Chapter 5
Risk Aggregation

Paul Embrechts and Giovanni Puccetti

Abstract Quantitative Risk Management (QRM) often starts with a eeof one-
period profit-and-loss random variabl¥s= (X,...,Xy)’ defined on some prob-
ability space(Q,§,P). Risk Aggregation concerns the study of the aggregate fi-
nancial position¥(X), for some measurable functidd : RY — R. A risk mea-
surep then mapst (X) to p(W(X)) € R, to be interpreted as the regulatory capital
needed to be able to hold the aggregate posi¢X) over a predetermined fixed
time period. Risk Aggregation has often been studied withanframework when
only the marginal distributions, . .. , Fy of the individual risksX, ..., Xq are avail-
able. Recently, especially in the management of operdtigsiq cases in which
further dependence information is available have becoteeast. We introduce a
general mathematical framework which interpolates betwaarginal knowledge
(F1,...,Fy) and full knowledge ofrx, the distribution ofX. We illustrate the ba-
sic issues through some pedagogic examples of actuaridireanttial interest. In
particular, we study Risk Aggregation under different neattatical set-ups, for dif-
ferent aggregating functional8 and risk measureg, focusing on Value-at-Risk.
We show how the theory of Mass Transportations and toolsnaliy developed to
solve so-called Monge-Kantorovich problems turn out to beful in this context.
Finally, we introduce some new numerical integration téghes which solve some
open aggregation problems and raise new interesting &@s&asues.
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5.1 Motivations and preliminaries

Quantitative Risk Management (QRM) standardly concernscaov of one-period
profit-and-loss random variables = (Xq,...,Xq)" defined on some probability
spaceg Q,§,P). Risk Aggregatioroncerns the study of the aggregate financial po-
sition ¥(X), for some measurable functiéh: RY — R.

Under the terms of the New Basel Capital Accord (Basel Ikgrinationally ac-
tive banks are required to set aside capital to offset varigpes of risks, i.e. mar-
ket, credit and operational risk; see [4]. Under the new lagns, the vectoX
represents the profit-and-loss amounts for particulaslioferisk or business, and
this over a given period. A risk measupemaps the aggregate positié(X) to
p(W(X)) € R, to be interpreted as the regulatory capital needed to leetaliiold
the aggregate positidH(X) over this predetermined fixed period. The exact calcu-
lation of p(W(X)) needs the joint distribution functidf of X; when such informa-
tion is not available, special procedures are called faiclly leading to bounds
onp(W(X)).

Risk Aggregation has often been studied within the framé&wanen only the
marginal distributions,...,Fy of the individual risksXy,...,Xq are available.
A multitude of statistical techniques are available foriraating the univariate
(marginal) distributions. It is often more difficult to cajpé statistically thel-variate
structure of dependence of the vecxarRecently, especially in the management of
operational risk, cases in which further dependence indtion is available have
become relevant.

In the following, we introduce a general mathematical fraumek which inter-
polates between marginal knowleddg, . .., Fy) and full knowledge of. For the
purpose of this paper, we disregard the statistical uniogyteelated toF, ..., Fq
and only concentrate on the probabilistic structure.

5.1.1 The mathematical framework

We follow the mathematical setup described in [38]. Bet I'Iid:lBi be the product
of d Borel spaces witlr-algebraz = @i, %, % being the Boret-algebra orB;.
Definel :={1,...,d} and let§ C 2', the power set of, with U;c;J = I. ForJ € &,
let F; € §(B;) be aconsistentsystem of probability measures @& = my(B) =
I;c3Bj, my being the natural projection fro to By andg(B;) denoting the set of
all probability measures oB;. Consistency oF;,J € £ means thafl;,J, € £,J1N
Jo # 0 implies that
n:JlﬁJz FJl = n«—]lﬁJz FJz-

Finally, we denote by

theFréchet clas®of all probability measures oB having marginal$;,J € €.
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Consistency of;,J € &, is a necessary condition to guarantee fats non-
empty. Wheré is regular (see [42]), then consistency is also sufficient. When the
systemé is non-regular, e.g§ = {{1,2},{2,3},{3,1}}, the Fréchet clas§; may
be empty even with consistent marginals, as illustrate@&}. [

In the following, we will consider the cas®, = R, B = R". For the sake of
notational simplicity, we identify probability measuresthese spaces with the cor-
responding distribution functions. We will study only régusystems of marginals
which interpolate between two particular choices of

o &y ={{1},...,{d}}, also called thesimplesystem of marginals, which defines
the Fréchet class

Se, = §(Far.. o Fa).

