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A NEW APPROACH TO THE EXPANSION OF POSITIVITY

SET OF NON-NEGATIVE SOLUTIONS TO CERTAIN SINGULAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

EMMANUELE DIBENEDETTO, UGO GIANAZZA, AND VINCENZO VESPRI

(Communicated by Matthew J. Gursky)

Abstract. Let u be a non-negative solution to a singular parabolic equation
of p-Laplacian type (1 < p < 2) or porous-medium type (0 < m < 1). If u is
bounded below on a ball Bρ by a positive number M , for times comparable
to ρ and M , then it is bounded below by σM , for some σ ∈ (0, 1), on a
larger ball, say B2ρ, for comparable times. This fact, stated quantitatively in
this paper, is referred to as the “spreading of positivity” of solutions of such
singular equations and is at the heart of any form of Harnack inequality. The
proof of such a “spreading of positivity” effect, first given in 1992, is rather
involved and not intuitive. Here we give a new proof, which is more direct,
being based on geometrical ideas.

1. Introduction and main results

Let E be an open set in R
N and for T > 0 let ET denote the cylindrical domain

E × (0, T ]. Consider quasi-linear, parabolic differential equations of the form

(1.1)
u ∈ Cloc

(
0, T ;L2

loc(E)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (E)
)

ut − divA(x, t, u,Du) = 0 weakly in ET

for 1 < p < 2,

where the function A : ET × R
N+1 → R

N is only assumed to be measurable and
subject to the structure conditions

(1.2)

{
A(x, t, u,Du) ·Du ≥ Co|Du|p
|A(x, t, u,Du)| ≤ C1|Du|p−1 a.e. (x, t) ∈ ET ,

where Co and C1 are given positive constants. The homogeneous prototype of such
a class of parabolic equations is

(1.1)o ut − div |Du|p−2Du = 0, 1 < p < 2, weakly in ET .

These equations are termed singular since, for 1 < p < 2, the modulus of ellipticity
|Du|p−2 → ∞ as |Du| → 0.

The parameters {N, p, Co, C1} are the data, and we say that a generic constant
γ = γ(N, p, Co, C1) depends upon the data if it can be quantitatively determined
a priori only in terms of the indicated parameters. For ρ > 0 let Bρ be the ball
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of center the origin on R
N and radius ρ, and for y ∈ R

N let Bρ(y) denote the
homothetic ball centered at y.

Theorem 1.1. Let u be a non-negative, local, weak solution to (1.1)–(1.2), satis-
fying

(1.3)
∣∣[u(·, t) > M ] ∩Bρ(y)

∣∣ > α|Bρ|
for all times

(1.4) s− εM2−pρp ≤ t ≤ s

for some M > 0, and some α and ε in (0, 1), and assume that

B16ρ × [s− εM2−pρp, s] ⊂ ET .

There exist σ ∈ (0, 1) and ε ∈ (0, 12ε], which can be determined a priori, quantita-
tively only in terms of the data, and the numbers α and ε, and independent of M ,
such that

(1.5) u(x, t) ≥ σM for all x ∈ B2ρ(y)

for all times

(1.6) s− εM2−pρp < t ≤ s.

Thus measure-theoretical information on the measure of the “positivity set” in
Bρ(y) for all times in (1.4) implies that such a positivity set actually “expands”
to B2ρ(y) for comparable times. This fact is at the heart of any form of Harnack
estimate, as evidenced in [3, 4]. Its proof, first given in [1] and reported in [2],
Chapter IV, §5, is rather involved and not intuitive.

The goal of this paper is to give a new proof, which is more direct, being based
on geometrical ideas.

2. Preliminaries

For positive ρ and θ set

Q−
ρ (θ) = Bρ × (−θρp, 0], Q+

ρ (θ) = Bρ × (0, θρp]

and for (y, s) ∈ R
N × R,

(y, s) +Q−
ρ (θ) = Bρ(y)× (s− θρp, s],

(y, s) +Q+
ρ (θ) = Bρ(y)× (s, s+ θρp].

