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RECENT PROGRESS ON

PARTICLE TRAJECTORIES IN STEADY WATER WAVES

MATS EHRNSTRÖM AND GABRIELE VILLARI

Abstract. We survey recent results on particle trajectories within steady two-

dimensional water waves. Particular emphasis is placed on the linear and exact
mathematical theory of periodic and symmetric waves, and the effects of a
(possibly rotational) background current. The different results vindicate and
detail the classical Stokes drift, and also show the transition of orbits when
waves propagate into running water. The classical approximation, depicting
the trajectories as closed ellipses, is shown to be a mathematical rarity.
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2 EHRNSTRÖM AND VILLARI

Figure 1. The first approximation of particle trajectories in linear
water waves. A is in deep water, B in shallow; 1, 2 and 3 denote
the direction of the wave, the crest, and the trough, respectively.
The picture is taken from [45], and is licensed under the GNU Free
Documentation License.

1. Introduction. Given that the study of wave motion is one of the oldest, largest
and most active fields of science, it is remarkable that the most wide-spread image
of the motion within water waves is erroneous. It holds that the particles within
periodic wave-trains travelling across the sea move in closed orbits, elliptic or cir-
cular depending on the depth (see Figure 1). Since such waves move with more or
less steady shape and speed, this may at first come as a surprise. A wave, however,
is not the water through which it is travelling.

Indeed, in one of the few explicit solutions of the exact water wave problem, all
particles move in closed circles [6, 25]. Constructed in 1809 by Gerstner [22], this
example has provided good support for the notion of closed particle trajectories. It
has also been extended to three-dimensional edge-waves with circular particle paths
[46, 5]. Moreover, taking the first approximation of linear water waves, the same
circular/elliptic pattern is obtained. That approach is a standard part of text-books
on fluid dynamics (e.g. [31, 2, 33]), and the resulting picture is widespread [45].

The survey at hand has come about as a result of recent progress in the under-
standing of particle paths within progressive water waves. These results decisively
point to the fact that the full picture is much more complicated than the circu-
lar approximation suggests, and that the case of closed orbits is a rarity rather
than a general pattern. That the notion of closed orbits persists is surprising, es-
pecially when one considers that already in 1847 Stokes presented a geometrical
argument for a net mass drift [39]. Notable work was later done by Ursell [40] and
Longuet-Higgins [34, 35] in order to improve upon Stokes’ argument. The work
by Longuet-Higgins also encompasses many related papers. Nevertheless, judging
from the subsequent mathematics literature much of this work unfortunately never
reached a wider audience (or at least was not given proper attention).

In 2005 a reignition of this research area was sparkled by the then preprint of
[17]. In that paper the authors took a new approach towards these matters. It was
proved that even within the linear regime, the forward drift is obtained (the size of
the drift is superlinear, but it arises already in the linear approximation). A lot of
work followed, from which three main themes are discernible: the investigation of
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different types of waves and wave equations, the detailed study of orbits in exact
water waves, and the incorporation of background currents and vorticity.

The aim of this survey is to describe the analytical progress that has been made
in those recent years. In particular, we shall see that both the generality and
the details of the theory has been advanced. That said, there is also other work
on these matters, most of it in the physical and fluid-dynamics literature. The
interested reader may for example consult [3, 4, 47]. While those investigations are
in line with the analytical results, some of the recent mathematical findings cover
cases which are new, or at least not well-investigated, from a more applied point of
view. Similarly, many of the applied studies on mass-drift do not lend themselves
to analytical studies.

The disposition is presented in the table of contents on page 1, wherefrom we
hope that the reader shall be able to find the part that mostly interests him. As
much as possible, the same notation and conventions have been used throughout the
different sections. In this way one should be able to quickly jump from one setting
to another. Since the notation may therefore differ from the original papers, we
have tried to explain the differences in the cases when the they could possibly lead
to misunderstandings. Last but not least: no survey can be complete. If—in spite
of our efforts to cover this part of the field—we have mistakenly missed some recent
contribution, we apologize. A more comprehensive survey, including also numerical
and experimental work, would be most welcome.

2. The governing equations.

2.1. Physical background. The setting is that of two-dimensional waves, i.e. we
consider a cross-section of the flow perpendicular to the crest line. Choose Cartesian
coordinates (x, y) with the y-axis pointing vertically upwards and the x-axis being
the direction of wave propagation, with the origin at the average surface height. Let
(u(t, x, y), v(t, x, y)) be the velocity field of the flow, and y = η(t, x) the water’s free
surface. For waves propagating over a flat bed at y = −d ∈ R, we let h := d > 0
denote the depth, while for for deep-water waves (for which d = ∞), we set h := 1.
This is a notational convention which enables a single framework throughout the
presentation. Homogeneity (constant density) is a physically reasonable assumption
for water waves [33], and it implies the equation of mass conservation

ux + vy = 0 (2.1a)

throughout the fluid. Appropriate for gravity waves is also the assumption of invis-
cid flow [33], so that the equation of motion is Euler’s equation

ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,
(2.1b)

where P (t, x, y) denotes the pressure and g is the gravitational constant of accel-
eration. In addition to gravity we include the effects of surface tension. The free
surface decouples the motion of the water from that of the air so that the dynamic
boundary condition

P = P0 −
αηxx

(1 + η2
x)

3/2
on y = η(t, x), (2.1c)

must hold. Here α > 0 is the capillarity constant, and P0 is the constant atmospheric
pressure [31] . Moreover, since the same particles always form the free surface, we
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have the kinematic boundary condition

v = ηt + uηx on y = η(t, x). (2.1d)

The fact that water cannot penetrate the rigid bed at y = 0 yields the other
kinematic boundary condition,

v = 0 on y = −d, (2.1e)

which for deep-water waves (2.1e) is exchanged for

(u, v) → (0, 0) uniformly as y → −∞. (2.1f)

The vorticity, ω, of the flow is captured by the curl,

vx − uy = ω. (2.1g)

The equations (2.1) govern the motion within two-dimensional inviscid water waves
of constant density.

