
20 January 2025

Modelling Variability, Evolvability, and Adaptability in Service Computing (a vision for future research) /
M.H. ter Beek; S. Gnesi; A. Fantechi; G. Zavattaro. - STAMPA. - (2010), pp. 0-0. (Intervento presentato al
convegno ACOTA 2010 tenutosi a Antwerp, Belgium nel September 20-21).

Original Citation:

Modelling Variability, Evolvability, and Adaptability in Service
Computing (a vision for future research)

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/395969 since:

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access



Modelling Variability, Evolvability, and Adaptability
in Service Computing

(a vision for future research)

M.H. ter Beek, S. Gnesi
ISTI–CNR, Pisa, Italy

{terbeek,gnesi}@isti.cnr.it

A. Fantechi
Università di Firenze, Italy

fantechi@dsi.unifi.it

G. Zavattaro
Università di Bologna, Italy

zavattar@cs.unibo.it

Abstract—We present a vision for future research on an
emerging topic in software engineering, namely the synergy
between Software Product Line Engineering (SPLE) and Service-
Oriented Computing (SOC). Our aim is to develop rigorous
modelling techniques and analysis and verification tools that can
be used for the systematic, large-scale provision and market
segmentation of software services. We foresee flexible design
techniques with which software service line organizations can
develop novel classes of service-oriented applications that can
easily be adapted to customer requirements as well as to changes
in the context in which, and while, they execute. By superposing
variability mechanisms on current languages for service design,
based on policies and strategies defined by service providers, we
envision the possibility to identify variability points that can be
triggered at run time to increase adaptability and optimize the
(re)use of resources.

I. INTRODUCTION

Product Line Engineering (PLE) is a paradigm to develop
a family of products using a common platform and mass
customization [34]. This engineering approach aims to lower
production costs of the individual products by letting them
share an overall reference model of the product family, while at
the same time allowing them to differ with respect to particular
characteristics in order to serve, e.g., different markets. As
a result, the production process in PLE is organized so as
to maximize commonalities of the products and at the same
time minimize the cost of variations. The product variants can
be derived from the product family, which allows reuse and
differentiation of products of the family. Software Product Line
Engineering (SPLE) is a paradigm for developing a diversity
of software products and software-intensive systems based
on the underlying architecture of an organization’s product
platform [11], [38].

Service-Oriented Computing (SOC) has emerged as an
evolutionary new paradigm for distributed and object-oriented
computing [37], [39]. Services are autonomous, distributed,
and platform-independent computational elements capable of
solving specific tasks (ranging from answers to simple requests
to complex business processes) which all need to be described,
published, categorized, discovered, and then dynamically and
loosely coupled in novel ways (composed, orchestrated) so
as to create largely distributed, interoperable, and dynamic
applications and business processes which span organizational
boundaries as well as computing platforms. In the end, service-

oriented systems deliver application functionalities as services
to either end-user applications or other services. Their under-
lying infrastructures are called Service-Oriented Architectures
(SOAs). Unlike any earlier computing paradigm, SOC is des-
tined to exert a continuous influence on modern day domains
like e-Commerce, e-Government, e-Health, and e-Learning.

In this paper, we present a vision for future research on an
emerging topic in software engineering, namely the synergy
between SPLE and SOC [6], [12], [20], [22]–[27], [29], [40].
Our aim is to develop rigorous modelling techniques as well as
analysis and verification tools that can be used for the system-
atic, large-scale provision and market segmentation of software
services. We foresee flexible design techniques with which
software service line organizations can develop novel classes
of service-oriented applications that can easily be adapted to
customer requirements as well as to changes in the context
in which, and while, they execute. By superposing variability
mechanisms on current languages for service design, based
on policies and strategies defined by service providers, we
envision the possibility to identify variability points that can
be triggered at run-time to increase adaptability and optimize
the (re)use of resources. The resulting design techniques and
support tools will be able to assist organizations to plan,
optimize, and control the quality of software service provision,
both at design- and at run-time. We currently do not aim
to assist also the early requirements engineering phase of
system modelling; instead, the reader is referred to [20] and
its references for work on enhancing the i∗ framework with
variability modelling capabilities.

