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Given a tangent vector field on a finite-dimensional real smooth manifold, its degree (also known
as characteristic or rotation) is, in some sense, an algebraic count of its zeros and gives useful
information for its associated ordinary differential equation. When, in particular, the ambient
manifold is an open subset U of R

m, a tangent vector field v on U can be identified with a map
�v : U → R

m, and its degree, when defined, coincides with the Brouwer degree with respect to zero
of the corresponding map �v. As is well known, the Brouwer degree in R

m is uniquely determined
by three axioms called Normalization, Additivity, and Homotopy Invariance. Here we shall provide a
simple proof that in the context of differentiable manifolds the degree of a tangent vector field is
uniquely determined by suitably adapted versions of the above three axioms.

1. Introduction

The degree of a tangent vector field on a differentiable manifold is a very well-known tool
of nonlinear analysis used, in particular, in the theory of ordinary differential equations and
dynamical systems. This notion is more often known by the names of rotation or of (Euler)
characteristic of a vector field (see, e.g., [1–6]). Here, we depart from the established tradition
by choosing the name “degree” because of the following consideration: in the case that the
ambient manifold is an open subset U of R

m, there is a natural identification of a vector field
v on U with a map �v : U → R

m, and the degree deg(v,U) of v on U, when defined, is
just the Brouwer degree degB(�v,U, 0) of �v on U with respect to zero. Thus the degree of a
vector field can be seen as a generalization to the context of differentiable manifolds of the
notion of Brouwer degree in R

m. As is well-known, this extension of degB does not require the
orientability of the underlyingmanifold, and is therefore different from the classical extension
of degB for maps acting between oriented differentiable manifolds.

mailto:massimo.furi@unifi.it
staff
Note
Please note that we added the extreme allowed space in the required places.



2 Fixed Point Theory and Applications

A result of Amann andWeiss [7] (see also [8]) asserts that the Brouwer degree in R
m is

uniquely determined by three axioms: Normalization, Additivity, and Homotopy Invariance.
A similar statement is true (e.g., as a consequence of a result of Staecker [9]) for the degree
of maps between oriented differentiable manifolds of the same dimension. In this paper,
which is closely related in both spirit and demonstrative techniques to [10], we will prove
that suitably adapted versions of the above axioms are sufficient to uniquely determine the
degree of a tangent vector field on a (not necessarily orientable) differentiable manifold. We
will not deal with the problem of existence of such a degree, for which we refer to [1–5].

2. Preliminaries

Given two sets X and Y , by a local map with source X and target Y we mean a triple g =
(X,Y,Γ), where Γ, the graph of g, is a subset of X × Y such that for any x ∈ X there exists at
most one y ∈ Y with (x, y) ∈ Γ. The domain D(g) of g is the set of all x ∈ X for which there
exists y = g(x) ∈ Y such that (x, y) ∈ Γ; that is,D(g) = π1(Γ), where π1 denotes the projection
of X × Y onto the first factor. The restriction of a local map g = (X,Y,Γ) to a subset C of X is
the triple

g
∣
∣
C = (C, Y,Γ ∩ (C × Y )) (2.1)

with domain C ∩ D(g).
Incidentally, we point out that sets and local maps (with the obvious composition)

constitute a category. Although the notation g : X → Y would be acceptable in the context
of category theory, it will be reserved for the case when D(g) = X.

Whenever it makes sense (e.g., when source and target spaces are differentiable
manifolds), local maps are tacitly assumed to be continuous.

Throughout the paper all of the differentiable manifolds will be assumed to be finite
dimensional, smooth, real, Hausdorff, and second countable. Thus, they can be embedded in
some R

k. Moreover, M and N will always denote arbitrary differentiable manifolds. Given
any x ∈M, TxMwill denote the tangent space ofM at x. Furthermore TMwill be the tangent
bundle ofM; that is,

TM = {(x, v) : x ∈M, v ∈ TxM}. (2.2)

The map π : TM → M given by π(x, v) = x will be the bundle projection of TM. It will also
be convenient, given any x ∈M, to denote by 0x the zero element of TxM.

Given a smooth map f : M → N, by Tf : TM → TN we will mean the map that
to each (x, v) ∈ TM associates (f(x), dfx(v)) ∈ TN. Here dfx : TxM → Tf(x)N denotes the
differential of f at x. Notice that if f : M → N is a diffeomorphism, then so is Tf : TM →
TN and one has T(f−1) = (Tf)−1.

