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Abstract

We discuss the application of deontic logics to the model-
ing of variabilities in product family descriptions. Deontic
logics make it possible to express concepts like permission
and obligation. As a first result of this line of research, we
show how a Modal Transition System, a model that has re-
cently been proposed as an expressive way to deal with be-
havioural variability in product families, can be completely
characterized with deontic logic formulae. We moreover
show some exemplary properties that can consequently be
proved for product families. These preliminary results pave
the way to a wider application of deontic logics to specifiy
and verify variability in product families.

1 Introduction

A description of a Product Family (PF) is usually com-
posed of a constant part and a variable part. The first part de-
scribes aspects that are common to all products of the fam-
ily, whereas the second part represents those aspects, called
variabilities, that will be used to differentiate one product
from another. The modeling of variability has been exten-
sively studied in the literature, especially that concerning
Feature modeling [2, 6, 17]. In variability modeling the in-
terest is in defining which features or components of a sys-
tem are optional, alternative, or mandatory; techniques and
tools are then developed to show that a product belongs to
a family, or to derive instead a product from a family, by
means of a proper selection of the features or components.

∗Funded by the Italian project D-ASAP (MIUR–PRIN 2007) and by
the RSTL project XXL of the Italian National Research Council (CNR).

In this paper we are interested in the modeling of be-
havioural variability, that is, how the products of a family
differ in their ability to respond to events in time: this is an
aspect that the referenced techniques do not typically focus
on. Many notations and description techniques have been
recently proposed for this purpose, such as variants of UML
state diagrams [3, 25] or variants of UML sequence dia-
grams, for example STAIRS [20]; another proposal can be
found in [24], where UML state diagrams and sequence di-
agrams have been enriched with aside notations to describe
variation points. At this regard, we rather prefer to look
for an expressive modeling formalism for families based on
the choice of a basic behavioural model, namely Labelled
Transition Systems (LTSs), which is one of the most popu-
lar formal frameworks for modeling and reasoning about the
behaviour of a system. Modal Transition Systems (MTSs)
have been proposed, in several variants, to model a family
of such LTSs [18, 13, 8]: in this way it is possible to embed
in a single model the behaviour of a family of products that
share the basic structure of states and transitions, transitions
which however can be seen as mandatory or possible for the
products of the family.

Deontic logics [1] have become very popular in com-
puter science in the last few decades to formalize descrip-
tional and behavioural aspects of systems. This is mainly
because they provide a natural way to formalize concepts
like violation, obligation, permission, and prohibition. In-
tuitively, they permit one to distinguish between correct
(normative) states and actions on the one hand and non-
compliant states and actions on the other hand. This makes
deontic logics a natural candidate for expressing the vari-
ability of a family of products. Recently, a Propositional
Deontic Logic (PDL) capable of expressing the permitted
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behaviour of a system has been proposed [5]. We want to
study in detail the application of this kind of logics to the
modeling of behavioural variability. Indeed, PDL appears
to be a good candidate to express in a unique framework
both behavioural aspects, by means of standard branching-
time logic operators, and constraints over the product of
a family, which usually require a separate expression in a
first-order logic (as seen in [2, 9, 21]).

In this paper, we want to focus our attention on the ability
of a logic of finitely characterizing the complete behaviour
of a system, that is, given a MTS A, we look for a formula
of the logic that is satisfied by all and only those Labelled
Transition Systems that can be derived from A As a first
result in this direction, the main contribution of this paper
is that we are able to finitely characterize finite state MTSs,
using a deontic logic; to this aim, we associate a logical
formula (called characteristic formula [11, 12, 23]) to each
state of the MTS. Consequently, every LTS of the family de-
fined by the MTS satisfies the formula, and no LTS outside
the family satisfies it. In this way we establish a link be-
tween a common model of behavioural variability and PDL.
The deontic logic proposed in this paper is able to describe,
in a faithful way, the behaviour of systems modelled by fi-
nite state MTSs. Our work can serve as a basis to develop
a full logical framework to express behavioural variability
and to build verification tools employing efficient model-
checking algorithms.

2 Labelled Transition Systems

As said before, a basic element of our research is the
concept of a Labelled Transition System, of which we de-
fine several variants.

