
Tesi di Dottorato di Ricerca in
Informatica ed Applicazioni

XVIII ciclo

ON THE MODELING AND SOLUTION OF

COMPLEX SYSTEMS: FROM TWO

DOMAIN-SPECIFIC CASE-STUDIES TOWARDS

THE DEFINITION OF A MORE GENERAL

FRAMEWORK

Paolo Lollini



Titolo della tesi:
On the modeling and solution of complex systems: from two domain-specific
case-studies towards the definition of a more general framework.

Il candidato:
Paolo Lollini

Il tutore:
prof. Andrea Bondavalli

Il co-tutore:
dr. Felicita Di Giandomenico

Il coordinatore:
prof. Rocco De Nicola

December, 2005

Università degli Studi di Firenze
Dipartimento di Sistemi e Informatica
Viale Morgagni 65, 50134 Firenze
Italy



INTRODUCTION

Complex software and hardware systems are widely used in different appli-
cations and they have become pervasive in many fields of human activity. Each
system demands some specific properties, as a certain level of availability, relia-
bility, performance or quality of service (QoS), whose evaluation has become a
key issue in information technology and computer science. The quantitative eval-
uation of these system’s properties is performed following two basic approaches:
measurement-based and model-based. In the first approach, the required measures
are estimated from measured data using statistical inference techniques, and the
data are measured from a real system or from its prototype. It is usually a very ex-
pensive approach, since it requires to build a real system, take the measurements
and analyze the data statistically. On the contrary, the model-based approach is
inexpensive and easier to perform, since the system evaluation does not require
to build and measure the system. The model-based approach can be used for sys-
tem assessment in all phases of the system life cycle. During design phase, models
give an early validation of the concepts and architectural choices, allow comparing
different solutions to highlight problems within the design and to select the most
suitable one. During the operational life of the systems, models allow to detect
bottlenecks and to suggest solutions to be adopted for future releases. Moreover,
the sensitivity analysis can be carried out after modelling, and it allows to iden-
tify system bottlenecks, highlight problems in the design, and identify the critical
parameters, that are those to which the system is highly sensitive.

The models we are interested in have to cope with an important feature: the
random phenomena. A random phenomenon is characterized by the fact that its
future behavior is not predictable in a deterministic fashion. A very simple random
phenomenon is, for example, the toss of a coin. We do not known deterministi-
cally which side we will obtain at each toss, but we can treat these phenomena
using some statistical regularities. Therefore, the random phenomena are usu-
ally capable of mathematical descriptions and we can treat them introducing the
probability theory and the concepts of random variables (discrete and continuous),
probability mass functions, probability density functions, cumulative distribution
functions (discrete and continuous), random processes (Markovian or not), and so
on ([1]).

A model-based evaluation can be carried out through discrete-event simula-
tion or analytical models (or a combination of them). A discrete-event simulator
is a program whose execution simulates the dynamic behavior of the system and

iii



evaluates the required measures. In general it can be used to solve all the models,
whereas analytical solvers can be used on only those models having some particu-
lar properties (e.g. the underlying random process is Markovian). One of the main
advantages of simulation over analytical modeling is the flexibility and generality
of the solvable models; on the other hand, the numerical solvers are capable of
providing exact solutions (up to machine precision), whereas simulation provides
statistically accurate solutions within some user-specifiable confidence interval.
An analytical model consists of a set of equations that describes the system be-
havior, and the solution of these equations provides the measures of interest. We
can distinguish between state and non-state space analytical models. The non-
state space models can be solved without generating the underlying state space,
and they are based on the assumptions of statistically independent failures and in-
dependent repair units for components. Thanks to these assumptions, the solution
can be computed in a very efficient way also for complex systems with hundred of
components. Examples of non-state space models are Reliability Block Diagram
(RBD) and Fault Trees (FT) [2]. Unfortunately, the introduced independency as-
sumptions usually do not hold for most real systems, for which the use of state
space models is mandatory.

The complexity of the state space models is a very critical problem that needs
to be addressed very carefully. Being able to describe critical complex systems
by accounting at the same time for all the relevant aspects is not trivial at all. The
models built for evaluating the measures of interest are always a tradeoff between
correctness of representation of the real systems behavior and capability to solve
the model equations to obtain the measures. On one side, we would like to per-
fectly represent the system’s behavior accounting for all the details that can have
an influence on the measures of interest. On the other side, we aim to efficiently
solve the obtained models despite their high level of complexity. Complexity
may induce several problems, like very large state spaces for state-based analyti-
cal solutions (and consequently large memory requirements) or unacceptably long
solution times for analytic solutions and simulations in case of stiff models, i.e.
models having events occurring at very different time scales.

Several works have been presented in the literature trying to cope with the
complexity problem. A first approach consists in building models with an high
level of abstraction (or, equivalently, with a low level of detail). Using appropriate
modeling formalisms (e.g. Markov Chains, Petri Nets, Stochastic Petri Nets and
their extensions), some system’s details are not explicitly modeled but they are
described at an higher level as an aggregated information, thus leading to more
tractable models. The major limitation is that the abstraction process usually in-
troduces some approximations in the representation of the system behavior that
can cause a loss of accuracy of the measures of interest or the model representa-

iv



tiveness. Other works try to tackle the complexity problem building models in a
modular way through a composition of its submodels (e.g. [3, 4, 5, 6, 7, 8, 9]).
Some compositional rules are defined to interconnect the submodels, and the de-
pendencies between submodels are exploited to manage the model complexity
creating smaller, equivalent representations. Finally, other works follow the de-
composition/aggregation approach (e.g. [10, 11, 12, 13, 14, 15, 16, 17]), whose
basic idea is to decompose a large model in a set of more tractable submodels that
are solved separately, possibly passing some intermediate results. The measures
obtained from the evaluation of each submodel are then aggregated to obtain the
measures for the original model.

It appears quite evident that lot of work has been done to model and solve com-
plex systems, but a lot of work still remains which has to be done in the future.
One of the major weaknesses in this research area is the lack of a general method-
ology applicable to a wide class of systems, since all the existing techniques are
domain-specific and then can help the construction and the solution of a limited
(although, possibly, well populated) class of systems. Though a universal method-
ology able to model and efficiently solve all the existing systems does not exist,
in this dissertation we give a contribution in the definition of a general modeling
and solution framework, focusing the attention on the decomposition/aggregation
techniques. We follow a very pragmatic approach. We first tackle two domain-
specific case-studies: the first concerning a mobile telephone infrastructure, and
the second focusing on a class of hierarchical control systems. The complexity
of the models has been managed through the definition of two specific decom-
position techniques, one for each case-study. Both works provide a very useful
insight in their respective application-domain, showing very attractive potentiali-
ties that could be exploited in the analysis of other similar problems. At the same
time, they enable us to understand the main issues involved in the decomposition
approach. This knowledge has been used in the second part of the dissertation
to depict a more general modeling and solution framework that, although to be
further detailed and refined, seems to have very good potentialities. Then, such
methodology has been applied to the mobile telephone infrastructure case-study
in order to prove its feasibility.

In more detail, the main topics addressed in the dissertation are the following.

1. Analysis of a complete General Packet Radio Service (GPRS) mobile tele-
phone infrastructure, composed by a number of adjacent cells partially
overlapped [18]. We consider one cell as affected by an outage and, through
a transient analysis, we evaluate the effectiveness of a specific class of re-
source management techniques for congestion treatment in terms of service

v



availability related indicators. This work is a major extension and refine-
ment to the previous studies dealing with a GPRS infrastructure ([19, 20]),
and the classical availability analysis is enhanced by taking into account
the congestion following outages and its impact on user’s perceived QoS,
both in each cell and in the overall GPRS network. In order to efficiently
solve the large and complex model capturing the network’s behavior, we in-
troduce a decomposition/aggregation approach in which the solution of the
entire model is constructed on the basis of the solutions of the individual
sub-models.

2. Efficient dependability evaluation of hierarchical control and resource man-
agement systems [21, 22, 23]. We exploited the characteristics of this spe-
cific, but important, class of systems and derived a modeling methodology
that is not only directed to build models in a compositional way, but it also
includes some capabilities to reduce their solution complexity. The mod-
eling methodology and the resolution technique are then applied to a case
study consisting of a resource management system developed in the context
of the recently concluded European project CAUTION++ [24]. The results
obtained are useful to understand the impact of several system component
factors on the dependability of the overall system instance.

3. Definition of a general framework to model and solve complex systems
through decomposition. We propose a very natural decomposition/aggregation
approach that operates at the system-level definition, rather than at the model-
level one. Through a functional decomposition, the system is first decom-
posed in a set of sub-systems, called “entities”. In each instant, an entity
can i) work in isolation, or ii) interact with other entities through some “de-
pendency relations”, that are connections that state how the behavior of an
entity affects the behavior of the others. The system’s lifetime is then de-
composed in a sequence of phases such that two consecutive phases have
at least one different dependency relation (temporal decomposition). The
modelling procedure is then applied to this decomposed system. First, fol-
lowing a modular approach, we build a single model representing the behav-
ior of the whole system. Then, the application of a decomposition approach
at model-level produces a set of separate submodels (one for each entity)
that can be solved in isolation, passing some intermediate results between
them if and when required (physical decomposition). The proposed model-
ing and solution framework is general, in the sense that it is not application-
domain specific, and it induces a mitigation of the model complexity (both
temporal and spatial) thanks to the adopted decomposition approach. A crit-
ical point is the accuracy of the final results that has to be addressed very

vi



carefully, but it actually depends on the real system under analysis and on
the way in which the models are separated.

4. Feasibility case-study. The case-study of the mobile telephone infrastruc-
ture presented in the first part of the dissertation is here reused as applica-
tion domain for the proposed general modeling methodology. The goal is
twofold: on one side we want to demonstrate the feasibility of the method-
ology, and on the other side we aim to evaluate its effectiveness and accu-
racy in solving a real system. The obtained results are then compared with
those produced by the solution of the whole non-decomposed model (that
we consider the exact solution) and with those produced by the application
of the methodology specifically tailored for the considered class of systems.
The first analysis emphasizes the efficacy of the decomposed modeling ap-
proach that substantially reduces the total computational time. The second
one leads us to note that the application of the general modeling methodol-
ogy enhances the modular construction of the models (each one performing
a well-separated critical function), although as expected the processing time
slightly gets worse with respect to the domain-specific methodology (but it
is the price to be payed when a general methodology is applied to solve a
very specific system), while the accuracy of the final results are similar.

The structure of the dissertation is the following. The research’s framework
is presented in Chapter 1. Chapter 2 deals with the analysis of the GPRS mobile
telephone infrastructure, while the methodology for the dependability evaluation
of hierarchical control and resource management systems is described in Chapter
3. The general modeling and solution framework is then presented in Chapter 4,
and the feasibility case-study is shown in Chapter 5. Finally, conclusions are in
Chapter 6.

This dissertation is also available in pdf format at the web site address
http://rcl.dsi.unifi.it/theses/TesiLollini.pdf .
A detailed technical documentation concerning the models introduced in the dis-
sertation is downloadable at the following web site address:
http://rcl.dsi.unifi.it/theses/TesiLollini techDoc.pdf .

vii



ACKNOWLEDGEMENTS

I want to deeply thank my tutor Prof. Andrea Bondavalli, from the department
of Computer Science of the University of Florence, and my co-tutor Dr. Felicita Di
Giandomenico, from the institute ISTI of the Italian National Research Council.
Thanks for your invaluable support and for the time we enjoy working together.

I also wish to thank all of the members of the PERFORM research group of the
University of Illinois at Urbana-Champaign, both for their technical assistance on
this dissertation and for their assistance to me during my visiting period at Urbana.

Many thanks to whoever gave me a moral support and encouragement, and in
particular the colleagues and friends of the “PhD room” at DSI. Last but certainly
not least, I would like to thank Chiara for her help, patience and love, and my
family.

viii



Contents

1 Framework of the Research 1
1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The means for dependability . . . . . . . . . . . . . . . . . . . . 4
1.3 Quantitative evaluation of dependability attributes, and the role of

the model-based approach . . . . . . . . . . . . . . . . . . . . . 6
1.4 Modeling formalisms . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Stochastic Petri Nets . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Generalized Stochastic Petri Nets . . . . . . . . . . . . . 11
1.4.5 Deterministic and Stochastic Petri Nets . . . . . . . . . . 11
1.4.6 Stochastic Activity Networks . . . . . . . . . . . . . . . . 12

1.5 Modular construction/composition approaches . . . . . . . . . . . 15
1.5.1 Blocks composition . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Replicate/Join formalism and graph composition . . . . . 16
1.5.3 The “separation of concerns” approach . . . . . . . . . . 16
1.5.4 Stepwise refinement approach . . . . . . . . . . . . . . . 17
1.5.5 Reuse by inheritance . . . . . . . . . . . . . . . . . . . . 17

1.6 Decomposition/aggregation approaches . . . . . . . . . . . . . . 18
1.6.1 Component-based decomposition . . . . . . . . . . . . . 18
1.6.2 Time scale decomposition . . . . . . . . . . . . . . . . . 18
1.6.3 Logical decomposition . . . . . . . . . . . . . . . . . . . 19
1.6.4 Modular and hierarchical decomposition . . . . . . . . . . 19
1.6.5 Phased decomposition . . . . . . . . . . . . . . . . . . . 19
1.6.6 Interaction-based decomposition . . . . . . . . . . . . . . 20

1.7 Available modeling and solution tools . . . . . . . . . . . . . . . 21
1.7.1 Single-formalism/multi-solution tools . . . . . . . . . . . 21
1.7.2 Multi-formalism/multi-solution tools . . . . . . . . . . . 21

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



2 QoS analysis for GPRS infrastructures 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 General Packet Radio Service . . . . . . . . . . . . . . . . . . . . 26

2.2.1 The Random Access Procedure . . . . . . . . . . . . . . 26
2.3 The system context and QoS indicators . . . . . . . . . . . . . . . 27
2.4 How to model and solve the system . . . . . . . . . . . . . . . . 30

2.4.1 The models needed . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 The “internal GPRS cell model” . . . . . . . . . . . . . . 35
2.4.3 Type A model: the “users switching/reswitching sub-model”

for CELL . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.4 Type B model: the “users switching/reswitching sub-model”

for CELL-i . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.5 The overall model for the couple [CELL, CELL-i] . . . . 41
2.4.6 Type C model: the “users switching/reswitching sub-model”

for CELL using the provided “observed users re-switching
distribution” . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.7 About effectiveness . . . . . . . . . . . . . . . . . . . . . 43
2.5 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Settings for the numerical evaluation and the Analyzed
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Numerical evaluation . . . . . . . . . . . . . . . . . . . . 45
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Efficient Dependability Evaluation of Hierarchical Control Systems 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 System context . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Interactions between components and Measures of interest 56
3.3 Description of the modeling methodology . . . . . . . . . . . . . 58

3.3.1 The model design process . . . . . . . . . . . . . . . . . 59
3.3.2 The model solution process . . . . . . . . . . . . . . . . 60

3.4 An instance of a “multi-stage” system: the CAUTION++ platform 65
3.4.1 Components behavior and Modeling assumptions . . . . . 67

3.5 The models derived for the selected CAUTION++ trial . . . . . . 67
3.5.1 Measures of interest . . . . . . . . . . . . . . . . . . . . 67
3.5.2 The abstract models . . . . . . . . . . . . . . . . . . . . 68
3.5.3 The detailed models . . . . . . . . . . . . . . . . . . . . 69
3.5.4 The Overall Model . . . . . . . . . . . . . . . . . . . . . 74

3.6 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6.1 Settings for the numerical evaluation . . . . . . . . . . . . 75
3.6.2 Numerical evaluation . . . . . . . . . . . . . . . . . . . . 77

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



4 The general Modeling and Solution framework 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 The proposed interaction-based decomposition technique . . . . . 84
4.3 The modeling approach for a phased-interacting system . . . . . . 86

4.3.1 The first step of the modeling approach: the whole model
structure definition . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 The second step towards the modeling approach: the whole
model decomposition . . . . . . . . . . . . . . . . . . . . 89

4.4 The decomposed solution process . . . . . . . . . . . . . . . . . 93
4.4.1 Standard Algorithm . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 Algorithm optimization . . . . . . . . . . . . . . . . . . . 97
4.4.3 Applicability of the solution process . . . . . . . . . . . . 100
4.4.4 About effectiveness . . . . . . . . . . . . . . . . . . . . . 102
4.4.5 About Accuracy . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Available tools supporting the modeling and solution framework . 106
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Feasibility case-study 109
5.1 The GPRS infrastructure as a phased-interacting system . . . . . . 109
5.2 The whole non-decomposed model . . . . . . . . . . . . . . . . . 112

5.2.1 “Phases model” . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2 CELL−X◦ model . . . . . . . . . . . . . . . . . . . . 114
5.2.3 ε

(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model . . . . . . . . . 116

5.2.4 ε
(4)
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . 117

5.2.5 The overall model . . . . . . . . . . . . . . . . . . . . . 118
5.3 The decomposed model . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 Applying the optimized solution algorithm . . . . . . . . . . . . . 120
5.5 Row 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1 ε
(2),OUT
CELL−0→{CELL−1,CELL−2,CELL−3} model . . . . . . . . . 121

5.5.2 CELL− 0(1,2) model . . . . . . . . . . . . . . . . . . . 122
5.5.3 O

(2)
CELL−0→{CELL−1,CELL−2,CELL−3} computation . . . . . 122

5.6 Row 2 (or 3, or 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6.1 ε

(2),IN
CELL−0→{CELL−1} model . . . . . . . . . . . . . . . . . 123

5.6.2 ε
(4),OUT
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . 124

5.6.3 CELL− 1(1,2,3,4,5) model . . . . . . . . . . . . . . . . . 125
5.6.4 O

(4)
CELL−1→{CELL−0} computation . . . . . . . . . . . . . 125

5.6.5 MCELL−1 computation . . . . . . . . . . . . . . . . . . . 126
5.7 Row 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7.1 ε
(4),IN
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . 127

5.7.2 CELL− 0(1,2,3,4,5) model . . . . . . . . . . . . . . . . . 129

xi



5.7.3 MCELL−0 computation . . . . . . . . . . . . . . . . . . . 129
5.8 The “connected model” to automatically pass the intermediate re-

sults between models . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.9.1 Settings for the numerical evaluation and the Analyzed
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.9.2 Numerical evaluation: solving the whole non-decomposed
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.9.3 Numerical evaluation: solving the decomposed models . . 134
5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusion 138

xii



Chapter 1

Framework of the Research

The complexity of computerized systems has become a very critical issue in our
daily lives. Many people need to rely upon the services provided by these system,
as their malfunctions can cause very serious consequences both in terms of loss of
human’s life and/or in terms of conspicuous economical damages. Therefore, it
is mandatory for such critical systems to have some specific properties that allow
us to “sufficiently trust” on the correct delivery of their services. The set of these
system properties is studied in the conceptual framework of dependability.

The purpose of this Chapter is to give an overview of the framework of the
research in which the dissertation is contributing to. The focus is on the model-
based approach for the evaluation of the dependability properties, that has proven
to be useful and versatile in all the phases of the system life cycle. One of the
main problems that has to be taken into account when we want to model a system
is the management of complexity. To master complexity a modeling methodology
is needed so that only the relevant aspects can be detailed still allowing numerical
results to be effectively computable. A solution in this sense is the introduction of
simplifying hypotheses, but it is a critical activity because the introduced approx-
imation could limit or invalidate our faithfulness on results. A complementary
(usually non alternative) approach is the application of a modeling technique that
also includes some capabilities to reduce the overall complexity.

The rest of this Chapter is organized as follows. In Section 1.1 we introduce
the dependability attributes and the threats to dependability (faults, errors and fail-
ures), while the means to achieve dependability are outlined in Section 1.2. The
role of the model-based approach in the evaluation of the dependability attributes
is discussed in Section 1.3, while some of the most used modeling formalisms
based on Petri Nets and its extensions are outlined in Section 1.4. In Sections 1.5
and 1.6 we present two classes of available techniques that try to cope with the
complexity problem, the first following a modular construction/composition ap-

1



proach, and the second a decomposition/aggregation approach. Finally, in Section
1.7 we give an overview of the available tools that can help the user to build and
solve models, classifying them with respect to the modeling and solution features
they provide.

1.1 Basic concepts
Dependability is a property of a computer system such that reliance can justifiably
be placed on the services the system provides [25], and it is a term that unifies a
number of different system characteristics:

• availability, the measure of the delivery of correct service with respect to
the alternation between correct and incorrect service;

• reliability, the measure of continuous delivery of correct service;

• confidentiality, the absence of unauthorized disclosure of information in-
tegrity;

• maintainability, the ability to undergo repairs and modifications;

• safety, the absence of catastrophic consequences on the user(s) and on the
environment;

• integrity, the absence of improper system state alterations.

Several other dependability or dependability-related attributes have been defined,
among which: security, as the combination of availability, confidentiality and in-
tegrity; performability, which takes into account performance in degraded system
states.

Although the systems are built to satisfy all the requirements prescribed for the
service they provide, for complex systems it is practically impossible to guarantee
that they will work properly during its whole life-cycle, and it is due to the occur-
rence of faults, errors and failures.

A fault is an adjudged or hypothesized cause of an error. With respect to its
duration, it can be permanent, intermittent or transient: a permanent fault is con-
tinuous and stable, an intermittent fault is a fault that is only occasionally present
due to instable hardware or varying hardware or software state, while transient
faults are resulting from temporary environmental conditions. The faults can also
be classified with respect to their origin. Physical faults arise from physical phe-
nomena internal to the system (such as shorts or opens), or external changes (such

2



as environmental or electromagnetic). Human faults may be either design faults,
which are committed during system design, modification, or establishment of op-
erating procedures, or the may be interaction faults, which are violations of op-
erating or maintenance procedures. With respect to their status, faults can also
be classified in active, when they produce an error, otherwise they are dormant.
Other possible classifications are in [26].

An error is the manifestation of a fault within a program or data structure. It
is a part of the system state that may cause a subsequent failure: a failure occurs
when an error reaches the service interface and alters the service.

A failure occurs when the delivered service deviates from the specified ser-
vice; failures are caused by errors. A system may not, and generally does not,
always fail in the same way. The ways a system can fail are its failure modes, and
they can be characterized by their domain (value and timing failures), by the per-
ception by the system users (consistent and byzantine failures), by the capability
to detect them (signalled or un-signaled failures) and by the consequences on the
system environment (from benign to catastrophic failures). An outage is a special
case of failure that is defined as a loss or degradation of service to a customer
for a period of time (called outage duration). In general, outages can be caused
by hardware or software failures, human errors, and environmental variables (e.g.
lightning, power failures, and fire). A failure resulting in the loss of functionality
of the entire system is called system outage.

Faults, errors and failures are the threats to dependability as they can induce a
system to deliver an incorrect service (or to deliver no service), and their effect is
to deteriorate the dependability attributes (or some of them).

The causality relationship between faults, errors and failures is shown in Fig-
ure 1.1. An active fault is either a) an internal fault that was previously dormant
and that has been activated by the computation process or environmental condi-
tions, or b) an external fault. A fault is activated when an input is applied to a
component that causes a dormant fault to become active. The computation pro-
cess can induce an error that can propagate within a given component (i.e., internal
propagation): an error is successively transformed into other errors. Error prop-
agation from one component (A) to another component (B) that receives service
from A (i.e., external propagation) occurs when, through internal propagation, an
error reaches the service interface of component A. At this time, service delivered
by A to B becomes incorrect, and the ensuing failure of A appears as an external
fault to B and propagates the error into B.

3



Figure 1.1: Error propagation scheme

1.2 The means for dependability
In this Section we outline the means to make a system dependable. They can be
classified in four classes, but usually the development of a dependable computing
system requires the application of a set of methods, rather than a unique one.

• Fault Prevention. The techniques belonging to this class aim to prevent the
occurrence or the introduction of faults in the system. Examples are design
review, component screening, testing, quality of control methods, formal
methods and software engineering methods in general.

• Fault Tolerance. The fault tolerance techniques enable a system to provide
a correct service in spite of faults. Fault tolerance is carried out by error
processing and fault treatment: the first aims at removing errors from the
computational state, possibly before the occurrence of a failure, while the
second aims at preventing faults from being activated again.

– Error processing. There are two techniques to carry out error pro-
cessing: error recovery and error compensation. They both need er-
ror detection capability, that is the capability to identify the erroneous
state as soon as it is activated, or before it propagates and produces a
failure. Error recovery means that a detected erroneous state is substi-
tuted by a non-erroneous state, while error compensation means that
the detected erroneous state contains enough redundancy to deliver an
error-free service from the erroneous internal state. When error com-
pensation is applied systematically, even in the absence of fault (for
example majority vote), it is called fault masking.

– Fault treatment. It consists of the following steps:

4



1. Fault diagnosis, determining the causes of errors in both location
and nature;

2. Fault isolation, preventing the faults from being activated again by
removing the components identified as being faulty from further
executions;

3. System reconfiguration, which either switches in spare compo-
nents or reassign tasks among non-failed components, whenever
the system is no longer capable of delivering the same service.
This reconfiguration should enable the delivery of an acceptable
service, even if the system capability degrade (graceful degrada-
tion);

4. System re-initialization, which checks, updates and records the
new configuration and update system tables and records.

A fault tolerant system can be achieved, for example, by recurring to re-
dundant techniques, useful against independent faults, and design diversity,
useful against design faults. The use of redundancy can provide the infor-
mation needed to negate the effects of faults. There exist several dimensions
of redundancy: time redundancy which is provided by software (extra ex-
ecutions of the same calculation which may be accomplished by different
methods), components redundancy which is provided by hardware or soft-
ware (use of extra memory, bus lines, functional modules to supply extra
information), and information redundancy (mapping data in new represen-
tation containing redundant information to allow fault detection and fault
masking).

• Fault Removal. These techniques aim to reduce the presence (number, se-
riousness) of faults, and they are obtained by means of a set of techniques
used after that the system has been built. They are verification (checking
whether the system adheres to properties, termed the verification condi-
tions), diagnosis (diagnosis the fault which prevented the verification con-
ditions from being fulfilled), and correction.

• Fault Forecasting. The purpose of the fault forecasting techniques is to es-
timate the present number, the future incidence and consequences of faults.
Indeed, no existing fault tolerant technique is capable to avoid a failure sce-
nario, then the dependability evaluation represents a suitable mean to verify
the adequacy of a system design with respect to the requirements given in
its specification. In this sense, fault forecasting is a way to achieve system
assessment. Fault forecasting has two aspects: i) qualitative evaluation, that
aims to identify, classify, and rank the failure modes, or the event combina-
tions that would lead to system failures, and ii) quantitative evaluation, that

5



aims to evaluate in terms of probabilities the extent to which some of the
attributes are satisfied; those attributes are then viewed as measures. In the
following Section we focus the attention on this last aspect.

1.3 Quantitative evaluation of dependability attributes,
and the role of the model-based approach

The quantitative evaluation of dependability attributes can be used for fault-forecasting
[25], that is to probabilistically estimate the occurrence of faults and their impact
on the ability of the system to provide a proper service. System assessment can
be performed using several approaches like testing (experimental evaluation) and
model-based evaluation, often combined together. Testing is a dynamic verifica-
tion that consists in exercising a system with some actual inputs, observing the
outputs and then deciding whether or not they satisfy the verification conditions.
Testing necessitates faults or errors to be part of the input test patterns, that is
usually referred to as fault injection [27]. It is an attractive option for assessing an
existing system or prototype, but costly and not always applicable, e.g., when the
interest is in very rare events.

As defined in [28], a model is an abstraction of a system “that highlights the
important features of the system organization and provides ways of quantifying its
properties neglecting all those details that are relevant for the actual implementa-
tion, but that are marginal for the objective of the study”. Model-based evaluation
is usually cheaper than experimental evaluation and it can be used in all the phases
of the system life cycle. During the design phase, models allow to compare dif-
ferent alternative architectural solutions, to select the most suitable one and to
highlight problems within the design (“early” validation). Once design decisions
are made, models allow to predict the overall behavior of the system. Finally, for
an already existing system, models allow an “a posteriori” dependability analy-
sis [29], to understand and learn about specific aspects, to detect possible design
weak points or bottlenecks, to perform a late validation of the dependability re-
quirements and to suggest sound solutions for future releases or modifications of
the systems.

There exist several types of models, and the choice of a proper model de-
pends on many factors, like the complexity of the system, the specific aspects to
be studied, the attributes to be evaluated, the accuracy required, and the resources
available for the study. One of the most commonly used modeling techniques is
discrete-event simulation, especially for highly complex systems for which an-
alytical solution is generally precluded. Its major weakness is that it produces
solutions that are only estimations of the exact measures. On the contrary, an-

6



alytical modeling provides exact solutions (up to machine precision) and thanks
to recent developments in model generation, solution techniques and automated
tools, it is a very used alternative to simulation for dependability evaluation.

Modeling shows also several problems that must be taken under special care.
The first problem is complexity, as the overall description of critical complex sys-
tems can be a very critical issue. Another problem is the stiffness [30], which
arises when model parameters assume values whose orders of magnitude differ
significantly from each other. To master complexity and explosion of information
to be accounted, a modeling methodology is needed so that only the relevant as-
pects can be detailed thus allowing numerical results to be effectively computable.
In addition, simplifying hypotheses are very often necessary to keep the model
manageable; of course, the choice of such hypotheses is critical, to avoid resulting
in a system model too far from the real behavior that evaluation results become
useless in practice. Despite the recent results in the analytical modeling field, the
information explosion problem remains the major difficulty for analyzing practi-
cal applications. Another problem is the determination of the values to assign to
the parameters required by the models. Actually these values can be difficult to
obtain (usually by way of experimental tests), and they can not be provided dur-
ing the preliminary design phases of the system. Since even slight variations of
critical parameter values may result in relevant changes of system dependability
attributes, a thorough calibration of such parameters is necessary to increase the
level of confidence that can be put on the dependability evaluation itself.

In the following Section we present some of the most used modeling for-
malisms for the evaluation of dependability/performability attributes.

1.4 Modeling formalisms
Markov Chains (MCs), Petri Nets (PNs), Stochastic Petri Nets (SPNs), Gener-
alized Stochastic Petri Nets (GSPNs), Deterministic and Stochastic Petri Nets
(DSPNs) and Stochastic Activity Networks (SANs) are only some examples of
modeling formalisms that facilitate abstraction. They are listed following an in-
creasing abstraction order, from the less abstract level (MCs) to the higher one
(SANs). Each formalism has its own peculiarity. For example, some formalisms
provide very efficient solution methods (e.g., DSPN offers a very efficient ana-
lytical solution technique under some assumptions [31]), while some others offer
a powerful way to compactly represent very complex behaviors (e.g., SAN). The
advantage of using these formalisms is that a modeler can describe a system with
a low level of details, thus developing more tractable models. The major limita-
tion is that the abstraction process usually introduces some approximations in the

7



representation of the system behavior that can cause a loss of accuracy of the mea-
sures of interest or the model representativeness. Therefore, the applicability of
this modeling approach is usually a trade-off between model tractability and ac-
curacy of the obtained results. Their main characteristics will be briefly described
in the following Subsections.

1.4.1 Markov chains
A Markov Chain (MC) [1] is a Markov process with a discrete (or countable) state
space. A system can be modeled using a MC if its evolution in time is independent
from the past, but only depends on the current state. The set of possible states of a
Markov chain is called the state space, denoted by S. A state change of a Markov
chain is called a state transition. More formally, a MC is a stochastic process
{X(t), t ≥ 0}with a discrete state space such that for any n > 0 and any sequence
of increasing time instants t1, t2, . . . , tn, tn+1, the following equation holds:

Prob{X(tn+1) = j|X(tn) = in, X(tn−1) = in−1, . . . , X(t1) = i1} =

Prob{X(tn+1) = j|X(tn) = in} ∀j, in, in−1, . . . , i1 ∈ S (1.1)

It is the memoryless (or Markov) property: the future behavior of the process
is independent from its past. If the exact characterization of the present state of
the process is independent from the current time, then the Markov chain is said
to be time-homogeneous, otherwise it is said to be a non-homogeneous Markov
chain. The parameter t that indexes the Markov chain can be either discrete or
continuous. In the first case we have a discrete-time Markov chain {Xn|n ≥ 0},
where state transitions only occur at discrete points in time, often called steps,
whereas in the latter case we have a continuous-time Markov chain {X(t)|t ≥ 0}
and state transitions may occur at any point in time. Because of the memoryless
property, each transition from state i to state j of a homogeneous continuous-
time Markov chain occurs in an exponentially distributed time, and the rate of the
transition is exactly the inverse of the expected time to the transition, that is the
rate of the corresponding exponential distribution. This implies that time needed
to perform whichever activity of a system must be modelled with an exponential
transition in the Markov chain model of that system. This is the most severe
constraint that limits the applicability of MCs. If we model a transition having
non-exponential duration with an exponential transition, we unavoidably induce
an approximation in the model that can have significant impact on the final results.
In order to cope with this problem, there exist several techniques that try to contain
this error. For example, the phase expansion [32] uses a sequence of exponential
stages to approximate a non-exponential random variable.

8



The solution of a MC model consists in solving ordinary differential equations
(for transient solutions) or linear equations (for steady-state solution) using some
available numerical solution technique.

1.4.2 Petri Nets
Petri Nets (PN) were originally introduced by C. A. Petri in 1962. Formally [1,
33], a place-transition Petri net (PN) is 5-tuple PN = (P ;T ;A;M ;µ0), where:

• P = {P1, P2, . . . , Pn} is a finite set of places (draw as circles).

• T = {t1, t2, . . . , tn} is a finite set of transitions (draws as bars).

• A ⊆ (P × T )
⋃
(T × P ) is a set of arcs connecting P and T . Arcs going

from a place to a transition are called input arcs, and arcs directed from a
transition to a place are called output arcs.

• M : A→ {1, 2, 3, . . .} is the multiplicity associated with the arcs in A.

• µ : P → {1, 2, 3, . . .} is the marking that denotes the number of tokens
(drawn as black dots or a positive integer) for each place in P . The initial
marking is denoted with µ0.

The places that are linked to transition t by an input arc are called the input
places of the transition. Similarly, the places linked to transition t by an output
arc are called the output places of the transition. In the graphical representation
of the Petri net model, places are drawn as circles and transitions are drawn as
bars, with the input and output arcs linking them. Places may contain tokens,
which are represented as black dots. The state of the Petri net model is a vector
(m(P1),m(P2), . . . ,m(Pn)) called the marking of the net, and it is defined by
the number of tokens m(Pi) in each place i of the model. Transitions model activ-
ities which can occur (the transition fires) and change the state of the system (the
marking of the Petri net). Transitions are only allowed to fire if they are enabled,
and this happens when there are enough tokens available in the corresponding in-
put places. When the transition fires, it removes from each of its input places a
number of tokens equal to the cardinality of the corresponding input arc, and adds
to each of its output places a number of tokens equal to the cardinality of the cor-
responding output arc. When two enabled transitions share an input place and the
number of tokens therein is not sufficient for both of them to fire, the transitions
are said to be in conflict, and a selection rule (usually a priority associated to the
transitions) must be employed to break the competition in favor of one of them.

A system can be modelled by representing its states as markings of the Petri
Nets. Tokens can be used to represent entities of the system, such as tasks to be

9



executed, messages to be sent. Transitions model activities or synchronization
constraints of the system, and the firing rules define the preconditions to be sat-
isfied for the activities to be executed or the synchronization to be completed, re-
spectively. The absence of time in the class of place-transition Petri nets does not
allow quantitative analysis of the modelled systems. This formalism was mainly
introduced to model qualitative aspects of systems (concurrency, parallelism) and
to verify its structural properties (like, for example, the absence of deadlocks, a
given order in the actions performed etc.).

