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SUMMARY 
 

Lasers have become already a widespread tool in many operative and therapeutic 

applications in the surgical field. Minimally invasive laser techniques provide remarkable 

improvements in respect with conventional methods. The aim of these techniques is to 

improve the quality of life of patients, by decreasing healing times and the risk of 

postoperative complications. Since its first application in the seventies, laser tissue welding 

has been proposed and tested in several experimental models including blood vessels, skin, 

nerve, intestine, uterine tube and so on. Laser welding has progressively assumed increased 

relevance in the clinical setting, where it appears to be a valid alternative to standard 

surgical techniques.  

Although laser tissue welding has been experimentally demonstrated on a large variety 

of tissues and by the use of different lasers, several aspects of its application remain to be 

elucidated. Firstly, the mechanism of laser welding - poorly understood up to these days - 

represents the first crucial question to be clarified. In fact, the development of a successful 

laser welding protocol is strictly dependent on the precise understanding of its biophysical 

and biochemical bases. Another poorly solved question is the ability to monitor semi-

quantitatively the structural changes induced in the tissue during the laser application. This 

is of utmost importance in assessing the quality of surgical intervention and in preventing 

undesiderable thermal damage to the peripheral structures. Lastly, with the advent of 

nanotechnology, new classes of nanostructured chromophores are attracting much attention 

in view of several biomedical applications. Speaking of laser welding, the efficiency of 

these nano-chromophores to mediating the welding process once activated by laser light is 

an intriguing matter which remains to be investigated.  

During my PhD work I examined some of these aspects focusing the attention, in 

particular, on the application of laser welding to ocular tissues. The study of the mechanism 



 2

of laser tissue welding was studied either from microscopic and chemical prospectives. The 

results pointed out a reorganization of the extracellular components of the tissue, among 

which proteoglycans were found to play a primary role. The question of the optimization of 

the laser welding technique was handled following a twofold route. The first relied on the 

setup of noninvasive imaging systems to examine the photothermal modifications induced 

in the tissue. The second was devoted to assess the effectiveness of new nanochromophores 

in assisting the laser welding technique.  

This thesis is organized in three different parts. The first one (Chapter 1) is aimed at 

giving a short introduction on the laser tissue welding technique, with particular attention to 

laser welding of the ocular tissues. In Chapter 2 the work carried out in order to clarify the 

mechanism of laser welding of corneal tissue is presented. The last part (Chapters 3 and 4) 

has been devoted to propose new imaging methodologies for monitoring laser-induced 

modifications in the tissue and to explore the possibility of improving the laser welding 

technique by the use of gold nanoparticles as new chromophores. 
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1. INTRODUCTION 

This chapter firstly (§1.1) introduces the concept of laser tissue welding of biological tissues 

giving a brief description of the advantages offered by this technique with respect to 

traditional suturing of tissue. Then (§1.2), the attention is focused on laser welding applied 

to the ocular tissues. Diode laser technique and its application to the closure of corneal and 

lens capsule wounds is finally presented. 

1.1  - BACKGROUND  

This is a brief introduction aimed at presenting the laser welding technique. The advantages 

offered by this method as well as the main problems encountered with the early laser 

welding approaches, including the poor control of the dosimetry of laser irradiation and the 

lack of specificity are discussed. Then the innovative laser welding techniques, based on the 

use of exogenous chromophores, solders and photosensitizers are introduced. 

1.1.1 Laser welding technique 

Lasers have become already a widespread tool in many operative and therapeutic 

applications in the surgical field. Minimally invasive laser techniques provide remarkable 

improvements: in these, laser surgery is performed inside the human body through small 

incisions by means of optical fibre probes and endoscopes, or laser tools are proposed as a 

replacement for conventional tools in order to minimize the surgical trauma, such as in the 

case of laser-induced suturing of biological tissues. The aim of these procedures is to 
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improve the quality of life of patients, by decreasing healing times and the risk of 

postoperative complications. 

Joining tissue by applying laser irradiation was first reported at the end of the 1970s, 

when a neodymium:yttrium-aluminium-garnet (Nd:YAG) laser was used for the 

microvascular anastomosis of rat carotid and femoral arteries. Ever since, laser tissue 

welding has been evaluated in several experimental models including blood vessels, skin, 

nerve, intestine, uterine tube and so on [1, 2]. Laser welding has progressively assumed 

increased relevance in the clinical setting, where it appears to be a valid alternative to 

standard surgical techniques. At present there are many applications of tissue welding that 

are beginning to achieve widespread acceptance. 

Many types of lasers have been proposed for laser tissue welding. Infrared and near-

infrared sources include carbon dioxide (CO2), thulium-holmium-chromium, holmium, 

thulium, and neodymium rare-earth-doped-garnets (THC:YAG, Ho:YAG, Tm:YAG, and 

Nd:YAG, respectively), and gallium aluminium arsenide diode (GaAlAs) lasers. Visible 

sources include potassium-titanyl phosphate (KTP) frequency-doubled Nd:YAG, and argon 

lasers. The laser energy is absorbed by water at the infrared wavelengths and by hemoglobin 

and melanin at the visible wavelengths, thereby producing heat within the target tissue. As 

the temperature rises, cellular and extracellular matrices of the connective tissue undergo 

thermal changes that lead to the welding of the wound. 

Laser tissue welding has been shown to possess several advantages compared to 

conventional closure methods, such as reduced operation times, fewer skill requirements, 

decreased foreign-body reaction and therefore reduced inflammatory response, faster 

healing, increased ability to induce regeneration and an improved cosmetic appearance. 

Laser welding also has the potential to form complete closures, thus making possible an 

immediate watertight anastomosis which is particularly important in the case of vascular, 

genito-urinary tract and gastrointestinal repairs. Lastly, laser welding can be used 

endoscopically and laparoscopically to extend the range of its applications to cases in which 

sutures or staples cannot be used. 

However, despite the large number of experimental studies reported in the literature, 

very few of them have reached the clinical phase. This is mainly because of the lack of clear 

evidence of the advantages of laser-assisted suturing against conventional methods, and 

because of a low reproducibility of results. The damage induced in tissues by direct laser 

heating and heat diffusion and the poor strength of the resulting welding are the main 

problems as far as future clinical applications of the laser-assisted procedure are concerned. 

In fact, since water, hemoglobin and melanin are the main absorbers of laser light within 



Chapter 1: Introduction to Laser Tissue Welding   
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 5

tissue, the heating effect is not selectively limited to a target area, and all irradiated tissues 

are heated. For instance, the CO2 laser has been used for laser repairs of thin tissues because 

of its short penetration depth (< 20 μm). However, for thicker tissues, welding has been 

achieved only by irradiating with high laser power and longer exposure times, thus inducing 

high levels of heat damage [3]. The emissions of other near-infrared lasers, such as 

Nd:YAG and diode lasers, are more suited to the welding of thicker tissues. In any case the 

control of the dosimetry of laser irradiation and of corresponding temperature rise is often a 

matter of concern with these methods, which frequently have been responsible of heat 

damage and lack of strong welds [1,2]. 

1.1.2 Laser welding with chromophores and solders 

Two advances have been useful in addressing the issues associated with laser tissue 

welding: the application of laser-wavelength-specific chromophores and the addition of 

endogenous and exogenous material to be used as solder. 

The use of wavelength-specific chromophores enables differential absorption between 

the stained region and the surrounding tissue. The advantage is primarily a selective 

absorption of laser radiation by the target, without the need for a precise focusing of the 

laser beam. Moreover, lower laser irradiances can be used because of the increased 

absorption of stained tissues. Various chromophores have been employed as laser absorbers, 

including indocyanine green (ICG) [4], fluorescein [5], basic fuchsin and fen 6 [6]. The use 

of a near-infrared laser - which is poorly absorbed by biological tissues -, in conjunction 

with the topical application of a dye with an absorption peak overlapping the laser emission, 

is a very popular setting for the laser welding technique. Diode lasers emitting around 800 

nm and ICG have been used in corneal tissue welding in cataract surgery and corneal 

transplant [7, 8], vascular tissue welding [9, 10, 11], skin welding [4, 12] and in 

laryngotracheal mucosa transplant [13]. 

Laser welding by means of solders, namely “laser soldering", makes use of exogenous 

solders as topical protein preparations. This makes possible a bonding of the adjoining and 

underlying tissues when activated by laser light. The extrinsic agents provide a large surface 

area over which fusion with the tissue can occur, thus favoring the approximation of the 

wound edges that eventually heal together in the postoperative period. Useful welding 

materials include blood [14], plasma [15], fibrinogen [16] and albumin, which is the one 

most frequently employed [5, 17]. Several studies have demonstrated that the addition of an 

albumin solder to reinforce laser tissue repairs significantly improves postoperative results 

[5, 18]. Moreover, incorporation into the protein solder of a laser-absorbing chromophore 

makes it possible to confine the heat into the area of solder application, which reduces the 
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extent of collateral heat damage to adjacent tissues. ICG-doped albumin has become an 

increasingly popular choice in the last decade [17]. The laser is used to denature the protein 

immediately after application of the protein solder to the wound site, thus yielding a bond at 

the solder / tissue interface. 

1.1.3 Photochemical welding 

Photochemical welding of tissues has also been investigated as an alternative method for 

tissue repair without direct use of heat. This technique utilizes chemical cross-linking agents 

applied to the cut that, when light-activated, produce covalent cross-links between collagen 

fibres of the native tissue structure. Agents used for photochemical welding include 1,8-

naphthalimide [19], Rose Bengal, riboflavin-5-phosphate, fluorescein and methylene blue 

[20]. Studies of photochemical tissue bonding have been conducted for articular cartilage 

bonding [19], cornea repair [20], skin graft adhesion [21] and for repairing severed tendons 

[22]. 
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1.2 - LASER WELDING IN OPHTHALMOLOGY 

This section gives a brief overview of laser welding in ophthalmology. Then the diode laser 

technique is presented along with its main applications in the closure of corneal and 

capsular wounds. 

The first attempt to join biological tissues were proposed in ophthalmology, for the 

treatment of retinal, corneal and scleral samples [23, 24, 25]. The first studies were 

unsuccessful, resulting in no tissue fusion, while with the improvement of laser technique 

several research groups adopted different approaches in order to induce welding of scleral 

and corneal tissue. Retina fusion was achieved by inducing photocoagulation of the tissue, 

while the technique used to treat other ocular tissues is based on a soft thermal treatment, 

properly defined as laser welding. Successful experimental studies of laser-induced suturing 

of ocular tissues on animal models have been reported since 1992 by different authors [26, 

27, 28, 29, 30, 31, 32] based on the use of near- and far-infrared lasers, directly absorbed by 

the water content of the cornea. Various laser types with wavelengths exhibiting high 

optical absorption in water have been used, such as CO2 (emitting at 10.6 μm) [30, 31, 32], 

Erbium:YAG (1455 nm) [26] and diode lasers (1900 nm) [28, 29]. The main problem with 

such laser wavelengths is that, without an adequate control of the laser dosimetry, the direct 

absorption of laser light in a short penetration depth of the tissue outer portion caused a high 

temperature rise at the irradiated surface, followed by collagen shrinkage and denaturation; 

on the contrary the deeper layers are hardly heated at all, resulting in a weak bonding, since 

the full thickness of the tissue is not involved in the welding process. Improved results in 

tissue welding were observed by using exogenous chromophores to absorb laser light, 

sometimes in association with protein solders. Addition of highly absorbing dyes can allow 

fusion of wounds at lower irradiation fluences, thus avoiding excessive thermal damage to 

surrounding tissues. In fact, the usage of a chromophore induces a controllable temperature 

rise only in the area where it had been previously applied, resulting in a selective thermal 

effect. 

In this regards, a new approach was proposed and tested for the closure of corneal 

wounds [8, 33, 34, 35] and for the treatment of anterior lens capsule bags [36]. It is based on 

the use of a near-infrared (NIR) diode laser, in association with the topical application of a 

NIR absorbing chromophores (ICG). The welding procedure, which was optimized so that it 

could be used in ophthalmic surgery applications, has been proposed as a valid alternative to 
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the traditional suturing technique used for the closure of corneal wounds, such as in cataract 

surgery, in penetrating keratoplasty (i.e. transplant of the cornea), and in the treatment of 

accidental corneal perforations. It can also be used for closure of the lens capsule (to repair 

capsular breaks caused by accidental traumas or produced intraoperatively), as well as to 

provide closure of the capsulorhexis in lens refilling procedures. A description of the 

technique and its applications is given in the following paragraph. 

1.2.1- Laser welding of the cornea with diode laser technique  

1.2.1.1 Notes on the morphology of the cornea 

The cornea is an avascularized connective tissue on the outer surface of the eye, and forms 

the outer shell of the eyeball together with the sclera (Fig 1.1). It acts as one of the main 

refractive components, assuring good vision with its clarity and shape. It also acts as a 

mechanical barrier and as a biological defense system. The cornea is composed of different 

layers: epithelium, stroma and endothelium are the principal ones, proceeding from the 

external surface towards the inner part of the eye.  

 
Fig 1.1 (left) Structure of the eye. (right) Polarized microscopy image of a human 
cornea section: from the external surface (top) towards the inner part of the eye, the 
various layers can be identified: EP epithelium, ST stroma, DM Descemet’s 
membrane and EN endothelium. The Picrosirius Red/Alcian Blue stain provides a 
very clear view of the horizontally oriented stromal lamellae. 

More than 90 % of the cornea is stroma, and consists of extracellular matrices (mainly type I 

collagen and proteoglycans), keratocytes and nerve fibres. The collagen is regularly 

arranged in fibres, thus contributing to corneal transparency; the collagen fibres are 

organized in lamellae, i.e. in planes running parallel to the corneal surface. These particular 

structures and architecture confer unique properties to corneal tissue, e.g. in the reaction 
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process to external injuries, such as incidental traumas, surgical incisions or ulcers. The 

injured tissues heal by repair and do not recover the “normal" configuration, because of an 

induced disorganization in the ordered array of the collagen fibres. This results in an opaque 

scar with less tensile strength than that of an unwounded cornea, and in a subsequent 

impairment of the main corneal functions. Moreover, the healing of corneal stroma is slower 

than that of other connective tissues because of the lack of blood vessels. Clinical changes 

in scar formation may, in fact, be detected years after surgery has taken place [56]. 

1.2.1.2 Diode laser welding of the cornea 

For all these reasons, the characteristics of laser welding procedures may be very useful in 

practical surgery, offering the possibility of avoiding many post-operative complications. A 

laser-welding technique has been recently proposed (Fig. 1.2) by the Biophotonic Group of 

the “Istituto di Fisica Applicata ‘Nello Carrara’” of the National Research Council for 

welding corneal tissue [7, 8, 33, 34, 35].   

 
Fig. 1.2 (A) AlGaAs diode laser emitting at 810 nm (Mod. WELD 800, El.En., 
Italy); (B) Hand piece to be used under surgical microscope; (C) Diode laser at 
work during a surgical corneal transplant at AUSL 4 – Unità oculistica, Ospedale 
di Prato; (D)  Structural formula of Indocyanine Green (ICG). 

It has been tested and optimized on animal models: experimental analyses were firstly 

performed on ex vivo pig eyes; the healing process was then studied in vivo in rabbits. The 

technique was then proposed clinically and is currently being used for the closure of corneal 

tissue after penetrating keratoplasty, instead of a continuous suturing. The main advantages 
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of this clinical practice are an increased patient comfort during the healing process and a 

reduction of hospitalization costs. The immediate watertight closure of wound edges 

provides protection from external inflammation, and may prevent endophthalmitis, which 

sometimes occurs after cataract surgery. The position of the apposed margins has been 

found to be stable in time, thus assuring optimal results in terms of postoperative induced 

astigmatism after cataract and keratoplasty surgery [35]. The absence of stitches does not 

induce foreign body reaction, thus improving the healing process. Histological analyses 

performed on animals and morphological observations on treated patients have shown that, 

in a laser-welded wound, tissue regains an architecture similar to that of the intact tissue, 

thus supporting its main functions (clarity and good mechanical load resistance) (Fig. 1.3). 

 
Fig 1.3 Aspect of human cornea affected by leucoma (A): before surgery, and (B): 
three days after corneal transplant.   

The technique is based on the use of near-infrared continuous-wave AlGaAs diode laser 

radiation emitting at 810 nm, in association with the topical application of a sterile water 

solution (10 % weight/weight) of ICG to the corneal wound to be repaired. This dye is 

characterized by high optical absorption around 800 nm [37], while the stroma is almost 

transparent at this wavelength. ICG is a frequently-used ophthalmic dye, with a history of 

safety in humans. It is being used increasingly as an intraocular tissue stain in cataract and 

vitreoretinal surgery, as well as in staining of the retinal internal limiting membrane [38, 39, 

40]. Furthermore, ICG is commonly used as a chromophore in laser welding or laser 

soldering [1], in order to induce differential absorption between the dyed region and the 

surrounding tissue. Photothermal activation of stromal collagen is thus induced by laser 

radiation only in the presence of ICG, resulting in a selective welding effect, which 

produces an immediate sealing of the wound edges and good mechanical strength. In 

addition, with the use of ICG, very low laser power is required (below 100 mW), and this 
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generally means much safer operation with respect to the use of other laser types without the 

association of dyes. 

The procedure used to weld human corneal tissue is as follows: the chromophore 

solution is placed inside the corneal cut, using an anterior chamber cannula, in an attempt to 

stain the walls of the cut in depth. A bubble of air is injected into the anterior chamber prior 

to the application of the staining solution, so as to avoid perfusion of the dye. A few minutes 

after application, the solution is washed out with abundant water. Lastly, the whole length of 

the cut is subjected to laser treatment. Laser energy is transferred to the tissue in a non-

contact configuration, through a 300-μm core diameter fibre optic terminating in a hand 

piece, which enables easy handling under a surgical microscope. A typical value of the laser 

energy density is about 13 W/cm2 in humans, which results in a good welding effect. During 

irradiation, the fibre tip is kept at a working distance of about 1 mm, and at a small angle 

with respect to the corneal surface (side irradiation technique). This particular position 

provides in-depth homogenous irradiation of the wound and prevents from accidental 

irradiation of deeper ocular structures. The fibre tip is continuously moved over the tissue to 

be welded, with an overall laser irradiation time of about 120 s for a 25-mm cut length (the 

typical perimeter of a transplanted corneal button). 

A follow up study on animal models [7] and clinical application of the technique 

provided evidence that laser-welded tissues exhibits good adhesion and good mechanical 

resistance. A thorough study of the healing process - based on morphological observations, 

standard histology, and multi-spectral imaging autofluorescence microscopy [41] - proved 

experimentally that this takes place in shorter time and with lower inflammatory reaction, 

when compared to conventionally sutured wounds. Objective observations two weeks after 

surgery showed a good morphology of laser-treated corneas, with almost restored cuts, 

generally characterized by better adhesion and less edematous appearance compared to 

sutured ones. These features were confirmed by means of histological examinations of 

rabbit corneas, which revealed a well-developed repair process involving the epithelium, 

which almost regained its physiological continuity and thickness and a partially re-

organized architecture of the stroma. Histological analyses on longer follow-up times 

indicated that the healing of laser-welded wounds was completed in about 30 - 60 days, 

while in sutured wounds the healing process was still in progress (Fig. 1.4). This result is 

particularly important as far as corneal tissue is concerned, as it typically requires much 

longer times to be repaired than do other types of tissue. Furthermore, the restored tissue 

regains a stromal architecture that is very close to the native one, which is crucial to 

regaining of correct vision. 
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Fig. 1.4 Histological section of rabbit corneal tissue on postoperative day 30 
(Hematoxilin/Eosin, x50); after laser welding (A): the architecture of the cornea 
regained an almost physiological appearance (the original cut is indicated by the 
dashed line); after conventional stay suturing (B): the cut is still clearly detectable 
and large lacunae are evident in the corneal stroma [7]. 

 

Fig. 1.5 Temperature rise distribution along radial distance from the center of the 
eye toward external ambient air. These calculated data refer to 12.5 W/cm2 laser 
power density and 2 s treatment time. The ΔT maximum value is inside the cornea, 
in correspondence with the laser spot center. For a mean temperature of 35 °C in 
the living cornea, the maximum temperature peak due to photothermal interaction 
is in the 59 °C to 66 °C range, as calculated inside the stained wound for the 
operative irradiation parameters which give the best welding results in clinical 
procedures [42]. 

Experimental analyses with an IR thermo-camera provided information on the heating of 

the external surface of the irradiated tissues and on heat confinement during the treatment 

[42]. A partial differential equation modeling of the process allowed to investigate the 
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temperature dynamics inside the tissue. From this study it was possible to point out that the 

optimal welding temperature is about 60 °C inside the treated wound (Fig. 1.5).   

1.2.3 Laser closure of capsular tissue with the diode laser welding technique 

1.2.3.1 Notes on the lens capsule morphology 

The lens, or crystalline lens, is a transparent, biconvex structure in the eye: after the cornea, 

it is the second refractive component in the eye. The lens is flexible and its curvature is 

controlled by ciliary muscles through the zonules. It is included within the capsular bag, 

maintained by the zonules of Zinn, which are filament structures connected to the ciliary 

muscles fulfilling lens accommodation (i.e. focusing of light rays into the retina in order to 

assure good vision). This capsule is a very thin (about 10 μm thick [43]), transparent 

acellular membrane that maintains the shape of the lens. This tissue is a collagenous 

meshwork mainly composed of type IV collagen and other non collagenous components 

such as laminin and fibronectin. Type I and type III collagen are also present [44].  

1.2.3.2 Diode laser welding of the lens capsule 

The function of the lens capsule is primarily mechanical: in the accommodation process it 

has load-transmitting function. With ageing, the lens loses its ability to accommodate, thus 

requiring cataract surgery, which consists of replacing the native lens with a non-

accommodating plastic prosthetic one. The ultimate goal of this surgery is ideally the 

restoration of the accommodative function by refilling the capsular bag with an artificial 

polymer [45], after the endocapsular aspiration of nuclear and cortical material. This 

technique may become a viable lens-replacing procedure, as soon as experimental tests are 

able to prove preservation of capsular mechanical functions and clarity of refilled lens. 

Moreover, it would be important for the feasibility of this technique, to demonstrate that a 

biocompatible valve on the anterior lens capsule tissue could be set up to facilitate lens-

refilling operations. 

In order to improve cataract surgery, thus providing a surgical solution to presbyopia, it 

has been proposed a solution for performing a flap valve with the use of a patch of capsular 

tissue obtained from a donor lens, to be laser-welded onto the recipient capsule. The 

procedure may also be used to repair accidental traumas, such as capsular breaks or 

perforations during intraocular lenses implantation [46]. Due to its particular fragility and 

elasticity, it is quite impossible to suture capsular tissue using standard techniques; however, 

at present there are no alternative methods. Laser welding could be used in order to 

accomplish this goal. The study is in progress, and preliminary evidence of the feasibility of 

this technique has recently been obtained [36, 46]. Experimental tests were carried out ex 
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vivo, on freshly enucleated porcine eyes. Closure tests were performed by means of patches 

of donor capsulae (mean diameter: 3 mm). The inner side of the patch was stained with an 

ICG-saturated solution in sterile water (7 % weight/weight). The staining solution was left 

in place for 5 minutes. The sample was then washed with abundant water, in order to 

remove any excess of ICG. The stained patch was then applied to the anterior lens capsule, 

through a previously performed corneal incision. The stained inner side of the patches were 

positioned on the exterior surface of the recipient capsule, so as to maintain the original 

orientation and curvature. This procedure facilitated adhesion between the tissues to be 

welded. The patch was then irradiated along its external perimeter by means of contiguous 

laser spots emitted by a 200-μm-core fiber, whose tip was gently pressed onto the patch 

surface (contact welding technique) (Fig. 1.6a).  

 
Fig 1.6 (A) Appearance of a capsulorhexis in a pig eye, that was closed by 
applying an ICG-stained capsular patch subjected to PLW; laser spots are clearly 
evident at the periphery of the patch. (B) Histological slice of an anterior capsular 
patch (20 μm thick) laser-welded onto the anterior lens capsule of a pig eye. 
Effective adhesion between the two samples was accomplished with minimal heat 
damage (Methylene Blue staining) [36]. 

Exposure times were found to be critical in order to avoid heat damage. Continuous 

wave irradiation, which is typically employed in other laser welding applications, was 

unsuitable, while pulses around 100 ms (with energies of 30 - 50 mJ) provided the best 

results. Once welded, the capsular patch showed good adhesion to the recipient anterior 
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capsular surface. Preliminary biomechanical tests performed on laser-welded anterior 

capsule flaps showed that the load resistance of welded specimens was comparable to that 

of healthy tissues. Standard histology analysis indicated good adhesion between the apposed 

samples and thermal damage localized in the treated area (Fig. 1.6B). 
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2.    STUDY OF THE MECHANISM                         

OF LASER WELDING 

In this chapter we first (§2.1) give a brief overview of the most significative literature 

studies that have dealt with the mechanism of laser tissue welding. The second (§2.2) and 

the third (§2.3) sections are devoted to the work we carried out to clarify the mechanism of 

diode laser welding of the cornea. In the former section we report on the microscopic 

analyses we performed on laser-welded corneal tissue according to a typical surgical 

procedure. The latter section (§2.3) focuses on the chemical analyses which we carried out 

on a model molecule (hyaluronan) in order to investigate the involvement of proteoglycans 

in the mechanism of  diode laser welding.  

2.1 - STATE OF THE ART  

In this section we review the state of the art with regard to the problem of interpreting the 

mechanism of laser tissue welding, as it is available in the published literature. In 

particular, the main studies dealing with laser welding proper (i.e. without solders but 

including or not staining with chromophores) and with other laser welding techniques (i.e. 

laser soldering and laser photochemical welding) are discussed. 

