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Yarn strength is one of the most significant parameters to be controlled during yarn spinning process. This parameter strongly
depends on both the rovings’ characteristics and the spinning process. On the basis of their expertise textile technicians are able
to provide a raw and qualitative prediction of the yarn strength by knowing a series of fiber parameters like length, strength,
and fineness. Nevertheless, they often need to perform many tests before producing a yarn with a desired strength. This paper
describes a Feed Forward Back Propagation Artificial Neural Network-based model able to help the technicians in predicting the
yarn strength without the need of physically spinning the yarn. The model performs a reliable prediction of the yarn strength on
the basis of a series of roving parameters, commonly measured by the technicians before the yarn spinning process starts. The
model has been trained with 98 training data and validated with 50 new tests. The mean error in prediction of yarn strength,
using the validation set, is less than 4%. The results have been compared with the one obtained by means of a classical method: the
multiple regression. Nowadays, the developed model is running in the laboratory of New Mill S.p.A., an important textile company
that operates in Prato (Italy).

1. Introduction

During yarn spinning, textile experts commonly controls
a series of parameters like the fiber strength, the fiber
length, the twist yarn, the yarn count, and the fineness.
Strength parameters of yarns are especially important for
rotor-spun yarns. More in detail a very important parameter
that technicians want to control is the yarn strength. This
is defined as the breaking force of a spinning yarn, and it
is commonly measured in cN. On the basis of their skill,
the expert operators are capable of giving a qualitative, raw
prediction of the yarn strength; unfortunately the empirical
estimation of the actual value of the yarn strength is
not straightforward. The assessment of such parameter is
essential for obtaining high quality of the yarn. Accordingly,
in the last two decades, the modeling of yarn properties has
become one of the most important and decisive tasks in the
textile research field. A considerable number of predictive
models have been implemented to evaluate some yarn

properties like strength, elongation, evenness, and hairiness.
The relationship between fiber properties and yarn prop-
erties has been the focal point of several works [1–3]. The
studies in literature have shown that the relationship between
yarn strength and fiber properties is nonlinear. Accordingly
mathematical models based on the fundamental mechanics
of woven fabrics often fail to reach satisfactory results.
Some studies have been performed so far for modeling
the yarn strength using linear regression [4–6]. The main
limitation of these studies is related to the need of defining
a predefined linear model. In order to model a nonlinear
relationship between input and output it is possible to devise
an Artificial Intelligence-based approach. For this reason
the problem of yarn properties prediction has been faced
by some researchers by employing some knowledge-based
approaches like artificial neural networks (ANNs) [7, 8]
and neuro-fuzzy models [9]. Ramesh et al. [10], Zhu and
Ethridge [11], Guha et al. [12], and Majumdar et al. [13] have
successfully used the artificial neural network (ANN) and
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neuralfuzzy methods to predict various properties of spun
yarns. The fabric strength was modeled by Zeydan using
neural networks and Taguchi methodologies [14]. Support
vector machines (SVMs), based on statistical learning theory,
have been developed by Yang and Xiang [15] for predicting
yarn properties. The investigation indicates that in the
small data sets and real-life production, SVM models are
capable of maintaining the stability of predictive accuracy.
A comparison between physical and artificial neural network
methods has been presented recently. The results show that
the ANN model yields a very accurate prediction with
relatively few data points [16]. Moreover, it is proved that
the parameters of the raw material that significantly influence
the basic quality parameters of the yarns are length, strength,
and fineness of fibers [17–19]. The effect of yarn count and
of twist yarn in the final yarn strength is also well established
[20].

The objective of the present work is to propose an
approach for predicting the yarn strength based on Feed
Forward Back-propagation Artificial Neural Network (FFBP
ANNs). In authors’ opinion this work, strongly based on
scientific literature, has its advantage in the fact that the FFBP
ANN model has been trained by means of fiber parameters
that are typically measured by the technicians for controlling
the yarn spinning. In other words, the technicians are not
supposed to carry out none of adjunctive experimental test
than they commonly assess. The reliability and goodness of
results, in comparison with linear regression models, prove
that the present work may be considered a practical method
for assessing the yarn strength.