Our concrete proposal is to first focus on the definition of
the formal modelling framework, with a threefold objective:

1) the extension of (semi)formal existing notations and
languages for SOC with notions of variability through
which increased levels of flexibility and adaptability can
be achieved in software service provision;

2) the definition of a rigorous semantics of variability
over behavioural models of services that can support a
number of design- and run-time analysis techniques;

3) the development of analysis and verification techniques
that remain effective over specifications with variability
points, including situations in which the variability is
triggered at run-time.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

14



As a motivating example, consider a case study drawn from
daily academic life, namely a software system that supports the
teaching activities of a university. This system is constituted
by a set of services offered to the teachers, to the students and
to the university staff, following a SOC paradigm. Migration
of such a system to a different university will introduce some
changes due to the different governance structure, different
size, and/or different teaching organization.

A product family, or product line, can therefore be envisaged
to encompass all possible variants. Hence, a definition of
a service-oriented product line is needed. This product line
definition should be able to cope with static variability, which
is confined to deal with the difference between universities.
However, the evolution of laws introduce another form of
variability, namely dynamic variability, which needs to be
addressed in order to make the system adaptable to the
evolution of its environment.

II. BEYOND THE STATE OF THE ART

The SPLE and SOC approaches to software development
share a common goal: Both encourage an organization to
reuse existing assets and capabilities rather than repeatedly
redevelop them for new software systems. These approaches
enable organizations to capitalize on reuse to achieve desired
benefits such as productivity gains, decreased development
costs, improved time-to-market, higher reliability, and com-
petitive advantage. Their distinct goals may be stated as
follows [40].

SPLE Systematically capture and exploit commonalities
among a set of related systems, while managing
variations for specific customers or market segments;

SOC Enable the assembly, orchestration, and maintenance
of enterprise solutions to quickly react to changing
business requirements.

Contributions concerning the connection between SPLE and
SOC are starting to emerge in the software engineering
community [6], [20], [22]–[25], [29] and a recent workshop
series [12], [26], [27] examines the connection between SOA
and SPL approaches with the purpose of answering how the
two techniques can benefit from each other. Indeed service-
oriented systems can benefit from SPL’s variation management
approaches to identify and design services targeted to multiple
service-oriented systems.

In [6] an approach is proposed to transfer the main pecu-
liarities of a SPL (i.e., asset reuse and variation mechanisms)
to service-oriented systems development, in order to realize
a service-oriented systems line. In this way, a method is
provided to easily adapt a service-oriented application to
different customer needs in changeable environments. The
service-oriented systems line consists of two main phases
using respectively the Business Process Lines concept, that
allows realizing a process variant specifically for the given
requirements and the Process-Oriented Development paradigm
that allows automating this model and transforming it into a
service-oriented system.

In [24] the application of dynamic product line practices
is proposed to facilitate the design of service-based systems.
Atomic services are used to represent basic system features.
A composition of such services creates a configuration, which
is a product of the product line. The requirements of an
application are modelled in terms of a feature diagram during
a domain analysis phase, while distinguishing between atomic
and composite features. The entire system is built from atomic
features, mapped directly onto a set of existing services.

In [29] feature analysis and service analysis are combined
into a method to guide developers to developed service-
oriented product lines. While the methods inherits the flexibil-
ity from service orientation, it still allows to manage variability
through SPLE techniques. It comes with an architectural model
for the systematic development of service-oriented product
lines, and with support for dynamic reconfiguration.

We envision to go beyond the state-of-the-art of the con-
nection between SPLE and SOC, with a twofold objective:

1) to provide a full formal model of such connections, with
verification techniques based upon them;

2) to address run-time adaptability by extending the scope
of the flexibility that can be achieved by introducing
variability in service definitions.