2.2. Non-dimensionalization. To non-dimensionalize we introduce scaling pa-
rameters. Let a denote the typical amplitude. For periodic waves we denote by λ
the typical wavelength. The approximate speed of irrotational long waves [31],

√
gh,

shall be the scale of the horizontal velocity. In addition, c denotes the wave speed,
and we let

c 7→ c√
gh

be the starting point of the non-dimensionalization:

x 7→ x

λ
, y 7→ y

h
, t 7→

√
gh t

λ
, u 7→ u√

gh
, v 7→ λ v

h
√
gh
, η 7→ η

a
.

Having made these transformations, define furthermore a new pressure function,
p(t, x, y), by the equality

P =: P0 + gh(p− y).

Here −ghy is the hydrostatic pressure distribution, describing the pressure change
within a stationary fluid; the new variable p thus measures the pressure perturbation
induced by a passing wave. Natural scalings for the vorticity and the capillarity are
given by the mappings

ω 7→
√

h

g
ω, and α 7→ α

ghλ2
.

The water wave problem (2.1) then transforms into the equations

ux + vy = 0,

ut + uux + vuy = −px,

vt + uvx + vvy = −λ
2

h2
py,

h2

λ2
vx − uy = ω,

(2.2a)

valid in the fluid domain − d
h < y < a

hη, and

v =
a

h
(ηt + uηx),

p =
a

h

(

η − αηxx

(

1 +
a2

h2

η2
x

λ2

)−3/2
)

,
(2.2b)
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valid at the surface y = a
hη, in conjunction with one of the boundary conditions

(2.1e) and (2.1f), for finite (y = −1) and infinite (y = −∞) depth , respectively.
Here appear naturally the parameters

ε :=
a

h
, δ :=

h

λ
,

called the amplitude parameter, and the shallowness parameter, respectively. Small
δ models long/shallow water waves, and small ε models a small disturbance of the
underlying flow.

The next step is to restrict attention to steady (or travelling) waves. They
are characterized by a space-time dependence of the form x − ct in the original
variables, corresponding to λ(x−ct) in the equations (2.2). The change of variables
(x, y) 7→ (x − ct, y) yields the problem

ux + vy = 0,

(u− c)ux + vuy = −px,

(u− c)vx + vvy = −py

δ2
,

δ2vx − uy = ω,

(2.3a)

valid in the fluid domain − d
h < y < εη,

v = ε(u− c)ηx,

p = ε

(

η − αηxx

(

1 +
ε2

λ2
η2

x

)−3/2
)

(2.3b)

valid at the surface y = εη. In addition,

v = 0 at y = −1, (2.3c)

in the case of finite depth, which for deep-water waves is replaced by (2.1f).

3. Mathematical formulations. In this section we deduce from the non-dimen-
sionalized steady water-wave problem (2.3) the different mathematical models that
shall follow us through our analysis. In Subsection 3.1 we consider what happens
when the small-amplitude parameter ε, and the shallowness parameter δ, respec-
tively, are infinitesimally small. This yields us linear equations on finite and infinite
depth, as well as linearized shallow water-wave equations, which can all be solved on
the level of the velocity field. In Subsection 3.2 we introduce two alternative formu-
lations to the governing equations (2.3). These are both based on the streamlines,
being integral curves in the steady frame.

3.1. Small-amplitude and shallow-water waves. To enable the study of ex-
plicit solutions, we shall study perturbations of laminar flows (characterized by a
flat surface η = 0). Assuming that the vorticity is constant, (2.3) yields the one-
parameter family of laminar flows,

U(y;κ) := κ− ωy, (3.1)

with η = 0, p = 0, v = 0. By writing a general solution as a perturbation of such a
solution U , i.e.

u = U + εũ, v = εṽ, p = εp̃,
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dropping the tildes, and letting ε→ 0, we obtain the linearized problem

ux + vy = 0, −d/h < y < 0,

(U − c)ux + vUy = −px, −d/h < y < 0,

δ2(U − c)vx = −py, −d/h < y < 0,

v = (U − c)ηx, y = 0,

p = η − αηxx, y = 0,

(3.2)

valid for y = 0. This is the linearization found in [17] for irrotational gravity waves,
[8] for the corresponding deep-water waves, [24] when also capillarity is added, and
[20] for gravity waves over finite depth with constant vorticity. Since the original
wavelength λ and the original amplitude a have both been non-dimensionalized
to unit length, a natural Ansatz is η(x) = cos (2πx) . That allows for solutions
(u, v, p, η) of (3.2) in closed form. In particular, for deep-water irrotational waves
the velocity field is given by

u(x, y) = 2πδc cos(2πx) exp(2πδy),

v(x, y) = 2πc sin(2πx) exp(2πδy),
(3.3a)

where the wave speed fulfills the dispersion relation

c =
1√
2πδ

=

√

λ

2π
. (3.3b)

