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ABSTRACT

In a recent project [8] the authors have developed
an approach to assist the identification of the opti-
mal topology of a technical system capable to over-
come geometrical contradictions that arise from con-
flicting design requirements. The suggested method
is based on the hybridization of partial solutions
obtained from mono-objective topology optimization
tasks. In order to investigate efficiency, robustness
and potentialities of hybridization, a comparison
among the proposed approach and the traditional
Topology Optimization methods is here presented.
The application of the proposed hybridization ap-
proach to several case studies of multi-objective op-
timization problems available in literature has been
performed with the aim to evaluate the robustness
of the method, through a direct benchmark between
the hybridized topology and the traditional methods.
The obtained results demonstrate that the proposed
method is computationally definitely less expensive
than the conventional application of Genetic Algo-
rithms to topological optimization, still keeping the
same robustness in terms of searching the global op-
timum solution. Moreover, the comparison among
the hybridized solutions and the solutions obtained
through traditional topology optimization methods,
shows that the proposed approach often leads to very
different topologies having better performance.

KEYWORDS

Computer-aided innovation, computer-aided concep-
tual design, embodiment design, genetic algorithms,
topological optimization, TRIZ

1. INTRODUCTION

The embodiment design of a technical system can be
assimilated to a multi-objective problem that the de-
signer tries to solve by finding geometrical solutions
able to satisfy different conflicting requirements.
Due to the nature of this task improving the perfor-
mance of a technical system often involves worsen-
ing another performance. This kind of conflicts can-
not be solved using the traditional approaches based
on Topology Optimization, since these methods are
able to focus the design task only to one specific per-
formance to be improved. More precisely, they allow
to manage multiple goals problems just by defining
complex objective functions where a weight must be
assigned to each specific goal. Thus, the best com-
promise solution is usually generated on the base of
an initial assumption made by the designer about the
relative importance of the requirements, without tak-
ing into account the reciprocal interactions among
them.

In [8] the authors have presented an approach for
the hybridization of optimized density distributions
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based on TRIZ manipulation, named DAeMON
(hybriDizAtion of Mono Objective optimizatioNs);
DAeMON has demonstrated the capability to pro-
duce solutions that are able to overcome geometrical
contradictions [9], a specific type of TRIZ physical
contradiction [2]. The effectiveness of the proposed
approach has been investigated by performing sev-
eral case studies related to 2D design problems.

Further developments of the research have revealed
that the solutions obtained from mono-objective
topology optimizations can be considered as elemen-
tary customized modeling features for a specific de-
sign task. According to these results in [7] the ap-
plication of the DAeMON technique to a general 3D
design space was presented together with the appli-
cation of the proposed approach to geometrical con-
tradictions obtained by the comparison of more than
two conflicting boundary conditions.

Within the above research activities some issues
arose about the efficiency of the proposed approach.
More in particular two main interesting evidences
still require a deeper investigation:
• the topology resulting from the application of the

DAeMON approach is an original solution able to
meet the design requirements, that cannot be ob-
tained through traditional optimization methods;

• moreover, the proposed approach seems to be
computationally less expensive than Genetic Al-
gorithms (GAs), still keeping the same robustness
in terms of searching the global optimum solu-
tion.

In this paper, in order to investigate the above men-
tioned just partially-explained properties, a direct
benchmark between hybridized topologies and those
obtained through traditional topology optimization
systems is performed, with the aim to systemati-
cally analyze the potentialities of the hybridization
method. In section 2 a review of topology opti-
mization techniques is presented in order to high-
light their strength and weakness and the developed
hybridization approach is briefly introduced; in sec-
tion 3 the original method and tools used to perform
the above described investigations are presented. The
case studies and the benchmark to compare the DAe-
MON approach with traditional topology optimiza-
tion techniques are described in section 4. Eventu-
ally, section 5 reports a final discussion and the con-
clusions of the present work.

