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1.1 STRUCTURAL BIOLOGY 
 

Genome sequencing projects have made available the complete genome 

of more than 60 species in addition to thousands of viruses. This sudden 

increase in the amount of genomic information has provided a new 

starting point to understand our basic genetic machinery. 

Proteins, encoded by genes, perform their functions by interacting with 

each other in coordinated networks. But, only a fraction of these networks 

has been identified and characterized through classical biochemistry. A 

much more comprehensive view of proteins interaction patterns within 

cells will become possible with sequence information from multiple species, 

including humans. The knowledge of the full complement of our genes, 

and the function of correspondent proteins, should enable us to identify 

all of the metabolic pathways in the human body. 

In the latest years, besides the genome sequencing projects, the field of 

structural genomics has seen an explosive growth. The efforts of 

structural biology projects tend to obtain a full coverage of the fold space 

and to structurally characterize all the products of selected genomes. 

Structural biology requires a large number of process steps to convert 

sequence information into a 3D structure; which includes: choosing 

proper expression constructs, setting up of right growth conditions and 

efficient purification strategy.  

Usually, the three-dimensional structures of proteins, or protein domains, 

are obtained by X-ray crystallography or NMR spectroscopy. NMR is 

unique in that it allows researchers to study the conformation of these 

molecules in the liquid state, which more closely resembles the cellular 

environment. Moreover, it easily allows the characterization of biological 

molecules under several different experimental conditions, such as 

different pH and ionic strength values, as well as in the presence of 

denaturating agents for the study of the unfolding process.  

 7 



Many enzymes exert their cellular functions in the context of larger 

assemblies and not as isolated molecules, since they often are part of 

more than one cellular complex. Understanding proteins behaviour in vivo, 

therefore, requires the study of their structure and function within the 

context of such complexes, since they are the mediators of biological 

function in the cell, and so the relevant targets for drug design. 

Thus, the role of NMR will be crucial not only in the structure 

determination of proteins as stand-alone entities, but also in the dynamic 

characterization of their functional complexes and the investigation of 

ligand binding. 

 

1.2 METALLOPROTEINS 
 

Although traditionally regarded as organic, life is inorganic too. Indeed  

metals are commonly found as natural constituents of several 

biomolecules. At present, we are aware of 13 metals which play an 

essential role as trace elements in many biological systems11 for plants 

and animals11;46. Four of these, sodium, potassium, magnesium and 

calcium, are present in large quantities and are known as bulk metals46. 

The remaining nine, which are present in small quantities, are the d-block 

elements vanadium, chromium, molybdenum, manganese, iron, cobalt, 

nickel, copper and zinc, and are known as the trace metals.  

The importance of metals in living organisms is mainly due to the 

feasibility of their transfer in different cell compartments, where they can 

be employed in various biological processes such as: electron transfer 

reactions, oxygen transport, signals transductions, and in a large variety 

of catalytic processes.  

The Lanthanide ions play a particular role between all metals. Indeed the 

striking similarity of lanthanide(III) ions to calcium(II) ions in size, 

coordination environment and ligand preferences, along with strong Lewis 

acidity, suggests that this crossover could reasonably be made. Although 
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not as rare as their name would imply, the low biological availability of the 

lanthanides no doubt precluded this evolutionary outcome.  However, this 

presents an exciting opportunity for chemists to explore the properties, 

structure, selectivity and reactivity of Ln’s in Ca2+ binding sites. Indeed 

calcium-binding proteins are characterized by a native metal-binding site, 

where the calcium can be naturally substituted with different lanthanide 

ions. It is generally accepted that the substitution of Ca2+ with Ln3+ does 

not significantly alter the conformation of the proteins15;19;61, so this 

strategy can be used to perform structural proteomic studies through the 

analysis of paramagnetic restraints, as reported14;25.  The trivalent Ln ions 

have an array of useful chemical and spectroscopic properties that include 

luminescence, paramagnetism (for all but La3+ and Lu3+) and hydrolytic 

activity (due to strong Lewis acidity). These characteristics make them 

valuable probes to study structure, function and dynamic interactions in 

biomolecules.  

Current estimates indicate that about one third of all structurally 

characterized proteins are capable of binding one or more metal ions 

(hence called metalloproteins) either as a structural component, as a 

triggering agent for their activities, or as a catalytic co-factor30 thanks to 

their redox and acid/base properties. 

In addition to the metal cofactor, an enzyme can have a prosthetic group, 

usually covalently bound to some specific residues, that often play an 

important role in its functions. Heme group is one prosthetic subunit 

extensively  characterized, since the proteins with this cofactor (as well 

known as hemeproteins) are involved in several biological processes.  For 

esample, one small heme protein, as cytochrome c12, is an essential 

component of the electron transfer chain66 and also an intermediate of 

apoptosis40;41;47;57. 

To complete the picture, metals are also very important for the structure 

and function of nucleic acids, specifically RNA.  

Several metals are thus essential for organism survival, but toxic when in 

excess. Consequently, their intracellular concentration as well as the 

distribution among the various cell compartments, and their incorporation 
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into metalloproteins, must be tightly controlled21;30. A proper balance of all 

the involved processes is necessary for a healthy phenotype. 

Therefore, the characterization of metalloproteins is an important aspect 

to understand several biological systems. 

Genome sequencing projects have provided a huge number of protein 

primary sequences, but although several different elaborated analyses and 

annotations have been enabled by a rich and ever-increasing portfolio of 

bioinformatic tools, metal-binding properties remain difficult to predict as 

well as to investigate experimentally. Consequently, the present knowledge 

about metalloproteins is only partial30.  

An integrated and multidisciplinary approach, including bioinformatic, 

molecular biology and structural proteomic, must to be used to investigate 

the metalloprotein family. 

 

1.3 AIMS AND TOPICS OF THE       

RESEARCH 
 

During these three years of PhD, my research was focused on the 

investigation of metalloproteins using a multidisciplinary approach. In this 

frame, I tried to integrate different scientific fields for this common aim. 

This thesis is divided into two main projects. The first one is focused on 

genomics studies dealing with the search of polymorphisms in a 

mitochondrial metalloprotein. The second one is a structural proteomics 

study, involving the exploitation of the calcium-lanthanide substitution to 

obtain structural information in solution. 

The reason behind the choice of studying Single-Nucleotide-

Polymorphisms (SNPs) lies in the fact that several genomic studies have 

evidenced the relationship between DNA sequence variations, as 

mutations or SNPs, and diseases69. 

Therefore I decided to perform a study in order to understand the degree 

of polymorphism of metalloproteins in possible relation with their 
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misfunctions. 

During this analysis I noticed that the SNP density of the human Cyt c 

gene (CYCS) is 1 order of magnitude higher than the average SNP density. 

In particular I focused my attention on the coding region of Cyt c, since 

the existence of Cyt c variants (cSNP) affecting biological functions without 

being incompatible with life, could be hypothesized. From the evolutional 

point of view, such variability could be also the indication of an 

exceptional propensity of the human Cyt c protein to individual plasticity. 

Since all these cSNPs were obtained by computational methods only20, the  

aim of our research was the experimental validation of these putative 

cSNP. 

 

In the second project I exploited a structural proteomic approach in order 

to investigate protein function through structural data and biophysical 

proprieties. 

My attention was mainly devoted to the expression of proteins, which 

present a calcium-binding motif, since the calcium in their native metal-

binding site can be naturally substituted with different lanthanide ions. 

The presence of these peculiar metals in a protein allows to exploit 

paramagnetic restraints (T1 enhancements, pcs and rdc) to obtain more 

accurate structural informations on protein-protein interaction or protein 

complexes 3;16, thus increasing the feasibility of NMR characterization. 

My interest was focused on two proteins involved in the copper transport, 

HAH1 and first metal domain of ATP7A (MNK1)48;49, as a model system to 

investigate the protein-protein interaction using the paramagnetic 

approach. In particular, I have expressed some constructs of human 

protein HAH1 that despite lacking a native Ca2+-binding site, can acquire 

the ability to bind lantanide ions by inserting calcium-binding site as 

tags29;50;82 in its constructs. In this frame, I exploited a peptide (LBT), 

already used in several research works31;82, in order to determine using a 

paramagnetic approach the structure of the metal-mediated adduct, which 

was formed by HAH1 and MNK1 proteins. A significant potential 

shortcoming of the LBT strategy is that these relatively short polypeptides 
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may feature a significant conformational with respect to the protein or 

domain that they are fused to. This may harness the usefulness of the pcs 

measured for structure determination of proteins or protein complexes. 

Also in this context, I developed a new paramagnetic tag proposing as 

candidate the entire CalbindinD9k , since the flexibility of this tag respect 

to the tagged protein could be restricted  taking advantage of the steric 

volume occupied by tag and protein. In this case the entire protein P43M 

Calbindin D9k (CABP) was fused to the first metal domain of ATP7A (MNK1), 

in order to demonstrate the feasibility of this new tag. 
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INTRODUCTION 

Single Nucleotide Polymorphism 
 

The completion of the human genome project (HGP)24 has allowed the 

identification of thousands of gene polymorphisms, so the scientific 

attention is now rapidly shifting towards the study of individual genetic 

variations. In fact the sequencing of the human genome would open up 

the possibility to systematically identify all possible gene variants in 

different human populations, associate their presence with individual 

phenotype, including disease susceptibility, and determine the functional 

impact of such variations. The most abundant source of genetic variations 

in the human genome comprises single nucleotide polymorphisms 

(SNPs)23;71. A polymorphism (a term that comes from the Greek words 

"poly," or "many," and "morphe," or "form") is a DNA variation. They occur, 

on average, once every 300 base pairs of sequence with a minor allele 

frequency (MAF) greater than 1% 43;64;73. Although the majority of SNPs are 

probably functionally neutral, some clearly have functional effects, and 

thus are presumed to underlie the differences in human biological traits 

and individual response to therapeutic treatment or environmental 

exposure. The SNPs in gene coding regions (cSNPs), altering the amino-

acid sequence, can lead to changes in the structure and biological 

properties of the encoded protein. For example, SNPs in the NAT2 gene 

significantly decrease the enzyme metabolism of aromatic amines10, and 

individuals who are homozygous for low activity alleles, have an increased 

risk for smoking-induced bladder cancer53. 

Several studies about the peroxisome proliferator-activated receptor-

gamma2 (PPAR_-gamma2) have reported conflicting results with regard to 

the association between a frequent polymorphism of this gene and 

complex traits, such as insulin sensitivity, Type 2 diabetes and obesity76. 