Notice that capillarity does not influence the form of the linearized velocity field.
The same is true for a shear flow: the pressure is influenced but not the linearized
steady velocity field per se. Thus, for waves over finite depth with constant vorticity,
we have

u(x, y) =
2πδcκ,ω

sinh(2πδ)
cos (2πx) cosh (2πδ(y + 1)) ,

v(x, y) =
2πcκ,ω

sinh(2πδ)
sin (2πx) sinh (2πδ(y + 1)) ,

(3.4a)

where cκ,ω := (c− κ+ ω), and it is required that

cκ,ω

(

2πδcκ,ω coth(2πδ) − ω
)

= 1. (3.4b)

It can be seen that the limit of (3.4) as δ → 0 is well-defined, yielding shallow-water
waves which are solutions of (3.2) for infinitesimally small δ:

u(x, y) = cκ,ω cos (2πx) ,

v(x, y) = 2πcκ,ω sin (2πx) (y + 1).
(3.5a)

with the dispersion relation

(c− κ+ ω)(c− κ) = 1. (3.5b)

Those were studied in [28, 29].

Remark 3.1. The approach here adopted is slightly different than that of [28, 29].
For the sake of a uniform framework within this survey there is a running stream
(3.1) to which a linear disturbance is added. That method is the same as in [20, 32],
and in the limit ε → 0 it yields a perfect match with the quantities κ and ω for
exact water waves [14, 16, 44]. In the investigations [28, 29] the linearization is
around still water, and the uniform current as well as the vorticity are both parts
of the small disturbance. The dispersion relation |c| = 1 found in [28] is therefore
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completely in line with (3.5b), since it is the result of a linearization around still
water for which κ = ω = 0.

3.2. The streamfunction and height formulations. In this section we consider
typical gravity water waves, whence we set ε = 1, δ = 1, and α = 0. We let Ωη

denote the fluid domain and define it as the interior of its boundary

∂Ωη := {y = −d/h} ∪ {x, η(x))}x∈R.

Since the velocity is divergence-free, we may then introduce a stream function ψ,
defined (up to a constant) by

ψx := −v, ψy := u− c. (3.6)

Provided that

u− c = ψy ≤ −µ < 0, (3.7)

the problem (2.3) can be transformed into a nonlinear elliptic problem for the stream
function [13]. A solution of the water wave problem is then defined as a function
ψ ∈ C2(Ωη) such that

∆ψ = −ω(ψ), (x, y) ∈ Ωη

|∇ψ|2 + 2gy = C, y = η(x)

ψ = 0, y = η(x)

(3.8a)

which in addition satisfies

ψ = −p0 at y = −1, (finite depth)

∇ψ → (0,−c) uniformly as y → −∞ (infinite depth)
(3.8b)

In (3.8) p0 is called the relative mass flux, the vorticity function ω : [0,−p0] → R is
continuously differentiable, g > 0 is the gravitational constant, and C is a constant
related to the energy.

The problem (3.8) includes periodic as well as solitary waves. When the period is
finite it we shall consider the period L := 2π, while for solitary waves we define the
period to be infinite, L := ∞. In both cases we shall require η(0) = maxx∈R{η(x)}
to be the vertical coordinate of the crest, unique within a period, and that

η(x) = η(−x), and η′(x) < 0 for x ∈ (0, L/2). (3.9)

For large classes of waves, this a priori guaranteed. For example, in the absence of
stagnation points, the assumption (3.9) holds if the surface profile is monotone from
trough to crest [36, 10, 11, 9, 18], or if every streamline attains its minimum below
the trough [27]. Notice, however, that (3.9) might hold even when (3.7) does not
(cf. [44]). The system (3.8) is the streamfunction formulation of the water wave
problem, and its periodic solutions fulfilling (3.9) are called Stokes waves. This
expression is usually reserved for the case whithout vorticity, but to emphasize this
fact we shall write irrotational Stokes waves.

It is often convenient to work in a fixed domain. A partial hodograph transform
converts the free boundary problem (3.8) into a problem with a fixed boundary.
The new space variables are

q := x, p := −ψ, (3.10)

with the corresponding fixed domain

Ω :=
{

(q, p) ∈ R
2 : p0 < p < 0

}

,
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where, consistent with (3.8), we have set p0 := − limy→−d ψ(x, y) < 0. Let us then
introduce a height function

h(q, p) := y(q, p) + const.

The inequality (3.7) guarantees that (3.10) is a local change of variables, and we
have

hq = −ψx

ψy
=

v

u− c
, hp = − 1

ψy
=

1

c− u
.