2. STATE OF THE ART

Continuum Topology Optimization [17] has received
extensive attention and experienced considerable
progress over the past few years to support design
tasks related to structural analyses. It has been re-
cently applied to address design problems also in
other fields such as fluid dynamics, heat transfer and
non linear structure behavior: examples of the new
applications of topological optimization can be found
in [12, 4, 5].

Topology Optimization determines the optimal mate-
rial distribution within a given design space, by mod-
ifying the apparent material density assumed as de-
sign variable. The design domain is subdivided into
finite elements and the optimization algorithm alters
the material distribution within the design space at
each iteration, according to the Objective and Con-
straints defined by the designer.

The Objective is constituted by one or more system
performances that the optimization should improve.
Each system performance is quantitatively assessed
by an evaluation parameter that is assumed as met-
ric. According to this statement, a mono-goal opti-
mization task tries to improve a single system perfor-
mance, while a multi-goal optimization task aims at
improving a combination of performances.

The Constraints of the optimization task represents
the operating conditions and the requirements the
system has to satisfy. Among them, manufacturing
constraints may be set in order to take into account
the requirements related to the manufacturing pro-
cess. Also the regions of the design domain defined
as “functional” by the designer, are preserved from
the optimization process and considered as “frozen”
areas by the algorithm. The topology at the end of the
optimization process is identified by filtering the re-
sulting material density distribution through a proper
threshold having a value included within the interval
[0,1].

2.1. Traditional topology optimization
techniques

Until now, various families of structural topology
optimization methods have been developed [17, 6].
One of the most established families of methods is
based on the Homogenization Approach and Opti-
mality Criteria algorithm [3] that has gained a gen-
eral acceptance in recent years because of its compu-
tational efficiency and conceptual simplicity. How-
ever it very often brings to local optimal topologies
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or converges to an infeasible, i.e. not manufacturable
solution.

Instead of searching for a local optimum, one may
want to find the globally best solution in the design
domain. For this purpose GAs have become an in-
creasingly popular optimization tool for many areas
of research. More recently, GAs have been gradually
recognized as a powerful and robust stochastic global
search method for structural topology optimization
[18, 19, 15]. Besides, in order to guarantee the ro-
bustness of the solution, GAs require more com-
putational resources than the mathematical methods
based on Optimality Criteria. As stated in [20], this
is due to the high number of design variables that are
typically involved in the topology optimization task
and this is one of the main reasons for which GAs
have not still implemented in commercial CAE tools.

A new method for Topology Optimization that com-
bines the features of Bi-directional Evolutionary
Structural Optimization (BESO) and GAs has been
recently investigated in [20]. The proposed approach
leads to the same results of classical GAs but it
proves to have less computational costs. However,
so far it has been tested only for mono-objective opti-
mization task without taking in consideration multi-
objective problems. Moreover, even the robustness
of the evolutionary algorithms have been improved
in the last years, the algorithm proposed in [20]
still may suffer of numerical problems due to mesh-
dependency and possible non-convergence of the so-
lutions.

In conclusion, the above described literature re-
view shows that the traditional topology optimiza-
tion techniques based on mathematical methods are
more efficient than GAs from a computational point
of view, but GAs have a higher robustness in finding
the global optimal solution which is a not negligible
limitation of traditional mathematical methods.

2.2. The DAeMON approach

The authors have developed a new topology opti-
mization method that tries to merge together the ro-
bustness of GAs in finding the global optimal solu-
tion with the computational efficiency of the mathe-
matical methods.

The proposed approach is based on the hybridization
of the density distributions generated by topological
optimizations of mono-objective problems, accord-
ing to the elementary requirements that should be sat-
isfied. These partial solutions, in the form of density

distributions, can be used as elementary customized
features to be combined according to the following
formula (hybridization of partial solutions) which is
a particular case of that extensively described in [8]:

ρ (x, y, z) =

N∑

i=1

Kiρi(x, y, z)

N∑

i=1

Ki

(1)

where:
• ρ(x,y,z) is the hybridized topology;
• N is the overall number of conflicting mono-

objective optimizations (two if a classical TRIZ
contradiction model is adopted);

• Ki is the weight assigned to the i-th distribution
of density;

The hybridization method has demonstrated its effec-
tiveness in solving a particular case of geometrical
contradictions: those arising in systems that experi-
ence different static load conditions [9, 7]. In facts,
according to the TRIZ System of Inventive Stan-
dards [2], and more specifically to the Standard 3.1.4
(convolution of several systems), hybridization is a
well known transition to improve the efficiency of a
bi-poly system. Further details about hybridization
techniques are provided in [16].