1.4.3 Stochastic Petri Nets
A very popular timed extension of the place-transition Petri nets is the class of
Stochastic Petri Nets (SPNs) [34]. In a SPN model, each transition t has an asso-
ciated random firing delay exponentially distributed. The enabling of a transition
is the same as of the PN models. As soon as a transition t gets enabled, a ran-
dom firing time is sampled from the exponential distribution associated to t, and a
timer starts counting from that time down to zero. Transition t fires if and only if
it remains continuously enabled until the timer reaches zero. When t fires, the to-
kens are removed from their input places and added to the output places in a single
atomic and instantaneous operation (atomic firing rule). It is interesting to observe
that in the time interval between the enabling and the firing of t, other transitions
sharing some input places with t can get enabled and fire without disabling it, pro-
vided that there is a sufficient number of tokens in the common input places. On
the contrary, in the case of a conflict, the transition whose timer reaches zero the
first is the one that fires (race model). It is also important to notice that the use of
exponential distribution relieves the user from the specification of the behavior of
those transitions that do not fire after having been enabled. Indeed, thanks to the
memoryless property of the exponential distribution (see Equation 1.1), whether
the memory of the time they have already been enabled is kept or not, the remain-
ing time to the firing is exponentially distributed with the same rate. The evolution
of a SPN model can be represented by a continuous-time homogeneous Markov
chain, whose state space elements are in a one-to-one correspondence with the
elements of the reachability set (the set of all the states reachable with a sequence
of transition firing, starting from the initial marking), and whose transitions rates
among states are equal to the firing rates of the transitions that produce the corre-
sponding marking change in the SPN. An SPN model can be solved in terms of
the marking occupation probabilities by performing the analysis of the associated
Markov chain.

10



1.4.4 Generalized Stochastic Petri Nets
The class of Generalized Stochastic Petri Nets (GSPNs) [33, 35], relaxes the as-
sumption that all the transitions have an exponentially distributed delay, and al-
lows for exponential transitions, and for instantaneous transitions as well, that is
transitions that once enabled fire in zero time. Conflicts among timed transitions
are solved according with the same race model as in the case of SPNs, whereas
conflicts among instantaneous transitions are solved by a priority assignment, and
by associating weights (or probabilities) to instantaneous transitions at the same
priority level. The solution of a GSPN model resorts again to that of an associate
Markov chain. However, for GSPN models, the reachability set elements are not
in a one-to-one correspondence with the states of the associated Markov chain.
Indeed, because of the instantaneous transitions, some of markings in the reacha-
bility graph have a zero sojourn time, that is the GSPN model spends a zero time
therein. These markings are called the vanishing markings of the GSPN model,
whereas the non-vanishing markings are often called tangible markings. Never-
theless, it is possible to operate a reduction of the reachability graph to eliminate
the vanishing markings, and to obtain the reduced reachability graph. The reduced
reachability graph is isomorphic to a Markov chain, and the reduction procedure
does not affect the equivalence between the non vanishing marking occupation
probabilities of the GSPN and the state occupation probabilities of the Markov
chain. Therefore, the Markov chain associated to the reduced reachability graph
can be solved to study the GSPN model evolution over time.

1.4.5 Deterministic and Stochastic Petri Nets
Deterministic and Stochastic Petri Nets (DSPNs) [36] have been introduced as an
extension of GSPNs, to allow the modeling of events having deterministic occur-
rence times [37]. The set of transitions of a DSPN can be partitioned into three
disjoint sets: the set of instantaneous transitions, represented by a thin bar, the set
of transitions having exponentially distributed firing times, represented by empty
rectangles and the set of transitions with deterministic firing times represented
by filled rectangles. This enriched set of possible transitions offered by DSPNs
allows the exact modeling of a wider set of system features, such as timeouts
and the message propagation delays in synchronous systems. Repair delays rep-
resent another example of activities that are typically more accurately modelled
by deterministic transitions rather than by exponential ones. Unfortunately, the
analytical solution of a DSPN model is not possible in general. Indeed, the de-
terministic distribution does not enjoy the Markov memory-less property, and the
time-dependent evolution of the model requires keeping track of much additional
information [38], which greatly complicates the analysis. However, the analytical

11



tractability is guaranteed for the subset of DSPN models whose structure satisfies
the following assumption: at most one deterministic transition is enabled in each
of the possible markings of the DSPN. This hypothesis severely limits the expres-
siveness of DSPN models, nevertheless, quite recently some attempts have been
made to relax it [36].

1.4.6 Stochastic Activity Networks
Stochastic Activity Networks (SANs) were first introduced in [39] and then for-
mally defined in [40]. The formalism is a generalization of SPNs, and have some
similarities to the GSPN formalism. The building blocks composing a SAN are
places, activities, arcs, input gates and output gates.

Places in SANs have the same interpretation as in PNs: they hold tokens, the
number of tokens in a place is called the marking of that place, and the marking
of the SAN is the vector containing the marking of all the places. There are two
types of activities, timed and instantaneous.

Timed activities are used to represent delays in the system that affect the mea-
sure of interest, while instantaneous activities are used to abstract delays deemed
insignificant relative to the measures of interest. Uncertainty about the length of
the delay represented by a timed activity is described by a continuous probability
distribution function, called the “activity time distribution function”, that can be
a generally distributed random variables, and each distribution can depend on the
marking of the network. Activities can have cases. Cases are used to represent
uncertainty about the action taken upon completion of an activity.

Gates connect activities and places. Input gates are connected to one or more
places and one single activity. They have a predicate, a boolean function of the
markings of the connected places, and an output function. When the predicate is
true, the gate holds. Output gates are connected to one or more places, and the
output side of an activity. If the activity has more than one case, output gates
are connected to a single case. Output gates have only an output function. Gate
functions (both for input and output gates) provide flexibility in defining how the
markings of connected places change when the delay represented by an activity
expires.

Arcs in SANs are default gates, defined to duplicate the behavior of arcs in
Petri nets. Thus, arcs are directed. Each arc connects a single place and a single
activity. The arc is an input arc if it is drawn from a place to an activity. An output
arc is drawn from an activity to a place. An input arc holds if there is at least
one token in the connected place. The function of an input arc removes a token
from the connected place, while the function of an output arc adds a token to the
connected place. An activity is thus enabled only when i) all of its input gates
hold, and ii) all of its input arcs hold.

12



More formally, a Stochastic Activity Network (SAN) is defined as a 11-tuple SAN =
(P, IA, TA, IG,OG, IR,OR,C, F, π, ρ) where:

• P is a finite set of places,

• IA is a finite set of instantaneous activities,

• TA is a finite set of timed activities,

• IG is a finite set of input gates. Each input gate has a finite number of
inputs. To each G ∈ IG, with m inputs, is associated a function fG : N

m →
Nm, called the function of G, and a predicate gG : N

m → {true, false},
called the enabling predicate of G,

• OG is a finite set of output gates. Each output gate has a finite number
of outputs. To each G ∈ OG, with m outputs, is associated a function
fG : N

m → Nm, called the function of G,

• IR ⊆ P ×{1, ..., |P |}× IG× (IA∪TA) is the input relation. IR satisfies
the following conditions:

– For any (P1, i, G, a) ∈ IR such that G has m inputs, i ≤ m,

– For any G ∈ IG with m inputs and i ∈ N , i ≤ m, there exist a ∈
(IA ∪ TA) and P1 ∈ P such that (P1, i, G, a) ∈ IR,

– For any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j and G1 = G2.

In a graphical representation, (Pk, k, G, a) ∈ IR means that place Pk is
linked to k-th input of an input gate G whose output is connected to activity
a. Pk is said to be an input place of a and G is referred to as an input gate
of a.

• OR ⊆ (IA ∪ TA) × OG × {1, ..., |P |} × P is the output relation. OR

satisfies the following conditions:

– For any (a, i, G, P1) ∈ OR such that G has m outputs, i ≤ m,

– For any G ∈ OG with m outputs and i ∈ N , i ≤ m, there exist
a ∈ (IA ∪ TA) and P1 ∈ P such that (a,G, i, P1) ∈ OR,

– For any (a,G1, i, P1), (a,G2, j, P1) ∈ OR, i = j and G1 = G2.

In a graphical representation, (a,G, k, Pk) ∈ OR means that activity a is
linked to the input of an output gate G whose k-th output is connected to
place Pk. G is said to be an output gate of a and Pk is referred to as an
output place of a.

13



• C : Nn × IA→ [0, 1] is the case probability function, where n = |P |.

• F = {F (.|µ, a);µ ∈ Nn, a ∈ TA} is the set of activity time distribution
functions, where n = |P | and, for any µ ∈ Nn, and ainTA, F (.|µ, a) is a
probability distribution function,

• π : Nn × TA → {true, false} is the reactivation predicate, where n is
defined as before,

• ρ : Nn × TA → R+ is the enabling rate function, where n is defined as
before.

In order to better understand the models defined in this dissertation, all de-
veloped using SAN formalism, we give some further details on two particularly
important aspects: the execution of a timed activity, and the measure specifica-
tions.

Completion rules

When an activity becomes enabled, it is activated, and the time between activation
and the scheduled completion of an activity, called the activity time, is sampled
from the activity time distribution. Upon completion of an activity, the following
events take place: i) if the activity has cases, a case is (probabilistically) cho-
sen; ii) the functions of all the connected input gates are executed; iii) tokens are
removed from places connected by input arcs; iv) the functions of all the output
gates connected to the chosen case are executed; v) tokens are added to places that
are connected by output arcs to the chosen case. An activity is aborted when the
SAN moves into a new stable marking in which at least one input gate no longer
holds.

Measures definition

Upon completing the model of the system, a modeler has to specify the measures
in terms of the model. In the SAN modeling framework, the measures are speci-
fied in terms of reward variables [41]. Let R(m) be the rate at which the reward
accumulated in state m, and let C(a) be the reward earned upon completion of
transition a. If {Xt, t > 0} is the modeled stochastic process and M the set of
all possible states, a reward variable collected at an instant of time conventionally
denoted by Vt is informally defined as

Vt =
∑

m

R(m)P (Xt = m) +
∑

a

C(a)Iat ,

14



where Iat is the indicator of the event that a was the activity that completed
to bring the SAN into the marking observed at time t. The steady-state reward
can be obtained as Vt→∞. In the case in which the reward variable is evaluated
considering an interval of time [t, t + l], then the accumulated reward is related
both to the number of times each activity completes and to the time spent in a
particular marking during the interval. More precisely,

Y[t,t+l] =
∑

m

R(m)Jm[t,t+l] +
∑

a

C(a)Na
[t,t+l] ,

where Jm[t,t+l] is a random variable representing the total time that the SAN is
in the marking m during [t, t+ l] and N a

[t,t+l] is a random variable representing the
number of completions of activity a during [t, t+ l].

1.5 Modular construction/composition approaches
Now the focus moves on the available modeling and solution techniques able to
mitigate the complexity problem. In this Section we present some of the existing
techniques that follow a modular construction/composition approach, while the
techniques presented in Section 1.6 follow a decomposition/aggregation approach.
Here the emphasis is on the modular model construction rather than on the model
decomposition, and this is why we have grouped these techniques in two separate
Sections. Indeed, the separation between the modular construction/composition
approach and the decomposition/aggregation approach is not so marked.

The principle of the modular construction/composition approach is to build
complex models in a modular way through a composition of its submodels. Most
of the works belonging to this class define the rules that can be used to construct
and interconnect the submodels, and they provide an easy way to describe the be-
havior of systems having an high degree of dependency among subcomponents.
These dependencies can be exploited to manage the model complexity creating
smaller, equivalent representations. In the following we outline some of the exist-
ing modeling approaches, although it is not an exhaustive list.

1.5.1 Blocks composition
The blocks composition approach has been presented in [3]. The authors devel-
oped a general approach that can be applied to any complex system of several
hardware computers and software replicas. This approach is modular and it is
based on GSPN, because of their ability to handle modularity and hierarchy. From
the system composition and the interactions between components, a high level

15



behavioral model composed of blocks linked by arrows is derived. A block repre-
sents a GSPN describing either a component behavior or an interaction; the arrows
indicate the direction of the links between the blocks. The GSPN of the blocks are
derived in a second step. The GSPN of the architecture is obtained by composi-
tion of the GSPN of the components with those representing their interactions. In
addition to modularity, the formalism brings flexibility and re-usability, thereby
allowing easy sensitivity analysis with respect to the assumptions that could be
made about the behavior of the components and the resulting interactions.

1.5.2 Replicate/Join formalism and graph composition
The replicate/join formalism [4, 5] is a composition technique for Stochastic Ac-
tivity Networks (SAN) that combines models by sharing state, decreasing the
overall number of states of the entire model. The Join operator takes as input
a) a set of submodels and b) some shared places owning to different submodels
of the set, and provides as output a new model that comprehends all the joined
submodels’ elements (places, arcs, activities) but with the shared places merged
in a unique one. The Replicate operator combines multiple identical copies of a
submodel, which are called replicates. It does not explicitly store the state of each
submodel, but rather the number of copies of the model that are in a particular
state. Storing the number of models in a state, rather than recording which models
are in that state, decreases the overall number of states of the entire model.

[6] introduces the graph composition that extends the replicate/join formalism
and it also combines models by sharing a portion of the state of each submodel,
reducing the total state-space size. Contrarily to the replicate/join formalism that
requires the use of a special operation, the graph composition detects all the sym-
metries exposed at the composition level and uses them to reduce the underlying
state space. The graph composition uses the detected symmetries to replace each
set of equivalent states with one aggregate state, reducing the total state-space
size.

1.5.3 The “separation of concerns” approach
[7] provides a framework for modeling the performability of different Multipur-
pose Multiprocessor Systems (MMSs), that is application-independent support
systems composed of Commercial Off-The-Shelf components (COTS). The origi-
nality of the approach is in the explicit separation between the architectural and the
environmental concerns of a system. The overall dependability model, based on
Stochastic Reward Nets, is composed of i) an architectural model describing the
behavior of system hardware and software components, ii) a service-level model,
and iii) a maintenance policy model. In this way, it can be clearly analyzed the

16



impact of the architectural choices on system performability while the end-user
context is taken into account explicitly.

The separation of concerns property allows reuse of the architectural model
when the same architecture is to be used in different environments. Obviously,
changing the architectural model will lead to changing its links with the service-
level and maintenance models. However, as these links are clearly identified and
formalized, the changes can be performed more easily than when the various mod-
els are not separated. From the end-user perspective, this approach allows the
reuse of the environmental models to compare different architectures for choos-
ing the most suitable one for his/her own environment. Moreover, building the
component model in a modular way favors reuse of some component submodels
in the component model, which is of prime interest for both system manufacturers
and the end-users.

1.5.4 Stepwise refinement approach
In [8] a stepwise approach for dependability modeling, based on Generalized
Stochastic Petri Nets (GSPNs), is presented. It is a stepwise approach in the sense
that the various dependencies defined in a model are taken into account at the
right level of abstraction. The starting point is the construction of a functional-
level model based on the system’s specifications. The knowledge of the system’s
structure is captured in another model, the high-level dependability model, that
may be successively refined according to three different aspects: component de-
composition, state and event fine-tuning, and distribution adjustment (to take into
account increasing event rates). Component refinement consists in replacing a
component by two or more components. State/event fine-tuning consists in re-
placing, by a subnet, the place/transition corresponding to this state/event. The
method of stages is finally used for the distribution adjustment: a transition is re-
placed by a subnet. Thanks to the refinement approach, the modelers can easily
analyze and compare the dependability of one or several systems at the same level
of modeling abstraction, also mastering the model complexity.

1.5.5 Reuse by inheritance
The concept of inheritance has been originally defined by [42] in the context of
work-flow nets, and then it has been applied to large class of models. In the context
of object-oriented programming languages, inheritance allows the definition of
new classes based on already existing one(s), from which attributes and methods
definitions are inherited. Very recently, [9] discusses the role of inheritance in the
definition of GSPN models for dependability evaluations. Like a class P inherits
from another class Q, similarly the modeler can derive a GSPN model p for objects

17



of type P starting from a GSPN model q already defined for objects of type Q, thus
reusing input parameters and result definitions of q. This type of compositional
approach mitigates the model complexity since it discriminates the part of the
system that needs to be modelled in detail, (by means of sub-class models) from
the rest of the system that can be modelled by using model component at an higher
level of abstraction (by means of super-class models).

1.6 Decomposition/aggregation approaches
The most of these methods are characterized by a hierarchical decomposition ap-
proach to avoid the generation of large models. The overall model is decoupled
in simpler and more tractable submodels, and the measures obtained from solu-
tion of the submodels are then aggregated to compute those concerning the overall
model.

1.6.1 Component-based decomposition
[10] presents a decomposition approach for solving reliability models for systems
with repairable components. The essential idea is to build one sub-model per
component and to synthesize the system’s reliability from sub-model solutions.
The sub-model for a given component must contain system-state information to
ensure that the repair process is active only for the system’s up states. A natural
construction procedure is to identify if the component in question is up or down,
and to augment the sub-model with the system up/down information. This leads
to a four-state submodel having two absorbing states. Each sub-model state is
an aggregate of system-states. The authors show that the sub-models are Marko-
vian but time-inhomogeneous since the transition functions vary with global time.
This is an approximation because the parameters used in the sub-model are ap-
proximately derived from the monolithic model, since these functions are difficult
to obtain.

1.6.2 Time scale decomposition
Although Generalized Stochastic Petri Nets (GSPNs) are highly effective in mod-
eling concurrency, synchronization, and communication, they suffer from two ma-
jor drawbacks. First, there is the explosion of the state space of its reachability
graph when sufficient details are introduced in the model. Second, the presence of
timed transitions having orders of magnitude difference in their firing rates lead
to an underlying stiff Markov chain, which results in numerical instability in its
solution technique.

18



In [11] is developed a technique that decomposes a GSPN model based on
time scale. It is applicable to systems containing activities whose durations differ
by several orders of magnitude. The given model can be decomposed into a hierar-
chical sequence of aggregated sub-nets each of which is characterized by a certain
time scale. These smaller sub-nets are solved in isolation, and their solutions are
combined to get the solution of the whole system. The aggregation at each level
is done by assuming that the transitions included in the lower level are immediate
transitions. At each level of the hierarchy, the current marking of an aggregated
sub-net determines the number of tokens in the sub-net at the lower level, which
are then analyzed to determine the rate of transitions in the aggregated sub-net.

1.6.3 Logical decomposition
A logical decomposition for stochastic rendezvous networks (SRNs) is presented
in [12]. Stochastic rendezvous networks consist of tasks that take a random
amount of time to complete and that may require the services of other tasks in
order to complete. Each task is modeled separately, with the dependencies be-
tween tasks specified, and they communicate by messages in a request-wait-reply
sequence which models a rendezvous. Compared to Petri Nets, the SRN frame-
work is at a higher level of abstraction. Queueing and synchronization involving
inter-task messages are implicit, so a given model can be stated much more com-
pactly. The SRN thus applies the concepts of queueing networks, which have been
of great power in modelling hardware servers, to software and hardware servers
together.

1.6.4 Modular and hierarchical decomposition
In [13], the study of a railway interlocking system leads the authors to the defini-
tion of a modelling strategy based on a modular and hierarchical decomposition.
The system is modeled at the various level of the hierarchy. Each layer has been
structured for producing some results while hiding implementation details and in-
ternal characteristics: the output values from one layer are used as parameters of
the next higher layer. In this way the entire modelling can be simply handled.
Further, different layers can be modelled using different tools and methodologies:
this leads to flexible and changeable sub-models so that one can vary the accuracy
and detail with which specific aspects can be studied.

1.6.5 Phased decomposition
[14] addresses the analytical dependability modeling of Phased Mission Systems
(PMS) by proposing a new methodology for their modeling and evaluation based

19



on a Markov Regenerative Stochastic Petri Nets (MRSPN) approach (a Petri Net
is an MRSPN if its underlying marking process is a Markov regenerative process
[36]). PMS are characterized by a sequence of phases in which the system config-
uration can change during operations. The existence of phases is a consequence
of: i) diverse tasks to be performed, and ii) diverse environmental conditions, in
different periods of system lifetime. The model of a PMS is seen as composed
of two logically separate MRSPN: the System Net (SN), representing the system
(its components, their interactions and their failure/repair behavior), and the Phase
Net (PhN), representing the control part and describing the phase changes. In the
SN, a single model is built for the whole mission, characterized by a set of phases
without detailing the behavior of the system inside each phase. This allows easy
modeling of a variety of mission scenarios by sequencing the phases in appro-
priate ways. The parameter values to be used in the SN model are obtained by
solving the PhN models. These models detail the behavior of the system inside
phases and are built and solved separately from each other. In particular, the state
space of the Markov regenerative process never needs to be generated and handled
as a whole, but rather the various subordinate intra-phase processes are separately
generated and solved. Therefore, the computational complexity of the analytical
solution is reduced to the one needed for the separate solution of the different
phases.

1.6.6 Interaction-based decomposition
[15] proposes a decomposition approach for the solution of large stochastic Petri
nets in which the overall model consists of a set of submodels whose interactions
are described by an import graph. Each node of the graph corresponds to a param-
eterized stochastic Petri net submodel and an arc from submodel A to submodel
B corresponds to a parameter value that B must receive from A. The authors show
that the probability that a subnet is in a state satisfying a given condition, the
average time a given condition remains satisfied, and the expected time until the
subnet satisfies a given condition are three quantities that suffice for intercommu-
nication among subnets for the net structure types that they define.

More recently, [16, 17] describe a new set of connection formalisms that re-
duce state-space size and solution time by identifying submodels that are not af-
fected by the rest of a model, and solving them separately. The result from each
solved submodel is then used in the solution of the rest of the model. The authors
develop four abstractions that can be used to make connection models, and they
involve passing a continuous-time random process, a discrete-time random pro-
cess, a random variable, and an average value between the models. When these
abstractions are applied, each submodel should have a smaller state space and

20



fewer time scales than the complete model.

1.7 Available modeling and solution tools
In this Section we provide a (non-exhaustive) list of tools that can help the user
to automatically build and solve models (see [43] for a more complete list). They
can be grouped in two main classes: the single-formalism/multi-solution tools,
and the multi-formalism/multi-solution tools.

1.7.1 Single-formalism/multi-solution tools
The single-formalism/multi-solution tools are built around a single formalism and
one or more solution techniques. They are very useful inside a specific domain,
but their major limitation is that all parts of a model must be built in the single
formalism supported by the tool. We only cite two sets of tools. The first set in-
cludes DSPNexpress [44], GreatSPN [45], SURF-2 [46], DEEM [47], TimeNET
[48], and UltraSAN [49], that are tools based on Stochastic Petri Nets formalism
and its extensions. They all provide analytic/numerical solution of a generated
state-level representation and, in some cases, support simulation-based solution
as well. Another set of tools uses other model specification approaches, some-
times tailored to a particular application domain. For example, DEPEND [50]
and HIMAP [51] focus on evaluating the dependability of fault-tolerant comput-
ing systems, while TANGRAM-II [52] evaluates computer and communication
systems using analytical/numerical methods.

1.7.2 Multi-formalism/multi-solution tools
The multi-formalism/multi-solution tools support multiple modeling formalisms,
multiple model solution methods, and several ways to combine the models, also
expressed in different formalisms. They can be distinguished with respect to the
level of integration between formalisms and solution methods they provide.

In particular, some tools try to unify several different single-formalism mod-
eling tools into a unique software environment. Examples are IMSE (Integrated
Modeling Support Environment) [53], that is a support environment that contains
tools for modeling, workload analysis, and system specification, IDEAS (Inte-
grated Design Environment for Assessment of Computer Systems and Communi-
cation Networks) [54], that provides a broad range of modeling capabilities with-
out the need to learn multiple interface languages and output formats, and FREUD
[55], that focuses on providing a uniform interface to a variety of web-enabled
tools.

21



A more recent model design framework is DRAWNET++ [56], that supports
an Object-Oriented (OO) design process of system models and provides a graph-
ical front-end to existing performance tools. Among its several OO features we
cite the inheritance of model specifications, that allows to define model class hi-
erarchies: new model classes are created from existing ones by absorbing their
elements (nodes and/or edges), and overriding some of them or extending their
properties. DRAWNET++ provides a GUI to any graph-based formalism, like
Queuing Networks, Petri Nets, Fault Trees and Bayesian Networks. A custom
XML language is used in the framework to represent the models and formalisms,
and the interface towards the solvers consists of i) XSL filters to translate the
XML representation of the models into the formats used by the external solvers,
ii) scripts for running solvers, iii) filters to feed the results back into the XML
models representation. Therefore, a different external solver can be used in the
environment just writing proper filters.

In other tools, new formalisms, composition operators and solvers are actu-
ally implemented within a unique comprehensive tool. Though more difficult
than building a software environment out of existing tools, this approach has the
potential to much more closely integrate models expressed in different modeling
formalisms. To the best of our knowledge, there are five main tools having these
attributes: SHARPE, SMART, DEDS, POEMS and MÖBIUS.

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Eval-
uator, [57]) is a tool for specifying and analyzing performance, reliability and per-
formability models. It supports several modeling formalisms, both combinatorial
(e.g. fault-trees and queuing networks) and state-space based (e.g. Markov and
Stochastic Petri Nets), and several solvers performing steady-state, transient and
interval of time analysis. The output measures of a model can be used as param-
eters of other models, thus facilitating the hierarchical combination of different
model types.

SMART (Stochastic Model checking Analyzer for Reliability and Timing,
[58]) is a multi-formalism modeling tool to study complex discrete-state sys-
tems. A single modeling study can be composed by different stochastic modeling
formalisms, which can be solved using both numerical solution algorithms and
discrete-event simulation techniques. It supports multiple interacting models in
a variety of ways, from a simple hierarchical solution of submodels to a built-in
fixed-point iteration mechanism.

DEDS (Discrete Event Dynamic System, [59]) is a toolbox for the construc-
tion of modular tools for functional and quantitative analysis of discrete event
dynamic systems. The tools cooperate through an interface based on a general
interchange format for model description: all the models built using different

22



formalisms are converted into a common “abstract Petri net notation” that, after-
wards, can be solved using a set of functional and quantitative analysis approaches
for Markovian models.

POEMS (Performance-Oriented End-to-end Modeling System, [60]) is a tool
for modeling complex parallel and distributed systems. Different model types
(with some restrictions) can be combined together creating a single multi-formalism
platform. A system is specified by a multi-domain dependence graph in which the
models are nodes and the dependencies are specified by unidirectional edges. The
models interact through a common protocol that can be used to receive or send
information.

MÖBIUS [61] tool has been developed following an integrated multi-formalism,
multi-solution approach. The multi-formalism characteristic allows us not only to
build models using different formalisms (such as SAN, PEPA, Buckets and Balls,
and Fault Tree), but also to compose them obtaining a single multi-formalism
model, that is a model composed by submodels described using different for-
malisms. It currently supports two classes of solution techniques: discrete event
simulation (both transient and steady-state, applicable to any model), and state-
based, analytical/numerical techniques. The simulator may be executed on a sin-
gle workstation, or distributed on a network of workstations. In addition, it also
includes a connection model formalism ([62]) that enables the passing of results
between models, using a database to collect and share the produced results.

1.8 Summary
In this Chapter we gave an overview of the framework of the research we are con-
tributing to. There is a general consensus that one of the most promising means
of successfully dealing with large and complex models is to use a decomposition
approach, in which the solution of the entire model is constructed on the basis
of the solutions of its individual sub-models. In the rest of the dissertation we
propose a set of techniques adopting this type of approach. We first develop two
techniques specifically tailored for two particular classes of systems, a GPRS in-
frastructure (Chapter 2) and a hierarchical control system (Chapter 3), and then
we propose a non domain-specific generalization (Chapter 4) and a case-study
proving its feasibility (Chapter 5).

23



Chapter 2

QoS analysis for GPRS
infrastructures

Service availability is an important aspect of telecommunication systems and it is
tightly linked to the concept of Quality of Service (QoS), a general term defining
the “level of satisfaction” perceived by an end user. This Chapter focuses on the
specific application-domain of cellular networking environments, and we perform
an analysis of the QoS perceived by the users camped in a General Packet Radio
Service (GPRS) infrastructure. With respect to classical analysis of GPRS sys-
tems, we account for outage periods (due to the unavailability of a set of traffic
channels) that induce congestion, and the application of reconfiguration actions (in
terms of cell resizing) for congestion alleviation ([18]). The complexity of the sys-
tem, composed of several partially overlapped cells that interact each other during
the application of a Resource Management Technique (RMT), is here managed
introducing a specific solution technique based on a decomposition/aggregation
approach.

2.1 Introduction
Congestion events constitute a critical problem in the operational life of networked
systems. A network is congested when the available resources are not sufficient to
satisfy the experienced workload traffic, and this can occur for many reasons, such
as in case of extraordinary events determining an increase of traffic, or in case of
unavailability of some network resources because of malfunctions (outage). Care-
ful management techniques are necessary, to alleviate the consequences of such
phenomena. Building a resource management system to efficiently cope with con-
gestion events in heterogeneous wireless networks has been the main contribution
of the recently concluded European project IST-2001-38229 CAUTION++ [24].

24



Management techniques are usually equipped with internal parameters, whose
values have to be properly assigned in accordance with the specific system char-
acteristics. In order to support this “fine-tuning” activity, a model-based analysis
has been promoted in CAUTION++ to analyze the behavior of the management
techniques and to understand the impact of techniques and networks configuration
parameters on properly identified Quality of Service indicators.

In this Chapter, the focus is on the General Packet Radio Service (GPRS)
technology, which has been already analyzed in previous studies under more sim-
plistic network configurations. An inspiring work is certainly [19], in which the
authors analyze the dependability of a GPRS cell under outage conditions. An-
other work ([20]) evaluates the effects of outage periods on the service provision
considering two GPRS cells partially overlapping (and then possibly interacting),
and accounting for outage congestion treatment and outage recovery.

Now we perform a major extension and refinement to the previous studies
dealing with a general GPRS infrastructure, where clusters of cells are consid-
ered, each cluster being realized through a number of partially overlapping cells.
In case of an outage experienced by a cell in a cluster, a Resource Management
Technique (RMT) is put in place to alleviate the congestion in the affected cell by
distributing part of its traffic (users requests) on all the neighbor cells. In such a
system context, we propose a methodology to evaluate the impact of congestion
treatment on all the cells. The purpose of such analysis is to provide feedbacks for
an optimal tuning of the parameters of the RMT (namely, the number of users to
switch), so as to have the highest efficacy from its application towards resolving
the congestion event. The definition of the general framework for the analysis of
GPRS infrastructures has required a relevant effort, especially in the evaluation
phase, due to the high level of complexity that can lead to very large state spaces
for state-based analytical solutions or unacceptably long solution times for sim-
ulations. In order to efficiently solve the large and complex model capturing the
network’s behavior, we introduce a solution technique that follows a “divide and
conquer” approach, in which the solution of the entire model is constructed on the
basis of the solutions of the individual sub-models.

The rest of this Chapter is organized as follows. Section 2.2 gives a brief
introduction to the GPRS technology, focusing on the Random Access Procedure
mechanism through which the users compete to get a service. Section 2.3 presents
the system context and the measures of interest. Section 2.4 introduces the solu-
tion technique selected to perform the QoS analysis, and provides the description
of the required models. Then, in Section 2.5 the numerical results of the studies
are presented and discussed. Conclusions are finally drawn in Section 2.6.

25



2.2 General Packet Radio Service
General Packet Radio Service (GPRS) is being specified as a part of the GSM
phase 2+. The principal objectives of GPRS are high data rate, flexibility and ef-
ficiency utilization of scarce bandwidth across the air interface. The introduction
of GPRS is a first step towards the full deployment of packet-data wireless net-
works. The use of the GSM circuit-switched transmission mode with data traffic,
typically characterized by frequent alternation between activity and idle periods
of the data source, results in an inefficient use of the scarce radio resources. In
fact, in circuit switching allocation mechanisms, with high set-up time as in GSM,
it is necessary to allocate a channel to a Mobile Station (MS) for all its transmis-
sion time without taking into account its real activity during this time. The GPRS
introduces a packet oriented data service for GSM with a more efficient packet
switching allocation mechanism. An important goal of the GPRS technology is
to make it possible for GSM license holders to share physical resources on a dy-
namic, flexible basis between packet data services and other GSM services.

The GPRS allows several “logical channels” to share a physical channel (called
Packet Data CHannel, PDCH) through time division multiplexing. PDCHs are
associated with a single time slot of a Time Division Multiple Access (TDMA)
frame (composed by eight time slots).

Among the logical channels, we focus on a specific channel dedicated to
the uplink transmission of channel request: the Packet Random Access Chan-
nel (PRACH). When a mobile station needs to transmit, it has to send a channel
request to the network through the PRACH. Since the network does not control
the PRACH usage, the access method, based on a Random Access Procedure,
may cause collisions among requests by different MSs. As it is observed during
massive congestion events (such as New Year’s Eve, important sporting events
or natural disasters), the blocking on the PRACH may become a bottleneck of
the system. The following Subsection summarizes the main characteristics of the
Random Access Procedure (see [63] for a more detailed description).

2.2.1 The Random Access Procedure
The Packet Random Access CHannel (PRACH) is a GPRS logical channel used by
Mobile Stations (MSs) to initiate packet transfers. On this channel MSs transmit
access bursts with long guard times. The MSs get the access control parameters
by listening to the Packet Broadcast Control CHannel (PBCCH). Such parameters
are the number of maximum retransmissions M , the persistence level P and the
parameters S and T . The MS is allowed to make a maximum of M + 1 attempts
to send a Packet Channel Request message. At the beginning of the procedure a
timer is set (to 5 sec). At the expiry of this timer, the procedure, if still active, is

26



aborted and a failure is indicated to the upper layer. The first attempt to send a
Packet Channel Request can be initiated at the first possible TDMA frame con-
taining PRACH. For each attempt, the mobile station extracts a random value R,
and only if R is bigger than, or equal to, the persistence level P the station is
allowed to send a Packet Channel Request. After a request is issued, the MS waits
for a time, dependent on S and T . If it does not receive the Packet Downlink
Assignment (or a Packet Queuing) a new attempt is tried, if it is still allowed to
make one, otherwise a failure is notified to the upper layer. From parameters S

and T , the MS also determines the next TDMA frame in which a new attempt is
possible, should the previous one be unsuccessful and a new attempt still allowed.
Under normal workload conditions, this retry mechanism is able to make the MS
request to reach the Base Station Subsystem (BSS) with a very high probability.
Once the MS request successfully reaches the BSS, traffic packet data channels,
called slave PDCH, are allocated if available in the cell to transport users’ data
and transmission signaling. For what concerns data transfer, uplink and downlink
channels allocation is completely independent and a MS can operate uplink and
downlink data transfer simultaneously. Should the selected cell be not immedi-
ately able to allocate the PDCHs, the MS request may be put in a queue to wait
for the first available resources. In case the request cannot be accommodated, a
reject message is sent to the MS.

2.3 The system context and QoS indicators
We address a generic GPRS infrastructure, whose topology results in clusters of
cells partially overlapping. To cope with congestion events, which may affect
GPRS cells, e. g. due to a temporary lack of a number of traffic channels or to
failures of their architectural components, we assume that appropriate RMTs are
applied. Instead of focusing on a specific RMT, we consider the class of RMTs
which operate congestion alleviation by reducing the traffic of the congested cells,
which is redirected to the neighbor partially overlapping cells. That is, a cell re-
sizing is performed, and those users in the area no more covered by the resized
cell are assigned to a neighbor cell covering the area where the users are located
(if such an overlapping cell exists; in general, some users can be lost because
of the black-spot phenomenon). This implies that the user population attached
to such neighbor cells increases, thus affecting the QoS of such cells. Once the
congestion is overcome, a re-switching process is operated to restore the initial
user population. The cells involved in the traffic reconfiguration applied through
the RMT are the congested cell (called the sending cell) and a varying number of
neighbor cells (called receiving cells). We call this set of cells a congestion-effect
cluster. At a certain instant of time, a number of cells in the overall GPRS infras-

27



CELL-1


CELL-2
CELL-N


CELL-3


CELL


. . .