There exists a constant γ = γ(data) such that, for every cylinder [(y, s)+Q−
ρ (θ)] ⊂

ET , every k ∈ R and every piecewise smooth, non-negative function ζ vanishing on
∂Bρ(y),

(2.1)

ess sup
s−θρp<t<s

∫
Bρ(y)

(u− k)2±ζ
p(x, t)dx−

∫
Bρ(y)

(u− k)2±ζ
p(x, s− θρp)dx

+ Co

∫∫
(y,s)+Q−

ρ (θ)

|D(u− k)±ζ|pdxdτ

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

[
(u− k)p±|Dζ|p + (u− k)2±|ζτ |

]
dxdτ,

where Co is the constant appearing in the structure conditions. Similar energy
estimates continue to hold for cylinders [(y, s) +Q+

ρ (θ)] ⊂ ET .
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Remark 2.1. The constant γ(p) → ∞ as p → 1, but it is stable as p → 2. Thus
(2.1) holds for all 1 < p ≤ 2, with the indicated behavior of the constant γ(p).

2.1. A DeGiorgi-type lemma.

Lemma 2.2. There exists a number ν depending upon the data θ and M , such that
if ∣∣[u ≤ M ] ∩ [(y, s) +Q−

2ρ(θ)]
∣∣ ≤ ν

∣∣Q−
2ρ(θ)

∣∣,
then

(2.2) u ≥ 1
2M a.e. in [(y, s) +Q−

ρ (θ)].

Proof. Without loss of generality, we may assume that (y, s) = (0, 0). For n =
0, 1, 2, . . . , set

ρn = ρ+
ρ

2n
, Bn = Bρn

, Qn = Bn × (−θρpn, 0].

Apply (2.1) over Bn and Qn to (u− kn)−, for the levels

kn =

(
1

2
+

1

2n

)
M.

The cutoff function ζ is taken to be of the form ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =

{
1 in Bn+1,
0 in R

N − Bn,
|Dζ1| ≤

1

ρn − ρn+1
=

2n+1

ρ
,

ζ2 =

{
0 for t < −θρpn,
1 for t ≥ −θρpn+1,

0 ≤ ζ2,t ≤
1

θ(ρpn − ρpn+1)
≤ 2p(n+1)

θρp
.

The energy inequalities (2.1) with these stipulations yield

ess sup
−θρp

n<t<0

∫
Bn

(u− kn)
2
−ζ

2(x, t)dx+

∫∫
Qn

|D(u− kn)−ζ|pdxdτ

≤ γ
2np

ρp

(∫∫
Qn

(u− kn)
p
−dxdτ +

1

θ

∫∫
Qn

(u− kn)
2
−dxdτ

)

≤ γ
2np

ρp

(
Mp +

M2

θ

)
|[u < kn] ∩Qn|.

By Proposition 3.1 of [2], Chapter I,∫∫
Qn

[(u− kn)−ζ]
pN+2

N dxdt

≤
∫∫

Qn+1

|D[(u− kn)−ζ]|pdxdτ
(

ess sup
−θρp

n<t<0

∫
Bn(t)

[(u− kn)−ζ]
2dx

) p
N

≤ γ

[
2np

ρp

(
Mp +

M2

θ

)]N+p
N

|[u < kn] ∩Qn|
N+p
N .

Estimate∫∫
Qn

[(u− kn)−ζ]
pN+2

N dxdt ≥
[
2−(n+2)M

]pN+2
N

∣∣[u < kn+1] ∩Qn+1

∣∣
and set

Yn =
|[u < kn] ∩Qn|

|Qn|
.
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Then

Yn+1 ≤ γbn
(

θ

M2−p

) p
N
(
1 +

M2−p

θ

)N+p
N

Y
1+ p

N
n ,

where
b = 2

p
N [2(N+1)+p] and γ = γ(data).

By Lemma 4.1 of [2], Chapter I, {Yn} → 0 as n → ∞, provided that

Yo ≤ γo

M2−p

θ(
1 +

M2−p

θ

)N+p
p

def
= ν, where γo =

1

γ
N
p

1

b(
N
p )

2 .

Thus this choice of ν yields Y∞ = 0, which is equivalent to (2.2). �
2.2. A variant of Lemma 2.2. Assume now that some information is available
on the “initial data” relative to the cylinder [(y, s) +Q+

2ρ(θ)], say, for example,

(2.3) u(x, s) ≥ M for a.e. x ∈ B2ρ(y)

for some M > 0. Then, writing the energy inequalities (2.1) for (u − k)−, for
k ≤ M , over the cylinder [(y, s) + Q+