In the same way, cSNP in the MTHFR gene have been clearly associated 

with a decreased enzyme activity, so these polymorphisms could be used 
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as genomic predictors of clinical response to fluoropyrimidine-based 

chemotherapy52. 

In contrast, the SNPs in non coding gene regulatory regions, such as 

promoters, enhancers, silencers, and introns, may affect gene expression 

levels in an allele-specific manner63, and these functional polymorphisms 

represent an important but relatively unexplored class of genetic 

variations37. There are several examples of a SNP in a regulatory region 

causing either complete elimination of the natural transcription factor 

binding site18;78 or formation of a novel spurious site42;62. In addition, 

SNPs in transcription factor binding sites can lead to allele-specific 

binding of transcription factors and can modulate gene expression35.  

So, in the future, the characterization of these processes and the 

understanding of the impact of polymorphism will possibly prevent and 

control the environmentally induced diseases and allow progress in 

pharmacological research. Indeed, there are a lot of projects devoted to the 

determination and validation of the presence of SNPs in several genes. The 

NIEHS Environmental Genome Project (EGP) is a systematic attempt to 

identify genetic variation in environmentally responsive genes and up till 

now, over 44669 polymorphisms in 332 environmentally responsive genes 

have been discovered and catalogued in NIEHS Gene SNP database 

(http://www.genome.utah.edu/genesnps/). Another initiative, designed to 

characterize the polymorphisms, is SNP500Cancer. This project is a part 

of the National Cancer Institute’s Cancer Genome Anatomy Project (CGAP) 

and represents a resource for the mapping of SNP variations in cancer-

related genes (http://snp500cancer.nci.nihgov/)59. 

Although these initiatives are aimed at providing a reliable source of 

information regarding well characterized human genes, their degree of 

coverage of the about 25,000 annotated human genes is still negligible. 

For this reason, the main bioinformatics resource to retrieve starting 

information on variations in human genes, remains the dbSNP database 

developed at NCBI20;22;39. 

Since metalloproteins are involved in numerous essentials process of life, 

the discovery and the validation of new metalloproteins SNPs are an 
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important advancement for the scientific research.  

 

Search for SNPs of Cytochrome c 
 

Cytochrome c (Cyt c ) is an intensively studied metalloprotein because it 

has a relatively small size (104 amino acids in mammalians) and it is 

involved in numerous cellular processes essentials for life, such as aerobic 

and anaerobic respiration or apoptosis40;41;57. It is an ubiquitous protein, 

found in all prokariotes and to date in more than 100 eukariotes. Their 

alignment showed that the primary sequence is very highly conserved, 

with residue identity ranging between 45% and 100% across all 

eukariotes9. The Cyt c sequence and overall fold are thus well preserved 

during evolution. The amino acids coordinating the iron ion (His18 and 

Met80) are conserved especially in the region around the axial Met80, 

whereas the one around the axial His18 is slightly more variable. Several 

functions of cytochrome c are associated with the protein-protein 

interactions between the polypeptide itself and its interacting partners, so 

in this case the presence of SNPs could change the efficiency of these 

process. To support such hypothesis, it is well known that in anthropoid 

primates the genes, encoding components of the mitochondrial electron 

transport chain (ETC), have been major targets of darwinian positive 

selection65;83. 

Sequence comparison have provided evidence that marked increase of 

non-synonymous substitution rates occurred in anthropoid ETC genes 

encoding subunits of complex III and IV and cytochrome c; moreover this 

accelerated amino acid replacement rates of COX (cytochrome c oxidase) 

and CYC (cytochrome c ) in the stem anthropoid and stem catarrhine 

lineages were coadaptive. These molecular evolution changes might have 

had functional consequences for the mechanism and the rate of aerobic 

energy production in anthropid cells, since this phenotypic changes could 

be associated with enlarged neocortex, prolonged fetal development and 

extended lifespan, all process supported by adaptations in aerobic energy 
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production. 

While components of the COX and of the apoptosome complexes have 

been shown to undergo disease-causing mutations in humans and 

mice36;60, evidence of Cyt c sequence variation in metazoan has never been 

reported. Prenatal lethality due to this variation is suggested by death at 

midgestation of embryos with targeted disruption of the Cyt c gene, even if 

cell lines established from early Cyt c null embryos were viable if 

compensated for defective oxidative phosphorylation45. Moreover extensive 

experimental mutagenesis has been performed in the yeast Cyt c ortholog, 

with the generation of several viable mutant strains70, and some knock-in 

mice generated with a point-mutated Cyt c gene reached adulthood34. 

Therefore, the existence of Cyt c variants affecting biological functions 

without being incompatible with life, could be hypothesized. 
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MATERIAL and METHODS 
 

SNP Analysis 
 

Genome browsing 

 

One of the main challenges that the molecular biology community has to 

face today, is to make sense of the wealth of data produced by the genome 

sequencing projects. In the past decade, bioinformatics have become an 

integral part of research and development in the biomedical sciences. 

Bioinformatics now has an essential role both in deciphering genomic, 

transcriptomic and proteomic data generated by high-throughput 

experimental technologies, and in organizing information gathered from 

traditional biology. It is an interdisciplinary research area at the interface 

between the biological and computational science. The ultimate goal of 

bioinformatics is to uncover the biological information hidden in the mass 

of data, in order to obtain a clearer insight into the fundamental biology of 

organisms.  

A number of data banks are available and provide the scientific 

community with tools for gene banks searching protein sequences 

analysis and the prediction of a variety of protein properties. Primary 

databases contain information and annotations of DNA and protein 

sequences, DNA and protein structures and protein expression profiles. 

Some available databases for genome browsing are: 

• NCBI (www.ncbi.nlm.nih.gov) This web site integrates information 

from several databases (Swissprot, EMBL, all geneBank, etc...) 

1. dbSNP (www.ncbi.nlm.nih.gov/projects/SNP/). In collaboration 

with the National Human Genome Research Institute, the 

National Center for Biotechnology Information has established 

the dbSNP database to serve as a central repository for both 
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single base nucleotide substitutions and short deletion and 

insertion polymorphisms. 

2. BLAST (www.ncbi.nlm.nih.gov/BLAST/): Standard BLAST 

(Basic Local Alignment Search Tool) is a set of similarity search 

programs, designed to explore all of the available sequence 

databases regardless of whether the query is protein or DNA.  

• Ensembl (www.ensembl.org) is a joint project between the EMBL-

EBI and the Wellcome Trust Sanger Institute, that aims at 

developing a system that maintains automatic annotation of large 

eukaryotic genomes. It is a comprehensive source of stable 

annotation with confirmed gene predictions that have been 

integrated from external data sources. Ensembl annotates known 

genes and predicts new ones, with functional annotation from 

InterPro, OMIM, SAGE and gene families. 

• PDB (www.rcsb.org/pdb) is a 3-D biological macromolecular 

structure database. 

• CLUSTALW (www.ebi.ac.uk/clustalw/) is a general purpose 

multiple sequence alignment program for DNA or proteins. It 

produces biologically meaningful multiple sequence alignments of 

divergent sequences. It calculates the best match for the selected 

sequences, and lines them up so that the identities, similarities and 

differences can be seen. Evolutionary relationships can be seen 

through viewing Cladograms or Phylograms. 

 

cSNP retrieval 

 

Coding Single Nucleotide Polymorphisms have been retrieved in the dbSNP 

BUILD 125 (www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search& 

term=) and the Uniprot/SwissProt databases (http://expasy.org/sprot/). 

The Ensembl (www.ensembl.org) has been also used for SNP annotation 

(Fig.1). 
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Figure 1 Alignment of the nucleotide and aminoacid sequences of Cyt c showing the 
         SNP positions 

 

 Surveying the dbSNP database 

 

The public SNPs database dbSNP (build 125) 

(http://www.ncbi.nlm.nih.gov/projects/SNP/) was queried using either 

the ENTREZ SNP filter mask or queries with Boolean operators. The 

success rate of candidate cSNPs derived from in silico analysis of public 

EST libraries was estimated by restricting the queries to the panel of 546 

genes re-genotyped by the NIEHS Environmental Genome Project (EGP) 

(http://egp.gs.washington.edu). EGP-derived SNPs and SNPs, coming 

from the two EST–based computational methods published in Nature 

Genetics, were retrieved in dbSNP according to the criterion that they had 

the [HANDLE] tags “EGP_SNPS” for the NIEHS project dataset, the 

[HANDLE] “CGAP-GAI” for the Buetow et al dataset20 (query restricted to 

“computed”[METHOD]) and the [HANDLE] “LEE” for the Irizarry et al. 

dataset39.  
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Experimental cSNPs were retrieved in dbSNP according to the criterion 

that they had the following [METHOD] tags: “sequence”, “hybridize”, “rflp”, 

“sscp”, “dhplc”. Computational cSNPs were retrieved in dbSNP according 

to the criterion that they had the “computed” [METHOD] tag. 

 

 Resequencing of cytochrome c 
 

Reliability of our experimental method 

 

A mono-directional sequencing for the 3’ UTR flanking regions of CYCS 

gene for both SNP rs7810784 and rs12700584 was performed using 

standard methods. Genomic DNA, as template, was obtained form Coriell. 

For SNP rs7810784 the forward primer 5’-

TTTAACCCAGAAGTAATCAGCCCAGTAGTA-3’ was used to sequence of a 

PCR segment (410 bp). Said PCR fragment was amplified using the 

following forward primer 5’-TTTAACCCAGAAGTAATCAGCCCAGTAGTA-3’ 

and reverse 5’-CCAACACAGACCTTAATATAGGAGGCATAG-3’(30)  

For SNP rs12700584 the primer 5’-AAACTAGATAACTGGGCGTCGTGGT-3’ 

was used to sequence PCR segment (530 bp). In this case, the primer 

forward 5’-AAACTAGATAACTGGGCGTCGTGGT-3’ and reverse 5’-

ATACTGATGACGGATTGCCAAAAGA-3’ were used in order to amplify the 

DNA fragment, containing analysed SNP. 

