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Risk Aggregation
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Abstract Quantitative Risk Management (QRM) often starts with a vector of one-
period profit-and-loss random variablesX = (X1, . . . ,Xd)

′ defined on some prob-
ability space(Ω ,F,P). Risk Aggregation concerns the study of the aggregate fi-
nancial positionΨ(X), for some measurable functionΨ : R

d → R. A risk mea-
sureρ then mapsΨ(X) to ρ(Ψ(X)) ∈ R, to be interpreted as the regulatory capital
needed to be able to hold the aggregate positionΨ(X) over a predetermined fixed
time period. Risk Aggregation has often been studied withinthe framework when
only the marginal distributionsF1, . . . ,Fd of the individual risksX1, . . . ,Xd are avail-
able. Recently, especially in the management of operational risk, cases in which
further dependence information is available have become relevant. We introduce a
general mathematical framework which interpolates between marginal knowledge
(F1, . . . ,Fd) and full knowledge ofFX, the distribution ofX. We illustrate the ba-
sic issues through some pedagogic examples of actuarial andfinancial interest. In
particular, we study Risk Aggregation under different mathematical set-ups, for dif-
ferent aggregating functionalsΨ and risk measuresρ , focusing on Value-at-Risk.
We show how the theory of Mass Transportations and tools originally developed to
solve so-called Monge-Kantorovich problems turn out to be useful in this context.
Finally, we introduce some new numerical integration techniques which solve some
open aggregation problems and raise new interesting research issues.
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5.1 Motivations and preliminaries

Quantitative Risk Management (QRM) standardly concerns a vector of one-period
profit-and-loss random variablesX = (X1, . . . ,Xd)

′ defined on some probability
space(Ω ,F,P). Risk Aggregationconcerns the study of the aggregate financial po-
sitionΨ (X), for some measurable functionΨ : R

d → R.
Under the terms of the New Basel Capital Accord (Basel II), internationally ac-

tive banks are required to set aside capital to offset various types of risks, i.e. mar-
ket, credit and operational risk; see [4]. Under the new regulations, the vectorX
represents the profit-and-loss amounts for particular lines of risk or business, and
this over a given period. A risk measureρ maps the aggregate positionΨ (X) to
ρ(Ψ(X)) ∈ R, to be interpreted as the regulatory capital needed to be able to hold
the aggregate positionΨ (X) over this predetermined fixed period. The exact calcu-
lation ofρ(Ψ(X)) needs the joint distribution functionFX of X; when such informa-
tion is not available, special procedures are called for, typically leading to bounds
on ρ(Ψ(X)).

Risk Aggregation has often been studied within the framework when only the
marginal distributionsF1, . . . ,Fd of the individual risksX1, . . . ,Xd are available.
A multitude of statistical techniques are available for estimating the univariate
(marginal) distributions. It is often more difficult to capture statistically thed-variate
structure of dependence of the vectorX. Recently, especially in the management of
operational risk, cases in which further dependence information is available have
become relevant.

In the following, we introduce a general mathematical framework which inter-
polates between marginal knowledge(F1, . . . ,Fd) and full knowledge ofFX . For the
purpose of this paper, we disregard the statistical uncertainty related toF1, . . . ,Fd

and only concentrate on the probabilistic structure.

5.1.1 The mathematical framework

We follow the mathematical setup described in [38]. LetB= Πd
i=1Bi be the product

of d Borel spaces withσ -algebraB =
⊗n

i=1Bi , Bi being the Borelσ -algebra onBi .
DefineI := {1, . . . ,d} and letξ ⊂ 2I , the power set ofI , with ∪J∈ξ J = I . ForJ ∈ ξ ,
let FJ ∈ F(BJ) be aconsistentsystem of probability measures onBJ = πJ(B) =
Π j∈JB j , πJ being the natural projection fromB to BJ andF(BJ) denoting the set of
all probability measures onBJ. Consistency ofFJ,J ∈ ξ means thatJ1,J2 ∈ ξ ,J1∩
J2 6= /0 implies that

πJ1∩J2FJ1 = πJ1∩J2FJ2.

Finally, we denote by
Fξ = F(FJ,J ∈ ξ )

theFréchet classof all probability measures onB having marginalsFJ,J ∈ ξ .
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Consistency ofFJ,J ∈ ξ , is a necessary condition to guarantee thatFξ is non-
empty. Whenξ is regular (see [42]), then consistency is also sufficient. When the
systemξ is non-regular, e.g.ξ = {{1,2},{2,3},{3,1}}, the Fréchet classFξ may
be empty even with consistent marginals, as illustrated in [38].