The developed system does not require technicians to
produce a yarn and to measure its strength. The experts
have only to test the rovings in order to assess some fiber
properties. This operation is normally done before produc-
ing the yarn. Accordingly, by means of the devised model,
the experience of the technicians is merged together with a
simple approach in order to give an accurate prediction of
the yarn strength.

2. Material and Methods

With the aim of developing a model of the yarn spinning,
three tasks have been carried out:

(i) database creation,

(ii) definition of training parameters,

(iii) artificial Neural Network construction and training.

2.1. Database Creation. The first step for the development of
the ANN-based system able to predict the yarn strength on
the basis of some fibers parameters was to perform a series of
experimental tests. The main intent of such an experimental
approach was to create a database of fiber parameters to use
as input of an ANN-based algorithm. A total of 6 different
families of rovings (obtained mixing together different kinds
of fibers) were collected from an important spinning mill
operating in Prato (Italy). For each of them, several different
values for fiber strength, fiber length, twist yarn, and yarn

count have been tested (see Table 1). The result is a set of 98
different tests. The fiber length has been evaluated by means
of a Classifiber Model KCF/LS. The output of the Classifiber
measurement (see Figure 1) is given by the mean value of
length (ML), the humidity values (UHM and UI%), and the
standard deviation in % (CV%). The fineness was measured
with an OFDA100, an image analysis system recognized
with a Test Method from the (International Wool Textile
Organization) IWTO. The OFDA instrument is used to
certify mean fiber diameter. The output of the measurement
is a statistical distribution of the fineness. The mean value
is assumed as the fineness parameter (see Figure 2(a)).
The fiber strength was measured with a precision fiber
dynamometer. In Table 2 the value of the parameters of some
of the 98 tests is listed.

As may be noticed, each roving is composed by different
kinds, in different percentages, of fibers. Each fiber is
characterized by a different value of length and fineness.
For instance the roving named “velox 2” belongs to the
family “Velox” composed by 25% viscose, 25% nylon, 10%
cashmere, and 40% wool. These fibers are characterized by
different length and fineness. In order to use these data for
modeling the yarn spinning, it is possible to evaluate a single
parameter for both length and fineness.

This can be easily carried out by defining, for each
roving:

(i) weighted average length (WL), computed as the
average weighted length of the fibers from a roving
composed by a number i of different materials and
defined by the following equation:

WL =
n∑

1

αi · Li [mm], (1)

(ii) fiber weighted average fineness (WF), computed as
the average weighted fineness of the fibers from a
roving composed by a number i of different materials
and defined by the following equation:

WF =
n∑

1

αi · Fi
[
m · 10−6], (2)

(iii) fiber weighted average strength (WS), computed as
the average weighted strength of the fibers from a
roving composed by a number i of different materials
and defined by the following equation:

WS =
n∑

1

αi · Ri [cN/tex]. (3)

In the example of the roving named “velox 2”, the values
for WL, WF , and WS might be evaluated as follows:

WL = 0.40 · 42 + 0.25 · 40 + 0.25 · 35 + 0.25 · 34

= 38.95 mm,

WF = 0.40 · 19.5 + 0.25 · 15.5 + 0.25 · 13 + 0.25 · 15

= 16.43 m · 10−6,

WS = 0.40 · 11.21 + 0.25 · 47.91 + 0.25 · 18.35

+ 0.25 · 10.19 = 22.07 cN/tex.

(4)
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By means of (1), (2), and (3), for each of the 98
different tests a set of 5 input parameters may be defined.
In Table 3 a subset of this input set is listed. It is important
to remark that the parameters αi, Li, Fi, and Ri might be
used for training the ANN as well, thus probably leading to
accurate results. However, when the number of components
composing a roving increases, the number of inputs increases
as well thus resulting in a more complex ANN architecture.
Moreover, as already mentioned, the aim of the present
work is to propose a practical approach to be used by the
technicians and practitioners using parameters (like WL,
WF , and WS) that they typically assess during the spinning
process.