 

Experimental method of CYCS cSNP validation 

 

The gene CYCS (NM_018947.4, gi 34328939) was amplified from the 

genomic DNA of  95 samples from Coriell panel using the primers 5’-

AGTGGCTAGAGTGGTCATTCATTTACA-3' and 5’-

TCATGATCTGAATTCTGGTGTATGAGA-3', spanning the coding part of 

exon 2, the short intervening intron 2-3, and the coding part of exon 3 for 

a PCR segment of 609 bp. The amplified DNA fragments were analyzed by 
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electrophoresis on agarose gel and purified by QIAquik PCR Purification 

Kit (Qiagen). 

Bi-directional sequencing of the coding portion of the human cytochrome c 

was performed by standard methods  

 

Human DNA Samples  
 

Genomic DNA was obtained from the same panel of 95 individuals 

composing the Panel 2 used in the NIEHS Environmental Genome Project 

(http://egp.gs.washington.edu/). 

This population is defined here as the sample of N=95 DNAs with different 

etnicities. The anonymized samples were obtained from the Coriell Cell 

Repositories (Coriell Institute for Medical Research, Camden, NJ, USA), 

and represent four ethnic groups: 27 Africans (15 African-American, 12 

Africa Yoruba), 22 Caucasians (CEPH/ Utah), 23 Hispanics (Mexican-

American community of Los Angeles) and 24 Asians (12 Chinese, 12 

Japanese). The individuals comprised 45 male and 50 female. These 

individuals are not a random sample of any specific human population, 

and thus the predictive value of the sequence and genotype data provided 

will vary for different population samples. This panel is the same used by 

NIEHS SNPs Project. 
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RESULTS and DISCUSSION 
During the analysis of the degree of polymorphism in metalloproteins, it 

emerged that an unusually high number of cSNPs for Cytochrome c  were 

reported in the dbSNP build 125. For the coding region of human CYCS 

gene (Uniprot/SwissProt: P99999; Ensemble: ENS00000172115), 15 

coding non-synonymous SNPs (nsSNPs) and 3 synonymous SNPs (sSNPs) 

have been retrieved in the dbSNP build 125 database (Table 1). 
 

N°Residue SNP ID 
SNP 

type 
Alleles 

Ambiguity 

code 

Alternate 

residues 
Handle|Submitter ID 

14 Rs11548821 ns T/A W K, STOP CGAP-GAI|1494305 

18 Rs17851278 ns C/T Y C/Y 
YMGC_GENOME_DIFF|BC015130 

x37538470-C24457294T 

20 Rs11548816 ns G/A R T, I CGAP-GAI|1494299 

21 Rs11548815 ns C/T YR I, V CGAP-GAI|1494291 

24 Rs11548797 s T/C Y - CGAP-GAI|1494238 

26 Rs11548802 ns T/A WW 
M, K, 

STOP, L 
CGAP-GAI|1494260 

29 Rs11548799 ns T/C Y A, T CGAP-GAI|1494240 

31 Rs11548796 ns G/A RY S, P CGAP-GAI|1494237 

35 Rs11548805 ns C/T Y D, G CGAP-GAI|1494265 

39 Rs11548791 ns G/A R W, R CGAP-GAI|1494228 

40 Rs11548812 ns C/A M N, K CGAP-GAI|1494287 

44 rs1154880 ns C/T Y A, T CGAP-GAI|1494268 

48 Rs11548783 ns A/G R S, P CGAP-GAI|1494195 

51 Rs11548772 ns C/G S A, P CGAP-GAI|1494160 

56 Rs11548795 ns T/C Y R, K CGAP-GAI|1494235 

75 Rs11548820 ns T/C Y C, Y CGAP-GAI|1494304 

77 Rs11548818 ns G/T K H, P CGAP-GAI|1494302 

81 Rs11548778 ns A/G R T, M CGAP-GAI|1494175 

88 Rs11548785 ns T/C Y R, K CGAP-GAI|1494210 

95 rs3211448 s T/C Y - 
LEE|e2078449, 

SEQUENOM|sqnm209891 

96 rs3211449 ns T/A WK F, I, L 
LEE|e2078452; 

SEQUENOM|sqnm209892 

98 Rs11548776 s A/G R - CGAP-GAI|1494172 

100 rs3211451 ns T/G KK Q, T, P,K LEE|e2078484 

 

Table 1 cSNPs reported in dbSNP build 125 for CYCS  

 

Our attention was focused on the coding region of Cyt c, since 19 cSNPs 
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appeared in an ORF length of 319 bases and a SNP occurs, on average, 

once every 300 base pairs of sequence. Such SNP density on the human 

Cyt c gene is 1 order of magnitude higher than the average SNP density.  

That being so, we realized that the primary source of these SNP (15 out of 

19) was a dataset deposited in dbSNP in 2003 by CGAP-GAI project, on 

the basis of EST-based computational method20. The other cSNPs derived 

from a similar approach, again based on EST data39 (LEE, SEQUENOM). 

Such EST-based dbSNP data are generally used for genomic studies with 

the same level of confidence as well as SNPs obtained with experimental 

methods. Indeed, the papers 20;39, relating to describe such methods, 

claimed an overall success rates of 70-80% through sample validation 

experiments. 

However, the internal check that we performed within the dbSNP database 

in order to determine the percentage of SNP retrieved by computational 

methods and verified by experimental approaches, showed that only 

28.2% of the cSNPs deriving from EST-based computational methods have 

been detected also by experimental methods. This success ratio was 

already unexpectedly low, but we found that it decreased further (21.1%) 

when the comparison method was tightened by restricting it to the genes 

analysed in the frame of the NIEHS Environmental Genome Project (EGP) 

(http://egp.gs.washington.edu/) (Table 2). In this case, the LEE39 cSNP 

dataset scored 32,6%, and the CGAP-GAI20 cSNP dataset scored as low as 

19,1%. 

 

Therefore, the CYCS gene cSNPs were analysed in order to evaluate the 

potential structural and functional impact for such protein. Two of these 

reported cSNPs, namely the rs11548796 (Pro31Ser) and the rs11548778 

(Met81Thr), represent quite dramatic variations, since they are involved in 

the correct binding of the iron ion of the heme group. 

This prostethic group, covalently bound to Cyt c by thioether links 

between the vinyl groups of the heme and the sulphur atoms of two 

cysteins, contains an iron ion that lies in a six-coordinated geometry 

defined among the others by the Nε1 atom of the imidazole ring of His19 
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and the sulphur of Met81. The Hδ1 proton of said imidazole is hydrogen 

bound to the carbonyl oxygen of Pro31. 

Both residues Pro31 and Met81 are absolutely conserved in 113 

mitochondrial cytochrome c from different eukaryotes9; furthermore, 

residues surrounding Met81 are conserved at least in the 95% of all the 

organisms. On the contrary, in this region dbSNP reported two non 

synonymous variations, rs11548820 (Tyr75Cys) and rs11548818 

(Pro77His), which could in principle impair the protein functionality. 

Several studies68;74 have evidenced that Mendelian diseases associated 

cSNPs tend to occur at highly conserved amino acid positions even in 

quite distantly related proteins suggesting that they generally have severe 

impact on protein function. 



 

Non Synonymous SNPs Synonymous SNPs Total coding SNPs 

  
Deposited 

in 

dbSNP125 

Confirmed 

by 

EGP_SNPs 

% 

Confirmed 

 by 

EGP_SNPs 

Deposited 

 in  

dbSNP125 

Confirmed 

by 

EGP_SNPs 

% 

Confirmed 

by 

EGP_SNPs 

Deposited 

in 

dbSNP125 

Confirmed 

by 

EGP_SNPs 

% 

Confirmed 

by 

 

EGP_SNPs 

Experimental(a) 1085 453 41.7% 981 523 53.3% 2066 976 47.2% 

Computed(b) 848 131 15.4% 775 211 27.2% 1623 342 21.1% 

CGAI-GAP(c)  293 36 12.3% 229 74 32.3% 522 100 19.1% 

LEE(d) 194 48 24.7% 177 73 41,2% 371 121 32.6% 

Table 2. Number of cSNPs retrieved in the dbSNP build 125 restricted to the panel of 555 genes re-probed for variation  

by sequencing in the frame of the NIEHS Environmental Genome Project.  

cSNPs identified through  experimental methods (sequencing, hybridization, RFLP, SSCP, dHPLC) but EGP_SNPS. 

cSNPs identified through computational methods. 

cSNPs identified by CGAP-GAI20 

cSNPs identified by LEE39.  
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These statistical considerations linked to the putative high structural and 

functional impact of some reported mutations led us to search 

experimental validation for these SNPs, since the existence of Cyt c 

variants (cSNP), affecting biological functions without being incompatible 

with life, could be hypothesized. 

Since all these human CYCS cSNPs are still lacking validation or 

independent discovery by other methods, we PCR-amplified and bi-

directionally resequenced the coding parts of two human Cyt c coding 

exons and the short inverting intron. 

 

In order to assess the goodness and the reliability of our experimental 

method to determine the presence of SNPs in the coding region of human 

CYCS, we choose to re-validate, using the same method, two SNPs present 

in 3’-UTR region of same gene. Two SNPs were selected: rs7810784 and 

rs12700584. Both these SNPs have been previously tested and validated 

by non-computational methods, as reported in dbSNP database. 

In order to re-validate the SNP rs7810784, we selected a sub-panel of 12 

individuals (Coriell ID: NA18526, NA18524, NA18562, NA18537, NA18545, 

NA18572, NA18609, NA18552, NA18566, NA18621, NA18577, NA18635) 

from the CSHL-HAPMAP project (HAPMAP-HCB population) and re-

sequenced the corresponding 3’-UTR flanking region. We obtained the 

following genotype data G/G 0.416, A/G 0.250, A/A 0.333 and allele 

frequencies A 0.458, G 0.542, fully consistent with the experimental data 

from CSHL-HAPMAP reported in dbSNP125 (genotypes: G/G 0.429, A/G 

0.310, A/A 0.262, Alleles: A 0.417, G 0.583). 

As for the SNP rs12700584 genotype and allele frequencies data are 

available for each individual of our panel in the CSHL-HAPMAP project 

(HAPMAP-HCB population), we choose to re-sequence three individuals 

(Coriell ID: NA18526, NA18609, NA18545). 

Three individuals reported to be C/C homozygote (NA18526), C/T 

heterozygote (NA18609), and T/T homozygote (NA18545) were selected, 

and their 3’-UTR sequences showed the correct genotype for all three. 

Again, the genotype data from our sequencing are consistent with data 
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from CSHL-HAPMAP project. 

These results shown the full reliability of our sequencing method. 