As far as the mechanism of tissue welding by means of laser light is concerned, a first 

distinction must be made between: 1) laser tissue welding, 2) laser tissue soldering, and 3) 

photochemical tissue bonding. For all these three cases, the exact underlying mechanism is 



Chapter 2: Mechanism of Laser Welding                                             
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 18

not fully understood. Conversely, several hypotheses do exist, which are based on a limited 

number of electron and optical microscopy observations and on some in vitro studies. 

2.1.1 Laser welding 

Although laser tissue welding has been experimentally demonstrated on a large variety 

of tissues and by the use of different lasers, its biophysical and biochemical basis remains 

still unclear. However, the development of a successful welding protocol is strictly 

dependent on the precise understanding and control of the welding molecular mechanism. 

Moreover it is worth noting the interplay between laser-induced changes in tissue structure 

and the wound healing process taking place during the postoperative course. 

In general, when induced by solely laser irradiation, laser welding is regarded as purely 

photothermal process [1]: laser light induces structural modifications in the main 

components of the extracellular matrix of connective tissue, which generate connection 

bridges between the apposed edges of the wound to be laser-welded.  

Collagen is the most abundant protein in vertebrate connective tissues constituting from 

15 to 80 % of the dry weight depending on tissue type. More than 20 different types of 

collagens have been described in vertebrates (Fig. 2.1). Despite the difference among 

collagens, they are all based on a triple-helical domain consisting of three left-handed α-

helices interconnected by stabilizing hydrogen bonds.  

 
Fig. 2.1 Collagen molecule is a triple-helix based on three left-handed α-helices 
which are characterized by the typical aminoacid sequence Gly-X-Y where X, Y are 
mainly Proline and Hydroxyproline. 
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Within the collagen family, the fibril-forming collagens are major components of all 

mammalian connective tissues, providing the structural and organizational framework for 

skin, blood vessels, bone, tendon, cornea and other tissues. In this type of collagens, 

molecules are packed in a quarter-staggered manner (Fig. 2.2) and connected by covalent 

bonds to form a collagen fibril. When heat is applied, unwinding of the triple helices occurs 

due to hydrolysis of the intramolecular hydrogens (Fig. 2.3). This is the first step of 

collagen denaturation process which leads to tissue shortening due to a shrinkage effect 

parallel to the axis of the fibril [2]. At higher temperatures covalent cross-links connecting 

collagen strands break, resulting in a complete destruction of the fibrillar structure and 

causing relaxation of the tissue [3]. The onset value of collagen shrinkage often quoted in 

the clinical literature is around 60 °C, while relaxation is reported to occur beyond 75 °C. 

 

Fig. 2.2 Collagen triple helices are axially staggered by the period D (67 nm) and 
regularly organized in the lateral direction. The D-periodicity is easily detected by 
electron microscope (e.g. see the cross-striation imaged by SEM in the upper part of 
the image). 

However, it is worth noting that collagen denaturation is a rate process governed by the 

local temperature/time response [4]: thus the time/temperature history influences the 

shrinkage threshold of collagen, as well as the relaxation phase. Moreover, either the 

temperature for maximum shrinkage and the relaxation temperature depend on the cross-

links density which rises on tissue ageing, and on hydroxyproline content which varies 

among species and tissues [5].  

To date, the laser-induced morphological alterations of collagen molecules have been 

believed to play a primary role in the laser welding mechanism, leading to the observed 

tensile strength after laser application [6]. This belief has mainly originated from 

microscopic observations of laser-welded biological tissue. The microscopic data reported 



Chapter 2: Mechanism of Laser Welding                                             
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 20

in the literature on laser-welded tissues can be schematically split into two groups on the 

basis of different modifications of the collagen matrix observed upon laser welding. 

 

 

Fig. 2.3 Structural modifications induced in fibrillar collagen of connective tissue by 
temperature rise. Normal triple helix collagen molecules are packed in a quarter 
staggered manner and connected by covalent bonds to form a collagen fibril (left). 
When heat is applied, hydrolysis of intramolecular hydrogen bonds occurs, which 
results in the unwinding of the triple helices (middle). The first step (1) leads to a 
shrinkage effect parallel to the axis of the fibrils. At higher temperatures, covalent 
cross-links connecting collagen strands break, resulting in a complete destruction of 
the fibrillar structure (right) and causing relaxation of the tissue (step 2). 

The first common observation is a loss of collagen periodicity and increased fibril 

calibre with associated splitting into fine subfibrillar structures [6, 7] (Fig. 2.4). In this case 

triple helix unwinding probably occurs, leading to partial denaturation of fibrillar collagen. 

The most common interpretation of the working mechanism is an unraveling of collagen 

fibers at the cut ends, followed by interdigitation of the fibers across the cut [7]. The result 

is a fusion either between the cut ends of collagen fibers, either between their parallel face. 

It is supposed that new chemical bonds are generated upon laser irradiation: while some 

researchers have proved the generation of new covalent cross-links at the weld site [8], 

others have suggested the formation of non-covalent interactions between unwound 

collagen strands on both sides of the weld [9]. Operative temperature values in the 60-65 °C 

range have been estimated at the weld area [9]. A secondary role of fibrillar type I collagen 

in the laser welding mechanism has been pointed out in a recent study [10], suggesting the 

involvement of some other extracellular matrix components, and being in agreement with 

earlier studies on welded tissue extracts analyzed by gel-electrophoresis [11, 12]. 
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Fig. 2.4 “Mild” laser welding resulting in a partial modification of the tissue 
morphology. The extracellular matrix is schematically represented by an array of 
black dots simulating cross-sectioned collagen fibrils embedded in the ground 
substance, as in a typical connective tissue (left ). Native connective tissue subjected 
to laser irradiation is characterized by collagen fibrils still recognizable and partially 
swollen (right). Temperature values in the range 60–65°C are usually induced at the 
weld site. The main welding mechanism hypothesized is based on “interdigitation” 
upon cooling between collagen fibres unraveled by laser heat. 

Another common observation of welded samples is the full homogenization of the tissue 

(also called hyalinosis), in which the loose structure of the collagen fibrils was lost 

following laser welding [6, 13, 14, 15]. In this context, fibrils fused together and 

morphologically altered revealed a complete denaturation of the collagen matrix [16, 17] 

(Fig. 2.5). 

 
Fig. 2.5 “Hard” laser welding resulting in a complete homogenization of the tissue. 
Laser irradiation leads to hardly recognizable collagen structures completely (C) or 
partially (P) coagulated (right). Temperatures above 75°C are usually recorded in 
these cases. The mechanism proposed relies on the adhesion upon cooling between 
proteins denatured by laser heat, which, acting as microsolders, seal the wound. 

Moreover, cell membranes are also disrupted causing leakage of the cellular proteins. In 

these cases, operative temperatures of over 75 °C were induced at the welded area [18]. 

Denatured collagen and intracellular proteins are supposed to photocoagulate thus acting as 

endogenous glue (micro-solders) and forming new molecular bonds upon cooling [15]. 
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2.1.2 Other techniques: laser soldering and photochemical welding 

Photothermal soldering relies on the coagulation of a protein solder by means of a laser-

induced temperature increase in the tissue. Upon cooling, non-covalent interactions between 

the solder and the collagen matrix within the tissue are supposed to be responsible for the 

strength of the weld. Evidence of albumin intertwining within the collagen matrix was 

found during scanning electron microscopy analyses of specimens irradiated at temperatures 

above 70 °C [19]. Such a threshold value is fully in agreement with the threshold 

temperature of albumin coagulation (around 65 °C), as reported in several spectroscopic and 

calorimetric studies. Evidence of extracellular matrix infiltration of solder within the tissue 

was also found by using standard histological analysis [14, 20]. 

In photochemical tissue bonding, photosensitive dyes applied to the wound edges behave 

as reactive species when irradiated by laser light. They react with potential electron donors 

and acceptors such as amino acids (e.g. tryptophan, tyrosine, cysteine) of proteins. Strong 

covalent bonds are produced between the approximated surfaces of the wound, forming 

instantaneous protein cross-links [21]. The formation of cross-links in collagen type I 

molecules by means of photochemical activation has been confirmed by using gel 

electrophoresis [22]. 
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2.2 - MICROSCOPIC ANALYSIS 

In the following, we report on the microscopic analyses we carried out on corneal tissue 

welded by means of diode laser radiation in association with the topical application of the 

chromophore Indocyanine Green (ICG). The aim of this analyses was to evaluate, by means 

of a multifold microscopy approach (including light microscopy (LM), transmission electron 

microscopy (TEM), and atomic force microscopy (AFM)), the structural modifications 

induced in fibrillar collagen and in other non-fibrillar extracellular matrix components 

after a typical laser welding surgical procedure on corneal tissue. The results evidenced a 

marked disorganization of the normal fibrillar assembly although collagen appeared not to 

be denatured at the operative conditions we employed. The mechanism of laser welding may 

be related to some structural modifications in the main interfibrillar components found in 

connective tissues, i.e. proteoglycans. 

Surgeries were performed on explanted porcine eyes by Dr. Luca Menabuoni of Unità 

Operativa Oculistica, Azienda USL 4 of Prato. AFM analysis was conducted in 

collaboration with Dr. Bruno Tiribilli of ISC-CNR of Florence. 

2.2.1    Introduction 

Cornea represents a unique tissue mainly constituted by a highly-transparent stromal matrix. 

For this reason, in order to achieve a successful welding, bond must be provided in as 

lowest temperature as possible with a yet clinically acceptable strength but without 

collateral tissue damage and thermal injury that may alter permanently its morphology and 

function. Most of the laser welding procedures that have been proposed up to now were 

based on the use of water as an endogenous chromophore for absorbing near- and far-

infrared laser light [1-4]. However, they did not demonstrated to be safer enough to reach 

the clinical phase, since the achievement of successful welding of corneal cuts was 

frequently accompanied by heat side effects which caused partial stromal coagulation and 

affected corneal transparency. Improved results were obtained using Indocyanine Green 

(ICG) as an exogenous chromophore topically applied to the corneal wound to enhance the 

absorption of low-power near-infrared diode laser radiation [5-7]. ICG is a FDA (Food and 

Drug Administration)-approved dye that exhibits high optical absorption around 800 nm. It 

is used, therefore, as a photo-enhancing chromophore under near infrared diode laser 

irradiation in order to induce a photothermal effect that is confined to the stained tissue. An 

experimental and theoretical study of the temperature dynamics during laser welding with 

the use of ICG [8] indicated a lower increase in temperature inside the stromal tissue, 
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compared with the one induced by other laser techniques that did not employ exogenous 

chromophores. The temperature in the irradiated site at the operative laser power density of 

16.7 W/cm2 was found to be in the 55-65 °C range, which is below the threshold value at 

which the main modifications to the collagen matrix are expected (see §2.1) [9].  

In this section, we report the light (LM), atomic force (AFM) and transmission electron 

(TEM) microscopy analyses we performed on diode-laser welded corneal tissue in order to 

characterize the structural modifications in the collagen arrangement that are induced 

immediately after laser closuring of corneal wounds. 

2.2.2   Materials & Methods 

2.2.2.1 Laser welding procedure 

Freshly-enucleated porcine eyes (n=10) were cut with a pre-calibrated 3.5 mm knife and 

prepared for the laser welding procedure. In brief, a 12 % w/w water solution of ICG (IC-

GREEN, Akorn, Buffalo Grove, IL) was placed inside the corneal cut using an anterior 

chamber cannula. After 2-3 min, which were necessary to stain the cut walls, it was washed 

out with abundant water. An AlGaAs diode laser (WELD 800, El.EN., Italy) emitting at 810 

nm was used for the surgery. The device was equipped with an optical fiber of 300 µm-

core-diameter, which was kept at a distance of ∼2 mm from the surface of the cornea. Laser 

light was delivered to the cut by means of 2 s-long contiguous pulses, for a total irradiation 

time of approximately 25 s. The laser power emission was 80 mW, corresponding to a 

power density of 16.7 W/cm2 on the corneal surface. 

2.2.2.2 Sample preparation for LM, AFM and TEM analyses    

(See Appendix A for details) 

Laser-welded and control corneas were fixed in a modified Karnovsky solution (2 % 

glutaraldehyde and 2 % paraformaldehyde in 0.1 mol/l sodium phosphate buffer, pH 7.0) for 

5 hours, and were then rinsed twice in 0.1 mol/l sodium phosphate buffer at room 

temperature. Each cornea was subsequently cut into 1 × 1 mm rectangular samples 

including the laser-treated portion. After being stored in buffer solution overnight at 4 °C, 

the samples were post-fixed for 2 hours in 1 % osmium tetroxide at room temperature. After 

sequential dehydration, the specimens were infiltrated in epoxy resin (Sigma, St. Louis, 

MO, USA) and polymerized for 12 hours at 40 °C, followed by 24 hours at 60 °C. For each 

sample, 20 semi-thin (ST, 1.5 μm) and 3 ultra-thin (UT, 70-90 nm) slices were cut by a 

ultramicrotome (Power Tome PC, RCM, Tucson, AZ, USA) for light and electron 

microscopy measurements, respectively.  
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The semi-thin sections were attached to a glass slide. Toluidine blue staining was 

performed on 5 ST slices. In other 15 ST slices, the resin was partially removed using a 

saturated solution of NaOH in absolute ethyl alcohol [6], and 5 of them were processed for 

Hematoxylin and Eosin stain using standard pathology laboratory procedures. Other 5 slices 

were stained with Picrosirius Red (prepared according to Brooks’ protocol [10]) in order to 

evaluate the birefringence of collagen under polarized light microscopy (Zeiss Axiolab, Carl 

Zeiss, Oberkochen, Germany). The remaining 5 slices were analyzed by AFM using a Pico 

SPM instrument (Agilent, Santa Clara, CA) operated in dynamic mode. Cantilevers model 

NSG01, NT-MDT (Zelenograd, Moscow, Russia) with a resonance frequency of about 150 

kHz and a tip radius ≤ 10 nm were used. By alkaline etching of the slices, the surface layer 

of the embedding medium could be removed selectively, thus exposing the inner structure 

of the tissue within the section to the cantilever without modifying the three-dimensional 

architecture of the stroma. Similarly, the partial removing of the resin allowed for the 

staining of the inner tissutal structures by standard histology. 

The UT sections were placed on copper grids, stained sequentially with uranyl acetate 

and lead citrate, and viewed using a transmission electron microscope (Philips CM-12, 

Philips Industries, Eindhoven, The Nederlands) operating at 80 kV. 

2.2.2.3 Morphological analysis 

A morphological analysis of AFM and TEM images was performed using Image Pro Plus 

(Media Cybernetics, Bathesda, MD) and Image J (National Institute of Health, Bathesda, 

MD). The assessment of the collagen fibrils was made from the anterior 300 µm thick layer 

of the corneal stroma (with the corneal stroma of porcine eyes being about 800 µm in 

anterior-to-posterior thickness). The analysis of the laser-treated samples concerned fibrils 

located at the weld site. The parameters chosen to characterize the fibril integrity were the 

fibrillar diameter and the axial periodicity. Longitudinally-oriented fibrils were chosen for 

the evaluation of these parameters from both AFM and TEM images. The interfibrillar 

distance was obtained from AFM topographic profiles by considering the distance between 

the tops of adjacent longitudinally-oriented fibrils. Instead the centre-to-centre distance of 

transversely-cut collagen fibrils was measured from TEM micrographs. The data were 

reported as mean ± standard deviation. 

2.2.3  Results 

Histological Hematoxylin/Eosin examinations of the welded stroma evidenced adequate 

tissue bonding between the cut ends. No charring or photocoagulation signs were observed 

at the sealed site (Fig. 2.6A). Figure 2.6B shows the negative image of a slice of laser-
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welded tissue stained with Picrosirius Red as observed by a polarized light microscope. 

Under cross-polarized light, an intense birefringence was seen throughout the sample. The 

layered structure of the stroma was clearly visible at the right and left sides of the slice that 

had not been subjected to laser irradiation. At the sealed site, the birefringence signal 

appeared more diffused, lacking the typical alternating pattern, but still remaining clearly 

visible. Collagen structures were observed to be binding the two edges of the cut.  

 

 
Fig. 2.6 Microscopic examination of diode laser welded stroma (bar = 100 μm). (A): 
Hematoxylin/Eosin stain revealed absence of tissue coagulation or charring at the 
welded site (between the arrows). (B) Negative image of the same sample stained 
with Picrosirius Red dye shows bridging structures across the wound. The 
birefringence signal appears more diffused at the weld site but with an intensity 
comparable to the one of laser-untreated regions. 

A similar situation was seen on Toluidine-stained slices (Fig. 2.7): lamellae with different 

orientations met at the weld site, where they appeared winded into skeins. 

The typical TEM appearance of untreated corneal stroma is reported in Figure 2.8A, 

which shows the border between two orthogonal lamellae. The collagen fibrils appeared to 

be regularly organized in a parallel arrangement in each lamella and had similar interfibrillar 

spacings. In laser-treated samples, at the outer periphery of the weld, TEM analysis showed 

that the fibrils partially lost their parallel arrangement and the native intralamellar 

organization.  
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Fig. 2.7 Welded incision in corneal stroma stained with Toluidine Blue (bar = 15 
μm). Lamellae with different orientations (dashed lines) are joined at the weld site. 

Fibrils located exactly at the weld site were markedly disorganized, but rarely touched 

each other directly. There, groups of interwoven fibrils joined the sides of the cut (Fig. 

2.8D). Magnified images of these fibrils indicated that they were still preserving their 

periodical cross-striation (D-periodicity) (Fig. 2.8C). The margins of the collagen fibrils 

maintained distinct edges, and never displayed any deterioration or a frayed appearance. 

Outside the laser-treated zone, the regular lamellar organization of the fibrils was 

maintained. Electron-dense aggregates resembling the amorphous structures were seen to be 

dispersed throughout the irradiated area (Fig. 2.8D).   

The quantitative analysis of the fibrillar morphology is summarized in Table 2.1. The 

analysis of mean fibril diameter and fibril diameter distribution (Fig. 2.9) showed no 

significant differences (within experimental uncertainties) between the laser-welded corneas 

and the control samples, as mean diameters of 27.7 (S.D. = 2.2) nm and 26.7 (S.D. = 2.0) 

nm were found for the control and treated corneas, respectively. It was almost impossible to 

obtain the axial periodicity value from the TEM images. This was due to the rather 

indistinct cross-striation characterizing the native collagen fibrils (see Fig. 2.8C).  
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Fig. 2.8 TEM micrographs showing the fibrillar arrangement observed (A): in a 
control corneal stroma, (B): in the periphery of the cut of a welded cornea, and (C, 
D): at the weld site. Cross striation of fibrils is still observable after the laser 
treatment (C). (A,B: bar = 200 nm, C: bar = 100 nm, D: bar=500 nm ). Arrows 
indicate electron dense aggregates.  
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Fig. 2.9 Distribution of fibril diameters in 
control and laser-welded stroma. Mean 
diameters are 27.7 ± 2.2 nm (number of 
sampled fibrils n = 574) and 26.7 ± 2.0 
nm (n = 244), respectively. 

 

 

 

 

 

 

 

 

 

 

Table 2.1 
Comparison of the morphological features of laser-treated and control collagen 
fibrils as derived by AFM and TEM  
C = control stroma; L= laser-welded stroma; n.d. = not detected  

  Diameter 
(nm) Periodicity (nm) Interfibrillar distance (nm) 

AFM 

C 
 
 
L  

36.2 ± 8.7 
(n = 91) 
 
35.6 ± 10.0 
(n =  50) 

22 – 39 
(n = 106) 
 
20 – 37 
(n = 59) 

54.1 ± 13.3 nm 
(n = 86) 
 
loss of parallel 
arrangement 
 

TEM 

C 
 
 
L 

27.4 ± 2.1 
(n = 574) 
 
26.8 ± 2.3 
(n = 244) 

n.d. 
 
 
n.d. 
 

59.7 ± 7.5 nm  
(n = 123) 
 
loss of parallel 
arrangement 
 

AFM analysis supported the TEM data, substantially confirming the observations 

described above. AFM images of control and laser-treated cornea samples were analyzed 

(Table 2.1) considering profiles taken transversely or longitudinally to the fibrillar axes for 

assessing fibrillar diameter and interfibrillar distance or periodicity, respectively (see the 

example shown in Fig. 2.10 bottom panel). The AFM topographies of control corneas 

showed well-organized collagen fibrils (36.2 ± 8.7 nm in size) running parallel to each other 

as in a typical intralamellar domain (Fig. 2.10A,B). The fibrils exhibited a beaded pattern 
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with an axial periodicity ranging from 22 to 39 nm. In well-separated control fibrils, bridge-

like structures connecting adjacent collagen fibrils were sometimes observed (Fig. 2.10C). 

AFM images of the laser-treated corneal stroma showed a random distribution of fibrillar 

bundles (Fig. 2.10D,E). However, fibril diameters and periodicity were similar to the ones 

observed in the control samples. In addition, rather broad unstructured zones devoid of a 

clear morphology were frequently noted throughout the laser-treated specimens (Fig. 

2.10F).  

 
Fig. 2.10 AFM topographies 
of corneal stroma samples. 3D 
(A,C,D,F) and 2D (B,E) 
rendering of control (A,B,C) 
and diode laser-welded 
(D,E,F) specimens. Arrows 
indicate bridge-like inter-
fibrillar structures. 
 f collagen fibril;  
* unstructured material. 
 (A,B,D,E: bar = 100 nm; C,F: 
bar = 50 nm).  
Bottom panel: transverse 
profile (right) taken from an 
AFM surface plot of a selected 
portion of control stroma 
(left), example of the 
measurement of characteristic 
fibrillar parameters as fibrillar 
diameter (d) and interfibrillar 
distance (i). 
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2.2.4  Discussion 

Laser-induced morphological alterations of collagen fibrils are considered to play a primary 

role in the laser welding mechanism (see §2.1) [11,12]. However, experimental and 

theoretical studies on the heat diffusion during diode laser welding of corneal tissue 

suggested operative temperature values at the limit of the denaturation threshold of fibrillar 

collagen (i.e. in the 55-65 °C range while the denaturation of collagen normally starts 

beyond 65 °C) [8]. Our microscopy study is strikingly in accordance with this picture. In 

fact it pointed out a minor involvement of fibrillar collagen in the mechanism of laser 

welding, as first suggested by light microscopy and then well-delineated by the 

microscopies at the nanometric level. 

Polarized light microscopy showed an intense birefringence signal associated with 

Picrosirius Red throughout the sample. In particular, outside the welded cut, lamellae 

showed the typical alternating birefringence pattern of a normal cornea. At the weld site, the 

birefringence signal was still present, but the lamellar sheet pattern lost its net boundaries 

between lamellae. Presence of collagen structures connecting the cut edges was evidenced 

under polarized light, as also confirmed by means of Toluidine Blue staining. In any case, 

we never observed any birefringence reduction or loss of the type that is typically associated 

with heat- or laser-induced thermal damage that affects the fibrillar structure of collagen 

[10,13-15]. Thus, the substantial preservation of birefringence also at the weld site may be 

interpreted as the absence of coagulated (hyalinized) fibrillar collagen. On the other hand, 

since Picrosirius Red is ineffective in detecting proteoglycans or other collagen types other 

than fibrillar collagen [16], we cannot exclude the occurrence of more significant thermal 

modifications in these ground substance components surrounding the collagen fibrils, as 

discussed in the following.  

TEM and AFM analyses provided a more detailed picture of the collagen modifications 

induced by corneal welding. Observations of the welded region showed groups of fibrils 

interwoven across the cut. Moreover, the structure of each individual fibril appeared not to 

be modified by laser irradiation, showing a full preservation of the regular cross-striation 

and of regular diameter. The slightly greater value of the fibrillar size found by the AFM 

analysis was probably a result of the distortion typical of cantilever tip convolution [17]. In 

fact, the value of the tip size that we employed (≤10 nm) was comparable to the difference 

between the TEM and AFM fibrillar diameter main values, as reported in Table 2.1. The 

periodicity along the fibrils of laser-treated samples evaluated by AFM furnished values 

comparable to those found in native corneas. Actually, these values did not fit the expected 

67 nm D-periodicity of collagen fibrils [18]. However, the attitude of AFM to resolve more 

than one band per D-period was previously pointed out [19 and refs. therein]. Additionally, 
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we note that the alkaline etching of the epon resin carried out to expose the outer layer of 

the specimen to the cantilever, could  partially “clean off” the ground substance surrounding 

the collagen fibril thus amplifying the visibility of the D-periodicity.  

In summary, the observed fibrillar disorganization in the region of the laser-welded 

corneal cut was never accompanied by thermally-induced ultrastructural modifications of 

the fibrillar structure, in contrast to what has been reported in the literature. Schober et al. 

[20] observed an increase in fibril caliber, a loss of periodicity, and a splitting into fine 

fibrillar substructures. A similar effect was seen in dura mater subjected to CO2 laser 

irradiation [21], in tendon specimens heated at 60 °C for twenty minutes in water bath [22], 

in joint capsular collagen under Holmium:YAG irradiation [23], and in diode laser-assisted 

anastomosis of arteries performed without exogenous chromophores at a relatively high 

diode laser power of 250 W/cm2 [24]. In all these cases, high temperatures or long exposure 

times promoted partial collagen denaturation that was characterized by an unwinding of the 

triple helix and a subsequent loss of fibrillar integrity. This triple-helix unraveling, followed 

by “interdigitation” on cooling between fibers, was indicated by Shober et al. as the 

structural basis for laser-induced welding [20]. 