The local coordinate transform (3.10) is actually a global change of variables [13],
and we may transform the problem (3.8) into these variables to obtain

(1 + h2
q)hpp − 2hphqhpq + h2

phqq + ω(−p)h3
p = 0 for p ∈ (p0, 0),

1 + h2
q + (2gh−Q)h2

p = 0 on p = 0,
(3.11a)

Here Q > 0 is determined by the constant C in (3.8), and the height function
h ∈ C2(Ω). Since for any physical solution the derivative hp is strictly bounded away
from zero, the first equation in (3.11) is uniformly elliptic. In the case of finite depth,
if one lets h := y + d be the height above the flat bottom, then h(q, 0) = η(q) + d.
For deep-water waves it is suitable to use h(q, p) := y(q, p) −Q/(2g). We then get
the additional boundary condition(s):

h = 0 at p = p0, (finite depth)

∇h→ (0, 1/c) uniformly as p→ −∞ (infinite depth)
(3.11b)

As assumed above, the height function h is of period L in the q-variable, with (cf.
(3.9))

h(q, 0) = h(−q, 0), and hq(q, 0) < 0 for q ∈ (0, L/2). (3.12)

We investigate (3.11) in the fixed, possibly infinite, rectangle

R := (−L/2, L/2)× (p0, 0).

The equations (3.11) constitute the height formulation of the water-wave problem.

4. Streamlines — particle trajectories in a steady frame. This section is
devoted to streamlines, and we consider separately the cases of linear, shallow linear,
and exact waves. Since, as we shall see in Section 5, the streamlines virtually
determines the particle paths, a thorough understanding of the former is often the
key to understanding the latter.

4.1. Linear theory. Recall that in the original physical variables, we have (ẋ, ẏ) =
(u, v). Thus, if

(X(t), Y (t)) := (kx(t) − ft, ky(t)),

are the corresponding steady variables (here f = kc is the frequency), it follows
that

(Ẋ, Ẏ ) = (kẋ− f, ky).

Using this transformation one obtains the following dynamical system for (3.3a):

Ẋ = M(ε) cos(X) exp(Y ) − f,

Ẏ = M(ε) sin(X) exp(Y ),
(4.1)

where M depends linearly on the small amplitude parameter ε. While the exact
solution of this system remains unknown, it can be studied with methods from the
theory of dynamical systems. In[8] the phase-portrait for (4.1) was deduced (see
Figure 2). Similar methods had previously been used for the case of finite depth
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Figure 2. Qualitative phase portraits for linear steady water
waves. Left: irrotational waves over infinite and finite depth.
Right: waves with negative vorticity.

[17], and later also in the presence of capillarity [24] and a linear background current
(constant vorticity) [20]. That is, when κ = 0 in (3.1), a transformation as above
yields the dynamical system

{

Ẋ(t) = M(ε) cos (X) cosh (Y ) − ωY − f

Ẏ (t) = M(ε) sin (X) sinh (Y ) .
(4.2)

Albeit different from the case when ω = 0, a study of this system yields that when
the vorticity is positive, the qualitative behaviour of the streamlines is the same as
for the irrotational waves depicted to the left in Figure 2. If, however, the vorticity
is negative and large enough, then a totally new situation may arise (cf. Figure 2,
right). The reason for this is the dispersion relation (3.4b), which allows for two
different signs of the modified speed cκ,ω. In the physical variables (3.4b) reads as

c− κ
√

gh+ hω =
1

2k

(

ω tanh (kh) ±
√

4gk tanh (kh) + ω2 tanh2 (kh)

)

, (4.3)

so that, depending on the background flow, there may be a minus sign in front of
the square root. When κ = 0 we thus have the following result summarizing the
results for linear waves (cf. [8, 20]):

Proposition 4.1. For linear irrotational deep-water waves (4.1), and linear water
waves over finite depth (4.2) with nonnegative vorticity, the qualitative phase por-
trait is depicted to the left in Figure 2, while for (4.2) with negative vorticity and
small amplitude a << 1 it is given to the right in Figure 2. In the latter case the
crest is at X = 0 for hω > −c, while for hω < −c the crest is at X = π.

4.2. Small-amplitude shallow-water waves. If one instead applies the change
of variables

X(t) := 2πx

(

(c− κ)t

2π

)

, Y (t) := y

(

(c− κ)t

2π

)

+ 1,
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0 p0p-

0,5

0

1,5

p-p 0

Figure 3. The explicit steady form of small-amplitude shallow-
water waves with an affine background current. Left: Λ = 2. Right:
Λ = −2.

to the linearized shallow water-wave solutions (3.5), they can be written in the
steady form

Ẋ = cos(X) − c(c− κ),

Ẏ = Y sin(X).

The term c(c−κ) is due to the fact that (u, v) is the first time-derivative of the phys-
ical space variables. In this reference frame the streamlines (X(t), Y (t)) depends
only on the parameter Λ := c(c−κ), and for initial data (X(0), Y (0)) = (0, Y0) they
can be explicitly calculated as

X(t) = −2 arctan

(√
Λ2 − 1

1 + Λ
tan

(√
Λ2 − 1

2
t

))

,

Y (t) =
Y0

1 + Λ

(

Λ − 1 + 2 cos2

(√
Λ2 − 1

2
t

))

.

(4.4)

Although the formula for X(t) is local in nature—it has jump-discontinuities of size
2π—it can easily be globally extended in time. The formula for Y (t) is global in
time, and it is immediate that unless Λ2 ≥ 1, the solutions become arbitrarily large.
Hence, the physical intepretation of these solutions implies that

|c(c− κ)| ≥ 1.

For such waves, one sees from (4.4) that X(t) is strictly monotone, Y (t) a perturbed
cos-function, and the system describes a slightly perturbed graph y = cos2 x for
Λ > 1 (y = π + cos2 x for Λ < 1). Two examples of such orbits (X,Y ) are given in
Figure 3.