Since the accuracy of our experimental method was verified, we analysed 

the presence of CYCS cSNPs in a statistically meaningful sample of 

different individuals, and we selected the same pool of individuals used in 

the EGP project. The coding parts of the two CYCS coding exons and the 

short intervening intron were PCR-amplified from the selected panel of 95 

individuals (Fig.2) and bi-directionally sequenced.  

600 bp 

Figure 2 Agarose gel of gene CYCS amplified by PCR from several individuals of 

Coriell panel. Line 1 is marker of molecular weight (100 bp Fermentas) 

 
We expected this quite high number of experimentally verified cSNPs to be 

able to provide a reasonable estimate of the reliability of the candidate 

cSNPs for this gene. Surprisingly, none of the 19 cSNPs was found in 95-

individuals panel (190 chromosomes) and no other new SNPs were found. 

 

It could be argued that 190 chromosomes may not be sufficient to 

discover rare SNPs, and therefore several, if not all, of the candidate 

cSNPs of CYCS will be eventually validated by experimental studies on 

samples of larger depth. However, it should be kept in mind that also the 

method by CGAI-GAP20 uses a number of selected EST sequences of at 

most a few hundreds (194 in the case of CYCS), i.e. comparable to the 

number of chromosomes in the present analysis. Therefore, it is extremely 
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unlikely that a significant number of the 19 candidate cSNPs of CYCS be 

rare SNPs. 

Taken together, the re-examination of the SNPs deposited in dbSNP by 

EST-based methods casts serious doubts on the validity of this 

computational approach. From the present statistics, we should conclude 

that on average three out of four candidate cSNPs are instead sequence 

errors. It is likely that it is not the computational approach itself that is 

faulty, but rather the reliability of the raw data, i.e. of the deposited EST 

sequences. This should not be surprising, as the depth of the EST 

sequences was dictated by the need to reliably identify a consensus 

expressed sequence for any given cluster, not to reliably identify outliers. 

In other words, the quality of the EST sequences was good enough to 

identify the major allele for each variant base in the genome, but not good 

enough to discriminate a real SNP from an error (in reverse transcription, 

DNA amplification or sequencing). 

 

In conclusion, from our resequencing of the human CYCS gene in a 95-

individuals panel we derived a likely monomorphism for the ORF of this 

gene in the human population, resulting in the absence of allelic variants 

of the Cyt c protein. Phylogenetically, an accelerated amino acid 

replacement rate, especially at the interface with COX, has been described 

recently for Cyt c orthologs in anthropoid primates but not in other 

mammalian lineages65. This finding has been interpreted as a possible 

adaptive response to the increase production of oxygen radicals by 

mitochondrial respiration in enlarged brains of longer-living individuals, 

two phenotypic features characteristic of the anthropoid evolution. If true, 

this hypothesis should be reconciled with our finding of Cyt c 

monomorphism in our species, possibly favoured by the structural 

constraints imposed to Cyt c by the interactions with two mitochondrial 

(Cytochrome bc1 and COX) and one cytosolic (apoptosome) complexes 

while performing its key cellular roles in respiration and programmed cell 

death. 
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Chapter III      

          The use of pseudo-

contact shift induced by a 

Lanthanide-biding tag for the study 

of protein-protein interactions. 
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INTRODUCTION 
 

NMR spectroscopy is a well-established technique for the determination of 

the three-dimensional structure of proteins, nucleic acids and their 

adducts in solution. The structural characterization of multi-domain 

proteins or of protein-protein complexes is often a challenging task due to 

the paucity of restraints that can be measured when the domain-domain 

interaction is relatively weak, and therefore interdomain dynamics is 

present, or when the affinity of the complex is low, and thus again 

dynamics can be present. Even when the extent of dynamics is modest, 

the determination of inter-domain or inter-protein NOEs to be used in 

structural calculations can be technically difficult. 

In this context, the incorporation of lanthanide ions into proteins can be 

quite effective thanks to the effects that they can induce in the NMR 

spectra, which are a potential source of information on long-range 

interatomic distances, on the reciprocal orientation of domains, and on 

interdomain or inter-protein dynamics. This wealth of information is due 

to the paramagnetism of the trivalent ions of lanthanides (Ln3+). Ln3+ are 

chemically stable and are paramagnetic (except La3+, Lu3+) due to the 

presence of unpaired electrons in their f orbitals. The paramagnetism 

causes pronounced changes in the chemical shifts of the nuclear spins 

located around the metal ion and causes partial orientation of the 

molecule at high magnetic fields. These effects are very well understood 

and can be described quantitatively. Other effects that are induced by 

these paramagnetic metals in NMR spectra are the enhancement of 

nuclear relaxation rates, and various cross-correlation effects. 

The above-mentioned paramagnetic contribution to the measured 

chemical shift of nuclei located several chemical bonds away but relatively 

close in space to the Ln3+ ion is called pseudocontact shift (pcs). 

Pseudocontact shifts can be measured quite accurately and easily, and 

provide structural information at distances up to 30-40 Å. Therefore , they 

have long been used for structure determinations of paramagnetic 
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metalloproteins by NMR spectroscopy. More recently, the residual dipolar 

couplings (rdc’s) that can be measured for protein bond vectors thanks to 

the partial alignment induced by the Ln3+ ion at high magnetic field have 

also been shown to be very useful for structural purposes. 

Due to these favourable properties, and also to other useful properties 

such as luminescence or anomalous scattering of X-ray radiation, various 

methods for the incorporation of lanthanide ions into biomolecules have 

been explored. In various applications, the similarity of the Ln3+ ions to 

Ca2+ in ionic radius and oxophilicity has enabled their direct incorporation 

into calcium-binding proteins. The majority of proteins, however, lack 

native calcium-binding sites. Thus, one approach has been to incorporate 

lanthanide-chelating prosthetic groups e.g. through the chemical 

modification of cysteine side chains. These chelators can bind Ln3+ ions 

extremely tightly, but the process requires considerable manipulation. A 

straightforward approach is to integrate a lanthanide-binding sequence as 

a protein co-expression tag via molecular biology strategies. Recent design 

and engineering studies on calcium-binding structural motifs have 

resulted in the development of short polypeptides comprising 20 encoded 

amino acids or fewer that bind tightly and selectively to lanthanides. 

These peptides, dubbed "lanthanide-binding tags" (LBT’s), show affinities 

up to 109-1010 M-1 and are selective for lanthanides over other common 

metal ions. Various applications of the LBT strategy are available from the 

literature. A significant potential shortcoming of the LBT strategy is that 

these relatively short polypeptides may feature a significant 

conformational with respect to the protein or domain that they are fused 

to. This may harness the usefulness of the pcs measured for structure 

determination of proteins or protein complexes. In this paper, we used the 

adduct formed by the copper(I)-chaperone HAH1 and the first metal-

binding domain of the human ATPase ATP7A (MNK1) as a model system to 

investigate this matter, by fusing a LBT to the C-terminus of HAH1. It is 

shown that while the dynamics of the LBT prevents the use of pcs data for 

structure determination of HAH1 itself, the pcs induced on MNK1 still 

permit a low-resolution structural characterization of the complex 
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MATERIAL and METHODS 

Cloning, expression and purification of LBT-HAH1 

and MNK1 
 

The QuikChange mutagenesis kit (Stratagene) was used for insertion of a 

large DNA fragment encoding the LBT directly at the 3’ end of the gene 

encoding HAH1 in our previously developed plasmid for expression of the 

His6-tagged protein. In this way, the LBT tag was fused to the C-terminus 

of HAH1. We chose to use the sequence YIDTNNDGWYEGDELLA (17 

residues) for the LBT, which has been optimized for the present kind of 

applications54;72;82. The cloning protocol applied here represents an 

expansion of the classical QuikChange protocol, where PCR fragments are 

used as megaprimers for the insertion mutagenesis33;80. Three different 

constructs were prepared, where zero, one or two Gly residues were 

inserted between the protein and the tag (G0LBT, G1LBT, G2LBT, 

respectively). In the remainder, HAH1-LBT will be used to indicate the 

samples used in procedures identically applied to all three constructs.  

Protein expression and purification was carried out as previously 

reported2. The various HAH1-LBT constructs were expressed in E. coli 

strain BL21(DE3)Gold. Cells were grown at 37 °C in M9 minimal medium 

containing (15NH4)2SO4 as the sole nitrogen source. The medium was 

supplemented with a vitamin mix and a trace metal solution and 

contained ampicillin (100 μg/ mL). Protein expression was induced using 

1 mM IPTG at an OD600 of 0.6, and the cells were harvested 5 hours later. 

Cells were then harvested by centrifugation at 7000 rpm and resuspended 

in the lysis buffer (20 mM Na2HPO4 pH 8, 0.5 M NaCl, 5 mM Imidazole). 

Cell lysis was accomplished with 10 cycles of sonication; the suspension 

was finally centrifuged at 30000 rpm for 30 min. Protein purification was 

carried out by affinity chromatography with a HiTrap chelating FF affinity 

column (Amersham GE Healthcare Life Science) previously charged with 

Zn2+. The protein was eluted with an isocratic gradient up to 60 mM EDTA. 
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After purification, the His6 tag was cut by overnight incubation with 

Factor Xa (40 μg of enzyme/20 mg of recombinant protein) under reducing 

atmosphere in a glove-box chamber. The protein without the His6 tag was 

purified by passing the solution again through the HiTrap column charged 

with Zn2+, under conditions where the protein retaining the tag bound to 

the column. The typical protein yield was 30- 40 mg of purified protein/L 

of culture. 

 

The first metal-binding domain (5-77 A.A) of ATP7A (MNK1) had already 

been cloned in pET20b+. Said plasmid was transformed into E. coli 

Rosetta pLysS strain. M9 medium containing (15NH4)2SO4, as the sole 

nitrogen source, 100 µg /ml of ampicillin and 34 µg /ml chloramphenicol 

was inoculated with 10 ml/l overnight culture E. coli Rosetta pLysS  

expressing the human MNK1 and grown at 37°C in shaker. At OD600 of 0.6 

the expression of the recombinant protein was induced with 0.5 mM IPTG 

and the colture was incubated O/N at 17°C in order to prevent the 

formation of inclusion bodies. 

The purification protocol and sample preparation were the same used for 

the HAH1-LBT. 