. . .    . . .


Black-spot

Before


reconfiguration

action


After

reconfiguration


action


Figure 2.1: Congestion-effect cluster

tructure could be experiencing a congestion event. Since, as just said, the effects
of applying a RMT are local to each congestion-effect cluster, the analysis of the
congestion impact can be carried on independently for the different congestion-
effect clusters. Concerning a single congestion-effect cluster, three scenarios could
be theoretically observed: i) a sending cell overlaps with N receiving cells and no
such receiving cells overlap with any other sending cell; ii) a sending cell over-
laps with N receiving cells and at least one of such receiving cells overlaps with
another sending cell; iii) two or more overlapping sending cells are surrounded by
N receiving cells (not all overlapping with all the sending cells).

In many cases the congestion of a cell lasts a short time (e.g. in case the
partial outage is caused by a software error that can be fixed in a few minutes
restarting the software); then, the probability of having multiple congested cells
in a congestion-effect cluster is low and it would be reasonable to neglect the cases
ii) and iii) above, and restrict to consider scenario i) only. Therefore, in the fol-
lowing we will refer to the congestion-effect cluster scenario depicted in Figure
2.1. Anyway, accounting for the other situations would not require changing the
principles at the basis of our methodology and the steps it is composed of, but
necessitates some extensions to the developed models (especially for the case ii)
where a cell may contemporary receive users from multiple sending cells, while
case iii) would be simply treated considering the set of overlapping sending cells
as a single sending cell).

As mentioned, we do not concentrate on a specific resource management tech-
nique, but we consider the class of techniques that ultimately result in a cell re-
sizing or, equivalently, in a switching of users from one cell to another(s). The
considered techniques are fully identified by the following characteristics:

28



1. the sending cell (CELL), that is the cell affected by outage;

2. the list of the receiving cells, that are the cells involved in the reconfigura-
tion action (CELL-1, . . . , CELL-N);

3. for each receiving cell CELL-i (with i=1, . . . , N), the types of users to
switch. A user may be: i) in the idle mode if he/she is not making any
service request to the network system; ii) in the active mode if he/she is
attempting to connect the network to get a service (it is trying to pass the
random-access procedure), and finally iii) in the in-service mode if he/she
is connected and awaiting to get the service completed;

4. for each couple of cells [CELL,CELL-i] and type of users, the maximum
number of users to switch from CELL to CELL-i (see Figure 2.2). The ac-
tual number of switched users can be lower than this, and it happens when
the outage duration is short and then the re-switching procedure starts be-
fore the switching procedure completed. The “observed users switching/re-
switching distribution” represents the observed number of users switched/re-
switched at varying of time. This distribution can not be computed a priori
but only when the reconfiguration action is actually applied, since it depends
on the availability of the users to be switched/re-switched, as we will better
detail later. The number of users to re-switch corresponds to the number
of users previously switched, as we suppose that all the users previously
switched from CELL to CELL-i are then re-switched to the original cell.

Te

xt


Te

xt


Te

xt


Te

xt


Te

xt


Te

xt


Real

Distribu


tion


CELL
 CELL-
i


Switching

procedure


Re-Switching

procedure


Maximum

Number of Users


To Switch


Observed

Users Switching


Distribution


Te

xt


Te

xt


Te

xt


Te

xt


Te

xt


Te

xt


Real

Distribu


tion


Number of Users

To Re-Switch


Observed

Users Re-Switching


Distribution


Figure 2.2: The interactions between two cells

The goal of our analysis is to investigate the effects of outage, congestion
treatment and outage recovery on the service provision, with special attention on

29



Figure 2.3: Scheduled Temporal Events

the user perception of the QoS. More precisely, we aim to analyze the behavior of
the network during the following temporal events (see Figure 2.3):

• At time T0, an outage occurs in the central cell (CELL), thus determining
congestion some time after;

• At time T1, the switching procedure starts, causing some users to be switched
from the congested cell to its adjacent ones;

• At time T2, the outage ends;

• At time T3, a Resource Management System (RMS) reacts to the end of the
outage and starts the re-switching procedure from CELL-1, . . . , CELL-N to
CELL.

We are interested in the following service availability measures:

• the point-wise congestion function perceived by the users at varying of time
(PCf), calculated as the percentage of the unsatisfied users with respect to
the total number of users in the cell. An unsatisfied user is a user that is
requiring a service but is not still served (active user);

• the total congestion indicator (TCi), inspired by [64], representing the av-
erage congestion perceived by the users in a considered interval of time (
E[PCf] ).

2.4 How to model and solve the system
The main problems in solving the model capturing the overall network’s behav-
ior are the time complexity (for the simulation) and the state space dimension
(for the analytical solution), that rapidly increase if the number of receiving cells
increases. Therefore, we investigated a decomposition approach, in which the
solution of the entire model is constructed on the basis of the solutions of its in-
dividual sub-models. A simple, efficient solution would consist in splitting the

30



overall model of Figure 2.1 in a number of simpler sub-models to be solved sep-
arately, for example one for each cell. In this case, the main problem we have
to cope with is the temporal dependency between the congested cell and each
of the receiving cells during the switching/re-switching procedure. In fact, the
observed users switching/re-switching distribution that describes the number of
users switched/re-switched at varying of time is not known a priori, as it depends
on the availability of users to be switched/re-switched (Figure 2.2). For example,
suppose that a RMT performs an instantaneous cell resizing (the reconfiguration
action) that corresponds to instantaneously switch a maximum of X active users
from CELL to CELL-i. If, at switching time, only Y active users are available
(with Y < X), the switching procedure will follow this “observed” distribu-
tion: Y active users will be instantaneously switched, while X − Y users will
be switched one by one as soon as they become available.

To properly cope with this temporal dependency, we decomposed the overall
model of Figure 2.1 in a set of more simple sub-models, each one composed by
the couple [CELL,CELL-i]. The temporal dependency disappears as each sub-
model manages the switching/re-switching procedure between sending and re-
ceiving cells.

In our developed methodology, a top-down approach is adopted to move from
the entire system description to the definition of more simple sub-models. Then,
the model solution process follows a bottom-up approach: the solution of the
entire model is constructed on the basis of the solutions of its individual sub-
models.

It is a three step methodology. As it can be seen from Figure 2.4, we first
decompose the overall model in N independent sub-models, each one composed
by two cells: the first cell is always that affected by the outage (CELL), while the
second is chosen from the other N receiving cells. Therefore, we solve N sub-
models separately. From the solution of each single sub-model, we obtain two
types of results for CELL-i:

• The QoS measures for CELL-i (a receiving cell), namely the percentage of
unsatisfied users with respect to the total population;

• The “observed users re-switching distribution”, that is the number of users
re-switched from CELL-i to CELL as time elapses.

We note that in this first phase we do not obtain any information pertaining CELL,
as each sub-model accounts for the re-switching procedure of only those users that
have been previously switched from CELL to CELL-i, leaving out those users
that have been previously switched from CELL to all other cells. In order to pro-
vide the QoS evaluations for CELL (the central cell), we perform another step
in the solution technique. The “observed users re-switching distributions” from

31



CELL-1
CELL
 CELL-N
CELL


(type B model)


SOLVER
 SOLVER


. . .


. . .


. . .
QoS measures for

CELL-1


Observed
 Users

Re-Switching Distribution


from 
 CELL-1
 to CELL


QoS measures for

CELL-N


Observed
 Users

Re-Switching Distribution


from 
CELL-N
 to CELL


Observed
 Users

Re-switching Distribution from

CELL-1, ..., CELL-N
 to CELL


CELL


(type C model)


SOLVER
QoS measures for

CELL


(type A model)

(type B model)


(type A model)


Figure 2.4: Modeling and solution technique

each CELL-i to CELL are collected and combined, obtaining the “observed users
re-switching distribution” from CELL-1, . . ., CELL-N to CELL. Finally, this dis-
tribution is given as input to another model (that represents the behavior of the
central cell considering the re-switching procedure from all the neighbor cells to
the central one) whose solution provides the QoS measures for CELL. We note
that this last model requires the “observed users re-switching distribution” as in-
put, while the “observed users switching distribution” is not explicitly required.
This happens because we suppose that a receiving cell could not refuse an incom-
ing user, and then the switching procedure only depends on the behavior of CELL
(the sending cell).

2.4.1 The models needed
In order to apply the methodology depicted in Figure 2.4 we need to construct
three types of models only: type A, type B and type C. All the models are derived
using stochastic activity networks (SAN) formalism.

These models can be obtained as a specification of the template model of Fig-
ure 2.5 representing an abstract view of a generic GPRS cell. The “internal GPRS
cell model” was originally defined in [19], and it models the behavior of a GPRS

32



Figure 2.5: A generic GPRS cell

cell during the Random Access Procedure, when users compete to get a free chan-
nel.

The sub-model capturing the interactions between the central cell and the
neighbor cells is the “users switching/reswitching sub-model”. This sub-model
has to be specified in order to:

• represent the behavior of the congested cell (CELL) during outage, cell re-
sizing and outage recovery (type A model of Figure 2.4);

• represent the behavior of a receiving cell (CELL-i) during the resizing of
the congested cell (type B model of Figure 2.4);

• represent the behavior of the congested cell (CELL) during outage, cell re-
sizing and outage recovery using the provided “observed users re-switching
distribution” (type C model of Figure 2.4).

The generic model of Figure 2.5 works as it follows. When a user has been served,
a token exits from the “internal GPRS cell model”. This generic user has to be
mapped (using the topography activity) in the overlapping area of the cell
(place idleOverlapped) or in the non overlapping one (place idle), in ac-
cordance with the topography of the network. The probability that a generic user
is mapped in the overlapping area is dynamically calculated considering the orig-
inal number of users in the overlapping area and the overlapping users that have
been switched to the other cells. When an idle user requests a new service, he/she
becomes active and enters in the “internal GPRS cell model” that simulates the

33



random access procedure of a GPRS cell. Finally, we note that the users switch-
ing and re-switching procedure affects only the users in the overlapping area, both
in idle and in active mode.

The “internal GPRS cell model” and of the “users switching/reswitching sub-
model”, depicted in Figure 2.5 as black-boxes, will be detailed in the rest of this
Section.

Modeling assumptions

The random access procedure model has been defined under the following as-
sumptions concerning the configuration of the GPRS:

1. Each cell contains a constant number of users (except that during the recon-
figuration actions), uniformly distributed inside the cell. In other words we
are realistically assuming that, during normal conditions, the users’ move-
ments are in equilibrium with a stable average population;

2. All users belong to the same priority class (they are indistinguishable from
the point of view of generated traffic). This assumption is realistic in a sce-
nario in which only basic GPRS services are provided, and no specific QoS
level are negotiated; this is indeed the current situation of GPRS services;

3. Once a request has been made from a user, he cannot abort it but has to wait
until the service is provided. This choice is not realistic, but conservative; it
forces a higher load on the system, inducing a less favorable situation;

4. Each traffic channel is allocated to a single user at a time, who will retain
it until the completion of his data transmission; concurrent usage of traffic
channels and multi-slot assignments to a single user are not considered;

5. It is allowed to queue the request when all channels are occupied (through an
Access Grant Reservation), accordingly to the ETSI standard specification
of GPRS.

In the following we present the modelling assumptions concerning the user
switching/reswtiching process and the outage. These restrictions do not impair
the validity of our work, as they characterize a typical real GPRS outage scenario.

1. An outage is experienced by the central cell as a consequence of traffic
channels malfunctions. If the damage does not affect all the channels, the
cell doesn’t stop working, but enters a degraded operational mode. The
repair time is assumed to follow a deterministic distribution;

34



2. The users switching/reswitching procedure applies only to users in the over-
lapping area (see Figure 2.1) and doesn’t affect the in-service users.

3. Once they become available, the users can be switched/re-switched instan-
taneously, that is their transmissions can be instantaneously camped in the
neighbor cell;

4. The users lost during the switching procedure (e.g. because of non totally
overlapping cells) are subtracted from CELL before the switching proce-
dure starts. The users lost (both in idle and active mode) are instantaneously
re-added as idle users to CELL at re-switching time;

5. When the outage occurs, all the cells composing the congestion-effect clus-
ter are working in a steady-state condition.

2.4.2 The “internal GPRS cell model”
The “internal GPRS cell model” is shown in Figure 2.6 and it is here described as
reported in [19, 65].

• Tokens in the place idle and idleOverlapped represent, respectively,
those users outside the overlapping area and inside the overlapping area be-
tween CELL and CELL-i that have sent successfully their up-link data. Af-
ter some time, accounted for by the timed (exponential) activities to req
and to req overlapped a user issues a new request and a token is
moved to the corresponding active places (active and
activeOverlapped).

• The block starting with the instantaneous activities req and ending with
the input gate control represents the dynamics of the random access pro-
cedure. The activity req states the maximum number of attempts a user
is allowed to make in sending an Access Burst. It has one case for each
possibility; the associated probabilities have been derived on the basis of
the parameters M , P , S, T and the timer. Tokens in places ready1, ...,
ready8 represent the number of users allowed to make a maximum of
1, ..., 8 attempts, respectively. The instantaneous activities check p1,...,
check p8 model the persistence level. If the user passes the persistence
level, he can send an Access Burst and moves into the place tryi, otherwise
he moves into the correspondent place faili. Should a user consume all
his assigned attempts to make his request, or should the time-out regulating
the maximum allowed time for making a request (set to 5 sec) expire, the
user is moved into the place block. A blocked user will do a new attempt

35



Figure 2.6: The “internal GPRS cell model”

36



after a time sampled from the timed activity b to n, having exponential
rate and taking into account Automatic Retransmission Time (ART). The
place w5 and the activity wait 5 take into account those users that haven’t
been assigned any attempt, because they will always fail the persistence
level. According to the standard specification, they have to wait 5 seconds
before moving in the place block.

• The instantaneous activity check capture checks, stochastically, if there
is a successful receipt of one Access Burst; if yes, a token is placed in
one accepted, unless the queue is full and there is no available traffic
channel, in which case a token is put in all discarded. The instanta-
neous activity who is passed fires when there is a token in
one accepted and it allows to choose which level the accepted Access
Burst comes from, placing a token in one of the places p1, ..., p8 (each
Access Burst at each level has the same probability to be the accepted one).
The input gate control and the activity control act properly update
the places recording the residual tries made available to the other concur-
rent requests (places ready1, ..., ready8, try1, ..., try8, fail1, ...,
fail8, wait a0, ..., wait a7 and p1, ..., p8).

• When there is a successful receipt of one Access Burst and there is a free
channel (that is at least a free pair between ch1-a1,...., ch7-a7), the output
gate choose channel puts a token in one of the places ch1, ..., ch7
otherwise it puts a token in the place queue. The timed activities su1,
..., su8 simulate the set-up time of a radio link to send user data. The
activities exp1, ..., exp7 follows a uniform distribution and represent the
data sending time.

• A token (generic user) that reaches the temporary place is instantaneously
moved through the topography activity in the place idle or
idleOverlapped following a dynamically calculated distribution.

• The sub-net enclosing the timed activities PRACH available and
slot available, and the places en and enable, models the multi
frame on the PDCH.

• A token in the place queue represents a pending request waiting for up-
link channel reservation. The instantaneous activity q control a fires
when a channel is released and there are pending requests in the queue.
When activity q control a fires, the input gate q control moves a
token from queue to a place among ch1, ..., ch7, corresponding to the
available channel.

37



2.4.3 Type A model: the “users switching/reswitching sub-model”
for CELL

Our purpose is to construct a GPRS cell model that represents the behavior of the
congested cell (CELL) during outage, cell resizing and outage recovery (type A
model). In Figure 2.7, we describe the “users switching/reswitching sub-model”
that specifies the general GPRS cell behavior as required. The black line separates
the components belonging to the “generic GPRS cell model” (on the left) from
those belonging to the added model (on the right).

Figure 2.7: “users switching/reswitching sub-model” for CELL

Here, we sketch the model behavior following the temporal events of Figure
2.3.

• Before time T0, the system is in steady-state and one token is in place Work
(the system works properly).

38



• At time T0 the Outage activity fires (deterministic distribution) and some
tokens are put in place NumChOut, whose marking represents the number
of unavailable traffic channels. From this moment, the system is working
in a degraded manner. In order to actually cause the unavailability of the
traffic channels in the central cell, the output gates choose channel and
q control of the “internal GPRS cell model” of Figure 2.6 have been
modified to assign a free channel only if the number of free pair between
ch1-a1,...., ch7-a7 is greater than the marking of place numChOut.

• At time T1 the deterministic activity Outage timeToReact fires (in
outageReactionTime sec.), representing the time necessary for the system
to react to the outage (it’s equal to T1-T0). At firing time, the input gate
wait for switch puts the established number of tokens (users) in place
activeToSwitch (maximum number of active users to switch) and
idleToSwitch (maximum number of idle users to switch) and then the
switching procedure starts. Following the assumptions, we first loose the
users in the non-overlapping area (black-spot phenomena), and then the to-
kens (users) are put in place activeUsersLost and idleUsersLost,
representing the number of active and idle users lost during the switching
procedure. The active or idle users successfully switched from CELL to
CELL-i (observed number of switched users) are represented by tokens in
place activeSwitched and idleSwitched, respectively (these two
places are shared with the CELL-i model through the Join operator). Fi-
nally, tokens in place activeSwitchedToOtherCells and
idleSwitchedToOtherCells represent, respectively, the number of
active and idle users really switched from CELL to all other receiving cells
except for CELL-i.

• At time T2 the deterministic activity Rip fires (in riptime sec.), representing
the time necessary for the system to be repaired (it’s equal to T2-T0). At
firing time the outage ends and CELL restarts to work properly (the marking
of place numChOut is set to zero).

• At time T3 the deterministic activity endOutage timeToReact fires
(in outageEndReactionTime sec.), representing the time necessary for the
system to react to the end of the outage (it’s equal to T3-T2). At firing
time, the mark of the place enable reswitch (shared with the CELL-
i model) is set to 1 and the re-switching procedure starts. The activities
activeLoss reswitch and idleLoss reswitch are enabled and
the users previously lost are instantaneously reinserted in the
idleOverlapped place. Moreover, the activeReswitching and
idleReswitching activities are enabled and then the users in places

39



commonActiveSwitched and commonIdleSwitched (shared with
the CELL-i model and representing, respectively, the active and idle users
to be re-switched from CELL-i to CELL) are sent, respectively, to place
activeOverlapped and idleOverlapped. The re-switching proce-
dure ends when the same number of users previously switched from CELL
to CELL-i has been re-switched to the original cell. We finally note that the
users switched from CELL to all the other receiving cell except for CELL-i
are not re-switched.

2.4.4 Type B model: the “users switching/reswitching sub-model”
for CELL-i

The purpose is to construct a GPRS cell model that represents the behavior of a
receiving cell (CELL-i) during the resizing of the congested cell. In Figure 2.8,
we show the sub-model that specifies the general GPRS cell behavior as required.
The vertical black line separates the components belonging to the “generic GPRS
cell model” (on the left) from those belonging to the added model (on the right).

Figure 2.8: “users switching/reswitching sub-model” for CELL-i

Tokens in place activeSwitched (or myActiveSwitched) and
idleSwitched (or myIdleSwitched) represent, respectively, the number
of active and idle users really switched from CELL to CELL-i. The input gate
controller switch active keeps the number of tokens in
activeSwitched equal to the number of tokens in myActiveSwitched,
until the re-switching procedure starts. The input gate
controller switch idle performs the same action for the idle users. The

40



enable reswitch place contains one token if the re-switching procedure is
enabled, zero otherwise. Tokens in places commonActiveSwitched and
commonIdleSwitched represent, respectively, the active and idle users re-
switched from CELL-i to CELL.

Here, we briefly describe the model behavior following the temporal events of
Figure 2.3.

• Before time T0, the system is in steady-state.

• At time T1, the switching procedure from CELL to CELL-i starts and then
some tokens arrive in places activeSwitched and/or idleSwitched,
that represent the number of active and/or idle users really switched from
CELL to CELL-i. Places myActiveSwitched and myIdleSwitched
follow the respective variations, thanks to the input gates
controller switch active and controller switch idle.

• At time T3, the mark of the place enable reswitch is set to 1 and the
re-switching procedure starts. The users re-switched from CELL-i to CELL
are available in place commonActiveSwitched and
commonIdleSwitched. The re-switching procedure ends when places
myActiveSwitched and myIdleSwitched are empty.

2.4.5 The overall model for the couple [CELL, CELL-i]
Previously, we showed how to construct the models for CELL and CELL-i spec-
ifying the behavior of the “internal GPRS cell model” that represents the random
access procedure of a generic GPRS cell. In this Subsection we describe how to
construct the overall model for the couple [CELL, CELL-i]. This model will be
used in the resolution technique of Figure 2.4 to solve each couple of [type A
model, type B model] in the first step of the methodology.

Figure 2.9: [CELL, CELL-i] model

The overall model of Figure 2.9 is composed by two cells: the outageCell
(CELL), that is the cell affected by the outage, and a receivingCell (CELL-

41



i), that is a cell that receives some users from the congested cell. These two mod-
els interact each other through some shared places defined in the Join operation
[4]. The shared places are the following: activeSwitched, idleSwitched,
commonActiveSwitched, commonIdleSwitched and
enable reswitch. Each sharing consists of a non-empty set of state variables
of children of the Join node.

2.4.6 Type C model: the “users switching/reswitching sub-model”
for CELL using the provided “observed users re-switching
distribution”

The purpose is to construct a GPRS cell model that represents the behavior of the
congested cell (CELL) during outage, cell resizing and outage recovery (type C
model of Figure 2.4). It uses the provided “observed users re-switching distribu-
tion” to reconstruct the re-switching procedures of all the neighbor cells.

Figure 2.10: “users switching/reswitching sub-model” for CELL using the pro-
vided “observed users re-switching distributions”

As we can see from Figure 2.10, the model is derived from the type A model
by adding a very simple SAN that is responsible to represent the effect of the re-
switching procedures from all the receiving cells CELL-1, . . ., CELL-N to CELL.
The output gate simulate reswitching has the following output function:

double activeToReSwitch[]={...};

double idleToReSwitch[]={...};

commonActiveSwitched→Mark()=commonActiveSwitched→Mark()+

activeToReSwitch[index→Mark()+1];

commonIdleSwitched→Mark()=commonIdleSwitched→Mark()+

idleToReSwitch[index→Mark()+1];

The variables activeToReSwitch and idleToReSwitch are defined as
two arrays, and their values represent, respectively, the number of active and idle
users to re-switch from CELL-1, . . . , CELL-N to CELL at different instants of
time. These arrays are the discrete versions of the “observed users re-switching

42



distributions”. If δ is the delay associated to the deterministic distribution
deltaTime, activeToReSwitch[k] (or idleToReSwitch[k]) is the number of ac-
tive (or idle) users to be re-switched at time T3 + δ(k + 1), where T3 is the time
in which the re-switching procedure starts (or, equivalently, the time in which the
place enable reswitch is set to 1). Therefore, δ is the sampling period of
the “observed users switching distributions”. The shorter is δ, the higher is the
accuracy of the two distributions. As a detail we finally note that we multiplies
δ for (k + 1) because, when deltaTime fires, the output function of the gate
simulate reswitching is executed before that one token is added to the
place index.

2.4.7 About effectiveness
The major characteristic of this technique is its capability to manage the complex-
ity of the overall model, as we provide the solutions solving N+1 sub-models only
and combining some basic QoS measures. In case of state-based analytical solu-
tion, the state-space explosion problem is drastically reduced thanks to the lower
number of states generated for each individual sub-model. In case of simulation,
the major advantages are related to:

• the mitigation of the stiffness-problem, if the submodels to be simulated
during Step 1 and 3 have less time scales than the monolithic model. This
property could be extremely useful in dealing with an heterogeneous net-
work composed by cells of different technologies, e.g. GPRS and UMTS
(Universal Mobile Telecommunications System);

• the decrement of the overall solution time, since the N sub-models consti-
tuted by the couple [CELL,CELL-i] in Step 1 can be solved concurrently.
This favors the scalability of the method, which can easily deal with high
numbers of receiving cells;

• the alleviation of the memory requirements for the simulator, as the sizes of
the sub-models to be solved are reduced thanks to the models decomposi-
tion.

Although both analytical and simulation solution methods can be applied, in
this study we adopt the simulation approach to numerically solve the sub-models
obtained applying our methodology, using the simulator offered by the Möbius
tool. The main advantage in using the simulation is that it allows to represent real
system conditions better than analytical approaches do (e.g., to use distribution
functions more realistic than the exponential one).

43



Symbol Description Values
GPRS Channel Number of available GPRS channels 3
GPRS Channel Out Number of GPRS channels affected by outage 2
QL Length of the queue 2
Treq User inter-request time, following an exponential distribution 60 sec. (average)
Rsize Request size, following a uniform distribution [1000-1600] byte

totalNumUsersCELL Total number of users camped in CELL 180
numUsersCELL OvCELL1 Number of users camped in the overlapping area between CELL & CELL1 60
numUsersCELL OvCELL2 Number of users camped in the overlapping area between CELL & CELL2 50
numUsersCELL OvCELL3 Number of users camped in the overlapping area between CELL & CELL3 40
numActiveUsersToSwitchToCELL1 Number of active users to switch from CELL to CELL1 0, 30, 60
numActiveUsersToSwitchToCELL2 Number of active users to switch from CELL to CELL2 0, 25, 50
numActiveUsersToSwitchToCELL3 Number of active users to switch from CELL to CELL3 0, 20, 40
totalNumUsersCELL1 Total number of users camped in CELL1 140
totalNumUsersCELL2 Total number of users camped in CELL2 170
totalNumUsersCELL3 Total number of users camped in CELL3 200
outageReactionTime Time between outage and the beginning of the switching procedure variable

Table 2.1: Relevant parameters and their values

2.5 Model evaluation
We perform a transient analysis in the interval of time from the occurrence of an
outage (time T0) to the new system steady-state after the outage repair, using the
simulator provided by Möbius tool [61].

2.5.1 Settings for the numerical evaluation and the Analyzed
Scenarios

We analyze a GPRS network composed of one central cell (CELL) and three par-
tially overlapping cells (CELL1, CELL2 and CELL3). In Table 2.1 we detail the
values we assigned to the main parameters of each cell. All the four cells have the
same number of traffic channels (three) but different user populations; therefore,
each cell has a different workload level at steady-state.

We analyzed two scenarios, which have been set up in order to tune the follow-
ing two parameters of a resource management technique: activeUsersToSwitch,
that is the total number of active users to switch from CELL to CELL1, CELL2
and CELL3 (activeUsersToSwitch=

∑3
i=1 numActiveUsersToSwitchToCELLi), and

outageReactionTime, that is the time necessary to the Resource Management Sys-
tem to react to the outage.

• SCENARIO 1: The fine-tuning is performed in terms of the number of
active users to switch from CELL to each other cell. In particular, we con-
sider three cases: i) the case where no cell resizing is performed (no users
switching), ii) the case where the cell resizing involves 50% of the users in

44



the overlapping area (active users to switch = 75), and iii) the case where
the cell resizing involves 100% of the users in the overlapping area (active
users to switch = 150). Moreover, we set the outageReactionTime parame-
ter to 30 seconds and assumed that 10% of the switched active users are lost
during the reconfiguration action.

• SCENARIO 2: The number of active users to switch from CELL to the
other cells is set to 75 users (30 to CELL1, 25 to CELL2 and 20 to CELL3).
The focus in this scenario is on evaluating the impact of the time necessary
to the Resource Management System to apply a traffic reconfiguration after
the occurrence of an outage. So, the parameter under tuning is outageRe-
actionTime, for which three values have been considered: 15, 45 and 75
seconds. This performance indicator is useful to set a maximum value on
the time the RMS is allowed to spend to elaborate a reaction to the observed
overload.

We suppose that the switching and re-switching procedures are instantaneous.
Moreover, we suppose that the partial outage affecting the central cell consists of
a software error that reduces the number of available traffic channels from 3 to 1,
and we set the outage duration to 120 seconds (average time needed to restart the
software). The outageEndReactionTime parameter (the time that occurs between
the end of the outage and the users re-switching) is set to 15 seconds (typical real
value). In all the simulations we choose a relative confidence interval of 0.1 and
a confidence level of 0.95, that is in the 95% of the times, the mean variable will
be within 10% of the mean estimate. Moreover, we choose a value for δ such that
considering lower values would have not lead to significant improvement in the
accuracy of the results (δ=4 sec.).

2.5.2 Numerical evaluation
In this Section we show the results obtained from the simulations, both concerning
the Pointwise Congestion function (PCf, on the Y-axes) and the Total Congestion
indicator (TCi, in the labels of the figures). In all the figures plotting the simulation
results, the time interval on the x-axis starts at time 200 sec. (the outage occur-
rence time) and ends at time 556 sec. (the time the new steady-state is reached in
all the cells). The labels T0, T1, T2 and T3 on the x-axis have the same meanings
as in Figure 2.3.

Evaluation in scenario 1: tuning of parameter ‘activeUsersToSwitch’

Figures 2.11, 2.12 and 2.13 show, respectively, the congestion perceived by the
users (the Point-wise Congestion function) in CELL1, CELL2 and CELL3 at vary-

45



0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

1 
(%

)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=140

T0 T1 T2 T3

No Users Switching [TCi=1,14%]
Active Users to Switch = 30 [TCi=1,90%]
Active Users to Switch = 60 [TCi=2,32%]

Figure 2.11: Congestion perceived in CELL1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

2 
(%

)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=170

T0 T1 T2 T3

No Users Switching [TCi=4,40%]
Active Users to Switch = 25 [TCi=6,42%]
Active Users to Switch = 50 [TCi=7,40%]

Figure 2.12: Congestion perceived in CELL2

46



0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

3 
(%

)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=200

T0 T1 T2 T3

No Users Switching [TCi=15,66%]
Active Users to Switch = 20 [TCi=17,45%]
Active Users to Switch = 40 [TCi=18,81%]

Figure 2.13: Congestion perceived in CELL3

ing of the number of the active users to switch (0%, 50%, 100% of the number
of users in the overlapping area). Obviously, the TCi value increases when we
increase the value of the activeUsersToSwitch parameter. We note that the con-
gestion level at steady state (time T0) is about 1% for CELL1, 4% for CELL2 and
14% for CELL3, mainly because of a different number of users camped in. After
time T1 (the switching time), the congestion initially increases, but decreases im-
mediately after. This happens when the receiving cell is not congested and, then,
can absorb the added traffic. Moreover, the traffic overload induced in CELL3 has
the most negative impact, as the congestion level at steady-state is the highest.

Figure 2.14 shows the congestion perceived by the users in the cell affected
by the outage at varying the number of the active users to switch from this cell to
all the adjacent cells. From the figure we note that if we increase the total number
of active users to switch from 75 to 150, the TCi value remains the same. This
happens, in general, when the system tries to switch “too many” users and then
the negative effects due, for example, to the augmented number of lost users is
equivalent to the positive effects due to the augmented number of switched users.
At time T1 the switching procedure starts and the perceived congestion is benefi-
cially affected by the actuation of the technique in a very short amount of time. At
time T2 the outage ends, CELL starts working properly and the congestion rapidly

47



0

5

10

15

20

25

30

35

40

45

50

55

60

65

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

 (%
)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=180

T0 T1 T2 T3

No Users Switching [TCi=26,53%]
Active Users to Switch = 75 [TCi=15,68%]

Active Users to Switch = 150 [TCi=15,45%]

Figure 2.14: Congestion perceived in CELL

decreases, while increases from time T3 (because of the users re-switching), till
reaching again the steady-state level.

Figure 2.15 shows the behavior of the overall GPRS network composed of
CELL, CELL1, CELL2 and CELL3 at varying values of the activeUsersToSwitch
parameter. We analyze the percentage of the unsatisfied users in the network with
respect to the total number of users camped in the four cells (in this example
180+140+170+200=690 users). We note that the 100% cell resizing curve (ac-
tiveUsersToSwitch=150) is worse than the 50% one (activeUsersToSwitch=75) as
the positive effects induced by the decongestion in CELL don’t compensate the
negative effects on CELL1, CELL2 and CELL3 (the receiving cells).

Lastly, Figure 2.16 shows the number of active users really switched from
CELL to the other cells. We note that the switching and re-switching procedures
are not instantaneous. This means that there are not enough active users immedi-
ately available to be switched at time T1 (the switching time) and re-switched at
time T3 (the re-switching time).

48



5

10

15

20

25

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

O
ve

ra
ll 

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

(%
)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=690

T0 T1 T2 T3

No Users Switching [TCi=12,77%]
Active Users to Switch = 75 [TCi=10,78%]

Active Users to Switch = 150 [TCi=11,69%]

Figure 2.15: Overall congestion perceived

0

10

20

30

40

50

60

70

80

90

100

110

120

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

A
ct

iv
e 

U
se

rs
 S

w
itc

he
d 

fro
m

 C
E

LL
 to

 a
ll 

ot
he

r c
el

ls

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=180

T0 T1 T2 T3

No Users Switching
Active Users to Switch = 75

Active Users to Switch = 150

Figure 2.16: Active users switched from CELL to all other cells

49



10

12

14

16

18

20

22

24

26

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

3 
(%

)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=20 - NumUsers=200

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=17,17%]
Outage Reaction Time = 45 sec. [TCi=17,08%]
Outage Reaction Time = 75 sec. [TCi=16,79%]

Figure 2.17: Congestion perceived in CELL3

Evaluation in scenario 2: tuning of parameter ‘outageReactionTime’

Figure 2.17 shows the congestion perceived by CELL3 (one of the receiving cells)
at varying the time needed by the system to react to the outage (outageReaction-
Time parameter). As expected, the congestion increases if the outage reaction
time decreases, both concerning PCf and TCi, as the switched users reach the cell
earlier. The other receiving cells behave similarly (they only vary in the workload
at steady-state level, about 1% for CELL1, 4% for CELL2) and then they are not
presented.

Figure 2.18 shows the congestion perceived by the users camped in the cen-
tral cell at varying of the outageReactionTime parameter. As expected, the TCi
decreases when reducing the outage reaction time, as the reconfiguration action is
applied earlier.

Finally, Figure 2.19 shows the percentage of unsatisfied users in the overall
network at varying the outageReactionTime parameter. This is the percentage of
unsatisfied users in the network with respect to the total number of users camped
in it (690 users for the considered setting). We note that if the reaction time pa-
rameter increases, the congestion perceived increases as well. The obtained results

50



0

5

10

15

20

25

30

35

40

45

50

55

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

fo
r C

E
LL

 (%
)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=75 - NumUsers=180

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=14,61%]
Outage Reaction Time = 45 sec. [TCi=17,42%]
Outage Reaction Time = 75 sec. [TCi=19,09%]

Figure 2.18: Congestion perceived in CELL

6

8

10

12

14

16

18

20

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

O
ve

ra
ll 

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

(%
)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=75 - NumUsers=690

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=10,36%]
Outage Reaction Time = 45 sec. [TCi=11,01%]
Outage Reaction Time = 75 sec. [TCi=11,42%]

Figure 2.19: Overall congestion perceived

51



allow performing an interesting investigation on the amount of time that the sys-
tem should be permitted to spend for its decision-making processes. For example,
if a maximum tolerable level of degradation is known a priori, by looking at the
results in Figure 2.19 it can be inferred the maximum value for the outageReac-
tionTime parameter.

2.6 Summary
In this Chapter, the congestion analysis of GPRS infrastructures consisting of a
number of cells partially overlapping has been performed in terms of QoS indica-
tors expressing a measure of the service availability perceived by users. When a
congestion is experienced by one of these cells, a family of congestion manage-
ment techniques is put in place, to operate a redistribution of a number of users
in the congested cell to the neighbor ones, in accordance with the overlapping ar-
eas. Since the service availability perceived by users is heavily impacted by the
congestion experienced by the cells, determining appropriate values for the users
to switch, so as to obtain an effective balance between congestion alleviation in
the congested cell and congestion inducement in the receiving cells, is a critical
aspect in such contexts.