III. OVERALL STRATEGY

The primary objective of the research we envision is to
add variability and adaptability to the principles of SOC.
The strategy is, in the first instance, to inherit from SPLE
mechanisms to include variability notions in a software arti-
fact. A crosscutting concern is to guarantee basic correctness
assumptions of the provided services, in terms of certain
desired qualitative and quantitative properties, by means of
formal modelling of variability and adaptability. The ratio-
nale is that families of services should be formally defined
with a service-oriented description language such as, e.g,
UML4SOA (www.uml4soa.eu), BPEL 2.0 (www.oasis-open.
org/committees/wsbpel) and/or JOLIE (www.jolie-lang.org),
suitably extended to deal with variability and adaptability.
Current service-oriented languages do not support (or support
in a very limited form) the possibility to configure, adapt, and
reconfigure the specified system. Subsequently, the extension
along the same lines of the formal verification techniques
already available for such languages, will provide the possibil-
ity to conduct formal property verification on service-oriented
specifications that include variability.

In our vision, variability needs to be investigated from
several points of view:

1) The formal modelling of variability and evolvability;
2) The linguistic mechanisms to express variability in

service-oriented descriptions;
3) The development of formal verification techniques and

tools for service-oriented systems utilizing variability.

We now provide details on how to pursue these three issues.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

15



A. Modelling Variability and Evolvability

To address the aforementioned crosscutting concern on
correctness, we need to provide a formal model of service
lines that is able to capture the notion of variability, i.e., it
is able to express the variations that certain characteristics
of services can be subject to. To this aim, the basics of
variability modelling need to be investigated in connection
with the formal modelling of SOAs.

A common reference model for the behaviour of a service
in SOC computing is based on Labelled Transition Systems
(LTSs): A service is defined as a state machine that interacts
with its clients and with other services, and such interactions
may trigger a transition to a different state.

An extension of LTSs, called Modal Transition Systems
(MTSs), has been proposed as a formal model for product
families [19], [28], allowing one to embed in a single model
the behaviour of a family of products that share the basic
structure of states and transitions, transitions which can more-
over be seen as mandatory or possible for the products of the
family. In [17], the MTS concept has been pushed to a more
general form, allowing more precise modelling of the different
kinds of variability that can typically be found in the definition
of a product family.

On the other hand, deontic logics [1], [30], [32], [33],
[41] have recently become popular in computer science for
formalizing descriptional and behavioural aspects of systems.
This is mainly because they provide a natural way to for-
malize concepts like violation, obligation, permission, and
prohibition. Intuitively, they permit one to distinguish between
correct (normative) states and actions on the one hand and
non-compliant states and actions on the other hand. This
makes deontic logic a natural candidate for expressing the
conformance of members of a family of products with respect
to variability rules.

A first goal is therefore to establish a common reference
model that develops these concepts to fully take into account
the peculiarities of SOC and the characteristics of SPLE.
When the modelling of variability in SOC is consolidated,
the reference model will be extended to address run-time
adaptability. However, this is a challenging task that can only
be attacked when the modelling of variability in SOC is fully
understood (cf. Sect. III-C).

A second, future goal is to model not only functional
variability but also quality attribute variability in SPLE [16].
In particular, it would be interesting to study how to model
and maintain certain Quality of Service (QoS) levels and
QoS-aware service composition in the presence of variability,
evolvability, and adaptability [31], [36].

B. Extending Service-Oriented Languages

The idea is to investigate the extensions/modifications that
need to be applied to current service-oriented languages in
order to support both static and dynamic variability. It is nec-
essary to revisit choreography, orchestration, and behavioural
contract languages.

Concerning static variability, we need to investigate the most
effective ways to include constructs in the languages to express
so-called variation points, i.e., the points where a single
service, or a choreography, or an orchestration, admit different
variants. The choice of variants is made at configuration time
(i.e., product derivation time), hence we expect that a single
product respects the syntax of the considered language.

A particular role can be played in this regard by behavioural
contracts. Behavioural contracts have been independently in-
troduced in SOC by various authors (see, e.g., [7]–[9] and
the references therein), and represent an abstraction of the
expected behaviour of a service according to its main observ-
able features: a notion of compliance is also defined, to verify
that a service actually presents the abstraction required by the
contract. Indeed, the very same definition of contract entails
a definition of a family of services: the family of all services
that are compliant to the contract. Hence, one of the possible
ways to express variability is just an invocation to a service
compliant to a contract, leaving free the binding to an actual
service at configuration time.