From each of the 98 selected rovings, the textile tech-
nicians produced a yarn by using a ring frame machine
(Marzoli ring spinning frame RST-1, see Figure 2(b)). The
process parameters adopted for producing the yarn were
maintained constants with the exception of the twist yarn.
This is due to the fact that, as already stated, the twist
yarn influences the yarn strength; therefore such a parameter
has been used as an input for the devised model. Once
produced, the yarn strength of the 98 different yarns has
been measured by means of a dynamometer. Some of the
values of yarn strength (YS) are listed in the last column of
Table 3.

2.2. Definition of Training Parameters. The result of the
experimental process consists in a dataset of 98 × 5 fiber
parameters and of 98 values for yarn strength. For instance,
in Table 4 the whole dataset related to cashmere family is
showed.

The dataset may be used as a training set for the FFBP
ANN model. In detail, the training set P is composed by a
matrix 5× 98 composed by 98 vectors of 5 elements:

P =

⎡
⎢⎢⎢⎢⎢⎣

Yc1 Yc2 · · · Yci · · · Yc98

Tw1 Tw2 · · · Twi · · · Tw98

WL1 WL2 · · · WLi · · · WL98

WF1 WF2 · · · WFi · · · WF98

WS1 WS2 · · · WSi · · · WS98

⎤
⎥⎥⎥⎥⎥⎦
. (5)

As previously mentioned the FFBP ANN is required to
find a nonlinear correlation between this training set and a
target set T, defined as a vector (size 1× 98) whose elements
are the yarn strength values of the 98 yarns:

T = [YS1, YS2, . . . , YSi, . . . , YS98]. (6)

2.3. Artificial Neural Network Construction and Training. In
order to model the yarn spinning process, it is necessary to
devise a proper neural network able to predict reliably the
value of yarn strength, the yarn count, the twist yarn, the
weighted average length, the weighted average fineness, and
the weighted average strength of a roving. This is possible if
the ANN is properly training by means of the training and
target sets. Both structure and training of the ANN have been
developed by using the Artificial Neural Network Toolbox
working into Matlab environment. The constructed FFBP
ANN, showed in Figure 3, has the following characteristics:

(i) three layers: input, hidden, and output layer;

(ii) hidden layer made of logistic neurons followed by an
output layer of linear neurons;

(iii) 5 input, h hidden, and 1 output units.

The number of hidden neurons of feed-forward neural
networks, generally decided on the basis of experience [21],
is an important factor for the training, in order to avoid over
fitting in the function approximation. From one point of
view the number of hidden units may be stated a priori by
means of empirical equations provided by the literature [22].

On the other hand it is possible to select the best
network by estimation, for a given problem, of the network
architecture and parameters within a set of candidate
configurations [23]. In the present work the value h was
evaluated varying from 2 to 14 with a step of 2 units,
monitoring the performance of response using the training
data. As known, during the training, the weights and the
biases of the network are iteratively adjusted to minimize
the network error function. The network error used in this
work is the mean square error (MSE) correspondent to the
training set elements. This error is monitored during the
training process and will normally decrease during the initial
phase of the training. However, when the network becomes
excessively specialized in reproducing the training data, the
early stopping error will typically begin to rise. When the
early stopping error increases for a specified number of
iterations, the training is stopped, and the weights and biases
at the minimum early stopping error are returned. The
selected network is characterized by h = 10 units. The
training was carried out using a training rule based on the
Levemberg-Marquardt descent backpropagation algorithm
with an adaptive learning rate [24]. Training set (input and
target) has been scaled in the range [0-1] with a min-max
algorithm. Training was automatically performed until the
early stopping error increases for a specified number of
iterations. This goal was obtained in 22 epochs (see Figure 4).