2ρ(θ)], the integral extended over B2ρ, at the

time level t = s, vanishes in view of (2.3). Moreover, by taking cutoff functions
ζ(x, t) = ζ1(x) independent of t, also the integral involving ζt on the right-hand
side of (2.1) vanishes. We may now repeat the same arguments as in the previous
proof for (u− kn)−, over the cylinders Q+

n = Bn × (0, θ(2ρ)p].
This leads to similar estimates as before, with Qn replaced by Q+

n , and with An

replaced by A+
n = [u < ξnM ] ∩Q+

n . Proceeding as before gives

Y +
n+1 ≤ γbn

(
θ

M2−p

) p
N

(Y +
n )1+

p
N ,

where Y + = |A+
n |/|Q+

n | and b = 2
p
N (2N+2+p). This in turn implies that {Y +

n } → 0
as n → ∞, provided that

(2.4) Y +
o ≤ δ

M2−p

θ

for a constant δ ∈ (0, 1) depending only upon the data, and independent of M , ρ,
and θ. We summarise.

Lemma 2.3. Let M be a positive number such that both (2.3) and (2.4) hold. Then

u ≥ 1
2M a.e. in Bρ(y)× (s, s+ θ(2ρ)p].

Remark 2.4. Both Lemmas 2.2 and 2.3 are based on the energy estimates (2.1) and
Proposition 3.1 of [2], Chapter I, which continue to hold in a stable manner for
p → 2. These results are therefore valid for all 1 < p ≤ 2.

3. Transforming the variables and the PDE

Fix (y, s) ∈ ET , and let ρ > 0 be so that the cylindrical domain

(3.1) B16ρ ×
(
s− εM2−pρp , s

)
⊂ ET .

Introduce the change of variables and the new unknown function

(3.2) z =
x− y

ρ
, −e−τ =

t− s

εM2−pρp
, v(z, τ ) =

1

M
u(x, t)e

τ
2−p .
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This maps the cylinder in (3.1) into B16 × (0,∞) and transforms (1.1) into

(3.3) vτ − div Ā(z, τ, v,Dzv) =
1

2− p
v weakly in B16 × (0,∞),

where Ā is a measurable vector-valued function of its arguments, satisfying the
structure condition

(3.4)

{
Ā(z, τ, v,Dzv) ·Dzv ≥ εCo|Dzv|p
|Ā(z, τ, v,Dzv)| ≤ εC1|Dzv|p−1 a.e. in B16 × (0,∞),

where Co and C1 are the constants in the structure conditions (1.2) and ε is the
number appearing in (1.4). The assumption (1.3) of Theorem 1.1 becomes

(3.5)
∣∣[v(·, τ ) ≥ e

τ
2−p ] ∩B1

∣∣ ≥ α|B1| for all τ ∈ (0,+∞).

Let τo > 0 be chosen and set

k = e
τo

2−p , and kj =
1

2j
k for j = 0, 1, . . . .

With this symbolism (3.5) implies that

(3.6)
∣∣[v(·, τ ) ≥ k] ∩B8

∣∣ ≥ α8−N |B8| for all τ ∈ (τo,+∞).

Introduce the cylinders

Qτo = B8 ×
(
τo + k2−p, τo + 2k2−p

)
,

Q′
τo = B16 ×

(
τo, τo + 2k2−p

)
and a piecewise smooth cutoff function on Q′

τo of the form ζ(z, τ ) = ζ1(z)ζ2(τ ),
where

ζ1 =

{
1 in B8

0 in R
N −B16

|Dζ1| ≤
1

8
,

ζ2 =

{
0 for τ < τo
1 for τ ≥ τo + k2−p 0 ≤ ζ2,τ ≤ 1

k2−p
.

Energy estimates, over Q′
τo , are derived by taking −(v−kj)−ζ

p as a testing function
in the weak formulation of (3.3). Discarding the non-positive contribution of the
right-hand side, standard calculations give∫

Q′
τo

|D(v − kj)−ζ|pdzdτ ≤ γ

∫
Q′

τo

[
(v − kj)

p
−|Dζ|p + (v − kj)

2
−|ζτ |

]
dzdτ,

where the constant γ depends only uponN , p, Co, C1 and the parameter ε appearing
in the assumption (1.4) of Theorem 1.1 and the transformed structure conditions
(3.4). From this

(3.7)

∫
Qτo

|D(v − kj)−|pdzdτ ≤ 2γkpj |Qτo |.
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3.1. Estimating the measure of the set [v < kj ] within Qτo . Set

Aj(τ ) = [v(·, τ ) < kj ] ∩B8, Aj = [v < kj ] ∩Qτo .