Our different results let us conclude that fibrillar collagen was not denatured in our laser 

conditions, confirming previous thermodynamic studies [8], and thus was not directly 

involved in the closure mechanism of corneal cuts. Instead, the loss of organization of the 

collagen bundles observed at the weld site can probably be correlated to some structural 

modification in other main extracellular components. It is recognized that proteoglycans are 

interfibrillar macromolecules which play a primary role in stabilizing and maintaining the 

orderly arrangement of fibrils within the corneal stroma [25,26]. We propose a direct 

involvement of these compounds in the molecular mechanism of diode-laser welding of 

corneal tissue. As a matter of fact, the bridge-like structures observed in the control cornea 

and the amorphous material found to be randomly present in the welded samples may be 

attributed to proteoglycans, which underwent thermal modifications, as previously 

suggested [27]. In this regard, we may tentatively hypothesize a primary role for 

proteoglycans which could undergo some modifications at the typical temperature values 

induced by diode laser welding (55-65 °C), and then be rearranged upon cooling in a way of 

connecting collagen fibrils together . 

2.2.5  Conclusions 

Our microscopic analysis has made it possible to characterize the supramolecular 

modifications in stromal extracellular matrix that follow a typical diode-laser welding 

intervention of corneal tissue. The unaltered structural properties of fibrillar collagen 
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indicated that its denaturation did not occur at the operative laser energy that we used. 

However a marked disorganization in the fibrils was noted at the weld site. This led us to 

hypothesize the involvement of proteoglycans in the diode laser-welding mechanism of 

corneal stroma.  
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2.3 - CHEMICAL ANALYSIS 

As a complement to the previous section, this part will focus on the chemical analyses that 

have been performed on a model molecule (hyaluronan) in order to investigate the direct 

involvement of proteoglycans in the mechanism of diode laser welding of the cornea. In 

conclusion, an hypothesis on the mechanism of laser welding, based on the reorganization 

of corneal proteoglycans, is proposed.  

FTIR and DSC analyses were performed in collaboration with Prof. Luigi Dei of the 

Department of Chemistry, University of Florence. 

2.3.1 Introduction 

2.3.1.1 Proteoglycans  

In higher multicellular eukaryotic organisms the space between cells is composed of the 

extracellular matrix (ECM) of tissues. The ECM consists of insoluble collagen fibrils and 

soluble polymeric structures, mainly proteoglycans (PGs), that together are responsible for 

the tissue adjustment related to the stress of movement and the maintenance of the 

organism’s shape [1]. The fibrils are inextensible; they resist and transmit tensile stress, 

defining the maximum size of the tissue. The PGs swell the aqueous space between fibrils, 

taking compressive stresses and limiting tissue collapse under pressure. Water-soluble 

molecules diffuse through the aqueous PG channels to and from cells. In addition to the 

mechanical functions, PGs play an essential part in the multiple regulatory functions 

including cell proliferation, cell migration, extracellular matrix deposition, cell-matrix 

interaction, and tissue morphogenesis and repair. 

These PGs usually have a globular protein part (head) to which glucosaminoglycans 

(GAGs) are attached (tails) [2]. The proteins are gene products and the GAGs are post-

traslational modifications. The greater part of GAGs is associated with a few types of PGs, 

simply described as small (∼100 kDA), large (>200 kDa) and very large (≈1 MDa) (Fig. 

2.11). Their proteins have different primary structures and shapes. The small PGs are 

constituted by 1 globular protein and 1 (or less frequently 2) GAGs chain(s), while the large 

and very large PGs have at least 1 globular and 1 linear polypeptide domain with 5-10, and 

up to 100 GAGs chains, respectively. Soft-fibrous tissues (tendon, skin, cornea, etc.) contain 

predominantly type I collagen associated with small PGs, such as proteodermatan sulfates 

(also called decorin) and proteokeratan sulfates (which include lumican and fibromodulin) 

of molecular mass ∼100 kDA, ∼50 % of which is protein and the rest is GAG. Very large 
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PGs are responsible for the elastic response of articular cartilage to loading, like the stuffing 

in a cushion. Large PGs have similar pressure resistant functions. 

 

 
Fig. 2.11 Diagrammatic illustrations of the appearance of (a) the small, (b) the large, 
and (c) the very large proteoglycans (from [2]). 

 

GAGs consist of long, unbranched chains of repeating disaccharide units classified as 

chondroitins, dermatans, keratans, which are sulfated, and hyaluronan, which is not (Fig. 

2.12). A similar group, the heparans, are particularly associated with cell and basements 

membranes. Evolutionary selection pressures and exogenous selection pressures mediated 

by microbes interacting with GAGs contributed to the their diversification [3]. These 

polymers differ in the type of disaccharides they utilize as building blocks, and in the 

linkage between the building blocks [2]. Such diversification led to their division into three 

structural groups: 1) cellobiose (e.g., hyaluronan), (2) polylactoseamines (e.g., dermatan, 

chondroitin, and keratan sulfate), and (3) polymaltose (heparin, heparan sulfate). 

Chondroitin sulfate (CS), dermatan sulphate (DS), keratan sulfate (KS), and hyaluronan 

(HA) have very similar polymer backbone structures (1:3, 1:4 β-linked pyranose rings) (Fig. 

2.12). In solution they are supposed to assume helical conformations with 2 disaccharides 

(Fig. 2.13) per complete helix turn (twofold helix), as shown by NMR [2,4] and confirmed 

by modeling and computer simulation [5]. GAGs’s twofold helix is stiffened by 

intramolecular H-bonds and by the repulsion between the anionic sites [6]. All GAGs reveal 

large hydrophobic patches, spread over 3 sugar units, present on both sides of the polymer 

(see Fig. 2.13), and consisting of 7-9 CH units-equivalent to a fatty acid. Monomeric units 

of hyaluronan, keratan sulfate and chondroitin are stable 4C1 chair conformers in 

physiological condition. 
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Fig. 2.12 Primary structures of building blocks of selected GAGs. The linkage 
geometry between predominant monomeric units are: Hyaluronan: -4GlcUAβ1-
3GlcNAcβ1-; Dermatan sulfate: -4IdoUAβ1-3GalNAc(4S)β1-; Chondroitin-6-
sulfate: -4GlcUAβ1-3GalNAc(6S)β1-; Keratan sulfate: -3Galβ1-4GlcNAc(6S)β1- 
(where GlcUA = β-D-glucuronic acid; IdoUA = α-L-iduronic acid; Gal = β-D-
galactose; GalNAc = β-D-N-acetylgalactosamine; GlcNAc = α-D-N-
acetylglucosamine). 

 
Fig. 2.13 Secondary structures of selected 
GAGs in water solution. Chondroitin-6-sulfate 
(CS6) as well as keratan sulfate (KS) assume a 
twofold helix conformation stiffened by 
intramolecular H-bonds and by the repulsion 
between the anionic sites (ringed, ester sulfate 
= X and carboxylates). Both CS6 and KS are 
Galβ1→4,Glcβ1→3 polymers, with a stable 
4C1 chair conformation. Hyaluronan (HA) is 
identical to CS6 without sulfation, with 
GlcNAc instead of GalNAc, and with an extra 
H-bond from GlcNAc C4OH to GlcUA ring 
oxygen, which is not possible from the axial 
GalNAc C4OH (arrowed). This position is 
sulfated in CS4 and in DS, concentrating the 
charges closer to the center line than in CS6. 
In DS, if the IdoUA ring is 4C1 (unfavored), 
the carboxylate group is axial, at right angles 
to the plane of the paper, thus bringing this 
charge closer to the center line of the polymer 
than in CS4 or CS6. If IdoUA is 1C4 (favored), 
the carboxylate is equatorial, as is that in CS4, 
CS6, and HA. Hydrophobic patches (cross-
hatched) are in identical positions in all four 
GAGs. (from [1]) 
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The structure of dermatan sulfate helix is, instead, somewhat different with respect to 

that of the other GAGs. This GAG is metabolically derived from chondroitin sulfate by 

epimerization of D-glucuronate (GlcUA) to L-Iduronate (IdoUA). The percentage 

epimerized varies from around 30 % in cornea and cartilage to over 80 % in skin and sclera. 

In contrast to GlcUA, which has a stable 4C1-conformation, IdoUA can take up other two 

more compact conformations, i.e. 1C4, and 2S0, with minimal energy exchange [7] (2S0 is 

intermediate between 4C1and 1C4). There are thus many possible secondary structures within 

a dermatan chain. However, it was demonstrated that the compact conformers are preferred 

over 4C1 in water solution [7]. 

2.3.1.2 Proposed GAG-GAG interactions in vitro and in tissues   

GAGs chains have been proposed to aggregate in vitro via hydrophobic bonding and 

hydrogen bonding between anti-parallel twofold helices, in a similar manner as for DNA 

double helix [1,2]. The more charged are the GAGs, the greater their mutual repulsion and 

the lower the stability of their aggregates. Furthermore, the position of anionic sulfate ester 

groups would determine whether aggregates can form [1]. In chondroitin-4-sulfate they are 

present along the central axis of the polymer, giving a highly concentrated polyanionic field; 

instead, in chondroitin-6-sulfate, sulfates are at the periphery of the twofold helix, giving a 

less intense polyanionic field and a weaker mutual repulsion between polymer chains. 

Computation and electron microscopy agreed that aggregates formation was possible in this 

latter case, other than for KS, which have an equivalent sulfates disposition, but not in that 

of chondroitin-4-sulfate [1]. DS sulfation is sometimes very low to the point of qualifying it 

as a non-sulfated chondroitin and these structures would aggregate easily, like HA (which 

is, equally, not sulfated). In cornea DSs have regular ∼50% (4-)sulfation (i.e. alternating 

non-sulfated and sulfated disaccharides). This means that the polymer has the sulfate groups 

on one face of the twofold helix. Computation showed that aggregation can take place on 

the non-sulfated face [1]. By means of light-scattering studies, DS was demonstrate to self-

aggregate in physiological solution [8] and then dissociate in 1M urea solution, suggesting 

involvement of H-bonds in the aggregation process. In particular results pointed out the 

formation of  DS-DS aggregates which were successively called “duplexes” [1,2]. DS 

aggregation in dimethylsulphoxide solution was much reduced by competing lipids, 

implying disruption of hydrophobic DS-DS interactions [2]. An equilibrium constant of 104  

was tentatively proposed for DS duplexes [8].  

In connective tissues, collagen fibrils and PGs form a dense and well-organized mutually 

interconnecting network. The interfibrillar PGs constitute a well-defined, complex 

molecular chain system providing rigid bridges between the fibrils and thereby being 
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responsible for the maintenance of the regular array of collagen fibrils [1]. PGs are 

equidistant and orthogonally attached at specific sites of the collagen fibrils by their protein 

cores (Fig. 2.14).  

 
Fig. 2.14 Proteoglycans (short arrows) orthogonally bridging two collagen fibrils 
(long arrow) of human posterior corneal stroma at regular intervals. Samples were 
ultrarapidly-frozen onto a copper block cooled by liquid nitrogen, freeze-fractured, 
deeply etched and rotary replicated with platinum-carbon. Replicas were examined 
in a transmission electron microscope equipped with a tilting device (from [9]) 

The interaction of the PGs with collagen fibrils is thought to be noncovalent and is 

characterized by an affinity constant of ∼108 M-1 [10]. By using a specific proteoglycan 

staining for electron microscopy, GAGs have been shown to interact with collagen fibrils on 

specific binding sites, forming antiparallel doublets that make it possible to maintain the 

relative position among the adjacent collagen fibrils [2,11] (Fig. 2.15). It was proposed that 

2 GAG chains, 1 from each PG, form duplexes, covering the space between fibrils, 

anchored by protein cores attached to each fibril [11] (Fig. 2.15 bottom panel). Stability 

after chemical treatments in the tissues of GAGs bridges visualized by electron 

histochemistry - crucially the disruptive effects of urea in the presence of non-ionic 

detergent, which were much greater than either separately - was compatible with postulated 

hydrophobic and H-bonded aggregates [12].   
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Fig. 2.15 Transmission electron micrograph of bovine corneal stroma obtained by 
using a specific PGs stain (Cupromeronic Blue in 0.05 M MgCl2) (from [2]). 
Proteoglycans bridges of DS-conjugated PGs (arrowed) between collagen fibrils are 
visible as dark filaments arrayed mainly orthogonally to the fibrils and interacting 
with collagen at specific binding sites. In corneal stroma DS-conjugated PGs bind at 
the d and e bands while bands a and c are occupied by KS-conjugated PGs. (bottom) 
scheme of a PGs duplex connecting two collagen fibrils by the GAG chains (arrow) 
as proposed by Scott [2,11]. 

2.3.1.3 Hyaluronan 

Because of its greater simplicity and availability, unsulfated HA is the archetypal GAG with 

which the others can be compared. The properties of the other GAGs aggregates can be 

deduced, in first approximation, from the structural behavior of HA. Here follows a brief 

summary of the main literature dedicated to hyaluronan structuring in vitro. 

Hyaluronan (HA) (Fig. 2.16) is a high molecular mass linear glycosaminoglycan 

consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcA), which form 

the disaccharide repeat (-GlcNAc-β1,4-GlcA-β1,3). HA is a major component of the 

extracellular matrix of vertebrates where it is involved in maintaining osmotic balance and 

reducing friction in tissues such as the synovium, vitreous humor, and cartilage. The 

distinctive biomechanical properties of HA have been utilized in the development of 

numerous biomedical products. For example, HA solutions are used as protectants of the 

cornea in dry eyes, as substitutes for vitreous fluid in eye surgery and, as lubricants in the 

treatment of osteoarthritic joints. HA also forms the structural basis of the pericellular 

matrix and contributes to mediating and modulating cell adhesion, as well as to other 

biological processes, such as development, tumor metastasis, and inflammation [13-15].  
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The wide range of biological functions of HA suggests the existence of a 

correspondingly large repertoire of conformations. Extensive research has been carried out 

over the past sixty years on the structural properties expressed by HA in solution, but, at 

present, the question is still controversial. In dilute solution at physiological pH and ionic 

strength, HA chains assume a stiffened random worm-like coil configuration, with a 

persistent length of about 5-7 nm, occupying a large hydrodynamic volume [14, 16]. The 

local stiffening responsible for generating the persistence length is partly due to the mutual 

electrostatic repulsion among carboxyl groups, and mainly to the existence of 

intramolecular hydrogen bonds bridging adjacent monosaccharide units, which restricts 

rotation and flexion at the glycosidic linkages [17-19]. Molecular dynamics simulations and 

NMR data on HA oligosaccharides in water suggested that these hydrogen bonds are in 

rapid (in the sub-nanosecond timescale) exchange with water [20, 21]. The resulting picture 

is a highly dynamic ensemble of chaotically interchanging semiordered states, as recently 

confirmed by NMR data [22, 23]. Because of the huge hydrodynamic volume and high 

molecular weight of HA, its individual chains are brought in contact and begin to entangle 

each other at concentrations above ∼1 mg/ml (for MW about 1-2 MDa) [17, 24]. This leads 

to high elastoviscous solutions showing non-ideal behavior (non-Newtonian viscosity), 

which, however, can be predicted by a simple expression for polymer solution viscosity, not 

invoking stable associations [15]. Experimental results of HA diffusion in a wide range 

(0.05-10 mg/ml) of concentrations also confirmed that the overlapping of the domains of the 

individual molecules does not lead to the formation of stable networks, typical of a gel [25].  

However, evidence of HA aggregation has also been reported: HA short segments have 

been demonstrated to self-associate in physiological solution [26, 27], while a variety of 

intermolecular aggregates were observed when HA was spread on surfaces [28, 29]. 

Furthermore, Scott and co-workers, on the basis of electron microscopy [30] and NMR [31] 

data, proposed the formation of highly ordered arrangements mediated by hydrogen-

bonding and hydrophobic interactions among antiparallel HA chains, forming planar or 

curved sheets. These chain-chain interactions were reported to be reversibly disaggregated 

by an increase in temperature or by alkalinisation [30, 32]. Recent infrared spectroscopy 

studies have suggested the formation of three dimensional superstructures of HA chains 

stabilized by water bridges [33-35]. This water-mediated supramolecular assembly was 

shown to break down progressively when the temperature was increased to over ∼40 °C 

[36], in accordance with previous NMR observations [32].  

In the present work we aim to investigate more deeply the HA’s ability to form 

supramolecular aggregates. Scientists have mainly focused their attention on dilute solutions 

of HA in order to study its physiochemical properties without the influence of nonspecific 
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interactions. However, HA can be found highly concentrated in some biological 

compartments, as in the synovium or in the umbilical cord. Moreover, pericellular, 

intercellular and intracellular sites, where HA performs several critical biological roles [37, 

38], are locations characterized by high levels of macromolecular crowding. These 

constraining environments can potentially lead to intermolecular associations by favoring 

the approach between adjacent chains, and thus to increase the “effective” molecular 

concentration, as suggested by a recent concept [39, 40]. We used the combination of falling 

ball method (FBM), differential scanning calorimetry (DSC), Fourier transform infrared 

(FTIR) spectroscopy, and polarized-light microscopy (PLM) in order to build up a 

consistent picture of HA’s ability to constitute stable superstructures under high 

concentration conditions. 

 
Fig. 2.16 Schematic chemical representation of a trisaccharide of HA including the 
repeating disaccharide unit consisting of N-acetyl-D-glucosamine and D-glucuronic 
acid. 

2.3.2 Experimental section 

2.3.2.1 Materials  
 
We have used HA obtained from a bacterial source in order to minimize the protein-

mediated aggregation of polymer chains, which might occur if HA from an animal source 

was employed [24, 41]. In particular, HA sodium salt from Streptococcus equi (Esperis 

S.p.a, Milan, Italy) having a molecular mass of approx. 1.000 kDa was used. The protein 

content was found to be lower than approx. 0.025% by means of specific quantitative 

spectrophotometric analysis. Different concentrations of the polymer in 0.15 M NaCl 

solution were separately prepared in small glass vials. The samples were homogenized by 

heating them in a thermostat oven at ∼ 60 °C for ca. 4 h; such a period has been shown to be 

suitable for avoiding any type of molecular weight reduction [42] assuring a good rate of 

homogenization [43]. The vials were then kept closed at room temperature for about one 

month in order to obtain well-equilibrated samples prior to analysis. 
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2.3.2.2 Falling ball method 
 
HA samples were sealed in a glass tube 10 cm in length and 1 cm in diameter. The filled 

tube was left in place at room temperature in the dark for several days (typically one month) 

until complete equilibration of the solution was achieved. Then the tube was opened and a 

tungsten carbide ball of  0.5 mm in diameter and density of 14.9 g/ml was put at its top. We 

measured the distance covered by the ball in 1 min at a fixed temperature. 

2.3.2.3 Differential scanning calorimetry 
 
DSC measurements were performed using a Q1000 (TA Instruments) equipped with a 

universal Analysis 2000 Version 3.7A software. Steel sample pans (TA Instruments) 

hermetically sealed to avoid water evaporation were used. The weight of the samples was 

checked at the beginning and at the end of the measurements, and only measurements in 

which no evaporation had occurred were considered. The sample was first equilibrated at 0 

°C, heated to 80 °C and then cooled from 80 °C to 0 °C at 5 °C min-1 both in the heating and 

in the cooling mode. Measurements were made under a dry nitrogen flow of 40 cm3/min. 

The calibration of the DSC apparatus was performed through the melting of the indium. 

2.3.2.4 Infrared spectroscopy 
 
FTIR spectra were collected in the mid-IR range (4000-1000 cm-1) with a Nexus 870-FTIR 

(Thermo-Nicolet), in transmittance mode, with a resolution of 4 cm-1, with 32 scans per 

spectrum, and no mathematical correction (e.g. smoothing) was performed. In a typical 

experiment, a small amount (about 1.5 mg) of the sample was placed between two CaF2 

windows, which were then sealed using a Teflon tape. This was done in order to avoid 

possible water evaporation during spectra recording at higher temperatures. The spectrum of 

the CaF2 probe alone was used as a reference in the absorbance calculations. 

2.3.2.5 Polarized-light microscopy (PLM) 

HA samples were observed under circular polarization using a polarized-light microscope 

(Leica DM 2500 P). Typically, a sample amount of about 3 mg was sandwiched between a 

microscope slide and a glass coverslip appropriately pre-treated, stored at room temperature 

for up to one week and then observed. The pre-treatment of the glass slides was twofold in 

order to create a hydrophilic or a hydrophobic environment. For the first purpose, the 

glasses were first cleaned with a non-ionic detergent, treated with a saturated solution of 

NaOH in ethyl alcohol for 1 h, and then rinsed with water. Other glasses were sprayed with 

a plasticizer (Plastivel, Mark Service), which, upon drying, formed a thin, transparent and 

homogeneous layer over the glass surface.  
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2.3.3 Results and Discussion 

The properties of HA (Fig. 2.16) have been investigated in the literature using a variety 

of techniques, typically in dilute solution, i.e. in the range 0.1-1 mg/ml. Under physiological 

solvent conditions at low concentration, HA molecules adopt a stiffened random coil 

configuration. Increasing the concentration, because of the extended hydrodynamic domains 

of the polymer, HA chains begin to entangle conferring to the solution distinctive 

hydrodynamic properties (viscoelasticity is dramatically increased) [15]. Previous studies on 

HA at this concentration regime have provided no evidence of strong chain-chain 

associations, but rather an entanglement coupling behavior, typical of a temporary polymer 

network [25, 44]. However, HA has been shown to form aggregates in highly crowded 

biological environments, as when confined in intercellular [44] or intracellular [37] spaces. 

The aim of this paper was thus to illustrate how the structural features of HA could be 

affected when studied under high concentration conditions in vitro, which would have great 

significance for the understanding of biological phenomena occurring in constricted 

environments in vivo. This was accomplished by means of techniques enabling the 

investigation of both macroscopic (by viscosity, calorimetric and polarized-light microscopy 

measurements) and molecular properties (by FTIR spectroscopy). 

Falling Ball. Fig. 2.17 shows a selection of representative results of the FB experiment 

performed on HA samples. Results obtained from up to 50-mg/ml-concentrated samples 

displayed a nearly monotonic decrease in viscosity at increasing temperature. A similar 

trend had been previously reported and attributed to a decrease in the persistence length due 

to a greater freedom of rotation around the glycoside bonds or to an increased population of 

high energy conformers at increasing temperature [24, 46]. At higher concentration values, a 

more abrupt change in viscosity was detected. For example, when considering the 100 

mg/ml sample, we observed that the solution started to soften at ∼35 °C and became fluid at 

around ∼50 °C. The distinct change in the slope of the viscosity observed during the heating 

of these HA samples can be referred to the loosening of certain cooperative interactions, 

which are typically found to play a key role in polymer-polymer complexes of 

polysaccharide systems [47]. Extrapolated lines of the travel distance below and beyond 

these values furnished a gel-like to fluid-like transition at 40-45 °C, in accordance with 

previous studies which had ascribed it to a destabilization of a postulated HA 

supramolecular assembly [17, 36].  
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Fig. 2.17 Normalized falling distance of a 0.5 mm tungsten carbide ball inside a 100 
mg/ml (squares), or a 10 mg/ml (triangles) HA solution in physiological saline as a 
function of the temperature. 

FTIR. Infra-red spectroscopy can be a powerful tool to obtain structural information on the 

behavior of water molecules embedded in macromolecules, and, thus, to gain indirect 

insight into the structure of the latter. The infrared spectrum of HA water solutions was 

dominated by the broad band relative to the OH stretching of H2O molecules falling in the 

3000-3700 cm-1 region (see Fig. 2.18), in accordance with previous observations [33-35]. 

Strong differences in the shape of this band were evident from a comparison of differently-

concentrated HA solutions, unequivocally indicating the presence of different structural 

water environments. 

 
Fig. 2.18 OH stretching band of various HA concentrations in physiological saline 
at 20 °C. 

A first interesting insight comes from considering the modulation of the peak intensity of 

the OH-stretching band as a function of the temperature (Fig. 2.19). The less concentrated 
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samples showed a nearly monotone decrement of intensity that can be ascribed to a 

progressive thinning of the HA film hold between the CaF2 windows, caused by a monotone 

change of fluidity of the HA solution, as previously observed from FB measurements 

(compare Fig. 2.19B with Fig. 2.17, triangles). On the contrary we observed a sharp change 

of slope occurring at ca. 35 °C for more concentrated samples (see Fig. 2.19B, squares). 

Indeed, from 15 up to 35 °C thinning is highly inhibited due to the constant viscosity 

properties (compare with the same range in Fig. 2.17, squares). At ∼35 °C the thinning is 

not longer inhibited and starts to affect the absorbance of the peak (see Fig. 2.19A), 

resulting in a constant decreasing trend in the temperature range 35-70 °C. Thus, in this 

case, we may infer the presence of a HA superstructure that undergoes a transition beyond a 

characteristic temperature threshold, as already suggested by FB measurements.  

 
Fig. 2.19 (A) OH stretching band of 100 mg/ml HA in physiological saline at 
increasing temperature. (B) Variation of the peak intensity of OH stretching band as 
a function of the temperature. Squares: 100 mg/ml; triangles: 10 mg/ml.   