4.3. Exact theory. Let (x, σ(x)) denote the parametrization of a (general) stream-
line

{(x, y) : ψ(x, y) = −p}.
Notice that since ψy < 0 the above definition is sensible, and we have

σ′(x) = −ψx(x, σ(x))

ψy(x, σ(x))
= hq(q, p).

In the exact theory, obtaining detailed information about the streamlines themselves
is very difficult. For symmetric waves away from stagnation, the picture so far fits
with the linear case:

Proposition 4.2. Every streamline satisfies σ′ < 0 for x ∈ (0, π), and the maximal
steepness of the streamlines is a strictly monotone function of depth. For negative
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vorticity the surface can be bounded below by a parabola, and for irrotational waves
the surface is convex below a horizontal line.

The first result comes from a maximal principle established in [13]; an observation
from [19] then yields that the steepness is monotone with respect to depth. In [41]
the convexity result for irrotational deep-water waves was proved. If, as in our case,
the wave is symmetric with a monotone surface profile between crest and trough,
then the surface is convex between the points on the surface where |∇ψ| = 1. In [42]
the same author furthermore proved that for non-positive vorticity, the horizontal
velocity decreases strictly from crest to trough along the surface:

Dxu(x, η(x)) ≤ 0 for x ∈ (0, π). (4.5)

In that case one can bound the surface from below by a parabola [19]. Let ν :=
g/(C − 2gη(0)) = g/(c− u(0, η(0)))2. Then, for all x ∈ (0, π), we have that

η′′(x) ≥ −ν, η′(x) ≥ −νx, and η(x) ≥ η(0) − 1
2νx

2.

Remark 4.3. Proposition 4.2 hold for a large class of waves. It should however
be noted that there exist also other types of solution to the periodic water-wave
problem (3.8). Those include waves with closed streamlines [44], waves with a peak
of angle 2π/3 [1, 43], and waves with that same kind of peak that additionally
have a convex surface between the adjacent crests [37]. Those waves all share the
property that ∇ψ vanishes at some point; the presence of such stagnation points
has been excluded in our analysis.

5. The drift of particles. The main idea linking particle trajectories to the steady
formulations of the problem was described in [17]. Since that approach is valid for
both linear and exact waves over finite as well as infinite depth, and since the results
surveyed in this section are the same for all those waves, we shall in this section
make no difference between the different kinds of waves (except when explicitly
stated).

Let (x(t), y(t)) be any physical trajectory, so that

(X(t), Y (t)) = (x(t) − ct, y(t))

is the corresponding path along a streamline in the steady variables. We have
Ẋ(t) = u − c ≤ −δ < 0. Thus (X(t), Y (t)) passes any X ∈ R, and there is no loss
of generality in choosing X(0) = π. We may also define τ through

X(τ) := −π.

The following lemma (proved below, but see also [17]) then essentially reduces the
investigation of particle paths to a certain time in the steady reference frame.

Lemma 5.1. A physical particle trajectory is closed if and only if τ = 2π/c. If
τ > 2π/c, then the particle displays a mean forward drift, and contrariwise.

The main and consistent finding throughout the literature is the following:

Proposition 5.2. Assume that the mean horizontal velocity over a period vanishes
as y → −d. For waves with nonpositive vorticity we have that τ > 2π/c, and the
particles thus display a forward drift.
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This proposition covers a lot of different settings, some of which will be dealt
with in detail below. The fact that Ẋ is strictly negative implies a one-to-one
correspondence between time and horizontal displacement, and we note that

τ = −
∫ π

−π

dX

Ẋ
=

∫ π

−π

dX

c− u
, (5.1)

where the integration is along the streamline (X,Y (X)) corresponding to (X(t), Y (t)).
Thus, to describe particle paths, one needs to understand what happens with the
horizontal velocity along streamlines, and in particular to evaluate the integral in
(5.1) in comparison to 2π/c. After presenting the elementary, but important, proof
of Lemma 5.1, we shall return to the evaluation of τ in different contexts.

Proof of Lemma 5.1. Since

σ′ =
v

u− c
=
Ẏ

Ẋ
,

the streamlines describe the flow of the particles in the steady reference frame. By
symmetry we thus have Y (τ) = Y (0). It moreover follows from Proposition 4.2 that
Y (0) is the lowest point of the trajectory, attained below the trough, and in view

of symmetry Y (τ/2) is the highest, attained below the crest. In between Ẏ (t) 6= 0.
Hence

Y (T ) = Y (0) implies X(T )−X(0) = 2πn,

for some n ∈ Z. In particular n = −1 for T = τ .
Returning to the physical variables, this means that any new time a particle

(x(t), y(t)) attains its lowest (or highest) position it has moved a distance of

x(τ) − x(0) = cτ − 2π

units in the horizontal direction. We infer that a physical particle trajectory is
closed if and only if τ = 2π/c. We also see from this reasoning that if τ > 2π/c,
then the particle displays a mean forward drift, and contrariwise.

5.1. The irrotational case with no background current. The following result
holds for irrotational waves adhering to Stokes’ definition of wave speed (i.e. with a
vanishing mean of the horizontal velocity along any horizontal line within the fluid,
cf. (5.2) and (5.3)).

Proposition 5.3. All fluid particles display a forward drift. The forward drift is
strictly decreasing with depth, and for deep-water waves it vanishes as y → −∞.