In the following, we will consider the caseBi = R, B = R
n. For the sake of

notational simplicity, we identify probability measures on these spaces with the cor-
responding distribution functions. We will study only regular systems of marginals
which interpolate between two particular choices ofξ :

• ξd = {{1}, . . . ,{d}}, also called thesimplesystem of marginals, which defines
the Fréchet class

Fξd
= F(F1, . . . ,Fd).

This is the most often used marginal system in Risk Aggregation and the natural
setup for the theory of copulas, as discussed in [29].

• ξI = {I}, also called thetrivial system of marginals, in which

FξI
= {FX},

whereFX is the distribution function of the vectorX. This case represents the
complete dependence information aboutX.

There are other important cases representing intermediatedependence information
betweenξd andξI . Relevant examples are:

• ξ M
d = {{2 j − 1,2 j}, j = 1, . . . ,d/2} (d even), themultivariatesystem of mar-

ginals. This system has the role of the simple marginal system when one studies
aggregation of random vectors instead of aggregation of random variables.

• ξ ⋆
d = {{1, j}, j = 2, . . . ,d}, thestar-likesystem of marginals and

• ξ =
d = {{ j, j + 1}, j = 1, . . . ,d−1}, theserial system of marginals. These latter

two systems are of particular interest when dependence frombivariate datasets is
available.

Whenξ is a partition ofI , i.e. when all setsJ ∈ ξ are pairwise disjoint, we speak
about anon-overlappingsystem of marginals,overlappingotherwise. According
to this definition,ξd, ξI andξ M

d are non-overlapping marginal systems, whileξ ⋆
d

andξ =
d are overlapping. We study Risk Aggregation under incomplete information

frameworks in Section 5.2. Section 5.3 will focus instead onthe problems arising
within the complete information systemξI .

5.2 Bounds for functions of risks: the coupling-dual approach

We will focus on those risk measuresρ(Ψ(X)) which are representable as

ρ(Ψ(X)) = E[ψ(X)] =
∫

ψ dFX , (5.1)
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for some measurable functionψ : R
d → R. This representation includes some of

the most popular risk measures, such as Value-at-Risk. Mostimportantly, (5.1) will
allow to use the theory ofMass Transportationswithin the context of Risk Ag-
gregation. In this section, we illustrate how to obtain bounds onE[ψ(X)] under an
incomplete information setting, i.e. when the distribution functionFX of the vector
X is not completely specified. Formally, we assume that

FX ∈ Fξ , for a fixedξ ⊂ 2I ,ξ 6= I .

Since FX is not uniquely determined, there exist an entire range of values for
E[ψ(X)], which are consistent with the choice of the subgroupsJ ∈ ξ of marginals.
The infimum and supremum of this range are defined as

mξ (ψ) := inf

{

∫

ψ dFX : FX ∈ Fξ

}

, (5.2a)

Mξ (ψ) := sup

{

∫

ψ dFX : FX ∈ Fξ

}

. (5.2b)

Since the Fréchet classFξ is convex and the problems (5.2a) and (5.2b) are linear
on FX , (5.2a) and (5.2b) both admit a dual representation. This representation is to
be found in the theory of Mass Transportations.

Theorem 5.2.1.Let the measurable functionψ be bounded or continuous, then
problems(5.2a)and(5.2b)have the following dual counterparts:

mξ (ψ) = sup

{

∑
J∈ξ

∫

fJ dFJ : fJ ∈ L1(FJ),J ∈ ξ with ∑
J∈ξ

fJ ◦πJ ≤ ψ

}

, (5.3a)

Mξ (ψ) = inf

{

∑
J∈ξ

∫

gJ dFJ : gJ ∈ L1(FJ),J ∈ ξ with ∑
J∈ξ

gJ ◦πJ ≥ ψ

}

. (5.3b)

There exist several versions of Theorem 5.2.1 which are valid under weaker as-
sumptions and more general settings, even non-topologicalones. For more details
on these versions, a proof of Theorem 5.2.1 and a complete coverage of the the-
ory of Mass Transportations, we refer to the milestone book [36] and the review
paper [39].