This is the most often used marginal system in Risk Aggregatnd the natural
setup for the theory of copulas, as discussed in [29].
e & ={l}, also called thérivial system of marginals, in which

SEI = {Fx}a

whereFy is the distribution function of the vectot. This case represents the
complete dependence information abXut

There are other important cases representing intermetgendence information
betweeréy andé;. Relevant examples are:

o EM={{2j-1,2j},j=1,...,d/2} (d even), themultivariate system of mar-
ginals. This system has the role of the simple marginal aystben one studies
aggregation of random vectors instead of aggregation afoarvariables.

o &i={{1j},i=2,...,d}, thestar-like system of marginals and

o & ={{],i+1},j=1,...,d—1}, theserial system of marginals. These latter
two systems are of particular interest when dependencebireemiate datasets is
available.

When¢ is a partition ofl, i.e. when all setd € & are pairwise disjoint, we speak
about anon-overlappingsystem of marginalspverlappingotherwise. According
to this definition,&q4, & and Ec',v' are non-overlapping marginal systems, wife
andé&; are overlapping. We study Risk Aggregation under inconegleformation
frameworks in Section 5.2. Section 5.3 will focus insteadtoa problems arising
within the complete information syste&.

5.2 Bounds for functions of risks: the coupling-dual approzh

We will focus on those risk measurp$¥ (X)) which are representable as

pW(X) = EW(X)] = [ waF. (5.1
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for some measurable functiap : R — R. This representation includes some of
the most popular risk measures, such as Value-at-Risk. hpsirtantly, (5.1) will
allow to use the theory oflass Transportationsvithin the context of Risk Ag-
gregation. In this section, we illustrate how to obtain basionE[(X)] under an
incomplete information setting, i.e. when the distribatfanctionFx of the vector

X is not completely specified. Formally, we assume that

Fx € §¢. for afixedé c 2',& £1.

Since Fx is not uniquely determined, there exist an entire range tiegfor
E[g@(X)], which are consistent with the choice of the subgralips of marginals.
The infimum and supremum of this range are defined as

me () = inf{/cdex Py egg}, (5.2a)
M (i) = sup{/q_lde Py egg}. (5.2b)

Since the Fréchet clags is convex and the problems (5.2a) and (5.2b) are linear
onFyx, (5.2a) and (5.2b) both admit a dual representation. Tlpigegzntation is to
be found in the theory of Mass Transportations.

Theorem 5.2.1.Let the measurable functioy be bounded or continuous, then
problemg5.2a)and (5.2b)have the following dual counterparts:

mg (Y) _sup{ Z / fydR: fye Ll(FJ),\] € & with z fiom< Lp}, (5.3a)
Jeé - Jeé

Ms () = inf{ Z /ngFJ tQy € Ll(FJ),J e & with Z gjo Ty > w}.(5.3b)
Jeé Jeg

There exist several versions of Theorem 5.2.1 which arel vatder weaker as-
sumptions and more general settings, even non-topologitzd. For more details
on these versions, a proof of Theorem 5.2.1 and a comple&rage of the the-
ory of Mass Transportations, we refer to the milestone b&®# and the review
paper [39].

According to [24], we call @ouplingevery random vectoX having distribution
function Fx € §¢. Moreover, we calldual choicefor (5.3a) any family of func-
tionsf = {f3,J € £} which are admissible for (5.3a). Analogously, we define d dua
choiceg = {gj,J € &} for (5.3b). By Theorem 5.2.1, a coupling and two dual
choiced andg satisfy

Jwdrczmw) > 5 [ tdm, (5.43)
Jeé-
Jwdrc<Mew) < 5 [ R, (5.4b)

Jeé
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for all Fx € §¢. A coupling and a dual choice which satisfy (5.4a) (or (5)4ti}h
two equalities will be called aoptimal couplingand adual solution respectively,
since they solve problem (5.2a) (or (5.2b)).