By a local tangent vector field on M we mean a local map v having M as source and
TM as target, with the property that the composition π ◦v is the identity on D(v). Therefore,
given a local tangent vector field v onM, for all x ∈ D(v) there exists �v(x) ∈ TxM such that
v(x) = (x, �v(x)).

Let V and W be differentiable manifolds and let ψ : V → W be a diffeomorphism.
Recall that two tangent vector fields v : V → TV and w : W → TWcorrespond under ψ if the
following diagram commutes:
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TV
Tψ

TW

V

v

ψ
W

w

Let V be an open subset ofM and suppose that v is a local tangent vector field onM
with V ⊆ D(v). We say that v is identity-like on V if there exists a diffeomorphism ψ of V onto
R
m such that v|V and the identity in R

m correspond under ψ. Notice that any diffeomorphism
ψ from an open subset V ofM onto R

m induces an identity-like vector field on V .
Let v be a local tangent vector field onM and let p ∈M be a zero of v; that is, �v(p) = 0p.

Consider a diffeomorphism ϕ of a neighborhoodU ⊆M of p onto R
m and letw : R

m → TR
m

be the tangent vector field on R
m that corresponds to v under ϕ. Since TR

m = R
m × R

m, then
the map �w associated tow sends R

m into itself. Assuming that v is smooth in a neighborhood
of p, the function �w is Fréchet differentiable at q = ϕ(p). Denote by D �w(q) : R

m → R
m its

Fréchet derivative and let v′(p) : TpM → TpM be the endomorphism of TpM which makes
the following diagram commutative:

TpM
v′(p)

dϕp

TpM

dϕp

R
m

D �w(q)
R
m

(2.3)

Using the fact that p is a zero of v, it is not difficult to prove that v′(p) does not depend on
the choice of ϕ. This endomorphism of TpM is called the linearization of v at p. Observe that,
whenM = R

m, the linearization v′(p) of a tangent vector field v at a zero p is just the Fréchet
derivative D�v(p) at p of the map �v associated to v.

The following fact will play an important rôle in the proof of our main result.

Remark 2.1. Let v, w, p, and q be as above. Then, the commutativity of diagram (2.3) implies

detv′
(

p
)

= detD �w
(

q
)

. (2.4)

3. Degree of a Tangent Vector Field

Given an open subset U ofM and a local tangent vector field v onM, the pair (v,U) is said
to be admissible onU ifU ⊆ D(v) and the set

Z(v,U) := {x ∈ U : �v(x) = 0x} (3.1)

of the zeros of v in U is compact. In particular, (v,U) is admissible if the closure U of U is a
compact subset of D(v) and �v is nonzero on the boundary ∂U ofU.
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Given an open subset U ofM and a (continuous) local mapH with sourceM × [0, 1]
and target TM, we say that H is a homotopy of tangent vector fields on U if U × [0, 1] ⊆ D(H),
and ifH(·, λ) is a local tangent vector field for all λ ∈ [0, 1]. If, in addition, the set

{

(x, λ) ∈ U × [0, 1] : �H(x, λ) = 0x
}

(3.2)

is compact, the homotopy H is said to be admissible. Thus, if U is compact and U × [0, 1] ⊆
D(H), a sufficient condition forH to be admissible onU is the following:

�H(x, λ)/= 0x, ∀(x, λ) ∈ ∂U × [0, 1], (3.3)

which, by abuse of terminology, will be referred to as “H is nonzero on ∂U”.
We will show that there exists at most one function that, to any admissible pair (v,U),

assigns a real number deg(v,U) called the degree (or characteristic or rotation) of the tangent
vector field v on U, which satisfies the following three properties that will be regarded as
axioms. Moreover, this function (if it exists) must be integer valued.

Normalization

Let v be identity-like on an open subsetU ofM. Then,

deg(v,U) = 1. (3.4)

Additivity

Given an admissible pair (v,U), if U1 and U2 are two disjoint open subsets of U such that
Z(v,U) ⊆ U1 ∪U2, then

deg(v,U) = deg
(

v|U1
, U1

)

+ deg
(

v|U2
, U2

)

. (3.5)

Homotopy Invariance

IfH is an admissible homotopy onU, then

deg(H(·, 0), U) = deg(H(·, 1), U). (3.6)

From now on we will assume the existence of a function deg defined on the family of
all admissible pairs and satisfying the above three properties that we will regard as axioms.

Remark 3.1. The pair (v, ∅) is admissible. This includes the case when D(v) is the empty set
(D(v) = ∅ is coherent with the notion of local tangent vector field). A simple application of
the Additivity Property shows that deg(v|∅, ∅) = 0 and deg(v, ∅) = 0.