According to [24], we call acouplingevery random vectorX having distribution
function FX ∈ Fξ . Moreover, we calldual choicefor (5.3a) any family of func-
tionsf = { fJ,J ∈ ξ} which are admissible for (5.3a). Analogously, we define a dual
choiceg = {gJ,J ∈ ξ} for (5.3b). By Theorem 5.2.1, a couplingX and two dual
choicesf andg satisfy

∫

ψ dFX ≥ mξ (ψ) ≥ ∑
J∈ξ

∫

fJdFJ, (5.4a)

∫

ψ dFX ≤ Mξ (ψ) ≤ ∑
J∈ξ

∫

gJdFJ, (5.4b)
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for all FX ∈ Fξ . A coupling and a dual choice which satisfy (5.4a) (or (5.4b)) with
two equalities will be called anoptimal couplingand adual solution, respectively,
since they solve problem (5.2a) (or (5.2b)).

Equations (5.4a) and (5.4b) illustrate thecoupling-dualapproach in Risk Ag-
gregation. Problems (5.2a) and (5.2b) are in general very difficult to solve, with
some exceptions illustrated in Section 5.2.2 below. Depending on the systemξ of
marginals, the concept of a copula might not be useful and it may be difficult even
to identify a single coupling inFξ . When the solutions of (5.2a) and (5.2b) are un-
known, any dual choice satisfying (5.4a) or (5.4b) providesa bound onmξ or Mξ .

5.2.1 Application 1: bounding Value-at-Risk

We now illustrate the usefulness of the dual representations (5.3a) and (5.3b), in
the case of Value-at-Risk (VaR). VaR is probably the most popular risk measure
in finance and insurance, this is no doubt due to its importance within the Basel II
capital-adequacy framework; see [4]. The VaR of a profit-and-loss random variable
L at the probability (or confidence) levelα ∈ (0,1) is simply theα-quantile of its
distribution, defined as

VaRα(L) = F−1
L (α) = inf{l ∈ R : FL(l) ≥ α}, (5.5)

whereFL is the distribution ofL. Under the terms of Basel II, banks often measure
the risk associated with a portfolioX = (X1, . . . ,Xd)

′ in terms of VaRα(X1 + · · ·+
Xd), the VaR of the sum of its marginal components. This is for example the case
of operational risk; see [15]. Using our notation, we haveρ = VaR andΨ = +, the
sum operator. Typical values forα areα = 0.95 or α = 0.99, or evenα = 0.999
in the case of credit and operational risk. By (5.5), bounding the VaR of a random
variableL from above is equivalent to bounding from below its distribution FL or,
similarly, bounding from above its tail (or survival) function FL = 1−FL. Roughly
speaking, if VaR is used to risk measureL, ahigher tail functionfor L means amore
dangerous risk. An alternative approach to Value-at-Risk is to be found in Section
8.4.4 of this volume ([23]).

Banks often have more precise information about the marginal distributions of
X, but less about the joint distributionFX . This then immediately translates into the
incomplete information settingξd, which defines the Fréchet classF(F1, . . . ,Fd).
Within ξd, banks are typically interested on a upper bound on VaRα

(

∑d
i=1Xi

)

, since
this latter amount cannot be calculated exactly. Such a bound can be obtained by
solving problem (5.2b) for a particular choice of the function ψ , in this caseψ =
ψ(s) = 1{x1+···+xd≥s}, for somes∈ R. Thus, we define the functionMξd

as

Mξd
(s) = sup

{

∫

1{x1+···+xd≥s}dFX(x1, . . . ,xd),FX ∈ F(F1, . . . ,Fd)

}

, s∈ R. (5.6)
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Note that the inequality≥ in the definition of the indicator function in (5.6) is
essential in order to guarantee that the supremum is attained; see Remark 3.1(ii)
in [13]. With respect to any random vector(X1, . . . ,Xd)

′ having distributionFX ∈
F(F1, . . . ,Fd), the functionMξd

obviously satisfies

P[X1 + · · ·+Xd ≥ s] ≤ Mξd
(s) for all s∈ R, (5.7)

while, for its inverseM−1
ξd

, we have

VaRα(X1 + · · ·+Xd) ≤ M−1
ξd

(1−α), for all α ∈ (0,1). (5.8)

According to Theorem 5.2.1, the dual counterpart of (5.6) isgiven by:

Mξd
(s) = inf

{

d

∑
i=1

∫

fi dFi : fi ∈ L1(Fi), i ∈ I

s.t.
d

∑
i=1

fi(xi) ≥ 1{x1+···+xd≥s} for all xi ∈ R, i ∈ I

}

.