3. Results

Once trained, the network is able to correlate the training
set elements to the target ones. In other words the ANN is
able to receive any vector of 5 elements composed by the fiber
parameters of any roving in input and to give, as output, the
prediction of the yarn strength of the yarn produced with
that roving. Hence,

input (ANN) = [Ycin,Twin,WLin,WFin,WSin],

output (ANN) =
[

YSpredicted

]
.

(7)

The predicted value of the yarn strength (YSpredicted) must
be compared with the real value (YSreal) in order to assess
the reliability of the prediction. The comparison may be
evaluated, in percentage, by defining a coefficient η, called
“prediction error”, given by

η =
∣∣∣YSreal − YSpredicted

∣∣∣

YSreal
. (8)
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Classifiber Series model KCF/LS version 4.20.0 <Basic> p.1
New MILL S.p.A.
Purchased date: Oct/16/2009
Brand Name: Ws38kvv
Lot. No.: 118955
Database: Fiber Resources
Print Date: Oct/16/2009
Group no. 1
No. SL 2.5% SL50% UR% SFC% ML UHM UI% SL66,0% CV%
1 56.5 mm 21.4 mm 37.9% 0.3% 41.8 mm 48.8 mm 85.7% 17.3 mm 29.4%
2 56.8 mm 21.6 mm 38% 1.1% 42.5 mm 53.1 mm 80.0% 16.9 mm 30.6%
3 55.0 mm 19.8 mm 36% 0.0% 40.2 mm 51.0 mm 78.8% 15.8 mm 32.9%
4 57.2 mm 22.8 mm 39.9% 0.7% 44.8 mm 53.8 mm 83.3% 18.3 mm 28.7%
Total Evaluation N = 4

SL 2.5% SL50% UR% SFC% ML UHM UI% SL66,0% CV%
Mean 56.4 mm 21.4 mm 38.0% 0.5% 42.3 mm 51.7 mm 81.9% 17.1 mm 30.4%
Min 55.0 mm 19.8 mm 36.0% 0.0% 40.2 mm 48.8 mm 78.8% 15.8 mm 28.7%
Max 57.2 mm 22.8 mm 39.9% 1.1% 44.8 mm 53.8 mm 85.7% 18.3 mm 32.9%
STD. DEV. 1.0 1.2 1.6 0.5 1.9 2.3 3.1 1.0 1.8

Figure 1: Example of output of the Classifiber Model KCF/LS measurement: the mean value of length (ML), the humidity values (UHM
and UI%), and the standard deviation in % (CV%) of a lot of rovings are showed.

Table 1: Number of different tests performed for each roving in order to train the ANN system.

Yarn Type Composition

Number of tests
performed varying the

fiber parameters for
training the net

Number of tests
performed varying the

fiber parameters for
testing the net

Cashmere 100% cashmere 18 8

Maghreb 80% wool
20% nylon

16 8

Joy
60% viscose

14 835% nylon

5% cashmere

Beta

28% viscose

15 8
15% nylon

7% angora

10% cashmere

40% wool

Gamma

30% viscose

14 815% nylon

20% cashmere

35% wool

Velox

25% viscose

21 1025% nylon

10% cashmere

40% wool

Total number of Tests 98 50

Smaller is the value of η and better is the prediction.
In order to validate and test the approach a new series of

experimental test (called “validation set”) has been carried
out. This new experimental phase consisted in collecting the
parameters of 50 new rovings (see last column of Table 1).
These parameters are used as a test set for the devised ANN.

More in detail the ANN has to give a response closer to the
real value of the really produced yarn strength. In Table 5
some of the 50× 5 parameters are showed. In order to clarify
the approach described above, an example is provided below.
Let suppose we want to predict the yarn strength of the
“gamma 19” roving whose parameters are listed in Table 5.
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Table 2: percentage, yarn count, twist, length, fineness, and fiber strength of some rovings within the 98 tested ones.