As a consequence of the Additivity Property and Remark 3.1, one easily gets the
following (often neglected) property, which shows that the degree of an admissible pair
(v,U) does not depend on the behavior of v outside U. To prove it, take U1 = U and U2 = ∅
in the Additivity Property.
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Localization

If (v,U) is admissible, then deg(v,U) = deg(v|U,U).

A further important property of the degree of a tangent vector field is the following.

Excision

Given an admissible pair (v,U) and an open subset U1 of U containing Z(v,U), one has
deg(v,U) = deg(v,U1).

To prove this property, observe that by Additivity, Remark 3.1, and Localization one
gets

deg(v,U) = deg
(

v|U1
, U1

)

+ deg
(

v|∅, ∅
)

= deg(v,U1). (3.7)

As a consequence, we have the following property.

solution

If deg(v,U)/= 0, then Z(v,U)/= ∅.
To obtain it, observe that if Z(v,U) = ∅, takingU1 = ∅, we get

deg(v,U) = deg(v, ∅) = 0. (3.8)

4. The Degree for Linear Vector Fields

By L(Rm) we will mean the normed space of linear endomorphisms of R
m, and by GL(Rm)

we will denote the group of invertible ones. In this section we will consider linear vector fields
on R

m, namely, vector fields L : R
m → TR

m with the property that �L ∈ L(Rm). Notice that
(L,Rm), with L a linear vector field, is an admissible pair if and only if �L ∈ GL(Rm).

The following consequence of the axioms asserts that the degree of an admissible pair
(L,Rm), with �L ∈ GL(Rm), is either 1 or −1.

Lemma 4.1. Let �L be a nonsingular linear operator in R
m. Then

deg(L,Rm) = signdet �L. (4.1)

Proof. It is well-known (see, e.g., [11]) that GL(Rm) has exactly two connected components.
Equivalently, the following two subsets of L(Rm) are connected:

GL+(Rm) = {A ∈ L(Rm) : detA > 0},

GL−(Rm) = {A ∈ L(Rm) : detA < 0}.
(4.2)

Since the connected sets GL+(Rm) and GL−(Rm) are open in L(Rm), they are actually
path connected. Consequently, given a linear tangent vector field L on R

m with �L ∈ GL(Rm),
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Homotopy Invariance implies that deg(L,Rm) depends only on the component of GL(Rm)
containing �L. Therefore, if �L ∈ GL+(Rm), one has deg(L,Rm) = deg(I,Rm), where �I is the
identity on R

m. Thus, by Normalization, we get

deg(L,Rm) = 1. (4.3)

It remains to prove that deg(L,Rm) = −1 when �L ∈ GL−(Rm). For this purpose consider
the vector field f : R

m → TR
m determined by

�f(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, |ξm| − 1). (4.4)

Notice that deg(f,Rm) is well defined because �f−1(0) is compact. Observe also that deg(f,Rm)
is zero, because f is admissibly homotopic in R

m to the never-vanishing vector field g : R
m →

TR
m given by �g(ξ1, . . . , ξm) = (ξ1, . . . , |ξm| + 1).

Let U− and U+ denote, respectively, the open half-spaces of the points in R
m with

negative and positive last coordinate. Consider the two solutions

x− = (0, . . . , 0,−1), x+ = (0, . . . , 0, 1) (4.5)

of the equation �f(x) = 0 and observe that x− ∈ U−, x+ ∈ U+.
By Additivity (and taking into account the Localization property), we get

0 = deg
(

f,Rm) = deg
(

f,U−
)

+ deg
(

f,U+
)

. (4.6)

Now, observe that f inU+ coincides with the vector field f+ : R
m → TR

m determined by

�f+(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, ξm − 1), (4.7)

which is admissibly homotopic (in R
m) to the tangent vector field I : R

m → TR
m, given

by I(x) = (x, x). Therefore, because of the properties of Localization, Excision, Homotopy
Invariance, and Normalization, one has

deg
(

f,U+
)

= deg
(

f+, U+
)

= deg
(

f+,R
m) = deg(I,Rm) = 1, (4.8)

which, by (4.6), implies that

deg
(

f,U−
)

= −1. (4.9)

Notice that f inU− coincides with the vector field f− : R
m → TR

m defined by

�f−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm − 1), (4.10)
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which is admissibly homotopic (in R
m) to the linear vector field L− defined by �L− ∈ GL−(Rm)

with

�L−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm). (4.11)

Thus, by Homotopy Invariance, Excision, Localization, and formula (4.9)

deg(L−,Rm) = deg
(

f−,R
m) = deg

(

f−, U−
)

= deg
(

f,U−
)

= −1. (4.12)

Hence, GL−(Rm) being path connected, we finally get deg(L,Rm) = −1 for all linear tangent
vector fields L on R

m such that �L ∈ GL−(Rm), and the proof is complete.