In order to carry on such fine-tuning activity, a modeling methodology, ap-
propriate to deal with the system complexity, has been defined. In particular, we
introduced a solution technique following a decomposition approach, in which
the solution of the entire model is constructed on the basis of the solutions of the
individual sub-models.

Models solution through a simulation approach has been performed in order
to provide numerical estimates. The obtained results, although dependent on the
considered parameters setting, show behavior trends very useful to make an ap-
propriate choice of the number of users to switch, which is a critical parameter for
the congestion management technique. Moreover, an investigation on the amount
of time that the system should be permitted to spend for its decision-making pro-
cesses is carried on.

52



Chapter 3

Efficient Dependability Evaluation
of Hierarchical Control Systems

Current and future computerized systems and infrastructures are going to be based
on the layering of different systems, designed at different times, with different
technologies and components and difficult to integrate. Control systems and re-
source management systems are increasingly employed in such large and hetero-
geneous environment as a parallel infrastructure to allow an efficient, dependable
and scalable usage of the system components. System complexity comes out to be
a paramount challenge to solve from a number of different viewpoints, including
dependability modeling and evaluation. Key directions to deal with system com-
plexity are abstraction, decomposition and hierarchical structuring of the system
functionalities. In this Chapter we address the issue of an efficient dependabil-
ity evaluation by a model-based approach of hierarchical control and resource
management systems ([23]). The proposed methodology is then applied to the
resource management system developed in the context of the European project
CAUTION++.

3.1 Introduction
In this Chapter we focus on the class of control and resource management systems.
To cope with their increasing complexity, such systems are typically developed
in a hierarchical fashion: the functionalities of the whole system are partitioned
among a number of subsystems working at different levels of a hierarchy. At each
level, a subsystem has knowledge and control of the portion of system under its
control (lower levels), while it acts just as an actuator with respect to the higher
level subsystems. In this organization, the flow of the information goes vertically
from one level to the other, but not horizontally inside the same level. More pre-

53



Stage N


� �� �
COMP
� �� �
COMP


.
.
.
. . .
��
�

Dependency

connections


Stage 1


COMP


COMP


.
.
.
 � �� �� �
Dependency

connections


Stage N-1


COMP


COMP


.
.
.


Figure 3.1: Class of systems with “multi-stage” representation

cisely, the flow of decision taking goes from the bottom to the top, while the flow
for decision actuation goes from the top to the bottom. Here we are interested in
modeling and evaluating the system behavior with reference to a unidirectional
flow (be it for decision taking or for decision actuation). To improve dependabil-
ity, fault tolerance measures may be taken at each level, typically introducing in-
terface checks to cope with erroneous inputs and/or outputs and internal checks to
cope with faults during the internal computation. We exploited the characteristics
of this specific, but well representative, class of systems and derived a modeling
methodology that is not only directed to build models in a compositional way, but
it also includes some capabilities to reduce their solution complexity. To show
how it works, in the second part of the Chapter we applied the methodology to a
case study, which consists of a resource management system developed inside the
CAUTION++ project [24].

The rest of this Chapter is organized as follows. Section 3.2 provides some
preliminaries on the considered class of systems. Section 3.3 outlines the mod-
eling approach. Section 3.4 presents the multi-stage system instance considered
in the analysis. In Section 3.5 the models set-up for the selected CAUTION++
instance are discussed, while the results of the numerical evaluation are provided
in Section 3.6. Finally, conclusions are in Section 3.7.

3.2 System context
The class of systems we focus on consists of a set of hardware or software com-
ponents (the COMP boxes), which are grouped in “stages” (Stage 1, ..., Stage k,
..., Stage N ), as shown in Figure 3.1.

Components at a certain stage may interact with others at an higher level
through some “Dependency connections”. Each connection identifies a flow of

54



COMP 1


COMP 6
 COMP 7
 COMP 8


COMP 2
 � COMP 3


COMP 5
 � COMP 4


Figure 3.2: Example of system

information between two system components: a component A is connected to a
component B (A −→ B) if B is dependent from A, that is the behavior of B de-
pends on the information received from A. The components without any incom-
ing connections have an independent behavior with respect to the others, while
the components without any outgoing connections (called root components, the
dashed boxes in the figure) do not affect the behavior of any other component.

From the general system depicted in Figure 3.1 and following the dependency
connections from a root component back to the leaves of the graph, a number of
individual subsystems structured in a hierarchical fashion may be derived, equal
to the number of root components.

As already discussed earlier, a component at stage k may interact only with
those at stages k − 1 and k + 1 and these dependencies are unidirectional, from
the lower stage to the higher one. A dependency between one component at stage
k and more than one component at stage k + 1 is not explicitly considered as
it is equivalent to consider some (logical) replications of the component at stage
k, each one interacting with only one component at stage k + 1. In doing this
we make the assumption that, if a component is used in computing two or more
outcomes, its behavior is independently modeled in each context. This means that
the behavior of each replica does not depend on the behavior of the others.

The components in a stage can be partitioned in more sub-sets (groups), each
one composed of components having a connection to the same component in the
next stage.

For a better understanding, let us consider the example of Figure 3.2.
It is a system with eight different components, two of which are root nodes.

The corresponding representation, by grouping components in stages, is shown in
Figure 3.3. The original system has been decomposed in two sub-systems of four
and three stages, respectively, obtained following the reversal path from each root
node to the leaves. We note that COMP 6 is replicated twice in the first sub-system,
as it is originally connected to two different components (COMP 1 and COMP 7,
see Figure 3.2). We identify the groups composed of more that one component

55



Stage 2
 Stage 3
Stage 2
Stage 1
Stage 4
Stage 3
Stage 1


COMP 6


COMP 1


COMP 5


COMP 6


COMP 8


COMP 2


COMP 7
� �COMP 3


COMP 5


COMP 6


COMP 8


COMP 7
 � COMP 4
+


Figure 3.3: Example of “multi-stage” representation

with a dotted circle.
In the following Subsection we detail the system’s behavior, specifying how

two generic components may interact each other.

3.2.1 Interactions between components and Measures of inter-
est

The interactions among components and the failure assumptions on each com-
ponent are highlighted in Figure 3.4. This scheme is very general and must be
specialized for the particular component under analysis. To explain the generic
component’s behavior, let’s suppose it receives an input following a Poisson dis-
tribution with a rate λIN . These inputs are assumed to be correct or incorrect
with a probability α and 1 − α, respectively. In correspondence of inputs, which
arrive with a rate λIN , the component produces an output with a rate p ∗ λIN ,
where p is the probability a received input leads the component to produce an
output. Moreover, the component is assumed to possibly behave incorrectly by
self-generating spurious outputs with a rate λS . Thus, the “potential”1 output rate
of the component is expressed as λIN→OUT = λIN + λS.

For the sake of clarity, we give some definitions that we will use in the rest of
the Chapter. A correct emission is the emission of a correct output, that occurs
whenever a correct output is produced. It is possible i) in response to a correct
input if the system is free from errors, or ii) in response to a correct input, if
system errors are detected and tolerated. A correct silence is the non-emission
of an incorrect output and it may happen as consequence of an incorrect input
(if the incorrectness of the input is detected, for example using interface checks)
or of an erroneous status of the system. An incorrect emission is the emission

1Here, a “potential” output encompasses both emitted and non-emitted output (p = 1), while
for “output” we refer only to those emitted.

56



Figure 3.4: How a generic component interacts with others

Input Corresponding feasible output
Spurious output (internally generated) Incorrect Emission
Correct input Correct Emission, Incorrect Emission, Incorrect Silence
Incorrect input Correct Silence, Incorrect Emission

Table 3.1: Input-output combinations

of an incorrect output and it happens either in reply to an incorrect input, or as
consequence of a spurious output or of a wrong processing of a correct input.
Finally, an incorrect silence is the non-emission of a correct output and it may
happen as consequence of wrong processing of a correct input. These input-output
combinations are summarized in Table 3.1.

Therefore, each component can be characterized by two input parameters (α
and λIN) and by the following five output parameters:

• pCorrect, that is the probability of generating a correct output (correct emis-
sion);

• pCorrupted, that is the probability of generating an incorrect output (incorrect
emission);

57



• pnoOutCorr, that is the probability that the output is correctly non-emitted
(correct silence);

• pnoOutIncorr, that is the probability that the output is incorrectly non-emitted
(incorrect silence);

• λOUT, that is the rate of the propagation of an output from the component to
another. In particular, λOUT = (pCorrect + pCorrupted) ∗ λ

IN→OUT.

From the point of view of propagation, it is clear that not all the outputs gen-
erated at a stage are always propagated up to the root. In fact when a component
receives an output (correct or incorrect), it can operate in two different ways, de-
pending on the correctness of the output received and on its internal state: it can
generate another output and propagate it to the next stage (emission behavior), or
it can not emit any output, thus interrupting the propagation flow (silence behav-
ior).

Given the behavior structure and failure semantics depicted in Figure 3.4, typ-
ical measures of interest from the dependability point of view in this context in-
clude:

1. The probability of correct and incorrect emission;

2. The probability of correct and incorrect silence;

3. The overall probability that the system does not undertake wrong actions;

4. The mean time to incorrect emission.

In Section 3.5 we will specify the measures to evaluate with reference to a partic-
ular resource management system.

3.3 Description of the modeling methodology
The modeling methodology, originally introduced in [21], is fully described in
this Section. First, we deal with the model design process, that is, how to model a
complex system starting from its functional specification and applying a stepwise
refinement to decompose it in small sub–models. Then, the second part of the
methodology is presented, which concerns the modular model solution, carried
out in a bottom-up fashion. The philosophy of our modeling approach is shown
in Figure 3.5.

In order to construct an efficient, scalable and easily maintainable architectural
model, we introduce a stepwise modeling refinement approach, both for the model
design process and for the model solution. Another advantage of this approach is

58



Figure 3.5: Modeling approach

to allow models refinement as soon as system implementation details are known
or/and need to be added or investigated.

3.3.1 The model design process
The model design process adopts a top-down approach, moving from the entire
system description to the definition of the detailed sub-models, while the model
solution process follows a bottom-up approach. As inspired by [8], the system
is firstly analyzed from a functional point of view (functional analysis), in order
to identify its critical system functions with respect to the validation objectives.
Each of these functions corresponds to a critical service provided by a component.

The overall system is then decomposed in subcomponents, each one perform-
ing a critical subfunction, and each subfunction is implemented using a model
that describes its behavior. Therefore, starting from the high-level abstract model,
we perform a decomposition in more elementary (but more detailed) sub–models,
until the required level of detail is obtained.

The definition of the functional (abstract) model represents the first step of
our modeling approach. The rules and the interfaces for merging them in the ar-
chitectural dependability model are also identified in this phase. The second step
consists in detailing each service in terms of its software and hardware compo-
nents in a detailed (structural) model accounting for their behavior (with respect
to the occurrence of faults). The fundamental property of a functional model is to
take into account all the relationships among services: a service can depend di-
rectly from the state of another service or, indirectly, on the output generated from
another service. The detailed model defines the structural dependencies (when
existing) among the internal sub–components: the state of a sub–component can

59



Figure 3.6: Functional-level model related to a single service

depend from the state (failed or healthy) of another sub–component.
Figure 3.6 shows the functional-level model related to a single service. The

internal state S is here composed of the place U, representing the nominal state,
and of the places D1 . . . DM , representing different possible erroneous (degraded)
states. The places I1 . . . IL and O1 . . . ON represent, respectively, the input (cor-
rect or exceptional, due to propagation of failures from interacting modules) and
the output of the model (correct behavior or failure - distinguishing several failure
modes). The state changes (from the nominal, correct state to the erroneous states
and viceversa) and the flow between the input and output places are regulated by a
structural model of the service implementation, indicated in Figure 3.6 as a black
cloud.

3.3.2 The model solution process
The model solution follows a bottom-up approach from the detailed model up
to the abstract model. The implementation is strictly related to the environment
characteristics of the system under analysis. Actually, starting from the general
class of systems of Figure 3.1, we can derive several simplified systems that can
be solved very efficiently.

Environment characteristics

Suppose, for the sake of simplicity, that the generic system of Figure 3.1 has
one root node only. If it is not the case, we can decompose the system in more
sub-systems having one root each, as explained in Section 3.2. We denote with
λOUT, COMPk

i the intensity of the output process of the i-th component belonging to
stage k (COMPki ). We make the following assumptions:

1. The distribution of the input process of each component is Poisson with rate
λIN. This is accepted in the literature when the number of arrivals in a given
time interval are independent of past arrivals.

60



2. The distribution of the output process of each component is Poisson dis-
tributed with a rate λOUT. This assumption corresponds, for example, to the
case in which the inputs are processed sequentially without queuing and
losses, and the processing time of the input is deterministic. Equivalently,
we could obtain the same output distribution considering that the service
time is Poisson distributed and that the component operates as a steady-state
M/M/1 queuing network [1].

Suppose to have a group of Nk components at stage k (COMPk1 , ..., COMPkNk
).

We remind that a group is a set of components belonging to a stage, and connected
to the same component in the next stage. Using the assumption that the output
process of COMPki is Poisson distributed with rate λOUT, COMPk

i , the superposition of
Nk Poisson processes with intensities λOUT, COMPk

1 , . . . , λOUT, COMPk

Nk
is equivalent to a

Poisson process with intensity equal to λOUT, COMPk

1 + . . .+ λOUT, COMPk

Nk
.

Solving the detailed model of components COMPk1, ..., COMPkNk
leads to the

evaluation of the probabilities of correct/incorrect output (both propagated and
not propagated to the next stage) and the intensity of the output process of a group
of Nk components. Let’s defining as P ki

Correct, and P ki

Corrupted the probability of
correct emission, and the probability of incorrect emission of COMPki , respec-
tively. Notice that these probabilities depend upon the intensity of the input pro-
cess (λIN, COMPk

i ) and of spurious alarms (λS, COMPk

i ) (both supposed being Poisson).
The following relations holds:

ΛOUT, COMPk

=
Nk∑

i=1

λOUT, COMPk

i , (3.1)

αCOMPk+1 =
1

ΛOUT, COMPk
∗
Nk∑

i=1

λOUT, COMPk

i

P ki

Correct

(P ki

Correct + P ki

Corrupted)
, (3.2)

where ΛOUT, COMPk is the intensity of the process achieved by aggregating the output
processes of the components COMPk1 , ..., COMPkNk

, while αCOMPk+1 is the proba-
bility that the next component at stage k + 1 receives a correct input. Analogous
considerations hold for COMPk+1, and so on. This general approach can be spec-
ified for the following cases:

(I) If all groups at stage k are identical, the total number of detailed models to
be solved in order to evaluate the system’s behavior is equal to

∑K
k=0Nk,

where K is the number of stages in the system and Nk is the number of
components belonging to each identical group at stage k.

(II) If all groups at stage k can not be considered identical at each stage, the
number of models to be solved depends on the number of different “branches”
in which the overall model can be simplified.

61



 

CompK 

 

CompK+1 

 

CompK+2 

 

Stage k Stage k+1 Stage k+2 

ΛΛΛΛOUT, COMP^k ΛΛΛΛOUT, COMP^(k+1) ΛΛΛΛOUT, COMP^(k+2) 

ααααCOMP^(k+1)
 ααααCOMP^(k+2)

 ααααCOMP^(k+3)
 

 

Figure 3.7: Part of the simplified system model

(III) If for each stage k of the system, all the components are identical, it is
possible to solve only K detailed models, one for each stage. Therefore,
if all the components at level k are identical, then λOUT, COMPk

i = λOUT, COMPk ,
P ki

Correct = P k
Correct, P

ki

Corrupted = P k
Corrupted, and the previous equations

reduce to

ΛOUT, COMPk

= NTOT
k ∗ λOUT, COMPk

, (3.3)

αCOMPk+1 =
P k
Correct

(P k
Correct + P k

Corrupted)
, (3.4)

where NTOT
k is the total number of components at stage k.

In this case, the general model of Figure 3.1 is reduced to the equivalent
simplified system model of Figure 3.7 that can be solved more easily, as the
“tree” structure collapses in a unique “branch” from the point of view of
system evaluation.

We note that case (II) is the more general one; next is case (I) and the least
general is case (III).

If it can not be assumed that the output process of COMPki follows a Poisson
distribution, the general approach is still valid provided that the detailed model is
slightly modified allowing to estimate the real distribution of such a process. The
same distribution will be used as input at the k + 1 stage. However, in general, it
will be no longer possible to solve the models analytically.

If the measures of interest are probabilities, the moments of the distribution
of correct/incorrect output (both propagated and not propagated to the next stage)
which yield such probabilities are not considered at all. In this case it is not neces-
sary to use, at the abstract level, models having the same distribution estimated at
the detailed ones. If, on the contrary, we are interested in evaluating the moments,
the output processes distributions achieved by the detailed models have to be used
for the solution of the abstract models.

62



λλλλIN->OUT,COMP^k

pk
Correct

pk
Corrupted

pk
noOutIncorr

pk
noOutCorr

ααααk+1= pk
Correct / (pk

Corrupted+pk
Correct)

λλλλIN, COMP^k =Nk-1*λλλλIN->OUT,COMP (̂k-1)*(pk-1
Corrupted+pk-1

Correct)

Stage_K Detailed Model

λλλλIN->OUT,COMP^k

Stage_k
Abstract

Model

ααααk= pk-1
Correct / (pk-1

Corrupted+pk-1
Correct)

λλλλIN, COMP^(k+1) =Nk*λλλλIN->OUT,COMP^k*(pk
Corrupted+pk

Correct)

Figure 3.8: Relationships between models solutions

The model solution scheme

According to Figure 3.5 (showing the philosophy of our modeling approach) the
model solution follows a bottom-up approach: the solution of a detailed model
is exploited to set up the parameters of the corresponding abstract model and of
the detailed model of the next (contiguous) components (the output of the detailed
COMPk model acts as input for the detailed COMPk+1 model). To keep the pre-
sentation simple, the model solution scheme is described in the case where, for
each stage k, all the components at stage k are identical; therefore only K detailed
models (one for each stage) have to be solved. Figure 3.8 shows the relationships
among a detailed model of COMPk and the model COMPk+1.

With reference to the measures of interest listed in Section 3.2.1, the outcomes
of the detailed model COMPk are:

1. pknoOutCorr: is the probability that no output is produced by component
COMPk, as a consequence of an incorrect input;

2. pknoOutIncorr: is the probability that an expected output is incorrectly not
propagated by component COMPk, as consequence of an internal fault;

3. pkCorrect: is the correct emission probability;

4. pkCorrupted: is the emission failure probability. This value encompasses both
an expected wrong emission (as consequence of wrong internal processing)
and the unexpected emission (as consequence of an internal self-generated
false alarm);

63



Figure 3.9: Overall solution scheme

5. λIN→OUT, COMPk

∗ (pkCorrupted + pkCorrect): is the rate of the output (both correct
and corrupted) propagated by component COMPk to component COMPk+1.

All these parameters are used in the abstract model of component COMPk

(see Figure 3.8) while λIN→OUT, COMPk , pkCorrect and pkCorrupted are used to derive the
parameter λIN, COMPk+1 to be used in the detailed model of COMPk+1. In the system
framework COMPk and COMPk+1 represent two components directly connected
that exchange information in one direction (from COMPk to COMPk+1).

Summarizing, the overall solution scheme is shown in Figure 3.9. The detailed
models are solved separately: firstly the model of COMPk is solved, then the val-
ues provided by equations (3.3) and (3.4) are passed as input to the detailed model
of COMPk+1 and so on. Finally, the probabilities of correct/incorrect output (both
propagated and not propagated to the next stage) are passed to the corresponding
abstract models, they are joined together and then the overall abstract model is
solved.

The advantages of the proposed approach are in two directions: first, to cope
with the problem of state space explosion when modeling a system composed of
a large number of independent components and, second, to allow efficient model
solution for those systems having most of their components identical and inter-
acting with each others only by means of information exchange. Actually, in case
the components are not all equal, a larger number of detailed models have to be
solved but still separately. Thus, the overall model, encompassing all the useful
information with respect to the measures of interest, is achieved by joining the
abstract models.

64



Figure 3.10: Network architecture for provision of capacity management mecha-
nisms

3.4 An instance of a “multi-stage” system: the CAU-
TION++ platform

The IST-2001-38229 CAUTION++ project [24] has already been introduced in
Section 2.1, and it is here detailed focusing the attention on its architecture. Its
final goal was to develop a novel, low cost, flexible, highly efficient and scalable
system able to be utilized by mobile telephone operators to increase the perfor-
mance of all network segments. Capacity utilization in cellular networks is an
extremely important issue from the operators’ point of view. Successful usage
of all the system resources especially in congestion situations can imply increased
revenues for the cellular network operators via reduced call blocking and dropping
rates. Also, in emergency situations the cellular networks are expected to work
properly and be able to respond to the momentarily increased offered traffic. To
pursue such goals, proper system components are developed to handle generated
alarms through a set of RRM (Radio Resource Management) techniques, to be
applied where needed. The CAUTION++ system, superimposed over the exist-
ing wireless networks, should allow putting in place correctly the identified RRM
techniques, hopefully despite the occurrence of faults. The rationale is to enforce
design solutions able to prevent a CAUTION++ component from carrying out a re-
configuration action wrongly or when it is not necessary (as consequence of some
fault). Because of the involved functionalities which pose relevant dependability
issues, the CAUTION++ project has promoted model-based evaluation, aiming at
assessing dependability attributes of the architecture under development.

Figure 3.10 shows the main components of the CAUTION++ architecture.
Each network segment has its own ITMU (Interface Traffic Monitoring Unit) and
RMU (Resource Management unit) which allow to monitor and manage the at-
tached network, respectively. Within each operator network, a GMU (Global
Management unit) can perform a global optimization. A Location Server (LS)

65



Figure 3.11: Trial configuration

can be used to track users’ mobility and location: such information can be ex-
ploited by GMU for a global optimization.

To practically show the usage of the proposed modeling methodology, we con-
sider a specific architecture’s instance involving GSM/GPRS and WLAN network
technologies deployed by two distinct operators, which is actually one of the trial
systems set up by the consortium as a demonstrator of the project’s results.

From the point of view of system composition, Figure 3.11 depicts the compo-
nents included in such trial. Three operators are involved, Op1, Op2 and Op3, with
Op1 and Op3 managing a WLAN network only, and Op2 managing both a GPRS
and a WLAN network. From the point of view of CAUTION++ components em-
ployed in this instance, each network segment has its own ITMU (Interface Traffic
Monitoring Unit) and RMU (Resource Management Unit) which allow to monitor
and manage the attached network, respectively. Within each operator network, a
GMU (Global Management Unit) is necessary to perform a global optimization.
In fact, different GMUs cooperate to optimize among different operators. There-
fore, this CAUTION++ instance includes 4 ITMU, 4 RMU and 3 GMU, connected
as shown in Figure 3.11.

It is clearly an instance of a multi-stage system. Starting from the GMU com-
ponents (the root nodes of the graph, see Section 3.2), we decompose the system
in three subsystems, one for each GMU. Each subsystem can be seen as a “3-
stage” system, that is a “multi-stage” system composed of 3 stages, in which all
the components belonging to a stage are identical. In this context the interactions
between system components consist of messages flowing from a level to its upper
level. Moreover, each subsystem can be represented as shown in Figure 3.7, as the

66



“tree” structure collapses in a unique “branch” from the point of view of system
evaluation. Therefore we have to solve only 3 detailed models for subsystem.

3.4.1 Components behavior and Modeling assumptions
In order to set up the detailed models, a characterization of the system components
from the dependability point of view is necessary, briefly outlined in the following.

• Each CAUTION++ element (ITMU, RMU, GMU) can be either correctly
working or wrongly working.

• Each CAUTION++ element (ITMU, RMU, GMU) is composed by three
main elements: the Application Software (AS), the Operating System (OS),
and the Hardware (HW). Each element has its own dependability figures
and reference values, that have been chosen as explained later. In turn, the
AS, OS, and HW can be either correctly working or wrongly working.

• At the end of its computation, each CAUTION++ component can emit
an output or not. More precisely, the possible output can be either cor-
rect/incorrect emission or correct/incorrect silence.

• Fault tolerance mechanisms are in place in each system component, in order
to improve the dependability of the components themselves and limit the
error propagation between interacting elements. They are interface checks
(to detect errors at input/output level), diagnosis and repair mechanisms.
Their ability to work properly depends on their respective coverage.

3.5 The models derived for the selected CAUTION++
trial

In this Section, the models derived for the analysis of the selected CAUTION++
instance of Figure 3.11 are detailed, all developed using the SAN [41] formalism.
First, the measures of interest are described, since they influence the definition of
the system models.

3.5.1 Measures of interest
As previously mentioned, the goal of the CAUTION++ system is to increase the
performance of all the controlled cellular networks. Then we expect it should

67



Figure 3.12: Generic abstract sub-models

never have a negative impact on the networks behavior, at the most becoming in-
active in the worst case. Therefore, the main dependability requirement of CAU-
TION++ is that it should avoid taking wrong decisions, thus acting worse than
doing nothing.

Particularly, an incorrect silence behavior (that is the system does not provide
any output when, if correct, it would have emitted one) can be tolerated, since
it leads to no benefit from CAUTION++. On the contrary, an incorrect emission
of an output can lead the system to act worse than doing nothing, and therefore
actions would be required to prevent such failure mode.

We have identified the following indicators as significant measures to evaluate
the dependability of the CAUTION++ architecture. They are:

• The probability of incorrect emission at level of the GMU employed by a
certain operator;

• Mean Time to Failure of the GMU employed by a certain operator;

• Reliability of the whole system(with contributions from all the present GMUs).

They appear to be suitable measures to evaluate the ability of CAUTION++ in
fulfilling the general dependability requirement of not undertaking wrong recon-
figuration actions.

3.5.2 The abstract models
In accordance with the proposed methodology described in Section 3.3, the start-
ing point is the definition of a functional model for each involved component.
Each functional (“abstract”) model has to take into account all the relationships
among critical services that, in this trial, are the emissions of outputs from ITMU
to RMU and from RMU to GMU. The generic “abstract” model is represented in
Figure 3.12.

68



Figure 3.13: HighLevelJoin submodels

It is valid for ITMU, RMU and GMU. The extension X will be used whenever
a generic parameter is indicated and need to be properly substituted by ITMU,
RMU, GMU to designate the parameters of the corresponding component.

The input gate gInput X allows handling the input of the component (both
the correct input - place Correct W - and corrupted input - place Corrupted W).
Transition lambda X fires with a rate λIN→OUT, X = λIN, X + λS, X where λIN, X and λS, X

are the rate of messages in input to component X and the rate of spurious mes-
sages generated by X , respectively.

Then, an output is produced. This output can be either correctly emitted
(a token is moved in place Correct X with probability pCorrect X) or incor-
rectly emitted (a token is moved in place Corrupted X with probability pCor-
rupted X) or correctly non-emitted (a token is moved in place NoOutCorr X
with a probability pnoOutCorr X) or incorrectly non-emitted (a token is moved in
place NoOutIncorr X with probability pnoOutIncorr X). An output is propa-
gated at the upper level of the CAUTION++ hierarchy (or as final output in case
of GMU) with a rate λOUT, X = (pCorrect X + pCorrupted X ) ∗ λIN→OUT, X.

The model of Figure 3.13 allows determining the measures of interest: a to-
ken will surely fall in one of the places (excepted place start which indicates an
alarming condition from a network segment, e.g. an input for an ITMU). When-
ever the token falls in one of these places it is collected by the input gate gReset
then the transition reset gets enabled and puts a token once again in place start.

3.5.3 The detailed models
To obtain the parameters of each abstract model, the corresponding detailed mod-
els have to be set-up and solved. Therefore, a detailed model is built for each

69



involved component. Since ITMU, RMU and GMU employ the same subcompo-
nents (HW, OS and AS, plus fault tolerance mechanisms, as already discussed),
the detailed model is almost the same for all of them. The only difference is in
the values of their parameters (as explained later in the Section on numerical eval-
uation). A generic detailed model is obtained by composing the generic detailed
models for the component’s subcomponents (i.e., HW, OS and AS) together with
the dynamics of the error and fault detection mechanisms employed.

As typical when modeling a (complex) system behavior, a set of assumptions
has been identified with the aim of enhancing simplicity and clarity (essential
to keep the whole modeling activity under control), still capturing the relevant
phenomena which impact the measures under analysis (essential to the practical
usefulness of the evaluation effort). The assumptions we made are listed in the fol-
lowing. First the general assumptions concerning the CAUTION++ components
are introduced, then those concerning the error detection capabilities at interface
level (both IN and OUT), and, finally, those concerning the error detection capa-
bilities internal to each component.

General assumptions

• Each CAUTION++ element X(ITMU, RMU, GMU) is in state Up X if all
its subcomponents Y (AS, OS and HW) are in state Y Up X (the prefix
Y will be used throughout this Chapter whenever a generic parameter is
indicated and need to be properly substituted by AS, OS, HW to designate
the parameters of the corresponding component). It is in state DownDet X
if at least one sub-component is in state Y DownDet X and no one in state
Y DownNoDet X. Otherwise it is in state DownNoDet X.

• The input of the detailed model may be either correct with probability α or
incorrect with probability 1-α.

• Each CAUTION++ element (ITMU, RMU, GMU) can generate by itself
spurious outputs. We assume that these outputs are independent from out-
puts generated because of real inputs. Spurious outputs follow an exponen-
tial distribution with rate λS, X.

• An incorrect input does not affect the state of the AS, OS, and HW.

Assumptions on interface checks capabilities

• The coverage of the input interface checks is given by the probability input-
Coverage X.

70



Figure 3.14: Detailed model for AS, OS, and HW

• When output interface checks are considered, the detection of an erroneous
output leads to a non-emission of an output (silence behavior), which may
be correct (with probability outputCoverage X) or incorrect, depending on
the inputs originating it and/or on the correctness of the component’s status.

Assumptions on error and failure detection capabilities

• An undetected erroneous state either disappears or propagates and reveals
itself.

• An undetected erroneous state of the AS may disappear (with probability
OS errorDet X) when the OS is repaired, e.g. in the case of OS re-booting.

• An undetected erroneous state either at the AS or OS level may disappear
(with probability HW errorDet X) when the HW is repaired (because of
necessary system reboot, no hot-pluggable redundancy is envisioned).

We now explain how the overall detailed model is built step by step. Remind
that each generic subsystem of CAUTION++ (i.e. ITMU, RMU, GMU) is sup-
posed to be composed by three main components: AS, OS and the HW. The details
of each component are shown in Figure 3.14. The extension X is here omitted
for brevity.

A token in place Y Up indicates that Y is working correctly. The firing of
activity Y toDown models its failure: this failure can be detected (a token moves
in the place Y DownDet) or not (a token moves in the place Y DownNoDet) with
probabilities Y Coverage and 1-Y Coverage, respectively (Y Coverage represents
the coverage of the error detection mechanisms implemented in the element Y).
An undetected failure can be revealed after a while; the firing of activity Y noDet
indicates such failure detection. A detected failure is then recovered by means of
the activity Y repair.

71



Figure 3.15: Generic detailed model

Figure 3.15 shows the detailed model for a generic CAUTION++ component
(ITMU, RMU, GMU), which encompasses the detailed model of its AS, OS, and
HW (the extension X is still omitted for brevity). The occurrence of an error at
AS, OS, and HW level is accounted for by putting a token in the corresponding
places Y DownDet or Y DownNoDet in case of a detected or undetected error,
respectively. An undetected error (at AS, OS, and HW level) may be eventually
detected in one of the following ways:

• The undetected error sooner or later propagates and reveals itself by means
of activity Y tToDown.

• Whenever the detailed model is producing a (potential) incorrect emission,
a token is in place CorruptDetCorrtIn or CorruptDetIncorrIn
depending on whether it was generated by a correct or incorrect input, re-
spectively. The instantaneous activities failureDet1 and failureDet2
implement the corresponding output interface checks. They reveal the (po-
tential) incorrect emission with probability outputCoverage by means of
the upper case of such activities. In this case, a diagnosis of the sys-
tem is triggered and implemented by the output gates gDetected and
gDetected2: possible undetected erroneous states become detected by

72



moving a possible token from the Y DownNoDet places of the AS, OS,
and HW to the corresponding places Y DownDet. These output gates also
move the token removed by the firing of activities failureDet1 and
failureDet2 from places CorruptedDetCorrIn or
CorruptedDetIncorrIn in places noOutCorr and noOutIncorr,
respectively. If the lower case of activities failureDet1 and
failureDet2 is chosen, the token is moved in place Corrupted.

• A repair of the OS may allow detecting an undetected error at the AS
level with probability OS errorDet by means of the lower case of the ex-
ponential activity OS repair. In this case, if there is a token in place
AS DownNoDet it is moved in AS DownDet by means of the output gate
gOS det.

• A repair of the HW may allow detecting an undetected error either at the AS
or OS level with probability HW errorDet by means of the lower case of the
exponential activity HW repair. In this case, if there is a token either in
places AS DownNoDet or OS DownNoDet it is moved in AS DownDet
or OS DownDet, respectively, by means of the output gate gHW det.

The whole model output process is as follows: only one token circulates in the
subnet composed by places start, spurious, noOutCorr, noOutIncorr,
CorruptedDetCorrIn, CorruptedDetIncorrIn, Corrupted, and
Correct. (notice that only one token circulates also in each AS, OS, and HW
detailed models). The exponential activity lambdaInToOut models the output
process and fires with rate λIN→OUT, X = λIN, X + λS, X. For the ITMU it represents
its responsiveness in capturing alarming conditions from the incoming reports on
the status of the controlled network. For the RMU and GMU it represents the
answer to an alarm from the ITMU and RMU, respectively. Moreover, activity
lambdaInToOut has two cases (options). If a spurious output has been pro-
duced (a token is in the place spurious) the second case is chosen. Otherwise
the first case corresponds to the elaboration of a correct input (which is supposed
to have a probability α), while the second to an incorrect input, with probability
1-α.

The elaboration of a correct input and of the spurious outputs is governed by
means of the output gate gOutput according to the following rules. If there is
a false alarm (spurious->Mark() == 1) the component produces an out-
come surely corrupted (the token is moved in place Corrupted). Otherwise
three cases are possible:
i) If at least one error has been internally detected at the AS, OS or HW level
(a token is in DownDet), no output is produced (the token is moved in place
noOutIncorr),

73



Figure 3.16: Composed model at GMU decision level

ii) If all components are in state up (a token is in the place Up) a correct output is
produced (the token is moved in place Correct),
iii) Otherwise a (potential) corrupted output is produced (the token is moved in
place CorrupDetCorrIn). Notice that the place spurious can hold at most
one token, which is removed by the gate gOutput whenever such a spurious
output has been processed.

The elaboration of an incorrect input is governed by means of the output gate
gOutput2 according to the following rules. If the incorrect input has been de-
tected by the input interface checks (Place1->Mark() == 1) or there exists
at least one error detected at the AS, OS or HW level (a token is in DownDet), the
component produces no output (the token is moved in place NoOutCor). Other-
wise the system (potentially) yields an incorrect emission (the token is moved in
CorruptDetIncorrIn). Notice that the marking of place Place1 in the sub-
net composed by places Place1 and Place2 and the timed activities lambda1
and lambda2 model the probability that the input interface checks are able to de-
tect an incorrect input. At most one token circulates in such a subnet (no tokens
in case the probability to detect an incorrect input by the input interface checks is
zero).

3.5.4 The Overall Model
The overall model for the CAUTION++ instance under analysis has been con-
structed under the following assumptions:

• Messages coming from different ITMUs and RMUs are indistinguishable.

• The RMUs and the GMUs process the incoming input requests (from the
ITMUs and RMUs respectively) individually and sequentially.