 
Fig. 2.20 Gaussian deconvolution of the OH band of 100 mg/ml HA in 
physiological saline at 20 °C. 
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In order to qualitatively assess the changes in the OH stretching band arising from an 

increase in temperature and a variation in concentration, we fitted each spectrum as a sum of 

three Gaussian curves, in accordance with previous studies [48-50]. An example of fitting is 

reported in Fig. 2.20. Each of the Gaussian curves accounts for different water populations 

associated with a particular type of hydrogen bond, which have been previously discussed 

for HA [51]: These are “network water (NW)” molecules, “intermediate water (IW)” 

molecules, and “multimer water (MW)” molecules. The first type, NW, which is assigned to 

the lower energy Gaussian curve (∼3300 cm-1), is assumed to be originated from water 

molecules involved in transient networks that break and form continuously. These water 

molecules are most likely to be connected tetrahedrally, almost as in ice, thus generating 

instantaneous H-bonded low-density pathways, extending over a supramolecular level. The 

second type of water molecules, IW (centered at ca. 3480 cm-1) is ascribed to molecules 

connected in some way to other water molecules, although unable to develop fully 

connected patches, and thus, having distorted H-bonds. This component of water has an 

average degree of connection larger than that of dimers or trimers, but lower than those 

participating in the percolating networks. The third kind of water molecules, MW (higher 

energy Gaussian at ∼3600 cm-1), corresponds to water molecules poorly connected with 

their environment and standing as free monomers, or as dimers or trimers. The latter 

assignment is supported by the fact that, frequency wise, these MW molecules are close to 

those found in the vapor phase, just as the NW Gaussian is positioned at frequency close to 

that of the OH band in ice. 

As water is represented by three different states in the systems (NW, IW, MW), it is 

reasonable to assume that the total peak area corresponding to the water band is the sum of 

the peak areas of the different states of water. Thus, we can calculate the fraction of NW, 

IW, and MW weighted on the total amount of water, and we can plot the variation of the 

ratio between the area of each Gaussian component (Ai) to the total peak area (Atot) as a 

function of the temperature. The Ai/Atot calculated trends relative to these solutions (Fig. 

2.21A,B) unveiled a different behavior, mainly of the NW and the IW fractions, as a 

function of either concentration or temperature. Major modifications were observed for the 

most concentrated samples examined. For example, if we consider the 100 mg/ml HA 

solution, “network water” passed from 0.75 up to 25 °C to 0.55 beyond 60 °C, while the 

“intermediate water” varied from 0.20 to 0.40 exactly in the opposite manner. Thus a 

modification of the water structuring occurred when a certain temperature value, i.e. 25 °C, 

was reached; then, after a gradual decrease between 25 and 60 °C, a constant trend was 

maintained despite further heating. Instead, less concentrated HA samples (e.g. 10 and 30 

mg/ml) showed slight variations in the NW and IW fractions upon heating, which were 

mainly centered at around 0.70 and 0.25, respectively. Interestingly, the 100 mg/ml HA 
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sample showed initial (up to 25 °C) Ai/Atot values of NW and IW more similar to those 

typically found for the 10 mg/ml than for the 30 mg/ml sample.  

 
Fig. 2.21 Ratio of the area of the ith Gaussian component (Ai) to the total peak area 
(Atot) versus temperature. (A): NW (square), IW (circles), and MW (triangles) 
fractions of 10 mg/ ml (open) and 30 mg/ml (filled) HA in physiological saline. (B): 
NW (square), IW (circles), and MW (triangles) fractions of 100 mg/ ml HA in 
physiological saline. 

Semi-diluted HA solutions have been previously shown to form temporary networks, 

whose average mesh size was predicted to be progressively lower than 20 nm for solutions 

progressively more concentrated than 10 mg/ml [52-53]. The confinement of water inside 

low-sized pores can be  disadvantageous for the long-distance water connectivities, favoring 

the more restricted connectivities, as previously reported for water confined in fluorocarbon 

reverse micelles [49]. Accordingly, in our measurements the 30 mg/ml HA sample showed 

NW and IW values respectively lower and higher, on average, in comparison with the 10 

mg/ml solution, suggesting a moderate effect of confinement. The plot of 100 mg/ml HA 

sample revealed a different trend. Firstly, it unequivocally showed a transition between two 

different kinds of water structuring, and thus, of HA. At low temperature, i.e. below 25 °C, 

NW was favored possibly because of stable associations among HA chains. This allowed 

the formation of a large-pore-size polymer network (See the scheme proposed in Fig. 2.22), 

which favored the formation of long-distance connectivities of water molecules with respect 

to small-sized water aggregates. These pores should have a dimension comparable to that of 

the 10 mg/ml sample, if we consider the similarity of their initial NW values. Beyond 25 °C, 

the intermolecular interactions are supposed to break progressively leading to a polydisperse 

entanglement on average more crowded with respect to that of less concentrated solutions, 

because of the higher local chain density. As a matter of fact, we observed a considerable 

decrease in NW and, simultaneously, an increase in IW, which are both well in accordance 

with our hypothesis.  
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FTIR results pointed out the formation of stable supramolecular assemblies only at the 

highest concentrations considered. The sharp change in shape of the OH stretching band 

starting at 25 °C, indicating a transition from a large- to a restricted-connectivity water 

structuring, suggested a concurrent transition from a stable to a temporary HA network. 

Furthermore, it is to be noted that the low-temperature threshold supposed to disrupt the 

network is well in agreement with the occurrence of weak intermolecular associations 

among the HA chains. 

 
Fig. 2.22 Proposed scheme of HA network rearrangement (from stable to 
temporary) during heating. 

DSC. DSC analysis of highly concentrated HA solutions was performed in order to obtain a 

quantitative estimate of the structural transition showed by FB and FTIR measurements. 

Fig. 2.23 shows a heating curve relative to the 100 mg/ml HA sample acquired at a scanning 

rate of 5 °C/min. The DSC curve enabled the detection of an exothermic and an 

endothermic transitions at 25-35 °C and at 45-60 °C, respectively. The latter was ascribed to 

a gel-like to fluid-like transition. In fact, the onset of this transition is well in accordance 

with the threshold values characterizing the sharp change in the viscosity properties of 

concentrated HA samples which were observed above (see Fig. 2.17 and Fig. 2.19B, 

squares). The exothermic transition starting at 25 °C is not easily ascribable: it may proceed 

from a transient re-organization of the HA chains stimulated by a rather low temperature 

regime. Moreover, it appears an integral part of the process leading to the disruption of the 

HA supramolecular network since it matches the starting temperature of water re-structuring 

found by FTIR measurements (see Fig. 2.6B). Anyway, additional measurements will be 

carried out in the near future to clarify this picture. The measured enthalpies calculated from 

the area of the two peaks were of the order of 100-200 cal/mol (referred to a disaccharide 

unit). These values are quite compatible with weak non-covalent interactions as those 

characteristic of Van der Waals and hydrophobic forces, which are frequently responsible of 

the structuring of polysaccharide systems [47].   
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Fig. 2.23 DSC curve of 100 mg/ml HA in physiological saline recorded at a heating 
rate of 5 °C/min. 

PLM. This technique can selectively visualize the birefringence originating from 

anisotropic structures, which are seen as shining bodies on a dark background. The analyzed 

samples consisted of thin films of HA solutions in physiologic saline in the 10-100 mg/ml 

range, obtained by sandwiching a small amount of the sample between a microscope slide 

and a coverslip previously pre-treated. As mentioned before, the pre-treatment of the 

microscope glass slides consisted either in creating a hydrophilic or a hydrophobic 

environment.  

Soon after the preparation, all types of films looked homogeneously dark. This indicates 

the lack of extensive ordered chain-assemblies over the concentration scale examined. 

During one week of storing at ambient temperature, by following a slight loss of water due 

to evaporation, the HA depositions on polar glass tended to loss their initial shape assuming 

ragged edges consisting in honeycomb-like structures (Fig. 2.24). In these locations, the HA 

strands were probably induced to approach themselves, creating a bright and persistent 

birefringence. On the other hand, HA films deposited within plasticized slides (hydrophobic 

substrate) reduced slightly in size although conserved linear edges, which lacked any type of 

birefringence. Similar results were found for all samples considered even if the more the 

concentration, the less the time required for the development of the birefringence textures 

(in the hydrophilic environment). 

The HA molecule owns hydrophobic groups oriented above and below the average plane 

of each sugar ring, whereas the hydrophilic groups are displayed around the perimeter of the 

rings, thus creating relatively hydrophobic and hydrophilic faces, respectively [31]. The 

existence of such a twofold character can account for the different behavior observed when 

changing the environment from polar to hydrophobic. HA placed in between hydrophilic 

surfaces appeared prone to generate ordered assemblies. This is comprehensible if we 
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consider that HA keeps its hydrophilic faces in contact with the polar surfaces while using 

its hydrophobic patches to mediate the assembly with the other polymer chains. This 

observation is thermodynamically explained by an entropically driven process due to water 

molecules initially bound to the polymer and then freed by the association of approaching 

polymer segments [15], which is even more favored during water loss process. The 

observed local ordered assemblies can thus be interpreted as the result of the generation of 

favorable interactions among the HA chains, probably induced by a hydrophobic effect. On 

the other hand, the lack of birefringence observed in the HA samples sandwiched between 

plasticized surfaces can be interpreted in accordance with a moderate affinity for this 

environment, ascribable to the non-polar groups of the polymer. The preferential interaction 

of the hydrophobic patches with the plasticized substrate probably inhibited the possibility 

to employ them for the generation of extended ordered assemblies. Similar results have been 

recently obtained by Cowman and co-workers by means of atomic force microscopy [54]. 

They showed that HA deposited on mica (hydrophilic) tended to frequently generate 

intermolecular associations, as opposed to when a graphite substrate (hydrophobic) was 

used. 

 
Fig. 2.24 PLM image of a HA sample (100 mg/ml) in physiological saline 
sandwiched between polar microscope slides and after one week of storing at room 
temperature. 

In comparison to aged HA films spread on a polar glass, HA in concentrated solutions is 

expected to generate looser networks mediated by restricted junction zones (which are 

replaced by dynamic entanglements under a lower concentration regime). These junction 

zones, under certain perturbing conditions such as those carried out in this experiment, are 

encouraged to develop into more extended and stiffened intermolecular associations, which 

were actually detected by our PLM imaging. With this assumption, we can ascribe to 

hydrophobic interactions also the self-associations operating in stable HA networks in 
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solutions, which, in addition, agree with the low enthalpy values obtained from the DSC 

analysis. 

2.3.4 Conclusions 

The multifaceted analysis that we carried out enabled us to bring to light the ability of HA 

solutions in physiological saline to generate stable superstructures under high concentration 

conditions. FB and FTIR measurements of the less concentrated HA samples suggested the 

presence of a temporary polymer network, in which the overlapping of individual HA 

domains did not lead to stable interactions. By increasing the concentration, the crowded 

local environment was supposed to promote the association of HA chains one to another. FB 

and FTIR analyses of highly concentrated HA solutions revealed the presence of stable 

polymer networks, which dissolved upon heating. DSC underlined the existence of a gel-

like to fluid-like transition, while it excluded any involvement of strong intermolecular 

interactions. PLM suggested that chain-chain associations were driven by hydrophobic 

interactions, which is essentially compatible with the low enthalpy values obtained from 

DSC analysis. Thus, we can hypothesize a switching from temporary to stable HA networks 

as a function of the concentration. The latter probably originated from the formation of 

junction zones mediated by hydrophobic interactions. 

In physiological compartments the presence of a high number of macromolecules makes 

the space highly crowded. In practice this leads to the enhancement of the “effective” 

concentration of the individual macromolecules [39]. The intermolecular associations of 

highly concentrated HA solutions can be viewed as a strategy of the system to reduce its 

free energy by maximizing the available volume (and minimizing the excluded volume), as 

normally observed in living systems [40]. On the basis of the results presented here, we 

would like to underline the importance of taking into account the “effective” 

macromolecular concentration within future studies dealing with the structuring of HA and 

of other glycosaminoglycans in physiological conditions. Furthermore, at this concentration 

also the biological activity of the polymer could be partially altered, which is actually an 

issue usually neglected in the case of more diluted solutions.  

2.3.5 Involvement of proteoglycans in the mechanism of laser tissue welding 

A similar picture can be hypothesized for the interfibrillar PGs of corneal stroma (and, 

likely, of other soft-fibrous connective tissues). In fact this biological environment is highly 

crowded by macromolecular species, mainly collagen fibrils and PGs themselves, as nicely 

depicted by the following model recently proposed by Müller and co-workers [55] (Fig. 

2.25):  
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Fig. 2.25. Schematic visualization of stromal organization as proposed by Müller. 
Hexagonal arranged collagen fibrils are interconnected at regular distances with 
their next nearest neighbors by groups of six PGs, attached orthogonally to the 
circumference of the fibrils. In this way a regular meshwork of ring-like 
(intermediate between hexagonal and circular) 11 nm thick structures (bluish) 
enwrapping the collagen fibrils is formed. (from [55]). 

In this model, at equidistant sites along their circumferences, six core proteins of PGs are 

attached to the hexagonal arranged collagen fibrils. The GAG chains of PGs join next 

nearest neighbor collagen fibrils and form a ring-like structure around each collagen fibril of 

approximately 11 nm in thickness (i.e. a gel-like shell surrounding individual collagen 

fibrils). The article from Müller et al. [55] furnishes also quantitative parameters of PGs and 

collagen fibrils in the stromal cornea, achieved by electron microscopy analysis. These are 

reported in Table 2.2 and used for the following calculations: 

 
Table 2.2 Quantitative parameters of proteoglycans and collagen fibrils in the 
human cornea (from [55]). 

We can tentatively try to calculate the effective concentration of the PG component 

within the corneal stroma taking into account of the space occupied (and thus subtracted) by 

the main extracellular stromal macromolecules (fibrillar collagen and PGs themselves).  
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Corneal stroma is composed by 78 % of water, 15 % of collagen, 1 % of PGs, and 5 % 

of other components (% is expressed in weight/weight). Considering the density of corneal 

stroma equal to 1 g/ml (the exact value is 1.062 g/ml [56]), we can estimate a concentration 

of stromal PGs of about 10 mg/ml (that we call “apparent concentration”).  

Let’s consider a volume inside the stroma of 54 nm (in length) × 43 nm (in width) × 100 

nm (in height) = (232 ·103) nm3, that we call the “apparent volume”, where the length is 

equal to that of each individual PG (along the X-axis), the width is the interfibrillar distance 

(along the Y-axis) and the height is arbitrarily chosen (along the Z-axis) (see the scheme of 

Fig. 2.26). Inside the considered area of (54 x 43) nm2 on the XY plane, two half ring-like 

structures (two semicircles of 795.2 nm2 area) plus two other fractions of ring-like structures 

(two circular segments of 236.5 nm2 area) are present. These correspond to a total occupied 

volume of [(795.2 x 236.5)x2] x 100 = (206 ·103) nm3, which represents the total “excluded 

volume”. Thus, the “effective volume” is (26 ·103) nm3, which represents about 10 % of the 

“apparent volume”. We can thus estimate that the “effective PGs concentration” in corneal 

stroma is 10 times higher than the “apparent concentration”, that is  ∼100mg/ml. This is in 

accordance with the concentration value at which the model GAG hyaluronan has been 

proved to aggregate (see §2.3.3). We may note the this is a very rough estimation which, 

among others, does not take into account for the electrostatic repulsion between neighbor 

PGs and the interaction of each core PG protein with the collagen fibril or other 

extracellular components, which both can alter the aggregation process.  

 

Fig. 2.26 Calculation of effective stromal PG concentration. We consider a (54 × 43 
× 100) nm3 volume (the green square defines the (54 × 43) nm2 area laying on the 
XY plane) of corneal stroma. Excluded areas are represented by ring-like structures 
(bluish) surrounding each fibril.  
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We can thus infer that the Scott’s model [1,2], which provides the presence of PG 

doublets connecting two adjacent fibrils (i.e. aggregates formed by the interaction of two 

GAG chains), is reasonable for the corneal stroma in physiological conditions. It is worth 

noting that this is true if we extend the results found for the archetypal GAG (hyaluronan) 

studied in crowded in vitro environments to the corneal GAGs in vivo. Thus, we ought to 

point out that this conclusion can be intrinsically subjected to some fault. 

From the same extension (of the HA behavior to that of the other GAGs), we can 

conclude that, by heating aggregated corneal PGs beyond the temperature threshold of ∼60 

°C, a reversible disaggregation of the GAG chains should occur.  

Another expected effect of the temperature rise is the denaturation of the protein core of 

the PGs, which could lead to suspect a possible separation of the PGs from the fibrils during 

heating. Thermal denaturation of the PG core was previously investigated by P.G. Scott [57, 

58]. He proved that thermal denaturation of small PGs, in particular of decorin, actually 

occurs at a low temperature (i.e. at around 45 °C), but this does not affect the linkage 

between the protein core of the PGs and the collagen fibril. The solely addition of a 

chemical denaturant was associated with the breakage of the PG-collagen bond.  

Hence, considering the results obtained from microscopy analyses of welded corneas, 

from chemical analyses of the model GAG hyaluronan in crowded environments and from 

the considerations on proteoglycans aggregates we made above, we can tentatively 

hypothesize a model of the corneal welding process taking place at the typical low powers 

of diode laser irradiation. The GAGs bridges connecting collagen fibrils in native stroma are 

probably broken at the characteristic temperatures of diode laser welding (55-65 °C range), 

as suggested by our results. The individual GAG strands, freed upon heating, could 

successively create new bonds with other free strands during the cooling phase. In practice, 

a number of disaggregated PGs of one side of the wound could interact with other PGs of 

the other side generating new bonds, which are probably of non-covalent nature (maybe, 

hydrophobic). The weld is hold by groups of interwoven fibrils joining the sides of the cut 

as shown by microscopy data. The interwoven fibrils are supposed to be connected by 

several newly-formed GAG bridges. A scheme of the proposed mechanism of laser welding 

is reported in Fig. 2.27. 
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Fig. 2.27 Proposed scheme of laser welding of corneal stroma. During the laser 
irradiation a local heating in the 55-65 °C range is induced. This leads to the 
disruption of GAGs aggregates (doublets) of the two side of the wound to be welded 
and thus to a fibrillar rearrangement. During the cooling phase, GAG strands freed 
upon heating may interact with each other generating new bonds between the fibrils 
at the two sides of the cut and thus originating the weld.  
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2.4 - PERSPECTIVES 

Future investigations on the mechanism of laser welding should follow a twofold approach. 

From one side, it is necessary to carry out a more detailed analysis in order to prove the 

feasibility of self-assembly, and mainly of duplexing, of the small PGs of corneal stroma. 

This could be achieved mainly by means of calorimetric and spectroscopic methods, as we 

employed for the hyaluronan molecule. However, this investigation may bring a number of 

concerns. The low availability of commercial PGs and, overall, the lack of commercial PGs 

from corneal stroma, necessarily requires the extraction of PGs directly from corneal tissue. 

Extraction protocols of stromal PGs were previously proposed, even if they are troublesome 

in obtaining a highly-purified product on the microgram scale which is needed to prove the 

aggregating tendency of PGs. A more feasible strategy is to extract only the GAG part of 

PGs, which is obtained following simpler protocols. Furthermore, more convincing data are 

expected in this case due to the lack of the proteic component (PG core) that could strongly 

affect the results. 

On the other side, a non-traditional electron histochemistry approach could be tried, 

based on staining protocols specifically used for the PGs detection. This, in principle, could 

lead to a better picture of the final architecture of PG molecules after laser welding. 

However, a microscopy analysis based on non-traditional electron histochemistry (as the 

specific methods for PG detection, see e.g. Fig. 2.15) is very time and skill demanding. 

Moreover,  it is probably subjected to fail in the case of our welded samples because of the 

wide usage of more invasive protocols in respect with those normally employed. These 

could strongly affect the local stromal architecture, thus compromising the detection of the 

original distribution and assembly of the PGs at the weld site. 
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3. OPTIMIZATION OF LASER WELDING 
(Part I) 

 
Setup of noninvasive imaging systems to investigate 
(photo)thermally-induced changes in corneal collagen 

 
Here the second topic of this thesis dealing with the optimization of laser welding technique 

is introduced. With regard to this topic, our work was aimed at pursuing two distinct 

objectives, which thus cover two distinct chapters of the thesis (Part I & 2). The first part 

deals with the work done to assess the feasibility of two imaging techniques, namely 

fluorescence and second-harmonic generation, to monitor photothermally- and thermally-

induced changes in biological tissue, with particular regard to cornea. The second part is 

devoted to present new nanostructured chromophores: in particular the enhanced capability 

of suitably synthesized gold nanoparticels to generate consistent photothermal effects when 

used as laser-absorbers in tissues are discussed. 

The following chapter starts with an introduction to the problem of investigating and 

monitoring the structural changes that may occur to the main components of biological 

tissues when subjected to (photo)thermal therapy (§3.1). The rest of the chapter is devoted 

to describe the solutions proposed in this thesis to this problem, which rely on the use of 

fluorescence imaging (§3.2) and second harmonic generation imaging (§3.3).  
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3.1 - BACKGROUND 

This section provides an overlook of the therapeutical applications based on the induction 

of thermal and photothermal effects (i.e. thermal effects induced by the conversion of the 

absorbed light into heat). Then a brief description of the most popular analytical methods 

used to characterize the structural changes induced in connective tissues and in particular 

on cornea is reported.  

Thermal therapies are increasingly used in clinical practice for the treatment of diseases and 

injuries. The heating devices employed are based principally on the use of laser irradiation, 

radiofrequency electrical current, or microwaves. Heat-induced effects have been exploited 

for instance in dermatology, for skin rejuvenation and resurfacing or for the treatment of 

cutaneous vascular lesions [1]; in orthopedics, for the thermal treatment of shoulder 

instability [2]. In ophthalmology an increasingly number of medical procedures are based on 

the application of heat and more commonly on the generation of photothermal processes 

mediated by laser. For example, heat-induced effects have been exploited for refractive 

surgery using PRK or LASIK techniques, for reshaping of corneal curvature in laser 

thermokeratoplasty, for the closure of corneal wounds with minimally invasive laser 

welding (as we have seen in the previous chapters) [3]. The ability to monitor quali-

quantitatively the structural changes to the tissue is of utmost importance in controlling the 

heating effect induced, in assessing the quality of surgical intervention and in preventing 

undesiderable thermal damage to the peripheral structures.  

Structural changes in connective tissue resulting from therapeutic thermal treatments are 

primarily imputable to collagen. This protein is the most abundant one in the body and the 

main component of connective tissues. Collagen molecule has a triple helix composed of 

polypeptide chains highly stabilized by interconnecting hydrogen bonds. Within the 

collagen family, the main component of fibril-forming collagens is type I collagen, which 

provides the structural and organizational framework for skin, blood vessels, bone, tendon, 

cornea and other tissues. In this type of collagens, molecules are packed in a quarter-

staggered manner and connected by covalent bonds to form microfibrils few nanometers in 

diameter, which then combine to form collagen fibrils that are a few to hundred nanometers 

in size. Some tissue are characterized by two to three hierarchical levels of organization at 

progressively larger scales, beyond the fibrils. For example in tendon they organize in 1-10 

μm thick fibers which in turn form bundles of fibers called fascicles. In corneal stroma, 

collagen fibrils have uniform diameter and associate which each other to form 1-2 μm 

sheets known as lamellae. Intralamellar domains are characterized by a regular spacing of 
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collagen fibrils, which are responsible to the unique physical property of cornea, that is 

transparency. 

When corneal stroma is subjected to a temperature rising, several morphological changes 

occur to its lamellar domains [3], strictly related to as much ultrastructural modifications in 

extracellular matrix components, that is ground substance, mainly constituted of 

proteoglycans, and fibrillar collagen. The first step is ruled out by the denaturation of the 

ground substance mainly occurring before the onset of fibrillar collagen denaturation, i.e. 

from ∼45 to ∼60 °C . In this range one or two subsequent phase transitions are observed 

which are correlated to a local disorder of the lamellar arrangement. Likely, this is 

ascribable to the breaking of interfibrillar proteoglycans bridges (discussed in §2), which 

leads to loss of the regular interfibrillar spaces. The next stage relies on the helix-coil 

transition of collagen molecule which precedes in  two following steps. At first, unwinding 

of the triple helices occurs due to the hydrolysis of the intramolecular hydrogen bonds. This 

leads to tissue shortening due to a shrinkage effect parallel to the axis of the fibril. As a 

consequence, fibrillar edges appear frayed and the fibrillar diameter increases. At higher 

temperatures covalent cross-links connecting collagen strands break, resulting in a complete 

destruction of the fibrillar structure and causing full denaturation of collagen and relaxation 

of the tissue. A schematic representation of the structural modifications occurring in 

collagen fibrils of corneal stroma upon heating above physiologic temperature is reported in 

Fig. 3.1. 

 
 

Fig. 3.1. Thermal transitions of corneal stroma from the collagen point of view. 
Native stroma is characterized by a regular arrangement of collagen fibrils. The 
first step leads to a progressive fibrillar disorganization, ascribed to the breaking of 
proteoglycan bridges connecting collagen fibrils together. At higher temperatures 
fibrillar collagen is denatured during two following steps: in the first, 
intramolecular H-bonds break leading to the a moderate thickening of the fibrillar 
size and to the appearance of frayed fibrillar edges; in the last step, covalent cross-
links connecting collagen molecules together break, causing the complete 
denaturation of collagen (also called gelatinization or hyalinosis). 

Several techniques have been employed to characterize thermal modifications of 

collagenous tissue. Calorimetric studies have typically been conducted using Differential 

Scanning Calorimetry (DSC). This method makes it possible to characterize the 

thermodynamic behavior of many connective tissues, which then show substantial 



Chapter 3: Optimization (I): Fluorescence Imaging and SHG Imaging                                        
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 62

improvement compared to the use of other previously-adopted approaches [4-7]. On the 

other hand, histological techniques (e.g. histological staining and immuno-fluorescent 

labeling) remain the most commonly-used imaging platform, due to their relative ease of 

use [8-10]. Transmission Electron Microscopy (TEM) is used when high resolution is 

required [8,10], but it involves high costs as well as complex protocols for specimen 

processing. Although DSC and the afore-mentioned microscopy techniques may be very 

useful when used on tissue ex vivo, they are unsuitable for monitoring heat-induced changes 

in vivo.  