Yarn type Fiber Percentage Yarn count [tex] Twist [g/m] Length [mm] Fineness [m∗10−6] Fiber strength [cN]

Cashmere 18.3 38 16 10.19

Cashmere 1 Cashmere 80.19 35.52 416 40 15 10.19

Cashmere 1.78 34 15 10.19

Cashmere 1.5 33 15 10.19

Cashmere 0.33 39 15 10.19

Cashmere 2 Cashmere 10.5 36.48 413 34 16.5 10.19

Cashmere 23.83 39 16 10.19

Cashmere 37.01 38 15.5 10.19

Cashmere 26.83 40 15.5 10.19

Maghreb 1 Wool 80 66.48 290 38 21 11.21

Nylon 20 40 15.5 47.91

Maghreb 2 Wool 80 52.95 302 38 21 11.21

Nylon 20 40 15.5 47.91

Viscose 60 35 13 18.35

Joy 1 Nylon 35 57.52 317 40 15.5 47.91

Cashmere 5 34 15 10.19

Viscose 60 35 13 18.35

Joy 2 Nylon 35 50.76 329 40 15.5 47.91

Cashmere 5 36 15 10.19

Viscose 28 35 13 18.35

Nylon 15 40 15.5 47.91

Beta 1 Angora 7 65.2 291 38 14 9.17

Cashmere 10 36 15 10.19

Wool 40 40 19.5 11.21

Viscose 28 35 13 18.35

Nylon 15 38 15.5 47.91

Beta 2 Angora 7 65.35 316 20 14 9.17

Cashmere 10 35 15 10.19

Wool 40 40 19.5 11.21

Viscose 30 35 13 18.35

Gamma 1 Nylon 15 64.08 281 40 15.5 47.91

Cashmere 20 34 15 10.19

Wool 35 38 19.5 11.21

Viscose 30 35 13 18.35

Gamma 2 Nylon 15 76.23 312 40 15.5 47.91

Cashmere 20 36 15 10.19

Wool 35 38 19.5 11.21

Wool 40 42 19.5 11.21

Velox 1 Nylon 25 62.09 294 40 15.5 47.91

Viscose 25 35 13 18.35

Cashmere 10 34 15 10.19

Wool 40 42 19.5 11.21

Velox 2 Nylon 25 60.9 304 40 15.5 47.91

Viscose 25 35 13 18.35

Cashmere 10 34 15 10.19

The input set for the ANN is given by the following vector:

input (ANN) = [Ycin,Twin,WLin,WFin,WSin]

= [15.22, 313, 30.25, 16.3, 18.653].
(9)

The ANN response to this input vector is given
by

output (ANN) =
[

YSpredicted

]
= 350.5 [cN]. (10)
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Table 3: Values of yarn count, twist, WL, WF , WR, and yarn strength for 12 of the 98 different tests.

Yarn type Yarn count [tex] Twist [g/m] WL [mm] WF [m∗10−6] WS [cN/tex] Yarn strength [cN]

Cashmere 1 35.52 416 39.64 15.22 10.19 118.1

Cashmere 2 36.48 413 38.28 15.72 10.19 137.3

Maghreb 1 66.48 290 38.40 19.90 18.55 333.5

Maghreb 2 52.95 302 38.40 19.90 18.55 270.7

Joy 1 57.52 317 36.70 13.98 28.29 589.7

Joy 2 50.76 329 36.80 13.98 28.29 496.7

Beta 1 65.20 291 38.06 16.25 18.47 402.8

Beta 2 65.35 316 36.40 16.25 18.47 428.4

Gamma 1 64.08 281 36.60 16.05 18.65 323.4

Gamma 2 76.23 312 37.00 16.05 18.65 406.4

Velox 1 62.09 294 38.95 16.43 22.07 313.6

Velox 2 60.90 304 38.95 16.43 22.07 379.1

Table 4: values of yarn count, twist, WL, WF , WR, and yarn strength (YS) related to “cashmere” family.