Regarding dynamic variability, several directions of investi-
gation can be pursued. For instance, we plan to study two
different scenarios: predictable and unpredictable updates.
In general, a dynamic update is triggered by some specific
events indicating the necessity to modify the system. If the
modifications to be applied are known at design-time (i.e.,
they are predictable), then it is possible to program such
modifications using mechanisms similar to fault-handling in
standard languages. On the other hand, if the modifications to
be applied to the system are not known at design-time (i.e.,
they are unpredictable), then it is not only necessary to extend
the language, but the system architecture needs to be changed
by adding specific components that we call reconfiguration
managers.

First of all, we can address it by including in the language
evolution hooks, i.e., information on part of the system struc-
ture or behaviour on which modifications could be applied,
allowing the programmer specify points that could be affected
by future system reconfigurations. A reconfiguration manager
is responsible for catching the events indicating the necessity
to reconfigure the system, and then it reacts by applying the
required modifications to the evolution hooks. In our vision, a
reconfiguration manager should follow some update rules that
can be dynamically modified, thus giving the possibility to
inject in the system new adaptation policies that were unknown
at design-time.

The dynamic variability logic should be developed sep-
arately, e.g., as a set of evolution rules. Such rules could
be created/changed after the application has been deployed
without affecting the running application. Evolution should
be enacted by an evolution manager, possibly composed by
different evolution servers. At run-time, such servers should
check the environment conditions and the user needs, control
whether some modification has to be applied to the application,
and exploit the evolution hooks provided by the application to
reconfigure it.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

16



Based on the extended languages, also the theories already
developed for choreographies, orchestrators, and behavioural
contracts need to be revisited. These three distinct aspects
of SOC are strictly related. For instance, one could extract
from choreographies the behavioural contracts of the involved
services, or verify whether or not an orchestrator respects a
behavioural contract. The theories relating these aspects need
to be revisited in order to cope with variability.

In particular, variability of the system architecture can be
more easily expressed with choreography languages. In the
case of dynamic variability, in order for the reconfiguration to
take place, the modifications must be applied to the running
services. Therefore, appropriate projection functions must be
defined which can automatically obtain, from the variability
expressed with choreography languages, the modifications to
be applied to the evolution hooks of the relevant services.
Moreover, current behavioural contract theories have to be
enhanced in order to include also dynamic checks that are able
to verify, at reconfiguration time, whether or not the modified
system still preserves some expected properties such as service
compliance.

These proposed enhancements to SOC languages have to
be validated by experimenting them on an existing SOC
framework, like JOLIE (www.jolie-lang.org). JOLIE is a fully
fledged orchestration language that already includes some
form of dynamic variability such as the possibility to rebind
service ports or replace internal services. The goal in this
case is to extend JOLIE with evolution hooks, to define a
choreography language for JOLIE applications, and to assess
the developed behavioural contract theories by applying them
to this specific JOLIE-based framework.

C. Develop Verification Techniques/Tools

The combination and extension of the ideas underlying the
modelling and verification techniques and tools that have been
developed in the SOC domain with those from the SPLE do-
main, will have the aim of developing analysis and verification
techniques that support design-time verification and validation,
run-time monitoring, and verification of flexible and adaptable
services. The fact that the resulting analysis and verification
techniques should still be effective over specifications with
variability points, including situations of variability triggered
at run-time, requires particular care.

A first concern is the analysis of abstract properties (quali-
tative and possibly quantitative) both at the level of the family
specification and at that of their derived products. Exemplary
qualitative properties of services are [18]:

Availability: a service is always capable of accepting a
request;
Responsiveness: a service guarantees a response to each
received request;
Reliability: a service guarantees a successful response to
each received request.