Definition 2.1 (Labelled Transition System) A Labelled
Transition System (LTS) is a quadruple (Q, q0, Act,→), in
which

• Q is a set of states;

• q0 ∈ Q is the initial state;

• Act is a finite set of observable events (actions);

• →⊆ Q×Act×Q is the transition relation; instead of
(q, α, q′) ∈→ we will often write q

α→ q′.

Definition 2.2 (Modal Transition System) A Modal Tran-
sition System (MTS) is a quintuple (S, s0, Act,→�,→�)
such that (S, s0, Act,→� ∪ →�) is a LTS. A MTS has
two distinct transition relations: the must transition rela-
tion →� expresses required transitions, while the may tran-
sition relation →� expresses possible transitions.

A MTS defines a family of LTSs, in the sense that each
LTS P = (SP , p0, Act,→) of the family can be obtained
from the MTS F = (SF , f0, Act,→�,→�) by considering
its transition relation → to be →� ∪ R, with R ⊂→�,
and pruning the states that are not reachable from its initial
state p0. The “P is a product of F ” relation below, also
called “conformance” relation, links a MTS F representing
a family with a LTS P representing a product.

Definition 2.3 (Conformance relation) We say that P is a
product of F , denoted by P � F , if and only if p0 � s0,
where p � f if and only if

• f
a−→� f ′ =⇒ ∃p′ ∈ SP : p

a−→ p′ and p′ � f ′

• p
a−→ p′ =⇒ ∃f ′ ∈ SF : f

a−→� f ′ and p′ � f ′

Another extension of LTSs is obtained by labelling its
states with atomic propositions, leading to the concept of
doubly-labelled transition systems [7].

Definition 2.4 (Doubly-Labelled Transition System) A
Doubly-Labelled Transition System (L2TS) is a quintuple
(Q, q0, Act,→, AP, L), in which

• (Q, q0, Act,→) is a LTS;

• AP is a set of atomic propositions;

• L : Q −→ 2AP is a labelling function that associates a
subset of AP to each state of the LTS.

3 A deontic logic

Deontic logics are an active field of research in formal
logic for many years now. Many different deontic logic
systems have been developed and in particular the use of
modal systems has had a lot of success in the deontic com-
munity [1]. The way such logics formalize concepts such
as violation, obligation, permission and prohibition is very
useful for system specification, where these concepts arise
naturally. In particular, deontic logics seem to be very use-
ful to formalize product families specifications, since they
allow one to capture the notion of possible and compulsory
features.

Our starting point is the Propositional Deontic Logic
(PDL) defined in [5]. PDL is able to express both the evolu-
tion in time of a system by means of an action, and the fact
that certain actions are permitted or not in a given state. The
original definition considers actions from a set Act, each ac-
tion producing a set of events from a set E. The set of events
produced by an action α ∈ Act is named I(α). The logic
we propose in this paper is a temporal extension of PDL,

VaMoS'09

72



in a style reminiscent of the extension proposed in [5]. The
syntax of the logic is:

φ ::= tt | p | ¬φ | φ ∧ φ′ | Aπ | Eπ | [α]φ | P (α) | Pw(α)
π ::= φ U φ′

As usual, ff abbreviates ¬tt, φ∨φ′ abbreviates ¬(¬φ∧¬φ′),
and φ =⇒ φ′ abbreviates ¬φ∨φ′. Moreover, EFφ abbre-
viates E (tt U φ) and AGφ abbreviates ¬EF¬φ. Finally,
the informal meaning of the three non-conventional modal-
ities, explained below in more detail, is:

• [α]φ: after any possible execution of α, φ holds;

• P (α): every way of executing α is allowed;

• Pw(α): some way of executing α is allowed.

The first of these three modalities thus provides the pos-
sibility to express evolution, while the other two provide
the possibility to express (weak) permission. Furthermore,
〈α〉φ abbreviates ¬[α]¬φ.

The two variants of permission are rather common in the
literature on deontic logic. The operator P (α) tells whether
or not an action α is allowed to be performed. It can be
called a strong permission since it requires that every way of
performing α has to be allowed (e.g. if we were to say that
driving is allowed, it would mean that also driving while
drinking beer is allowed). Not surprisingly, permission has
been a polemical notion since the very beginning of deontic
logic. Some have proposed a weak version [22] in which
to be allowed to perform an action means that this action is
allowed only in some contexts. We stick to [5] and use both
notions of permission. The latter is denoted by the operator
Pw(α), which must be read as α is weakly allowed. The
two versions differ in their properties (see [5] for details).