Yarn type Yarn count [tex] Twist [g/m] WL [mm] WF [m∗10−6] WS [cN/tex] YS [cN]

Cashmere 1 35.52 416.00 39.64 15.22 10.19 118.10

Cashmere 2 36.48 413.00 38.28 15.72 10.19 137.30

Cashmere 3 37.15 416.20 38.92 15.85 11.10 134.21

Cashmere 4 37.17 416.42 38.65 16.07 10.86 138.26

Cashmere 5 37.18 420.01 39.04 16.57 11.35 128.21

Cashmere 6 38.14 425.00 39.12 16.82 11.33 123.20

Cashmere 7 38.91 428.31 39.13 17.56 11.49 121.98

Cashmere 8 38.96 432.01 40.12 18.50 12.02 132.10

Cashmere 9 39.44 432.16 40.50 19.25 12.80 123.90

Cashmere 10 39.57 432.53 40.86 20.09 13.02 138.09

Cashmere 11 40.08 433.98 40.89 20.63 13.88 137.85

Cashmere 12 40.91 438.01 40.90 20.72 14.83 120.22

Cashmere 13 37.06 439.55 39.22 16.28 11.19 137.69

Cashmere 14 37.48 432.87 39.59 16.84 11.45 124.98

Cashmere 15 37.68 421.87 38.95 16.27 11.75 119.54

Cashmere 16 38.49 425.76 39.07 16.34 12.71 139.76

Cashmere 17 38.71 430.42 39.90 17.20 13.37 140.70

Cashmere 18 39.39 431.75 40.20 18.17 13.72 142.87

The real value of yarn strength measured with a
dynamometer (after producing the yarn) is given by

YSreal = 356.6. (11)

Finally the prediction error is given by

η = 1.71%. (12)

In Table 5 the results of 11 of the whole set of 50 new
inputs are provided. Referring to Table 5 the mean error
in prediction of yarn strength is 3.07% with a standard
deviation equal to 0.0127. The maximum value in error
prediction is equal to 5.17%. These results may be compared
with the one obtained by means of a multiple regression-
based model. The regression equation (evaluated using, as

input, the values of Yc,Tw,WL,WF , and WS normalized in
the range [0-1]) is given by

YS = 1.027− 0.334 · Yc − 0.59 · Tw + 1.072 ·WL

− 1.090 ·WF + 0.8602 ·WS.
(13)

This linear regression model, as depicted in the last
column of Table 5, leads to an average estimation error equal
to 5.55%. In Table 6 the results of simulation performed
with the FFBP ANN model on the whole set of 50 rovings
are listed. Referring to this validation set the mean error in
prediction by using the FFBP ANN is 3.5%. The standard
deviation is equal to 0.015. In some cases, like for instance
for the roving named “joy 18”, the maximum error may
be relevant (in this case it is equal to 7.5%). This higher
error may be reduced using more data for training the ANN.
Future works will be addressed for the building of a more
consistent database.
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New Mill S.p.A.

Date 25 Mar 2009 Mean 15.71 u

Sample Id Kvss08203 SD 3.53 u

Description 38 mm cal 4 Sample size 10002

5% of fibres 6.7 above mean Spin fineness

99.9%
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Figure 2: (a) Example of output obtained by means of the OFDA instrument: statistical distribution of the fineness. The mean value is
assumed as the fineness parameter. (b) Ring frame machine used in the work.
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Figure 3: A scheme of the devised ANN. The ANN is composed
by three layers: input, hidden and output layer. The hidden, layer
is made of logistic neurons followed by an output layer of linear
neurons. The value for h was set to 10.

4. Conclusions

With the devised model the textile technicians may test any
kind of rovings composed by different percentages of fibers.
As stated above the experts are capable of knowing the
yarn strength without physically processing it by using the
provided model. The model gives an output in less than 1 sec
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Best validation performance is 0.046721 at epoch 22
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Figure 4: Training performance (MSE versus Epochs). The best
training has been reached for 22 epochs.

and uses parameters that are commonly measured by the
technicians before starting the spinning process. As a result
they can quickly test a large number of rovings until they
reach the best desirable strength property. After this phase of
testing they may effectively spin the yarn. Furthermore, also
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Table 6: Results of simulation for the 50 new rovings. The mean value in prediction error and the standard deviation are also showed.