We conclude this section with a consequence as well as an extension of Lemma 4.1.
The Euclidean norm of an element x ∈ R

m will be denoted by |x|.

Lemma 4.2. Let v be a local vector field on R
m and letU ⊆ D(v) be open and such that the equation

�v(x) = 0 has a unique solution x0 ∈ U. If �v is smooth in a neighborhood of x0 and the linearization
v′(x0) of v at x0 is invertible, then deg(v,U) = signdetv′(x0).

Proof. Since �v is Fréchet differentiable at x0 and D�v(x0) = v′(x0), we have

�v(x0 + h) = v′(x0)h + |h|ε(h), ∀h ∈ −x0 +U, (4.13)

where ε(h) is a continuous function such that ε(0) = 0. Consider the vector field g : R
m →

TR
m determined by �g(x) = v′(x0)(x − x0), and letH be the homotopy onU, joining g with v,

defined by

�H(x, λ) = v′(x0)(x − x0) + λ|x − x0|ε(x − x0). (4.14)

For all x inU we have

∣
∣
∣ �H(x, λ)

∣
∣
∣ ≥ (m − |ε(x − x0)|)|x − x0|, (4.15)

where m = inf{|v′(x0)y| : |y| = 1} is positive because v′(x0) is invertible. This shows that
there exists a neighborhood V of x0 such that (V × [0, 1])∩ �H−1(0) coincides with the compact
set {x0} × [0, 1]. Thus, by Excision and Homotopy Invariance,

deg(v,U) = deg(v, V ) = deg
(

g, V
)

. (4.16)

Let L : R
m → TR

m be the linear tangent vector field given by ξ �→ (ξ, v′(x0)ξ). Clearly, L is
admissibly homotopic to g in R

m. By Excision, Homotopy Invariance, and Lemma 4.1, we get

deg
(

g, V
)

= deg
(

g,Rm) = deg(L,Rm) = signdet �L. (4.17)

The assertion now follows from (4.16), (4.17), and the fact that �L coincides with v′(x0).
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5. The Uniqueness Result

Given a local tangent vector field v onM, a zero p of v is called nondegenerate if v is smooth in
a neighborhood of p and its linearization v′(p) at p is an automorphism of TpM. It is known
that this is equivalent to the assumption that v is transversal at p to the zero section M0 =
{(x, 0x) ∈ TM : x ∈M} of TM (for the theory of transversality see, e.g., [3, 4]). We recall that
a nondegenerate zero is, in particular, an isolated zero.

Let v be a local tangent vector field on M. A pair (v,U) will be called nondegenerate
if U is a relatively compact open subset ofM, v is smooth on a neighborhood of the closure
U of U, being nonzero on ∂U, and all its zeros in U are nondegenerate. Note that, in this
case, (v,U) is an admissible pair and Z(v,U) is a discrete set and therefore finite because it
is closed in the compact setU.

The following result, which is an easy consequence of transversality theory, shows
that the computation of the degree of any admissible pair can be reduced to that of a
nondegenerate pair.

Lemma 5.1. Let v be a local tangent vector field on M and let (v,U) be admissible. Let V be a
relatively compact open subset of M containing Z(v,U) and such that V ⊆ U. Then, there exists a
local tangent vector field w onM which is admissibly homotopic to v in V and such that (w,V ) is a
nondegenerate pair. Consequently, deg(v,U) = deg(w,V ).

Proof. Without loss of generality we can assume thatM ⊆ R
k. Let

δ = min
x∈∂V
|�v(x)| > 0. (5.1)

From the Transversality Theorem (see, e.g., [3, 4]) it follows that one can find a smooth
tangent vector field w : U → TU ⊆ TM that is transversal to the zero section M0 of TM
and such that

max
x∈∂V
|�v(x) − �w(x)| < δ. (5.2)

Since M0 is closed in TM, the set Z(w,V ) = w−1(M0) ∩ V is a compact subset of V .
Thus, this inequality shows that (w,V ) is admissible. Moreover, at any zero x ∈ Z(w,U) =
w−1(M0) ∩U the endomorphism w′(x) : TxM → TxM is invertible. This implies that (w,V )
is nondegenerate.