3. APPROACH AND METHODS USED IN
PROBLEM SOLVING

The output obtained through the application of the
hybridization formula (1) to the N density distribu-
tions resulting from mono-objective optimizations,
is a hybrid density distribution built upon several
topologies. Each hybrid topology is determined by
soiling the N density distributions through proper
density thresholds before performing the combina-
tion. The algorithm here proposed allows to system-
atically “browse” the whole set of hybridized solu-
tions by automatically varying the density thresholds
until the best globally hybrid topology is identified
according to the objectives of the optimization task.

As stated in section 2, GAs are very robust optimiza-
tion techniques in identifying the global optimum so-
lution. Thanks to this characteristic, they are often
used as alternatives to the mathematical methods in
solving complex optimization problems such as re-
lated to the shape generation. An example is pre-
sented in [14] where a paradigm for the integration
of GAs in 3D-CAD environments is suggested in or-
der to perform automatic shape and topology varia-
tions. With the aim to demonstrate that the proposed
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Figure 1 Scheme of the proposed algorithm: (1) identification of N density distributions from a multi-objective opti-
mization problem; (2) definition of new optimization problem and N density thresholds; (3.1) identification
of N mono-objective optimal topology by soiling the densitydistribution by the density threshold; (3.2-3.3)
analysis of the hybridized topology. The steps from 3.1 to 3.2 are iterated until global optimum topology is
identified.

approach merges the positive features of GAs and
mathematical methods, an experimental campaign
has been performed: the robustness of the method
has been evaluated by a direct benchmark between
the hybridized topology and the one obtained through
GAs, obviously under the same multi-objective op-
timization task; moreover, the time-to-solution has
been considered as a reference metric to evaluate the
efficiency of the proposed algorithm from the com-
putational point of view, with respect to the tradi-
tional methods.

The original approach proposed in this paper is
schematically represented in Figure 1.

In the following the detailed description of each step
of the algorithm is presented:
• The original multi-objective optimization prob-

lem is decomposed into N mono-objective opti-
mization tasks that are solved using traditional

mathematical methods; the results of this step
are N density distributions: one for each mono-
objective optimization. It is worth to remember
that the density distribution can assume a fuzzy
value between 0 and 1.

• A new optimization problem is defined: the ob-
jectives and constraints are the same of the multi-
objective optimization task, the density thresh-
olds of the N mono-objective density distributions
coming from step 1 are defined as design vari-
ables instead of the material density of each finite
element of the design domain.

• The new optimization problem is solved:
• The N density distributions coming from step

1 are soiled by varying the density thresholds
that have been defined as design variables in
step 2. For each of the N density distributions,
the algorithm assigns a density value 1 to the
finite elements having a density greater than
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the selected threshold and a density value “0”
to the others. Therefore, after soiling, the N
density distributions are characterized by only
two discrete values of density that identify
void spaces with zero density and filled spaces
with density ”1”. In order to clarify the opti-
mal hybridization mechanism let’s consider a
trivial exemplary plate, subdivided into 4 finite
elements: Figure 2 (a) and (b) shown the den-
sity distributions of a plate coming subjected
to two mono-objectives optimization task. Af-
ter soiling, the density distributions of the two
resulting plates are modified according to the
above described criteria as shown respectively
in (c) & (d) and in (e) & (f).