(5.9)

The dual solution for (5.9) is given in [37] for the sum of two risks (d = 2).
Independently from this, [26] provided the corresponding optimal coupling. For the
sum of more than two risks, (5.9) seems to be very difficult to solve. The only
explicit results known in the literature are given in [37] for the case of the sum of
marginals being all uniformly or binomially distributed.

When the value ofMξ (s) is unknown, equation (5.4b) plays a crucial role. In
fact, every dual admissible choice in (5.9) gives un upper bound onMξ (s) which,
though not sharp, is conservative from a risk management point of view. This is for
instance the idea used in [13] to produce bounds on VaRα

(

∑d
i=1Xi

)

. The following
theorem is a reformulation of Th. 4.2 in the above reference and illustrates the case
of a homogeneous risk portfolio, i.e.Fi = F for all i = 1, . . . ,d.

Theorem 5.2.2.Let F be a continuous distribution with non-negative support. If
Fi = F, i = 1, . . . ,d, then, for every s≥ 0,

Mξd
(s) ≤ Dξd

(s) = d inf
r∈[0,s/d)

∫ s−(d−1)r
r (1−F(x))dx

s−dr
. (5.10)

The infimum in (5.10) can be easily calculated numerically byfinding the zero-
derivative points of its argument. Ford = 2, we obtainMξd

(s) = Dξd
(s), the bound

given in [37]. The idea of using dual choices to produce bounds on functions of
risks was discussed further in [12] (within simple systems with non-homogeneous
marginals), [14] (multivariate systems) and [16] (overlapping systems). Bounds pro-
duced by a choice of admissible dual functionals are referred to asdual bounds. A
related study of bounds on VaR can be found in [22] and in Section 8.4.4 of this
volume ([23]).
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In Figure 5.1, we plot the dual bound functionDξd
for a portfolio of three (d = 3)

Gamma-distributed risks. In the same figure, we also give thetail function of the
random variableX1 + X2 + X3 in case of comonotonic (CX = M) and independent
(CX = Π ) marginals; for this notation, see [29], Chapter 5. Note that the two tail
functions cross at some threshold ˆs and the tail function obtained under comono-
tonicity lies above the one obtained under independence forall s> ŝ. We will return
on this later in Section 5.3. Table 5.1 shows the upper boundsD−1

ξd
(1−α) on the

VaR of the Gamma portfolio, as well as exact quantiles in caseof independence and
comonotonicity. Recall that for comonotonic risks VaR is additive, see also (5.15)
later in the paper. Figure 5.1 and Table 5.1 exemplify the fact that, using (5.7), (5.8)
and (5.10), we have

P[X1+ · · ·+Xd ≥ s] ≤ Dξd
(s), i.e. VaRα(X1 + · · ·+Xd) ≤ D−1

ξd
(1−α),

for any(X1, . . . ,Xd)
′ having distributionFX ∈ Fξd

.
We finally remark that the entire curveDξd

(s) is generally obtained within sec-
onds, independently of the numberd of variables under study. In general, the compu-
tational time of dual bounds strongly depends on the number of non-homogeneous
marginals.
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Fig. 5.1 Plot of the tail functionP[X1 + X2 + X3 ≥ s] for a Γ (3,1)-portfolio under independence
and comonotonic scenarios. We also plot the upper dual boundfunctionDξd

(s).

It is interesting to study how dual bounds vary within different marginal sys-
tems having the same univariate marginals. To this aim, we now considerd risks
X1, . . . ,Xd which we assume to be Pareto distributed with tail parameterθ , i.e.

Fi(x) = P[Xi ≤ x] = 1− (1+x)−θ , x≥ 0, i = 1, . . .d. (5.11)
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α CX = Π CX = M dual bound
0.90 13.00 15.97 19.80
0.95 14.44 18.89 22.57
0.99 17.41 25.22 28.67
0.999 21.16 33.69 36.97

Table 5.1 VaRα(X1 +X2+X3) for aΓ (3,1)-portfolio under independence and comonotonicity, for
some levelsα of interest. We also give the corresponding upper dual bounds D−1

ξd
(1−α).

Together with the non-overlapping marginal systemξd studied above, we consider
the overlapping star-like systemξ ∗

d . Underξ ∗
d , we assume that each of thed− 1

subvectors(X1,Xi), i = 2, . . . ,d, is coupled by a Frank copulaCF
δ with parameter

δ = 1. Within the systemξ ∗
d , bounds on VaRα(∑d

i=1Xi) are obtained by integration
of particular dual bounds inξd. For more details on this technique, we refer to [16].