By the measure-theoretical Lemma 2.2 of [2], Chapter I, and (3.6),

(kj − kj+1)|Aj+1(τ )| ≤
γ(N)

|B8 −Aj(τ )|

∫
[kj+1<v(·,τ)<kj ]

|Dv|dz

≤ γ(N,α)

∫
[kj+1<v(·,τ)<kj ]

|Dv|dz

for all τ ≥ τo. Integrate this in dτ over (τo+k2−p, τo+2k2−p), majorize the resulting
integral on the right-hand side by the Hölder inequality, and use (3.7) to get

kj
2
|Aj+1| ≤ γ(data, α)

∫
[kj+1<v<kj ]

|Dv|dzdτ

≤ γ(data, α)

(∫
[kj+1<v<kj ]

|Dv|pdzdτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α, ε)

(∫
Qτo

|D(v − kj)−|pdzdτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α, ε)kj |Qτo |
1
p |Aj −Aj+1|

p−1
p .

Taking the p/(p− 1)-power yields the recursive inequalities

|Aj+1|
p

p−1 ≤ γ(data, α, ε)|Q| 1
p−1 |Aj −Aj+1|.

Add these inequalities for j = 0, 1, . . . , j∗ − 1, where j∗ is an integer to be chosen,
and majorize the sum on the right-hand side by the corresponding telescopic series.
This gives

(j∗ − 1)|Aj∗ |
p

p−1 ≤ γ(data, α, ε)|Q|
p

p−1 .

Equivalently

(3.8) |[v < kj∗ ] ∩Qτo | ≤ ν|Qτo |, where ν =

(
γ(data, α, ε)

j∗

) p−1
p

.

Remark 3.1. This estimation technically requires p > 1. The restriction however is
not only technical in view of the geometrical significance of (1.1)o for p = 1 even in
the elliptic case ([5]).

3.2. Segmenting Qτo . Assume momentarily that j∗ and hence ν has been deter-
mined. By possibly increasing j∗ to be not necessarily integer, we may assume,
without loss of generality, that (2j∗)2−p is an integer. Then subdivide Qτo into

(2j∗)2−p cylinders, each of length k2−p
j∗

, by setting

Qn = B8 ×
(
τo + k2−p + nk2−p

j∗
, τo + k2−p + (n+ 1)k2−p

j∗

)
for n = 0, 1, . . . , (2j∗)2−p − 1.

For at least one of these, say Qn, we must have

|[v < kj∗ ] ∩Qn| ≤ ν|Qn|.
Apply Lemma 2.2 to v over Qn with M = kj∗ and θ = k2−p

j∗
. This gives

v
(
z, τo + k2−p + (n+ 1)k2−p

j∗

)
≥ 1

2kj∗ a.e. in B4
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provided that

|[v < kj∗ ] ∩Qn|
|Qn|

≤ 2−
N+p

p γ̄o(data, ε) = ν.

Now choose j∗, and hence ν, from this and (3.8). Summarising, for such a choice
of j∗, and hence ν, there exists a time level τ1 in the range

(3.9) τo + k2−p < τ1 < τo + 2k2−p

such that

v(z, τ1) ≥ σoe
τo

2−p , where σo = 2−(j∗+1).

Remark 3.2. Notice that j∗ and hence ν are determined only in terms of the data
and are independent of the parameter τo, which is still to be chosen.

3.3. Returning to the original coordinates. In terms of the original coordi-
nates and the original function u(x, t), this implies that

u(·, t1) ≥ σoMe−
τ1−τo
2−p

def
= Mo in B4ρ(y),

where the time t1 corresponding to τ1 is computed from (3.2) and (3.9). Now apply
Lemma 2.3 with M replaced by Mo over the cylinder

(t1, y) +Q+
4ρ = B4ρ(y)×

(
t1, t1 + θ(4ρ)p

]
.

By choosing

θ = δM2−p
o , where δ = δ(data),

the assumption (2.4) is satisfied, and Lemma 2.3 yields

(3.10)
u(·, t) ≥ 1

2Mo = 1
2σoMe−

τ1−τo
2−p

≥ 1
2σoe

− 2
2−p e

τo

M
in B2ρ(y)

for all times

(3.11) t1 ≤ t ≤ t1 + δM2−p
o (2ρ)p.

If the right-hand side equals s, then (3.10) holds for all times in

(3.12)
(
s− εM2−p(2ρ)p , s

]
, where ε = δσ2−p

o e−eτo .

Thus the conclusion of Theorem 1.1 holds, provided that the upper time level in
(3.11) equals s. The transformed τo level is still undetermined, and it will be so
chosen as to verify such a requirement. Precisely, taking into account (3.2),

εM2−pρpe−τ1 = −(t1 − s) = δσoM
2−p(2ρ)pe−(τ1−τo) =⇒ eτo =

ε

2pδσo
.