 

 

NMR sample preparation 
 

All manipulations of the purified proteins (both HAH1-LBT and MNK1) 

were performed under reducing atmosphere in a glove-box chamber. Apo-

protein samples were reduced with excess dithiothreitol (DTT), and then 

washed with 100 mM Hepes, 100 mM NaCl, 2mM DTT buffer at pH 7.0 

using an Amicon stirred cell. Copper(I)-containing samples were prepared 

by incubating the apo-protein with a slight excess of [Cu(I)(CH3CN)4]PF6, 

as previously reported. NMR tubes were sealed before they were removed 

from the chamber. The final protein concentration in all samples was 

about 0.3 mM. NMR samples also contained 10% (v/v) 2H2O for NMR 
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spectrometer lock. 

NMR samples of the HAH1-LBT:MNK1 adduct were prepared by mixing in 

the same NMR tube equimolar amounts of HAH1-LBT and copper(I)-

loaded MNK1. Samples prepared by mixing copper(I)-HAH1-LBT and 

MNK1 gave identical NMR spectra. 

Ln3+-containing samples were prepared by adding aliquots from a stock 33 

mM solution of the chloride salt, up to a 1:1 Ln3+: HAH1-LBT ratio, either 

to HAH1-LBT alone or to the HAH1-LBT:MNK1 adduct. Binding of the Tb3+ 

ion was checked by fluorescence, as described in the literature31;51. 
1H and 2D [1H,15N]-HSQC NMR spectra were acquired using a Bruker 

AVANCE spectrometer operating at a proton frequency of 600 MHz and at 

a temperature of 298 K. 

 

Calculations 
 

Pseudocontact shifts (pcs, defined as the isotropic rotational average of 

dipolar shifts) are observed in NMR spectra of paramagnetic molecules in 

solution when there is a metal-based magnetic anisotropy. They are given 

by44;56: 

 

( ) ( ⎥
⎤

⎢
⎡ ΩΔ+−Δ== 2cossin31cos31 2

rh
2

ax3
pc θχθχδPCS )

⎦⎣ 212 iπr
  

   (1) 

where Δχax and Δχrh are the axial and the rhombic anisotropies of the 

magnetic susceptibility tensor, ri, θ and Ω are the polar coordinates of 

nucleus i with respect to the orthogonal reference system formed by the 

principal axes of the magnetic susceptibility tensor. The pcs is defined as 

the difference between the chemical shift of a nucleus observed in the 

paramagnetic compound and that of the same nucleus in a hypothetical 

molecule deprived of the unpaired electron(s) but with the same structure. 

In practice, the diamagnetic reference shift is often taken equal to the 

chemical shift of the same nucleus in an analogous diamagnetic 
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compound. Here, pcs are taken as the difference in chemical shift between 

the system loaded with a paramagnetic Ln3+ ion and with La3+, which is 

diamagnetic. 

Pcs simulations and fittings were performed with a suite of programs 

written in-house8. Structural calculations were run with the PARA-DYANA 

package77. For modelling, the available solution structures of HAH12, 

MNK126, Calbindin13, and of the adduct of the yeast homologous proteins7 

(Atx1:Ccc2) were used. 

In particular, the model of the HAH1:MNK1 was built from the Atx1:Ccc2 

adduct by superimposing the structure of HAH1 to that of Atx1 and the 

structure of MNK1 to that of Ccc2.  

In PARA-DYANA calculations, all dihedral angles of HAH1, MNK1 and LBT 

were kept fixed, with the exceptions described in the following. This 

procedure is comparable to a pcs-driven rigid-body docking of the various 

polypeptides. The position of the Ln3+ ion was always kept fixed with 

respect to the LBT. For calculations on HAH1-G1LBT where the LBT was 

allowed to move with respect to the protein, the backbone dihedral angles 

of the last amino acid of HAH1, of the linker Gly, of the first amino acid of 

the LBT were set as variable. This procedure was adopted to define the 

position of the LNT, and consequently of the Ln3+ ion, with respect to the 

protein. For calculations on HAH1-G1LBT:MNK1, the two proteins were 

connected through a 226-residue linker. The LBT was blocked in the best-

fit position resulting from calculations on HAH1-G1LBT by fixing the 

values of the backbone dihedral angles of the three above-mentioned 

residues. The atoms in the linker had null Van der Waals radius. This 

procedure allows free reorientation of one protein with respect to the other, 

driven only by experimental data7. 
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RESULTS  
 

Production of HAH1-LBT and of the HAH1-
LBT:MNK1 adduct 
 

The three different constructs of HAH1-LBT with zero, one or two Gly 

residues between the protein and the LBT could be all purified with good 

yield. In all cases, the HSQC spectrum was essentially superimposable to 

that of wild-type HAH1, with the exception of the two most C-terminal 

residues (Figure 1).  

15N 

ppm 
1H 

Figure 1 Superimposition of the [1H,15N]-HSQC spectra at 600 MHz, and 298 K  

in 100mM HEPES, 100mM NaCl, 1mM DTT pH 7 of  

 0.3 mM apoHAH1-G1LBT (with one connecting Gly) and  

 0.3 mM apo HAH1 
 

Copper(I)-binding capabilities were also unaffected. We found that all 

three constructs could bind Ln3+ ions. However, complete metallation of 

the tag in the HAH1 G0LBT construct lacking any linking Gly residue 

 37 



required an excess of Ln3+. This was not the case for the other two 

constructs. Figure 2 shows the HSQC spectrum of apo- HAH1 G1LBT in 

the presence of equimolar Tb3+. Note that here and in the remainder of the 

paper apo- HAH1-G1LBT refers to the protein devoid of copper(I). 

 

 
As expected5;82, binding of the higly paramagnetic Tb3+ ion induces 

broadening beyond detection of the majority of the signals from this small 

(68 amino acids protein). Indeed, this may be seen as a desirable feature 

when studying protein-protein complexes, due to the simplification of the 

spectra. On the basis of the above observations, we decided to use the 

construct with one Gly for all subsequent studies of the HAH1-LBT:MNK1 

adduct, in order to keep the linker length minimal so to minimize the 

degrees of conformational freedom between HAH1 and the LBT. Note that 

the C-terminus of HAH1 is involved in the formation of the last strand of 

Figure 2 Superimposition of the [1H,15N]-HSQC spectra at 600 MHz, and 298 K in 

100mM HEPES, 100mM NaCl, 1mM DTT pH 7 of 

15N 

ppm 1H 

 0.3 mM apoHAH1-G1LBT (with one connecting Gly)                  

0.3 mM apoHAH1-G1LBT + Tb3+ 1:1 (in the presence of one equivalent of Tb3+) 
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the four-stranded β sheet of the protein, and thus its mobility is relatively 

restricted. 

The HAH1-G1LBT:MNK1 adduct was formed by mixing equimolar amounts 

of apo-HAH1-G1LBT and copper(I)-MNK1. As already described for the 

yeast and a more complex human construct, the proteins do not form the 

adduct at amounts detectable by NMR in the absence of copper(I). Mixing 

the two proteins both enriched in 15N allowed us to measure 

simultaneously pcs values for both systems, thereby avoiding potential 

pitfalls such as differences in ionic strength or pH in two different samples 

were one protein was enriched and the other not. This is made possible by 

the fact that most signals of HAH1-G1LBT are not observable when the tag 

is loaded with the paramagnetic lanthanide ion. The lanthanides used 

were Tb3+, Dy3+, Er3+, Tm3+, whereas La3+ was taken as the diamagnetic 

reference. The various lanthanides induce pcs on the same nuclei that 

shift the signal left or right with respect to the position of the diamagnetic 

reference depending on the sign of the magnetic anisotropy of the metal 

(Figure 3). Magnetic anisotropies are known for the various lanthanide 

ions82. 

 

Figure 3 Variation in the position of the signal from the backbone amide group 

of Asn47 is HAH1-LBT:MNK1 samples loaded with different lanthanide ions 
(La3+, Tm3+, Dy3+, Er3+, Tb3+) 

ppm

15N

1H ppm 
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Pseudocontact shift simulations for HAH1-G1LBT 
 

As mentioned, we collected pcs data for the HAH1-G1LBT loaded with Tb3+, 

Dy3+, Er3+, Tm3+ vs. the La3+ diamagnetic reference (Table 1). 

Dy3+-La3+ Tb3+-La3+ Tm3+-La3+ Er3+-La3+ Residue 
HAH1 Chemical Shift Chemical Shift Chemical Shift Chemical Shift 

 HN N HN N HN N HN N 

N 24 -  -0,128 -0,076 -  -  
L 26 -0,207 -0,145 -0,097 -0.041 -  0,025 0,029 
G 27 -0,244 -0,061 -0,155 -0.040 -  0,017 0,051 
G 28 -0,235 -0,221 -  0,005 0.067 0,015 0,011 
V 29 -0,327 -0,091 -0,205 -0.001 0,080 0.161 0,077 0,294 
L 35 -  -  -  0,007 0,143 
K 39 0,056 0,003 -  -  -  
V 40 -  -  -  -0,079 -0,235 
A 53 -  -0,142 -0.240 -0,008 -0.037 0,035 0,029 
T 54 -0,275 -0,026 -0,091 -0.046 -  -  
T 61 0,037 0,089 -  -  -  
V 62 -  -  -  -0,046 -0,022 
G 71 -  -  -  0,239 0,257 

 

Table 1  The measured values of pcs for the resonaces of HAH1-G1LBT protein loaded 

with Tb3+, Dy3+, Er3+, Tm3+. 
  

The pcs data obtained could be fit to the HAH1 structure only assuming 

magnetic anisotropy values significantly smaller than those reported for 

Calbindin D9k. For Dy3+, the best-fit tensor values had Δχax as small as 

7.5⋅10-32 m3, vs. a reported value of 35⋅10-32 m3. Also noteworthy was the 

fact that the position of the Ln3+ ion was not uniquely defined. In fact two 

alternate positions could be identified, either when fitting one set of data 

at the time or simultaneously all sets for all paramagnetic ions introduced 

in the LBT. Letting PARA-DYANA optimise the position of the tag with 

fixed Δχ values also resulted in the same observation. It has to be noted 

however that the uncertainty on the tensor parameters and metal position 

determined is quite large, due to the fact that these parameters are all 

optimised simultaneously, at variance with what happens when a native, 

high-affinity binding site exists in the protein8. The present findings 

suggested to us the possibility that in solution there is relevant 

reorientation of the LBT as a whole with respect to HAH1. The pcs data 
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alone did not allow us to ascertain whether the LBT is in fast equilibrium 

between two different conformations or is exsploring a larger variety of 

conformations. Indeed, literature data already hinted at LBT’s to be quite 

flexible with respect to the protein they are fused to. This is in agreement 

with the smaller than expected rdc values measured for ubiquitin bound 

to the same LBT used here82 as well as from the measurement of order 

parameters reported recently for ubiquitin fused to the LBT or to a double 

LBT54. 