Equations (5.4a) and (5.4b) illustrate tbeupling-dualapproach in Risk Ag-
gregation. Problems (5.2a) and (5.2b) are in general vdfiguli to solve, with
some exceptions illustrated in Section 5.2.2 below. Dejpendn the systeng of
marginals, the concept of a copula might not be useful andit be difficult even
to identify a single coupling ifrs. When the solutions of (5.2a) and (5.2b) are un-
known, any dual choice satisfying (5.4a) or (5.4b) providé&®und orm; or M.

5.2.1 Application 1: bounding Value-at-Risk

We now illustrate the usefulness of the dual representat{br8a) and (5.3b), in
the case of Value-at-Risk (VaR). VaR is probably the mostyterprisk measure
in finance and insurance, this is no doubt due to its impogavithin the Basel Il
capital-adequacy framework; see [4]. The VaR of a profit-lrsd random variable
L at the probability (or confidence) level € (0,1) is simply thea-quantile of its
distribution, defined as

VaRy(L) = F Ya) =inf{l cR:F.(I) > a}, (5.5)

whereF_ is the distribution oL. Under the terms of Basel II, banks often measure
the risk associated with a portfoldd = (Xy,...,Xq)" in terms of VaR (Xy + - +
X4), the VaR of the sum of its marginal components. This is fongxa the case
of operational risk; see [15]. Using our notation, we hapve VaR and¥’ = +, the
sum operator. Typical values for area = 0.95 ora = 0.99, or evena = 0.999
in the case of credit and operational risk. By (5.5), bougdie VaR of a random
variableL from above is equivalent to bounding from below its disttibn F_ or,
similarly, bounding from above its tail (or survival) fummh F_ = 1 — F_. Roughly
speaking, if VaR is used to risk measureahigher tail functionfor L means amore
dangerous riskAn alternative approach to Value-at-Risk is to be foundéct®n
8.4.4 of this volume ([23]).

Banks often have more precise information about the margistibutions of
X, but less about the joint distributid# . This then immediately translates into the
incomplete information settingy, which defines the Fréchet clagéF,, ..., Fy).
Within &g, banks are typically interested on a upper bound ona\,@lxi), since
this latter amount cannot be calculated exactly. Such adean be obtained by
solving problem (5.2b) for a particular choice of the fuoatip, in this casep =
WY(S) = Lixy4...sxy>s)» for somes € R. Thus, we define the functidvig, as

Mg, (S) = sup{/1{X1+...+Xd25}de(x1,...,xd),Fx € S(Fl,...,Fd)} ,seR. (5.6)
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Note that the inequality> in the definition of the indicator function in (5.6) is
essential in order to guarantee that the supremum is attase® Remark 3.1(ii)
in [13]. With respect to any random vect(Xy, ..., Xq)" having distributionFx €
§(F1,...,Fq), the functionMg, obviously satisfies

P[X1+---+Xg > 9 < Mg (s) forall se R, (5.7)
while, for its inversd\/lgdl, we have
VaRg (X1 + -+ Xa) < Mg '(1—a), foralla € (0,1). (5.8)

According to Theorem 5.2.1, the dual counterpart of (5.@jjvsn by:

Mg, () = inf{i/ fidR: fi € Ly(R),i el
- (5.9)

d
s.t. Zfi (%) 2> Lixysqxg=s) forallx e Rji e I}.
i=

The dual solution for (5.9) is given in [37] for the sum of twisks d = 2).
Independently from this, [26] provided the correspondipgroal coupling. For the
sum of more than two risks, (5.9) seems to be very difficultdtves The only
explicit results known in the literature are given in [37} fbe case of the sum of
marginals being all uniformly or binomially distributed.