Quantitative properties instead include QoS properties based
on a notion such as cost, as well as classical quantitative
properties, stating that certain properties hold within a given

probability bound. Recent results on the verification of such
quantitative and qualitative properties on service descrip-
tions [4], [5], [13]–[15], [18] can be adapted in order to be able
to deal not only with single services, but directly with service
family specifications. In this way we can factorize both the
time and the cost that is needed to verify products that have
been correctly derived from a family definition.

A second, related, concern will be the adoption of specific
analysis and verification techniques aimed at proving correct
derivations of products from a service family definition [2]. We
have already mentioned (in Sect. 3.1) the recent interest raised
by deontic logics for the modelling of variability. Indeed,
some work [2], [3] has been done on the use of deontic-
style logics for modelling notions of variability in product
family descriptions, in two different directions: characterizing
feature models by direct modelling of constraints over the
products of a family, and proposing behavioural extensions
of deontic-style logics. A behavioural extension of a deontic-
style logic permits one to express in a unique framework
both behavioural aspects, using standard branching-time logic
operators, and static constraints over the products of a family
(usually a separate expression in a first-order logic is required).
Proper variants of established model checkers, like CMC
(fmt.isti.cnr.it/cmc), must be defined as automatic verification
tools for checking such properties.

A third concern is the introduction of run-time adaptability,
which presents a big challenge for the off-line verification
by model checking [10]. This question requires innovative
verification techniques and a deep understanding of the re-
lation between sought service properties and variability in the
definition of services. For instance, a typical question can be
whether a SOA satisfies a given property, irrespective of which
variant has actually been chosen, or of which evolution is
occurring inside the architecture. Finally, variability is used
differently in adaptive system modelling. For product lines,
a particular set of variants is chosen at compile time (or at
deployment time) while for an adaptive system variability has
to be available and managed also at run-time [35]. A possible
way out is thus to represent the product family architecture at
run-time [21].

IV. APPLICATION DOMAINS

The research activity envisioned in this paper will produce
innovative elements to be used in the definition of a design
and development methodology for the systematic large-scale
production of software systems and their market segmentation.
These innovative elements will consist of the definition of
techniques for the flexible modelling and design of software
adaptability, by means of which it will be possible to develop
services families. These are new classes of service-based
applications, easily derivable from the definition of the family
through adaptation to client needs or to modification of the
specific context for which the application has been deployed.

We can refer to the motivating example already introduced
in Sect. 1, i.e. a software system that supports the teaching
activities of a university. This system is constituted by a

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

17



set of services offered to the teachers, to the students and
to the university staff, following a SOC paradigm. Selling
such a system to different universities requires to manage
variability due to the different governance structure, different
size, and/or different teaching organization of the different
universities. A product family, or product line, can therefore
be envisaged to encompass all possible variants. Hence, a
definition of a service-oriented product line is needed. This
product line definition is however confined to cope with static
variability, i.e., differences between universities. However, the
rapid evolution of laws (at least in Italy...) and their following
reception from the university offices can be dealt efficiently
only introducing dynamic adaptability and evolvability.

Another application domain where we can expect that
the proposed advancements can have a favourable impact is
that of the so-called package-based software distributions,
an approach adopted, typically, by FOSS (Free and Open-
Source Software) to flexibly manage the different variants
and versions of a software system, as exemplified by the
distribution of open-source operating systems like LINUX.

One of the main challenges for such distributions is the
possibility to scale the system to distributed computing plat-
forms, beyond the bound of executing on a single computing
element. In the framework of recent virtualization technologies
known as Cloud Computing, e.g., the management of virtual
machines that support flexible and on-demand computing
resource offering, such as "Infrastructures as a Service" (IaaS)
and "Platform as a Service" (PaaS) turns to be extremely
complex.

Traditionally, the package-based software distributions pro-
vide flexible tools for personalizing and updating the system.
Moreover, they provide tools that support the system adminis-
trator to design and manage the system. Such tools are based
on a complex interdependency network between packages that
allow the automatic installation of updates and of new system
components. Normally, as the system executes on a single
computing element, such elements should be switched off first
to make new functions available (cold update). This approach
turns out to be impossible in a distributed system. A new
approach (hot update), which does not interrupt the system
functioning, is needed.