Figure 2 (a) and (b): density distributions of a plate op-
timized under two different boundary condi-
tions.(c): density distribution of plate (a) with
density threshold = 0.5. (d): density distribu-
tion of plate (b) with density threshold = 0.3;
(e): density distribution of plate (a) with den-
sity threshold = 0.7. (f): density distribution
of plate (b) with density threshold = 0.6

• The resulting N topologies are combined by
the algorithm through the application of the
formula (1), with equal weights. Each com-
bination determines a hybridized topology.
Thus, the value of density distribution related
to the resulting hybridized topology is evalu-
ated by the following formula:

ρ (x, y, z) =

N∑

i=1

ρ(x, y, z)
i

N
(2)

where:
• ρ(x, y, z)i is the soiled value of density of

an element in the i-th mono-objective op-
timization. The numerator coincides with
the number of mono-objective optimiza-

tion for which the finite element FE(x,y,z)
has density = 1;

• N is the overall number of conflicting
mono-objective optimizations. Since the
hybridized topology is the sum of N lay-
ers of voids and filled elements, the den-
sity distribution of each hybridized topol-
ogy is composed by 2 + (N-1) different dis-
crete values, i.e. density can assume the
values 0, 1 and (N-1) intermediate levels.
For example, if N=2, the density distribu-
tion of hybridized topology is character-
ized by values 0, 1 and only one interme-
diary value, equal to “0.5”. This new den-
sity distribution contains more details than
necessary to the accomplishment of the fol-
lowing step 3.3, but they will be used to
identify the operational zone of the emerg-
ing contradiction.

For example, the density distributions showed
in Figure 2 (c) and (d) are combined by the
algorithm through the application of the for-
mula (2), and the resulting density distribution
is shown in Figure 3 (a). In Figure 3 (b) the
black areas are the elements for which in any
mono-objective task the value of density is “1”
(elements “must be”); the white areas identify
void voxels having zero density that result in
any mono objective task; besides, intermedi-
ate values of density, i.e. gray areas, represent
voxels where contradictory requirements ap-
ply: the voxel should be filled for one or more
functional requirements, but the voxel should
be void for another set of optimization objec-
tives. In other terms the gray voxels constitute
the operational zone of the geometrical contra-
diction, as defined in [8].
Similarly, the hybridization of density distri-
butions showed in Figure 2 (e) and (f) brings
to the results reported in Figure 3 (c). In (d) it
is shown the operational zone of the emerging
contradiction.

• The hybridized topology is evaluated with re-
spect to the objectives of the optimization task,
through classical FE analysis. It is worth to
notice that such hybridized topology is com-
posed by all finite elements having value of
density greater than zero (grey and black el-
ements in Figure 3 b and d).

The steps from 3.1 to 3.2 are iterated until global op-
timum topology is identified. The steps 1 and 3 could
be performed through the use of GAs and/or tradi-
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Figure 3 (a): hybridized density distribution for the
plates of Figure 2 (c) and (d). (b): black el-
ements = element must be; grey element =
contradiction elements. (c): hybridized den-
sity distribution for the plates of Figure 2 (e)
and (f). (d): black elements = element must
be; grey element = contradiction elements.

tional mathematical methods. In the first case, the
GA is applied over many generations, and each gen-
eration is a population of many individual designs,
to attain the optimum chromosome strings and hence
the optimum topologies. The chromosome string is
a sequence of N genes, where N is the overall num-
ber of conflicting mono-objective optimizations and
each gene is a threshold density related to a mono-
objective optimization.

For the tasks of this paper the mono-objective opti-
mizations have been performed using the mathemat-
ical method available in the code Optistruct v. 8.0
[10], while the above described algorithm have been
implemented through ModeFrontier v. 4.0, the opti-
mization environment developed by [11].

4. CASE STUDIES

Several case studies have been performed in order
to test robustness and efficiency of the hybridization
algorithm. In this section three examples are briefly
described to clarify the working principle and the po-
tentialities of the proposed approach. The first two
problems have been taken from [1] where the multi-
objective topology optimization has been performed
by means of GAs. They concern the design of a plate
having an overall dimension of 400 x 300 mm2 that
is discretized with 1200 (40x30) isoparametric plane
stress finite elements. The plate is made of a steel
alloy, so the unit cell material is assumed isotropic
with Young’s modulus equal to 210 GPa and Poisson
coefficient equal to 0.3.

