 

referred to the projection depicted in Figure 5a. 

The collinearity between edges may be defined by the matrices 
iC  (Figure 5d) obtained as the element by element product 

between matrices iCM  and i
PM , as illustrated in the example of 

Figure 5. Obviously, the collinearity between the ths  and the tht   

edges in the i
Π   projection subsists only when the element of 

matrix iC   (i.e. ,s ti
C  ) is equal to 1.  

 

 

 

(a) Input data (b) CM matrix 

  

(c) CP matrix (d) C matrix 

Figure 5. “Collinearity” datasets 

 

It is important to remark that the elements of the matrices iC  

represent the collinearity relationship only for a couple of adjacent 

edges. In order to check such relationship for more than two 

adjacent edges, further processing is necessary. If matrices iC  are 

all zero matrices, no collinear edges exists in the three projections. 

Otherwise each non zero matrix iC  has to be checked column by 

column, starting from the top of the matrix, in order to detect all 

the collinear set of edges. 

The final result of this procedure is to redefine the matrices iC  so 

that the position of nonzero elements in each column represent the 

collinear edges. All the permutations of the collinear edges that 

are not already stored in the matrices i
Π  are then appended as 

new edges. 

2.1.4 Vertices and edges in the 3D space 
Once obtained a database of edges and vertices for each 

projection view, it is possible to build a pseudo vertex skeleton. 

According to the widely known approach proposed by Wesley 

and Markowsky [3] the set of vertices found by means of this 

approach is a super-set of the real vertices defining all the possible 

solutions of 3D models. This set, represented by Λ  matrix, is 

known as the pseudo vertex skeleton. 

An additional check verifies the  possible presence of multiple 

identical rows λ Λ ; these possible row groups are so simplified 

and only one of them is preserved inside the matrix Λ . The result 

of this task is a new dataset structured as follows: 
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1 2 3

1 1 1 1 1 1

1 2 3

6

x y z v v v

x y z v v v

Λ        (7) 

where, for each row, the first three elements represent the spatial 

coordinates of the 3D vertex while the 4th, 5th and the 6th element 

identify, respectively, the 3D vertex projection on 1
Π ,  2

Π   and 
3

Π . 

Once the matrix Λ  has been compiled, four additional phases are 

required to accomplish the 3D edges construction task: 

1. Construction of 3D edges that are not orthogonal to any 

projection; 

2. Construction of 3D edges that are orthogonal to 1
Π ; 

3. Construction of 3D edges that are orthogonal to 2
Π ; 

4. Construction of 3D edges that are orthogonal to 3
Π .  

In order to construct 3D edges that are not orthogonal to any 

projection, for each 3D vertex λ  a set of edges of 1
Π , sharing the 

4  2D vertex, is stored in a temporary vector ω . For each 2D 

edge 
1

4 , h ω , the procedure extracts all the rows λ  so 

that 1

4 h
 and stores them in the Ξ  temporary matrix, defined 

as follows: 

 

1 2 3

1 1 1 1 1 1 1

1 2 3

7

t x y z v v v

t x y z v v v

Ξ T | Λ         (8) 

where T  allows to link each row between matrices Ξ  and Λ . 

For all the combination between λ  and each row ζ Ξ  the 

following conditions are evaluated: 

1. 2

5 6,e Π  (9) 

2. 3

6 7,e Π   (10) 

If these two conditions are verified, the 3D edge, delimited by λ  

and ζ , is appended to the list of 3D edges Θ . 

At the end of the above procedure, matrix Θ  contains only 3D 

edges that are not orthogonal to any projection; therefore a further 

procedure to construct 3D edges that are orthogonal to each 

coordinate planes ( 1
Π , 2

Π , 3
Π ) has to be performed. 

For instance, referring to 1
Π , such a procedure can be explained 

as follow. For each 3D vertex λ  the procedure extracts all the 

rows λ Λ  so that 4 4  and stores them in the Ξ  temporary 

matrix, defined in eq. 8. 

For all the combination between two rows ,h kζ ζ Ξ  the 

following conditions are evaluated: 

1. 2

,5 ,5,h ke Π  (11) 

2. 3

,6 ,6,h ke Π   (12) 

If these two conditions are verified, the 3D edge, delimited by 
hζ  

and 
kζ , is appended to the list of 3D edges Θ . 

The result of these phases consists of two sets. One of them,  Λ , 

represents the list of 3D vertices, while the second one, Θ , 

represent the list of 3D edges. 

Such sets mathematically represent, eventually, the pseudo-

wireframe model of the object. 

3. RESULTS 
The mathematical procedure provided in section 2 has been 

implemented into the MatLab® environment. The resulting 

software has been thoroughly tested with a large number of case 

studies.  

The test process has been carried out as follows: 

Step 1: development of a 3D model for each object selected for 

the test (see Figure 6); 

 

 

Figure 6. 3D model (Step 1)  

 

Step 2: extraction of the orthographic projections from the 3D 

model, in the form of a DXF file, (see Figure 7); 

 

 

Figure 7. Orthographic projections (Step 2) 

 

Step 3: processing of the DXF file by means of the presented 

reconstruction procedure thereby obtaining the test object's 

pseudo-wireframe (see Figure 8); 
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Figure 8. Pseudo-wireframe model (Step 3) 

 

Step 4: comparison between the test object's actual wireframe 

model and its pseudo-wireframe one. 

More in detail, in Step 4, it is necessary to prove that: 

- the actual wireframe model is a subset of the obtained 

pseudo-wireframe one; 

- the exceeding edges (which can be found in the second 

model, but not in the first) can be projected on segments 

actually existing in the orthographic projections 

obtained in Step 2. 

In Figure 9 and Figure 10, the results of pseudo-wireframe model 

reconstruction for a small selection of examples are presented. 

 

  

(a) 3D model (b) Orthographic projections 

  

(c) Pseudo-wireframe model (d) Wireframe model 
Figure 9. Reconstruction example - case A 

 

  

(a) 3D model (b) Orthographic projections 

  

(c) Pseudo-wireframe model (d) Wireframe model 
Figure 10. Reconstruction example- case B 

 

4. CONCLUSIONS 
In this work an orderly, unambiguous and automatic procedure to 

cope with the reconstruction problem from the implementation 

point of view is provided. Particularly, the proposed method 

allows the reconstruction of the pseudo-wireframe starting from 

2D vectorial data.  

 The presented procedure has been designed like a support tool for 

researchers who want to deal with the reconstruction. 

In order to assess its effectiveness, the procedure has been 

implemented using Matlab programming language and tested on a 

number of case studies. The presented results demonstrate the 

functionality and the reliability of the provided method. Future 

work will be addressed to the second phase of the reconstruction 

problem; accordingly it will deal with the reconstruction of 3D 

solid (or surface) model(s) starting from the pseudo-wireframe 

ones, obtained by means of the presented procedure. 
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