In Table 5.2, we give upper VaR limitsD−1
ξ ⋆

d
(α) for Frank-Pareto portfolios of in-

creasing dimensions. As quantile levels, we takeα = 0.99 andα = 0.999. For com-
parison, the comonotonic quantiles are also given. Considering the absolute values
reported in Table 5.2, the overlapping bounds are smaller than the corresponding
bounds obtained in a non-overlapping setting. The reason isclear: switching from
a non-overlapping simple system to a overlapping star-likemarginal system means
reducing the Fréchet class of attainable risks, i.e. havingmore information about the
dependence structure of the portfolioX. Formally, we haveFξ ⋆

d
⊂ Fξd

. Under the
extra information represented byξ ⋆

d , less capital is needed to offset the underlying
portfolio risk.

Detailed studies of the quality of the dual bounds have been presented in [13] for
D−1

ξd
, and in [16] forD−1

ξ ∗
d

.

α = 0.99 α = 0.999
d overlapping non-overlapping overlapping non-overlapping
3 29.98 46.70 95.17 156.98
4 51.82 70.75 167.24 248.98
5 78.46 98.44 253.83 348.55
6 108.99 129.36 352.62 458.76
7 143.03 178.20 463.35 578.66
8 180.12 218.27 584.19 707.54
9 220.14 261.00 712.03 844.81

10 262.83 306.27 850.30 990.00

Table 5.2 Upper bounds on Value-at-Risk for the sum ofd Pareto(2)-distributed risks within the
overlappingstar-likeξ ⋆

d and thenon-overlappingmarginal systemξd. Under the star-like system,
the bivariate marginals are coupled by a Frank copula with parameterδ = 1.
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Open problems

The search forMξd
(s), i.e. for the largest VaR overF(F1, . . . ,Fd), is open when

d > 2. The proof of the optimality of the dual functionals for thecased = 2,
given in [37], is based on Strassen’s theorem (see Th. 11 in [41]). Unfortunately,
Strassen’s theorem does not have an obvious extension to theproduct of more than
two marginal spaces; see [40] and references therein.

The search formξd
(s), i.e. for the smallest VaR overF(F1, . . . ,Fd), is again open

whend > 2. For general dimensionsd, several authors have obtained an elementary
lower bound formξd

(s); see for instance [7]. In models of actuarial interest, in [15]
it is shown that the last mentioned lower bound does not depend ond. Therefore, a
better bound onmξd

(s) is needed.
Finally, VaR dual bounds of the type (5.10) are needed for more general aggre-

gating functionalsΨ .

5.2.2 Application 2: supermodular functions

In the simple marginal settingξ = ξd, there are some functionalsψ for which the
solutions of problems (5.2a) and (5.2b) are known. They formthe classSd of su-
permodular functions.

Definition 5.2.1.A measurable functionψ : R
d → R is said to besupermodularif

ψ(u∧v)+ ψ(u∨v) ≥ ψ(u)+ ψ(v), for all u,v ∈ R
d,

whereu∧v is the componentwise minimum ofu andv, andu∨v is the componen-
twise maximum ofu andv.

Whend = 2, a functionc : R×R → R is supermodular if and only if

ψ (x1,y1)+ ψ (x2,y2) ≥ ψ (x1,y2)+ ψ (x2,y1) , for all x2 ≥ x1, y2 ≥ y1. (5.12)

Recall that, for any set of univariate distributionsF1, . . . ,Fd, there exists acomono-
tonic couplingXM, i.e. a random vector having marginalsF1, . . . ,Fd and copulaM.

Theorem 5.2.3.For given univariate distributions F1, . . . ,Fd, denote byXM a comono-
tonic coupling having these marginals. Letψ : R

d → R be right-continuous. Then

E
[

ψ
(

XM)]

= sup

{

∫

ψ dFX : FX ∈ F(F1, . . . ,Fd)

}

, for all F1, . . . ,Fd, (5.13)

if and only ifψ ∈ Sd.

Proof. The if part follows from [36, Remark 3.1.3], but many authors have derived
the same result under different regularity conditions: seefor instance [25] and [5].
For theonly if part, see [35]. ⊓⊔
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The most popular supermodular function is the product×(x) = Πn
i=1xi . When

ψ = ×, Theorem 5.2.3 gives the well-known result that a multivariate comonotonic
distribution maximizes correlation between its marginals.