This determines quantitatively τo = τo(data). The proof of Theorem 1.1 is now
completed by inserting such a τo on the right-hand side of (3.10) and (3.12).
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4. Stability for p ≈ 2

The change of variables (3.2) and the subsequent arguments yield constants that
deteriorate as p → 2. The conclusion of Theorem 1.1 however continues to hold
with constants that are “stable” as p → 2. We indicate here the modifications of
the arguments needed to achieve such a constant stability.

For p ≈ 2, instead of (3.2) introduce the change of variables

(4.1) z =
x− y

ρ
, τ =

t− s

εM2−pρp
, v(z, τ ) =

1

M
u(x, t).

This maps the cylinder in (3.1) into B16 × (−1, 0) and transforms (1.1) into

(4.2) vτ − div Ā(z, τ, v,Dzv) = 0 weakly in B16 × (−1, 0),

where Ā satisfies (3.4) over the indicated cylinder. The arguments of §3.1 are
intended to lead to (3.8) so that j∗ and hence ν could be chosen so as to satisfy the
requirement (2.2) of Lemma 2.2, quantified by (2.1). Now the arguments of §3.1 can
be repeated here with the proper modifications, where {Qn} now forms a nested
collection of cubes in B8 × (−1, 0) with the same vertex at (0, 0), with k replaced
by 1 and hence kj = 2−j . This leads to (3.8) with Qτo replaced by B4× (−1, 0). By
Lemma 2.2 and (2.1), this would imply that v ≥ 1

22
−j∗ in B2 × (− 1

2 , 0) provided
that

[v < kj∗ ] ∩B4 × (−1, 0)| ≤ γo
2−j∗(2−p)

(1 + 2−j∗(2−p))
N+p

p

for a constant γo = γo(data). From (3.8) with indicated modifications, this is
possible if one can choose j∗ ∈ N so that

ν =

(
γ(data, α, ε)

j∗

) p−1
p

≤ γo
2−j∗(2−p)

(1 + 2−j∗(2−p))
N+p

p

.

This is possible if p is sufficiently close to 2 by the following procedure. First choose
(2− po) = 1/j∗, and then j∗ so large as to satisfy the indicated requirement for all
po ≤ p ≤ 2.

5. Equations of porous-medium type

The techniques apply, by minor variants, to non-negative solutions of quasi-
linear, singular, parabolic equations of the porous-medium type

(5.1)
u ∈ Cloc

(
0, T ;Lm+1

loc (E)
)
, |u|m ∈ L2

loc

(
0, T ;W 1,2

loc (E)
)
,

ut − divA(x, t, u,Du) = 0 weakly in ET ,
0 < m < 1.

The functions A : ET × R
N+1 → R

N are only assumed to be measurable and
subject to the structure conditions

(5.2)

{
A(x, t, u,Du) ·Du ≥ Co|u|1−m

∣∣D|u|m
∣∣2

|A(x, t, u,Du)| ≤ C1

∣∣D|u|m
∣∣ a.e. in ET ,

where Co and C1 are given positive constants. The homogeneous prototype is

(5.1)o ut −Δ|u|m−1u = 0, 0 < m < 1, weakly in ET .
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Theorem 5.1. Let u be a non-negative, local, weak solution to (5.1)–(5.2) satisfying

(5.3)
∣∣[u(·, t) > M ] ∩Bρ(y)

∣∣ > α|Bρ|
for all times

(5.4) s− εM1−mρ2 ≤ t ≤ s

for some M > 0 and some α and ε in (0, 1), and assume that

B16ρ × [s− εM1−mρ2, s] ⊂ ET .

There exist σ ∈ (0, 1) and ε ∈ (0, 12ε], which can be determined a priori, quantita-
tively only in terms of the data, and the numbers α and ε, and independent of M ,
such that

(5.5) u(x, t) ≥ σM for all x ∈ B2ρ(y)

for all times

(5.6) s− εM1−mρ2 < t ≤ s.

Thus measure-theoretical information on the measure of the “positivity set” in
Bρ(y) for all times in (5.4) implies that such a positivity set actually “expands”
to B2ρ(y) for comparable times. Applications of such a “spread of positivity” to
Harnack estimates for non-negative solutions of porous-medium equations of the
type (5.1)–(5.2) are in [3, 4].
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