The definition of mechanisms supporting the update of only
the relevant components is fundamental for the widespread
utilization of emerging technologies such as, e.g., Cloud Com-
puting. This technology, based on virtualization, is at the basis
of the so-called disappearing computer scenario, according to
which computing and storage devices are physically moved
far from the end user, and are offered by specific vendors able
to deliver computing and storage power as a remote service
(see, e.g., Google AppEngine and Amazon EC2).

Concerning remote file storage, some services already
reached large diffusion, see, e.g., Dropbox (that provides
storage, sharing and synchronization of files) that in February
2010 already counted more than 4 million users. One of the
aspects that contributed most to the success of Dropbox is the
possibility to provide the user with a virtual hard disk shared

by different devices. In this way, this service realized the
Forever Yours model — one of the objectives of the European
Commission FP7 in ICT — at least as far as data and file
storage is concerned. Cloud Computing aims at the realization
of this model also as far as programs and computing power
is concerned. Nevertheless, such systems are subject to an
evolution which is far more complex than that in file systems
(in which only creation, change, and delete operations can be
performed) as strong dependencies exist among the involved
software components.

The techniques developed according to the research vision
outlined in this paper will be applicable in this specific field,
with the aim of facilitating the management of this kind of
services, making the user configuration completely automatic,
and providing the user with tools supporting the update and
evolution of the system.

One can think also of many other fields of applications, in
which a high degree of configurability and an easy and fast
adaptation are extremely critical. One could consider, e.g., e-
Health where hospital services must be highly flexible in order
to quickly adapt to specific medical needs, or the emergency
management field where the support tools must be quickly
exploitable in an always different and unstable context, in
which run-time adaptability features are clearly needed.

In all these application fields, the models, techniques and
tools developed according to the vision proposed in this paper
can achieve significant advantages in terms of development
costs, as it will be able to factorize common elements as well
as the verification processes.

REFERENCES

[1] L. Åqvist, Deontic Logic. In Handbook of Philosophical Logic, 2nd Edi-
tion (D. Gabbay and F. Guenthner, Eds.), Volume 8, Kluwer Academic,
2002, 147–264.

[2] P. Asirelli, M.H. ter Beek, A. Fantechi and S. Gnesi, Deontic Logics
for Modeling Behavioural Variability. In Proceedings of the 3rd Interna-
tional Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’09) (D. Benavides, A. Metzger and U. Eisenecker, Eds.), ICB
Research Report 29, Universität Duisburg-Essen, 2009, 71–76.

[3] P. Asirelli, M.H. ter Beek, A. Fantechi and S. Gnesi, A deontic logical
framework for modelling product families. In Proceedings of the 4th
International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’10) (D. Benavides, D. Batory and P. Grünbacher, Eds.),
ICB Research Report 37, Universität Duisburg-Essen, 2010, 37–44.

[4] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, An action/state-
based model-checking approach for the analysis of communication
protocols for Service-Oriented Applications. In Formal Methods for
Industrial Critical Systems—Revised Selected Papers of the 12th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS’07), Berlin, Germany (S. Leue and P. Merino, Eds.), LNCS
4916, Springer, 2008, 133–148.

[5] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, A state/event-
based model-checking approach for the analysis of abstract system
properties. To appear in Science of Computer Programming, 2010.

[6] N. Boffoli, M. Cimitile, F. Maria Maggi, G. Visaggio, Managing SOA
System Variation through Business Process Lines and Process Oriented
Development. In [27].

[7] M. Bravetti and G. Zavattaro, A Theory for Strong Service Compli-
ance. In Proceedings of the 9th International Conference on Coordi-
nation Models and Languages (COORDINATION’07), Paphos, Cyprus
(A.L. Murphy and J. Vitek, Eds.), LNCS 4467, Springer, 2007, 96–112.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

18



[8] M. Bravetti and G. Zavattaro, Contract based Multi-party Service Com-
position. In Proceedings of the 1st International Symposium on Funda-
mentals of Software Engineering (FSEN’07), Tehran, Iran (F. Arbab and
M. Sirjani, Eds.), LNCS 4767, Springer, 2007, 207–222.