Note that Theorem 5.2.3 applies to a large class of interesting functionals,
including ψ(x) = ∑d

i=1hi(xi), where thehi ’s are non-decreasing (see [30]) and
ψ(x) = h(∑d

i=1xi) for h non-decreasing and convex; see [27, pp. 150–155]. In insur-
ance,∑d

i=1hi(xi) andh(∑d
i=1xi) can be interpreted, respectively, as the risk positions

for a reinsurance treaty with individual retention functions hi, and a reinsurance
treaty with a global retention functionh.

We remark that the functionalψ = 1{∑d
i=1xi≥s}, which defines the worst-VaR

problem (5.6), is not supermodular and hence does not satisfy the assumption of
Theorem 5.2.3. Hence, it may happen that a comonotonic coupling doesnot maxi-
mize the VaR of the sum ofd risks, as we will study in details in Section 5.3 below.

Open Problems

For d = 2, the infimum in (5.13) is attained by thecountermonotonicdistribution
W(F1,F2). SinceW(F1, . . . ,Fd) is not a proper distribution whend > 2, the search
for the infimum ofE[ψ(X)] among the Fréchet classF(F1, . . . ,Fd) remains open
for a variety of functionalsψ . Especially forψ = ×, Roger Nelsen (private com-
munication) remarked that the solution of this last mentioned problem would have
important consequences in the theory of dependence measures.

5.3 The calculation of the distribution of the sum of risks

In the trivial system of marginalsξ = ξI , we have thatFξI
= {FX}. This setting

represents complete probabilistic information about the portfolio X of risks held. In
fact, from a theoretical point of view, the knowledge ofFX completely determines
the distribution of the random variableΨ (X). In practice, we will see that things are
more complicated.

The systemξI is particularly important in stress-testing, i.e. when onehas differ-
ent models forFX and wants to stress-test the distribution ofΨ(X). Especially in the
context of the current (credit) crisis, financial institutions often have information on
the marginal distributions of the underlying risks but wantto stress-test the interde-
pendence between these risks, for instance assuming different copula scenarios.

In the following, we will study the case of the sum of risks, i.e.Ψ = +. Thus, we
will focus on the computation of the distribution ofΨ (X) = ∑d

i=1Xi, i.e.

P[X1 + · · ·+Xd ≤ s] =

∫

I(s)
dFX(x1, . . . ,xd),s∈ R (5.14)

whereI(s) = {x ∈ R
d : ∑d

i=1xi ≤ s}.
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The computation of (5.14) is a rather onerous task. In the literature, there exist
several methods to calculate (5.14) when the marginalsXi are independent. In some
rare cases, it is possible to write the integral in (5.14) in closed form. For general
marginals, one can for instance rely on the Fast Fourier Transforms; see [8] and the
references therein for a discussion within a risk management context.

Much less is known when theXi ’s are dependent. Indeed, whenX has a general
copulaCX , one often has to rely on integration tools like Monte Carlo and Quasi-
Monte Carlo methods. WhenFX has a density functionfX , these methods approxi-
mate (5.14) by the average offX evaluated atM pointsx1, . . . ,xM filling up I(s) in
a convenient way, i.e.

∫

I(s)
dFX(x1, . . . ,xd) ≃

1
M

M

∑
i=1

fX(xi).

If the xi ’s are chosen to be (pseudo) randomly distributed, this is the Monte Carlo
(MC) method. If thexi ’s are chosen as elements of a low-discrepancy sequence,
this is theQuasi-Monte Carlo(QMC) method. Alow-discrepancysequence is a to-
tally deterministic sequence of vectors that generates representative samples from
a uniform distribution on given subsets. Compared to Monte Carlo methods, the
advantage of using quasi-random sequences is that points cannot cluster coinci-
dentally on some region of the set. Using Central Limit Theorem arguments, it is
possible to show that traditional MC has a convergence rate of O(M−1/2), and this
independently of the number of dimensionsd. QMC can be much faster than MC
with errors approachingO(M−1) for a smooth underlying density. For details on
the theory ofrare event simulationwithin MC methods, we refer the reader to the
monographs [3], [18] and [28]. For an introduction to QMC methods, see for in-
stance [33]. A comprehensive overview of both methods is given in [43]. Note that
all the techniques mentioned above warrant considerable expertise and, more im-
portantly, need to be tailored to the specific problem under study. In particular, the
implementation very much depends on the functional form offX (either direct, or
through the marginals and a copula).

The re-tailoring of the rule to be iterated, from example to example, is common
also to other numerical techniques for the estimation of (5.14), such asquadra-
ture methods; see [6] and [34] for a review. However, in the computation ofmulti-
dimensional integrals as in (5.14), numerical quadrature rules are typically less effi-
cient than MC and QMC.