For this reason, we were aimed at exploring the feasibility of two imaging techniques 

traditionally employed for laboratory investigations, which are potentially adaptable to be 

employed as in vivo diagnostic tools. These are one-photon fluorescence microscopy 

(simply referred to as “fluorescence microscopy” in the text) and second harmonic 

generation (SHG) microscopy. The following sections reports on the preliminary studies 

performed during this thesis in order to evaluate the applicability of these techniques as real-

time controlling systems for surgical applications based on induced thermal and 

photothermal effects.  
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3.2 - FLUORESCENCE IMAGING  

In this section the use of fluorescence micro-imaging analysis for monitoring thermally-

induced phase transitions in corneal tissue is proposed. Tissue samples were heated in a 

water bath at temperatures in the 35-90 °C range. Fluorescence images of the structural 

modifications induced in corneal stroma were acquired after staining with Indocyanine 

Green. Discrete Fourier Transform and entropy analyses of each image made it possible to 

characterize the thermally-induced phase transitions in the stroma, and to indicate a 

threshold value for severe thermal damage. The procedure could be proposed as the basis 

for a real-time monitoring system for photothermal therapies. 

The image processing algorithms were developed in collaboration with Dr. Francesca Rossi 

of IFAC-CNR of Florence and with the group of Prof. Nesi of the Department of Systems 

and Informatics, University of Florence.  

3.2.1   Introduction 

This section presents an imaging system for monitoring thermally-induced phase transitions 

in corneal tissue. The procedure is based on the use of fluorescence micro-imaging analysis 

of ICG-stained tissues (Fig. 3.2). ICG allows for a homogeneous and unspecifical staining 

of the tissue, thus providing a bright fluorescence emission from the entire structure of the 

sample. (It is worth noting that unstained corneal stroma lacks a strong autofluorescence 

signal, making challenging its detection.) ICG was chosen because its photophysical 

properties are well-known [1], and because of its low toxicity and use in common practice 

in medical diagnostics and surgery [2-5]. Specifically, it has been proposed as a effective 

optical absorber in several applications of laser welding techniques (see [6,7] and §1 and §2 

of this thesis). If simple analysis of the stained tissue during treatment has to be performed, 

it will be possible to characterize the phase transitions of the tissue. The proposed technique 

could thus be useful as an alternative, low-cost micro-imaging analysis for controlling 

thermal structural modifications in connective tissues. 

3.2.2. Experimental procedure 

3.2.2.1 Heat bath treatment 

Sixty-three freshly-enucleated, intact porcine eyes were used (mean age of the animals: 9-11 

months). The entire corneas were extracted, and their transparency and integrity were 
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controlled prior to being used in the tests. The samples were stored in BSS buffer at room 

temperature for less then 6 hours. Each sample was then immersed in a water bath for five 

minutes. This treatment time ensured that thermal equilibrium was reached [8]. A heating 

immersion circulator (mod. ED, Julabo Labortechnik GmbH, Seelbach, Germany) with 

±0.03 °C temperature stability and a reading error of ±0.1 °C was used to heat the water 

bath. The temperature values studied were in the range of interest for medical applications: 

namely, the values 35, 40, 45, 47, 50, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 71, 74, 

77, 90 °C were tested. Three different corneas were heated at each temperature, in order to 

give statistical significance to the study. After immersion in the water bath, the samples 

were stored in formalin until micro-imaging was performed.  

3.2.2.2 Image acquisition 

Cornea samples were sliced in 200-µm-thick cross-sections, which were stained with a 0.5% 

(w/w) water solution of Indocyanine Green (IC-GREEN, Akorn, Buffalo Grove, IL) over a 

4-minute period. The absorbance spectrum of a ICG-stained corneal stroma is depicted in 

Fig. 3.2. The slices were briefly rinsed in water and then mounted on microscope glass 

slides. All measurements were performed using an inverted epi-fluorescence microscope 

(Diaphot Nikon, Tokyo, Japan) equipped with a high-pressure mercury lamp (HBO 100 W, 

Osram, Augsberg, Germany) as the light source. The excitation wavelengths were selected 

using 10-nm bandwidth interference filters (436FS10-25, Andover Corporation, Salem, NH, 

USA) coupled to a dichroic mirror (ND510 Diaphot Nikon). Fluorescence images were 

acquired using a slow-scan cooled CCD camera (Chroma CX260, DTA, Cascina, Italy) 

equipped with a 512×512 pixel detector (KAF261E, Kodak, Heidelberg, Germany). The 

thermally-induced modifications to the corneal specimens were evaluated using 

fluorescence images acquired with a NIR long wave pass filter (800FH90-25, Andover 

Corporation). 
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Fig. 3.2 Absorbance spectrum of ICG-stained corneal stroma. 

3.2.2.3 Micro-imaging analysis 

Micro-imaging analysis was performed by means of two image processing methods: the 

image entropy and the two-dimensional Discrete Fourier Transform (2D DFT) [9]. The 

entropy is a statistical index widely used in the field of information theory to express the 

information content of a message. It is used as a measure of redundancy in an information 

source. When applied to an image with a regularly repeated pattern, as the lamellar planes in 

a corneal stroma, a high value in image entropy means a high level in regular organization, 

while a low value may be related to a reduction of the number of planes visualized in the 

image, i.e. caused by a homogenization of the tissue. When applied in image processing, the 

classical entropy definition does not take into account of the spatial properties of the image. 

To circumvent this limitation, the 2D DFT was used to assess the geometric characteristics 

of the acquired image. The 2D DFT is a mathematical transformation of an image: the usual 

spatial domain representation is a function of two spatial variables, f(x,y), indicating the 

intensity of the image at a particular point (x,y). The Fourier transform is the frequency 

domain representation of an image as a sum of complex exponentials of varying 

magnitudes, frequencies, and phases. In the frequency domain, an edge (i.e. a line separating 

one region from another) is composed of a wide range of frequency components: the 

frequency distribution of the transformed image can be analyzed to approach the problem of 

finding the distribution of image lines direction and then to identify the geometry of the 

image textures. In particular, when considering a pattern of horizontal lines, as in the 

corneal stroma, the frequency distribution shape is an ellipse oriented along the orthogonal 

axis; in event of random patterns, instead, the distribution contains contributions due to all 

the directions, and the shape tends to be circular. For these reasons, the corneal stroma 

image spectrum was considered for further evaluation on stromal structural modifications. 
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Next the DFT magnitude was thresholded to levels 0 or 1, and the degree of deformation 

was quantitatively calculated using the ratio between the width (taken at 70% level) of the 

horizontal to the vertical histograms (H/V). The H/V parameter was plotted and compared 

with the shrinkage of the corneal stroma, which was expressed as ∆thickness-0.5 (in fact a 

change in thickness-0.5 is proportional to a change in diameter of the corneal button if the 

volume remains constant). 

Two grey levels images showing a 400×400 μm tissue area were acquired from each 

cornea sample, in order to visualize both the anterior and posterior corneal stroma. The two 

methods were then applied, by means of a commercial software image processing tool 

(Matlab® 7.1, the Mathworks, Natick, MA, USA). The 2D DFT of each image was 

computed with the proper software function. The DFT is usually defined for a discrete 

function f(m,n) that is nonzero only over the finite region 0≤m≤M-1 and 0≤n≤N-1. The two-

dimensional MxN DFT and inverse MxN DFT relationships are given by: 
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The values F(p,q) are the DFT coefficients of f(m,n). The resulting image spectrum was 

then shifted so as the zero-frequency component F(0,0), corresponding to the image average 

brightness, is displayed in the center of the frequency distribution image. Thus, the 

logarithm of the absolute value of the calculated DFT was then visualized.  

The same image source was processed by applying the edge function, based on Canny 

filter, to perform edge detection and extract the spatial distribution of the lamellar planes. 

The entropy was then evaluated. For an image with L grey levels, entropy E is a scalar 

value, defined as:  
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where: P(gk) is the histogram value of the k-th grey level gk. A new parameter was defined 

as the entropy inverse: it was indicated as the Disorganization Parameter (DP = 1/E), and it 

was used to characterize heat-induced phase transitions in the stroma.  

3.2.3 Results 

The fluorescence images of water-bathed corneal samples (Fig. 3.3) showed a regular and 

straight horizontal pattern of lamellar sheets at temperatures in the 35÷50 °C range. An 

additional increase in temperature (51÷61 °C) evidenced the appearance of cavities between 

lamellae grouped into separate clusters and lacking regular straightness, while above 56 °C, 

undulations within the lamellae were progressively formed, rapidly converting into a 

pronounced banding pattern. From 62 °C the lamellar thickness started to grow and the 

horizontal patterns began to assume a random distribution in space. In the last temperature 

range (74÷90 °C), the fluorescence images appeared dazed showing less discernible 

microscopic features. 

The plot of the logarithm of the DFT absolute values evidenced the gradual loss of 

regular lamellar organization with the heat-treatment. The DFT distribution was prevalently 

along the vertical axis until the temperature was below 62 °C. When higher values were 

applied to the tissue, the DFT distribution became uniform and the spectrum assumed a 

circular form. Fig. 3.4 shows the comparison between the Fourier spectral shape 

modifications and the measured shrinkage of the corneal stroma. A significant agreement 

between the two parameters is evident. The intensity of the entropy was calculated for each 

image, and the resulting DP was plotted. The results are shown in Fig. 3.5, where the 

calculated mean DP value and the standard error of the mean are reported for each 

temperature. Five relative maximum peaks are present, corresponding to the temperature 

values of 45 °C, 53 °C, 57 °C, ~66 °C and ~75 °C. 
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Fig. 3.3 Fluorescence micro-images of cornea samples heated in a water-bath at 
different temperatures. The logarithm of the absolute value of the DFT is also 
shown to the right of each image. The images correspond to an area of 400×400 
μm. 
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Fig. 3.4 Plot of the corneal shrinkage (solid line) (expressed as 
Δt-0.5 where t is the measured corneal thickness) and DFT shape 
modification (dashed line) (expressed as the ratio between the 
width taken at the 70% level of the horizontal and vertical 
histograms) as calculated for different temperature values. 

 
Fig. 3.5 Plot of the Disorganization Parameter (DP) vs. temperature. Peaks are in 
correspondence with the principal phase transition temperatures of corneal tissue 
(see, i.e., [10,11]) 

3.2.4. Discussion 

The image-processing method described turned out to be extremely precise in detecting 

thermally-induced morphological modifications of the corneal stroma. The DFT distribution 

gave a geometrical description of the acquired images as a function of the thermal treatment. 

The change in Fourier spectral appearance from elliptical to circular observed at around 62 

°C is probably attributed to the occurrence of corneal shrinkage. In fact, the H/V plot 
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resembles well the shrinkage trend with an onset shrinkage temperature of 62 °C and a 

saturation value from 71 °C, and is in full agreement with previously reported values on 

porcine corneal specimens [12]. Corneal shrinkage takes place in the direction parallel to the 

axis of the collagen fibrils (i.e. parallel to the corneal surface) and is accompanied by a 

thickening in the direction perpendicular to this axis [13]. This contraction is closely 

associated with the uncoiling of the collagen triple helix leading to the early step of protein 

denaturation. For temperature conditions beyond 70 °C the contraction is overcome by 

relaxation processes leading to the ultimate step of collagen denaturation also called 

hyalinization or gelatinization [14]. This phenomenon is ascribed to the hydrolysis of the 

covalent cross-links connecting neighboring collagen molecules. The two steps of fibrillar 

collagen denaturation were finely highlighted in this study by two sequential phase-

transitions peaked at around 66 °C and at 75 °C as shown by the DP plot. With regard to the 

other transition points detected by the image-processing analysis (see Fig. 3.5), the 

involvement of fibrillar collagen can be excluded, as inferred from previous studies on 

thermal-bathed connective tissues [15,16] and from our microscopy results on laser welded 

corneal tissue (see §2). In addition, DSC studies on rat skin collagen have pointed out that 

ground substance macromolecules may be possibly involved in the calorimetric endotherms 

observed for temperature values in the 50÷60 °C range [17,18]. It can be inferred that the 

phase transitions detected at 53 °C and 57 °C are related to some structural modification of 

extracellular components other than fibrillar collagen. Finally, collagen in the non-

reticulated state (soluble) is more susceptible to temperature increases being in nonstabilized 

form, and has been proved to unwind at a temperature of about 40-45 °C [19,20]. Thus we 

may tentatively connect the first entropy peak detected at 45 °C to the denaturation of 

collagen in the monomeric form which may be present as neosynthesized molecules in the 

extracellular matrix, as previously suggested [17]. 

The proposed method was found to be highly effective for the characterization of 

thermal transitions of the cornea. By the use of DP in conjunction to DFT it was possible to 

label each phase transition. For example the 53 °C and 66 °C images have similar DP values 

(see Fig. 3.5), but the DFT spatial distribution is clearly different (see Fig. 3.4), permitting 

thus to distinguish between the two temperature points. 

The method described here could be proposed as a control system, and mainly in those 

surgical procedures in which ICG staining of the tissue is also part of the treatment protocol, 

as in diode laser welding technique (see §1 and §2 of this thesis). Its extension to in vivo 

real-time applications could be carried out by means of an association with confocal 

microscopy. It could be ultimately proposed as the basis for a diagnostic methodology for in 
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vivo characterization of corneal structures used during surgical procedures based on heating 

treatments.  

3.2.5 Conclusion  

A procedure for characterizing phase transitions in corneal tissue with the use of a low cost 

apparatus and the simple implementation of an image-processing algorithm has been 

described. The system has been found to be extremely precise in detecting thermally-

induced morphological modifications in the corneal stroma. It could, therefore, be used as 

the basis for a control methodology during surgical procedures based on heating treatments 

in connective tissues. 
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3.3 - SECOND-HARMONIC GENERATION (SHG) IMAGING  

This section is aimed at proposing an analytical method based on second-harmonic 

generation (SHG) imaging to track the loss of organization in the corneal collagen lattice 

induced by photothermal effect. Porcine cornea samples were treated with low-power laser 

irradiation in order to get localized areas of tissue disorganization. The disorder induced 

within the irradiated area of corneal stroma was quantified by means of Discrete Fourier 

Transform, auto-correlation and entropy analyses of the SHG images. Polarization 

modulated SHG measurements allowed to probe the changes in the structural anisotropy of 

sub-micron hierarchical levels of the stromal collagen. The obtained results emphasize the 

great potential of the SHG imaging to detect subtle modifications in the collagen assembly 

of cornea. Moreover, on account of the emerging potential of SHG imaging to become an in 

vivo diagnostic tool, the proposed analytical methods may find future application in the 

clinical setting. 

The image processing algorithms were developed in collaboration with Dr. Fulvio Ratto 

and Francesca Rossi of IFAC-CNR of Florence.  

3.3.1   Introduction 

Second harmonic generation (SHG) imaging is an emerging microscopy technique based on 

the nonlinear optical effect called SHG, also commonly called frequency doubling. This 

phenomenon require intense laser light passing through a highly polarizable material with a 

noncentrosymmetric molecular organization. The second-harmonic light emerging from the 

material is at precisely half the wavelength of the light entering the material. Thus the SHG 

process within the nonlinear optical material changes two near-infrared incident photons 

into one emerging visible photon at exactly twice the energy (and half the wavelength). 

Differently from other linear or nonlinear fluorescence microscopies (as one- or two-photon 

excited microscopy) in which some of the incoming energy is lost during relaxation of the 

excited state, SHG does not involve an excited state, is energy conserving and preserves the 

coherence of the laser light. 

SHG imaging is particularly well suited to analyze connective tissues due to the 

significant second order nonlinear susceptibility of collagen [1,2]. This confers high contrast 

and specificity to the SHG images. Moreover the intrinsically noninvasive nature of this 

technique further enhances its potential to become a clinical tool to perform ex vivo biopsies 

or in vivo imaging. SHG signals have been used to discriminate cancerous tissue [3,4] and 



Chapter 3: Optimization (I): Fluorescence Imaging and SHG Imaging                                        
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 73

genetic disorders [5], which are related to altered content and assembly of the collagen 

matrix resulting in a modulation of the SHG intensity. In addition, SHG microscopy holds 

great potential in differentiating normal and abnormal structures by using a polarization-

modulation approach, which exploits the coherent nature of the second harmonic signal [6-

9]. Overall SHG imaging is presently considered a powerful technique to investigate tissue 

structure and organization, and may become a noninvasive complement to traditional 

structural methods such as electron microscopy, X-ray diffraction and histological analysis.  

The corneal stroma displays a very regular assembly of collagen fibrils (∼30 nm in size) 

which are arranged parallel to each other into lamellar domains (i.e. 0.5-2.5 μm thick planar 

structures running parallel to the corneal surface) [10]. The highly ordered nature of this 

tissue makes it a convenient model to study disorganization events of the normal connective 

matrix. In this study, SHG imaging is used to quantify the photothermally-induced 

modifications in the fibrillar collagen assembly of laser-treated porcine corneas. The 

morphological and thermodynamic properties of this model have been thoroughly 

characterized in the context of early experiences of laser welding [11,12]. When the corneal 

stroma undergoes low-power continuous wave diode-laser treatment, a controlled thermal 

effect can be induced within the irradiated volume. The result is a mild perturbation of the 

regular fibrillar arrangement, while uncontrolled denaturation of collagen is avoided. 

Moreover, the extent of lattice disorder decreases smoothly and progressively with the 

distance from the center of the irradiated area. Such a model enables the study and 

comparison of different disorganization patterns on the same tissue sample.  

In order to correlate the modulation of the SHG signal with the disorganization of the 

corneal collagen, an image analysis approach to quantify the different structural patterns of 

lamellar assembly generated by the laser irradiation was firstly adopted. Then maps of the 

local orientation of the fibrillar lattice and investigated the typical distance over which the 

regular sub-lamellar arrangement is preserved were extracted. Finally, a comparison 

between the second-harmonic polarization profiles from non-irradiated and irradiated areas 

was made, in order to highlight differences in the interfibrillar arrangement at the smallest 

resolvable length scale of our microscope. A parallel transmission electron microscopy 

(TEM) analysis was performed to further support the SHG data.  

3.3.2 Materials and methods 

3.3.2.1 Sample treatment 

Ten porcine eyes were enucleated and kept in a humid environment until the time of 

experiments, typically 12 h after their extraction. The cornea was explanted and sliced in 1-
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mm-thick cross-sections with a razor blade. In order to induce a controlled temperature rise 

in the samples, each cornea was treated under usual conditions for the low-power diode-

laser welding procedure [12]. In doing this, one side of the slice was stained with a water 

solution (10 % w/w) of a chromophore (Indocyanine Green, ICG). The stain was then 

washed out after 2 min, in order to remove the excess of chromophore not absorbed by the 

tissue. ICG is an effective optical absorber of laser radiation emitted at 810 nm, and so it can 

mediate a localized and well-controlled photothermal effect within the tissue [12]. The laser 

device used was an AlGaAs diode (Mod. Weld 800, El.En., Italy), equipped with an optical 

fiber of 300 μm-core diameter (NA 0.24). The fiber tip, which was kept at a constant 

distance of 1 mm from the surface of the slide, delivered to the sample a power of 40 mW 

(8.3 W/cm2) for an overall time irradiation of 2 s. These parameters allowed to confine the 

photothermal effect within a ∼400 μm-radius spot (see Fig. 3.6), inducing a gradient of 

disorganization in the corneal collagen from the centre to the periphery and beyond the 

irradiated area. After the treatment, the samples were stored in formalin until the SHG 

images were acquired.  

 

Fig. 3.6. Temperature development within a ∼400 μm-radius spot area of a corneal 
slice subjected to diode laser irradiation. The data are the result of a 3D model 
(obtained with the software Comsol Multiphysics 3.4 (Comsol AB, Sweden)), 
based on the solution of the bio-heat equations, which describes the photothermal 
effects induced by the diode laser irradiation (40 mW power output, 2 s irradiation 
time) inside the tissue [11]. 

Laser-treated cornea slices were then processed for TEM measurements. In brief, they 

were fixed in glutaraldehyde and cut into 1 mm2 samples including the laser-treated portion. 
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The samples were postfixed in osmium tetroxide and, after sequential dehydration, were 

infiltrated in Epon resin. Ultra-thin sections were cut and stained with uranyl acetate and 

lead citrate, and examined with an electron microscope (Philips CM-12, Philips Industries, 

Eindhoven, The Nederlands). Micrographs of representative fields of control and irradiated 

regions were taken from each specimen. 

3.3.2.2 SHG microscopy system  

The experimental setup consisted of a modified inverted microscope (Nikon TE300, Nikon 

Instruments, Tokyo, Japan). Detailed descriptions of the SHG microscope have been given 

previously [13]. Briefly, the excitation was accomplished by a mode-locked Ti:Sapphire 

laser emitting 120-fs width pulses at a 90-MHz repetition rate, a wavelength of 880 nm and 

an average power at the sample in the range 1÷10 mW. The beam was focused onto the 

sample by a 50× 0.95 NA oil immersion objective (Nikon Plan-Apo, 0.35 mm WD, Nikon 

Instruments, Japan), and collected using a 60× 1.00 NA long working distance water 

immersion objective (Nikon Plan-Fluor, 2 mm WD, Nikon Instruments, Japan). A quarter-

wave plate and a linear polarizer are placed immediately before the back focal plane of the 

focusing objective. The broad band (690-1200 nm) quarter-wave plate is mounted on a 

micromanipulator to obtain a circularly polarized light (with ellipticity equal to 1 within an 

error of 4%). A variable linear polarization of the exciting beam is accomplished through a 

linear polarizer mounted on a motorized rotating stage in order to rotate the polarization 

angle of the incident electric field without movement of the biological specimen. The SHG 

signal was isolated from the fundamental and any fluorescence by a 440 ± 5 nm band-pass 

filter (Z440BP, Chroma Technology Corporation, Rockingham, VT, US). For all imaging 

not involving the polarization analysis, the laser excitation was circularly polarized. The 

pixel dwell time was set to 5 μs/pixel. The scanning time was approximately 0.8 s for a 

500×500 pixels image. Image areas of 60×60 μm2 (0.12 μm/pixel), 500×500 pixels were 

considered, unless otherwise specified, for the analysis reported below.  

3.3.2.3 Image analysis of  lamellar anisotropy 

The analysis of the circularly polarized SHG corneal images was performed by means of 

two image processing techniques: the two-dimensional Discrete Fourier Transform (2D 

DFT) and the image entropy [14]. The processing algorithms were developed in the Matlab 

and IGOR Pro platforms (Matlab 7.0, the Mathworks, Natick, MA; IGOR Pro 4.07, 

WaveMetrics Inc. Lake Oswego, OR). 

The frequency distribution in a Fourier-transformed image can be analyzed to retrieve 

the pattern of image line directions, so as to characterize the geometry of the image texture 
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[15]. Thus, the 2D DFT of each image was computed and the logarithm of the absolute 

value of the calculated DFT was displayed. Next, the DFT magnitude was thresholded to 

levels 0 or 1. The degree of DFT deformation was quantitatively calculated by fitting the 

result with an ellipse and by calculating the ratio between its short and long axes, i.e. its 

aspect ratio (AR). 

The entropy is a statistical index widely used in the field of information theory to 

express the information content of a message. The entropy of the image intensity can be 

used to characterize its texture randomness [16]. Images were processed by applying the 

edge function based on Canny filter, to extract the spatial distribution of the collagen matrix. 

The calculation of the entropy E of an image with n grey levels was obtained by Eq. (1): 
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where p(gi) is the histogram value of the i-th grey level gi. We defined a Disorganization 

Parameter (DP) as the inverse of E [14], and used it for subsequent analysis (growing DP 

values correspond to an increasingly disordered content of an image texture). Finally, AR 

and DP values, calculated for selected regions taken at different distances from the middle 

of the laser-irradiated area, were compared. 

3.3.2.4 Polarization analysis of sub-lamellar anisotropy 

To assess the extent of the modification of the sub-lamellar assembly of the collagen matrix 

upon laser treatment, we investigated the dependence of the SHG signal on the polarization 

angle of the excitation light. We acquired series of images at different polarization angles 

(with steps of 10°) for selected control and irradiated areas of the laser-treated tissue. A 

twofold approach for the analysis of the polarization data was followed. 

Analysis of the sub-lamellar arrangement 

The polarization profile of the SHG intensity acquired from individual pixels exhibits a 

typical pattern of minima and maxima (see e.g. the experimental data (♦) in Fig. 3.7). As a 

rule of thumb, the minima are obtained when the polarization of the excitation light lies 

orthogonal to the principal axis of the collagen fibrils [8]. The identification of these minima 

allows for the construction of laterally resolved maps of the angles α which define the local 

mean orientation of the collagen fibrils within each pixel. The lateral resolution of these 

maps is about the size of the focal volume (i.e. about 400 nm as estimated by the Rayleigh 

criterion [17], with a 0.95 NA objective and λ = 880 nm). These maps allowed us to 
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investigate the lateral correlation between the mutual orientations of the collagen fibrils 

through an immediate auto-correlation analysis. The auto-correlation matrices: 
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where the discrete variables dx and dy are the length along the horizontal and vertical 

directions, were computed from the data at different distances from the irradiated area, and 

then fitted to an isotropic exponential decay: 
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in order to obtain a quantitative estimate of a correlation length L. The latter is taken to 

represent the typical distance over which the regular sub-lamellar arrangement is preserved. 

Analysis of the interfibrillar alignment at the sub-micron scale 

To investigate the laser-induced changes in the interfibrillar alignment, we analyzed 

polarization profiles from individual points (0.5 μm size) from treated and untreated areas of 

the corneal stroma. The appearance of the average profiles (average over 1000 randomly 

selected profiles per kind of area) provides qualitative insight of the modifications involved 

in the photothermal process.  