To obtain more insight into the problem, we simulated the effect of the 

reorientation of the tag as a rigid body with respect to the HAH1, again 

taken as a completely rigid structure. This was done by generating 2,000 

structural models of HAH1-G1LBT without any pcs constraint. This 

procedure in practice generates all possible conformations that are 

allowed given the length of the flexible part of the polypeptide chain and 

the steric hindrance of both HAH1 and the LBT. Pcs were calculated for all 

conformations assuming the orientation of the tensor with respect to the 

LBT was constant, and then averaged. The pcs values simulated for the 

HAH1 atoms in this dynamic situation were significantly reduced in 

magnitude with respect to what predicted if only a single conformation 

was populated in solution (with reduction factors up to a ten-fold or more 

for residues of HAH1 at intermediate distance from the LBT). Moreover, 

when looking at individual conformations one by one in several cases 

changes in the sign of the pcs could be observed, due to regions of HAH1 

passing from the regions of space corresponding to positive pcs to the 

regions corresponding to negative pcs or viceversa. 

We also evaluated the impact of this on our capability of safely fitting the 

pcs data to identify the position of the metal with respect to HAH1 and the 

orientation of the tensor, when assuming different constant values for the 

magnetic anisotropies. An example of these results is given in Figure 4.  
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Figure 4 Fitting of the position of the lanthanide ion with respect to HAH1 assuming 

known magnetic anisotropies in the case of (left) no mobility of the LBT (only the first 

conformation was included in simulation, with the metal position indicated by the blue 

sphere) or of (right) large conformational span of the LBT (the first 50 conformations 

simulated are shown as a thin line). The pcs values were simulated with Δχax = 28.3·1032 

m3 and Δχrh = 7.5·1032 m3, i.e. an anisotropy in between that of Dy3+ and Ho3+. Fittings 

were then run assuming Δχax values of 28.3, 24.5, 14.1, 5.7·1032 m3 (respectively: bright 

red, dark red, light brown, dark brown) and Δχrh values of 7.5. 1.5, 3.75, 0.75·1032 m3 

(respectively: bright red, dark red, light brown, dark brown). 

 

 

 

It is readily observed that the fitting procedure, which allows some 

tolerance for deviations between best-fit and input (i.e. simulated) pcs 

values, readily allows the localization of the metal close to the real position 

(within 1 Å) when the correct magnetic anisotropies are assumed. The 

analysis of the residual deviations also permits the correct identification of 

the choice of magnetic anisotropy values. On the other hand, when the 

conformational variability is taken into account, an average position of the 

metal cannot be identified safely and the fitting procedure is very unstable. 

Magnetic anisotropy values significantly smaller than those used for the 

generation of the simulated data tend to yield the lowest residual 

deviations, although this depends in part on the orientation of the 

magnetic anisotropy tensor within the LBT, which is different for different 

Ln3+ ions14;82. 
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Pseudocontact shift data for HAH1-G1LBT:MNK1 
 

Pcs data were measured for the HAH1-G1LBT:MNK1 adduct loaded with 

Tb3+, Dy3+, Er3+, Tm3+ (Table 2).  

 

Chemical Shift HN Residue 

MNK1 Dy3+ -La3+ Tb3+ -La3+ Tm3+- La3+ Er3+- La3+ 

V3 0,031 0,031 -0,015 - 
S5 -0,015 - - - 
V6 -0,032 - - - 
T7 - - - 0,015 
I8 -0,053 - - - 
S9 - - 0,054 0,054 

V10 - 0,039 -0,025 - 
E11 - - -0,09 -0,081 
C15 - - - 0,018 
T21 - - - -0,019 
I22 - 0,022 0,030 0,043 
Q24 - - -0,014 -0,02 
G27 - - -0,015 - 
K28 - 0,022 -0,010 - 
V29 - 0,010 -0,017 - 
N30 - 0,026 -0,017 - 
G31 0,015 0,015 - - 
V32 - 0,018 -0,013 - 
H34 -0,009 -0,007 -0,009 - 
I35 - 0,035 - 0,039 
K36 - - - 0,006 
V37 - -0,041 -0,042 -0,087 
L39 0,026 0,020 - - 
E40 - 0,012 - - 
E41 0,039 - -0,019 -0,024 
K42 0,064 0,027 -0,008 - 
N43 - - -0,016 - 
I46 -0,035 - - 0,01 
I47 -0,024 -0,016 - - 
Y48 -0,021 -0,006 - - 
L52 - - -0,015 - 
T54 -0,013 0,023 0,012 -0,022 
T57 - 0,010 - - 
K56 -0,066 - -0,015 0,006 
D64 -0,044 - - - 
M65 -0,040 - - - 
G66 -0,037 - - - 
I71 - - - 0,073 
H72 -0,014 0,005 - - 
N73 - - - 0,009 

 

Table 2  The measured values of pcs for the resonaces of MNK1 for the HAH1-

G1LBT:MNK1 adduct loaded with Tb3+, Dy3+, Er3+, Tm3+. 
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Figure 5 shows a mapping of the measured pcs values onto the model 

structure of the HAH1-G1LBT:MNK1 adduct for two different lanthanide 

ions. 

Er3+ 

MNK1 
HAH1 

HAH1 MNK1 

Dy3+ 
 

Figure 5. Pseudocontact shift values measured for the HAH1-LBT:MNK1 adduct 

mapped onto a structural model of the HAH1:MNK1 complex. Amide groups are indicated 

for which a pcs value could be measured are marked by spheres with a radius 

proportional to the average absolute value of the pcs measured. Red and blue spheres 

indicate positive or negative pcs, respectively. 

 

While some residues at the interface could not be analysed due to line 

broadening induced by formation of the complex (presumably because of 

exchange averaging at the interface6), it is readily observed that residues 

with pcs values of same sign and similar magnitude tend to cluster close 

in space. After fixing the conformation of HAH1-G1LBT to either one of 
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those detected through the fitting of the HAH1 data alone, rigid-body 

docking calculations were run using PARA-DYANA. In practice, we let the 

program optimize the position of MNK1 with respect to HAH1-G1LBT 

based on pcs data alone, using also fixed Δχ values. The contribution to 

the target function of PARA-DYANA due to pcs data was strongly 

overweighed with respect to that of Van der Waals interactions, in order to 

compensate for the imperfect conformation of HAH1 and MNK1 side 

chains. We therefore obtained two different bundles of structures for the 

adduct, differing for the conformation of the LBT, i.e. for the position of 

the Ln3+ ion with respect to HAH1. Only calculations starting with one of 

the two HAH1-G1LBT conformations resulted in a structure of the adduct 

very similar to that expected on the basis of homology modeling (Figure 6). 

 

 
 

 
Figure 6. Comparison of (red) the mean structure of the HAH1-G1LBT:MNK1 adduct 

and of (green) the structure of the HAH1:MNK1 adduct obtained from homology 

modelling. The structures have been superimposed on the backbone of HAH1, which is 

the protein on the left. 
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Notably, this adduct had a better agreement with the pcs data than the 

adduct resulting from calculations with the other conformation of 

HAH1-G1LBT. 

Simulations similar to those described in the preceding section were 

applied to the homology model of HAH1-G1LBT:MNK1. Also in this case, 

we observed that the conformational averaging reduced, to an extent that 

is again dependent on the orientation of the magnetic anisotropy tensor, 

the magnitude of the induced pcs. Remarkably however, the interface 

residues and their neighbouring regions typically have chemical shift 

values of the same sign and close in value in the two proteins. This is 

because at some distance (more than 30 Å) from the LBT tag, which in the 

present system is fused at the C-terminus of the protein i.e. at the 

opposite side of the protein with respect to the protein-protein interface, 

the conformational flexibility of the LBT results in a similar averaging of 

the pcs for the nuclei. Thus, the simulations validate the concept that a 

highly flexible LBT still allows the use of pcs data to generate reliable 

structural models of protein:protein adducts. 

 

 

DISCUSSION 
 

The use of artificial lanthanide-binding sites to aid the determination of 

the solution structure of proteins and, particularly, of protein-protein and 

protein-ligand adducts has been actively pursued by several research 

teams 27;79;81. This is due to the array of highly informative effects that can 

be induced by the paramagnetic Ln3+ ions in the system, which, in turn, 

can be captured with relative ease through NMR spectroscopy. These 

effects include mainly pseudocontact shifts (which result from the dipolar 

interaction of the nuclear spins with the magnetic moment of the 

lanthanide), residual dipolar couplings (which result from the partial 

alignment of the system in the magnetic field), and nuclear relaxation rate 

enhancement (also resulting from the dipolar interaction of the nuclear 
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spins with the magnetic moment of the lanthanide). All three effects can 

be exploited for structural purposes, as it has been extensively 

documented in the literature4;17. Various means of introducing the 

artificial lanthanide-binding site into the protein of interest have been 

developed and evaluated. One which is particularly straightforward is 

fusing a lanthanide-binding short (20 residues or less) polypeptide at one 

of the protein termini through protein engineering methods. These peptide 

stretches have been dubbed “lanthanide-binding tags” 

(LBT’s)31;32;54;55;58;67;82. 

Here we have focused on the possible use of pcs resulting from the use of 

an LBT described in the literature for structure determination purposes. 

Heterologous expression and purification of the fusion protein were 

performed using essentially the same protocol as adopted for the wild-type 

protein. The introduction of the LBT is thus indeed very straightforward 

from the protein manipulation point of view. Lanthanide ions could also be 

titrated in the system with ease, as shown both by fluorescence 

measurements (thanks to the presence of the indole side chain of a Trp in 

the LBT31;51) and NMR (Figure 2). Insertion of the more highly 

paramagnetic Ln3+ ions, which is mandatory to measure pcs at the long-

distances which are required for the characterization of a protein-protein 

interface while making sure that the LBT does not interfere with the inter-

protein interaction, had also the advantage of providing spectra which are 

devoid of many signals of the fusion protein. This in turn allowed us to 

measure pcs values for both proteins in an adduct where both partners 

were enriched in 15N, so that a complete set of data can be collected from 

an individual sample. 