A proof of the forward drift for exact waves was given in [7]. A variant of that
proof (but with vorticity and background current) will be presented in the next
subsection. For linear waves, what complicates the calculation of τ through the
formula (5.1) is that Y varies with X in a way not explicitly known (except from
the case of shallow-water waves, cf. (3.5)). The trick in the linear case is to compare
the streamline given by Y (X) with the horizontal line passing through Y (π/2). One
then gets that

{

Y (X) > Y (π/2), X ∈ (0, π/2),

Y (X) < Y (π/2), X ∈ (π/2, π).

This enables the elimination of Y (X), and it is the main ingredient in the two
different variants of proofs for the forward drift for linear waves [17, 8].

For linear waves the proof of the monotonicity comes from [8], whereas for exact
waves it was later proved in [16] and [19] using different methods. There are proofs
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for this also in [40] and [34], the latter simplifying the proof from the first. There,
however, the conclusion is drawn that the drift could be negative at the bottom,
a possibility that is proved to be impossible by the modern analysis. In any case,
in the investigations [16] and [19] the monotone increase of the forward drift is a
consequence of a much stronger property (see Lemma 6.2), for which we know of
no earlier evidence.

5.2. Adding vorticity and a background current. For very natural reasons,
the results for rotational waves and waves with a uniform background current are
less transparent. We do not aim at giving a complete description of the motion
within such waves, but a general understanding of how the different quantities
influence the drift and motion of the fluid particles. To this aim, we shall use
the exact theory for Stokes waves, but in the presence of vorticity and a constant
background flow. For a more complete description of small-amplitude waves with
vorticity cf. [20, 44], and for small-amplitude shallow-water waves with vorticity
and background flow [28, 29]. The analysis here presented is based on [7], with
appropriate elements from [19] (vorticity) and [16] (background flow). The results
are captured in Lemma 5.4 and Corollary 5.5, and essentially state that the forward
drift is preserved for positive background flow and negative vorticity.

To denote an orbit in the steady variables we write

γσ(t) := (x(t), σ(x(t))),

corresponding to a physical trajectory

Γσ(t) := γσ(t) + (ct, 0).

Then let

uσ(x) := u(x, σ(x)) and κσ :=
1

2π

∫ π

−π

uσ(x) dx. (5.2)

Traditionally, one has assumed that the mean horizontal velocity vanishes at the
flat bed, and at great depths for deep-water waves. In other words, it has been
required that

κ := lim
σ→−d/h

κσ (5.3)

vanishes. This is a consequence of Stokes’ definition of wave speed, which, for irrota-
tional waves, holds that the mean horizontal velocity vanishes along any horizontal
line beneath the surface. In [16] the authors generalizes this notion, and let κ denote
a uniform background current. Before adding vorticity, let us investigate how τ as
above relates to κ.

Lemma 5.4. Within the fluid domain of an irrotational Stokes wave holds

τσ ≥ 2π

c− κσ
>

2π

c− κ
.

In particular, the particles display a forward drift whenever κ ≥ 0.

Proof of Lemma 5.4. According to Young’s inequality, we have

1 ≤ 1

2

(

c− uσ

c− κ
+

c− κ

c− uσ

)

,

which after integration from x = −π to x = π reads as

2π ≤ π +
(c− κσ)τσ

2
.
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Hence τσ ≥ 2π
c−κσ

. Too see that κσ ≥ κ, let

F (σ) :=

∫ π

−π

(c− uσ)
(

1 + σ′2
)

dx,

and, for two streamlines γσ1
and γσ2

,

Σ := {(x, y) : − π < x < π, σ1(x) < y < σ2(x)} .
According to the Divergence theorem we have

0 =

∫

Σ

∇ · ∇ψ dA =

∫

γσ1

∇ψ · ∇ψ
|∇ψ| ds−

∫

γσ1

∇ψ · ∇ψ
|∇ψ| ds

=

∫ π

−π

(

|∇ψσ1
|
√

1 + σ′

1
2 − |∇ψσ2

|
√

1 + σ′

2
2

)

dx

=

∫ π

−π

(

(c− uσ1
)
(

1 + σ′

1
2
)

− (c− uσ2
)
(

1 + σ′

2
2
))

dx.

(5.4)

By letting σ1 → −d/h we obtain that F (σ) ≡ 2π(c − κ). That κσ ≥ κ is then a
consequence of that F (σ) ≥

∫ π

−π(c− uσ) dx = 2π(c− κσ).

The effect of κ is very intuitive: since it describes a background current moving
in the same direction as the wave, its positivity implies that the particles are moving
faster forward than for a vanishing κ. It turns out that a similar relationship is valid
for the vorticity:

Corollary 5.5. If the vorticity is nonpositive, then the assertions of Lemma 5.4
still hold.

Proof. Notice that the proof of Lemma 5.4 is actually based on the fact that F (σ2) ≤
F (σ1) in (5.4). When vortiticity is present, the calculation (5.4) yields that

−
∫

Σ

ω(ψ) dA = F (σ1) − F (σ2),

so that F (σ2) ≤ F (σ1) whenever ω ≤ 0.

When κ < 0 or when ω > 0 things are more complicated. This is so since not
only is the current working against the wave, but in a nonuniform way. Recall also
that the undisturbed forward drift itself is not uniform. For large enough κ < 0
and/or ω > 0, one obtains particles with a backward drift [16, 20, 29], but the
complete picture—especially for a general vorticity distribution—remains an open
problem.