Figure 3.16 shows the SAN composed model for analyzing the CAUTION++
behavior at a single GMU decision level (e.g., to evaluate the probability of cor-
rectness of a reconfiguration decision issued by a GMU). Thanks to the above as-
sumptions, the evaluation of the whole CAUTION++ instance is easily obtained
by mathematically combining the evaluations at single GMU level, in accordance

74



with the specific measure under analysis. It is achieved by combining the abstract
models of ITMU, RMU, and GMU (HighLevelITMU, HighLevelRMU, and High-
LevelRMU, respectively), all having the same structure as shown in Figure 3.12.
These models differ only for the values of their parameters, which are derived
from their corresponding detailed models. All the models are joined together and
along with the model HighLevelJoin (shown in detail in Figure 3.13) according
to the following scheme: the input gate gInput of the HighLevelITMU (see
Figure 3.12) is connected with the place start of the HighLevelJoin model.
The HighLevelITMU model is also connected with the input gate gInput of the
HighLevelRMU through places ITMUCorrupted and ITMUCorrect. Simi-
larly, The HighLevelRMU model is also connected with the input gate gInput
of the HighLevelGMU through places ITMUCorrupted and ITMUCorrect.

3.6 Evaluation results
The preceding models have been numerically solved using the analytical solver
provided by the Möbius tool [61]. Since all the timed activities are exponentially
distributed and the state space dimension of the models was not huge, it was pos-
sible to pursue an analytical solution achieving more accurate results than through
simulation. Given the nature of the measures of interest, we resorted to a steady-
state analysis for all models.

3.6.1 Settings for the numerical evaluation
The developed models have a number of internal parameters, to which values have
to be assigned. For many of them, reference values from manufactures or previ-
ous studies in the literature are available. For others, mainly those concerning
the components to be developed in the CAUTION++ framework, this is not true
and the choice of appropriate values is more critical. Therefore, for such criti-
cal parameters, a range of values is experimented in the analysis, to determine
the impact of such variations on the analyzed dependability figures (sensitivity
analysis).

The meaning of the parameters in Table 3.2 is as follows:

• αITMU , αRMU and αGMU are the probabilities that the input provided to
ITMU, RMU and GMU, respectively, is correct;

• MTBA ITMU, MTBA RMU and MTBA GMU are the mean time between
two inputs to ITMU, RMU and GMU, respectively (in the case of ITMU, it
is the mean time between two external inputs for which ITMU generates an
alarm to RMU);

75



Parameter Value Range
αITMU - 0.90 - 0.999
αRMU - from ITMU
αGMU - from RMU
MTBA ITMU - 2 - 48 (hours)
MTBA RMU - from ITMU
MTBA GMU - from RMU
MTBFA X - 198 - 2000 (hours)
inputCoverage X - 0.00 - 1.00
outputCoverage X - 0.00 - 1.00
AS Coverage X - 0.70 - 0.999
AS MTTF X 400 (hours) -
AS MTTRdet X 0.2 (hours) -
AS noDetLatency X 2 (hours) -
OS Coverage X 0.80 -
OS MTTF X 400 (hours) -
OS MTTRdet X 2 (hours) -
OS noDetLatency X 2 (hours) -
OS errorDet X 0.50 -
HW Coverage X 0.90 -
HW MTTF X 100000 (hours) -
HW MTTRdet X 2 (hours) -
HW noDetLatency X 2 (hours) -
HW errorDet X 0.50 -

Table 3.2: Detailed model parameters and their values

• MTBFA X is the mean time between two spurious outputs emitted by a
generic component X;

• inputCoverage X is the coverage of the error detection checks of a generic
component X at input interface;

• outputCoverage X is the coverage of the error detection checks of a generic
component X at output interface;

• AS Coverage X, OS Coverage X and HW Coverage X are, respectively,
the coverage of the checks at AS, OS and HW level, for a generic component
X;

• AS MTTF X, OS MTTF X and HW MTTF X are, respectively, the mean
time to failure of the AS, OS and HW of a generic component X;

• AS MTTRdet X, OS MTTRdet X and HW MTTRdet X are, respectively,
the mean time to repair of the AS, OS and HW of a generic component X;

• AS noDetLatency X, OS noDetLatency X and HW noDetLatency X are,
respectively, the latency of the undetected failure in the AS, OS and HW of
a generic component X;

• OS errorDet X is the probability that the repair of the OS removes an un-
detected error at the AS level;

76



0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.70 0.80 0.90 0.999

In
co

rr
ec

t E
m

is
si

on
 p

ro
ba

bi
lit

y

ASCov 

αITMU = 0.90, MTBA = 12h

I/OCov = 0.00
I/OCov = 0.75

αITMU=1,I/OCov = 0.75
I/OCov = 1.00

Figure 3.17: Incorrect emission probability related to Operator 1 (or Operator 3)

• HW errorDet X is the probability that the repair of the HW removes an
undetected error at the OS level.

3.6.2 Numerical evaluation
In this Section, we present and discuss the results obtained.

To keep the notation in the figures as light as possible, we indicate with I/OCov
the coverage of the input and output interface (which is the same for ITMU, RMU
and GMU), and with ASCov the coverage of the application software (again, it is
the same for ITMU, RMU and GMU).

Figure 3.17 shows the probability of incorrect emission of the GMU man-
aged by Operator1 (it is actually the same for Operator3 also), at varying values
of the coverage of the I/O Interface Checks and the coverage of the Application
Software. The probability of incorrect emission decreases as the probability of
coverage of the I/O Interface Checks increases; instead, it is very lightly influ-
enced by As Coverage. Looking at the two overlapping curves, it can be observed
that the impact of the correctness of the input to ITMU is not relevant. Therefore
concerning the emission failure probability, significant benefits are achieved using
the Interface Checks, since more incorrect messages are detected and no output is
produced in these cases.

Figure 3.18 shows the reliability of the trial system at varying the obser-
vation time, that is the overall probability that the system does not undertake

77



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

R
el

ia
bi

lit
y

Time (hours)

alpha_ITMU = 0.98, MTBA = 12h

MTBFA = 198h
MTBFA = 600h

MTBFA = 1000h
MTBFA = 2000h

extreme case

Figure 3.18: Reliability of the trial system

wrong actions. We suppose that the overall system fails if at least one root com-
ponent fails or, equivalently, one GMU undertake a wrong action. The relia-
bility of the trial system at time t is then equal to e

−t
MTTF , where MTTF =

(MTTF1 + MTTF2 + MTTF3) and MTTFi is the mean time to failure re-
lated to operator i, with i = 1, 2, 3. Therefore, we have solved the three operators
sub-nets separately, and then we have obtained the reliability for the whole system
by exploiting the previous formula.

The plots have been obtained by fixing the mean time between alarms to 12
hours and the probability of correct input to ITMU to 0.98. The varying parame-
ter is the MTBFA. The reliability of the system quickly decreases at lower values
of MTBFA. In the figure, also an “extreme case” curve is plotted, obtained con-
sidering totally correct the external input to the ITMU, and assuming a very high
coverage (0.99) for all the employed error detection mechanisms. The idea was to
understand how would be the reliability of the CAUTION++ instance, in case a
highly robust implementation of the CAUTION++ components is performed and
in absence of faults external to the system. It can be appreciated that in such a
case the reliability curve has a very good trend.

Despite the insertion of CAUTION++ induces a small reliability penalty (as
exemplified by Figure 3.18), it is nevertheless very beneficial, since CAUTION++
allows to increase the resource utilization of the underlying networks through a
cooperation among them. This is the final goal of the project that justifies the
existence of system and the consequently introduction of new errors.

Figure 3.19 and Figure 3.20 are plotted at varying values of the mean time be-

78



0

200

400

600

800

1000

1200

1400

1600

1800

2 12 24 36 48

M
ea

n 
Ti

m
e 

To
 In

co
rr

ec
t E

m
is

si
on

 (h
ou

rs
)

MTBA (hours)

αITMU = 0.98, ASCov = 0.90, I/OCov = 0.75

MTBFA = 198h
MTBFA = 600h

MTBFA = 1000h
MTBFA = 2000h

Figure 3.19: Mean time to incorrect emission for Operator 1 (or Operator 3)

280

300

320

340

360

380

400

420

440

460

2 12 24 36 48

M
ea

n 
Ti

m
e 

To
 In

co
rr

ec
t E

m
is

si
on

 (h
ou

rs
)

MTBA (hours)

αITMU = 0.98, ASCov = 0.90, I/OCov = 0.75

MTBFA = 198h
MTBFA = 600h

MTBFA = 1000h
MTBFA = 2000h

Figure 3.20: Mean time to incorrect emission for Operator 2

tween alarms and the mean time between spurious outputs, and setting to 0.98 the
probability that the input to ITMU is correct. Not surprisingly, all the curves fol-
low an increasing trend. Note that the time to an incorrect emission is significantly
different for Operator 1 (or Operator 3) and Operator 2.

79



3.7 Summary
This Chapter has focused on a methodology for quantitative dependability evalua-
tion of systems structured in a hierarchical fashion and on its application to a case
study.

In more details, in the first part an efficient modeling methodology has been
presented, consisting in defining “abstract” and “detailed” models of the system
components, so as to reduce complexity and gain efficiency both at model design
and at model solution levels.

In the second part, an instance of the CAUTION++ architecture has been se-
lected, as a representative case study of the class of systems our methodology
is directed to. In accordance with the basic dependability requirements stated in
CAUTION++, the evaluated dependability indicators have been the probability of
an incorrect output emission, the Mean Time to Failure of a GMU component and
the reliability of the whole instance. We resorted to an analytical solution, using
the automatic Möbius tool.

Thanks to the application of our modeling methodology and resolution tech-
nique, the biggest model solved had less than 1000 states, and the time needed
to perform a single study did never exceed one minute on a Pentium M 1.3 GHz,
512Mb Ram PC. Actually, most of the time required to the resolution technique
is due to the manual passing of the parameters’ values between the detailed mod-
els and from these to the abstract one. Such waste of time could be significantly
reduced using some appropriate automatic tools.

Of course, there is still work to do in evaluating the effectiveness of the method-
ology in more complex scenarios. Anyway, the indications that we are able to
provide at the moment, as derived from this study, seem to be very encouraging.

80



Chapter 4

The general Modeling and Solution
framework

In Chapters 2 and 3 we have described two modeling and solution techniques
applicable to two specific classes of systems, a GPRS infrastructure and a hierar-
chical control system. If we analyze these two techniques from an abstract point
of view, we realize that they have some common characteristics.

First of all, they are both based on a decomposition approach: the overall sys-
tem is seen as a set of interacting subsystems (the couples of cells in the GPRS
infrastructure - the hardware/software components in the multi-stage representa-
tion of the hierarchical control system) that can be modeled and solved in isola-
tion, using some external inputs when required. Moreover, they both require the
definition of a solution scheme that determines the order in which the submodels
have to be solved and the intermediate results that have to be passed between them
(Figure 2.4 for the GPRS infrastructure - Figure 3.9 for the hierarchical control
system). Unfortunately, they also have another (negative) common property: they
provide a very useful insight in their specific context, but they could be hardly
reused to analyze quite different classes of systems, as they have been developed
considering a domain-specific environment.

This last consideration has induced us to define a modeling and solution frame-
work, based on a decomposition approach, whose application-domain is not re-
stricted to any particular class of systems. Such generalization concerns both
the modeling phase and the solution process: the required models are identified
with respect to the functions they perform, without detailing their actual imple-
mentation or the adopted modeling formalism, and the solution process only de-
fines the solution scheme, without detailing the type of solver to be used (analyti-
cal/numerical or simulative).

81



Real World

System


Conceptual

Model


Implemented

Model


Decomposed

Implemented


Model


I-Submodel 1


. . .


I-Submodel 2


I-Submodel m


abstraction
 implementation

model


decomposition
 Measures of

Interest


execution


Figure 4.1: Modeling and solution process with implemental-level decomposition

4.1 Introduction
Every system can be seen, at different levels of abstraction, as composed of a
number of interacting subsystems: the real world system, for example, can be
seen as a set of countries exchanging goods and persons; internet can be seen as
a set of computers that communicate and transfer data; a human cell consists of
a number of interacting smaller units of life, and so on. Moreover, the system
decomposition is not unique, as we can identify different system decompositions
corresponding to different levels of abstraction: a server can be seen as a black
box that produces an output for a given input, but it could also be seen as a set of
interacting processes (tasks) that cooperate to produce the same output. It is clear
that the higher is the level of detail required to capture the system behavior, the
higher is the complexity of the system to be modeled and solved.

These considerations show the importance of the choice of a particular system
decomposition, that is always a tradeoff between correctness of representation of
the real system behavior (with respect to the measures of interest) and capability
to solve the corresponding models.

In Figure 4.1 we illustrate the modeling and solution process adopted in most
of the existing works that try to master system complexity using decomposition.
The starting point is a real world system (either actual or hypothesized) that we
want to model and analyze in order to obtain the measures of interest. The first
step is the development of a conceptual model, a way of “thinking about” and
representing the real world system. A crucial design decision is the determination
of which factors influence the system behavior, the system behaviors to be incor-
porated into the model, and the representation of those behaviors. The choice of
an appropriate conceptual model is not unique and it depends on: i) the measures
of interest to be computed, ii) the computational and development resources avail-
able to build, validate, and use the model, and iii) the available data describing the
real-world system and its interfaces. We refer to this determination as abstraction,
since the conceptual model is a simpler representation of the more complex real-
world system. The conceptual model is then implemented using an appropriate

82



Real World

System


Measures of

Interest


abstraction

conceptual


decomposition
 execution
Conceptual

Model


Decomposed

Conceptual


Model


C-Submodel 1


. . .


C-Submodel 2


C-Submodel n


Decomposed

Implemented


Model


I-Submodel 1


. . .


I-Submodel 2


I-Submodel n


implementation


implementation


implementation


Figure 4.2: Modeling and solution process with conceptual-level decomposition

modeling formalism, thus obtaining a single implemented model. At this point
an appropriate decomposition technique can be applied to decompose the original
model in a set of independent and simpler to solve submodels that can be solved
separately (perhaps sharing some intermediate results), finally obtaining the mea-
sures of interest.

Instead of applying the decomposition techniques at the model-level, that is
decoupling parts of a pre-existing model as depicted in Figure 4.1, we aim to
apply the decomposition approach at the conceptual-level, thus identifying a set
of interacting conceptual submodels that can be implemented using different for-
malisms and solved in isolation using different appropriate solution techniques,
exchanging intermediate results when required (see Figure 4.2).

The application of the decomposition technique at the conceptual-level en-
ables us to decompose the system in a very natural way. Moreover, each concep-
tual submodel can be implemented using the formalism that better represents its
behavior, and can be solved using an appropriate and efficient solution technique.

This Chapter is organized as follows. In Section 4.2 we formalize the system-
level decomposition. The modeling approach is presented in Section 4.3: first
we show how to build in a modular way the single model representing the whole
system, and then we describe how it can be decomposed in a set of more simple
submodels to be solved separately. In Section 4.4 we propose two algorithms
implementing the solution process, and we provide some considerations about
their effectiveness and about the accuracy of the final results. Section 4.5 outlines
the main characteristics that an automated tool should have in order to support
the proposed modeling and solution framework, while conclusions are drawn in
Section 4.6.

83



4.2 The proposed interaction-based decomposition
technique

As inspired by [8], we first analyze a system from a functional (or logical, concep-
tual) point of view (functional decomposition). The overall system is decomposed
in a set of interacting subsystems, that we call “entities”, each one corresponding
to a critical system function with respect to the validation objectives. Therefore,
the behavior of an entity corresponds to the critical system function it performs.
Like the inputs of a function may depend on the output produced by another func-
tion, similarly the behavior of an entity may depend on the behavior of another
entity. We say that there exists a “dependency relation” (or “dependency connec-
tion”) from entity X to entity Y during a phase k = [t0; t1] (interval of time), that
we denote with X →k Y , when the behavior of Y depends on the behavior of X
during the period starting from time t0 and ending at time t1.

As inspired by [14], the system lifetime can be seen as a sequence of phases
in which each phase is characterized by some properties. In particular, we define
a phase as the period during which the dependency relations (interactions) hold-
ing between the entities remain fixed, while vary between two successive phases.
Therefore, the lifetime of the system may be seen as a sequence of phases in which
two consecutive phases have at least one different dependency relation between
entities (temporal decomposition).

For each phase k and for each entity X , we can identify the direct dependen-
cies involving X with a 3-tuple < ΩX ;X; ΘX > in which ΩX is the set of the
entities that directly affect X (that is ΩX = {W1, . . . ,Wm} →k X) and ΘX is the
set of entities that are directly affected by X (that is X →k {Y1, . . . , Yn} = ΘX).

Therefore, we can define the set Ek as the set of all the tuples (one tuple for
each entity) that do not change during phase k, that is:

Ek = {< ΩX ;X; ΘX > |ΩX →k X and X →k ΘX} . (4.1)

We say that in a phase k an entity is:

• active if < ∅;X; ΘX 6= ∅ >∈ Ek, that is X affects entities in ΘX but it is
not affected by any entity (ΩX = ∅);

• passive if < ΩX 6= ∅;X; ∅ >∈ Ek, that is X is affected by entities in ΩX
but it does not affect any entity (ΘX = ∅);

• mixed if < ΩX 6= ∅;X; ΘX 6= ∅ >∈ Ek, that is X is affected by entities in
ΩX and, at the same time, it affects the entities in ΘX ;

84



2


0
 Time


. . .
 . . .


phase  k
 phase  k+1
. . .
 . . .


1


5
 3


4


2
1


5
 3


4


E
k
 = {<{5};1;{2}>,<{1,3};2;{}>,

         <{};3;{2}>,<{};4;{}>,

         <{};5;{1}>}


E
k+1
 = {<{5};1;{2,4}>,<{1};2;{3}>,

           <{2};3;{}>,<{1};4;{}>,

           <{};5;{1}>}


Figure 4.3: Dependency relations in two consecutive phases

• neutral if < ∅;X; ∅ >∈ Ek, that is X neither is affected nor affects any
entity (ΩX = ∅ and ΘX = ∅).

Therefore, in each phase the entities can be partitioned with respect to the role
they play during the phase.

Thus the application of the functional and temporal decomposition to a system
generates another system, that we call “phased-interacting system”, that is equiv-
alent to the original one but it is built considering some critical subsystems (each
one performing a critical function) and the interactions between them (here we
consider two systems to be equivalent if they have exactly the same behavior).

In Figure 4.3 we show a simple example of phased-interacting system com-
posed of five entities (numbered from ’1’ to ’5’), focusing on two consecutive
phases. From phase k to k + 1, entity ’1’ has a new dependency connection to
entity ’4’, while entity ’3’ transforms from active to passive. The corresponding
set Ek and Ek+1 are shown at the bottom of the Figure. During phase k entities
’3’ and ’5’ are active, ’2’ is passive, ’1’ is mixed and ’4’ is neutral. During phase
k + 1 entity ’5’ is active, ’3’ and ’4’ are passive while ’1’ and ’2’ are mixed.

We call “dependency connection graph” the graph describing the dependency
relations holding between entities in a phase, where the nodes are the entities and
the directed arcs are the dependency relations (see the example of Figure 4.3).
The dependency connection graph for phase k and the set Ek are two different but
equivalent ways to represent the dependency relations during the phase, as we can
easily build the dependency connection graph starting from the corresponding set
of tuples and viceversa.

85



4.3 The modeling approach for a phased-interacting
system

In the previous Section we depicted how to logically represent a complex system
as a set of interacting subsystems (the entities), whose interactions may change
during the system lifetime. At this point we have to take advantage of the system
decomposition proposing a modeling approach that also includes some capabili-
ties in managing the system complexity.

The modeling approach consists of two steps. In the first step we build the
whole model representing the behavior of the generated phased-interacting sys-
tem. Although built following a modular approach, the complexity of the whole
model is still huge, as the modularity does not necessarily correspond to a de-
composition of the solution process and, then, to a mitigation of the model com-
plexity. Therefore, in the second step, we properly modify the structure of the
whole model, thus enabling the application of a decomposed solution process that
consists in solving a set of simpler submodels in isolation, possibly sharing some
intermediate results.

4.3.1 The first step of the modeling approach: the whole model
structure definition

The first step in modeling a phased-interacting system, that is a system generated
by the application of the functional and temporal decomposition, is to construct
a whole model representing the behavior and the interactions of all the entities in
all the phases.

Following a modular approach, in Figure 4.4 we identify the main submodels
composing the whole model. It is important to note that we are not considering a
specific modeling formalism, as each submodel could be described using an ap-
propriate formalism different from that adopted for other submodels. Our goal is
to identify the main submodels with respect to the functions they have to perform,
without detailing how these functions are actually implemented.

The “Neutral Entity X” model (with X = 1, . . . , N , where N is the total num-
ber of entities), denoted with X◦ for brevity, represents the behavior of entity X

when it is neutral, that is when it is isolated, and it does not change during the sys-
tem lifetime. Its behavior can be specified to be active, passive or mixed through
the “Dependency Relations” model, that consists of a set of submodels represent-
ing all the possible dependency relations existing between entities during all the
phases. Each submodel ε(k)X→ΘX

, with X ∈ {1, . . . , N} and k ∈ {1, . . . , p}, rep-
resents the dependency relation X →k ΘX , that is it defines how entity X affects
the entities belonging to ΘX during phase k.

86



Figure 4.4: The whole model for a phased-interacting system

As previously specified, X◦ is a model that represents the behavior of entity
X when it works as neutral, that is when it does not interact with any entity, but
in general an entity can act as active, passive or mixed, in accordance with the de-
pendency relations identified for the considered phase. Suppose for example that,
during phase k, entity X has to be active and affects entities {Y1, . . . , Yn}, that are
passive. To do this, we modify the behavior of X◦ “connecting” it with the sub-
model ε(k)X→{Y1,...,Yn}

that modifies the behavior of the neutral entity X to be active

during phase k. In turn, the ε(k)X→{Y1,...,Yn}
submodel has to be “connected” with the

models Y ◦
1 , . . . , Y

◦
n , thus modifying their behavior from neutral to passive. The

term “connected” is unavoidably very general and its exact meaning depends on
the specific formalism used to build the submodels (e.g. using SAN formalism it
may correspond to share some places between the two models applying the Join
operator). At this high level of abstraction, the only issue is that the behavior of a
model can be properly modified “connecting” it with another submodel. In gen-
eral, if < ΩX ;X; ΘX = {Y1, . . . , Yn} >∈ Ek, the proper behavior of the entities
involved in the dependency relation is obtained connecting the model X ◦ with the
submodel ε(k)X→ΘX

that, in turn, is connected with the models Y ◦
1 , . . . , Y

◦
n . There-

fore, the behavior of the entities X,Y1, . . . , Yn during phase k is modified by the

87



Figure 4.5: Snapshot of the whole model configuration during phase 1, an example

ε
(k)
X→ΘX

submodel according to the existing dependency relations. Obviously not
all the dependency relations hold in a phase, and then the “Enabling/ Disabling
Dependency Relations” model enables only those relationships that exist in the
current phase, while the others are disabled. Finally, the “Phases” model identi-
fies the current phase of the system.

For a better understanding, in Figures 4.5 and 4.6 we specify the structure of
the whole model for the example depicted in Figure 4.3, supposing that there are
only two phases (p = 2, where p is the number of phases). For simplicity, the
“Phases” model has been defined as a generalized stochastic Petri net (GSPN),
and the disabled dependency relations have been depicted with a dashed line.

At this point we have identified the main submodels that have to be imple-
mented in order to capture the behavior of a phased-interacting system. But what
about complexity? It is important to underline that the modularity of the proposed
modelling approach alone cannot be truly effective without a modular solution of
the defined models. Therefore, as the complexity problem needs to be attacked
both from the point of view of system representation and of the underlying model
solution, we need to perform a further step towards the modeling approach defini-
tion in order to include some capabilities to reduce the solution complexity.

88



Figure 4.6: Snapshot of the whole model configuration during phase 2, an example

4.3.2 The second step towards the modeling approach: the whole
model decomposition

The idea is to decompose the whole model of Figure 4.4, representing a phased-
interacting system, in a set of simpler submodels to be solved separately, sharing
some intermediate results that capture the effects of the dependency relations be-
tween entities.

The way in which we decompose the whole model has been inspired by [17].
In this work the authors decouple parts of a model identifying submodels that
are not affected by the rest of a model (isolated submodels), and solving them
separately. A result from each solved submodel is then used in the solution of the
rest of the model.

If we concentrate on a single phase k, the model X◦ is certainly isolated when
it is not connected to any other entity’s model, and it happens when entity X is
neutral. In this case the entity’s model can be solved separately as it neither af-
fects nor is affected by any other entity’s model. If, on the contrary, entity X is
active, passive or mixed, the model X◦ will be connected to other entities’ models
through the corresponding dependency relation models, and then it is clearly not
isolated. In these cases, the only way to decompose the whole model is to split
the dependency relations holding between entities, that is decoupling each depen-
dency relation model in a set of interacting separated submodels. This “splitting

89



Figure 4.7: The splitting procedure

procedure” removes all interactions between the entities’ models during their ex-
ecution, thus enabling the separate solution process, and the interactions are re-
placed by exchange of numerical results (physical decomposition). Therefore, the
interactions between the separated submodels must be captured in the numerical
results that are passed between them.

In more detail, suppose to have an element < ΩX ;X; ΘX >∈ Ek such that
ΘX = {Y1, . . . , Yn} 6= ∅. The splitting procedure consists in decoupling the
model ε(k)X→ΘX

, representing the dependency relation X →k ΘX , in a set of sep-
arate submodels. Figure 4.7 graphically shows the application of the splitting
procedure. The original ε(k)X→ΘX

model (depicted with a dashed line), is replaced
by the following models:

• ε
(k),OUT
X→ΘX

, that

– modifies the neutral behavior of entity X during phase k according
to the dependency relation X →k ΘX ; therefore, the models ε(k),OUTX→ΘX

and ε
(k)
X→ΘX

affect the model X◦ in the same way;

– includes all the information needed to produce and write on a shared
data base the intermediate result O(k)X→ΘX

= [O
(k)
X→Y1

, . . . , O
(k)
X→Yn

],
that is an array representing the effects that entity X has on Y1, . . . , Yn
during phase k. This is the result that captures the interactions between
the entities;

90



• ε
(k),IN
X→Y1

, . . . , ε
(k),IN
X→Yn

, that

– modify the neutral behavior of the entities belonging to ΘX during
phase k according to the dependency relation X →k ΘX ; therefore,
the models ε(k),INX→Y1

, . . . , ε
(k),IN
X→Yn

and ε(k)X→ΘX
affect the models Y ◦

1 , . . . , Y
◦
n

in the same way;

– includes all the information needed to read from a shared data base
and use the previously produced result O(k)X→ΘX

in order to capture the
effects that entity X has on the entities belonging to ΘX during phase
k. In particular, O(k)X→Yi

, with i ∈ {1, . . . n}, will be used inside the
corresponding ε

(k),IN
X→Yi

model to set the value of a certain parameter in
order to reconstruct the impact of entity X on Yi.

In summary, the application of the splitting procedure produces a set of decoupled
submodels that interact each other through the passing of numerical results: an
intermediate result produced by the solution of a given submodel is used to set the
value of an appropriate numerical parameter defined in another submodel.

The monolithic model presented in Figure 4.4 is then modified according to
the splitting procedure and it results in the decomposed model structure depicted
in Figure 4.8. The “Dependency Relations” model has been decomposed in two
parts: the IN part for the models that read and use the intermediate results, and the
OUT part for the models that produce and share the intermediate results. Again,
the “Enabling/ Disabling Dependency Relations” model enables only those rela-
tionships that hold in the current phase, while the “Phases” model identifies the
current phase of the system.

Finally, the “Execution Manager” can be seen as a program that implements
the solution algorithm for the proposed modeling approach (e.g. it determines the
sequence in which the separate submodels have to be solved), as better described
in Section 4.4.

An example

Just to be concrete, we provide a very simple example that should clarify the
application of the splitting procedure. Let us consider the Stochastic Petri Net
(SPN) model of Figure 4.9 (upper part), representing a system composed by the
entities X and Y (whose modeling details are hidden in the clouds) that, during
phase k, interact through the dependency relation X →k Y . The dependency
relation is modeled just considering a transition t that, when completes, removes
a token from a place p1 belonging to X◦ and, atomically, adds a token in place
p2 belonging to Y ◦. The “Enabling/ Disabling Dependency Relations” model
(not shown in the example) enables transition t during phase k only.

91



Figure 4.8: The decomposed model structure

Figure 4.9: Example of application of the splitting procedure

92



The decomposed model structure that we obtain applying the splitting proce-
dure is depicted in the lower part of Figure 4.9. The model ε(k)X→Y has been split in
two parts. The ε

(k),OUT
X→Y submodel affects entity X as the ε

(k)
X→Y model does. The

intermediate result O(k)X→Y is an array IR such that the i-th element IR[i] contains
the mean time at which transition t fires for the i-th time. This result can be used
by the ε

(k),IN
X→Y submodel to reconstruct the effects that entity X induces on Y . In

this case t∗ could be a deterministically distributed transition whose firing time is
IR[0] for the first time, and IR[i]-IR[i − 1] for the other completions (mean time
elapsed between two consecutive firings). It is clear that the approximation of
transition t with t∗ can induce a degradation in the accuracy of the final results,
and then this aspect has to be addressed very carefully. The deterministic transi-
tion t∗ and the model Y ◦ form, together, a Deterministic and Stochastic Petri Net
(DSPN) model that will be solved using appropriate solution techniques.

4.4 The decomposed solution process
In this Section we define the solution process that can be applied to the decom-
posed model structure depicted in Figure 4.8. It mainly consists in a program (the
“Execution Manager”) that determines:

• the sequence in which the separate submodels have to be solved, in accor-
dance with the existing dependency relations;

• the intermediate results that a separate submodel has to produce and/or use
in its execution;

• the measures of interest.

Before detailing the two algorithms that we present in this dissertation (a stan-
dard version and an optimized one), we have to introduce some general definitions
and notations that will be used in the algorithms’ definitions.

The model for an active/passive/mixed entity

We previously defined X◦ as the model representing the behavior of entity X

when it is neutral. Let X (k) be the model representing the real behavior of entity
X during phase k, that is accounting for all the dependency relations involving X

during phase k. Then

X(k) = X◦ ∪ ε
(k),OUT
X→ΘX

⋃

Z

ε
(k),IN
Z→X , (4.2)

93



with < ΩZ ;Z; ΘZ >∈ Ek and X ∈ ΘZ , where the symbol ∪ (join) has been here
used to represent the “connections” between submodels, as described in Section
4.3.2. Equation 4.2 states, as expected, that the real behavior of entity X during
phase k can be captured connecting (joining) the following submodels:

1. X◦, representing the behavior of the entity when it is neutral;

2. ε
(k),OUT
X→ΘX

(only if < ΩX ;X; ΘX >∈ Ek with ΘX 6= ∅), representing the
impact of the dependency relations in which X is active or mixed;

3.
⋃
Z ε

(k),IN
Z→X (only if < ΩX ;X; ΘX >∈ Ek with ΩX 6= ∅), representing the

impact of the dependency relations in which X is passive or mixed.

Moreover, let X (i,...,j) be the model representing the real behavior of entity X

from phase i to phase j, thus accounting for all the dependency relations from
phase i to phase j, with i < j. It immediately follows that

X(i,...,j) = X◦
j⋃

u=i

(ε
(u),OUT
X→ΘX

⋃

Z

ε
(u),IN
Z→X ) . (4.3)

Intermediate results and measures of interest

The intermediate result O(k)X→{Y1,...,Yn}=ΘX
, produced by entity X during phase k,

can be seen as a function f that takes as input the model representing the real
behavior of entity X from phase 1 to phase k (X (1,...,k)) and all the intermediate
results affecting X from phase 1 to phase k (

⋃k
j=1O

(j)
Z→X), and produces as output

the intermediate results for the entities {Y1, . . . , Yn} affected by X:

O
(k)
X→{Y1,...,Yn}

= [O
(k)
X→Y1

, . . . , O
(k)
X→Yn

] = f(X(1,...,k),
k⋃

j=1

O
(j)
Z→X) , (4.4)

with < ΩZ ;Z; ΘZ >∈ Ej and X ∈ ΘZ .
More generally we define O(i,...,j)X , with i ≤ j, as the set of all the intermediate

results produced by entity X from phase i to phase j. Similarly, it can be seen as a
function g that takes as input the model representing the real behavior of entity X
from phase 1 to phase j (X (1,...,k)) and all the intermediate results affecting X from
phase 1 to phase j (

⋃j
u=1O

(u)
Z→X), and produces as output the set of intermediate

results:

O
(i,...,j)
X = {O

(i)
X→ΘX

, . . . , O
(j)
X→ΘX

} = g(X(1,...,k),
j⋃

u=1

O
(u)
Z→X) , (4.5)

with < ΩZ ;Z; ΘZ >∈ Eu and X ∈ ΘZ .

94



Equivalently, we can define the measures of interest MX for an entity X as a
function h that takes as input the model representing the real behavior of entity X

from phase 1 to phase p (X (1,...,p), where p is the total number of phases) and all
the intermediate results affecting X from phase 1 to phase p (

⋃p
j=1O

(j)
Z→X), and

produces as output the measures of interest relative to entity X:

MX = h(X(1,...,p),
p⋃

j=1

O
(j)
Z→X) , (4.6)

with < ΩZ ;Z; ΘZ >∈ Ej and X ∈ ΘZ .
We note that we are assuming to be in the worst case in which the measures of

interest can only be computed considering the behavior of the system during all
its phases, that is during its whole lifetime. Moreover, we are supposing that the
measures concerning more than one cell can be obtained through the composition
of some partial measures regarding the single entities. For example, if MX&Y is
the measure of interest involving both the entities X and Y , we suppose that it is
possible to identify and compute two different partial measures, MX for entity X

and MY for entity Y , that can be combined together through a function r in order
to reconstruct the original measure of interest, that is MX&Y = r(MX ,MY ).

4.4.1 Standard Algorithm
The two algorithms that we present in this Chapter (a standard version and an
optimized one) have been developed assuming that the dependency connection
graph in each phase is acyclic. Actually this assumption limits the applicability
of the solution processes that, therefore, can not be used for the solution of every
phased-interacting system. In Section 4.4.3 we outline two possible ways to over-
came this limitation.

The standard solution process consists of two consecutive and separate steps:
dependencies removal and measures computation.

In the first step we remove the existing dependency relations between entities
simply producing the intermediate results capturing and representing their inter-
actions. The removal process starts from the first phase and, inside each phase,
has to follow the order implicitly defined in the corresponding dependency con-
nection graph. In particular, the dependency relation X →k ΘX that corresponds
to the element < ΩX = {W1, . . . ,Wm};X; ΘX 6= ∅ >∈ Ek can only be removed
in the following two cases:

1. if ΩX = ∅ (that is X is active), as it has no affecting entities;

95



2. if ΩX 6= ∅ (that is X is mixed), but all the dependency relations that affect
entity X (that is the set {W1 →k ΘW1 , . . . ,Wm →k ΘWm

} such that X ∈
ΘW1 , . . . , X ∈ ΘWm

) have already been removed.

We remove the dependency relation X →k ΘX simply computing the corre-
sponding output (intermediate result) O(k)X→ΘX

and writing it to a shared data base.
As previously mentioned, this computation requires to solve the model X (k) from
phase 1 to phase k, taking as input all the intermediate results affecting X during
the same period.

The measures of interest are finally computed in the second step of the al-
gorithm, just considering each entity separated from the others (isolated). Each
computation requires to solve the model X (p) from phase 1 to phase p, where p is
the total number of phases, taking as input all the intermediate results affecting X

during the same period.