When the value oM (s) is unknown, equation (5.4b) plays a crucial role. In
fact, every dual admissible choice in (5.9) gives un uppemloonM; (s) which,
though not sharp, is conservative from a risk management pbview. This is for
instance the idea used in [13] to produce bounds om\(ﬁm). The following
theorem is a reformulation of Th. 4.2 in the above referemeckilfustrates the case
of a homogeneous risk portfolio, i.g.=F foralli=1,....d.

Theorem 5.2.2.Let F be a continuous distribution with non-negative supptr
F=Fi=1...,d,then, forevery & 0,

Mfd (S) < ng (S) =d inf 'ﬁs*mil)r(l_ F(X))dx.

5.10
re[0,s/d) s—dr ( )

The infimum in (5.10) can be easily calculated numericallffibgting the zero-
derivative points of its argument. Fdr= 2, we obtainMg, (s) = D¢, (s), the bound
given in [37]. The idea of using dual choices to produce bsuonl functions of
risks was discussed further in [12] (within simple systenith won-homogeneous
marginals), [14] (multivariate systems) and [16] (ovedeqg systems). Bounds pro-
duced by a choice of admissible dual functionals are refleiwesdual boundsA
related study of bounds on VaR can be found in [22] and in 8edi4.4 of this
volume ([23]).
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In Figure 5.1, we plot the dual bound functibg, for a portfolio of three § = 3)
Gamma-distributed risks. In the same figure, we also givedhdunction of the
random variableX; + Xz + X3 in case of comonotonicCy = M) and independent
(Cx = M) marginals; for this notation, see [29], Chapter 5. Noté tha two tail
functions cross at some thresha@rid the tail function obtained under comono-
tonicity lies above the one obtained under independendalfer- 8. We will return
on this later in Section 5.3. Table 5.1 shows the upper bomzj&ssl— a) on the
VaR of the Gamma portfolio, as well as exact quantiles in chgsdependence and
comonotonicity. Recall that for comonotonic risks VaR iglitisle, see also (5.15)
later in the paper. Figure 5.1 and Table 5.1 exemplify thetfeat, using (5.7), (5.8)
and (5.10), we have

PXi+---+Xq>9 < Dfd(s)’ i.e. VaRy (Xp+ -+ Xg) < ngl(l_a)a

for any(Xy,...,Xq)" having distributiorFx € J,.

We finally remark that the entire curi_(s) is generally obtained within sec-
onds, independently of the numtzkof variables under study. In general, the compu-
tational time of dual bounds strongly depends on the numbeorr-homogeneous
marginals.

1 =

— - —independence
comonotonicity

09 dual bound
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Fig. 5.1 Plot of the tail functionP[X; + X + X3 > g for a I (3,1)-portfolio under independence
and comonotonic scenarios. We also plot the upper dual bfanedion D¢, (s).

It is interesting to study how dual bounds vary within diffet marginal sys-
tems having the same univariate marginals. To this aim, we cansiderd risks
Xi,...,Xg which we assume to be Pareto distributed with tail paranttee.

FX)=PX <X =1-(1+x"% x>0,i=1,...d. (5.11)



118 Paul Embrechts and Giovanni Puccetti

a Cx =1 Cx=M dual bound
0.90 1300 1597 1980
0.95 1444 1889 2257
0.99 1741 2522 2867
0.999 2116 3369 3697

Table 5.1 VaR, (X1 + X2+ X3) for al (3,1)-portfolio under independence and comonotoniaity, f
some levelsr of interest. We also give the corresponding upper dual bongi(lf a).

Together with the non-overlapping marginal systgpstudied above, we consider

the overlapping star-like systedj. Underéj, we assume that each of the- 1

subvectorg Xy, X;),i = 2,...,d, is coupled by a Frank coputag with parameter

0 = 1. Within the systengj, bounds on VaB(zid:lX@) are obtained by integration

of particular dual bounds i&q. For more details on this technique, we refer to [16].
In Table 5.2, we give upper VaR IimiBgal(a) for Frank-Pareto portfolios of in-

creasing dimensions. As quantile levels, we take 0.99 anda = 0.999. For com-
parison, the comonotonic quantiles are also given. Corisigiéhe absolute values
reported in Table 5.2, the overlapping bounds are smalbar the corresponding
bounds obtained in a non-overlapping setting. The reasole#: switching from

a non-overlapping simple system to a overlapping starsikeginal system means
reducing the Fréchet class of attainable risks, i.e. haviage information about the
dependence structure of the portfoKo Formally, we hav@;d* C §g,- Under the
extra information represented gy, less capital is needed to offset the underlying
portfolio risk.