[9] M. Bravetti and G. Zavattaro, Towards a Unifying Theory for Chore-
ography Conformance and Contract Compliance. In Proceedings of the
6th International Symposium on Software Composition (SC’07), Braga,
Portugal (M. Lumpe and W. Vanderperren, Eds.), LNCS 4829, Springer,
2007, 34–50.

[10] E.M. Clarke, O. Grumberg and D.A. Peled, Model Checking. The MIT
Press, 2000.

[11] P.C. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[12] S.G. Cohen and R.W. Krut (Eds.), Proceedings of the 1st Workshop
on Service-Oriented Architectures and Software Product Lines: What
is the Connection? (SOAPL’07). Technical Report CMU/SEI-2008-SR-
006, 2008.

[13] R. De Nicola, D. Latella and M. Massink, Formal modeling and
quantitative analysis of KLAIM-based mobile systems. In Proceedings
of the 20th Annual ACM Symposium on Applied Computing (SAC’05),
ACM, 2005, 428–435.

[14] R. De Nicola, J.-P. Katoen, D. Latella and M. Massink, Towards a logic
for performance and mobility. Electronic Notes in Theoretical Computer
Science 153, 2 (2006), 161–175.

[15] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti and M. Massink, Model
checking mobile stochastic logic. Theoretical Computer Science 382, 1
(2007), 42–70.

[16] L. Etxeberria, G. Sagardui and L. Belategi, Modelling Variation in
Quality Attributes. In Proceedings of the 1st International Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS’07)
(K. Pohl, P. Heymans, K.C. Kang and A. Metzger, Eds.), Lero Technical
Report 2007-01, 2007, 51–59.

[17] A. Fantechi and S. Gnesi, Formal modelling for Product Families
Engineering. In Proceedings of the 12th International Software Product
Lines Conference (SPLC’08), IEEE, 2008, 193–202.

[18] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese and
F. Tiezzi, A Model Checking Approach for Verifying COWS Speci-
fications. In Proceedings of the 11th International Conference on Fun-
damental Approaches to Software Engineering (FASE’08) (J.L. Fiadeiro
and P. Inverardi, Eds.), LNCS 4961, Springer, 2008, 230–245.

[19] D. Fischbein, S. Uchitel and V.A. Braberman, A Foundation for Be-
havioural Conformance in Software Product Line Architectures. In
Proceedings of the 2nd Workshop on the Role of Software Architecture
for Testing and Analysis (ROSATEA’06) (R.M. Hierons and H. Muccini,
Eds.), ACM, 2006, 39–48.

[20] P. Grünbacher, D. Dhungana, N. Seyff, M. Quintus, R. Clotet, X. Franch,
L. López and J. Marco, Goal and Variability Modeling for Service-
oriented System: Integrating i∗ with Decision Models. In Proceedings
of Software and Services Variability Management Workshop – Concepts
Models and Tools (T. Männistö, E. Niemelä and M. Raatikainen, Eds.),
Helsinki University of Technology, Software Business and Engineering
Institute Research Reports 3, HUT-SoberIT-A3, 2007, 99–104.

[21] S.O. Hallsteinsen, E. Stav, A. Solberg and J. Floch, Using Product
Line Techniques to Build Adaptive Systems. In Proceedings of the
10th International Software Product Lines Conference (SPLC’06), IEEE,
2006, 141–150.

[22] A. Helferich, G. Herzwurm and S. Jesse, Software Product Lines
and Service-Oriented Architecture: A Systematic Comparison of Two
Concepts. In [12].

[23] A. Helferich, G. Herzwurm, S. Jesse and M. Mikusz, Software Product
Lines, Service-Oriented Architecture and Frameworks: Worlds Apart or
Ideal Partners? In Trends in Enterprise Application Architecture, LNCS
4473, Springer, 2007, 187–201.