Then we treat the polarization profiles in analogy to a time domain signal, and pursue a 

quantitative estimate of the main differences between the data from treated and untreated 

areas over a frequency domain, i.e. by an FFT analysis. In practice, a typical polarization 

profile can be decomposed into the sum of three main contributions, which are: 1) a zero 

frequency level, 2) a modulation signal found at low frequencies, 3) a supposedly white 

noise, which dominates at high frequencies (see the example in Fig. 3.7). In the analysis 

below we set a threshold for the upper frequency of the modulation signal at 1/60°, i.e. any 

maxima and minima narrower than three data points is treated as noise fluctuations. 

The component at zero frequency simply represents the polarization-averaged SHG 

intensity. The components at low frequencies account for the main modulation of the signal 

as due to the local orientation of the fibrillar lattice. Conversely the components at high 
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frequencies are interpreted as pure noise fluctuations. With these assumptions, we computed 

the FFT of the SHG intensities and calculated an effective Modulation Parameter (MP) as 

the average amplitude of the FFT modulus at low frequencies 〈I〉LF minus the noise level 

〈I〉HF  (extrapolated from the average amplitude of the FFT modulus at high frequencies) and 

normalized by the intensity at zero frequency I0: 
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The values of this parameter may give an indication of the extent of the alignment of the 

fibrils within the single point. We calculated the MP from individual polarization profiles 

and compared their average values from treated and untreated areas (average over 1000 

profiles per kind of area). 

3.3.3 Results and discussion 

The circularly polarized SHG images of the corneal stroma (Fig. 3.8) revealed ∼ 0.5 μm 

thick fiber-like structures, which actually consisted of many collagen fibrils, organized in 

lamellar domains, and which were previously referred to as fibrillar bundles [18]. The size 

of these structures is comparable with the minimum resolvable distance for our microscope 

(∼ 400 nm, i.e. the size of the focal volume given by the Rayleigh criterion, see §3.3.2). 

Fig. 3.9 displays an example of a stack of four images taken at different distances from 

the center of a ∼ 400 μm-radius laser-irradiated spot area. These four regions of interest 

(ROIs, 60×60 μm2 each) well represent the progressive collagen disorganization. At the 

exterior of the spot (ROI a) a parallel arrangement of waved lamellar planes is clearly 

visible. Moving towards the center of the laser-treated area (ROIs from b to d), the lamellar 

arrangement is progressively lost and a dense packing of increasingly disordered collagen 

bundles appears. Correspondingly, the 2D DFT diagrams transform from elliptical to 

circular shapes, which indicates a transition towards random patterns. 
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Fig. 3.7 FFT of a polarization-modulated SHG profile. Upper: frequency (f) 
decomposition of the experimental data (♦) into zero (○), low (◊) and high (□) 
frequency contributions. Lower: frequency distribution (log scale). 

 

 
Fig. 3.8 SHG image of an intact porcine corneal stroma. 
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Fig. 3.9 Stack of SHG images (60×60 μm2 ROIs) taken from the periphery to the 
center of a laser-irradiated spot area. The radial distance of the ROIs from the 
center of the irradiation spot area are 600 μm (a); 400 μm (b); 200 μm (c); 0 μm 
(d). The DFT diagram of each ROI is also shown in the lower panels.  

 

 
Fig. 3.10 Plot of the mean value (± SD) of: (a) the Aspect Ratio (AR) of the ellipse 
approximating the DFT magnitude and (b) the Disorganization Parameter (DP) of 
4 different ROIs as represented in Fig. 3.9. Each data point is the average over 
values from different regions of the same sample. 

 
The increase of the corresponding AR is evident when moving from the periphery to the 

center of the spot as shown in Fig. 3.10a. The wavy behavior of the collagen lamellae is 

interpreted as the reason why the AR values never go below 0.6, even in control untreated 

regions. The DP also increases when moving toward regions of higher tissue randomization 

(Fig. 3.10b). It is noteworthy to underline the higher capacity of the AR to reveal transitions 

from normal or rather-structured (ROIs a,b) to more disorganized patterns (ROIs c,d). In 

contrast the DP parameter is more sensitive to discriminate between patterns of higher 

disorder (compare ROIs c and d). 

In order to gain further insight into the induced stromal arrangement, an analysis of the 

sub-lamellar assembly was carried out. Although the resolution of our SHG microscope is 

not enough to detect individual corneal fibrils (the fibrillar size is ∼30 nm), it may still be 

effective to investigate the mutual organization of fibrils within each lamella (of the order of 
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the resolution of our set-up). Indeed the acquisition and analysis of polarization-modulated 

SHG signals has been shown to provide a very fine description of the local matrix 

anisotropy [7,19-22]. 

As a first step, by the analysis of the minima in the polarization profiles, we extracted 

the local orientation of the fibrillar lattice from representative areas (8×8 μm2) (as depicted 

in Fig. 3.11a,d,g), taken at three different distances from the periphery toward the center of 

a laser-irradiated area. We built two dimensional maps of the values of α, which denotes the 

local mean orientation of the collagen fibrils within each pixel (see Fig. 3.11b,e,h). Then we 

calculated the lateral correlation among these orientations, which represents the typical 

distance over which the regular sub-lamellar arrangement is preserved. Correlation lengths 

of around 2.9, 1.5 and 0.4 microns were found for the three areas examined (Fig. 3.11c,f,i). 

The calculated correlation length for the control area is compatible with the mean size of the 

individual stromal lamellae (typically from 0.5 to 2.5 μm thick, see e.g. [10]). On the other 

hand, the value associated to the center of the spot area is very close to the resolution of our 

microscope (see § 3.3.2), as expected in a highly disordered matrix. These results are in 

agreement with the aforementioned observations on a progressive loss of the lamellar 

domains when moving from the periphery toward the center of a laser-irradiated spot area. 

The final step of our analysis was the investigation of the loss of anisotropy at sub-

micron structural levels of the stromal architecture (i.e. about the minimum resolvable 

distance of our microscope). To this aim, we extracted and averaged the polarization 

profiles from single points (0.5 μm size, n = 1000) taken randomly from untreated (Fig. 

3.12a) and irradiated (Fig. 3.12d) areas, as reported in Fig. 3.12b and Fig. 3.12e 

respectively. The random procedure is intended to evenly represent all the possible mean 

orientations of the collagen fibrils in the two samples (which may in general exhibit an out-

of-plane component). In addition we performed a TEM analysis to validate our polarization-

modulated SHG results on the sub-micron structure of our samples (see Fig. 3.12c,f). The 

SHG profile obtained from the control area exhibits a significant modulation which is 

believed to originate from a highly ordered interfibrillar arrangement, in agreement with the 

TEM analysis. Indeed the corresponding TEM micrographs display the alternation of 

regular lamellar domains, composed of well-aligned collagen fibrils. By contrast, the SHG-

profile relative to the treated area is partially degraded. This result may be consistent with 

either of two different dynamics, i.e. the loss of regular alignment of the collagen fibrils 

already over the length scale of the available resolution, or the loss of integrity of the 

collagen fibrils (i.e. a degradation of the SHG-generators due to the thermal denaturation of 

the collagen molecules). The TEM analysis revealed the coexistence of sub-lamellar groups 

of differently oriented and interwoven fibrils, which however preserve their individual 
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integrity and never display the fingerprints of denaturation (fibril swelling which increases 

the fibrillar diameter, and loss of edge sharpness). Thus, we deduce that the fibrillar bundles 

observed in the SHG images of laser-irradiated areas may probably represent packets of 

native collagen fibrils, which still keep an average preferential orientation against an 

increasing degree of local disorder. This mild perturbation of the regular fibrillar 

arrangement is fully consistent with the expected temperature value at the center of the 

laser-irradiated spot area, i.e. ∼65 °C (see Fig. 3.6), which has been previously shown to 

represent the threshold value below which the fibrillar collagen keeps undenatured [14]. 

 

 
Fig. 3.11 Analysis of the sub-lamellar arrangement. SHG images (8×8 μm2) 
(a,d,g), maps of the orientations of the collagen fibrils (b,e,h), and auto-correlation 
matrices (c,f,i) taken at a distance of 600 μm (a,b,c); 300 μm (d,e,f); 0 μm (g,h,i) 
from the center of the laser-irradiated spot area. L is taken to represent the typical 
distance over which the regular sub-lamellar arrangement is preserved.  

In order to quantify these observations, we carried out an FFT analysis of the 

polarization profiles, which are regarded as the superposition of three contributions, as 

explained before (see § 3.3.2). In particular, we considered the distribution of the values of 
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the noise-subtracted low frequency component normalized by the zero frequency 

component (MP). This parameter is readily accessible, proves sensitive to the local loss of 

anisotropy, and allows for the detection of even minor deviations from the normal reference 

profile. The limit value of zero represents the isotropic situation, and physically corresponds 

to the complete disorganization of the fibrillar distribution. Progressively higher values 

correspond to increasing degrees of order, i.e. of better alignment of the fibrils. Typical MP 

values extracted from the control areas are MP = (6.85 ± 0.10) %, which is taken as the 

highly ordered limit in the corneal stroma. In contrast, average values of MP = (2.39 ± 0.09) 

% (intermediate loss of anisotropy) are found in the laser-treated areas.  

 

 
Fig. 3.12 Polarized-SHG and TEM analyses of the interfibrillar alignment. Left: 
SHG images (12×12 μm2) of a control (a) and a laser-irradiated (d) region taken at 
a radial distance of 600 and 0 μm from the center of a laser-irradiated spot area, 
respectively. Middle: (b,e) average polarization profiles of single points (0.5 μm 
size, n = 1000) taken randomly from control (a) and laser-irradiated (d) regions, 
respectively. Right: TEM micrographs (bar = 300 nm) showing the nanometric 
assembly of collagen fibrils in a control (c) and laser-irradiated (f) region. 

 

3.3.4 Conclusions  

We have introduced an empirical approach based on three complementary analytical 

methods to process the SHG signals and characterize the corneal stroma disorganization 

induced by photothermal effects following laser irradiation. This disorganization was 

probed at different hierarchical levels of the collagen assembly. The lamellar disorder was 

effectively quantified by the variation of the 2D DFT magnitude and of the image entropy of 

circularly-polarized SHG images. We then took advantage of the polarization dependence of 

the SHG intensities to extract maps of the local orientation of the collagen fibrils. These 

maps were used to retrieve the typical distance over which the regular sub-lamellar 
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arrangement is preserved when passing from the laser-untreated to the laser-treated areas. 

We finally probed the changes in the fibrillar packing at the sub-micron scale by a simple 

analysis of the modulation of the polarization profiles.  

Similar analytical procedures may be applied to study several genetic, pathologic, 

accidental or surgical-induced disorder states of biological tissues. Moreover, on account of 

the emerging potential of SHG imaging to become an in vivo diagnostic tool, the proposed 

analytical methods may find future application in the clinical setting. 
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3.4 - PERSPECTIVES 

The imaging systems we proposed have been tested on ex vivo corneal samples. Future 

investigations should be focused on assessing their feasibility when applied to biological 

tissue in vivo. As just mentioned in the introduction to this chapter (see §3.1), DSC, 

histology and electron microscopy techniques are the gold standard to finely characterize 

the (photo)thermally-induced modifications of biological tissues ex vivo, including cornea, 

although they are definitely unsuitable for monitoring heat-induced changes in vivo. In 

addition to these techniques, we can also identify two other techniques, which are used for 

noninvasive in vivo corneal imaging. They are reflection confocal microscopy and optical 

coherent tomography (OCT), which, however, fail to characterize (photo)thermally induced 

changes, due to different reasons. While reflection confocal microscopy can achieve cellular 

imaging in the cornea, it cannot detect the main component of the stroma, i.e. type I 

collagen, whose structural changes are mainly responsible of the effects induced to the 

tissue by the therapeutic (photo)thermal treatments. In addition, this technique uses a visible 

light source, which causes more scattering through the media. OCT is based on the detection 

of backscattering photons from the ocular structures. The actual resolution of the 

commercially available OCT systems is typically limited to 10-15 µm, which is insufficient 

to resolve the thin posterior layers of the cornea (being human cornea 500 microns thick).  

The imaging techniques we proposed to detect the structural changes in ex vivo corneal 

tissue have the potential to overcome many of the abovementioned problems. Speaking of 

fluorescence imaging, this chapter proved the high fluorescence contrast generated by type I 

collagen stained with an exogenous fluorophore (ICG). This was accomplished by using a 

blue excitation wavelength (436 nm), which was selected due to the optical components at 

our disposal. However, the blue wavelength can be definitely replaced with a more suitable 

wavelength, as a near infrared (NIR) one, which induces less scattering and is less absorbed 

by the tissues, thus being potentially less dangerous for in vivo applications. Furthermore, 

the utilization of a NIR source is a better choice due to the absorption properties of ICG in 

this spectral region (see Fig. 3.2), which can actually enhance the fluorescence signal of the 

imaged specimens. However, fluorescence imaging presents also some drawbacks. 

A main disadvantage of using fluorescence as an imaging tool to detect collagen in vivo 

is ascribed to the photobleaching of the fluorophores (in our case, ICG). Experimentally this 

is observed as the loss of fluorescence signal of a stained specimen following continuous 

illumination with a ultraviolet and also with visible light, used as excitation sources. The 

basis of this phenomenon is the photochemical transformation of the fluorescent molecule 

into another molecule that is not fluorescent, probably mediated by the presence of oxygen. 
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Another main disadvantage concerns the out-of-focus contributions. In fact, in a “one-

photon” (as the one used in this thesis, also referred to as “conventional”) fluorescence 

microscope, thick specimens will produce an image that represents the sum of sharp image 

details from the in-focus region, combined with blurred images from all the out-of-focus 

regions. This contribution reduces the contrast of the in-focus image. This can be 

problematic when imaging thick samples like the whole cornea. (We have analyzed stromal 

slices to overcome this problem). A recent alternative to conventional fluorescence 

microscopy is two-photons fluorescence microscopy, which utilizes a tightly focused 

excitation beam so that the region outside the focus has much less chance to be excited, 

eliminating the out-of-focus fluorescence. This technique also reduce photobleaching, 

because only the region at the focal point can be excited. Future measurements will be 

devoted to assess the feasibility of this imaging technique on (photo)thermally treated 

cornea samples. 

Large sensing depth and high resolution make SHG another outstanding tool for 

noninvasive imaging of the corneal structure. Although this technology is more complex 

and costly, it may represent a viable alternative to histological and conventional 

fluorescence analysis, since samples can be imaged in their natural state without fixation 

and labeling (and consequent photobleaching) and sectioning. In addition, SHG occurs only 

in non-centro-symmetric media, such as collagen. Thus SHG is a very well suited choice for 

corneal imaging, because of the significant amount of type I collagen content of the stroma. 

Furthermore SHG signal is only obtained at exactly half the wavelength of the laser beam 

excitation, thus allowing an easy discrimination against background autofluorescence or 

other nonspecific contributes.  

In our experimental set-up we have used a forward-detection geometry for acquire SHG 

signals of corneal samples. Nonetheless, the backward-detection (or epi-detection) geometry 

is undoubtedly the only feasible method for imaging entire organs in vivo. Backward-

detected SHG can arise from either direct backward coherent emission of from multiple 

scattering of initially forward-directed photons. The first scenario is highly dependent upon 

fibril diameters and packing. Fibrils in tissues much smaller than the SHG wavelength 

produce a symmetrical forward and backward emission distribution. When the dipoles of 

adjacent molecules form aligned structures comparable to or larger than the SHG 

wavelength (in the axial dimension), the emission become highly forward detected. This 

latter is the case of corneal stroma, where exists, under normal conditions (i.e. in native 

cornea), a very regular arrangement of collagen fibrils. So, a low backward coherent signal 

in stromal specimens is expected. Nonetheless, this signal is detectable, as proved by some 

authors and by us during a very preliminary set of measurements (see the figure below).  
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Fig. 3.13 SHG images of corneal stroma in (left) forward and (right) backward 
directions. 

Furthermore, during events of randomization (as those occurring upon a (photo)thermal 

process) the regular fibrils arrangement is lost (see §3.2.3 and §3.3.3) and the tissue 

becomes highly scattering. We thus expect to detect a consistent backward signal dominated 

by the back scattered component that arises from multiple scattering of the forward signal. 

The acquisition of an incoherent SHG signal can actually hamper the gaining of information 

on the directionality of collagen fibrils within the tissue, because, upon scattering, the 

polarization of the signal becomes randomized. Nevertheless, the analytical methods 

proposed to extract information on local collagen arrangement are applied also to 

unpolarized data (as those based on DFT and entropy algorithms, see §3.3.2) and will 

probably be successful. This scenario needs to be verified in the next future by measuring 

the backward SHG signal from (photo)thermally treated cornea specimens.  

In conclusion, we feel confident that future implementations of fluorescence and of 

SHG technology could lead to carry out noninvasive in vivo imaging of the local anisotropy 

of corneal tissue, which could be extremely useful during surgical methodologies based on 

induced (photo)thermal effects. 
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4. OPTIMIZATION OF LASER WELDING 
(Part II) 

 
Investigation on the application of new nanoparticles 
as laser-activated chromophores 

 
As a further step toward the optimization of laser welding techniques, the efficiency of new 

nanochromophores as photothermal transducers was assessed. In particular, the attention 

was focused on colloidal gold nanorods. The physicochemical and morphological 

properties of colloidal solutions of these chromophores, along with their capability to 

generate laser-induced hyperthermia during applications of laser tissue welding, were 

studied. 

4.1 - BACKGROUND 

In this section a short presentation of the new nanochromophores that can be effective for 

biomedical applications is reported. In particular the attention is focused on gold 

nanoparticles.  

Laser welding of biological tissues has received substantial momentum from coupling with 

exogenous chromophores with enhanced absorbance in the near-infrared, applied topically 

at the edges of the wounds prior to irradiation. Suitable exogenous chromophores absorb 

efficiently and selectively the near-infrared light from a laser, which immediately translates 
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into well-localized hyperthermia and an overall decrease of the power thresholds required to 

achieve closure of wounds. (An exhaustive explanation of these concepts was reviewed in 

the first chapter of this thesis.) The ultimate exogenous chromophore should display high 

absorption coefficient in the near-infrared and enable high localization of power deposition, 

ideally down to the scale of individual biological structures. Further desirable features 

include good chemical and thermal stability and high photobleaching threshold. 

Conventional chromophores of common use in laser-welding are organic molecules such 

as Indocyanine Green (ICG). These have given outstanding experimental and clinical 

achievements in a number of medical fields, and that in spite of relatively poor 

performances with respect to the aforementioned criteria [1,2]. The absorption efficiency 

and photostability of organic molecules are limited. Their optical properties depend strongly 

on biochemical environment and temperature, and generally deteriorate rapidly with time 

[3]. The range of chemical functionalities accessible is narrow, which is incompatible with 

flexible and selective targeting of distinct biological structures. Overcoming of these 

limitations would represent a real breakthrough in the practice of laser-welding, as well as in 

other biomedical applications. 

Possible solutions are disclosed by the advent of nanotechnology, as a powerful platform 

to develop new functionalities, by manipulation of self-organization processes at the 

nanoscale. Here a new class of nanostructured chromophores that is attracting much 

attention in view of many applications is introduced.  

4.1.1  Gold nanoparticles (nano-gold) 

Whereas the optical response of organic molecules stems from electronic transitions 

between molecular states, light absorption and scattering in nano-gold originates from 

excitation of collective oscillations of mobile electrons, i.e. surface plasmon resonances [1]. 

This translates into molar extinction coefficients higher by 4 - 5 orders of magnitude with 

respect to those of organic chromophores, enhanced thermal stability and photobleaching 

threshold. As a traditional material for implants, gold is believed to ensure good 

biocompatibility [4], which is a critical prerequisite in front of clinical applications. The 

possibility of flexible conjugation of gold surfaces with biochemical functionalities opens a 

wealth of novel opportunities [5], such as selective targeting against desired and well-

defined biological structures.  

The utilization of nano-gold dates back to the ancient Romans, when employed for 

decorative purposes in the staining of glass artifacts (see e.g. the Lycurgus cup). Synthesis 

of stable aqueous colloidal preparations of nano-gold was first achieved by M. Faraday 

toward the 1850s by use of phosphorous to reduce a solution of gold chloride. Subsequent 
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developments led to a number of variants especially based on reduction of chloroauric acid 

in sodium citrate (Turkevich method) [6,7]. Conventional nano-gold is composed of 

spherical nanoparticles of variable and controllable radii [7]. The plasmon resonance of 

spherical nano-gold in aqueous environment is found within 500 - 600 nm, almost 

independent of geometrical volume [1]. 

Due to absorption in the visible, conventional nano-gold is not regarded as a candidate 

ideal chromophore for laser-welding of biological tissues. Localization of power deposition 

requires preferential use of near-infrared radiation. However, tuning of size and shape of 

these nanoparticles, allows for tuning of plasmon resonances [8]. By modification of 

existing procedures for spherical nano-gold, a number of non-spherical gold nanoparticles 

have been demonstrated, including dielectric core/metal-shell silica or gold-sulphide/gold 

nano-shells [9,10,11], complex hollow shells as gold nano-cages [12], or high aspect ratio 

gold nano-rods [13,14] (Fig. 4.1). In particular absorption within the near-infrared range of 

interest is becoming a mature achievement. Near-infrared-light irradiation of biological 

media dispersed with non-spherical nano-gold was proven to result in selective, controllable 

and significant heating [15,16]. 

 
Fig. 4.1. Gold nano-speres, gold nano-cages, gold nano-rods imaged by electron 
microscopy. (from www.nanopartz.com, [20], our image, respectively). 

Photo-activated non-spherical nano-gold holds the promise of manifold applications in 

the emerging field of nano-medicine. Proposals of extreme interest are e.g. in the treatment 

of tumors by selective ablation of individual malignant cells [16,17,18]. In the context of 

laser welding, the potential of silica/gold nano-shells in the sealing of tissues has recently 

been demonstrated in combination with an albumin solder [19]. Absorption of 820 nm diode 

laser radiation by a low concentration of nano-shells was shown to induce successfully the 

coagulation of albumin and the ensuing soldering of muscles ex vivo and of skin in vivo (rat 

model). Up to this day, the latter is the only study dealing with laser suturing of biological 

tissues. 
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4.2 - LASER WELDING WITH GOLD NANORODS  

In the following, a study of the application of laser-activated gold nanorods in the direct 

welding of connective tissues is reported. In particular, tissue samples of the eye’s lens 

capsule obtained from ex-vivo porcine eyes were used. The nanochromophores consisted of 

gold nanorods with aspect ratio ~ 4, which were applied at the interface of sandwich 

composed of a patch of capsular tissue from a donor eye and the upper surface of the 

capsule of a recipient eye. The administration of laser pulses of 40 ms duration and 100 – 

140 J/cm2 energy density per pulse allowed the achievement of local denaturation of the 

endogenous (type IV) collagen filaments, suggesting the achievement of temperatures above 

50 °C. 

The synthesis of the nanoparticles was developed in collaboration with Dr. Fulvio Ratto of 

IFAC-CNR and with the group of Prof. Kulkarni of the University of Pune (India). 

Basically, colloidal solutions of gold nanorods were obtained in a seed-mediated approach 

derived from the protocol developed by Nikoobakht (see [20]), which was further optimized 

and customized to obtain nanoparticles suitable for their use in diode laser welding 

experiments.  

4.2.1  Introduction to gold nanorods 

The combination of near infrared (NIR) radiation, which penetrates deep into the body, with 

corresponding exogenous chromophores, which selectively and locally transduce this NIR 

radiation into heat, allow the achievement of minimally invasive laser welding of connective 

tissues (see e.g. §1 and §2). Most used chromophores are organic dyes, which, in addition to 

laser welding, are currently employed to support a variety of surgical applications with a 

history of safety in humans. However they may suffer from severe drawbacks such as an 

inherently limited efficiency, poor stability and significant diffusivity in the biological 

environment, and very little chemical flexibility (necessary e.g. to envision strategies based 

on active targeting and drug delivery), which narrow their range of application.  

A possible alternative to organic dyes is given by metal nanopaticles. When these 

nanostructures are embedded within a dielectric medium, they exhibit very strong localized 

plasmon resonances. These collective charge oscillations have characteristic frequencies 

which depend on experimentally accessible parameters, such as the individual and collective 

geometrical and chemical properties of the nanoparticles and their environment [1]. A 

special class of nanoparticles is formed by the nonspherical geometries such as nanorods, 
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which exhibit two absorption bands in their absorption spectrum (Fig. 4.2). The transverse 

absorption band is associated with electron oscillation along the short axis of the particle 

while the longitudinal band corresponds to the aspect ratio of the rod. The longitudinal 

absorption band of gold nanorods can be tuned from the visible to the infrared with subtle 

variations of factors such as their aspect ratio (length / diameter ratio) and overall volume 

[2], the refractive index of the embedding medium [3], and then on their charge and mutual 

spatial arrangement [4,5]. For instance, the synthesis of gold nanorods of e.g. ~ 60 nm 

average length and ~ 15 nm average diameter translates into a strong plasmon resonance at 

about 800 nm [1]. The excitation of these charge oscillations triggers a variety of valuable 

and functional processes, which range from the local field enhancement [6], to the Rayleigh 

scattering [7], to the light absorption and transduction into radiative (luminescence) [8,9] 

and non radiative (electron-phonon coupling) [10,11] channels. Most of these processes 

occur with efficiencies unparalleled by competitive organic dyes. As a reference, it is 

estimated experimentally that it takes less than 100 pM gold nanorods (each nanoparticle 

seen as an individual molecule) to achieve the same extinction at 810 nm as from 100 μM 

ICG in aqueous solution [2]. Moreover these nanoparticles are stable in the body [12,13], 

even at relatively high temperatures and irradiation levels, and may be conjugated with 

biochemical functionalities, e.g. for delivery purposes [13]. The probable biocompatibility 

of the gold nanoparticles is another factor which justifies the increasing interest in these new 

chromophores for biosensing, diagnostic and therapeutic applications [13,14], although this 

is still a matter of much debate [15,16].  