The plate undergoes two different combinations of
load cases and the optimizations task consists in find-
ing the optimal thresholds density in order to min-
imize the mass and the displacements of the nodes
where the loads are applied.

In [1] the computational times required to solve both
problems are absent: more details are postponed to
the section 4.1 and Figure 4.

The third case study concern the optimization of a
bicycle frame under three different load conditions.
It is described in detail in the sub-section 4.3.

4.1. Example 1

The domain geometry and boundary conditions, as
well as the loading conditions of the first example
are shown in Figure 4. Two load cases are taken into
account:

1. A point load in the y direction with a magnitude
of 200 N.

2. A point load in the y direction with a magnitude
of -200 N.

Design domain

F = 200 N

Load case 1

Load case 2

Design domain

F = 200 N

Load case 1

Load case 2

Figure 4 Plate under two different load conditions. The
plate is fully constrained at the corners on the
left edge and the forces are alternatively ap-
plied on the upper and lower corner of the
right edge.

As mentioned above, this exemplary case study has
been taken from [1], where it was used by the au-
thors to assess the effectiveness of a multi-objective
topology optimization method based on Genetic Al-
gorithms (GAs). Initially in such case, the proposed
single-objective problems were solved and the result-
ing solutions were introduced in the initial popula-
tion. The initial population was composed of 200
individuals (in each generation only 100 individuals
were selected for matting). The solutions obtained
after 600 generations are presented in Figure 5.

In Figure 5, the values of the deformation energy for
the two load cases, here named as external works
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Figure 5 Set of solutions obtained in [1] through GAs.
The x and y axes of the diagram extracted
from the paper represent the deformation en-
ergy EW1 and EW2, related to the two load
cases. Despite the specific values don’t match
the axes scale without any explanation by the
authors, the diagram has been used as a ref-
erence for the Pareto front of the optimization
task.

(EW1 and EW2), are indicated under each solution.
According to the proposed algorithm, the first step
consists in decomposing the original multi-objective
optimization problem into N mono-objective opti-
mization tasks; the overall goal is determining the
optimal material distribution that minimizes the de-
formation energy of the plate according to a target
mass reduction.

According to step 2, a new optimization problem is
defined: the objectives and constraints of this opti-
mization task are the same of the original one, but
the N density thresholds are now defined as design
variables.

Within the step 3.1, the N density distributions com-
ing from the step 1, are soiled by varying the density
thresholds; two exemplary individuals are showed in
Figure 6.

The application of the hybridization algorithm leads
to a set of individuals obtained by combining the
soiled density distributions: the individual obtained
by the hybridization of the topologies shown in Fig-
ure 6 is shown in Figure 7 (a).

In Figure 7 (b) it is also shown the same topology
with the operational zone of the emerging contra-
diction: the black areas represent the “must be” el-
ements, while the gray areas are the contradiction el-
ements.

Figure 6 (i):Topology obtained under load case 1 and
density threshold = 0.82; (ii): Topology ob-
tained under load case 2 and density threshold
= 0.05.

Figure 7 (a): Topology obtained by hybridization of
mono-objective topology shown in Fig 3. (b):
Operational zone of the geometrical contra-
diction.

The steps from 3.1 to 3.2 are iterated until global
optimum topology is identified; such steps are per-
formed through the use of GAs. In this case the ini-
tial population used by the GA was composed by 20
individuals and the solutions are obtained after 50
generation. Hence, the optimization task consists in
finding the optimal threshold density in order to min-
imize the mass and the displacements of the nodes
where the loads are applied; each iteration implies
performing N structural analyses.