Yarn type
Yarn

strength
[cN]

Predicted
yarn

strength
[cN]

% Name
Yarn

strength
[cN]

Predicted
yarn

strength
[cN]

% Name
Yarn

strength
[cN]

Predicted
yarn

strength
[cN]

%

Cashmere
19

123.2 127.9 3.83% joy 15 456.4 442.1 3.13%
gamma

15
329.4 316.3 3.98%

Cashmere
20

138.3 132.79 3.98% joy 16 534.2 542.2 1.50%
gamma

16
339.7 348.1 2.47%

Cashmere
21

129.5 134.54 3.90% joy 17 567.9 589.2 3.75%
gamma

17
404.8 421.6 4.15%

Cashmere
22

144.5 150.34 4.05% joy 18 532.2 572.1 7.50%
gamma

18
373.9 364.7 2.46%

Cashmere
23

146.8 140.82 4.07% joy 19 456.9 443.3 2.98%
gamma

19
356.6 365.8 2.58%

Cashmere
24

149.2 155.30 4.09% joy 20 421.5 403.7 4.22%
gamma

20
421.0 416.3 1.12%

Cashmere
25

128.3 133.28 3.88% joy 21 394.7 386.6 2.05%
gamma

21
376.3 358.0 4.86%

Cashmere
26

132.5 137.70 3.93% joy 22 459.2 449.2 2.18%
gamma

22
307.9 301.9 1.95%

Maghreb
17

267.8 281.93 5.28% beta 16 480.1 469 2.31% velox 22 408.6 405.3 0.81%

Maghreb
18

302.6 319.62 5.63% beta 17 562.1 572.2 1.80% velox 23 428.4 419.3 2.12%

Maghreb
19

332.4 352.09 5.92% beta 18 528.7 502.7 4.92% velox 24 359.6 376.2 4.62%

Maghreb
20

321.7 302.98 5.82% beta 19 397.2 392.4 1.21% velox 25 365.5 348.6 4.62%

Maghreb
21

298.2 314.84 5.58% beta 20 300.6 304.5 1.30% velox 26 438.3 423.1 3.47%

Maghreb
22

276.4 291.22 5.36% beta 21 372.1 378.6 1.75% velox 27 417.0 409 1.92%

Maghreb
23

343.1 322.40 6.03% beta 22 347.2 340.2 2.02% velox 28 419.3 416.9 0.6%

Maghreb
24

332.5 352.20 5.93% beta 23 402.3 395.9 1.59% velox 29 365.9 378.5 3.4%

velox 30 373.8 359.2 3.91%

velox 31 428.3 447.9 4.58%

Mean 3.50%

Standard
deviation

0.0162

an unskilled user is able to correctly choose the best roving
for a desired yarn after a few trials. This is translated into a
lossless time process. The devised model is running in the
New Mill S.p.A. Laboratory and will be subjected to further
implementations.

Nomenclature

Li: Length of the ith fiber composing a roving
Fi: Fineness of the ith fiber composing a roving
Ri: Resistance of the ith fiber composing a roving
αi: Percentage of the ith fiber composing a roving
Yci: Yarn count of the ith roving
Twi: Twist yarn of the ith roving

WLi: Weighted average length of the fibers from
ith roving

WFi: Weighted average fineness of the fibers from
the ith roving

WRi: Weighted average strength of the fibers from
the ith roving

YSi: Strength of the ith yarn.
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[2] M. E. Üreyen and H. Kadoǧlu, “Regressional estimation of
ring cotton yarn properties from HVI fiber properties,” Textile
Research Journal, vol. 76, no. 5, pp. 360–366, 2006.