Detailed studies of the quality of the dual bounds have beesemted in [13] for
ngl, and in [16] fongJl.

a=0.99 a =0.999
d overlapping non-overlapping overlapping non-overlagpi
3 29.98 46.70 95.17 156.98
4 51.82 70.75 167.24 248.98
5 78.46 98.44 253.83 348.55
6 108.99 129.36 352.62 458.76
7 143.03 178.20 463.35 578.66
8 180.12 218.27 584.19 707.54
9 220.14 261.00 712.03 844.81
10 262.83 306.27 850.30 990.00

Table 5.2 Upper bounds on Value-at-Risk for the sumdoParet@2)-distributed risks within the
overlappingstar-like£; and thenon-overlappingnarginal systengy. Under the star-like system,
the bivariate marginals are coupled by a Frank copula withmpaterd = 1.
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Open problems

The search foMg, (s), i.e. for the largest VaR oveg(Fy,...,Fq), is open when
d > 2. The proof of the optimality of the dual functionals for thased = 2,
given in [37], is based on Strassen’s theorem (see Th. 111i).[@nfortunately,
Strassen’s theorem does not have an obvious extension ppadact of more than
two marginal spaces; see [40] and references therein.

The search fomg, (s), i.e. for the smallest VaR ovei(F, ..., Fq), is again open
whend > 2. For general dimensiomk several authors have obtained an elementary
lower bound fomg_(s); see for instance [7]. In models of actuarial interest, &][1
it is shown that the last mentioned lower bound does not dépan. Therefore, a
better bound omg, (s) is needed.

Finally, VaR dual bounds of the type (5.10) are needed foreng@neral aggre-
gating functionalst.

5.2.2 Application 2: supermodular functions

In the simple marginal settin§ = &4, there are some functionals for which the
solutions of problems (5.2a) and (5.2b) are known. They ftirenclass¥y of su-
permodular functions.

Definition 5.2.1.A measurable functiogy : RY — R is said to besupermodulaif
YUAV)+Puvv) > @)+ (), forallu,v e RY,

whereu AV is the componentwise minimum afandv, andu Vv is the componen-
twise maximum ot andv.

Whend = 2, a functionc: R x R — R is supermodular if and only if
W (X1,Y1) + @ (X2,¥2) > W (X, Y2) + @ (X2,¥1), forall xo > xq, y2 > y1. (5.12)

Recall that, for any set of univariate distributiofs. . ., Fy, there exists @omono-
tonic couplingx™, i.e. a random vector having margin&is. .., Fy and copulaM.

Theorem 5.2.3.For given univariate distributions#. . . , Fy, denote bX™ a comono-
tonic coupling having these marginals. Lgt R — R be right-continuous. Then

E [y (XM)] = sup{/tdex e S(Fl,...,Fd)}, forall Fy,....Fg, (5.13)

if and only if gy € .74.

Proof. Theif part follows from [36, Remark 3.1.3], but many authors hagevéd
the same result under different regularity conditions:feeénstance [25] and [5].
For theonly if part, see [35]. O



120 Paul Embrechts and Giovanni Puccetti

The most popular supermodular function is the produet) = 1 ;x. When
Y = x, Theorem 5.2.3 gives the well-known result that a multaicomonotonic
distribution maximizes correlation between its marginals

Note that Theorem 5.2.3 applies to a large class of intexgsdtinctionals,
including Y(x) = Eid:lhi(x;), where theh;’s are non-decreasing (see [30]) and
W(x) =h(3% %) for hnon-decreasing and convex; see [27, pp. 150-155]. In insur-
ancey % hi(x)andh(y% %) can be interpreted, respectively, as the risk positions
for a reinsurance treaty with individual retention funatsdy, and a reinsurance
treaty with a global retention functidm

We remark that the functionay = 1{2971@5}, which defines the worst-VaR
problem (5.6), is not supermodular and hence does notsatisfassumption of
Theorem 5.2.3. Hence, it may happen that a comonotonic itgugbesnot maxi-
mize the VaR of the sum af risks, as we will study in details in Section 5.3 below.