6. The particle paths. The relation between streamlines and physical variables,
X = k(x−ct) and Y = ky, essentially enables us to pass from streamlines to particle
paths: the particle orbits are just ct-disturbances of the streamlines. But what is
c?

The issue is that c could be just about anything. This is most easily seen from
the governing equations (2.3), since one could always add a constant to u and
subtract it from c. It is also evident from the dispersion relation (4.3): even when
all other physical variables are fixed, c depends on the background current κ in
an arbitrarily way. One could deal with this in two ways: either normalize κ, or
accept that it could be any real number. For irrotational waves, Stokes’ definition
of the wave speed means prescribing κ = 0 (as described in relation to (5.2)). This
normalization is therefore an implicit part of the results [7, 23] on irrotational Stokes
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Figure 4. The horizontal velocity is everywhere decreasing along
the streamlines, and it is increasing from bottom and up beneath
the crest, whilst decreasing beneath the trough.

waves, and it is the explicit choice made in the papers [20, 19, 44] on waves with
vorticity. For transparency we shall start with the particle paths within irrotational
Stokes waves, whereafter we shall describe what differs when vorticity is added, or
when one considers the nonvanishing background current κ introduced in [16].

6.1. The irrotational case in still water. Since for this case the exact results
known today are that detailed, we shall confine ourselves to the exact equations.
The main result, combined from [7, 16, 19, 23, 26], is the following:

Proposition 6.1. The fluid particles within irrotational Stokes waves traverse non-
closed oval orbits as in Figure 4. A particle moves upwards starting from the time
a trough passes until the next crest passes. At the top of its orbit the particle
attains its maximal horizontal velocity, after which the particle begins its descent
with the horizontal speed strictly decreasing until it reaches its minimal value as the
next trough passes. This motion is symmetric with respect to the highest point on
the orbit, and the forward drift displayed by all particles is strictly increasing from
bottom to surface.

The proof of Proposition 6.1 is based on the forward drift proved in Section 5,
the antisymmetry of the vertical velocity component with respect to the crest (cf.
Proposition 4.2), and a detailed study of the horizontal velocity. As was discussed
in relation to (5.1), it is this last component that in detail enables us to control the
shape of the orbit. Using two different methods, the following result was proved
independently in [16] and [19].

Lemma 6.2. Dxu(x, σ(x)) < 0 for x ∈ (0, π) within irrotational Stokes waves.

Both proofs are based on the fact that the flow is irrotational, and they both
require a bound on the slope of the surface (45 and 30 degrees, respectively) that
arises naturally in the proof. Notice that the interior angle of the highest irrotational
Stokes wave is 120 degrees, whence 30 degrees is a matching upper bound. The
proofs that the mean forward drift is strictly increasing from bed to surface are then
based on Lemma 6.2. All taken together, a detailed analysis yields Proposition 6.1.

6.2. Adding a uniform background current. To see what happens when a
current is added, imagine a circular orbit (x(t), y(t)) = (cos(t), sin(t)). According
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Figure 5. A circular orbit under the influence of a uniform current
κ. To the left and backmost: a favourable current (κ > 0). The
the right and foremost: a current working against the wave (κ <
0). Notice that the case of irrotional Stokes waves corresponds to
the loop just behind the closed circle, in which case the drift is
rightward. As κ decreases the drift becomes negative and leftward
on this side of the closed orbit.

.

to the arguments given above, a change of the uniform current κ corresponds to a
change of c. Thus

(x(t), y(t)) 7→ (x(t) + κt, y(t))

maps the circular orbit to the corresponding orbit in the presence of a current of
strength κ. The different topological variants of this transformation in the case of
the circle are given in Figure 5.

While this picture does describe all possible scenarios also for irrotational gravity
waves with a uniform background current, there are two difficulties that separates
the circular case in Figure 5 from the general one:

i) The undisturbed orbit in an irrotational Stokes wave already displays a for-
ward drift, the magnitude of which is in general unknown. Hence the influence
of κ is not symmetric as in Figure 5, and we do not know what κ corresponds
to a closed orbit.

ii) The undisturbed forward drift differs between different streamlines, and the
orbits resulting from the current may therefore be qualitatively different at
different heights within the wave.

As a consequence of those remarks, a complete analysis of the particle paths within
waves with a current presupposes knowledge about the size of the horizontal ve-
locity along the different streamlines. Even then it is not easy to distinguish and
characterize the different cases. For a thorough analysis of these matters we refer
to [16]. There, the following is proved.

Proposition 6.3. Within exact gravitational irrotational Stokes waves in the pres-
ence of a uniform background current, all forms of the trajectories in Figure 5 are
possible. The particular orbits depend on the strength κ of the underlying current,
and more than one type of orbit may be present in the same wave.
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Due to the intractability of the exact equations, another way forward is to con-
sider the linearized shallow-water equations (3.5). There are two main reasons for
this, the main being that the limit δ → 0 nullifies the depth-dependence of the drift.
The other reason is that via (4.4) one even has closed expressions for the solutions
(orbits like those in Figure 5 may be plotted whenever |c(c− κ)| > 1).