[3] M. W. Suh, K. Hyun-Jui, and C. Xiaoling, “Prediction of yarn
tensile properties based on HVI testing of 36 U.S. Upland
cottons,” in Proceedings of the Beltwide Cotton Conferences, pp.
786–790, San Diego, Calif, USA, January 1998.

[4] S. Ertugrul and N. Ucar, “Predicting bursting strength of
cotton plain knitted fabrics using intelligent techniques,”
Textile Research Journal, vol. 70, no. 10, pp. 845–851, 2000.

[5] Y. E. El Mogahzy, “Selecting cotton fiber properties for fitting
reliable equations to HVI data,” Textile Research Journal, vol.
58, no. 7, pp. 392–397, 1988.

[6] M. D. Ethridge, J. D. Towery, and J. F. Hembree, “Estimating
functional relationships between fiber properties and the
strength of open-end spun yarns,” Textile Research Journal, vol.
52, no. 1, pp. 35–45, 1982.

[7] P. K. Majumdar and A. Majumdar, “Predicting the breaking
elongation of ring spun cotton yarns using mathematical, sta-
tistical, and artificial neural network models,” Textile Research
Journal, vol. 74, no. 7, pp. 652–655, 2004.

[8] L. Cheng and D. L. Adams, “Yarn strength prediction using
neural networks. I. Fiber properties and yarn strength rela-
tionship,” Textile Research Journal, vol. 65, no. 9, pp. 495–500,
1995.

[9] N. Ucar and S. Ertugrul, “Predicting circular knitting machine
parameters for cotton plain fabrics using conventional and
neuro-fuzzy methods,” Textile Research Journal, vol. 72, no. 4,
pp. 361–366, 2002.

[10] M. C. Ramesh, R. Rajamanickam, and S. Jayaraman, “Pre-
diction of yarn tensile properties by using artificial neural
networks,” Journal of the Textile Institute, vol. 86, no. 3, pp.
459–469, 1995.

[11] R. Zhu and M. D. Ethridge, “The prediction of cotton yarn
irregularity based on the ‘AFIS’ measurement,” Journal of
Textile Institute, vol. 87, no. 3, pp. 509–512, 1996.

[12] A. Guha, R. Chattopadhyay, and B. Jayadeva, “Predicting yarn
tenacity: a comparison of mechanistic, statistical, and neural
network models,” Journal of the Textile Institute , vol. 92, no. 1,
pp. 139–145, 2001.

[13] A. Majumdar, A. Ghosh, S. S. Saha et al., “Empirical modelling
of tensile strength of woven fabrics,” Fibers and Polymers, vol.
9, no. 2, pp. 240–245, 2008.

[14] M. Zeydan, “Modelling the woven fabric strength using artifi-
cial neural network and Taguchi methodologies,” International
Journal of Clothing Science and Technology, vol. 20, no. 2, pp.
104–118, 2008.

[15] J.-G. Yang, Z.-J. Lv, and Q. Xiang, “Yarn properties prediction
using support vector machines: an intelligent reasoning
method,” in Proceedings of the 4th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD ’07), vol. 1, pp.
696–700, Haikou, China, August 2007.

[16] Z. Bo, “Predicting fiber diameter of Polypropylene (PP)
spunbonding nonwovens process: a comparison between
physical and artifical neural network methods,” in Proceedings
of the International Conference on Computational Intelligence
and Security (CIS ’09), vol. 1, pp. 639–642, Beijing, China,
December 2009.

[17] B. Chylewska and D. Cyniak, “Requirements for fibres used for
rotor-spun yarns,” Bulletin of the Gdynia Cotton Association,
no. 4, pp. 33–47, 1998 (Polish).

[18] T. Jackowski and I. Frydrych, “What i learnt in fibre quality:
practical experience,” in Proceedings of the 58th Plenary
Meeting of the International Cotton Advisory Committee,
Charleston, SC, USA, October 1999.

[19] M. Frey, “Influence of fibre parameters and values of their
variation on the spinning process,” in Proceedings of the 4th
International Conference on Grid Computing and Applications,
Gdynia, Poland, 1995.
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