In more detail, the standard solution process is described by the following al-
gorithm in pseudo-code (p is the total number of phases in the system):

STANDARD ALGORITHM

STEP i): dependencies removal

E′k = Ek;

for k = 1, . . . , p do {

While (∃ < ∅;X; ΘX 6= ∅ >∈ Ek) do {

Remove < ∅;X; ΘX > from Ek;

Read from db
⋃k

j=1O
(j)
Z→X, with < ΩZ ;Z; ΘZ >∈ Ej and X ∈ ΘZ;

Compute O
(k)
X→ΘX

and write it to db;

Remove all the occurrences of X in each tuple of Ek;

}

}

STEP ii): measures computation

Ek = E′k;

for each entity X do {

Read from db
⋃p

k=1O
(k)
Z→X, with < ΩZ ;Z; ΘZ >∈ Ek and X ∈ ΘZ;

Compute MX;

}

For a better understanding, in Table 4.1 we detail the execution of the algo-
rithm for the example depicted in Figure 4.3, supposing that there are only two
phases (p = 2). The columns indicate, from the left to the right: the step of the
algorithm, the order in which the computations can be performed, the model rep-

96



Step Order X(1,...,k) k Inputs Outputs

i) 1 5◦ ∪ ε
(1),OUT

5→1 1 O
(1)
5→1

i) 1 3◦ ∪ ε
(1),OUT

3→2 1 O
(1)
3→2

i) 2 1◦ ∪ ε
(1),OUT

1→2 ∪ ε
(1),IN

5→1 1 O
(1)
5→1 O

(1)
1→2

i) 3 5◦ ∪ ε
(1),OUT

5→1 ∪ ε
(2),OUT

5→1 2 O
(2)
5→1

i) 4 1◦ ∪ ε
(1),OUT

1→2 ∪ ε
(2),OUT

1→{2,4}
∪ ε

(1),IN

5→1 ∪ ε
(2),IN

5→1 2 O
(1)
5→1 ∪O

(2)
5→1 O

(2)
1→2 ∪O

(2)
1→4

i) 5 2◦ ∪ ε
(2),OUT

2→3 ∪ ε
(1),IN

1→2 ∪ ε
(1),IN

3→2 ∪ ε
(2),IN

1→2 2 O
(1)
1→2 ∪O

(1)
3→2 ∪O

(2)
1→2 O

(2)
2→3

ii) 6 1◦ ∪ ε
(1),OUT

1→2 ∪ ε
(2),OUT

1→{2,4}
∪ ε

(1),IN

5→1 ∪ ε
(2),IN

5→1 2 O
(1)
5→1 ∪O

(2)
5→1 M1

ii) 6 2◦ ∪ ε
(2),OUT

2→3 ∪ ε
(1),IN

1→2 ∪ ε
(1),IN

3→2 ∪ ε
(2),IN

1→2 2 O
(1)
1→2 ∪O

(1)
3→2 ∪O

(2)
1→2 M2

ii) 6 3◦ ∪ ε
(1),OUT

3→2 ∪ ε
(2),IN

2→3 2 O
(2)
2→3 M3

ii) 6 4◦ ∪ ε
(2),IN

1→4 2 O
(2)
1→4 M4

ii) 6 5◦ ∪ ε
(1),OUT

5→1 ∪ ε
(2),OUT

5→1 2 M5

Table 4.1: Standard algorithm execution

resenting the real behavior of entity X from phase 1 to phase k, the number of
phases under analysis (k), the intermediate results provided as input to the ana-
lyzed model, and the intermediate results produced as output.

In the first phase (when k=1) entities ’3’ and ’5’ are active, so their respective
models 3(1) and 5(1) can be solved (in an unspecified order) to obtain the interme-
diate results O(1)3→2 and O

(1)
5→1, respectively. At this point the dependency relation

between entity ’5’ and ’1’ (a mixed entity) has been removed, and then we can
solve the model 1(1) thus producing the output O(1)1→2. Now we have removed all
the existing dependency relations holding in phase 1, and then we pass to phase
2. The first dependency relation to be removed is that between entity ’5’ and ’1’.
Therefore we solve the model 5(1,2) (representing the behavior of entity ’5’ during
phase 1 and 2) obtaining the intermediate result O(2)5→1. Then it is the turn of entity
’1’, and then its dependency relations with entities ’2’ and ’4’ are removed. The
last model to be solved during STEP i) is 2(1,2), producing the output O(2)2→3. In
STEP ii) of the solution process, the models representing the single entities are
solved, thus producing the measures of interest.

4.4.2 Algorithm optimization
The main characteristic of the standard algorithm presented in the previous Sec-
tion is to separate the phase in which the dependency relations are removed from
the phase in which the measures of interest are computed. Actually we can op-
timize the solution algorithm computing, in some cases, the intermediate results
and the measures of interest at the same time, thus reducing the total number of
computations.

Suppose to execute STEP i) of the standard algorithm and to select the el-

97



ement < ∅;X; {Y1, . . . , Yn} 6= ∅ >∈ Ek. As previously specified, it means that
during phase k entity X is active, or it is mixed but all the dependency relations
affecting it have already been removed. The optimized algorithm is based on the
following observation:

If, from phase k + 1 to phase p, X acts only as active or neutral,

1. then we can compute the set of intermediate results O(k,...,p)X = {Ok
X→ΘX

, . . . ,

O
p
X→ΘX

} and the measure of interest MX in the same computation, as en-
tity X is no more affected by any other entity in the successive phases. This
means that the corresponding model X (1,...,p) already has the intermediate
results required as input, and then it can be solved in isolation considering
the whole system lifetime and producing both the measure of interest for
entity X and the remaining intermediate results affecting the other entities.

2. otherwise, if phase is the last phase starting from k in which X is active
before it becomes passive or mixed, then we can obtain the intermediate re-
sults O[k,...,phase]X = {Ok

X→ΘX
, . . . , O

phase
X→ΘX

} in only one computation. This
means that the corresponding model X (1,...,phase) already has the interme-
diate results required as input, and then it can be solved in isolation from
phase 1 to phase phase, thus producing the intermediate results affecting
the other entities from phase k to phase phase.

In the following we present the optimized solution technique able to reduce
the total number of model execution (in pseudo-code):

OPTIMIZED ALGORITHM

STEP i): dependencies removal and measures computation

E′k = Ek;

for k = 1, . . . , p do {

While (∃ < ∅;X; ΘX 6= ∅ >∈ Ek) do {

phase = k;

f = k;

While ((f ≤ numPhases) and (∃ < ∅;X; ΘX >∈ Ef)) do {

if (ΘX 6= ∅) then {

phase = f;

Remove < ∅;X; ΘX > from Ephase;

Remove all the occurrences of X in each tuple of Ephase;

}

f = f + 1;

}

Read from db
⋃phase

j=1 O
(j)
Z→X, with < ΩZ ;Z; ΘZ >∈ Ej and X ∈ ΘZ;

98



Step Order X(1,...,k) k Inputs Outputs

i) 1 5◦ ∪ ε
(1),OUT

5→1 ∪ ε
(2),OUT

5→1 2 O
(1)
5→1 ∪O

(2)
5→1 ∪M5

i) 1 3◦ ∪ ε
(1),OUT

3→2 1 O
(1)
3→2

i) 2 1◦ ∪ ε
(1),OUT

1→2 ∪ ε
(2),OUT

1→{2,4}
∪ ε

(1),IN

5→1 ∪ ε
(2),IN

5→1 2 O
(1)
5→1 ∪O

(2)
5→1 O

(1)
1→2 ∪O

(2)
1→2 ∪O

(2)
1→4 ∪M1

i) 3 2◦ ∪ ε
(2),OUT

2→3 ∪ ε
(1),IN

1→2 ∪ ε
(1),IN

3→2 ∪ ε
(2),IN

1→2 2 O
(1)
1→2 ∪O

(1)
3→2 ∪O

(2)
1→2 O

(2)
2→3 ∪M2

ii) 4 3◦ ∪ ε
(1),OUT

3→2 ∪ ε
(2),IN

2→3 2 O
(2)
2→3 M3

ii) 4 4◦ ∪ ε
(2),IN

1→4 2 O
(2)
1→4 M4

Table 4.2: Optimized algorithm execution

if (f > numPhases) then

Compute MX and O
(k,...,p)
X , and write it to db;

else

Compute O
(k,...,phase)
X , and write it to db;

}

}

STEP ii): remaining measures computation

Ek = E′k;

for each entity X such that MX has not yet been computed do {

Read from db
⋃p

j=1O
(j)
Z→X, with < ΩZ ;Z; ΘZ >∈ Ej and X ∈ ΘZ;

Compute MX;

}

For a better understanding, in Table 4.2 we detail the execution of the opti-
mized algorithm for the example depicted in Figure 4.3, supposing that there are
only two phases (p = 2). The meaning of the columns are the same as those
defined for the standard algorithm.

The first two entities to be analyzed are ’3’ and ’5’ (active entities). Entity
’3’ becomes passive in phase 2, and then we can solve the model 3(1) only, thus
removing the dependency relation between ’3’ and ’2’ during phase 1. On the
contrary, entity ’5’ is still active during phase 2, and then we can solve the model
5(1,2) producing two kinds of results: the intermediate results O(1)5→1 and O

(2)
5→1, that

remove the dependency relations between entity ’5’ and entity ’1’ during phase
1 and 2, and the measure of interest for entity ’5’ (M5). Now the dependency
relations that affect entity ’1’ during all the phases have been removed, and then
the corresponding model 1(1,2) can be solved in isolation producing O

(1)
1→2, O

(2)
1→2,

O
(2)
1→4 and M1. At this point we can solve the model 2(1,2) producing O

(2)
2→3 and

M2. Finally, 3(1,2) and 4(1,2) can be solved in an unspecified order obtaining the
corresponding measures of interest.

With respect to the application of the standard algorithm, the optimized algo-
rithm greatly reduces the total number of required computations, and its real ef-

99



fectiveness mainly depends on the structure of the dependency connection graphs
of each phase. In the example of Table 4.2, the optimized algorithm execution re-
duces the total number of computations from 11 (see Table 4.1) to 6, thus reducing
the overall complexity.

Future developments

The major weakness of the proposed solution processes is that the solution of the
models in each phase are computed starting from the first phase.

A very interesting research direction to remove this weakness is to compute,
during the solution of the model X (i,...,j) (with i ≤ j), not only the intermedi-
ate results O(i,...,j)X (that remove the dependency relations involving entity X from
phase i to phase j), but also the state of the computation at the end of phase j. For
example, if the underlying stochastic process is Markovian, the state-occupancy
probability vector at the end of a phase allows to completely reconstruct the past
behavior of the model, and then it can be used as initial probability marking distri-
bution for the solution of the same model in the next phases (as proposed in [66]),
thus avoiding to re-compute the solution from the first phase. In case of non-
Markovian models solved by simulation, the state-occupancy probability vector
at the end of a phase is not sufficient to reconstruct the past behavior of the model,
and then further information has to be extracted (e.g. the remaining completion
time for each enabled transition).

The same problem can be seen from the following point of view. Each model
X(i,...,j) has an “implicit” dependency relation with the model X (h,...,i−1) (with
h ≤ i − 1). Using the introduced notation, it means that X (h,...,i−1) → X(i,...,j).
The state of the computation at the end of phase i− 1 can be used to remove this
dependency relation just providing it as input to the model X (i,...,j).

4.4.3 Applicability of the solution process
The solution processes detailed in Sections 4.4.1 (standard algorithm) and 4.4.2
(optimized algorithm) only work if the dependency connection graph in each
phase is acyclic. In other words, we have assumed that in each phase there are no
paths of dependency relations starting and ending in the same entity.

In fact, the two algorithms are essentially based on the identification, inside
each phase, of an “independent” entity, that is an active entity or a mixed entity,
provided that all the dependency relations affecting it in the current phase and in
all the previous one’s have already been removed. The problem immediately oc-
curs just considering a phase k composed by two entities X and Y that interact
each other through the dependency relations X →k Y and Y →k X . In this case
it is impossible to select an independent entity as they are mutually dependent.

100



How to proceed?

There are two main possible solutions. The first one is to develop algorithms
accounting for the presence of cycles in a phase, using a fixed-point analysis ([1]).
Let X and Y be two entities that interact each other during phase k through the
dependency relations X →k Y and Y →k X . The intermediate results O

(k)
X→Y

and O
(k)
Y→X could be obtained as fixed points of a sequence of iterations. Let f

and g be the functions computing O
(k)
X→Y and O

(k)
Y→X , respectively (see Equation

4.4). Starting with an initial guess h0, representing the hypothesized effect that
entity Y has on X (hypothesized O

(k)
Y→X), we could iterate in the following way:

f(X(1,...,k), h0 ∪
⋃k
j=1O

(j)
Z→X) = h1,

g(Y (1,...,k), h1 ∪
⋃k
j=1O

(j)
Z→Y ) = h2,

f(X(1,...,k), h2 ∪
⋃k
j=1O

(j)
Z→X) = h3,

g(Y (1,...,k), h3 ∪
⋃k
j=1O

(j)
Z→Y ) = h4,

· · ·
f(X(1,...,k), h2i ∪

⋃k
j=1O

(j)
Z→X) = h2i+1,

g(Y (1,...,k), h2i+1 ∪
⋃k
j=1O

(j)
Z→Y ) = h2i+2,

· · ·

Each element of the sequence h0, h2, . . . , h2i, . . . represents the hypothesized ef-
fect that entity Y has on X during phase k (O(k)Y→X) at the ith-iteration. Each
element of the sequence h1, h3, . . . , h2i+1, . . . represents the hypothesized effect
that entity X has on Y during phase k (O(k)X→Y ) at the ith-iteration. The iteration is
terminated when the difference between h2i and h2i+2 and the difference between
h2i+1 and h2i+3 are below a certain tolerance level, and in this case h2i = O

(k)
X→Y

and h2i+1 = O
(k)
Y→X .

Note that this iteration may not always converge and, if it converges, it may
not always converge to the same value. Actually the main problem that arises
in dealing with models which use fixed point iteration is the theoretical proof of
existence, uniqueness, and convergence of the fixed point equations, which still
remains an “art” and depends on the formalism adopted to implement the models
(e.g. [67] establishes conditions for the existence of a solution in stochastic Petri
nets).

The second possible solution able to deal with a cyclic dependency connection
graph in a phase is to “hide” the cycles inside an appropriate larger entity. The idea
is to consider the set of the cyclicly interacting entities as a single larger entity,
properly modifying the interested dependency relations.

101



Figure 4.10: Cycles hiding

In Figure 4.10 we show the application of this simple procedure to a depen-
dency connection graph of phase k defined by the following dependency relations:
A →k B,B →k A,C →k D,D →k C,B →k C and E →k C. The cycles
disappear considering the system during phase k as the composition of three en-
tities only, X , Y and E, interacting through the following dependency relations:
X →k Y , and E →k Y . The resulting dependency connection graph during phase
k is now acyclic and then the separate solution processes described in the previous
Sections can be successfully applied. The entity aggregation disappears as soon
as we consider another phase.

This is a very useful and elegant solution that enables us to treat all the ex-
isting phased-interacting system. The main disadvantage is that it increases the
complexity of those entities built as aggregation of the simple entities (e.g. entity
X and Y of Figure 4.10), thus partially disrupting the advantages of the system
decomposition. In the worst case in which all the entities are cyclicly interacting
in all the phases, this procedure is unapplicable as it would lead to an equivalent
system composed by one entity only with a non manageable complexity.

4.4.4 About effectiveness
The major characteristic of the solution process is its capability to manage the
complexity (both spatial and temporal) of the overall model, as we provide the
solutions solving some separated sub-models.

In case of state-based analytical solution, the state-space explosion problem
is drastically reduced thanks to the lower number of states generated for each
individual sub-model (one for each entity). Moreover, both for analytical solution
and simulation, other advantages are related to:

• the mitigation of the stiffness-problem, if each submodel has less time scales
than the monolithic model;

• the capability to simultaneously execute some computations in STEP i)
and STEP ii) of the two algorithms, thus reducing the total computa-
tional time needed to complete the measures evaluations.

102



Although these aspects are strictly related to the real system under analysis, in the
following we try to give some useful details on these issues.

Spatial and Temporal complexity mitigation

Suppose that a system consists of N entities (X1, . . . , XN ) and p phases, and that
all the models can be solved using a state-based analytical solution. Suppose for
simplicity that S is the size of state space generated for the separate solution of
each entity’s model. In general, the size of the state-space generated for the so-
lution of the unique non-decomposed model can be expressed as Sr, where r is a
parameter whose value depends on the actual implementation of the models (typ-
ically 1 ≤ r ≤ N ). In the worst case r = N , and it happens when the resulting
state space is the cartesian product of the state spaces associated to each entity’s
model. In this case the application of the decomposition approach induces the
maximum mitigation of the spatial complexity, since it is reduced from SN to S.

Now we give an estimation of the time complexity of the standard algorithm
described in Section 4.4.1, and we compare it with that obtained by solving the
non-decomposed model of Figure 4.4 as a whole. We refer to the standard algo-
rithm as we suppose to be in a worst case scenario in which the application of
the optimized algorithm does not produce any significant advantage, although it
is not always the case. We provide the time complexity estimation supposing that
i) all the models are CTMC, and ii) the Standard Uniformization (SU) algorithm
[68] is adopted to compute a transient-state probability vector. The SU is based on
transforming a CTMC into a DTMC with uniform exponential inter-event times,
and its temporal complexity is O(3NTM

2), where M is the number of states of
the CTMC and NT is the truncation point of the infinite sum computing the state-
occupancy probability vector.

In the worst case, the application of the standard algorithm requires to solve
each entity p times (one model solution in each phase), and then Np is the total
number of model solutions. Therefore, the total time complexity of the standard
algorithm is about O(3NpNTS

2). Instead, the computational cost demanded to
numerically solve the system as a whole model is about O(3NT (S

r)2), as the
state-space size of the whole model is about Sr (for an appropriate value of r).
Therefore, the application of the standard algorithm is useful only if

O(3NpNTS
2) < O(3NTS

2r) ,

and it happens when Np < S2r−2 (usually true if r ≥ 2). Note that we are
implicitly assuming that all the models have the same NT value.

In addition, we want to emphasize that the total time needed to complete the
algorithm execution could be greatly reduced considering that the computations

103



having equal order (the second column of Table 4.1, from the left) could be simul-
taneously computed on different computers, as they have no mutual interactions.
In the example of Table 4.1, the two computations with order equal to 1 could
be simultaneously executed on two different computers, while the five compu-
tations with order equal to 6 could be simultaneously executed on five different
computers, thus approximately halving the required total computational time. The
amount of the reduction strictly depends on the dependency connection graphs de-
fined in each phase.

Therefore, as expected, the complexity of the algorithm is always the result
of a trade-off between largeness of the single models and total number of com-
putations, and this aspect may heavily influence the definition of the elements
composing the phased-interacting system.

Stiffness mitigation

The stiffness problem arises when the range of time scales in a model is high.
This problem can be mitigated applying the splitting procedure described in Sec-
tion 4.3.2, when the unique model ε(k)X→ΘX={Y1,...,Yn}

is replaced with the two sub-

models ε(k),OUTX→ΘX
and ε

(k),IN
X→ΘX

. Let ∆ be a function that takes as input a model and
produces as output the range of the time scales of the same model. Supposing
that the ranges of time scales for the two models ε(k),OUTX→ΘX

and ε
(k),IN
X→ΘX

are equal to
the range of time scale for the unique model ε(k)X→ΘX

, then the following relations
hold:

∆(X◦ ∪ ε
(k),OUT
X→ΘX

) ≤ ∆(X◦ ∪ ε
(k)
X→ΘX

∪ Y ◦
1 ∪ . . . ∪ Y ◦

n ) , and (4.7)

∆(ε
(k),IN
X→ΘX

∪ Y ◦
1 ∪ . . . ∪ Y ◦

n ) ≤ ∆(X
◦ ∪ ε

(k)
X→ΘX

∪ Y ◦
1 ∪ . . . ∪ Y ◦

n ) . (4.8)

Therefore, as a side effect, the splitting procedure can reduce the range of time
scales of the analyzed model and then can mitigate the stiffness problem. This
consideration could be extremely useful when the entities composing the system
perform critical functions characterized by very different range of time scales, for
example due to very different architectural structure (software and/or hardware).

4.4.5 About Accuracy
One of the main problem that we have to cope with when applying a model de-
composition is the possibility to introduce errors that can affect the accuracy of
the final measures.

Suppose that MX is the measure of interest obtained solving the decomposed-
model of Figure 4.8, using one of the algorithms previously described, and let

104



M ′
X be the same measure obtained solving the original non-decomposed model

of Figure 4.4. We say that MX is accurate if Diff (MX ,M
′
X) < ε, where Diff is

a function that measures the difference of the two results (when both available),
and ε is a pre-defined tolerance level.

The critical point is the application of the splitting procedure described in
Section 4.3.2, during which the model representing each dependency relation in a
phase is decomposed in two submodels (the IN part and the OUT part), interact-
ing through the passing of a proper intermediate result. If the decomposed model
is not able to perfectly reconstruct the behavior of the original non-decomposed
model, then we have introduced an error. This happens, for example, when the de-
composed model is meant to approximate the original model in order to decrease
its complexity. The solution of an approximated decomposed model produces an
approximated intermediate result that, in turn, will affect the accuracy of the final
measure.

In more detail, with reference to Equation 4.6, the accuracy of a measure of
interest MX depends:

1. on the accuracy of the intermediate results
⋃p
j=1O

(j)
Z→X , with < ΩZ ;Z; ΘZ >∈

Ej and X ∈ ΘZ , where p is the total number of phases. An intermediate
result is non-accurate when it does not contain adequate information that en-
able the “Dependency Relations - IN” and “Dependency Relations - OUT”
models to perfectly reconstruct the behavior of the entity. It typically hap-
pens when the precision of the intermediate result is low, for example due
to a rough approximation error that occurs during the computation.

With reference to Equation 4.4, the computation of each partial result O(k)X→ΘX

uses as input all the previously produced intermediate results affecting the
entity (that is

⋃k
j=1O

(j)
Z→X). Therefore, an error in the accuracy of O(j)Z→X ,

with j ≤ k, can affect the accuracy of all the successive intermediate re-
sults that are produced using this value as input, and finally can affect the
measure of interest.

The algorithm for calculating the number of time an intermediate result
(both accurate or not) propagates through the phases corresponds to the
algorithm used to compute the maximum length path in the dependency
connection graph corresponding to the entire lifetime of the system.

2. on the capability of the “Dependency Relations - IN” and “Dependency Re-
lations - OUT” submodels of Figure 4.8 to perfectly represent the interac-
tions that involve entity X , using the previously produced intermediate re-
sults. When this capability is low, we say that the models are non-accurate.

105



If the submodels ε(k),INX→ΘX
and ε

(k),OUT
X→ΘX

(the IN and OUT “Dependency Re-
lations” models for entity X during phase k) only approximate the real be-
havior of the existing dependency relation X →k ΘX , then the intermediate
result O(k)X→ΘX

will be non-accurate, as produced by a non-accurate model.

This may happen, for example, when we approximate a cumulative distri-
bution function of a random variable, representing an intermediate result
passed between two entities, with its expectation. In this case the error is
related to the incapability of the IN and OUT models to perfectly rebuild
the real behavior of the interactions, independently from the accuracy of the
expectation.

A more comprehensive analysis dealing with the errors induced by a model
decomposition is reported in [16]. Using the connection formalism as a decom-
position technique, the author defines the concept of accuracy for the solution of
measures, for the final results and for the models, and provides a useful insight on
the relationships between model decomposition and introduced approximations.

4.5 Available tools supporting the modeling and so-
lution framework

The modeling and solution framework proposed in this Chapter demands the mod-
eler to manually perform the following actions: i) construct the required models,
ii) pass the intermediate results between the models, and iii) solve the models with
an appropriate solution technique. Actually the feasibility of the methodology is
also related to the capability to automatize these manual procedures, thus reducing
the required modeler’s effort. In this Section we outline the main characteristics
that an automated modeling and solution tool should have in order to facilitate
the application of the proposed methodology. A candidate tool should have the
following main characteristics:

1. the capability to support different formalisms and different solution meth-
ods. Actually each model X (1,...,p), that represents the real behavior of entity
X during all the phases (see Equation 4.3), could be implemented using a
different formalism, interacting with the other models through the passing
of the intermediate results only, and could be solved using an appropriate
solution technique.

2. the possibility to use solutions calculated from one solvable model as inputs
into other solvable models (model connection), that is at the base of the
decomposition technique described in Section 4.3.2.

106



3. the capability to automatize the splitting procedure as depicted in Figure 4.7.
Starting from the “Dependency Relations model”, the tool should automati-
cally build the corresponding “Dependency Relations IN and OUT models”,
perhaps using some extra information (e.g. to define how the model can be
decomposed with respect to the expected intermediate result that has to be
produced, like a mean or a distribution).

4. the opportunity to simultaneously perform some computations on different
machines. This is not a fundamental characteristic, but it would be useful in
the case in which the models to be solved are mutually independent, that is
they do not interact each other, and then can be solved concurrently and in
isolation (see Section 4.4.4).

From these considerations it appears quite evident that we need a modeling
framework that can accommodate multiple modeling formalisms, multiple ways
to combine models expressed in different formalisms, and multiple model solution
methods, and then we refer to the multi-formalism/multi-solution tools outlined in
Section 1.7.2. Most of the these tools are able to support the proposed modeling
and solution framework, as they have at least the first two characteristics (strongly
requested). At the same time, there is not any tool that can accommodate the
automatization of the splitting procedure (characteristic number 3) that, conse-
quently, has to be manually performed. Since no existing tool perfectly suits our
requirements, we do not find any significant reason to adopt a modeling tool dif-
ferent from that used during all this dissertation, and then we will still use Möbius
to present the feasibility case-study in the next Chapter. In addition, Möbius in-
cludes some features that really facilitate the automatic passing of intermediate
results between models (connection formalism [62]).

4.6 Summary
In this Chapter we proposed a very natural decomposition/aggregation approach
based on a functional, temporal and physical decomposition. A system is seen
as a set of interacting sub-systems that can work in isolation or can interact each
other through some dependency relations that may change during the system’s
lifetime. Following a modular approach, we first modeled the system as a whole,
thus identifying the main submodels with respect to the functions they perform.
Then the whole model has been decomposed (through the splitting procedure) in
a set of submodels to be solved in isolation, passing some intermediate results
when required. We proposed two algorithms (a standard version and an optimized
one) defining the order in which the submodels have to be solved, on the basis

107



of the dependency relation graph for each phase. Finally we provided some con-
siderations about the effectiveness and accuracy of the proposed methodology,
although these properties are strictly related to the real system under analysis.
The proposed methodology, although to be further refined, shows very interesting
potentiality both concerning the modeling, that facilitates modularity and scalabil-
ity, and the solution process, that could be further improved considering the future
developments sketched in Section 4.4.2, thus avoiding to re-compute the solution
from the first phase during the dependency removal process.

108



Chapter 5

Feasibility case-study

In this Chapter we describe the application of the modeling and solution frame-
work presented in Chapter 4 to the GPRS case-study detailed in Chapter 2. Here
the focus is not on the QoS evaluation, but on the feasibility of the proposed de-
composition approach, emphasizing the advantages and the disadvantages both
with respect to the application of the particular solution technique presented in
Section 2.4, fully developed for the solution of the considered class of systems,
and to the application of the standard solution technique that solves the non-
decomposed model as a whole. We follow the same structure of Chapter 4: first
we build the whole non-decomposed model, and then we apply the splitting pro-
cedure thus obtaining the decomposed one.

The rest of this Chapter is organized as follows. Section 5.1 presents the GPRS
infrastructure and its corresponding phased-interacting system. The procedure
to construct the single model representing the whole GPRS infrastructure is de-
picted in Section 5.2, while the application of the decomposed solution process is
described from Section 5.3 to Section 5.7. In Section 5.8 we introduce the con-
nection formalism that can be used to automatize the passing of the intermediate
results between models, while the numerical results of the simulation studies are
presented, compared and discussed in Section 5.9. Conclusions are finally drawn
in Section 5.10.

5.1 The GPRS infrastructure as a phased-interacting
system

The analyzed scenario is the same as that presented in Section 2.5.1, and it con-
sists of one central cell (CELL-0) and three partially overlapping cells (CELL-1,
CELL-2 and CELL-3). We aim to analyze the behavior of the GPRS network
during the following temporal events (see Figure 5.1):

109



Time


Outage Reaction Time


Repair Time


End Outage Reaction Time


T0
 T1
 T2
 T3


outage
 users switching from

CELL-0 to CELL-{1,2,3}


end of users switching from

CELL-0 to CELL-{1,2,3}


0
 T5


end of users re-switching from

CELL-{1,2,3} to CELL-0


end

of outage


Switching Procedure
 Re-switching Procedure


T6


system lifetime


T4


users re-switching from

CELL-{1,2,3} to CELL-0


Figure 5.1: Scheduled Temporal Events

• At time T0, an outage occurs in the central cell (CELL-0), thus determining
congestion some time after;

• At time T1, the switching procedure starts, causing some users to be switched
from the congested cell to its adjacent ones;

• At time T2 the switching procedure ends because of i) the established num-
ber of users has been switched to all the neighbors cells, or ii) the re-
switching procedure starts (T2=T4);

• At time T3, the outage ends;

• At time T4, a Resource Management System (RMS) reacts to the end of the
outage and starts the users re-switching procedure from CELL-1, CELL-2
and CELL-3 to CELL-0;

• At time T5, the re-switching procedure ends, and it happens when all the
users previously switched to CELL-1, CELL-2 and CELL-3 have been re-
switched to the central cell;

• Time T6 identifies the end of the lifetime of the system, that corresponds to
the interval of time [0;T6].

This set of temporal events is the same as that presented in Chapter 2: here we
have only explicitly identified the time at which the switching procedure ends
because of the established number of users has been switched to all the neighbors
cells (time T2). The measures of interest are the point-wise congestion function
(PCf) and the total congestion indicator (TCi), as detailed in Section 2.3.

As shown in Figure 5.2, the system under analysis can be seen as a phased-
interacting system in which:

• each entity corresponds to a GPRS cell;

110



0
 phase  1


E
1
={<{};0;{}>,<{};1;{}>,

       <{};2;{}>,{};3;{}>}


CELL-2


CELL-1


CELL-0


CELL-3


phase  2


E
2
={<{};0;{1,2,3}>,

       <{0};1;{}>,<{0};2;{}>,

       <{0};3;{}>}


CELL-2


CELL-1


CELL-0


CELL-3


phase  3


E
3
={<{};0;{}>,<{};1;{}>,

       <{};2;{}>,<{};3;{}>}


CELL-2


CELL-1


CELL-0


CELL-3


T1
 T2
 T4


Time
phase  4


E
4
={<{1,2,3};0;{}>,

       <{};1;{0}>,<{};2;{0}>,

       <{};3;{0}>}


CELL-2


CELL-1


CELL-0


CELL-3


phase  5


CELL-2


CELL-1


CELL-0


CELL-3


E
5
={<{};0;{}>,<{};1;{}>,

       <{};2;{}>,<{};3;{}>}


T4
 T5
 T6


Time


Figure 5.2: The GPRS network behavior as a phased-interacting system

• an entity X is connected (there exists a dependency relation) to an entity Y

during phase p (X →p Y ) if, during phase p, X is a sending cell and Y is a
receiving cell.

Therefore an entity CELL-X affects an entity CELL-Y through a dependency re-
lation when some users move from CELL-X to CELL-Y due to a cell resizing.
The dependency relation is only in one direction (from CELL-X to CELL-Y) be-
cause we are supposing that a receiving cell can not refuse an incoming user, and
then the switching (or re-switching) procedure only depends on the behavior of
the cells that act as a sender during the phase. The lifetime of the system consists
of 5 phases:

Phase 1- It is defined in the interval of time [0;T1], that is from the beginning of the
system lifetime until the switching procedure starts. During this phase all
the cells are neutral, that is they work in isolation. We note that the ’outage’
event for CELL-0 at time T0 (with T0<T1) does not define a new phase as
it only affects the internal behavior of the central cell.

Phase 2- It is defined in the interval of time [T1;T2], that is from the time in which
the switching procedure starts until it ends. We assume that the switching
procedure lasts until i) the established number of users has been switched to

111



all the neighbor cells, or ii) the re-switching procedure starts (T2=T4). This
means that CELL-0 is considered to be active if it sends the users to at least
one adjacent cell, and CELL-1,...,CELL-N are passive if at least one of them
receives some users. In the case in which the single switching procedure
between CELL-0 and CELL-i (with i ∈ {1, 2, 3}) completes before time
T2 (e.g. at a time T2x <T2), then during the period [T2x;T2] no users will
be actually moved from CELL-0 to CELL-i, although we still consider them
to be active and passive, respectively.

Phase 3- It is defined in the interval of time [T2;T4], that is from the time in which
the switching procedure ends until the re-switching procedure starts. During
this phase all the cells are neutral, that is they work in isolation. We note
that the ’end of outage’ event for CELL-0 at time T3 does not define a new
phase because it only affects the internal behavior of the central cell.

Phase 4- It is defined in the interval of time [T4;T5], that is from the time in which the
re-switching procedure starts until it ends. We assume that the re-switching
procedure lasts until all the users previously switched to CELL-1, CELL-
2 and CELL-3 have been re-switched to the central cell. This means that
CELL-1, CELL-2 and CELL-3 are considered to be active if at least one of
them sends the users to the central cell, and CELL-0 is passive if it receives
some users from at least one neighbor cell. In the case in which the single
re-switching procedure between CELL-i (with i ∈ {1, 2, 3}) and CELL-0
completes before time T5 (e.g. at a time T5x <T5), then during the pe-
riod [T5x;T5] no users will be actually moved from CELL-i to CELL-0,
although we still consider them to be active and passive, respectively.

Phase 5- It is defined in the interval of time [T5;T6], that is from the time in which the
re-switching procedure ends until the end of the system lifetime (possibly
T6=∞ for the steady-state behavior). During this phase all the cells are
neutral, that is they work in isolation.

5.2 The whole non-decomposed model
In this Section we describe the main submodels composing the whole model for
the considered system, as described in Section 4.3.1. We need to implement the
following models:

1. “Phases model”, that identifies the current phase of the system;

2. CELL − X◦ model, representing the neutral behavior of a generic GPRS
cell CELL-X (with X = 0, 1, 2, 3) during all the system lifetime;

112



Figure 5.3: The “phases model”

3. ε
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model, representing the dependency re-

lation CELL−0→2 {CELL−1, CELL−2, CELL−3}, that is defining
how entity CELL-0 affects the entities CELL-1, CELL-2 and CELL-3 dur-
ing phase 2 (switching procedure);

4. ε
(4)
CELL−X→{CELL−0} model (with X = 1, 2, 3), representing the dependency

relation CELL−X →4 {CELL−0}, that is defining how entity CELL-X
affects the entity CELL-0 during phase 4 (re-switching procedure);

For the sake of clarity in the models definitions, we suppose that the switching
and re-switching procedure can affect the idle users only, that is the users that are
not requiring any service to the network. This assumption has been introduced
only to provide a more clear understanding of the presented models, but the same
models could be easily extended to deal with the switching (and re-switching) of
active users, and also with more than three adjacent overlapping cells.

5.2.1 “Phases model”
In Figure 5.3 we show the model representing the phases of the system. The
marking of place start is set to 1, while the other places are set to 0. All the
timed activities are deterministic. The timeToPh2 activity fires after a time T1,
thus determining the beginning of the switching procedure (one token in place
Ph2 start). When the switching procedure ends, the token is removed from
place Ph2 start and added to place Ph3 start (this is done by another model
that shares these places), thus identifying the beginning of phase 3. In the mean-
time, after a time T4, the activity timeToPh4 fires and the re-switching proce-
dure starts (one token in place Ph4 start). The output gate check NoPhase3
removes the token from place Ph2 start in the case in which the switching

113



procedure has not yet completed: in this case it is interrupted and than the re-
switching procedure can take place (in this case there is no phase 3). When the re-
switching procedure ends the token is removed from place Ph4 start and added
to place Ph5 start (this is done by another model that shares these places).