Open Problems

Ford = 2, the infimum in (5.13) is attained by tl®untermonotonidistribution
W(F1, ). SinceW(F,...,Fy) is not a proper distribution wheth > 2, the search
for the infimum of E[/(X)] among the Fréchet clagq{F,...,Fq) remains open
for a variety of functionalgy. Especially fory = x, Roger Nelsen (private com-
munication) remarked that the solution of this last merg@problem would have
important consequences in the theory of dependence msasure

5.3 The calculation of the distribution of the sum of risks

In the trivial system of marginal§ = &, we have thaf; = {Fx}. This setting
represents complete probabilistic information about thrtfplio X of risks held. In
fact, from a theoretical point of view, the knowledgeFgf completely determines
the distribution of the random varialb#é(X). In practice, we will see that things are
more complicated.

The systeng; is particularly important in stress-testing, i.e. when bas differ-
ent models foFx and wants to stress-test the distributior{iX ). Especially in the
context of the current (credit) crisis, financial instituts often have information on
the marginal distributions of the underlying risks but wamstress-test the interde-
pendence between these risks, for instance assumingetitieopula scenarios.

In the following, we will study the case of the sum of risks, ¥ = +. Thus, we
will focus on the computation of the distribution #f(X) = 59, X;, i.e.

p[x1+...+)(dgs]:/:;(s)de(xl,...,xd),seR (5.14)

whereJ(s) = {x e R9: 59 x <s}.
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The computation of (5.14) is a rather onerous task. In tleeditire, there exist
several methods to calculate (5.14) when the margiXadse independent. In some
rare cases, it is possible to write the integral in (5.14)lased form. For general
marginals, one can for instance rely on the Fast Fouriersfoams; see [8] and the
references therein for a discussion within a risk managéuouartext.

Much less is known when thg’s are dependent. Indeed, wh¥rhas a general
copulaCyx, one often has to rely on integration tools like Monte Card &uasi-
Monte Carlo methods. Whdfk has a density functiofi, these methods approxi-
mate (5.14) by the average &f evaluated aM pointsxy,...,xw filling up J(s) in
a convenientway, i.e.

. 1 M
[ 8= 3 100

If the x;’s are chosen to be (pseudo) randomly distributed, thisdévibnte Carlo
(MC) method. If thex’s are chosen as elements of a low-discrepancy sequence,
this is theQuasi-Monte CarldQMC) method. Alow-discrepancygequence is a to-
tally deterministic sequence of vectors that generate®septative samples from
a uniform distribution on given subsets. Compared to MoragldCmethods, the
advantage of using quasi-random sequences is that pointe®taluster coinci-
dentally on some region of the set. Using Central Limit Tleeorarguments, it is
possible to show that traditional MC has a convergence rfa@(®l~%/2), and this
independently of the number of dimensiahsQMC can be much faster than MC
with errors approachin@(M~—1) for a smooth underlying density. For details on
the theory ofrare event simulatiomvithin MC methods, we refer the reader to the
monographs [3], [18] and [28]. For an introduction to QMC huats, see for in-
stance [33]. A comprehensive overview of both methods isryin [43]. Note that
all the techniques mentioned above warrant consideralgerége and, more im-
portantly, need to be tailored to the specific problem untietys In particular, the
implementation very much depends on the functional fornfixofeither direct, or
through the marginals and a copula).

The re-tailoring of the rule to be iterated, from examplexaraple, is common
also to other numerical techniques for the estimation af4p.such asjuadra-
ture methodssee [6] and [34] for a review. However, in the computatiomfiti-
dimensional integrals as in (5.14), numerical quadratulesrare typically less effi-
cient than MC and QMC.