Unlike single-objective optimization, where objec-
tive and fitness functions are often identical, both fit-
ness assignment and selection have to address several
objectives of a multi-objective optimization prob-
lem. Hence, instead of a single optimum, multi-
objective optimization problems solutions consist of
a Pareto optimal set. In the total absence of informa-
tion regarding the priority of the objectives, a ranking
scheme based upon the Pareto optimality is regarded
as an appropriate approach to represent the strength
of each individual in an evolutionary algorithm for
multi-objective optimization [20]. By applying the
proposed algorithm, the solutions obtained after 50
generation are presented in Figure 8.

In this case, the hybridization approach brings ap-
proximately to the same topology obtained by the
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Figure 8 Set of solutions obtained through the proposed
method.

GAs. A benchmark among the solutions presented in
Table 1 has been performed by evaluating the defor-
mation energy under the two load cases experienced
by the plate. The obtained results are shown in Ta-
ble 1.

Table 1 Comparison of deformation energy among GA
solution and hybrid solution for both load
cases.

GA Hybrid ∆
EW1 (J) 0.810E-5 0.622E-5 -23%
EW2 (J) 0.810E-5 0.623E-5 -23%

In both cases the material volumes of the optimal so-
lutions are approximately 30% of the initial volume.
The topology obtained by the proposed algorithm
has a greater stiffness than the GA topology. Time
to solution is proportional to the number of genera-
tions: the GAs optimal topology is obtained after 600
generations, while the topology obtained by the pro-
posed algorithm is obtained after 50 generation and
the time to solution is approximately 100 minutes, so
such solution seems to be more efficient than GAs
from the computational point of view.

4.2. Example 2

The second example still refers to a plate optimiza-
tion problem extracted from [1]. The boundary con-
ditions are shown in Figure 9. Two load cases are
considered:

1. A point load in the x direction with a magnitude
of 200 N.

2. A point load in the y direction with a magnitude
of 200 N.

Figure 9 Plate under two different load conditions. The
plate is fully constrained at the corners on the
left edge and the forces are alternatively ap-
plied on the middle and the upper point of the
right edge.

In this case, as well as in the previous example, the
initial population considered in [20] for GA opti-
mization was composed of 200 individuals and the
solutions obtained after 600 generations are pre-
sented in Figure 10.

Figure 10 Set of solutions obtained in [20] through GA.

The optimization task is to minimize the deforma-
tion energy of the structure under the two load
cases shown in Figure 9. The two individuals ob-
tained through mono-objective optimization tasks are
shown in Figure 11; the individual obtained by the
hybridization of such topologies is shown in Fig-
ure 12 (a).

The steps from 3.1 to 3.2 are iterated until global
optimum topology is identified; such steps are per-
formed through the use of GAs and also in this case
the initial population used by GA was composed by
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Figure 11 (i): Topologies obtained under load case 1
and density threshold = 0.27; (ii): Topol-
ogy obtained under load case 2 and density
threshold = 0.83.

Figure 12 (a): Topology obtained by hybridization of
mono objective topology shown in Figure 8;
(b): Operational zone of the geometrical con-
tradiction.

20 individuals and the solutions, obtained after 50
generations, are presented in Figure 13.

In both cases the material volumes of the optimal so-
lutions are approximately 30% of the initial volume
and unlike the previous example, in this case the hy-
bridization approach brings to a different topology
than the one obtained by the GAs. Also in this case,
a benchmark among the solutions presented in Fig-
ure 13 has been performed by evaluating the defor-
mation energy under the two load cases experienced
by the plate. The obtained results are shown in Ta-
ble 2.

Table 2 Comparison of deformation energy among GA
solution and hybrid solution for both load
cases.

GA Hybrid ∆
EW1 (J) 0.121E-5 0.080E-5 -33%
EW2 (J) 0.532E-5 0.565E-5 +6%

The topology obtained by the proposed algorithm has
a greater stiffness for the load case 1 and a slightly
smaller stiffness for load case 2 than the GA topol-
ogy. Besides, it must be observed that load case 2
implies higher deformation energy. Moreover, also

Figure 13 Set of solutions obtained through proposed
method.

this second example demonstrates that the proposed
approach seems to be more efficient than traditional
GAs from the computational point of view: also in
this case the GAs optimal topology is obtained after
600 generations, while 50 generations are sufficient
to achieve the results shown in Table 2 with the DAe-
MON technique.