[24] P. Istoan, G. Nain, G. Perrouin and J.-M. Jezequel, Dynamic Software
Product Lines for Service-Based Systems. In IEEE 9th International
Conference on Computer and Information Technology, IEEE, 2009.

[25] M. Koning, C.-a. Sun, M. Sinnema and P. Avgeriou, VxBPEL: Sup-
porting variability for Web services in BPEL. Information and Software
Technology 51 (2009), 258–269.

[26] R.W. Krut and S.G. Cohen (Eds.), Proceedings of the 2nd Workshop
on Service-Oriented Architectures and Software Product Lines: Putting
Both Together (SOAPL’08). In Proceedings of the 12th International
Software Product Lines Conference (SPLC’08), Second Volume (Work-
shops) (S. Thiel and K. Pohl, Eds.), Lero, University of Limerick,
Ireland, 2008, 115–147.

[27] R.W. Krut and S.G. Cohen (Eds.), 3rd Workshop on Service-
Oriented Architectures and Software Product Lines: Enhancing Vari-
ation (SOAPL’09). In Proceedings of the 13th International Software
Product Lines Conference (SPLC’09) (D. Muthig and J.D. McGregor,
Eds.), ACM, 2009, 301–302.

[28] K.G. Larsen, U. Nyman and A. Wąsowski, Modal I/O Automata for In-
terface and Product Line Theories. In Proceedings of the 16th European
Symposium on Programming Languages and Systems (ESOP’07) (R. De
Nicola, Ed.), LNCS 4421, Springer, 2007, 64–79.

[29] J. Lee, D. Muthig and M. Naab, An Approach for Developing Service
Oriented Product Lines. In Proceedings of the 12th International Soft-
ware Product Lines Conference (SPLC’08), IEEE, 2008, 275–284.

[30] A. Lomuscio and M.J. Sergot, Deontic interpreted systems. Studia
Logica 75, 1 (2003), 63–92.

[31] N.B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas and V. Is-
sarny, QoS-Aware Service Composition in Dynamic Service Oriented
Environments. In Proceedings of the 10th International Middleware
Conference (Middleware’09) (J.M. Bacon and B.F. Cooper, Eds.), LNCS
5896, Springer, 2009, 123–142.

[32] L. McCarty, Permissions and Obligations. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence (IJCAI’83)
(A. Bundy, Ed.), William Kaufmann, 1983, 287–294.

[33] J.-J.Ch. Meyer and R.J. Wieringa (Eds.), Deontic Logic in Computer
Science: Normative System Specification, Wiley, 1993.

[34] M.H. Meyer and A.P. Lehnerd, The Power of Product Platforms:
Building Value and Cost Leadership. The Free Press, 1997.

[35] B. Morin, O. Barais, J.M. Jézéquel, F. Fleurey and A. Solberg, Models
Run.time to Support Dynamic Adaptation. IEEE Computer 42, 10
(2009), 44–51.

[36] A.D. Mosincat, W. Binder and M. Jazayeri, Dynamically Adaptive
Systems through Automated Model Evolution Using Service Compo-
sitions. In Proceedings of the 9th International Conference on Software
Composition (SC’10) (B. Baudry and E. Wohlstadter, Eds.), LNCS 6144,
Springer, 2010, 82–89.

[37] M.P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, Service-
Oriented Computing: State of the Art and Research Challenges. IEEE
Computer 40, 11 (2007), 38–45.

[38] K. Pohl, G. Böckle and F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[39] M.P. Singh and M.N. Huhns, Service-Oriented Computing: Semantics,
Processes, Agents. Wiley, 2005.

[40] Ch. Wienands, Studying the Common Problems with Service-Oriented
Architecture and Software Product Lines. Presented at the 4th Service-
Oriented Architecture (SOA) & Web Services Conference, 2006.

[41] R. Wieringa, J.-J.Ch. Meyer and H. Weigand, Specifying Dynamic
and Deontic Integrity Constraints. Data and Knowledge Engineering
4 (1989), 157–189.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

19