A simple and competitive tool for the computation of the @ligttion function of
a sum of random variables is the AEP algorithm introduced]nlf one knows the
distributionFy of X, it is very easy to compute th&-measure of hypercubeslikf.
Thus, the authors of [1] propose a decompositiofi(sf via a infinite union of (pos-
sibly overlapping) hypercubes and hence compute (5.14rimg of the algebraic
sum of the probability masses contained in them.

In the MC and QMC methods described above, the final estinmietin a
source of randomness. Instead, the AEP algorithm is coripl@eterminist because
it is solely based on the geometrical propertie§ (). Moreover, the accuracy of
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MC and QMC methods is generally lost for problems in whichdbasity fx is not
smooth or cannot be given in closed form, and comes at the pfian adaptation
of the sampling algorithm to the specific example under stlithg AEP algorithm
however can handle in a uniform way any joint distributienand does not require
existence or smoothness of a dendfity As illustrated in [1], AEP performs bet-
ter than QMC in dimensiond = 2,3 and slightly worse for dimensiorts= 4,5.
In these latter dimensions, however, programming a QMC esacplis much more
demanding than using AEP. At the time being, AEP cannot béexpford > 5 due
to computational complexity (memory).

We setd = 3 and we use AEP to provide estimates for the tail and the quan-
tile (VaR) function of the sun$; = X; + X, + X3. For pedagogical reasons, we as-
sume the marginalg of the portfolio to be Pareto distributed with tail paraniete
6 > 0. We consider the two dependence scenarios obtained byingtipe Pareto
marginals either by the independent copbja= I or via the comonotonic copula
Cx = M. In the following, we use the fact that VaR is additive undemonotonic-
ity; see Prop. 3.1 in [9]. This means that, for a comonotoeitter (XM, XM, xM),
we have

VaRy (XM + XM + X)) = VaRy (X1) + VaRg (X2) + VaRy (X3). (5.15)

Denote by the distribution ofS; obtained under independence betweenXfse
and byFy the distribution ofS; obtained under comonotonicity between .

Fr andRy, respectively, are the corresponding tail functions. Westwo different
cases: when th¥'s have finite or infinite first moment.

— = independence

comonotonicity | _o |

35 L L L L L L L 5 L L L
-1 -05 1 15 2 25 3 35

05 4 45 5 55
log(s) log(s)

Fig. 5.2 Log/log plots of the tail function oK; + X + X3, under independence and comonotonicity.
TheX’s are distributed as a Pareto(2) (left) and as a Pareta@ht)r

The finite-mean casén Figure 5.2 (left), we ploF; andFy when the Pareto
tail parametei® for the marginal distributions is set to 2 (tbgs have finite first
moment). We note that the two curvgs andFRy cross once at some high threshold
s= 8§ Fors< § we have thaFu(s) < Fr(s). Recalling (5.5), this means that
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Fut(a) <Fzl(a), foralla < & = Fu(8) = Fr (), (5.16)

i.e. for the lower levelsr < &, VaR, (S3) is larger under independence between the
Xi's. Fora > @, inequality (5.16) is obviously reversed and we have that

Frl(a) <Fyl(a), foralla > a, (5.17)

i.e. for the higher levelsr > &, VaR,(Ss) is larger under comonotonicity between
the marginals. Recalling (5.15), and for the independeatoré X", X7, X1, in-
equality (5.17) can be written as

VaRg (X{T + X3 +X4T) < VaRy (X1) + VaRy (Xa) + VaRy (Xs), for all a > @,
(5.18)
i.e. VaR is subadditive in the tail df;. When8 > 1, [19] illustrates that this tall
behavior can be extended to more general dependence anthahaognarios.

The infinite-mean caskigure 5.2 (right) shows the same plot as Figure 5.2 (left),
but now the Pareto tail parametér= 1 (the X;’s have infinite first moment). We
note thatRy (s) < Fr(s) for all s € R. Therefore, all the quantiles & under in-
dependence are larger than the corresponding quantiles aachonotonicity and
inequality (5.18) is reversed:

VaRy (X{T + X3+ X4T) > VaRy (X1) 4+ VaRy (X2) + VaRy (X3), for all a € (0,1).
(5.19)

This shows that, in general, VaRay fail to be subadditivelypical frameworks in
which VaR shows a superadditive behavior are: marginalsiwiinite mean or skew
distributions (as in this case) and/or marginals coupled Inpn-elliptical copula;
see [29]. An early interesting read on this is [11]. In [10inathematical summary
of the issue is given within extreme value theory using thecept of multivariate
regular variation.