4.3. Example 3

The third case study concerns the topology opti-
mization of a bicycle frame, where the forces ap-
plied to that structure are very different depending
on the position of the rider, which in turn heavily
depends on the slope of the road. As already men-
tioned, this example is taken from [13], where it was
used by the authors to assess the effectiveness of a
multi-objective topology optimization method based
on Genetic Algorithms (GAs). For the sake of sim-
plicity only the following three different cases have
been considered by the authors:

1. On flat landscape: the greatest force is applied on
the saddle.

2. On up-hill ground: the rider pushes hard on the
pedals and pulls on the handlebars.

3. On steep roads: the rider doesn’t sit on the saddle
any more, thus transferring his entire load to the
pedals.

Figure 14 shows the results of the three mono-
objective optimizations, while Figure 15 shows the
solution of the multi-loading optimization problem.
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Figure 14 Solutions of the mono-objective optimiza-
tion problems. (i): Steady ground. (ii):
Heavy slop. (iii): Sitting up-hill position
[13].

Figure 15 Solution of the multi-loading bicycle [13].

The optimization task is to minimize the deformation
energy of the frame under the previously mentioned
load cases. The design domain was not available in
[13], so it has been determined by measuring a racing
bicycle frame.

Figure 16 shows the chosen domain geometry: in
gray the “non design” areas are shown, respectively
the saddle zone and the handlebars zones. It is neces-
sary to mention that due to the aim of the present re-
search, the design task has been simplified by taking
into account a two dimensional design domain, de-
spite a real bicycle frame is subjected to forces out-
side of the plane of the wheels. Besides, the case
study still constitutes a relevant test for the proposed
algorithm, also due to the possibility of performing
comparisons with [13].

The 2D design domain has been subdivided into
6563 isoparametric plane stress finite elements; the
structure is made of a steel alloy, so the unit cell
material is assumed isotropic with Young’s modu-
lus equal to 210 GPa and Poisson coefficient equal
to 0.3. The boundary conditions have been extrapo-
lated by the figures reported in [13].

The loading conditions for the three load cases are:

1. On flat landscape, Figure 17:
a. The saddle loaded in the x direction with a

magnitude of -28N and in the y direction with

Figure 16 Domain geometry of the bicycle frame and
its functional surfaces: the black circles are
the application points of the forces. A and B
are the constraints.

magnitude of -363N.
b. The handlebar loaded in the y direction with a

magnitude of 44 N.
c. The pedals loaded in the x direction with a

magnitude of -489N and in the y direction with
a magnitude of 481N.

Figure 17 Load case “flat landscape”.

2. On up-hill ground, Figure 18:
a. The handlebar loaded in the x direction with a

magnitude of -28N and in the y direction with
a magnitude of 488N.

b. The pedals loaded in the x direction with a
magnitude of -1600N and in the y direction
with a magnitude of -1200N.

3. On steep roads, Figure 19:
a. The pedals loaded in the x direction with a

magnitude of -2000N and in the y direction
with a magnitude of -2000N.

By applying the proposed algorithm, a Pareto opti-
mal set is obtained and it is shown in Figure 20. In
this case, in order to find the optimal threshold den-
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Figure 18 Load case “up-hill”.

Figure 19 Load case “steep road”.

sity that minimizes the mass and the compliance for
the tree load cases, the initial population used by GA
was composed by 20 individuals and the solutions
are obtained after 50 generations.

Unlike previous examples, in [13] the quantitative
results of the optimized topology have not been re-
ported, so in this paper the comparison among GAs
results and the results of the proposed algorithm has
not been made. In order to make a quantitative
comparison, a traditional multi-objective optimiza-
tion performed by a mathematical method has been
accomplished by assigning the same relevance to the
three objectives, i.e. considering as objective func-
tion the sum of the deformation energy of the load
cases.