In [5] both variants of permission are used to define
obligation O(α) as P (α) ∧ ¬Pw(¬α), i.e. α is obligated
if and only if it is strongly permitted and no other action
is weakly allowed. This definition avoids Ross’s paradox
O(α) =⇒ O(α ∨ α′), which can be read as “if you are
obliged to send a letter, then you are obliged to send it or
burn it”.

The formal semantics of our logic is given below by
means of an interpretation over L2TS, mimicking the orig-
inal semantics of PDL in [5]. To this aim, the L2TS
used as an interpretation structure is defined as a sixtu-
ple (W, w0, E,→, AP ∪ E,L), in which the transitions
are labelled over the set of events E and the states (cor-
responding to the worlds of the standard interpretation) are
labelled with atomic propositions as well as with the events
allowed in the states. To this purpose, we also use a relation
P ⊆ W ×E to denote which events are permitted in which
world, with the understanding that P (w, e) if and only if
e ∈ L(w).

Definition 3.1 (Semantics) The satisfaction relation of our
deontic logic is defined as follows:

• w |= tt always holds;

• w |= p iff p ∈ L(w);

• w |= ¬φ iff not w |= φ;

• w |= φ ∧ φ′ iff w |= φ and w |= φ′;

• w |= Aπ iff σ |= π for all paths σ that start with state
w;

• w |= Eπ iff there exists a path σ that starts with state
w such that σ |= π;

• w |= [α]φ iff ∀e ∈ I(α) : w
e−→ w′ implies w′ |= φ;

• w |= P (α) iff ∀e ∈ I(α) : P (w, e) holds;

• w |= Pw(α) iff ∃e ∈ I(α) : P (w, e) holds;

• σ |= [φ U φ′] iff there exists a state sj , for some j ≥ 0,
on the path σ such that for all states sk, with j ≤ k,
sk |= φ′ while for all states si, with 0 ≤ i < j, si |= φ.

4 A deontic characteristic formula for MTSs

In this section, we show how a unique deontic logic for-
mula can completely characterize a family of LTSs by sep-
arating the structure of the LTS (taken care of by the box
fomulae) from the optional/mandatory nature of the tran-
sitions (taken care of by the permission formulae). Since
a MTS is a compact expression of a family of LTSs, this
is equivalent to saying that we are able to characterize a
MTS with a deontic logic formula. The result we show here
is rather preliminary, in the sense that it currently needs
the following simplifying assumptions, but it nevertheless
shows the potentiality of our deontic logic.

• First, we adopt a strict interpretation to the permitted
events that label the transitions of a L2TS, namely we
assume that w

e→ implies P (w, e), that is, only permit-
ted actions are executed.

• We then assume, for any action α, that I(α) = {eα},
that is, actions and events are indistinguishable.

• We also assume that a MTS defines the family of those
LTSs that are derived from a corresponding family of
L2TSs, simply ignoring the predicates on the states.

• Last, we use a simpler form of MTSs, in which tran-
sitions leaving the same state are either all box tran-
sitions or all diamond transitions. As we show next,
this assumption allows us to distinguish box states and
diamond states, and have a single transition relation.
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Definition 4.1 (Alternative def. MTS) A MTS is a quintu-
ple (BS, DS, s0, Act,→) such that (BS ∪ DS, s0, Act,→)
is a LTS and BS ∩ DS = ∅. A MTS has two distinct sets
of states: the box states BS and the diamond states DS.

At this point, we define the characteristic formula
FC(M) of a (simple) MTS M = (BS, DS, s0, Act,→) as
FC(s0), where

FC(s) =

⎧⎨
⎩

(
∨

i Pw(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ DS
(
∧

i O(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ BS

and ∀i : s
ei→ si with I(αi) = {ei}

If we define the characteristic formula in an equational form
using the expressions above, we obtain one equation for
each state of the MTS, and the equations have a number of
terms equal to two times the number of transitions leaving
the relevant state. An attempt to write a single characteristic
formula gives a formula exponential in size with respect to
the number of states, and needs some form of fixed point
expression for expressing cycles in the MTS (see [12]).