 
Fig. 4.2. (Left )Extinction spectrum of different aspect ratio gold nanorods and 
(right) their color variance by varying longitudinal plasmon resonance (from 
www.nanopartz.com). 
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In the following, the introduction of functional nanoparticles in the laser welding of 

connective tissues is investigated. The ability to induce conspicuous thermal effects, which 

lead to the local tissue fusion in porcine lens capsules excised ex vivo, from excitation of an 

interfacial distribution of gold nanorods is proved. This model of connective tissue is chosen 

on account of several reasons, including its significance in the realm of ophthalmic surgery 

(e.g. in challenging operations such as lens refilling [17], where the capsule needs to be 

incised, the lens is replaced with a proper polymer, and then the capsule bag has to be closed 

again) [18,19], and its remarkable structural cleanness (a transparent and homogeneous 

tissue with no blood vessels nor cells), which is crucial for the reproducibility of these 

preliminary tests.  

4.2.2  Experimental procedure 

4.2.2.1 Synthesis of the nanoparticles  

(See Appendix B for details) 

Colloidal gold nanorods were synthesized in a seed-mediated approach derived from the 

process developed by Nikoobakht et al [20,21]. Briefly, in a first step gold seed 

nanoparticles were prepared by reduction of gold ions from HAuCl4 with NaBH4 in the 

presence of the surfactant cetyltrimethylammonium bromide (CTAB). In a second step, an 

aliquot of these seeds was added as a catalyst to a growth solution of HAuCl4, AgNO3, 

CTAB and ascorbic acid, which is the reducing agent in this reaction. The relative 

molarities of all these reagents determine the density and average geometry of the gold 

nanorods, which in turn governs the optical response of the colloid (in a given medium). 

The molarities were optimized to achieve densities of the nanoparticles of the order of 100 

pM (i.e. some 1011 nanorods per ml) and aspect ratios of ~ 4, which gives enhanced 

absorption about 810 nm. These gold nanorods were characterized by transmission electron 

microscopy and by spectrophotometry.  

4.2.2.2 Surgical procedure 

The surgical procedure simulates transplants of patches of anterior lens capsules from a 

donor eye to a recipient eye, assembled in a sandwich configuration. Fifty fresh porcine 

eyes were acquired at the local abattoir. These samples were kept in a humid environment at 

4 °C until the experimental session, within 12 hours post mortem. Prior to the treatment, the 

eyes were allowed to thermalize at room temperature, and the entire operation was 

performed at 25 – 30 °C. The preparation of the exogenous chromophore was finalized 

immediately before the treatment. The gold nanorods were used as-grown and with no 

additional filtration [22], which is challenging and unnecessary. The suspensions of gold 
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nanorods initially at ~ 100 pM were concentrated up to ~ 10 nM by centrifugation (5000 g, 

30 minutes) and redispersed into aqueous solutions with a minority content of collagen (∼ 

20 %), used as an excipient. The colloids of gold nanorods were taken from three separate 

batches, synthesized under nominally identical conditions. 

Twenty of the fifty eyes were used for the optimization of the laser welding procedure, 

ten as donors and ten as recipients. A patch of the anterior capsule was excised from a donor 

eye lens, and its internal side was stained with a droplet of a colloid of gold nanorods. The 

droplet was let to dry in air to induce the deposition of the nanoparticles. After 5 – 10 

minutes, the patch of capsule was rinsed and re-hydrated with abundant water, which left 

only a relatively faint rosy stain. Then it was laid with its internal (stained) side onto the 

external side of the anterior capsule bag of a recipient eye lens, in a sandwich configuration. 

In doing so, the original orientation of the donor capsule was maintained, thus matching the 

curvature of the recipient capsule and facilitating the adhesion at their interface. The 

sandwich was then irradiated by means of contiguous laser spots (no less than twenty per 

sample) emitted by a 300-μm-core-fiber, whose tip was gently brought into contact with the 

external side of the donor capsule (contact welding technique) to produce effective tissue 

fusion. The laser used in this procedure was an 810 nm diode laser (Mod WELD 800, 

El.En., Florence, Italy) [23]. Laser parameters able to induce functional photothermal 

effects were pulses with energies of 70 – 100 mJ (corresponding to fluencies of 100 – 140 

J/cm2) and durations of about 40 ms. The samples were kept well hydrated throughout the 

surgery. 

4.2.2.3 Characterization of the welded samples 

Resistance to mechanical load 

Preliminary evaluation of the mechanical load resistance of the welded samples was 

performed as described in the following. We used thirty anterior capsule flaps, out of which 

ten were cut in patches of 2 × 1 mm2 and twenty in 2 × 2 mm2. The latter were welded 

together by the procedure described above. The internal side of one stained patch was 

superimposed onto the external side of one unstained patch, so as to have 1 mm width 

overlaid. This area was then welded with three contiguous spots. The extremities of these 

samples were glued onto two glasses (leaving a 0.5 mm gap between the glasses). One end 

was fixed in a horizontal stand, while the other end was allowed to slide along a horizontal 

rail, by application of increasing tensile stress. The ultimate load required to tear the sample 

was recorded. Here we present the average and standard deviation of the ultimate loads from 

10 control samples and 10 laser welded samples. 
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Microscopical inspection of the treated samples  

(See Appendix A  for details) 

After excision, selected samples were subject to careful observation through a 

stereomicroscope and a polarization microscope operated with crossed nicols to probe the 

birefringence of the endogenous collagen network [24]. Others were immediately directed 

to the histological analysis using standard pathology laboratory procedures. In brief, laser 

welded specimens were fixed in 2.5 % glutaraldehyde in 0.1 M sodium buffer phosphate 

(pH 7.4) for 12 hours. These samples were then postfixed with 1 % osmium tetroxide at 

room temperature and, after sequential dehydration, infiltrated in epoxy resin. Semi-thin 

sections were attached to glass slides, stained with Toluidine Blue (to enhance the contrast 

between intact and denatured collagen) and viewed with a light microscope. The spatial 

extent of notable modifications induced by the laser treatment was recorder and analyzed 

statistically. 

4.2.3. Results 

Keynotes on the nanoparticles 

The seed-mediated synthesis of the gold nanorods that was realized leads to aqueous 

colloids with a bright magenta color. The upper panel of Fig. 4.3 shows a transmission 

electron micrograph of these nanoparticles, which reveals an average aspect ratio of ~ 4, 

with typical diameters in the (10 – 15) nm and lengths in the (40 – 60) nm. These 

dimensions are significantly larger than the diameters and separations involved in the 

collagen filaments found in the lens capsule, which are well below 10 nm [25]. The lower 

panel of Fig. 4.3 displays the absorption spectrum of a typical (average quality) colloid of 

the gold nanorods synthesized over the region from the near ultraviolet to the near infrared 

(in the aqueous environment). Two main resonances are clearly seen as a weaker peak 

situated at 520 nm and a fairly stronger peak centered at about 810 nm. The origin of these 

two contributions is well documented in the literature [1,3,26], and relates to different 

plasmon oscillation modes, i.e. orthogonal and parallel to the long axis of the nanoparticles 

respectively. 
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Fig. 4.3 Transmission electron micrograph and ultraviolet-visible-NIR spectra of 
the gold nanorods used in the tests. 

 

Fig. 4.4 shows UV-VIS-NIR spectra of the nanorods, dispersed in the original aqueous 

solution of the reagents used in the synthesis. In a typical specimen, we present a 

comparison between one spectrum acquired immediately after growth and one spectrum 

taken two months later, which is about two to three weeks longer than the timeframe 

elapsed in the welding experiments below. In this period the nanorods were kept in the 

original growth solution at variable temperature (about 3 – 4 weeks at room temperature 

followed by 5 – 6 weeks storage at 4 °C). The spectra in Fig. 4.4 are displayed at identical 

optical density about the 520 nm peak, which corresponds to charge oscillations in a 

transverse plane, common to most kinds of gold nanoparticles. Then the longitudinal 

plasmon band undergoes an evident blueshift of beyond 20 nm, accompanied by an overall 

degradation of the absorption properties: a loss of about 40% of the near infrared peak 

intensity and an increase of the background in the visible range between the transverse and 

the longitudinal peak of principal interest. Obviously the optimization of the proposed 

technique will require the utilization of fresher nanorods in the future. 
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Fig. 4.4 UV-VIS-NIR spectra of gold nanorod colloids kept in their growth 
solution. Grey dashed line: from the as-grown sample, i.e. taken about 24 hrs after 
seeding. Gray continuous line: taken two months later. Black dotted lines: 
Gaussian fits used to extract quantitative information. 

The spectra displayed in Fig. 4.4 were taken in the original aqueous solution, and may 

change in a different environment. In an attempt to verify the preservation of the main 

optical properties of these nanorods once in contact with the connective tissues, we have 

centrifuged the two months-aged samples and re-dispersed the resultant pellets in a phantom 

with about the same chemical composition as typical ocular tissues, i.e. 20 % (w/v) collagen 

in a physiological buffer. The estimated refractive index of this phantom was 1.40 ± 0.05, 

which compares well with the ~1.38 of typical ocular tissues such as the cornea. Also these 

measurements were performed about two months after the synthesis, i.e. two to three weeks 

after the welding tests hereafter had been terminated. Fig. 4.5 shows the UV-VIS-NIR 

spectra of these phantoms stained with the nanorods, which is compared with corresponding 

spectra from the bare phantom without the nanorods and from the original aqueous colloid 

of the nanorods at the same nanoparticle content (about 10-4 M atomic gold, which roughly 

corresponds to about 10-8 M nanorods according to transmission electron micrographs 

which reveal typical nanorod dimensions in the 40 nm length × 10 nm width, see Fig. 4.3). 

The main observed feature is a redshift in the longitudinal plasmon band by about 14 nm, 

which is attributed mainly to an increase of the refractive index in this 20% collagen 

phantom as compared to the refractive index in the original aqueous solution. It can be 

speculated that the slight alteration revealed also represents the trend of the gold nanorods 

once in intimate contact with the lens capsules. Owing to the rather large width of the 

absorption peaks of the gold nanorods used, one such variation does not pose an actual 

challenge to their efficiency as NIR photothermal transducers. 
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When the donor capsules were stained with these nanoparticles, no visible change in the 

hue of the colloid occurred, which hints at subcritical aggregation of the gold nanorods 

while drying [5,27]. This behavior is ascribed to the collagen added into the colloid, which 

effectively exerts valuable protection of the nanoparticles from the outer environment. It can 

be speculated that a small fraction of collagen inhibits their diffusion, and so hampers their 

segregation towards the edges of the droplet – as otherwise in a coffee stain [28]–, thus 

giving a more uniform and functional distribution of the chromophore.  

 
Fig. 4.5 UV-VIS-NIR spectra of gold nanorod colloids aged two months and 
dispersed in different environments. Grey continuous line: in a 20% collagen 
aqueous solution. Grey dashed line: calculated sum of a spectrum from nanorods in 
their growth solution (light grey shadowed area in the bottom) plus a spectrum 
from a 20% collagen aqueous solution (grey shadowed area). This grey dashed 
spectrum is given as a reference. Black dotted bell-shaped lines: Gaussian fits. 

Characterization of the welded samples 

Mechanical load resistance 

The welding operations carried out simulate transplants in a sandwich assembly, where a 

patch of anterior capsule of a donor is pasted onto the anterior capsule of a recipient. The 

interface between these tissues is stained with the chromophore of gold nanorods, and then 

single spots of laser irradiation are given through an optical fiber (300 μm diameter), as 

mentioned above. Under these conditions, reproducible welding effects with mechanical 

strength sufficient to withstand the excision and subsequent manipulation were achieved in 

the range of 70 – 100 mJ (100 – 140 J/cm2 at the irradiated surface). Besides, it was verified 

that the range of energies applied is at least half too low to produce any detectible effect in 

lens capsules with no gold nanorods, which is unsurprising since the anterior lens capsule is 

essentially completely transparent about 800 nm. The laser welded sandwiches exhibited 
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resistance to traction (applied with surgical forceps) each time a transplant was simulated. 

These qualitative observations were substantiated by the tensile stress measurements. The 

tests revealed that the ultimate load before rupture was (27 ± 3) g for the native tissues (used 

as a control) and (22 ± 2) g for the laser welded sandwiches, which is highly satisfactory in 

view of clinical applications. 

Microscopical analysis of the weld sites 

The degree and spatial extent of the photothermal effects were evaluated by microscopic 

techniques. The upper panels of Fig. 4.6 display micrographs of a typical sandwich of lens 

capsules after treatment with 70 mJ and then excision from the recipient eye. The rosy color 

comes from the residual chromophore stain at the interface. The weld sites appear as a 

concentric pattern of an inner area ((300 ± 40) μm diameter from ~ 50 weld sites) of 

uniform opacization, possibly due to the local disorganization of the collagen fibrils, and an 

outer area (up to (430 ± 40) μm diameter) of altered refractive behavior, which may be 

associated with a distorted planarity of the capsule surface.  

 
Fig. 4.6 A and B conventional micrographs, C and D polarisation micrographs 
from a welded sandwich of anterior lens capsules. A ~ (1.1 × 1.1) cm2; B ~ (0.18 × 
0.14) cm2; C ~ (0.7 × 0.7) cm2; D ~ (0.3 × 0.2) cm2. 

The weld sites are well revealed in birefringence maps acquired with a polarization 

microscope operated in transmission with crossed nicols, as shown in the lower panels of 

Fig. 4.6. In these images the birefringence intensity is interpreted as due to the local order of 

the native collagen filaments. Then the very dark contrast in the weld sites, which extends 

over an area of (350 ± 50) μm diameter (as estimated from ~ 100 weld sites), may be due to 

their local denaturation, possibly through the whole thickness of the sandwich of capsules. 
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These dark spots are separately rimmed by very bright marks, which form a pattern aligned 

in the two orthogonal polarizations of the microscope. This effect can be understood as the 

interplay of strain fields radiating from the individual weld sites, possibly due to the 

shrinkage of the collagen fibrils, which is typically observed to accompany their 

denaturation [29]. 

 

Table 4.1 Summary of the microscopical analysis 

More direct evidence of these processes comes from the microscopical analysis of 

histological sections stained with Toluidine Blue, as given in Fig. 4.7 (here irradiated at 90 

mJ, i.e. ~ 130 J/cm2). These micrographs clearly prove that the overall adhesion of the 

sandwich of capsules is well enough to stand all the sequence of steps for the preparation of 

these histological sections. Indeed the two opposite sides of the interface never display any 

visible indication of misalignment. The bright blue color all through the thickness of the 

weld spots comes from the accumulation of the Toluidine Blue, which is induced by the 

local denaturation of the collagen. This central area extends over a length of (300 ± 20) μm 

(from ~ 20 weld sites). Also, substantial shrinkage of the tissue along the vertical direction 

by as much as (53 ± 4) % of the original thickness (from the original ~ 60 μm per layer of 

anterior lens capsule to a final ~ 30 μm) is very evident. The regular thickness and integrity 

of the lens capsule becomes gradually recovered with the distance from the weld sites. 
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Overall the area affected by partial shrinkage and disorganization is evaluated as (410 ± 20) 

μm. A summary of the principal findings was reported in Table 4.1. 

4.2.4  Discussion 

The experimental results reported in the previous section demonstrate that the treatment 

developed with conspicuous denaturation of the native collagen filaments, at least through 

the whole thickness of the sandwich of capsules. In some cases, as revealed by the cross 

section in Fig. 4.7, the outer parts of the lens epithelium of the recipient eye were affected 

as well, which is witnessed by the material left just below the laser spot sites, after the 

sandwich of lens capsules was peeled off. This suggests that temperatures exceeding 50 °C 

were reached over a depth of at least ~ 120 μm [31], which is the thickness of a pristine 

sandwich of porcine lens capsules [30].  

 

 
Fig. 4.7 Histological section of a laser-welded sandwich of anterior lens capsules 
(Toluidine blue stain). The effects achieved are well reproducible from spot to 
spot. 

The results coherently point to the achievement of a range of temperatures which is quite 

impressive. It is assumed that – at variance with the organic dyes in use [32] – the overall 

dimensions of the gold nanorods employed must significantly restrict their perfusion 

through the endogenous collagen filaments, whose typical separation is much less than the 

average diameter of the nanoparticles. Then all the heating produced (from samples 

originally kept at room temperature) originates from genuine heat diffusion from a very 

interfacial layer stained with the exogenous chromophore, which develops within a 40 ms 

timeframe. 
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With an eye to the clinical application, a mechanical load resistance at the weld sites 

comparable to the one of the native tissues was found, which is fully adequate to support 

surgeries such as lens refilling. As a downside, it can be noticed that the range of 

photothermal effects achieved include substantial local alterations of the functionality of the 

lens capsules. However these alterations are well restricted within ~ 200 – 220 μm from the 

center of the irradiated area. Since the laser irradiation is intended to be delivered in very 

peripheral portions of the lens capsule (e.g. to seal a capsulorrhexis), these alterations may 

not interfere significantly with the vision of the patient. Moreover, based on previous similar 

experiences [33,34], it is probable that the type of thermal damage observed is reversible in 

vivo, and typically can recover completely within a few weeks after surgery. 

The laser energies delivered in these experiments are only slightly above the range in 

use in very similar surgeries where ICG is the exogenous chromophore (see [33,35,36] and 

previous §1 and §2). This is very encouraging, also because the effect produced is probably 

stronger than what may actually be needed in a minimally invasive surgical application. The 

denaturation of the endogenous collagen filaments is the usual result pursued in operations 

based on the application of discrete arrays of laser pulses [37]. This effect must take place 

and develop primarily about the region in immediate proximity of the interface, where the 

seal is to be accomplished. Further heating well away from the interface is in principle 

unnecessary (and in fact possibly undesired). 

Here it has been demonstrated that the topical application of gold nanorods is suitable to 

mediate and sustain substantial and functional photothermal processes such as the laser 

fusion of the collagenous tissues. Significant advantages are expected from the introduction 

of the gold nanorods in the clinical practice. A better stability and flexibility of storage and 

manipulation over the competitive organic solutions (whose preparation must typically be 

done in situ during the surgery) may offer novel possibilities to standardize those welding 

procedures which are still at an experimental stage. A better localization, associated with a 

lower pore diffusivity through the endogenous fibrils (as due to steric effects), and possibly 

also by the design of target-specific functionalization procedures [14,38], may enhance the 

minimally invasive nature of the proposed approach. The possibility to achieve higher 

temperatures and gradients due to a higher stability and efficiency is expected to prove 

valuable in the extension of these results towards more complex applications, such as the 

laser welding of turbid tissues. 
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4.2.5  Conclusions 

This preliminary experimental study provides the proof of the capacity of laser-activated 

gold nanorods to mediate substantial and functional photothermal effects in a model 

connective tissue (the porcine anterior lens capsule). The irradiated area underwent 

denaturation in the range of fluencies of 100 – 140 J/cm2, which induced the fusion of 

patches of lens capsules. The photothermal effects were well localized within ~ 200 – 220 

μm from the center of the irradiated area (150 μm in radius), beyond which the tissue 

appeared completely integer. Overall, gold nanorods were proved to behave as very efficient 

photothermal transducers, and thus can be suitably employed for laser tissue welding 

technique. Moreover, they can find application in many other medical methodologies 

involving the achievement of a photothermal effect.  
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4.3 - PERSPECTIVES 

The preliminary results presented in this chapter are encouraging towards the use of gold 

nanorods in laser welding procedures. We estimate that future applications will take a 

special advantage of the adaptable functionalization of gold nanopartcles. This may e.g. 

enable the selective targeting of individual biological structures. 

Currently, the replacement of traditional organic molecules with nanostructured 

chromophores is an inspiring possibility, which is yet far from the clinical application. 

Forthcoming developments of our investigation of gold nanorods will progressively aim at 

the exploitation of these nanoparticles in a wider range of laser welding operations, which 

will raise a number of critical issues and require substantial effort in different directions. 

These include a detailed study of the cytotoxic behavior of the gold nanorods, and the use of 

in vivo models to investigate questions such as the overall recovery and metabolization 

dynamics of the nanoparticles.  

A primary question regards the replacement of CTAB, which drives the growth of the 

nanorods, with a less toxic medium. A successful strategy involves the replacement of 

CTAB with polyethyleneglycol (PEG) after to the synthesis of the nanoparticles. We are 

currently testing a protocol that can efficiently provide the substitution of CTAB with 

methoxypoly(ethylene glycol)thiol (mPEG-SH) (see Appendix B for details), where the 

thiol group favors the substitution of CTAB on the nanorod surfaces due to the greater 

affinity for gold. Preliminary results are encouraging. A next step will involve the 

assessment of the substituted nanorods as photothermal transducers in applications of laser 

welding and the investigation of their cytotoxic behavior in comparison with non-substituted 

nanoparticles. 
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CONCLUSIONS 
 

A substantial improvement in some fundamental and technical questions regarding laser 

tissue welding, with particular application to ocular tissues, was provided in this thesis. The 

microscopy analyses we performed on laser-welded cornea samples and the chemical 

investigations we carried out on the model molecule hyaluronan furnished a clear picture of 

the matrix reorganization dynamics at the weld site, occurring upon laser irradiation. 

Therefore, we proposed a model describig the process of corneal welding at the typical  

operating temperatures reached during clinical applications in ophthalmic surgery, in which 

proteoglycans were supposed to play a primary role. With regard to the optimization of the 

laser welding technique, our work was aimed at pursuing two distinct objectives. The first 

dealt with the assessment of the feasibility of two imaging techniques, namely fluorescence 

and second-harmonic generation microscopy, to monitor photothermally- and thermally-

induced changes in connective tissue. We proved the great potential of both of them to 

detect the loss of organization in the tissue matrix. The second objective was to test the 

effectiveness of new nanostructured chromophores, in particular gold nanorods, as 

photothermal transducers of laser light. The enhanced capability of these nanoparticles to 

generate consistent photothermal effects during laser welding of lens capsule was tested 

and demonstrated. 
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APPENDIX  A 

HISTOCHEMISTRY PROTOCOLS 

FOR LIGHT AND ELECTRON MICROSCOPY 

Chemicals 

Paraformaldehyde, glutaraldehyde (25%), OsO4, Epon 812 resin, 2-

dodecenylsuccinicanhydride (DDSA), methylnadicanhydride (NMA), uranyl acetate, lead 

citrate, Toluidine Blue, Mayer’s Hematoxylin, Eosin, Sirius Red F3B and picric acid were 

used as purchased (Sigma, St. Louis, MO). Copper grids coated with Formvar/carbon films 

were purchased from TAAB Laboratories Equipment Ltd (Berks, England). 

TRANSMISSION ELECTRON MICROSCOPY 

Buffer 

Native buffers present in cellular and extracellular compartments, which maintain a constant 

pH in the presence of perturbing conditions, are not effective with the fixatives used in 

electron microcopy. For this reason external buffer solutions are employed to keep the 

fixative mixture in near isotonic conditions with tissue. Typical “vital” buffers used for 

biological microscopy include Phosphate Buffer Saline (PBS), Tris, Hepes, Pipes and 

Cacodylate.  
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EXPERIMENTAL PROCEDURE 

We used a 0.2 M PBS stock solution (pH 7-7.4) containing 0.15 M NaCl. PBS was the 

buffer employed for all the experiments of this thesis involving histology analyses. 

Primary fixation 

Primary fixation was performed for stabilizing biological systems with minimal distortion to 

their morphology and chemical properties. Biological electron microscopy employs two 

methods for obtaining such results, i.e. chemical or physical fixation. Physical fixation 

utilizes extremely low temperatures, applied to very small samples, to provide fixation 

rapidly. However, chemical fixation remains the most common method for specimen 

preservation. The objective of chemical fixation is to preserve tissue constituents and cells 

in as close a life-like state as possible and to allow them to undergo further preparative 

procedures without changes. Fixation arrests autolysis and bacterial decomposition and 

stabilizes cellular and tissue constituents, so that they can withstand the subsequent stages of 

tissue processing. Most common reagents used as primary fixatives in electron microscopy 

are formaldehyde and glutaraldehyde. These aldehydes are thought to form cross-links 

between proteins, creating a gel which preserves the native organization of tissue 

constituents. 

Formaldehyde is a gas soluble in water to a maximum extent of 37-40 % in weight and it 

is commercialized under the name of formaldehyde (37-40 %) or formalin (a colorless 

liquid with 15 % methanol added to inhibit polymerization). It is also obtainable in a stable 

solid form composed of polymers of high molecular weight, known as paraformaldehyde. 

Formalin contains many impurities, so formaldehyde for the use in electron microscopy is 

normally prepared from dissolution, heating and alkalinization of powdered 

paraformaldehyde. Heated paraformaldehyde generates pure gaseous formaldehyde, which, 

when dissolved in water, reverts mostly to the monomeric form. Since this solution contains 

no inhibitors, it has a shelf life of only a few weeks. Aqueous formaldehyde exists 

principally in the form of its monohydrate, methylene glycol CH2(OH)2, and as low 

molecular weight polymeric hydrates or polyoxymethylene glycols. It has been suggested 

that the hydrated form, methylene glycol, is the reactive component of formaldehyde. 

Formaldehyde is considered a good choice for fixing cells because it readily passes through 

the membranes and reacts with intracellular components. However it is almost 

unsatisfactory in preserving ultrastructural details and, for this reason, is often used in 

mixtures with glutaraldehyde for electron microscopy.  