A simple and competitive tool for the computation of the distribution function of
a sum of random variables is the AEP algorithm introduced in [1]. If one knows the
distributionFX of X, it is very easy to compute theFX-measure of hypercubes inRd.
Thus, the authors of [1] propose a decomposition ofI(s) via a infinite union of (pos-
sibly overlapping) hypercubes and hence compute (5.14) in terms of the algebraic
sum of the probability masses contained in them.

In the MC and QMC methods described above, the final estimatescontain a
source of randomness. Instead, the AEP algorithm is completely determinist because
it is solely based on the geometrical properties ofI(s). Moreover, the accuracy of
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MC and QMC methods is generally lost for problems in which thedensity fX is not
smooth or cannot be given in closed form, and comes at the price of an adaptation
of the sampling algorithm to the specific example under study. The AEP algorithm
however can handle in a uniform way any joint distributionFX and does not require
existence or smoothness of a densityfX . As illustrated in [1], AEP performs bet-
ter than QMC in dimensionsd = 2,3 and slightly worse for dimensionsd = 4,5.
In these latter dimensions, however, programming a QMC sequence is much more
demanding than using AEP. At the time being, AEP cannot be applied for d > 5 due
to computational complexity (memory).

We setd = 3 and we use AEP to provide estimates for the tail and the quan-
tile (VaR) function of the sumS3 = X1 + X2 + X3. For pedagogical reasons, we as-
sume the marginalsFi of the portfolio to be Pareto distributed with tail parameter
θi > 0. We consider the two dependence scenarios obtained by coupling the Pareto
marginals either by the independent copulaCX = Π or via the comonotonic copula
CX = M. In the following, we use the fact that VaR is additive under comonotonic-
ity; see Prop. 3.1 in [9]. This means that, for a comonotonic vector(XM

1 ,XM
2 ,XM

3 ),
we have

VaRα(XM
1 +XM

2 +XM
3 ) = VaRα(X1)+VaRα(X2)+VaRα(X3). (5.15)

Denote byFΠ the distribution ofS3 obtained under independence between theXi ’s
and byFM the distribution ofS3 obtained under comonotonicity between theXi ’s.
FΠ andFM, respectively, are the corresponding tail functions. We study two different
cases: when theXi ’s have finite or infinite first moment.
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Fig. 5.2 Log/log plots of the tail function ofX1+X2+X3, under independence and comonotonicity.
TheXi ’s are distributed as a Pareto(2) (left) and as a Pareto(1) (right).

The finite-mean case.In Figure 5.2 (left), we plotFΠ andFM when the Pareto
tail parameterθ for the marginal distributions is set to 2 (theXi ’s have finite first
moment). We note that the two curvesFΠ andFM cross once at some high threshold
s= ŝ. Fors< ŝ, we have thatFM(s) < FΠ (s). Recalling (5.5), this means that
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F−1
M (α) < F−1

Π (α), for all α < α̂ = FM(ŝ) = FΠ (ŝ), (5.16)

i.e. for the lower levelsα < α̂, VaRα(S3) is larger under independence between the
Xi ’s. Forα > α̂ , inequality (5.16) is obviously reversed and we have that

F−1
Π (α) ≤ F−1

M (α), for all α ≥ α̂, (5.17)

i.e. for the higher levelsα > α̂, VaRα(S3) is larger under comonotonicity between
the marginals. Recalling (5.15), and for the independent vector (XΠ

1 ,XΠ
2 ,XΠ

3 ), in-
equality (5.17) can be written as

VaRα(XΠ
1 +XΠ

2 +XΠ
3 ) ≤ VaRα(X1)+VaRα(X2)+VaRα(X3), for all α ≥ α̂ ,

(5.18)
i.e. VaR is subadditive in the tail ofFΠ . Whenθ > 1, [19] illustrates that this tail
behavior can be extended to more general dependence and marginal scenarios.

The infinite-mean case.Figure 5.2 (right) shows the same plot as Figure 5.2 (left),
but now the Pareto tail parameterθ = 1 (theXi ’s have infinite first moment). We
note thatFM(s) < FΠ (s) for all s∈ R. Therefore, all the quantiles ofS3 under in-
dependence are larger than the corresponding quantiles under comonotonicity and
inequality (5.18) is reversed:

VaRα(XΠ
1 +XΠ

2 +XΠ
3 ) > VaRα(X1)+VaRα(X2)+VaRα(X3), for all α ∈ (0,1).