As shown by the present data, and in agreement with previous literature82, 

the present fusion approach may allow significant conformational mobility 

of the LBT with respect to the protein of interest (HAH1 in our case). This 

makes the pcs values measured somewhat smaller than what one would 

expect in a rigid, but otherwise identical, system. Based on steric 

considerations alone, the conformational freedom of the LBT can be large 

enough to allow some nuclei of the protein to experience both negative and 
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positive contributions to the pcs, which thus tend to vanish. Under these 

conditions, fitting the observed pcs values to a magnetic anisotropy tensor, 

as normally done for proteins containing a native, rigid binding site for the 

paramagnetic ion (e.g. ferricytochromes, lanthanide-substituted calcium 

binding proteins), can yield to a significant underestimation of the 

magnetic anisotropy values and to an incorrect localization of the metal 

ion (Figure 4). The structural information provided by the pcs values thus 

becomes unreliable. Notably, this problem does not affect rdc values, 

which are simply scaled down by a factor related to the degree of freedom 

of the LBT with respect to the protein, and thus may be more difficult to 

measure precisely, but maintain their information content82. 

The mobility of the LBT influences also the pcs data measured for the 

partner in a protein:protein adduct, again reducing the magnitude of the 

effect. This makes their measurement more difficult and enhances the 

impact of the experimental error on the determination of the configuration 

of the adduct. Nevertheless, there is a clear indication that the data are 

still informative on the configuration of the adduct, i.e. on the relative 

position of the two proteins. This could be ascertained here as by using a 

homology model of the HAH1:MNK1 adduct as a “golden standard” to 

evaluate the results of docking calculations driven by pcs data. A chemical 

shift mapping of the HAH1:MNK1 interaction is already available, and 

confirms the correctness of the homology model6. Pcs-driven docking of 

MNK1 to HAH1-G1LBT with PARA-DYANA required some variations with 

respect to the protocol followed e.g. for Calbindin D9k. While in both 

protocols, the Δχ values are kept fixed, here to ensure convergence we also 

had to block the conformation of the LBT with respect to HAH1 in order to 

freeze the position of the paramagnetic Ln3+ ion. Because the fittings of the 

pcs data to the HAH1 structure showed that two different positions of the 

metal were in similar agreement with the data, we correspondingly run 

two parallel calculations. Simulated data suggested that when the tag is 

flexible, it may indeed by difficult to identify an optimal position for the 

metal ion (Figure 4). Importantly, this position does not correspond to a 

physically meaningful quantity, such as the average position of the 
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paramagnetic Ln3+ ion. Of the two families of structures that resulted from 

the two parallel calculations, one had better agreement with the pcs data, 

with all its members having a lowest target function than that the best 

member of the other. As shown in Figure 6, the average structure of this 

best family resembles closely the homology model of HAH1:MNK1. Also 

based on simulated data, we can thus conclude that notwithstanding the 

flexibility of the LBT, the pcs data measured for MNK1 are still informative 

enough to safely drive calculations and obtain with relative ease a 

structural model of a quality comparable to that obtainable from chemical 

shift mapping data28. 

As a concluding remark, we can highlight that the development of less 

flexible tags is a strong requirement to really boost the applicability of the 

technique. Some reports have already shown the usefulness of chemical 

tags that can be attached to pairs of protein side chains rather than to the 

side chain of an individual cysteine. Given the ease of use of fusion tags, 

as done here, another line of development would towards the use of 

bulkier tags, which can have more extensive contacts with the protein 

they are fused to and thus restricted flexibility. Initial results in this 

direction are also available in the literature54 and are also being explored 

in our lab. 
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INTRODUCTION  
 

Paramagnetism-based restraints, like pcs and rdc, have been 

demonstrated to represent a powerful tool to determine the relative 

position of two proteins for which such data have been obtained4;17. The 

advantages with respect to the information available with using external 

orienting devices to induce rdc are due to the fact that pcs are not 

available in the latter approach, and thus only information on the relative 

orientation, but not on the position, can be obtained in such cases. 

Furthermore, if the system experiences conformational variability, the 

paramagnetic pcs and rdc restraints can provide information on the 

preferred conformations sampled by the system, whereas such 

information is not achievable using external devices since the latter orient 

each protein or mobile protein domain independently. The paramagnetic 

restraints pcs and rdc are however available only if a paramagnetic metal 

is located inside the protein complex. This may be the case when one of 

the interacting proteins is a paramagnetic metalloprotein, or a 

metalloprotein where the diamagnetic metal ion has been substituted by a 

paramagnetic ion. In order to extend such strategy for the investigation of 

protein-protein complexes to systems without any metal ion inside, in the 

last years paramagnetic tags have been developed29;38;54;75;82. The most 

promising and investigated class of tags is probably constituted by the 

lanthanide binding tags, which are able to bind 11 different paramagnetic 

metal ions, corresponding to the paramagnetic lanthanide ions. The 

possibility to easily obtain pcs and rdc referred to more than one metal is 

quite important because allows for removal of the degeneracy of the 

solutions, intrinsic in single metal pcs and rdc measurements. 

A possible drawback due to the use of paramagnetic tags is that the latter 

must be rigidly attached to the protein, without significant flexibility, to 

make possible to exploit pcs as a source of information on the position of a 

protein in a reference frame. A strategy to improve the rigidity of the tag is 

to increase the number of contacts with the protein to which the tag is 
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fused38;75. Another strategy is to restrict tag flexibility taking advantage of 

the steric volume occupied by tag and protein. Here we have developed a 

novel tag corresponding to the entire protein P43M CalbindinD9k (CABP), 

which we have fused to the first metal-binding domain of ATP7A protein 

(Menkes 1 or MNK1). CalbindinD9k is composed by two EF-hand motifs 

connected by a loop; each EF-hand motif can bind a calcium ion. The 

protein has been shown to have a rigid and well defined structure, and to 

be able to selectively bind any lanthanide ion in its second EF-hand 

motif1;13;14. 

Menkes1 has been fused to CalbindinD9k starting from residue Met 5 

(CABP-MNK1); the first residues have been discarded due to their mobility. 

The structure of Menkes1 has already been solved. Our purpose in this 

work is to check whether the CABP tag is effective as a rigid tag, so that 

no significant mobility is present and pcs can be profitably used. 

MATERIAL and METHODS 

Cloning, expression and purification of CABP-MNK1 
 

The chimeric protein (CABP-MNK1) was obtained from the fusion of the 

bovine CalbindinD9k P43M (4-79a.a.) (wild type CABP: NM174257, 

gi:110347578) with the human first metal-binding domain of ATP7A or 

MNK1 (a.a. 5-77) (NM_000052., gi:115529485).  

The CABP cDNA sequence was fused by overlap extension PCR at the N-

terminal region of the MNK1. A first PCR reaction was performed using the 

plasmid expressing bovine CalbindinD9k P43M as template, in order to 

obtain a PCR fragment where the 3’-region contained a flanking sequence 

homologous to the 5’-region of MNK1 (primer: Forward 5’-CACC- 

ATGAAATCTCCGGAAGAACTGAAAGGTATC-3’, Reverse 5’-

CAGAATTCACACCCATCTGAGAGATCTTTTTAACCAGAACCTGG-3’). 

Viceversa, the plasmid expressing human MNK1 was used as template, in 

order to obtain a PCR fragment, where the 5’-region contained a flanking 

sequence homologous to the 3’-region of CABP (primer: Forward 5’-
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GTTAAAAAGATCTCTCAGATGGGTGTGAATTCTGTTACCATTTCTGTTG-3’ 

Reverse 5’-CTACTAATTATGGATAACAGCATCAAAGCCCATGTC-3’). In the 

second step, the fusion of the two proteins was obtained exploiting the 

complementary region and using the forward primer of CABP and the 

reverse primer of MNK1, and obviously, as template, both of the previous 

PCR fragments of the single gene (Fig.1). Finally, the chimeric gene was 

cloned in pDEST17 vector via Gateway system (Invitrogen). 

 

 
 

Figure1 Scheme of steps for CABP-MNK1 cloning ( the line arrows rappresent primer) 

 

The chimeric protein (CABP-MNK1) was expressed in 15N labeled M9 

minimal media in E. coli Rosetta pLysS (Novagen); the employed bacterial 

strain possesses a plasmid that encodes E. coli rare codons for arginine, 

isoleukine, leukine and proline 

1 PCR reaction step 

pICB1 

plasmid 

GENE 

Bovine P43M CalbindinD9K 

5’CACC 

pDEST17 

plasmid 

GENE 

human MNK1 

3' 5’CACC GENE Bovine P43M CABP (a.a.4-79) MNK1 5’ CABP GENE Human MNK1 (5-77 A.A) 

2 PCR reaction step

GENE Bovine P43M 3' GENE Human MNK1 5’CACC   5’CACC   GENE Bovine P43M CABP (a.a.4-79) 3' GENE Human MNK1 

3' MNK1 

5’ 3' GENE Human MNK1 5,5 

5’CACC   5’CACC   GENE Bovine P43M CABP (a.a.4-79) 

Gateway cloning system
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Cells were grown at 37°C until cell density measured at 600 nm reached 

the value of 0.6; protein expression was then induced with 0.5 mM IPTG 

and temperature changed to 17°C. After 14-16h cells were harvested by 

centrifugation and resuspended in lysis buffer (20mM Phosphate buffer 

pH7.2, 0,6M NaCl, 100μg/ml Lysozime, 2mM MgSO4). Cell lysis was done 

by heat-shock treatment and 3 cycles of sonication; the suspension was 

finally centrifuged at 20000g for 30’. Protein solution was then loaded 

onto a HisTrap chelating FF column (Amersham GE Healthcare Life 

Science) equilibrated with 20mM Phosphate buffer pH7 2and 0,6M NaCl. 

Protein was eluted almost pure with a step-wise gradient in the fraction 

containing 200 mM imidazole. The His-tag was then cleaved with AcTEV 

protease at 25°C with over-night incubation. Uncut protein and cleaved 

His-tag were removed by a second step of purification using HisTrap 

chelating FF column. 

NMR measurements 
 

The protein samples in deionized water were prepared with buffer-

exchange chromatography (H2O) under reducing atmosphere in a glove-

box chamber. The pH of the samples were adjusted to 6.0 by means of 

diluted solutions of NaOH and HCl. 