5.2.2 CELL−X◦ model
An abstract view of the GPRS cell model for a generic CELL-X (with X =
0, 1, 2, 3) working in isolation is presented in Figure 5.4. It can be used both in
the case in which CELL-X is a sending cell (CELL-0) and when it is one of the
receiving cells (CELL-1, CELL-2, CELL-3).

Figure 5.4: CELL-X: a neutral GPRS cell with three overlapping areas

The generic model of Figure 5.4 works as follows. When a user has been
served, a token exits from the “internal GPRS cell model”. The “internal GPRS
cell model” has been deeply described in Section 2.4.2, and then it is not re-
ported here for the sake of brevity. The generic user has to be mapped (using
the topography activity) in the non overlapping area (place idle), in the area

114



Figure 5.5: The outage model

partially overlapped with C1 (place idleOverlapped1 CELLX), in the area
partially overlapped with C2 (place idleOverlapped2 CELLX), or in the area
partially overlapped with C3 (place idleOverlapped3 CELLX) in accordance
with the topography of the network. The probability that a generic user is mapped
in the overlapping areas is dynamically calculated considering the original number
of users camped in the non overlapping zone and in the three overlapping areas,
the users that have been switched (or lost) to the other cells (if CELL-X is a send-
ing cell) and the incoming users received from the adjacent cells (if CELL-X is a
receiving cell). When an idle user requests a new service, he/she becomes active
and enters in the “internal GPRS cell model” that executes the random access pro-
cedure of a GPRS cell. With respect to Figure 2.5, we note that we have explicitly
identified the different overlapping areas between CELL-X and its adjacent cells.

Places idleOverlappedY OUT CELLX and
idleOverlappedY lost CELLX represent the users belonging to CELL-X
that, respectively, have been successfully switched and lost during the switching
procedure to CY, with Y=1,2,3. Finally, places idleOverlapped1 IN CELLX,
idleOverlapped2 IN CELLX and idleOverlapped3 IN CELLX repre-
sent, respectively, the users that have been re-switched from C1, C2 and C3 to
CELL-X . When the cell is neutral, that is it works in isolation, the marking of
these places remains fixed, while varies during the switching and re-switching
procedure.

“Outage model” for CELL-0

In Figure 5.5 we show the model to be added (joined) to CELL-0◦ in order to
account for the outage period of the central cell. Place begin contains one to-
ken and all the timed activities are deterministic. When timeToOutage fires
(after a time T0), the outage begins and the output gate setChannelOut sets a
number of tokens in place numChOut that corresponds to the number of unavail-
able traffic channels. When the timeToEndOutage activity fires (after a time
T3-T0, that is the outage duration), the output gate resetChannelOut sets the
number of tokens in place numChOut to 0 and then the outage ends.

115



Figure 5.6: The ε(2)CELL−0→{CELL−1,CELL−2,CELL−3} model

5.2.3 ε
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model

The template of the model is shown in Figure 5.6 and it is used during the switch-
ing procedure (phase 2) to specify the behavior of CELL-0 to be active (sending
cell), and the behavior of the adjacent cells CELL-1, CELL-2 and CELL-3 to be
passive (receiving cells). Therefore, it will be joined with the models CELL−0◦,
CELL− 1◦, CELL− 2◦ and CELL− 3◦.

With reference to the upper part of Figure 5.6 only (the other parts behave
similarly), the model works as follows. When the switching procedure starts
(Ph2 start contains one token) the available idle users in the overlapping areas

116



between CELL-0 and CELL-1 (tokens in place idleOverlapped1 CELL0)
are instantaneously switched. During the switching procedure, some of them are
lost (tokens in place idleOverlapped1 lost CELL0) and some other are
successfully switched. The switched users (tokens) are added to three different
places:

• places idleOverlapped1 IN CELL1 and
idleOverlapped1 OUT CELL0, whose markings represent the number
of idle users that have been switched from CELL-0 to CELL-1 during the
switching procedure;

• place idleOverlapped1 CELL1, whose marking represents the num-
ber of switched users that are actually in idle mode.

The input gate check finish switch1 enables the instantaneous activity
passing1 if the switching procedure is started and there are other users to
switch. When the established number of idle users has been switched from CELL-
0 to CELL-1, CELL-2 and CELL-3, then the marking of place Ph2 start is set
to zero and one token is added to place Ph3 start (phase 2 ends and phase 3
begins).

5.2.4 ε
(4)
CELL−1→{CELL−0} model

The template of the model is shown in Figure 5.7, and it is used during the re-
switching procedure (phase 4) to specify how the neutral cell CELL-1 modifies
to become active (sending cell), and how the neutral cell CELL-0 modifies to
become passive (receiving cell). It will be joined with the models CELL − 0◦,
CELL− 1◦, CELL− 2◦ and CELL− 3◦.

The model works as follows. The input gate check reswitch enables the
connected instantaneous activities when place Ph4 start contains one token
(the re-switching procedure is started). When it happens, all the users previously
lost (idleOverlapped1 lost CELL0) are instantaneously re-camped to the
central cell, and all the previously switched users are re-switched as soon as they
become available. A token in place Ph4 end CELLY, with Y=1,2,3 , means that
all the idle users previously switched from CELL-0 to CELL-Y have been re-
switched to the central cell. When all the three places contain a token, the marking
of place Ph4 start is set to zero and one token is added to place Ph5 start
(phase 4 ends and the last phase begins).

The same model can be trivially modified to obtain the model ε(4)CELL−2→{CELL−0}

that accounts for the dependency relation between CELL-2 and CELL-0 during

117



Figure 5.7: The ε(4)CELL−1→{CELL−0} model

Figure 5.8: The whole non-decomposed model for CELL-0, CELL-1, CELL-2
and CELL-3

the re-switching procedure: it corresponds to the same model in which the suffix
“ CELL1” is replaced with “ CELL2”. The same considerations can be done to
build the ε

(4)
CELL−3→{CELL−0} model.

5.2.5 The overall model
The whole model representing the behavior of the considered GPRS infrastructure
is shown in Figure 5.8. CELL0, CELL1, CELL2 and CELL3 are the names of the
models CELL − 0◦, CELL − 1◦, CELL − 2◦ and CELL − 3◦, respectively.
outage1 is the name of the “outage model”, and phases is the name of the
“phases model”. epsilonCELL0 arrow CELL1 2 3 is the
ε
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model, while

118



epsilonCELL1 arrow CELL0, epsilonCELL2 arrow CELL0 and
epsilonCELL3 arrow CELL0 are, respectively, the names of the models
ε
(4)
CELL−1→{CELL−0}, ε

(4)
CELL−2→{CELL−0} and ε

(4)
CELL−3→{CELL−0}. These models

are composed together using the Join operator ([4]), sharing:

• all the places having the same name and suffix (name of the place CELL0,
name of the place CELL1, name of the place CELL2 and
name of the place CELL3);

• place numChOut among CELL0 and outage1;

• places Ph2 start and Ph3 start among
epsilonCELL0 arrow CELL1 2 3 and phases.

• places Ph4 start and Ph5 start among
epsilonCELL1 arrow CELL0, epsilonCELL2 arrow CELL0,
epsilonCELL3 arrow CELL0 and phases.

5.3 The decomposed model
As described in Section 4.3.2, the splitting procedure is applied to the whole non-
decomposed model producing a set of submodels that can be solved in isolation.
Most of the models that we built for the non-decomposed case can be reused in
the decomposed one. In particular, the “phases model”, the “outage model” and
the CELL − 0◦, CELL − 1◦ and CELL − 2◦ models can be used as they are.
The models developed for the specifically tailored methodology of Chapter 2 can
not be easily reused in this context, because they have been constructed in a non-
modular way: for example, the model of the phases is fully embedded in the “users
switching/reswitching sub-model”.

The splitting procedure only affects the models representing the dependency
relations between the entities (cells), and then we decompose

1. the ε
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model in two submodels: the OUT

part (ε(2),OUTCELL−0→{CELL−1,CELL−2,CELL−3} model) and the IN part

(ε(k),INCELL−0→{CELL−1,CELL−2,CELL−3} model);

2. the ε
(4)
CELL−1→{CELL−0} model in two submodels: the OUT part

(ε(4),OUTCELL−1→{CELL−0} model) and the IN part (ε(4),INCELL−1→{CELL−0} model).

3. the ε
(4)
CELL−2→{CELL−0} model in two submodels: the OUT part

(ε(4),OUTCELL−2→{CELL−0} model) and the IN part (ε(4),INCELL−2→{CELL−0} model).

119



Row Step Order X(1,...,k) k Inputs Outputs

1 i) 1 0◦ ∪ ε
(2),OUT

0→{1,2,3}
2 O

(2)

0→{1,2,3}

2 i) 2 1◦ ∪ ε
(4),OUT

1→{0}
∪ ε

(2),IN

0→{1}
4 O

(2)

0→{1}
O

(4)

1→{0}
∪M1

3 i) 2 2◦ ∪ ε
(4),OUT

2→{0}
∪ ε

(2),IN

0→{2}
4 O

(2)

0→{2}
O

(4)

2→{0}
∪M2

4 i) 2 3◦ ∪ ε
(4),OUT

3→{0}
∪ ε

(2),IN

0→{3}
4 O

(2)

0→{3}
O

(4)

3→{0}
∪M3

5 ii) 3 0◦ ∪ ε
(2),OUT

0→{1,2,3}
∪ ε

(4),IN

1→{0}
∪ ε

(4),IN

2→{0}
∪ ε

(4),IN

3→{0}
4 O

(4)

1→{0}
∪O

(4)

2→{0}
∪O

(4)

3→{0}
M0

Table 5.1: Optimized algorithm execution for the case study

4. the ε
(4)
CELL−3→{CELL−0} model in two submodels: the OUT part

(ε(4),OUTCELL−3→{CELL−0} model) and the IN part (ε(4),INCELL−3→{CELL−0} model).

Since each model to be solved is composed by only one cell at a time, there are
no ambiguities and then we remove the suffix “ CELLX” (with X=0,1,2,3) from
the name of all the places.

5.4 Applying the optimized solution algorithm
In Table 5.1 we detail the execution of the optimized algorithm for the example
depicted in Figure 5.2. In the first column from the left we identify the rows of the
Table, and the meaning of the other columns are the same as those defined for the
standard algorithm in Section 4.4. In order to have a compact Table, we denote an
entity CELL-i with “i”, for i = 0, 1, 2, 3.

Entity CELL-0 is active and the model CELL−0(1,2) is solved to obtain the in-
termediate results O

(2)
CELL−0→{CELL−1}, O

(2)
CELL−0→{CELL−2} and

O
(2)
CELL−0→{CELL−3}, thus removing the dependency relation CELL − 0 →2

{CELL − 1, CELL − 2, CELL − 3}. Now the models CELL − 1(1,2,3,4,5),
CELL − 2(1,2,3,4,5) and CELL − 3(1,2,3,4,5) can be solved, obtaining i) the mea-
sures of interest for CELL-1, CELL-2 and CELL-3, and ii) the intermediate results
O
(4)
CELL−1→{CELL−0}, O

(4)
CELL−2→{CELL−0} and O

(4)
CELL−3→{CELL−0}, that remove

the dependency relations CELL−1→4 {CELL−0}, CELL−2→4 {CELL−
0} and CELL− 3→4 {CELL− 0}. Finally, the model CELL− 0(1,2,3,4,5) can
be solved producing the measures of interest for CELL-0.

In the following Sections we show the models required for each computation,
following the order of the rows defined in Table 5.1.

120



Figure 5.9: The ε(2),OUTCELL−0→{CELL−1,CELL−2,CELL−3} model

5.5 Row 1
Model required: CELL−0(1,2) = CELL−0◦∪ε

(2),OUT
CELL−0→{CELL−1,CELL−2,CELL−3};

Input: no;

Output: O
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} = [O

(2)
CELL−0→{CELL−1},

O
(2)
CELL−0→{CELL−2}, O

(2)
CELL−0→{CELL−3}];

5.5.1 ε
(2),OUT

CELL−0→{CELL−1,CELL−2,CELL−3} model

The template of the “Dependency Relations - OUT” submodel is shown in Figure
5.9 and it is used during the switching procedure (phase 2) to specify the behavior
of the neutral cell CELL to be active (sending cell).

The model is the same as the one presented in Section 5.2.3 (Figure 5.6)
with only one difference: the switched users are not directly moved to CELL-
1, CELL-2 and CELL-3 but they are collected in three places, moved1, moved2
and moved3.

121



Figure 5.10: The overall model for CELL− 0(1,2)

5.5.2 CELL− 0(1,2) model
In Figure 5.10 we show the overall model X arrow Y Ph12 representing the
real behavior of CELL-0 during phase 1 and 2, thus accounting for the switch-
ing procedure. It is obtained joining the following submodels: outage1 (“out-
age model”), phases (“phases model”), GenericGPRScell (CELL − 0◦)
and epsilonX arrow Y OUT (ε(2),OUTCELL−0→{CELL−1,CELL−2,CELL−3}). The mod-
els share all the places having the same name.

5.5.3 O
(2)
CELL−0→{CELL−1,CELL−2,CELL−3} computation

The goal is to compute the intermediate result O(2)CELL−0→{CELL−1,CELL−2,CELL−3}

= [O
(2)
CELL−0→{CELL−1}, O

(2)
CELL−0→{CELL−2}, O

(2)
CELL−0→{CELL−3}] that captures

the effect that CELL-0 induces on CELL-1, CELL-2 and CELL-3 during phase 2.
In general, two cells interact when a user is switched (or re-switched) from a cell
to another, and this happens when a given activity fires, thus changing the states of
the corresponding two models. The behavior of an activity can be captured defin-
ing a measure for the time of each activity completion: one measure for the time
of the first completion, one for the time of the second completion, and so on. The
set of these solutions would form a random process that exactly captures the effect
of the action on the other model. The problem is that it is not possible to pass a
random process as an intermediate result, and then we can only compute some
results that approximatively represent the random process. In our case-study, we
approximate each random variable with its mean.

For this purpose we define a set of 50 rate reward variables1 for each over-
lapping cell, and we accumulate the rewards over the period [0;T4] (until re-
switching time, as the time T4 the switching procedure is certainly stopped). The
rate reward for the variable number i (with i = 0, . . . , 49) concerning the overlap-

1We are here assuming that no more than 50 users can be switched from CELL-0 to CELL-j
(with j = 1, 2), but this value can be increased as required.

122



ping cell j (with j = 1, 2, 3), that we call “rewjDTi”, is defined as follows:

if (epsilonX arrow Y OUT->movedj->Mark()<=i) return(1);
else return(0);

This means that rewjDTi accumulates a rate reward equal to 1 until activity
passingj of model epsilonX arrow Y OUT has completed for the i-th time,
and it corresponds to the time elapsed until the i-th user has been switched from
CELL-0 to CELL-j. The users that never switch have a corresponding rewjDTi
value equal to T4. Therefore, the intermediate result consists of three arrays
(double-precision values) such that the i-th element is the expectation (E[·]) of
the i-th reward variable:

O
(2)
CELL−0→{CELL−1} = double[50] = {E[rew01DT0000], ..., E[rew01DT0049]},

O
(2)
CELL−0→{CELL−2} = double[50] = {E[rew02DT0000], ..., E[rew02DT0049]},

O
(2)
CELL−0→{CELL−3} = double[50] = {E[rew03DT0000], ..., E[rew03DT0049]}.

5.6 Row 2 (or 3, or 4)

Model required: CELL − 1(1,2,3,4,5) = CELL − 1◦ ∪ ε
(4),OUT
CELL−1→{CELL−0} ∪

ε
(2),IN
CELL−0→{CELL−1};

Input: O(2)CELL−0→{CELL−1};

Output: O(4)CELL−1→{CELL−0} ∪MCELL−1;

5.6.1 ε
(2),IN

CELL−0→{CELL−1} model

The template of the “Dependency Relations - IN” submodel is shown in Figure
5.11 and it is used during the switching procedure (phase 2) to specify how the
neutral cell CELL-1 modifies to become passive (receiving cell).

We define a set of 50 global variables, DepartureTime0000, ...,
DepartureTime0049 (double-precision values), such that the i-th variable
contains the mean time elapsed until the i-th idle user has been switched from
CELL-0 to CELL-1. These values can be obtained from the previously produced
intermediate result O(2)CELL−0→{CELL−1} through the following (manually made)
settings:

123



Figure 5.11: The ε(2),INCELL−0→{CELL−1} model

DepartureTime00i = O
(2)
CELL−0→{CELL−1}[i], with i = 00, 01, . . . , 49.

These global variables are then put in the local array Dep, defined inside the in-
put gate check finish, such that Dep[i]=DepartureTime00i (with i =
00, 01, . . . , 49). The effect of the switching procedure from CELL-0 to CELL-
1 is then reconstructed through the deterministic activity moveIdle that fires
at time Dep[0] for the first time, and at time Dep[indexIdle->Mark()]-
Dep[indexIdle->Mark()-1] for the other completions (mean time elapsed
between two consecutive firings). If Dep[indexIdle->Mark()] is equal to
T4 (the re-switching time), no more users must be switched and then
check finish disables the deterministic activity moveIdle.

The ε
(2),IN
CELL−0→{CELL−2} model is built in the same way: we just consider that

the i-th global variable contains the mean time elapsed until the i-th idle user
has been switched from CELL-0 to CELL-2, that is DepartureTime00i =
O
(2)
CELL−0→{CELL−2}[i], with i = 00, 01, . . . , 49. The same considerations hold

for the ε
(2),IN
CELL−0→{CELL−3} model.

5.6.2 ε
(4),OUT

CELL−1→{CELL−0} model

The template of the model is shown in Figure 5.12, and it is used during the re-
switching procedure (phase 4) to specify the behavior of the neutral cell CELL-1
to be active (sending cell).

The model works as follows. The input gate Input Gate1 enables the in-
stantaneous activity pass Y if the re-switching procedure is started (one token in
place Ph4 start). Therefore, all the users previously switched from CELL-0 to
CELL-1 (corresponding to the number of tokens in place idleOverlapped1 IN)
are re-switched to the original cell as soon as they become available (that is, as
soon as the tokens arrive in place idleOverlapped1).

124



Figure 5.12: The ε(4),OUTCELL−1→{CELL−0} model

Figure 5.13: The overall model for CELL− 1(1,2,3,4,5)

The models ε(4),OUTCELL−2→{CELL−0} and ε
(4),OUT
CELL−3→{CELL−0} are built similarly.

5.6.3 CELL− 1(1,2,3,4,5) model
In Figure 5.13 we show the overall model Y arrow X Ph12345 representing the
real behavior of CELL-1 during all the system lifetime (from phase 1 to phase 5),
thus accounting for the switching and re-switching procedures. It is obtained join-
ing the following submodels: phases (“phases model”), GenericGPRScell
(CELL − 1◦), epsilonX arrow Y IN (ε(2),INCELL−0→{CELL−1,CELL−2,CELL−3})

and epsilonY arrow X OUT (ε(4),OUTCELL−1→{CELL−0}). The models share all the
places having the same name.

The models CELL− 2(1,2,3,4,5) and CELL− 3(1,2,3,4,5) are built similarly.

5.6.4 O
(4)
CELL−1→{CELL−0} computation

The goal is to compute the intermediate result O(4)CELL−1→{CELL−0} capturing the
effect that CELL-1 induces on CELL-0 during the re-switching procedure. As
described in Section 5.5.3, we approximate the random variable representing the
i-th completion time of a given activity with its mean.

The intermediate result O(4)CELL−1→{CELL−0} is computed as here described.

125



We define a set of 50 rate reward variables2 and we accumulate the rewards over
the period [0;T6] (T6 is chosen such that the re-switching procedure is certainly
completed). The rate reward for the variable number i (with i = 0, . . . , 49), that
we call “rewDTi”, is defined as it follows:

if (epsilonY arrow X OUT->idleOverlapped1 reswitched->Mark()<=i)

return(1);

else return(0);

This means that rewDTi accumulates a rate reward equal to 1 until activity pass Y
of model epsilonY arrow X OUT has completed for the i-th time, and it cor-
responds to the time elapsed until the i-th user has been re-switched from CELL-1
to CELL-0. If n is the total number of re-switched users (with n < 50), then the
last 50−n reward variables will be equal to T6. Therefore, the intermediate result
is an array of doubles such that the i-th element is the expectation (E[·]) of the
i-th reward variable:

O
(4)
CELL−1→{CELL−0} = double[50] = {E[rewDT0000], ..., E[rewDT0049]} .

The intermediate results O(4)CELL−2→{CELL−0} and O(4)CELL−3→{CELL−0} are com-
puted similarly solving the correspondent models CELL−2(1,2,3,4,5) and CELL−
3(1,2,3,4,5).

5.6.5 MCELL−1 computation
MCELL−1 represents the Pointwise Congestion function (PCf) perceived by the
users camped in CELL-1 at several instants of time. The value PCf(t), where t is
the instant of time in which it is calculated, is computed using the following rate
reward variable definition:

double users = totalNumUsersCELL1 + GenericGPRScell->idleOverlapped1 IN->Mark();

double usersSatisfied = GenericGPRScell->idle->Mark() +

GenericGPRScell->idleOverlapped1->Mark()+ GenericGPRScell->ch1->Mark() +

GenericGPRScell->ch2->Mark() + GenericGPRScell->ch3->Mark()+

GenericGPRScell->ch4->Mark() + GenericGPRScell->ch5->Mark() +

GenericGPRScell->ch6->Mark()+ GenericGPRScell->ch7->Mark() +

GenericGPRScell->a1->Mark() + GenericGPRScell->a2->Mark()+

2We are here assuming that no more than 50 users can be re-switched from CELL-j (with
j = 1, 2, 3) to CELL-0, but this value can be increased as required.

126



GenericGPRScell->a3->Mark() + GenericGPRScell->a4->Mark() +

GenericGPRScell->a5->Mark()+ GenericGPRScell->a6->Mark() +

GenericGPRScell->a7->Mark();

double reward = (users - usersSatisfied) / users * 100;

return (reward);

The total number of users attached to CELL-1 (users) is the sum of the original
number of users camped in CELL-1 (totalNumUsersCELL1) and the number
of users that have been switched from CELL-0 to CELL-1
(GenericGPRScell->idleOverlapped1 IN->Mark()). The satisfied
users (usersSatisfied) are those that are not requiring any service or are cur-
rently being served, therefore the number of unsatisfied users is equal to users -
usersSatisfied.

The computations for MCELL−2 and MCELL−3 are performed in the same way.

5.7 Row 5
Model required: CELL − 0(1,2,3,4,5) = CELL − 0◦ ∪

ε
(2),OUT
CELL−0→{CELL−1,CELL−2,CELL−3}∪ε

(4),IN
CELL−1→{CELL−0}∪ε

(4),IN
CELL−2→{CELL−0}∪

ε
(4),IN
CELL−3→{CELL−0};

Input: O(4)CELL−1→{CELL−0} ∪O
(4)
CELL−2→{CELL−0} ∪O

(4)
CELL−3→{CELL−0};

Output: MCELL−0;

5.7.1 ε
(4),IN

CELL−1→{CELL−0} model

The template of the “Dependency Relations - IN” submodel is shown in Figure
5.14 and it is used during the re-switching procedure (phase 4) to specify the be-
havior of the neutral cell CELL-0 to be passive (it receives the users from CELL-
1).

We define a set of 50 global variables, DepartureTime01 0000, ...,
DepartureTime01 0049 (double-precision values), such that the i-th vari-
able contains the mean time elapsed until the i-th idle user has been re-switched
from CELL-1 to CELL-0. These values can be obtained from the previously pro-
duced intermediate result O(4)CELL−1→{CELL−0} through the following (manually
made) settings:

127



Figure 5.14: The ε(4),INCELL−1→{CELL−0} model

DepartureTime01 00i = O
(4)
CELL−1→{CELL−0}[i], with i = 00, 01, . . . , 49.

These global variables are then put in the local array Dep, defined in the input
gate check finish1, such that Dep[i]=DepartureTime01 00i (with i =
00, 01, . . . , 49). The effect of the re-switching procedure from CELL-1 to CELL-
0 is then reconstructed through the deterministic activity moveIdle1 that fires
at time Dep[0] for the first time, and at time Dep[indexIdle->Mark()]-
Dep[indexIdle->Mark()-1] for the other completions (mean time elapsed
between two consecutive firings). If Dep[indexIdle->Mark()] is equal to
T6 (the system lifetime), no more users must be re-switched and then the the gate
check finish1 disables the activity moveIdle1.

The model works as follows. When the re-switching procedure starts
(Ph4 start contains one token), the instantaneous activity
startReSwitching fires and the output gate Output Gate1 executes the
following actions: i) tokens in place idleOverlapped1 lost are added to
place idleOverlapped1, and ii) the marking of idleOverlapped1 lost
is set to zero. This means that all the idle users previously lost during the switch-
ing procedure from CELL-0 to CELL-1 have been re-camped in the central cell.
The users previously switched from CELL-0 to CELL-1 are re-switched follow-
ing the distribution defined in the moveIdle1 activity.

The model ε(4),INCELL−2→{CELL−0} is built in the same way: we just consider that
the i-th global variable contains the mean time elapsed until the i-th idle user has
been re-switched from CELL-2 to CELL-0, that is DepartureTime01 00i =
O
(4)
CELL−2→{CELL−0}[i], with i = 00, 01, . . . , 49. The same considerations hold

for the ε
(4),IN
CELL−3→{CELL−0} model.

128



Figure 5.15: The overall model for CELL− 0(1,2,3,4,5)

5.7.2 CELL− 0(1,2,3,4,5) model
In Figure 5.15 we show the overall model X arrow Y Ph12345 representing
the real behavior of CELL-0 during all the system lifetime (from phase 1 to phase
5), thus accounting for the switching and re-switching procedures. It is obtained
joining the following submodels: outage1 (“outage model”), phases (“phases
model”), GenericGPRScell (CELL − 0◦), epsilonX arrow Y OUT
(ε(2),OUTCELL−0→{CELL−1,CELL−2,CELL−3}), epsilonY arrow X IN1

(ε(4),INCELL−1→{CELL−0}), epsilonY arrow X IN2 (ε(4),INCELL−2→{CELL−0}) and

epsilonY arrow X IN3 (ε(4),INCELL−3→{CELL−0}). The models share all the places
having the same name.

5.7.3 MCELL−0 computation
MCELL−0 represents the Pointwise Congestion function (PCf) perceived by the
users camped in CELL-0 at several instants of time. The value PCf(t), where t is
the instant of time in which it is calculated, is computed using the following rate
reward variable definition:

double users = totalNumUsersCELL0 - GenericGPRScell->idleOverlapped1 OUT->Mark() -

GenericGPRScell->idleOverlapped2 OUT->Mark() -

GenericGPRScell->idleOverlapped3 OUT->Mark();

double usersSatisfied = GenericGPRScell->idle->Mark() +

GenericGPRScell->idleOverlapped1->Mark()+ GenericGPRScell->idleOverlapped2->Mark()+

GenericGPRScell->idleOverlapped3->Mark() + GenericGPRScell->ch1->Mark()+

GenericGPRScell->ch2->Mark() + GenericGPRScell->ch3->Mark()+

GenericGPRScell->ch4->Mark() + GenericGPRScell->ch5->Mark() +

GenericGPRScell->ch6->Mark()+ GenericGPRScell->ch7->Mark() +

GenericGPRScell->a1->Mark() + GenericGPRScell->a2->Mark()+

GenericGPRScell->a3->Mark() + GenericGPRScell->a4->Mark() +

129



GenericGPRScell->a5->Mark()+ GenericGPRScell->a6->Mark() +

GenericGPRScell->a7->Mark();

double reward = (users - usersSatisfied) / users * 100;

return (reward);

The total number of users attached to CELL-0 (users) is the difference between
the original number of users camped in CELL-0 (totalNumUsersCELL0) and
the number of users that have been switched from CELL-0 to CELL-1, CELL-
2 and CELL-3 (GenericGPRScell->idleOverlappedi OUT->Mark(),
with i = 1, 2, 3). The satisfied users (usersSatisfied) are those that are not
requiring any service or are currently being served, therefore the number of un-
satisfied users is equal to users - usersSatisfied.

5.8 The “connected model” to automatically pass the
intermediate results between models

A weakness of the presented methodology is that it requires to manually pass the
intermediate results between models, writing the expectations of the reward vari-
ables in the corresponding global variables. In order to avoid this manual tran-
scription and to speed up the solution process, we use the connection formalism
[62, 16] that has been recently implemented in the Möbius [61] tool.

A connected model is a graph consisting of a set of model nodes (called “solv-
able models”), arcs (called “conduits”), and transformation nodes (called “con-
nection functions”). A solvable model is a model with a specified reward structure
that can be solved, a conduit transfers results, while a connection function takes
a set of results to generate an input parameter for another model. The connection
graph is traversed in a certain order. First a solvable model is solved, and it writes
the results to a results database. The output conduits for that solvable model trans-
fer specific results from the model to a connection function. Then the connection
function performs some mathematical transformation on all the results passed to
it, and a conduit provides this value to another solvable model. The value is passed
into the solvable model via a global variable.

In Figure 5.16 we show the connected model that we build to automatically
pass the intermediate results between models.

Here we describe the order in which the connection graph has to be traversed.

1. We solve the solvable model CELL0arrowCELL1 2 3 Ph12, that corre-
sponds to the X arrow Y Ph12 model of Section 5.5.2 (CELL − 0(1,2)),

130



Figure 5.16: The connected model

and the intermediate results O(2)CELL−0→{CELL−1}, O
(2)
CELL−0→{CELL−2} and

O
(2)
CELL−0→{CELL−3} are saved to the results database.

2. We solve the solvable model ConnectionFunction1, that automati-
cally executes the following operations:

DepartureTime0000 = E[rew01DT0000];
...
DepartureTime0049 = E[rew01DT0049];

3. We solve the solvable model CELL1arrowCELL0 12345, that corre-
sponds to the Y arrow X Ph12345 model of Section 5.6.3 (CELL −
1(1,2,3,4,5)), thus producing the measure of interest MCELL−1 and the inter-
mediate result O(4)CELL−1→{CELL−0}, that is saved to the results database.

4. We solve the solvable model ConnectionFunction2, that automati-
cally executes the following operations:

DepartureTime01 0000 = rewDT0000;
...
DepartureTime01 0049 = rewDT0049;

5. We solve the solvable model ConnectionFunction3, that automati-
cally executes the following operations:

DepartureTime0000 = E[rew02DT0000];
...
DepartureTime0049 = E[rew02DT0049];

6. We solve the solvable model CELL2arrowCELL0 12345, that corre-
sponds to the Y arrow X Ph12345 model of Section 5.6.3 (CELL −

131



2(1,2,3,4,5)), thus producing the measure of interest MCELL−2 and the inter-
mediate result O(4)CELL−2→{CELL−0}, that is saved to the results database.

7. We solve the solvable model ConnectionFunction4, that automati-
cally executes the following operations:

DepartureTime02 0000 = rewDT0000;
...
DepartureTime02 0049 = rewDT0049;

8. We solve the solvable model ConnectionFunction5, that automati-
cally executes the following operations:

DepartureTime0000 = E[rew03DT0000];
...
DepartureTime0049 = E[rew03DT0049];

9. We solve the solvable model CELL3arrowCELL0 12345, that corre-
sponds to the Y arrow X Ph12345 model of Section 5.6.3 (CELL −
3(1,2,3,4,5)), thus producing the measure of interest MCELL−3 and the inter-
mediate result O(4)CELL−3→{CELL−0}, that is saved to the results database.

10. We solve the solvable model ConnectionFunction6, that automati-
cally executes the following operations:

DepartureTime03 0000 = rewDT0000;
...
DepartureTime03 0049 = rewDT0049;

11. We solve the solvable model CELL0arrowCELL1 2 3 Ph12345, that
corresponds to the X arrow Y Ph12345model of Section 5.7.2 (CELL−
0(1,2,3,4,5)), thus producing the measure of interest MCELL−0.

5.9 Model evaluation
A simulation approach is here used to numerically solve the sub-models obtained
applying the methodology, using the simulator offered by the Möbius tool. For
each study we execute a minimum of 1000 simulation runs (batches), thus the
mean of each random variable is computed from a set of at least 1000 samples.
Moreover, we set the relative confidence interval to 0.1 and the confidence level to
0.95. This means that the stopping criteria will not be satisfied until the confidence
interval is within 10% of the mean estimate 95% of the time.

132



Symbol Description Values
totalNumUsersCELL0 Total number of users camped in CELL-0 180
numUsersCELL0 OvCELL1 Number of users camped in the overlapping area between CELL-0 and CELL-1 60
numUsersCELL0 OvCELL2 Number of users camped in the overlapping area between CELL-0 and CELL-2 50
numUsersCELL0 OvCELL3 Number of users camped in the overlapping area between CELL-0 and CELL-3 40
totalNumUsersCELL1 Total number of users camped in CELL-1 140
totalNumUsersCELL2 Total number of users camped in CELL-2 170
totalNumUsersCELL3 Total number of users camped in CELL-3 200
numIdleUsersToSwitchToCELL1 Number of idle users to switch from CELL-0 to CELL-1 42
numIdleUsersToSwitchToCELL2 Number of idle users to switch from CELL-0 to CELL-2 35
numIdleUsersToSwitchToCELL3 Number of idle users to switch from CELL-0 to CELL-3 28

Table 5.2: Some parameters and their values

5.9.1 Settings for the numerical evaluation and the Analyzed
Scenario

As in Chapter 2, we analyze a GPRS network composed by one central cell
(CELL-0) and three partially overlapping cells (CELL-1, CELL-2 and CELL-3).
The values we assigned to the main parameters of each cell are the same as those
detailed in Table 2.1, with the difference that now the switching/re-switching pro-
cedure involves idle users only. For the sake of clarity, we report in Table 5.2 the
settings for the parameters defining the topology of the infrastructure.

As in Chapter 2, we suppose that 10% of idle users to switch are lost during the
reconfiguration action, that the switching and re-switching procedures are instan-
taneous, and that the partial outage affecting the central cell consists of a software
error that reduces the number of available traffic channels from 3 to 1. We set the
outage duration to 120 seconds (average time needed to restart the software), the
outageReactionTime parameter is set to 30 seconds (the time that occurs between
the outage and the beginning of the users switching procedure), and the outageEn-
dReactionTime parameter is set to 15 seconds (the time that occurs between the
end of the outage and the users re-switching).

5.9.2 Numerical evaluation: solving the whole non-decomposed
model

We first solve the whole non-decomposed model built as presented in Section 5.2,
and the obtained results are considered to be “exact” (within the specified confi-
dence interval), since no approximation has been introduced due to the application
of the solution technique.

In Figure 5.17 we show the Pointwise Congestion function (PCf) at several
instants of time (25 points, starting from time 200 with steps of 15 seconds).
As expected, the congestion perceived by the users camped in CELL-0 rapidly
increases at time T0 due to the outage, decreases at time T1 (switching time) and

133



0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

200 230 260 290 320 350 380 410 440 470 500 530 560

P
oi

nt
w

is
e 

C
on

ge
st

io
n 

(%
)

Time (sec.)

T0=200sec. - T1=230sec. - T3=320sec. - T4=335sec.

T0 T1 T3 T4

in CELL-0 [TCi=19.24%]
in CELL-1 [TCi=1.83%]
in CELL-2 [TCi=5,69%]

in CELL-3 [TCi=16,33%]

Figure 5.17: PCf for each cell

increases again at time T4 (re-switching time). On the other hand, the congestion
perceived in each receiving cell increases at time T1 and decreases at time T4.

Concerning computational time, the simulator has provided the results within
the desired accuracy in 8769 seconds.