(5.19)
This shows that, in general, VaRmay fail to be subadditive. Typical frameworks in
which VaR shows a superadditive behavior are: marginals with infinite mean or skew
distributions (as in this case) and/or marginals coupled bya non-elliptical copula;
see [29]. An early interesting read on this is [11]. In [10], amathematical summary
of the issue is given within extreme value theory using the concept of multivariate
regular variation.

Possible superadditivity is an important conceptual deficiency of Value-at-Risk.
In fact, VaR has been heavily criticized by many authors for not being acoherent
measure of risk; see the seminal paper [2]. Many other authors have discussed desir-
able properties which a general risk measureρ has to satisfy. Textbook treatments
are [29] and [17].

Xi ∽ Pareto(2) Xi ∽ Pareto(1.3) Xi ∽ Pareto(1)
α Π Cl M Π Cl M Π Cl M
0.80 3.92 4.21 3.71 8.90 9.36 7.35 16.69 17.21 12.00
0.90 5.87 6.45 6.49 15.36 16.54 14.63 33.20 35.05 27.00
0.99 18.37 19.6227.00 84.08 87.34 100.65 308.21 315.25 297.00
0.999 55.92 57.3791.87 477.44 481.80606.28 3012.97 3025.00 2997.00

Table 5.3 VaRα(X1 + X2 + X3) under different dependence scenarios for three different Pareto
portfolios. For a fixed levelα and Pareto parameterθ , the largest VaR value is bold-faced.
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Finally, in Table 5.3, we show the quantiles forS3 for different levels of probabil-
ities, under several marginal and dependence scenarios. Along with independence
(CX = Π ) and comonotonicity (CX = M), we study the case in which the copula of
X is of Clayton type (CX = Cl). There are various points to remark about:

• The behavior of the tail functionFCl of S3 under the Clayton scenario is similar
to the behavior ofFΠ studied above. Whenθ > 1, FCl andFM cross once. This
can be seen from the fact that, forθ = 2 andθ = 1.3, the comonotonic quantiles
are smaller than the Clayton ones when the quantile levelα is small, while they
are larger whenα is large. In this case, VaR under the Clayton scenario shows
subadditivity in the tail.
Forθ = 1, we have thatFM(s) ≤ FCl(s) for all s∈ R, hence VaR under the Clay-
ton model is superadditive at all levelsα. We also note that the intersection point
between the Clayton and the comonotonic curve goes to infinity as the tail pa-
rameterθ approaches 1 from above. Whenθ = 1, the two curves do not cross.

• Since the marginal distributions of theXi ’s are fixed, the first moment of the sum
S3 does not depend on the copulaCX . Whenθ > 1, two different distributions
for S3 have the samefinitemean and thereforecannotbestochastically ordered;
see Sect. 1.2 in [31] for the definition of stochastic order and its properties. As
a consequence, two different distributions forS3 must cross. The case illustrated
in Figure 5.2, in which the intersection point is unique, is typical for two random
variables which arestop-loss ordered; see Th. 1.5.17 and Def. 1.5.1 in [31] (in
this last reference the authors use the equivalent terminology increasing-convex
order to indicate the stop-loss order).
Whenθ = 1, we have thatE[S3] = +∞ and it is possible thatFM < FΠ , i.e. the
distribution ofS3 under independence is stochastically larger than the distribu-
tion of S3 under comonotonicity, as illustrated in Figure 5.2 (right). For general
distributions, both the change of behavior with respect to stochastic dominance
and superadditivity of VaR in the tail seem to be strictly related to the existence of
first moments. For some further discussions on this phenomenon, see [21], [32]
and [20].

• For Pareto marginals of the form (5.11), the quantile function ofS3 can be given
in closed form under the independence and comonotonic assumptions. Things are
different when one assumes a Clayton-type dependence. In this latter case, the
computation of the distribution and the VaRs ofS3 requires one of the integration
techniques described above in this section. In particular,the quantiles in Table 5.3
have been obtained via AEP.

Open problems

In insurance and finance, there is a increasing need of software being able to com-
pute the distribution ofΨ(X) when the distribution ofX is known. The authors of [1]
are working on a extension of AEP to general increasing functionalsΨ . Moreover,
efficiency of AEP for dimensionsd > 5 needs to be improved. Finally, AEP and its
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competitors open the way to the computational study of largeand non-homogeneous
risk portfolios.
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