The conclusion follows by observing that the homotopy H on U of tangent vector
fields given by

�H(x, λ) = λ�v(x) + (1 − λ) �w(x) (5.3)

is nonzero on ∂V × [0, 1] and therefore it is admissible on V . The last assertion follows from
Excision, and Homotopy Invariance.

Theorem 5.2 below provides a formula for the computation of the degree of a tangent
vector field that is valid for any nondegenerate pair. This implies the existence of at most
one real function on the family of admissible pairs that satisfies the axioms for the degree
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of a tangent vector field. We recall that the property of Localization as well as Lemmas 5.1
and 4.2, which are needed in the proof of our result, are consequences of the properties of
Normalization, Additivity and Homotopy Invariance.

Theorem 5.2 (Uniqueness of the degree). Let deg be a real function on the family of admissible
pairs satisfying the properties of Normalization, Additivity, and Homotopy Invariance. If (v,U) is a
nondegenerate pair, then

deg(v,U) =
∑

x∈Z(v,U)

signdetv′(x). (5.4)

Consequently, there exists at most one function on the family of admissible pairs satisfying the axioms
for the degree of a tangent vector field, and this function, if it exists, must be integer valued.

Proof. Consider first the caseM = R
m. Let (v,U) be a nondegenerate pair in R

m and, for any
x ∈ Z(v,U), let Vx be an isolating neighborhood of x. Wemay assume that the neighborhoods
Vx are pairwise disjoint. Additivity and Localization together with Lemma 4.2 yield

deg(v,U) =
∑

x∈Z(v,U)

deg(v, Vx) =
∑

x∈Z(v,U)

signdetv′(x). (5.5)

Now the uniqueness of the degree of a tangent vector field on R
m follows immediately from

Lemma 5.1.
Let us now consider the general case and denote by m the dimension of M. Let W

be any open subset of M which is diffeomorphic to R
m and let ψ : W → R

m be any
diffeomorphism onto R

m. Denote by U the set of all pairs (v,U) which are admissible and
such thatU ⊆W . We claim that for any (v,U) ∈ U one necessarily has

deg(v,U) = deg
(

Tψ ◦ v ◦ ψ−1, ψ(U)
)

. (5.6)

To show this, denote by V the set of admissible pairs (w,V ) with V ⊆ R
m and consider the

map α : U → V defined by

α(v,U) =
(

Tψ ◦ v ◦ ψ−1, ψ(U)
)

. (5.7)

Our claim means that the restriction deg |U of deg to U coincides with deg ◦ α. Observe that
α is invertible and

α−1(w,V ) =
(

Tψ−1 ◦w ◦ ψ, ψ−1(V )
)

. (5.8)

Moreover if two pairs (v,U) ∈ U and (w,V ) ∈ V correspond under α, then the sets Z(v,U)
and Z(w,V ) correspond under ψ. It is also evident that the function deg ◦ α−1 : V → R

satisfies the axioms. Thus, by the first part of the proof, it coincides with the restriction deg |V,
and this implies our claim.
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Now let (v,U) be a given nondegenerate pair inM. Let Z(v,U) = {x1, . . . , xn} and let
W1, . . . ,Wn be n pairwise disjoint open subsets of U such that xj ∈ Wj , for j = 1, . . . , n. Since
any point ofM has a fundamental system of neighborhoods which are diffeomorphic to R

m,
we may assume that eachWj is diffeomorphic to R

m by a diffeomorphism ψj . Additivity and
Localization yield

deg(v,U) =
n∑

j=1

deg
(

v,Wj

)

, (5.9)

and, by the above claim, we get

n∑

j=1

deg
(

v,Wj

)

=
n∑

j=1

deg
(

Tψj ◦ v ◦ ψ−1j , ψj
(

Wj

))

. (5.10)

By Lemma 4.2 and Remark 2.1

deg
(

Tψj ◦ v ◦ ψ−1j , ψj
(

Wj

))

= signdet
(

Tψj ◦ v ◦ ψ−1j
)′(

ψj
(

xj
))

= signdetv′
(

xj
)

,

(5.11)

for j = 1, . . . , n. Thus

deg(v,U) =
n∑

j=1

signdetv′
(

xj
)

. (5.12)

As in the case M = R
m, the uniqueness of the degree of a tangent vector field is now a

consequence of Lemma 5.1.
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