In spite of this, the easiest way to find the critical values of κ is to consider the
realization of (3.5) in the non-dimensionalized physical variables. There,

ẋ = κ+ ε(c− κ+ ω) cos(2π(x− ct)),

and the dispersion relation dictates that c−κ+ω = 1/(c−κ). We thus see that the
transitions take place exactly when κ(c− κ) = ±ε. These are the values for which
the horizontal velocity ẋ vanishes somewhere. When |κ(c− κ)| > ε all particles are
moving only in one direction constantly through time. Recall that the system (3.5)
describes a physical wave only when |c(c − κ)| > 1, which gives us the other two
critical values of κ. Together these values determine for which κ the transitions
between the different type of waves as in Figure 5 take place.

Recall from Remark 3.1 that we have introduced κ slightly differently from the
constant c0 in [28, 29]. Returning to the non-dimensionalized physical variables
in those investigations shows that c0 = εκ is the normalized background current
relative to the linear disturbance (a similiar scaling holds for the vorticity). Unless
working entirely within the linearization, the amplitude parameter ε is an artefact of
linear theory which cannot be bypassed. The study [28] however describes the tran-
sitions between the different shapes in Figure 5 in terms of the relative background
current c0.

6.3. Adding vorticity. When vorticity is added, things are even worse. We have
already seen in Corollary 5.5 that for negative vorticity all particles drift along with
the wave. In that case it can also be shown that, for waves bifurcating from the
laminar rotational stream, the mean forward drift is strictly increasing from bed to
surface [19], at least as long as the waves are small enough. But since the proof
of Corollary 5.5 relies on an inequality it might be that the orbits are oval-shaped,
undular, or both (at different levels in the water).

Except for the facts just mentioned there are no general results on the particle
paths for exact rotational waves. The following proposition however indicates that
the picture is not as uniform as for irrotational waves:

Proposition 6.4.

i) In the case of linear shallow-water waves of constant vorticity with Stokes’ defi-
nition of the wave speed there does not exist a single pattern for all particles [29].
ii) Dropping the shallowness assumption, one and the same linear wave may con-
tain all types of orbits in Figure 5 at different depths [20].
iii) There exists an explicit solution of the full deep-water wave problem (Gerstner’s
wave), in which the particles are moving in closed circles at all depths [6], but an
extension of this family contains uni-directional trochoidal trajectories [15].

The extension [15] of the famous Gerstner family of exact Lagrangian and (gen-
erally) rotational solutions of the gravitational deep-water wave problem is very
recent. It is indicative that the trochoidal solutions reside upon flows of negative
vorticity, a fact in line with the results of Section 5 and Corollary 5.5.
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particle trajectory (x(t),y(t))

0
streamline y=h  (x)

α
(at time t=0 )

Figure 6. The particle trajectories within an irrotational solitary
wave. The particles move along with the wave, and each orbit
is contained within the height of the corresponding streamline.
Reprinted from [12] with kind permission.

7. Solitary and standing waves. The core of this survey has been dedicated
to periodic waves, and even in that case it is impossible to incorporate all recent
results. In this section we very briefly describe some approaches differing from those
previously accounted for. The cases of standing and solitary waves are of particular
importance, due to their natural connections with periodic waves.

7.1. Solitary waves. Solitary waves can be considered periodic waves of infinite
wavelength. The fluid motion within such waves was recently investigated in [12].
There, a pattern quite different from that of periodic waves was discovered (see also
Figure 6).

Proposition 7.1. The streamlines within gravitational finite-depth solitary waves
are symmetric graphs with a single maximum. Any particle path share this property,
and it is confined in the vertical gap between a streamline’s highest point (beneath
the crest) and its lowest (at infinity). All particles move in the same direction as
the wave with a speed not exceeding the travelling-wave speed c.

As far as we know, there are no known upper bounds on the drift for exact waves.
It is possible that the drift increases with the wavelength L, and that the trajectories
become uni-directional in the limit L → ∞. If so, the process would resemble the
foremost part of Figure 5, but with L substituted for κ as the parameter. It is in any
case clear that the qualitative behaviour of the trajectories within solitary waves
is captured by one period of the foremost orbit in that picture. An investigation
of the transition of particle paths between periodic and solitary waves has not yet
been carried out.

7.2. Standing waves. Another interesting transition takes place when two steady
periodic wave-trains of the same speed counteract each other. This happens, for
example, when a periodic wave is reflected by a horizontal wall. The resulting
phenomenon is known as standing waves, and the existence of such waves has been
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Figure 7. The particle trajectories within standing waves. The
solid curves are streamlines, the hollow circles particle paths, and
the dashed curves are the surface at time t = 0, and the line y = 0.3,
respectively.

established in various forms by the author’s of [30]. There is a beautiful picture series
showing the experimentally established transition between periodic and standing
waves [38]. The resulting orbits in the standing waves resemble the foremost paths
in Figure 5, with the difference that the particles are moving back and forth in a
periodic pattern as the waveform changes above. There is thus no mean drift of the
particles in a period. In [21] it is shown that, even within the linear approximation
of standing waves, this pattern can be mathematically established (see Figure 7).
Indeed, though the water is not shallow, the particle trajectories are given by closed
formulas in terms of elliptic functions.

Proposition 7.2. The particle trajectories within linear standing waves over finite
depth are periodic in time, while convex and symmetric in space. In particular, all
particle paths are closed and there is no forward (or backward) drift.

As in the case of solitary waves, we do not know of any mathematical study
describing the passage from periodic to standing waves.

Acknowledgement. The authors would like to thank the referee for suggesting
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