Figure 1. A MTS modeling a product family.

5 An example

Let us consider the example introduced in [8], that is, a
family of coffee machines represented by the MTS depicted
in Fig. 1, which allows products to differ for the two differ-
ent currencies accepted, for the three drinks delivered and
for the presence of a ring tone after delivery. In the figure,

solid arcs are required transitions and dashed arcs are possi-
ble transitions, that is, states with outgoing solid arcs belong
to BS, and states with outgoing dashed arcs belong to DS.

The characteristic formula in equational form is given by
the following set of equations:

φ0 = (Pw(1e) ∨ Pw(1$)) ∧ ([1e]φ1 ∧ [1$]φ1)
φ1 = (O(sugar) ∧ O(no_sugar))

∧ ([sugar]φ2 ∧ [no_sugar]φ3)
φ2 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ4 ∧ [cappuccino]φ5 ∧ [tea]φ6)
φ3 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ7 ∧ [cappuccino]φ8 ∧ [tea]φ9)
φ4 = O(pour_sugar) ∧ [pour_sugar]φ7

φ5 = O(pour_sugar) ∧ [pour_sugar]φ8

φ6 = O(pour_sugar) ∧ [pour_sugar]φ9

φ7 = O(pour_coffee) ∧ [pour_coffee]φ10

φ8 = O(pour_tea) ∧ [pour_tea]φ11

φ9 = O(pour_coffee) ∧ [pour_coffee]φ11

φ10 = O(pour_milk) ∧ [pour_milk]φ11

φ11 = O(display_done) ∧ [display_done]φ12

φ12 = (Pw(cup_taken) ∨ Pw(ring_a_tone))
∧ ([cup_taken]φ0 ∧ [ring_a_tone]φ13)

φ13 = O(cup_taken) ∧ [cup_taken]φ0

Note that the characteristic formula given above does not
allow, from any state of the considered MTS, to derive a
LTS such that the corresponding state has no outgoing tran-
sitions, even in the case of diamond states.

The characteristic formula of a MTS implies any other
property which is satisfied by the MTS, and can thus serve
as a basis for the logical verification over MTSs. Actually,
this approach is not as efficient as model-checking ones, but
the definition of the characteristic formula may serve as a
basis for a deeper study of the application of deontic logics
to the verification of properties of families of products.

We now show two exemplary formulae that use deontic
operators to formalize properties of the products derived by
the family of coffee machines represented by the MTS de-
picted in Fig. 1.

1. The family permits to derive a product in which it is
permitted to get a coffee with 1e:

Pw(1e) =⇒ [1e] E (tt U Pw(coffee))

2. The family obliges every product to provide the possi-
bility to ask for sugar:

A (tt U O(sugar))
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Notice that the deontic operators predicate on the relations
between the products and the family, although they are de-
fined on particular states of their behaviour.

It can be seen that the formulae above can be derived,
using the axiom system given in [5], from the characteristic
formula of the MTS of Fig. 1. This proves that the above
properties are actually verified for the coffee machines that
belong to the family described by the MTS.

6 Conclusions

We have shown how deontic logics can express the vari-
ability of a family, in particular by showing the capability of
a deontic logic formula to finitely characterize a finite state
Modal Transition System, a formalism proposed to capture
the behavioural variability of a family. The logical frame-
work has allowed us to prove simple behavioural properties
of the example MTS shown.

These results, although very preliminary, lay the basis of
further research in this direction, in which we aim at ex-
ploiting the full power of PDL for what concerns the ex-
pression of behavioural variability: the presence of CTL-
like temporal operators allows more complex behavioural
properties to be defined and therefore more expressive de-
scriptions of behavioural variability to be supported. In par-
ticular, the dependency between variation points could be
addressed in a uniform setting. Another interesting direc-
tion is the adoption of model-checking techniques to build
efficient verification tools aimed at verifying, on the family
definition, properties which are inherited by all the products
of the family.

It would also be interesting to have a look at the variabil-
ity of dynamic models in the large, taking into account both
the problem of modelling variability in business process
models and that of using goal modelling—which intrinsi-
cally includes variability—to model variable processes.

Finally, it remains to study to what degree the complex-
ity of the proposed logic and verification framework can be
hidden from the end user, or be made more user friendly, in
order to support developers in practice.
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