Possible superadditivity is an important conceptual deficy of Value-at-Risk.
In fact, VaR has been heavily criticized by many authors fatrrbeing acoherent
measure of risk; see the seminal paper [2]. Many other asitiere discussed desir-
able properties which a general risk measaiteas to satisfy. Textbook treatments
are [29] and [17].

X «~ Pareto(2) X « Pareto(1.3) X «~ Pareto(1)
a r Cl M r ClI M r Cl M
0.80 3.92 421 371 890 9.36 7.35 16.69 17.21 12.00
0.90 5.87 6.45 6.49 15.36 16.54 14.63 33.20 35.05 27.00
0.99 18.37 19.6227.00 84.08 87.34100.65 308.21 315.25 297.00
0.999 55.92 57.3791.87 477.44 481.80606.28 3012.97 3025.00 2997.00

Table 5.3 VaR, (X1 + X2 + X3) under different dependence scenarios for three differanét®
portfolios. For a fixed levedr and Pareto parametér the largest VaR value is bold-faced.
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Finally, in Table 5.3, we show the quantiles for different levels of probabil-
ities, under several marginal and dependence scenariosgAdith independence
(Cx = M) and comonotonicity@x = M), we study the case in which the copula of
X is of Clayton type Cx = Cl). There are various points to remark about:

e The behavior of the tail functioRc| of S3 under the Clayton scenario is similar
to the behavior oF studied above. Whe@ > 1, Fc; andFRy cross once. This
can be seen from the fact that, = 2 and6 = 1.3, the comonotonic quantiles
are smaller than the Clayton ones when the quantile l@vslsmall, while they
are larger whem is large. In this case, VaR under the Clayton scenario shows
subadditivity in the tail.

For 6 = 1, we have thalu(s) < Fgi(s) for all s€ R, hence VaR under the Clay-
ton model is superadditive at all levets We also note that the intersection point
between the Clayton and the comonotonic curve goes to yfasitthe tail pa-
rameter@ approaches 1 from above. Whén= 1, the two curves do not cross.

e Since the marginal distributions of tixgs are fixed, the first moment of the sum
S; does not depend on the cop@g. When6 > 1, two different distributions
for S3 have the saménite mean and thereforeannotbe stochastically ordered
see Sect. 1.2 in [31] for the definition of stochastic ordet &s properties. As
a consequence, two different distributions $grmust cross. The case illustrated
in Figure 5.2, in which the intersection point is uniqueyjigital for two random
variables which arstop-loss orderedsee Th. 1.5.17 and Def. 1.5.1 in [31] (in
this last reference the authors use the equivalent terpgyahcreasing-convex
orderto indicate the stop-loss order).

When6 = 1, we have thaE[S;] = + and it is possible thd&y < Fp, i.e. the
distribution of S3 under independence is stochastically larger than thelalistr
tion of S3 under comonotonicity, as illustrated in Figure 5.2 (riglf)r general
distributions, both the change of behavior with respectadalgstic dominance
and superadditivity of VaR in the tail seem to be stricthatet to the existence of
first moments. For some further discussions on this phenomesee [21], [32]
and [20].

e For Pareto marginals of the form (5.11), the quantile fuorcf S; can be given
in closed form under the independence and comonotonic ge&ums. Things are
different when one assumes a Clayton-type dependenceisliatter case, the
computation of the distribution and the VaRsafrequires one of the integration
techniques described above in this section. In partictlarquantiles in Table 5.3
have been obtained via AEP.

Open problems

In insurance and finance, there is a increasing need of s@fta&ing able to com-
pute the distribution o/ (X) when the distribution oX is known. The authors of [1]
are working on a extension of AEP to general increasing fanats¥. Moreover,
efficiency of AEP for dimensiond > 5 needs to be improved. Finally, AEP and its
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competitors open the way to the computational study of largenon-homogeneous
risk portfolios.
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