5.9.3 Numerical evaluation: solving the decomposed models
The same GPRS scenario has been solved using the modeling and solution ap-
proach defined in Chapter 4. In Table 5.3 we show the absolute and relative errors
affecting the final results in each of the 25 sampling points (instants of time), with
respect to the “exact” solution of Figure 5.17. The absolute error is always less
than 0.81 (corresponding to a relative error equal to 5.79%), and the maximum
relative error is equal to 15% (corresponding to an absolute error of 0.14). The
average (absolute and relative) errors are even lower. Although most of the errors
are very low, some of them seem to be not negligible. The problem is that the
errors of Table 5.3 are the result of two types of approximations: the first induced
by the decomposed solution process, and the second caused by the simulation ap-
proach that only provides an estimation of the measures. In addition, the “exact”
solution that we use to evaluate the accuracy of the results is, in turn, another ap-
proximated solution, since obtained through simulation. For these considerations
all the errors of Table 5.3 can be still considered acceptable.

134



Point CELL-0 CELL-1 CELL-2 CELL-3
1 0.33 (5.43%) 0.05 (4.34%) 0.07 ( 1.61%) 0.06 (0.40%)
2 0.45 (2.28%) 0.06 (5.86%) 0.13 (2.96%) 0.17 (1.12%)
3 0.39 (0.52%) 0.14 (15.00%) 0.39 (10.91%) 0.81 (5.79%)
4 0.75 (1.05%) 0.08 (7.61%) 0.01 (0.20%) 0.27 (1.93%)
5 0.68 (1.03%) 0.15 (10.15%) 0.07 (1.57%) 0.43 (2.91%)
6 0.55 (0.93%) 0.15 (6.61%) 0.23 (4.38%) 0.43 (2.86%)
7 0.32 (0.63%) 0.07 (2.42%) 0.19 (2.98%) 0.36 (2.31%)
8 0.01 (0.02%) 0.10 (2.60%) 0.17 (2.24%) 0.26 (1.58%)
9 0.05 (0.16%) 0.15 (3.22%) 0.01 (0.16%) 0.16 (0.93%)
10 0.00 (6.30%) 0.08 (1.30%) 0.17 (1.44%) 0.13 (0.64%)
11 0.01 (2.31%) 0.04 (1.13%) 0.23 (2.36%) 0.12 (0.64%)
12 0.01 (0.75%) 0.07 (4.13%) 0.35 (4.41%) 0.10 (0.57%)
13 0.03 (1.76%) 0.00 (0.15%) 0.12 (1.77%) 0.13 (0.76%)
14 0.16 (8.09%) 0.11 (8.92%) 0.13 (2.11%) 0.04 (0.26%)
15 0.14 (5.63%) 0.06 (5.62%) 0.18 (3.35%) 0.09 (0.51%)
16 0.29 (9.44%) 0.09 (9.13%) 0.08 (1.53%) 0.24 (1.43%)
17 0.33 (9.25%) 0.00 (0.35%) 0.23 (4.72%) 0.08 (0.49%)
18 0.28 (6.93%) 0.07 (6.37%) 0.34 (7.62%) 0.02 (0.15%)
19 0.29 (6.70%) 0.02 (1.54%) 0.27 (6.02%) 0.16 (0.97%)
20 0.13 (2.83%) 0.06 (4.76%) 0.18 (4.14%) 0.16 (1.00%)
21 0.02 (0.50%) 0.00 (0.16%) 0.11 (2.41%) 0.17 (1.06%)
22 0.15 (2.92%) 0.14 (13.20%) 0.15 (3.35%) 0.13 (0.79%)
23 0.05 (0.97%) 0.04 (3.28%) 0.16 (3.56%) 0.07 (0.42%)
24 0.18 (3.18%) 0.00 (0.32%) 0.10 (2.32%) 0.34 (2.17%)
25 0.01 (0.16%) 0.05 (4.84%) 0.01 (0.26%) 0.24 (1.52%)

Average 0.22 (3.19%) 0.07 (4.92%) 0.16 (3.14%) 0.21 (1.33%)

Table 5.3: Absolute (and relative) errors for CELL-0, CELL-1, CELL-2 and
CELL-3, using the general approach of Chapter 4

The computational time needed to produce the results are shown in Table 5.4.
The total time is equal to 6669 seconds that is about 24% less than the compu-
tational time required to solve the model as a whole (8769 seconds). Moreover,
if we suppose to execute the simulations on different machines, the total time
needed to have the solution is about 4663 seconds, since CELL − 1(1,2,3,4,5),
CELL − 2(1,2,3,4,5) and CELL − 3(1,2,3,4,5) can be computed concurrently, and
then we take their maximum computational time only.

As a final study, the same scenario has been solved using the methodology

135



Model solved Elapsed running time (in seconds)
CELL− 0(1,2) 1215
CELL− 1(1,2,3,4,5) 775
CELL− 2(1,2,3,4,5) 1231
CELL− 3(1,2,3,4,5) 2941
CELL− 0(1,2,3,4,5) 507
Total 6669
Total (with parallel executions) 1215+2941+507=4663

Table 5.4: Elapsed running time using the general approach of Chapter 4

CELL-0 CELL-1 CELL-2 CELL-3
Average 0.33 (5.62%) 0.07 (4.57%) 0.13 (2.48%) 0.19 (1.13%)

Table 5.5: Average absolute (and relative) errors for CELL-0, CELL-1, CELL-2
and CELL-3, using the specific approach of Chapter 2

specifically tailored for the GPRS case study. The obtained measures have the
same average accuracy as the previous results, as shown in Table 5.5, but the
total computational cost slightly decreases, as shown in Table 5.6. The single
execution time for each couple of models [CELL-0;CELL-i] is slightly higher
than the CELL − i(1,2,3,4,5) model, but it has not to account for the solution of
the CELL − 0(1,2) model, thus reducing the overall computational time. If we
suppose to execute the simulations of each couple [CELL-0;CELL-i] on different
processors, the total time needed to compute the solution is about 3655 seconds.
This result is of course not surprising, considering that the methodology we are
evaluating was defined as an ad-hoc solution for the specific application domain.

Model solved Elapsed running time (in seconds)
[CELL-0;CELL-1] 996
[CELL-0;CELL-2] 1456
[CELL-0;CELL-3] 3151
CELL (type C model) 504
Total 5603
Total (with parallel executions) 3151+504=3655

Table 5.6: Elapsed running time using the specific approach of Chapter 2

136



5.10 Summary
In this Chapter we demonstrated the use of the interaction-based modeling ap-
proach defined in Chapter 4, applying the methodology to the GPRS case study
previously solved with a specific solution technique in Chapter 2. With respect
to the previous analysis, the modularity of the model representing the system has
been enhanced. Moreover, the application of the splitting procedure does not in-
duce an unacceptable degradation on the accuracy of the final results, while the
computational complexity is substantially reduced with respect to solve the whole
non-decomposed model, and slightly increases with respect to the application of
the specific solution technique. A more detailed analysis about the accuracy of the
final results should be performed considering analytical/numerical solutions that
eliminate the non-accuracy induced by the simulation approach.

137



Chapter 6

Conclusion

Availability, reliability and quality of service are only few system’s properties
whose evaluation has become a very critical issue in the last decades. One of the
most widely used techniques for their assessment is the model-based approach:
we first build a model representing the system at the desired level of detail, and
then we solve it by simulation or using some analytical/numerical methods. Un-
fortunately, the models can be very complex and their solutions can demand a
huge amount of memory and/or time to complete, and this severely limits the
class of systems that can be really studied using the model-based approach. In
the literature there are several techniques that try to manage the complexity prob-
lem, and most of them are very useful in their application-domain but they can
be hardly re-used in other contexts. The contribution given by this dissertation
is twofold: on one hand we developed two modeling and solution technique for
the analysis of two specific (although well populated) class of systems, and on the
other hand we exploited this knowledge in order to define a modeling and solution
framework potentially applicable to all existing systems.

The first study has concerned a GPRS infrastructure composed of a number
of partially overlapping cells, and the goal was to analyze the impact of outage
phenomenons and reconfiguration actions on the quality of service perceived by
the users camped in the network. The overall system complexity, that increases
with the increment of the number of cells composing the infrastructure, has been
attacked though the definition of a specific decomposition approach that considers
the cells in pairs. Using the proposed methodology, a fine-tuning activity has been
performed in order to determine i) appropriate values for the number of users to
switch from the central cell to the others, and ii) the maximum amount of time that
the system can spend for its decision-making process if the congestion must not
exceed a given threshold level. These are two critical aspects that must be always
evaluated when a cell resizing is performed in a mobile telephone environment.

138



Although the modeling approach has been developed for the GPRS technology, it
shows very attractive potentialities, being it suitable to be employed in the analysis
of other similar problems, for example to analyze the behavior of a heterogeneous
infrastructure where different network technologies (e.g., GPRS and UMTS) co-
operate to reduce a congestion situation.

In the second study we have analyzed a class of hierarchical control systems,
in which the functionalities of the whole system are partitioned among a number
of subsystems working at different levels of a hierarchy. The dependability of
the whole system is enhanced considering, at each level, both internal checks (to
cope with faults during the internal computation) and interface checks (to cope
with erroneous inputs and/or outputs). A proper modeling methodology based on
a decomposition approach has been defined, able to reduce the system complex-
ity. We first decomposed a model starting from its functional specification and
applying a stepwise refinement to decompose it in small sub-models (decompo-
sition). Then, the modular model solution has been carried out in a bottom-up
fashion (aggregation). The methodology has been applied to evaluate some de-
pendability attributes of the trial developed in the context of the European project
CAUTION++. The obtained results have allowed us to understand the impact of
several factors contributing to the dependability of the single CAUTION++ com-
ponents on the overall system instance. Moreover, this study could be useful to
guide implementation choices addressing dependability, by providing compara-
tive quantitative assessment of possible alternatives.

The knowledge derived by the two previous described experiences has been
exploited to define a general modeling and solution framework for the solution
of complex systems. Here the term “general” means that we do not want to limit
the analysis neither to a specific class of systems, nor to a particular modeling
formalism. The methodology is based on a functional, temporal and physical de-
composition. The whole system is decomposed in a set of sub-systems that can
work in isolation or can interact each other through some dependency relations
(functional decomposition). The lifetime of the system is then decomposed in a
sequence of phases such that two consecutive phases have at least one different
dependency relation (temporal decomposition). Following a modular approach,
we have first modeled the system as a whole, thus identifying the main submod-
els with respect to the functions they perform. Then the whole model has been
decomposed (through the splitting procedure) in a set of submodels to be solved
in isolation, passing some intermediate results when required (physical decompo-
sition). We proposed two algorithms (a standard version and an optimized one)
that, basing on the dependency relation graph for each phase, define i) the order in
which the submodels have to be solved, ii) the intermediate results to be produced

139



by the model solutions, and iii) the intermediate results to be used as input in the
model definitions. The decomposition approach is able to reduce the spatial and
temporal complexity. On the other side, the accuracy of a final result has to be
carefully treated and it mainly depends i) on the accuracy of the intermediate re-
sults used to produce it, both in terms of machine precision (for analytical solver)
and confidence interval (in case of simulation), and ii) on the capability of the
“Dependency Relations - IN and OUT” models to perfectly represent the interac-
tions that involve an entity, using the previously produced intermediate results.

Finally, the general modeling and solution approach has been applied to the
previously described GPRS case-study to prove its feasibility. The application
of the methodology enhances the modularity of the models that perform well-
separated functions. The obtained results are accurate as those produced by the
application of the modeling and solution technique specifically developed for the
GPRS infrastructure, and the computational time is substantially reduced with re-
spect to solve the whole non-decomposed model.

Although not shown in this dissertation, the general modeling and solution
framework introduced in Chapter 4 can also be applied to the case study con-
cerning the hierarchical control systems of Chapter 3. With respect to the overall
solution scheme of Figure 3.9, we can identify two types of entities: those that
correspond to the detailed model of a component (or of a set of identical compo-
nents) in a stage, and one corresponding to the high level architectural model of
the system. The exchange of parameters between two entities represents a depen-
dency relation. The corresponding phased-interacting system is then composed of
N + 1 entities, if N is the total number of stages, and one phase only, since the
dependency relations do not change in time.

A significant contribution of this dissertation is the definition of the general
modeling and solution framework, and some considerations can be done compar-
ing it with the decomposition techniques outlined in Section 1.6. All these tech-
niques manage the system complexity decoupling a model in simpler and more
tractable submodels, and their solutions are combined to get the solution of the
whole system. Most of these techniques can be seen as instances of the proposed
framework just identifying an appropriate conceptual-level system decomposition,
that is identifying an appropriate set of interacting conceptual submodels (entities)
that can be solved in isolation, exchanging intermediate results when required (de-
pendency relations).
For example, the time scale decomposition approach outlined in Section 1.6.2 de-
composes a model into a hierarchical sequence of aggregated sub-nets (these are

140



the entities), each of which characterized by a certain time scale. At each level of
the hierarchy, the current marking of an aggregated sub-net determines the num-
ber of tokens in the sub-net at the lower level (these are the dependency relations).
The modular hierarchical decomposition approach of Section 1.6.4 models a sys-
tem at various levels of abstraction (the entities), and the output values from one
layer are used as parameters of the next higher layer (the dependency relations).
The interaction-based decomposition technique of Section 1.6.6 decomposes a
large stochastic Petri net in a set of parameterized stochastic Petri net submodels
(the entities) that interact through the passing of a parameter value (the depen-
dency relations).

Therefore, several existing decomposition techniques can be mapped in the
proposed framework just identifying the entities with respect to an appropriate
logic. In the presented examples, the interactions between entities (that concretely
consist of some numerical results passed between models) remain fixed during the
whole system lifetime, and then they all correspond to a phased-interacting sys-
tem with several entities and one phase only.

Viceversa, the phased decomposition approach outlined in Section 1.6.5 in-
cludes the concept of multiple phases and it deserves special attention. Phased
Mission Systems (PMSs) are characterized by a sequence of phases in which the
system configuration can change during operations. Conceptually, a PMS could
be modeled using a single general model M (the entity) able to represent the spe-
cific behavior of the system inside each phase. Let Mi be the specification of the
model M representing the behavior of the PMS during phase i, then the model Mi

provides to the next model Mi+1 an intermediate result (the state-occupancy prob-
ability vector at the end of phase i) that enables the separate solution of the model
Mi+1 starting from the end of phase i, thus avoiding to re-compute the solution
from the first phase. At the moment, this technique can not be confined in the pro-
posed modeling and solution environment, mainly for two reasons: i) the depen-
dency relations among entities have been defined inside each phase (Section 4.2),
while the dependency relations required for the application of the phased decom-
position approach link entities belonging to two consecutive phases (the model
Mi affects the behavior of the model Mi+1 through the passing of an intermediate
result); ii) the proposed algorithms implementing the decomposed solution pro-
cess (Section 4.4) compute the solution of the models in each phase starting from
the first phase, while in the phased decomposition approach the model in a phase
is solved just starting from the end of the previous phase. Actually, as sketched in
Section 4.4.2, we are planning to modify the modeling and solution framework in
order to accommodate this kind of decomposition techniques.

141



Other future works concern: i) the automation of the splitting procedure, cur-
rently done by hand, and the integration of the methodology in the existing mod-
eling tools; ii) a more detailed analysis of the accuracy of the final results with
respect to the errors induced by the application of the interaction-based decompo-
sition approach; iii) the application of the methodology to very large scale systems
in order to better understand how the methodology is scalable and effective con-
sidering very complex case studies.

142



List of Figures

1.1 Error propagation scheme . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Congestion-effect cluster . . . . . . . . . . . . . . . . . . . . . . 28
2.2 The interactions between two cells . . . . . . . . . . . . . . . . . 29
2.3 Scheduled Temporal Events . . . . . . . . . . . . . . . . . . . . . 30
2.4 Modeling and solution technique . . . . . . . . . . . . . . . . . . 32
2.5 A generic GPRS cell . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 The “internal GPRS cell model” . . . . . . . . . . . . . . . . . . 36
2.7 “users switching/reswitching sub-model” for CELL . . . . . . . . 38
2.8 “users switching/reswitching sub-model” for CELL-i . . . . . . . 40
2.9 [CELL, CELL-i] model . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 “users switching/reswitching sub-model” for CELL using the pro-

vided “observed users re-switching distributions” . . . . . . . . . 42
2.11 Congestion perceived in CELL1 . . . . . . . . . . . . . . . . . . 46
2.12 Congestion perceived in CELL2 . . . . . . . . . . . . . . . . . . 46
2.13 Congestion perceived in CELL3 . . . . . . . . . . . . . . . . . . 47
2.14 Congestion perceived in CELL . . . . . . . . . . . . . . . . . . . 48
2.15 Overall congestion perceived . . . . . . . . . . . . . . . . . . . . 49
2.16 Active users switched from CELL to all other cells . . . . . . . . 49
2.17 Congestion perceived in CELL3 . . . . . . . . . . . . . . . . . . 50
2.18 Congestion perceived in CELL . . . . . . . . . . . . . . . . . . . 51
2.19 Overall congestion perceived . . . . . . . . . . . . . . . . . . . . 51

3.1 Class of systems with “multi-stage” representation . . . . . . . . 54
3.2 Example of system . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Example of “multi-stage” representation . . . . . . . . . . . . . . 56
3.4 How a generic component interacts with others . . . . . . . . . . 57
3.5 Modeling approach . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Functional-level model related to a single service . . . . . . . . . 60
3.7 Part of the simplified system model . . . . . . . . . . . . . . . . . 62
3.8 Relationships between models solutions . . . . . . . . . . . . . . 63
3.9 Overall solution scheme . . . . . . . . . . . . . . . . . . . . . . 64

143



3.10 Network architecture for provision of capacity management mech-
anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 Trial configuration . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.12 Generic abstract sub-models . . . . . . . . . . . . . . . . . . . . 68
3.13 HighLevelJoin submodels . . . . . . . . . . . . . . . . . . . . . . 69
3.14 Detailed model for AS, OS, and HW . . . . . . . . . . . . . . . . 71
3.15 Generic detailed model . . . . . . . . . . . . . . . . . . . . . . . 72
3.16 Composed model at GMU decision level . . . . . . . . . . . . . . 74
3.17 Incorrect emission probability related to Operator 1 (or Operator 3) 77
3.18 Reliability of the trial system . . . . . . . . . . . . . . . . . . . . 78
3.19 Mean time to incorrect emission for Operator 1 (or Operator 3) . . 79
3.20 Mean time to incorrect emission for Operator 2 . . . . . . . . . . 79

4.1 Modeling and solution process with implemental-level decompo-
sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Modeling and solution process with conceptual-level decomposition 83
4.3 Dependency relations in two consecutive phases . . . . . . . . . . 85
4.4 The whole model for a phased-interacting system . . . . . . . . . 87
4.5 Snapshot of the whole model configuration during phase 1, an

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Snapshot of the whole model configuration during phase 2, an

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 The splitting procedure . . . . . . . . . . . . . . . . . . . . . . . 90
4.8 The decomposed model structure . . . . . . . . . . . . . . . . . . 92
4.9 Example of application of the splitting procedure . . . . . . . . . 92
4.10 Cycles hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Scheduled Temporal Events . . . . . . . . . . . . . . . . . . . . . 110
5.2 The GPRS network behavior as a phased-interacting system . . . 111
5.3 The “phases model” . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4 CELL-X: a neutral GPRS cell with three overlapping areas . . . . 114
5.5 The outage model . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 The ε

(2)
CELL−0→{CELL−1,CELL−2,CELL−3} model . . . . . . . . . . 116

5.7 The ε
(4)
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . . . 118

5.8 The whole non-decomposed model for CELL-0, CELL-1, CELL-
2 and CELL-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.9 The ε
(2),OUT
CELL−0→{CELL−1,CELL−2,CELL−3} model . . . . . . . . . . 121

5.10 The overall model for CELL− 0(1,2) . . . . . . . . . . . . . . . 122
5.11 The ε

(2),IN
CELL−0→{CELL−1} model . . . . . . . . . . . . . . . . . . . 124

5.12 The ε
(4),OUT
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . . . 125

144



5.13 The overall model for CELL− 1(1,2,3,4,5) . . . . . . . . . . . . . 125
5.14 The ε

(4),IN
CELL−1→{CELL−0} model . . . . . . . . . . . . . . . . . . . 128

5.15 The overall model for CELL− 0(1,2,3,4,5) . . . . . . . . . . . . . 129
5.16 The connected model . . . . . . . . . . . . . . . . . . . . . . . . 131
5.17 PCf for each cell . . . . . . . . . . . . . . . . . . . . . . . . . . 134

145



List of Tables

2.1 Relevant parameters and their values . . . . . . . . . . . . . . . . 44

3.1 Input-output combinations . . . . . . . . . . . . . . . . . . . . . 57
3.2 Detailed model parameters and their values . . . . . . . . . . . . 76

4.1 Standard algorithm execution . . . . . . . . . . . . . . . . . . . . 97
4.2 Optimized algorithm execution . . . . . . . . . . . . . . . . . . . 99

5.1 Optimized algorithm execution for the case study . . . . . . . . . 120
5.2 Some parameters and their values . . . . . . . . . . . . . . . . . 133
5.3 Absolute (and relative) errors for CELL-0, CELL-1, CELL-2 and

CELL-3, using the general approach of Chapter 4 . . . . . . . . . 135
5.4 Elapsed running time using the general approach of Chapter 4 . . 136
5.5 Average absolute (and relative) errors for CELL-0, CELL-1, CELL-

2 and CELL-3, using the specific approach of Chapter 2 . . . . . . 136
5.6 Elapsed running time using the specific approach of Chapter 2 . . 136

146



Bibliography

[1] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Com-
puter Science Applications. John Wiley and Sons, New York, 2002.

[2] M. Rausand, and A. Høyland. System Reliability Theory: Models, Statistical
Methods, and Applications. John Wiley and Sons, New Jersey, 2004.

[3] K. Kanoun, and M. Ortalo-Borrel. Fault-tolerant system dependability-
explicit modeling of hardware and software component-interactions. IEEE
Transactions on Reliability, 49(4):363–376, December 2000.

[4] W. H. Sanders. Construction and solution of performability models based on
stochastic activity networks. PhD thesis, University of Michigan, Michigan,
1988.

[5] W. H. Sanders, and J. F. Meyer. Reduced base model construction methods
for stochastic activity networks. IEEE Journal on Selected Areas in Com-
munications, 9(1):25–36, January 1991.

[6] D. Obal. Measure-adaptive state-space construction methods. PhD thesis,
University of Arizona, Arizona, 1998.

[7] M. Rabah, and K. Kanoun. Performability evaluation of multipurpose mul-
tiprocessor systems: the ”separation of concerns” approach. IEEE Transac-
tions on Computers, 52(2):223–236, 2003.

[8] C. Betous-Almeida, and K. Kanoun. Stepwise construction and refinement
of dependability models. In Proc. IEEE International Conference on De-
pendable Systems and Networks DSN 2002, Washington D.C., 2002.

[9] S. Bernardi, and S. Donatelli. Stochastic petri nets and inheritance for de-
pendability modelling. In Proceedings of the 10th IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC’04), pages 363–372,
March 2004.

147



[10] M. Balakrishnan, and K.S. Trivedi. Componentwise decomposition for
an efficient reliability computation of systems with repairable components.
In Int. IEEE Symp. Fault-Tolerant Computing (FTCS-25), pages 259–268,
1995.

[11] H. H. Ammar, and S. M. Rezaul Islam. Time scale decomposition of a class
of generalized stochastic petri net models. IEEE Transactions on Software
Engineering, 15(6):809–820, June 1989.

[12] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar. The stochastic
rendezvous network model for performance of synchronous client-server-
like distributed software. IEEE Transactions on Computers, 44(1):20–34,
January 1995.

[13] A. Bondavalli, M. Nelli, L. Simoncini, and G. Mongardi. Hierarchical mod-
elling of complex control systems: dependability analysis of a railway inter-
locking. International Journal of Computer Systems Science & Engineering,
4:249–261, 2001.

[14] I. Mura, and A. Bondavalli. Markov regenerative stochastic petri nets to
model and evaluate phased mission systems dependability. IEEE Transac-
tions on Computers, 50(12):1337–1351, December 2001.

[15] G. Ciardo, and K. S. Trivedi. A decomposition approach for stochastic petri
net models. In Proc. of the Fourth International Workshop on Petri Nets and
Performance Models (PNPM91), pages 74–83, December 1991.

[16] D. Daly. Analysis of connection as a decomposition technique. PhD thesis,
University of Illinois, Illinois, 2001.

[17] D. Daly, and W. H. Sanders. A connection formalism for the solution of
large and stiff models. In Proc. 34th Annual Simulation Symposium, pages
258–265, April 2001.

[18] P. Lollini, A. Bondavalli, and F. Di Giandomenico. Evaluation of the impact
of congestion on service availability in gprs infrastructures. In Lecture Notes
in Computer Science, number 3694, pages 180–195. M. Malek et al., 2005.

[19] S. Porcarelli, F. Di Giandomenico, A. Bondavalli, M. Barbera, and I. Mura.
Service level availability estimation of gprs. IEEE Transactions on Mobile
Computing, 2(3):233–247, 2003.

148



[20] P. Lollini, A. Bondavalli, F. Di Giandomenico, and S. Porcarelli. Congestion
analysis during outage, congestion treatment and outage recovery for sim-
ple gprs networks. In Proc. of the Ninth IEEE Symposium On Computers
And Communications (ISCC 2004), volume 2, pages 772–778, Alexandria,
Egypt, July 2004.

[21] S. Porcarelli, F. Di Giandomenico, P. Lollini, and A. Bondavalli. A modular
approach for model-based dependability evaluation of a class of systems.
In International Service Availability Symposium (ISAS), Munich, Germany,
May 2004.

[22] S. Porcarelli, F. Di Giandomenico, A. Bondavalli, and P. Lollini. Model-
based evaluation of a radio resource management system for wireless net-
works. In Computing Frontiers (CF), pages 51–59, Ischia, Italy, April 2004.

[23] P. Lollini, A. Bondavalli, and F. Di Giandomenico. A modeling methodology
for hierarchical control systems and its application. Journal of the Brazilian
Computer Society, Special Issue on Dependable Computing, 10(3):57–69,
2005.

[24] CAUTION++ IST Project. Capacity utilization in cel-
lular networks of present and future generation++.
http://www.telecom.ece.ntua.gr/cautionplus/.

[25] J. C. Laprie. Dependability - its attributes, impairments and means. In
H. Kopetz B. Littlewood J.C. Laprie, B. Randell, editor, Predictably De-
pendable Computing Systems, pages 3–24. Springer Verlag.

[26] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, January-March 2004.

[27] D. Avresky, J. Arlat, J. C. Laprie, and Y. Crouzet. Fault injection for formal
testing of fault tolerance. IEEE Transactions on Reliability, 45(3):443–455,
September 1996.

[28] G. Balbo. Introduction to stochastic petri nets. In Lectures on Formal Meth-
ods and Performance Analysis, volume 2090 of Lecture Notes in Computer
Science, pages 84–155. Springer Verlag, 2001.

[29] M. Nelli, A. Bondavalli, and L. Simoncini. Dependability modelling and
analysis of complex control systems: an application to railway interlocking.
In EDCC-2 European Dependable Computing Conference, pages 93–110,
Taormina, Italy, 1996.

149



[30] A. Bobbio, and K. S. Trivedi. An aggregation technique for the tran-
sient analysis of stiff markov chains. IEEE Transactions on Computers,
35(9):803–814, 1986.

[31] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and I. Mura. Depend-
ability modeling and evaluation of multiple-phased systems using deem.
IEEE Transactions on Reliability, 53(4):509–522, December 2004.

[32] D. Cox. A use of complex probabilities in theory of stochastic processes.
In Proc. of the Cambrige Philosophical Society, volume 53, pages 313–319,
1955.

[33] M. A. Marsan, G. Balbo, and G. Conte. A class of generalized stochastic
petri nets for the performance evaluation of multiprocessor systems. ACM
Transaction on Computer System, 2(2):93–122, 1984.

[34] M. K. Molloy. Performance analysis using stichastic petri nets. IEEE Trans-
action on Computers, 31:913–917, 1982.

[35] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modeling with Generalized Stochastic Petri Nets. J. Wiley, 1995.

[36] H. Choi, V. Kulkarni, and K. S. Trivedi. Markov regenerative stochastic petri
nets. Performance Evaluation, 20:337–356, 1994.

[37] M. A. Marsan, and G. Chiola. On petri nets with deterministic and expo-
nentially distribuited firing times. In Lecture Notes in Computer Science,
volume 266, pages 132–145. Springer Verlang, 1987.

[38] R. German. Transient analysis of deterministic and stochastic petri nets by
the method of supplementary variables. In Third International Workshop on
Modeling, Analysis, and Simulation On Computer and Telecommunication
Systems (MASCOTS), pages 394–398. IEEE Computer Society, 1995.

[39] A. Movaghar, and J. F. Meyer. Performability modelling with stochastic
activity networks. In Proc. of the Real-Time Systems Symposium, pages 215–
224, 1984.

[40] W. H. Sanders, and J. F. Meyer. Stochastic activity networks: Formal defini-
tions and concepts. In Lectures on Formal Methods and Performance Anal-
ysis, volume 2090 of Lecture Notes in Computer Science, pages 315–343.
Springer Verlag, 2001.

150



[41] W. H. Sanders, and J. F. Meyer. A unified approach for specifying measures
of performance, dependability and performability. In Dependable Comput-
ing for Critical Applications, volume 4 of Dependable Computing and Fault-
Tolerant Systems, pages 215–237. Springer Verlag, 1991.

[42] W. Van der Aalst, and T. Basten. Life-cycle inheritance: A petri-net based
approach. Application and Theory of Petri Nets, 1248:62–81, 1997.

[43] W. H. Sanders. Integrated frameworks for multi-level and multi-formalism
modeling. In Proc. the 8th International Workshop on Petri Nets and Perfor-
mance Models, pages 2–9, September 1999.

[44] C. Lindemann, A. Reuys, and A. Thümmler. The dspnexpress 2.000 per-
formance and dependability modeling environment. In Proc. of the 29th
Annual Int. Symp. on Fault-Tolerant Computing, pages 228–231, Madison,
Wisconsin, USA, June 1999.

[45] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. Greatspn 1.7:
Graphical editor and analyzer for timed and stochastic petri nets. Perfor-
mance Evaluation, 24(1-2):47–68, November 1995.

[46] C. Béounes et al. Surf-2: A program for dependability evaluation of complex
hardware and software systems. In Proc. of the 23rd Int. Symp. on Fault-
Tolerant Computing, pages 668–673, Toulouse, France, 1993.

[47] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli, and F. San-
drini. Deem: a tool for the dependability modeling and evaluation of multi-
ple phased systems. In Proc. of the Int. Conference on Dependable Systems
and Networks (DSN2000), pages 231–236, New York, USA, June 2000.

[48] R. German, C. Kelling, A. Zimmermann, and G. Hommel. Timenet: A
toolkit for evaluating non-markovian stochastic petri-nets. Performance
Evaluation, 24:69–87, 1995.

[49] W. H. Sanders, W. D. Obal II, M. A. Qureshi, and F. K. Widjanarko. The
ultrasan modeling environment. Performance Evaluation, 24(1):89–115,
1995.

[50] K. K. Goswami, and R. K. Iyer. A simulation-based environment for sys-
tem level dependability analysis. IEEE Trans. on Computers, 46(1):60–74,
January 1997.

[51] M. Sridharan, S. Ramasubramanian, and A. K. Somani. Himap: Architec-
ture, features, and hierarchical model specification techniques. In Lecture

151



Notes in Computer Science, number 1469, pages 348–351. R. Puigjaner, N.
N. Savino, and B. Serra, 1998.

[52] R. M. L. R. Carmo, L. R. de Carvalho, E. de Souza e Silva, M. C. Diniz, and
R. R. R. Muntz. Tangram-ii: A performability modeling environment tool.
In Lecture Notes in Computer Science, number 1245, pages 6–18. R. Marie,
B. Plateau, M. Calzarossa, and G. Rubino, 1997.

[53] R. J. Pooley. The integrated modelling support environment: A new genera-
tion of performance modelling tools. In Proc. of the 5th International Con-
ference in Computer Performance Evaluation: Modelling Techniques and
Tools, pages 1–15, Torino, Italy, February 1991. G. Balbo and G. Serazzi.

[54] R. Fricks, C. Hirel, S. Wells, and K. Trivedi. The development of an inte-
grated modeling environment. In Proceedings of the World Congress on Sys-
tems Simulation (WCSS ’97), pages 471–476, Singapore, September 1997.

[55] Aad P. A. van Moorsel and Yiqing Huang. Reusable software components
for performability tools, and their utilization for web-based con guration
tools. In Proceedings of the 10th International Conference in Computer Per-
formance Evaluation: Modelling Techniques and Tools, pages 37–50, Palma
de Mallorca, Spain, September 1998. R. Puigjaner, N. N. Savino, and B.
Serra.

[56] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, and V. Vittorini.
Drawnet++: Model objects to support performance analysis and simulation
of complex systems. volume 2324 of Lecture Notes in Computer Science,
pages 233–238. Springer Verlag, April 2002.

[57] K. S. Trivedi. Sharpe 2002: symbolic hierarchical automated reliability and
performance evaluator. In IEEE Int. Conference on Dependable Systems and
Networks (DSN 2002), page 544, Washington, DC, 2002.

[58] G. Ciardo, and A. S. Miner. Smart: Simulation and markovian analyzer
for reliability and timing. In IEEE International Computer Performance
and Dependability Symposium (IPDS’96), page 60, Urbana-Champaign, IL,
USA, September 1996. IEEE Comp. Soc. Press.

[59] F. Bause, P. Buchholz, and P. Kemper. A toolbox for functional and quanti-
tative analysis of deds. In Lecture Notes in Computer Science, number 1469,
pages 356–359. R. Puigjaner, N. N. Savino, and B. Serra, 1998.

[60] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. Houstis,
J. Rice, R. Sakellariou, D. Sundaram-Stukel, P. J. Teller, and M. K. Vernon.

152



Poems: End-to-end performance design of large parallel adaptive computa-
tional systems. IEEE Transactions on Software Engineering, Special Section
of invited papers from the WOSP ’98 Workshop, 26(11):1027–1048, Novem-
ber 2000.

[61] D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H. Sanders.
Möbius: An extensible tool for performance and dependability modeling.
In 11th International Conference, TOOLS 2000, volume Lecture Notes in
Computer Science, pages 332–336, Schaumnurg, IL, 2000. B. R. Haverkort,
H. C. Bohnenkamp, and C. U. Smith (Eds.).

[62] A. Christensen. Result specification and model connection in the möbius
modeling framework, 2001. (master thesis).

[63] GSM 04.60 version 8.3.0 Release 1999 ETSI. Digital cellular telecommuni-
cation system (phase 2+); general packet radio service (gprs); mobile station
(ms)- base station system (bss) interface; radio link control/medium access
control (rlc/mac) protocol.

[64] Chang-Yu Wang, D. Logothetis, K. S. Trivedi, and I. Viniotis. Transient
behavior of atm networks under overloads. In Proc. of the Fifteenth An-
nual Joint Conference of the IEEE Computer Societies, Networking the Next
Generation (INFOCOM ’96), volume 3, pages 978–985, March 1996.

[65] S. Porcarelli. Analysis and Modeling of Dependability and Performability of
Telecommunication Systems. PhD thesis, University of Pisa, Italy, 2003.

[66] I. Mura, and A. Bondavalli. Hierarchical modeling and evaluation of phased-
mission systems. IEEE Transactions on Reliability, 48(4):360–368, Decem-
ber 1999.

[67] V. Mainkar, and K. S. Trivedi. Sufficient conditions for existence of a fixed
point in stochastic reward net-based iterative models. IEEE Transactions on
Software Engineering, 22(9):640–653, September 1996.

[68] W. K. Grassmann. Finding transient solutions in markovian event systems
through randomization. Numerical Solution of Markov Chains, pages 357–
371, 1991.

153