Moreover, in order to analyze the potentialities
of the hybridization method, a traditional bicycle
frame has been analyzed under the three load cases.
The topologies of the bicycle structures can heavily
change varying the value of the frame mass, so for
the sake of simplicity, the comparison is made only
for one value of the mass. Figure 21 (a) and Figure 22
show the three compared topologies; Figure 21 (b)
shows the DAeMON Hybrid topology (Figure 21 (a))
with the operational zone of the emerging contradic-
tion. Also in this case, benchmark among such solu-
tion has been performed by evaluating the deforma-
tion energy under the three load cases. The obtained
results are shown in Table 3.

Figure 20 Set of solutions obtained through proposed
method.

Figure 21 (a): DAeMON hybrid solutions; (b): opera-
tional zone of the geometrical contradiction.

Figure 22 (a): Multi-objective topology; (b): Tradi-
tional bicycle frame.

Table 3 Comparison of deformation energy among hy-
brid solution, traditional solution and multi-
objective solution for the three load cases.

Hybrid Traditional Multi
EW 1 (J) 3,02E-05 3,21E-05 3,28E-05
EW 2 (J) 1,67E-04 1,74E-04 1,92E-04
EW 3 (J) 3,25E-04 3,34E-04 3,85E-04
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The topology obtained by the hybridization algo-
rithm proposed in this paper has a greater stiffness
for all the three load cases.

5. DISCUSSION AND CONCLUSION

The proposed algorithm based on hybridization of
partial solutions allows to systematically “browse”
the whole set of hybridized topologies by automat-
ically varying the density thresholds until the best
globally hybrid topology is identified. The results so
far described, demonstrate that the proposed method
is computationally less expensive than the conven-
tional application of Genetic Algorithms (GAs) to
topological optimization, still keeping the same ro-
bustness in terms of searching the global optimum
solution. Moreover, the comparison among the DAe-
MON hybrid solutions and the solutions obtained
through traditional GAs or with numerical methods,
shows that the proposed approach often leads to very
different topologies having better performance.

Furthermore, the conventional GAs methods may
lead to topologies with “checkerboard” patterns (al-
ternating elements of material and void) and “float-
ing” elements (elements “floating” in space and not
connected to the main structural body). Such ge-
ometries may be invalid or impractical, consequently
the overall procedure may not be robust. In order to
overcome these limits, specific algorithms have been
developed aimed at making the optimization proce-
dure more robust, but these algorithms make it also
more expensive in terms of computing resources.
DAeMON is able to preserve the connections among
adjacent elements avoiding the “floating” elements
problem. Moreover it avoids the “checkerboard” ef-
fect, since the mono-objective optimizations used for
hybridization are performed with traditional numer-
ical methods that are immune with respect to this
problem.

The hybridization based on the formula (1) has
demonstrated its effectiveness to identify original so-
lutions only with a specific class of geometrical con-
tradictions for structural design tasks: those arising
from different static load conditions applied to the
system.

Beside, according to what has been stated in [7], a
more general form of the hybridization formula takes
into account also other kinds of combinations, which
are based on rotations and translations of partial so-
lutions. Further developments of the research will go
towards the investigation of these hybridization rules
in order to systematically identify what kinds of ge-

ometrical contradictions they are able to solve. In
such a way, standard rules of combination of partial
solutions aimed at solving each class of geometrical
contradictions will be defined.

The identification of the parameters governing ro-
tations and translations of partial solutions will be
performed through the algorithm presented in sec-
tion 3, which will be extended still preserving a logic
based on a small number of variables to manage. At
the current state of development, the proposed ap-
proach is able to deal with constraints related to the
mass or the volume of the optimized geometry, but
it is not able to manage other kinds of optimization
constraints such as those related to manufacturing
requirements. This is another important issue that
should be addressed in the future developments of
the method. Eventually, the application of DAeMON
also in contexts different from the structural fields
(such as thermal, fluidynamics, etc.) will be studied
in order to investigate the possibility to generalize the
overall technique.
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