Glutaraldehyde (or glutaric acid dialdehyde) is a five carbon chain with two aldehyde 

groups; it is the most widely applied fixative in both scanning and transmission electron 
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microscopy (TEM). In TEM, buffered glutaraldehyde is recognized as the best fixative to 

preserve the ultrastructural preservation in a large variety of tissue types. Commercial grade 

glutaraldehyde is usually a 25 or 50 % aqueous solution with a pH between 3 and 6, 

containing various impurities such as ethanol, methanol, glutaric acid and various polymers 

and oxidation products. These products can exert a considerable influence on the fixation 

process. For this reason high quality distilled glutaraldehyde sealed in glass ampoules under 

inert gas is recommended for electron microscopy. An aqueous solution of glutaraldehyde is 

a complex mixture consisting of approximately 4% free aldehyde, 16% monohydrate, 9% 

dihydrate and 70 % hemiacetal. Free glutaraldehyde may form polymers, or a monohydrate 

and a dehydrate, which may cyclize to give a hemiacetal which in turn may also polymerize. 

The wide use of glutaraldehyde as a cross-linking agent is also due to the large range of 

differential molecules present simultaneously in the fixation solution. 

EXPERIMENTAL PROCEDURE 

In our experiments, tissues were chemically fixed by immersion either in a mixture of 2 % 

glutaraldehyde and 2 % paraformaldehyde (modified Karnowsky procedure) or in 2.5 % 

glutaraldehyde alone in 0.1 M PBS (pH 7.4) for a minimum of 5 hrs at 4 °C. We used the 

formaldehyde-glutaraldehyde fixative for porcine cornea due to its greater thickness (i.e. 

about 800-1000 μm) and glutaraldehyde alone for porcine lens capsule (which is only about 

60 μm). In fact, formaldehyde penetrates faster than the glutaraldehyde and temporarily 

stabilizes structures which are subsequently more permanently stabilized in glutaraldehyde, 

thus well preserving their original morphology. In practice, structures are rapidly stabilized 

with formaldehyde and then crosslinked with glutaraldehyde. Because of the slow level of 

penetration of the glutaraldehyde, the specimens were kept at 4 °C in order to better 

preserve the tissue.  

The two fixation procedures followed in our experiments are reported below. 

Modified Karnowsky procedure. 1 g of paraformaldehyde was dissolved in 21 ml of 

distilled water, heated at 60-70 °C and stirred. Then 1-3 drops of 1N NaOH were added 

while stirring until solution cleared. The solution was cooled and 4 ml of 25 % 

glutaraldehyde were added. The volume was brought to 50 ml with 0.2 M PBS.  

Glutaraldehyde fixation. 4 ml of 25 % glutaraldehyde plus 16 ml of distilled water were 

brought to 40 ml with 0.2 M PBS.  

All the prefixed corneas and lens capsules were then sliced in 1-2 mm3 samples and then 

washed two times for 15 min in 0.1 M PBS at 4 °C. The next step was the post fixation. 
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Post fixation 

The most commonly employed post fixative is osmium tetroxide (OsO4). It is commercially 

available as a coarse yellow crystalline material (aqueous solutions are also available) 

packaged in glass ampoules sealed under inert gas. It presents a limited rate of penetration 

and for this reason is usually used as a secondary post fixative rather than as a primary one. 

The electron dense osmium atoms also serve as an electron stain to label the specimen. It 

mainly reacts with double bonds. For this reason post osmium fixing is essential whether 

preserving membranes and lipids containing bodies is needed. Osmium tetroxide is also 

useful for the stabilization of proteins by producing cross-links and protein gels. Due to its 

extreme toxicity, low vapor pressure and strong oxidation power, precautions are necessary 

for its handling.  

EXPERIMENTAL PROCEDURE 

We carried out post fixation of biological tissues by using a 1% OsO4 solution in 0.1 M PBS 

for 2 h at room temperature. Then we removed the fixative solution and replaced it with 0.1 

M PBS. 

Dehydration 

The water within the sample must be removed by bringing the sample through a graded 

series of either ethanol or acetone. Since the shrinkage problems that often accompany 

dehydration are more pronounced with sudden changes in the solvent concentration, it is 

preferable to perform a number of short exposures at gradually increasing concentrations of 

the solvent. Generally one of two procedures are carried out before infiltration and 

embedment with epoxy resins. The first one consists in bringing the sample through a 

graded ethanol series up to 100 %, followed by two changes in 100 % propylene oxide. 

Propylene oxide (PO) is useful for several reasons. First, most epoxy resins are more soluble 

in PO then they are in pure ethanol. Second, PO contains a free epoxy radical and thus will 

not separate from the epoxy resin, even if small amounts are left following infiltration. A 

drawback is the fact that PO is very effective in extracting lipids from cells, even those 

previously fixed by osmium tetroxide. Moreover the epoxy group of PO can react with the 

epoxy group of the resin and inhibit polymerization. This can adversely affect hardness and 

cutting properties of the block. An alternative dehydration method uses acetone from 30 to 

100 %. There is some evidence that acetone causes less specimen shrinkage and lipid 

extraction than ethanol does. It is also non-reactive with osmium tetroxide and do not 

interfere with epoxy resin polymerization.  
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EXPERIMENTAL PROCEDURE 

We used acetone for sample dehydration using the procedure reported below. 

Acetone 30 %   10 min 

Acetone 60 %   10 min 

Acetone 90 %  10 min 

Acetone 100 % 3 changes 10 min each 

Infiltration in resin 

Infiltration is the replacement of the solvent with the embedding medium. An optimal 

embedding medium permits thin sectioning with the least damage during the preparation 

and gives the least interference during microscopy. It supports and holds together the tissue 

while remaining non-reactive with the electron beam of the microscope. This means that it 

should be non-volatile when hit by the beam and non-interfering with the passage of 

electrons.  

The most widely used class of embedding media is the group known as epoxy resins. 

The term epoxy refers to the epoxy group present in these resins. These resins are 

substances which are capable of polymerization to form a rigid three-dimensional structure 

with cross-linking by molecular chains. Once formed, the structure is no more reversible. 

Epoxy resins have high mechanical strengths, are easily polymerized and produce little 

shrinkage. Unlike polyesters and methacrylates, which react by means of free radicals 

groups forming very specific bonds, the epoxy rings react with virtually any available 

hydrogen. For this reason epoxy resins not only establish cross links with the other resin 

molecules, but also with the tissue itself and even the containers in which the tissue has been 

placed. Epoxies usually require large quantities of a second non epoxy molecule, referred to 

as the “hardener”, with which they may condense. The most used hardener in embedding 

protocols is 2-dodecenylsuccinicanhydride or DDSA. Another one is methylnadicanhydride 

(NMA). Sometimes these two are added in different concentrations as to control the relative 

hardness of the polymerized blocks. In addition to epoxy resin and hardeners, an accelerator 

may also be employed to self-catalyze the reaction.  

Polyester and epoxy resins offer several advantages over methacrylates. The most 

significant advantage is that they largely prevent from tissue swelling upon polymerization. 

One disadvantage is that many polyesters and epoxy resins are significantly more viscous 

than methacrylates, thus their ability to penetrate in the tissue is reduced. This disadvantage 

can be partially overcome by prolonging infiltration time and/or using other techniques such 
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as vacuum infiltration. Another disadvantage of using highly viscous media is that the 

various ingredients do not mix well together, so great care must be taken to insure that the 

components are completely combined before proceeding with infiltration and embedment. 

With respect to electron beam stability, epoxy resins are superior to both methacrylates and 

polyester resins in their ability to resist from damaging under electron radiation. Thus epoxy 

resins do not lose a significant amount of their mass when exposed to the beam.  

Another issue that should be considered when using embedding media is the relative 

toxicity of the compounds. In general the epoxy resins are the most toxic and carcinogenic 

of all the embedding media and for this reason should be handled with the utmost care. 

Some of the more common epoxy resin mixtures include Spurr’s resin, Araldite, and Epon 

812. 

EXPERIMENTAL PROCEDURE 

We used Epon 812 as the embedding medium because of its ability to be undamaged by the 

electron beam during the microscopy observations. In fact, considering that typical 

operations to look for the weld site in our cornea samples were quite time-consuming, non-

epoxy resins could break down and interfere with the measurements.  

We first prepared two mixtures, A and B as described in the following table. The mixtures 

were stirred for about 30 min before use. 

Mixture A Mixture B 

Epoxy resin 5 ml Epoxy resin 8 ml 

DDSA 8 ml NMA 7 ml 

Immediately before their use, the two mixtures were blended (obtaining the final epoxy 

mixture), and the accelerator [2,4,6-Tris(dimethylaminomethyl)phenol], DPM-30, was 

added in the proportion of 1.5-2.0 % (about 16 drops). 

After the last step of dehydration in acetone 100 %, we embedded the samples first in a 

1:1 and then in a 1:2 mixtures of acetone + final epoxy mixture for 30 min. Then the 

samples were placed at the bottom of pre-dried gelatin capsules and fresh epoxy mixture 

was added before polymerizing. Resin polymerization was conducted at 45 °C for 12 hrs 

followed by 24 hrs at 60 °C in a thermostated oven.  
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Specimen sectioning 

Conventional microtomes used in the  preparation of slides for light microscopy are 

unsuitable for cutting ultrathin sections required for TEM. To this aim an ultramicrotome is 

employed. The polymerized block including the embedded tissue is mounted onto a 

mechanical arm; then this arm is lowered with micrometrical control keeping the block in 

contact with a stationary knife, composed of a sharpened diamond or a freshly cleaved glass 

edge. 

EXPERIMENTAL PROCEDURE 

Particular care was taken to block the samples to the ultramicrotome chuck with the right 

orientation; then ultrathin slices of 60-90 nm were produced. 

Grids - Support films   

The sections of thin epoxy resins are were placed in the TEM chamber by means of thin 

metallic support grids. The most common types are known as mesh grids, which are 

essentially small screens made from thin copper. Mesh sizes are available in sizes ranging 

from 50 to 1000 μm. Sections picked up on grids of 300 to 400 mesh size are supported by 

several small strips of metal. Such samples are generally robust enough to withstand TEM 

examination without the use of further support. However it is often critical that large open 

areas of the section are not be obscured by the grid bars. In this case it is essential that the 

grid be coated with some sort of support film on which to place the specimen.  

Main requirements for an effective support film are: 1) to be mechanically strong enough 

to hold the specimen when exposed to the electron beam, 2) to be the most transparent as 

possible to electrons, 3) absence of irregularities, 4) high signal to noise ratio when 

compared to the specimen, and 5) easy of preparation should also be considered. To date 

only a few materials have proved to be satisfactory in meeting these criteria. They are 

carbon films, graphite oxide, and various plastics. They can be made very thin and are of 

relatively low atomic weight so as not to interfere with the electron beam. Of the plastics 

used as support films Collodion (nitrocellulose) and Formvar are the most common; they are 

both partially hydrophilic. Formvar is a reaction product of polyvinyl alcohol with 

formaldehye. It is more stable than Collodion and slightly more hydrophilic. All plastic 

films are subjected to decomposition by the electron beam. They are also prone to further 

cross-linking by the beam, which adds some strength, but in turn increases brittleness and 

shrinkage. One major problem due to the induced cross-linking is that the specimen may 

drift for quite a long time until the film reaches an equilibrium at a given illumination level. 

Plastic support films can be strengthened and stabilized by depositing a fine layer of carbon 



Appendix A 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 

 118

over them. This has the advantage of making the film stronger and more resistant to drift, 

but has the disadvantage of making the film hydrophobic and more brittle. Plastic support 

films are usually made by floating off a fine layer of the film onto the surface of clean 

water. Commercial copper grids coated with plastic films are also available.  

EXPERIMENTAL PROCEDURE 

We used 200 mesh copper grids coated with Formvar and carbon film for all our 

experiments. The sections sliced with the ultramicrotome were mounted on these grids and 

left to dry overnight on the bottom of a sealed Petri dish, covered with a filter paper. Once 

sections were firmly attached to the grids (i.e. after drying) they were subjected to staining 

as discussed in the following. 

Staining 

In order to visualize a specimen in the TEM one must have regions of electron transparency 

and electron opacity. To be of use in a TEM, a stain must have the ability to stop or strongly 

deflect the electrons of the electron beam, so that they do not contribute to the final image. 

The most commonly used stains in electron microscopy are made up of heavy metal salts, 

which have atoms of high atomic weight, effective to deflect the electrons. Electron staining 

falls into one of two categories 1) positive staining (more common) in which contrast is 

imparted to the specimen itself and 2) negative staining in which increased electron opacity 

is produced in the area surrounding the specimen while the specimen itself remains more 

translucent.  

The two most commonly used positive stains are uranyl acetate (MW = 422) and lead 

citrate (MW = 1054), the two heavy metals being uranium and lead respectively. Both stains 

are heavy metal salt and are categorized as general or non-specific stains. They are quite 

toxic and should be prepared and handled with a great care. Uranyl acetate ions are believed 

to react with phosphate and amino groups (found in nucleic acids and certain proteins) while 

lead ions are thought to bind to negatively charged molecules. Due to the ability to stain 

different cellular components uranyl acetate and lead citrate are often used together.  

Sections that have been picked up and dried can be stained on their grids with uranyl 

acetate. The grids are then thoroughly rinsed, dried, and either stained with lead citrate or 

stored until they are examined in the TEM. Although grids can theoretically be stained any 

time after sectioning it is preferable to do it within 24 hours after sectioning. Grids that have 

been exposed to the energy of the electron beam will not absorb any stain. Some resins are 

particularly difficult to penetrate and therefore do not stain well. In these cases one could try 
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to either elevate the temperature of the stain or stain the specimens in a methanolic uranyl 

acetate solution.  

Lead citrate is often used to stain grids after they have been stained in uranyl acetate. 

Being lead citrate very sensitive to CO2 (it quickly reacts to form a precipitate that can 

destroy the section), effort must be made to eliminate this gas from the staining procedure. 

For this reason very clean glassware, CO2-free water, and other precautions must be 

followed in preparing lead citrate for the use. After staining, grids are then blotted dry and 

stored until needed.  

EXPERIMENTAL PROCEDURE 

Grids were floated on a drop of 1% uranyl acetate for 30 minutes. The grids were then 

thoroughly rinsed and dried. Then they were floated on a drop of 0.1 % lead citrate for 3-5 

minutes at room temperature. The drops were placed in a CO2-free environment which had 

been previously prepared using a glass Petri dish in which several sodium hydroxide pellets 

had been deposited. (The NaOH actively scavenges CO2 and after a few minutes the 

atmosphere inside the Petri dish is essentially CO2 free.) After staining, the sections were 

rinsed in a 1M NaOH solution (to wash off the lead citrate) and then thoroughly rinsed in 

water (to rinse off the NaOH). The grids were finally dried and stored in a Petri until the 

time of measurements. 

LIGHT MICROSCOPY 

Resin removal  

The negligible shrinkage artifacts produced in the specimen by the hardening of resin 

embedding media used in electron microscopy make them superior embedding materials for 

light microscopy as well. After sample fixation and embedding (in the same way as depicted 

above), semi-thin sections (0.5-2 µm) can be obtained by means of an ultramicrotome and 

than stained using standard histology techniques. A few methods exist for staining epoxy 

resin-embedded tissue without removal of the plastic from the sections, which never reach 

anyway the quality of plastic-free sections in terms of contrast and detail resolution. In fact, 

epoxy resins provide a barrier to dyes, markedly reducing the staining effect. Removal of 

this type of resin is therefore recommended before staining. Epoxy resins are easily 

degraded by alcoholic sodium hydroxide or potassium hydroxide, sodium methoxide or 

bromine vapour.   
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EXPERIMENTAL PROCEDURE 

After cutting with the ultramicrotome, semi-thin sections were transferred to small drops of 

distilled water on a glass slide. Then the glass was gently heated until sections adhere to it. 

The glass was placed in a covered Coplin jar containing sodium hydroxide saturated in 

absolute methanol for 1 h. The slides were completely immersed in the solution. Then they 

were washed with three changes of absolute methanol, rinsed in 70 % methanol and washed 

in running tap water for 5 minutes. 

Staining 

Hematoxilyn/Eosin and Toulidine Blue are the most used histochemical stains for light 

microscopy examination of thermally damaged connective tissue. They are not specific 

stains for collagen, but can bind preferentially denatured tissue thus providing its 

identification from the native one. This is due to the opening of new functional sites that 

follow the breaking-up of the triple helix of collagen. 

In unstained sections fibrillar collagen exhibits a weak birefringence, which hinder 

accurate measurements by optical micrometry. The use of common histological stains such 

Hematoxylin/Eosin do not improve this picture. On the other hand Sirius Red enhances the 

natural birefringence of collagen to the extent that histological measurements become 

possible. The structure of this dye is elongated; thus it is intrinsically anisotropic. When 

collagen fibrils are stained with Sirius Red in picric acid (also called Picrosirius Red), the 

dye molecules are bound parallel to the collagen molecules. The birefringence of the 

regularly-oriented collagen molecules in healthy tissue is thereby significantly enhanced. 

Staining with Picrosirius Red does not, however, confer birefringence to tissue components 

randomly oriented at the molecular level, as collagen molecules after thermal denaturation. 

EXPERIMENTAL PROCEDURE 

We used Hematoxylin/Eosin and Toluidine Blue as unspecific stains of ocular tissue. 

Picrosirius Red was employed to reveal the structural arrangement of collagen fibrils. In 

particular, when used in  association with polarized light microscopy this dye furnished a 

specific and sensitive picture of the collagen randomization upon heating. In the following 

the methodologies employed for preparing and applying the stains are reported. 

 

Toluidine Blue 

1 part of distilled H2O  

1 part of 5 % Toluidine Blue 
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1 part of 2% sodium borate 

These compounds were well mixed, filtered and stored at room temperature. 

METHOD 

The sections were covered with a drop of staining solution and heated for 1 minute. Then 

the excess of stain was drained off and the glass was washed in tap water. 

 

Hematoxylin/Eosin 

METHOD 

The sections were covered with a drop of Hematoxylin for 5 minutes and then washed in tap 

water. A 1 % HCl solution in ethanol 70 % was added and then washed in tap water. The 

sections were then placed in 1 % Eosin (in distilled water) for 5 minutes and then washed in 

tap water. 

 

Picrosirius Red 

Solution A: 0.5 g of Sirius Red F3B were added to a saturated aqueous solution of picric 

acid (500 mL) 

Solution B: 5 mL of acetic acid were added to 1 liter of distilled water. 

METHOD 

The sections were covered with a drop of Solution A for one hour and then washed in two 

changes of acidified water (Solution B). Then the excess of water was drained off and the 

glass was washed in tap water. 
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APPENDIX  B 

SYNTHESIS OF GOLD NANORODS  

Chemicals 

HAuCl4·3H2O (99.9%), NaBH4 (99%), ascorbic acid (99+%), 

cetyltrimethylammonium bromide (CTAB) (99%), and AgNO3 (99+%) were used as 

purchased (Sigma, St Louis, MO). Ultrapure deionized (DI) water was used for all 

solution preparations and experiments. Glassware was cleaned by soaking in aqua 

regia and finally washing in DI water. 

Synthesis 

Several methods have been described in the literature for the synthesis of gold 

nanoparticles (AuNPs) of various sizes and shapes. The most popular synthetic 

method is by chemical reduction of tetrachloroaurate (HAuCl4) using citrate as the 

reducing agent. This method produces monodisperse spherical AuNPs in the 10-20 

nm diameter range. However, production of larger AuNPs (40-120 nm) by this 

method proceeds in low yields, often resulting in polydisperse particles. An 

improved method to synthesize monodisperse AuNPs with diameters between 30 

and 100 nm using a seeding approach is based on the use of the surface of AuNPs as 

a catalyst for the reduction of Au3+ by hydroxylamine. 

Similar seed-mediated methods are also employed to synthesize gold nanorods. 

These involve the reduction of gold using weak reducing agents onto small 
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nanospheres of gold as seed, in the presence of shape-directing surfactants usually 

cetyltrimethylammonium bromide (CTAB). These methods may be distinguished 

into those that use silver ion assistance in growth solutions and those that not. 

Murphy and coworkers (J. Phys. Chem. B 2005, 109, 13857) described a three-

step growth protocol, where medium to high aspect ratio nanorods could be 

synthesized without the use of silver nitrate. Seed particles are generated by 

reducing gold salt using sodium borohydride in the presence of sodium citrate. The 

spheres are coated with a layer of negatively charged citrate ions that maintain 

colloid stability against aggregation by electrostatic repulsion. These spheres seed a 

growth solution comprising gold salt, CTAB and ascorbic acid in three steps thereby 

slowing down reduction. The mechanism of nanorods formation by this method is 

not yet fully understood. Murphy et al. proposed that the polar CTA+ head group of 

the surfactant binds with greater preference to certain crystallographic faces thereby 

passivating them to deposition of gold. The other faces, on the other hand, would be 

exposed for gold to be reduced on, thereby producing anisotropic growth into rods. 

The methods using silver nitrate in the growth solutions were proposed by Jana at 

al. (Adv. Mater. 2001, 13, 1389) but modified by Nikoobakht & El-Sayed (Chem. 

Mater. 2003, 15, 1957) to achieve spectacular yields of nanorods with excellent 

monodispersity. Importantly they also showed that changing the quantity of Ag+ 

ions in the growth solutions allows for fine-tuning of the aspect ratios of the 

nanorods. The mechanism at work in this protocol has been debated in the recent 

past. One mechanism postulated CTAB as a soft template which elongates on 

addition of Ag+ ions which occupy regions between the CTA+ head groups. A 

second mechanism involves the CTAB passivation concept with additional 

adsorption of silver bromide on facets slowing down reduction and producing rods 

shorter than those made without using Ag+. A third mechanism which has appeared 

recently proposed the underpotential deposition of Ag0 on certain faces, followed by 

CTAB binding, which serves to stabilize the faces, and allows gold reduction on 

other faces resulting in rod formation. 
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EXPERIMENTAL PROCEDURE 

Synthesis 

Gold nanorods were prepared slightly modifying the procedure described by 

Nikoobakht & El-Sayed (Chem. Mater. 2003, 15, 1957). In a typical procedure, 

0.250 mL of an aqueous 0.01 M solution of HAuCl4·3H2O was added to 7.5 mL of a 

0.10 M CTAB solution in a plastic tube. The solutions were gently mixed by 

inversion. The solution appeared bright brown-yellow in color. Then, 0.600 mL of 

an aqueous 0.01 M ice-cold NaBH4 solution was added all at once, followed by a 

rapid inversion mixing for 2 min. The solution developed a pale brown-yellow 

color. The tube containing the seed solution was kept in a water bath maintained at 

25 °C for future use. This seed solution was stable for several days. 

The nanorod growth solution was prepared by adding the following reagents to a 

plastic tube in the following order and then gently mixing: 40 mL of 0.10 M CTAB, 

1.7 mL of 10 mM HAuCl4·3H2O, 0.250 mL of 10 mM AgNO3. Next, 0.270 mL of 

0.1 M ascorbic acid was added, which changed the solution from brown-yellow to 

colorless. To initiate nanorod growth, 0.420 mL of the seed solution was added to 

the growth solution, mixed gently, and left undisturbed at least 3 h. 

Characterization 

Absorption spectra of the solutions were acquired with a spectrophotometer (Jasco 

V-560, Jasco Europe, Italy). For transmission electron microscopy, nanorod 

solutions were dried on a copper grid and imaged at 100 kV (Philips CM-12, Philips 

Industries, The Nederlands). Absorption spectra and TEM images of synthesized 

nanorods are reported in §4.2. 

Gold Nanorod PEGylation (preliminary tests) 

The use of nanoparticles in most applications relies on the chemical modifications of 

the nanoparticle surface in order to link the nanoparticle to other biological 

molecules, substrates or other nanostructures. Because biological ligand-receptor 

recognition is used in nature to assemble highly complex nanostructures, stable and 

reliable biofunctionalization of inorganic nanoparticles is a desirable goal both for 
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biological labeling applications and as a powerful tool for nonbiological 

nanoparticle assemblies (nanosensors). In a standard functionalization procedure, the 

first step is to attach to the nanoparticle a stabilizing and protecting layer.  

Polyethylene glycol (PEG) is used to increase the biocompatibility and biostability 

of the nanoparticles. In fact, CTAB-capped gold nanorods have poor stability when 

they are dispersed in buffer solutions due to the aggregating effect of salt ions. 

Moreover CTAB solution are cytotoxic and may interfere with established  protein-

linking protocols. By capping the nanoparticle with PEG, the biocompatibility is 

greatly improved, and nanoparticle aggregation is prevented. PEGylated 

nanoparticles can readily be made by the conjugation of thiol-functionalized PEG 

with gold nanoparticles. 

EXPERIMENTAL PROCEDURE  

Synthesis 

We used the commercially available thiol-terminated methoxypolyethyleneglycol 

(mPEG-SH) as a stabilizer for nanorods. The PEGylation was performed slightly 

modifying the procedure described by Liao & Hafner (Chem. Mater. 2005, 17, 

4636) as reported in the following. 

The raw nanorod solution was centrifuged at 10000 g for 20 min to pellet the 

nanorods, which were decanted and then resuspended to 1 mL of DI water to reduce 

the CTAB concentration. One hundred microliters of 2 mM potassium carbonate and 

0.2 mL of 5 mM mPEG-SH were added to the nanorod solution. The mixture was 

stored overnight at room temperature, then was centrifuged, decanted, and 

resuspended in DI water several times to remove excess CTAB and mPEG-SH. 

Characterization 

Electrophoretic mobility of in a 0.4% agarose gel was performed 

to characterize functionalized gold nanorods. Gel migration 

distance after 2h 30 min at 130 V/cm was studied. PEGylated 

nanorods were well differentiated by electrophoresis as shown on 

the left (left: PEGylated nanorods; right: CTAB-capped 

nanorods). 
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