Yb3+, Er3+, Tb3+ and La3+ ions have been added to the CalbindinD9k tagged 

Menkes1  (CABP-MNK1) protein in order to replace the calcium ion 

present in the second metal binding motif of the CABP tag.   

Diluted solutions of CABP-MNK1 in water at pH 6 were concentrated up to 

80 μM in presence of D2O (10%) for an NMR spectrometer lock.   

Lanthanide-containing CABP-MNK1 samples were obtained by titrating 

the Ca2+ form of protein with stock solutions (30mM) of LnCl3. The 

solutions were prepared by dissolving  LaCl3, YbCl3, ErCl3 and TbCl3 in H2O, 

adjusting the pH at 5 with diluted solutions of NaOH and HCl. Titrations 

were followed by 1D 1H NMR and by 2D 1H, 15N-HSQC experiments using 

Bruker AVANCE spectrometer operating at proton frequencies of 500 MHz 

and at 298K. The NMR instrument was equipped with a cryo-probe. 

 54 



RESULTS and DISCUSSION 
 

Designer, cloning and expression of CABP-MNK1 
construct  
 

Several constructs were designed in order to reduce the linker length and 

to prevent any steric clash between the two proteins. The different 

constructs were then evaluated by performing energy minimization 

analysis of the relative structural models using the CYANA program. The 

models were generated starting from the PDB of the isolated CalbindinD9k 

(1KQV) and MNK1 (1KVJ) structures. In the calculation all the dihedral 

angles of  CalbindinD9k and of MNK1 were keeped fixed and only the few 

aminoacids connecting the two proteins were left free to move. The model, 

costituited by a fusion of the CABP and the MNK1, showed that no sterical 

hindrance occurs between the two proteins by linking directly the C-

terminal of CABP (a.a 4-79) to the N-terminal of MNK1(5-77a.a.). (Fig.2). 

The sequence of the selected construct is reported below. 

 

MKSPEELKGIFEKYAAKEGDPNQLSKEELKLLLQTEFPSLLKGMSTLDELFEE

LDKNGDGEVSFEEFQVLVKKISQMGVNSVTISVEGMTCNSCVWTIEQQIGKV

NGVHHIKVSLEEKNATIIYDPKLQTPKTLQEAIDDMGFDAVIHN 

 

CABP 
MNK1 

Figure 2 The CYANA model of the cloned CABP-MNK1 chimeric protein 
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CABP-MNK1 was expressed and purified using the same protocol of wt 

MNK1 protein both for the natural and the 15N isotopically enriched 

samples, since the conjugation of the two polypeptides does not affect 

their biophysical and biochemical properties with respect to them as 

separate entities.  

The final yield of purified protein was 15 mg/L. 

NMR characterization of CABP-MNK1 
 

The CABP-MNK1 yielded a 1H,15N-HSQC spectrum of good quality 

corresponding to a well folded protein (Fig.3). 

 

15N 

1H 

Figure 3 1H,15N-HSQC Spectrum 500 MHz, 298 K, H2O pH6  

                  of the CABP-MNK1 protein 
 

 

The comparison of spectra with those of the isolated CABP and MNK1 

acquired in the same experimental conditions, showed that only few peaks 

are shifted in the CABP-MNK1 adduct (Fig.4). 

 

 56 



 
 

On the basis of the previous experience with CalbindinD9k, Yb3* was 

initially chosen as paramagnetic metal ion in order to verify the feasibility 

of the metal substitution in this chimeric protein. Protein precipitation, 

sometimes associated with the presence in solution of the Ln3+ ions, was 

prevented by working with diluted protein solution (80μM) at pH 6 in 

deionized water without any reductant. 

It is known from literature that a stoichiometric Ln3+/Ca2+substitution 

occurs in CABP protein. 

Also for the diamagnetic protein, the different experimental conditions, 

adopted for metal substitution with respect to that used for the protein 

assignment (see BRMB database) made the re-assignment of MNK1 

domain by visual inspection difficult. Conversely, the re-assignment of 

CABP was easily performed thanks to the availability of spectra recorded 

in the same conditions. 

The metal replacement was verified by monitoring the chemical shift 

alterations of the CalbindinD9k resonances. Shifts up to 1.5 ppm were 

detected in the 2D HSQC spectra. 

Figure 4 The superimposition of 1H,15N-HSQC Spectra at 500 MHz, 298 K, 

15N 

1H 

 H2O pH6 of   0,3 mM CABP-MNK1  
  0,3 mM MNK1 
  0,3 mM CABP 
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The good correspondence found between the spectra of Ca2+-Yb3+CABP  

and Ca2+-Yb3+CABP-MNK1(Fig.5) is a clear indication that the new 

construct does not alter the metal binding capability, and more in general 

the structure of the CalbindinD9k. 

The comparison between the Ca2+-Yb3+CABP-MNK1 and the wild-type 

MNK1 showed that also several peaks of the latter protein were shifted as 

a consequence of the presence of the paramagnetic metal ion bound to the 

CABP domain. Some paramagnetic peaks of the CABP domain were re-

assigned on the basis of the spectra recorded on the isolated domain. At 

variance with  the MNK1 portion, as mentioned above, the assignment was 

largely prevented by the different conditions adopted to perform the metal 

replacement with respect to the ones used in the assignment of the 

isolated domain. The full assignment of the resonances of the MNK1 

spectra is currently in progress. 

 

 

15N 

1H 

Figure 5 The superimposition of 1H,15N-HSQC Spectra at 500 MHz, 298 K, H2O pH6 of 

 80 μM Yb3+-Ca2+CABP-MNK1   
 80 μM Yb3+-Ca2+CABP 
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15N 

1H 

Figure 6 The superimposition of 1H,15N-HSQC Spectra at 500 MHz,298 K, H2O pH6 of

 80 μM Yb3+-Ca2+CABP-MNK1  
  80 μM La3+-Ca2+CABP-MNK1  

 

In order to determine the magnitude of pcs the diamagnetic analogue of 

CABP-MNK1 was prepared by titrating the protein with La3+ and the metal 

replacement was monitored by  1H,15N-HSQC spectra (Fig.6).   

Also Er3+ and Tb3+  were incorporated in CABP-MNK1 with use of this 

procedure and the pcs for the assigned resonances of CABP-MNK1 were 

collected (Table 1). Pcs were calculated from the difference of the chemical 

shifts in the paramagnetic sample and those in the diamagnetic samples. 
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Residue DOMAIN CHEMICAL SHIFT HN 

  Yb3+ Er3+ Tb3+ 

G 8 CABP -0.038 - - 

E 17 CABP 0.480 - - 

G 18 CABP 0.113 - - 

K 25 CABP 1.515 - - 

K 29 CABP 1.288 - - 

L 31 CABP 0.934 - - 

Q 33 CABP 0.590 - - 

T 34 CABP 0.455 - - 

S 38 CABP 0.248 - - 

G 42 CABP 0.246 - - 

S 44 CABP 0.879 - - 

T 45 CABP 0.335 - - 

L 46 CABP 0.513 - - 

L 49 CABP 1.295 - - 

F 50 CABP 1.512 - - 

L 69 CABP 0.050 - - 

S 80 MNK1 0.037 0.201 -0.600 

V 81 MNK1 0.029 0.200 -0.478 

V 85 MNK1 0.03 0.154 -0.390 

G 87 MNK1 -0.044 0.052 -0.179 

C 93 MNK1 -0.03 0.066 -0.354 

Q 102 MNK1 0.025 0.149 -0.390 

K 103 MNK1 -0.016 0.078 -0.025 

G 106 MNK1 -0.025 0.094 -1.001 

H 108 MNK1 0.026 0.190 -1.147 

V 112 MNK1 0.000 0.179 -0.325 

L 114 MNK1 0.000 0.050 -0.227 

I 121 MNK1 0.017 0.180 -0.483 

 
    Table 1 The pcs for the assigned resonaces of CABP domain in the CABP-MNK1 

 60 



The pcs values observed for CABP residues have been used to obtain the 

magnetic susceptibility tensor for each paramagnetic metal; the pcs values 

observed for Menkes1 residues, on the other side, provide the position and 

orientation of the magnetic susceptibility tensors referred to such protein, 

so that the relative position of the two proteins can be obtained from the 

superposition of the tensors themselves. 

The pcs observed for CABP residues in the Yb3+ derivative has been fit 

using the CalbindinD9k structure (1KQV PDB structure) to obtain the 

magnetic anisotropy values Δχax and Δχrh, which have been calculated to 

be −9.2×10−32 and 3.1×10−32 m3, respectively. Such values are in 

agreement with values already obtained for Yb3+-Ca2+-CABP. The quality of 

the fit (see Fig. 7) is satisfactory.  
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Figure 7. Observed PCS values for Yb (red), Tb (green) or Er (blue) versus PCS values 

calculated using the protein conformation shown in Fig. 8.A. PCS relative to CABP 

residues are shown as empty symbols. 

 

The fit of the pcs values measured for the Menkes1 residues has been 

performed by fixing the anisotropy values to those obtained from the CABP 

tag residues and leaving as fitting parameters the three Euler angles 

defining the orientation of the magnetic susceptibility anisotropy tensor 

and the position of the metal ion. The fit in this case does not clearly 
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provide a single, well defined, solution since several positions for the metal 

ion are possible with about the same error in the fit. This unlike result is 

due both to the fact  that a degeneracy in the solution is intrinsic in the 

problem if data referred to one metal ion only are used, and to the fact 

that the observed pcs are quite small and all similar among them. All the 

calculated solutions, however, indicate that the CABP tag is bent with 

respect to the Menkes1 structure, i.e. it is not attached in an extended 

position. The distances calculated for the metal ion are in fact similar to 

those which can be modeled from the conjunction of the CalbindinD9k and 

Menkes1 structure, pointing out that there has not been extensive 

averaging due to relative motion between the CABP tag and the Menkes1 

protein.  

The same calculations have been performed using pcs observed for Er3+ 

and Tb3+. Also in these cases similar results are obtained, with metal ion 

positions quite close with respect to the Menkes1 structure (much closest 

with respect to the maximum distance allowed by an extended 

conformation) indicating that a solution common to all data relative to the 

three metals can be achieved. Analogously, if the fits on the Menkes1 

residues are performed by fixing the position of the metal ion to an 

averaged distance among those allowed by the fusion protein, magnetic 

susceptibility anisotropy values larger than those expected are calculated, 

pointing out that motional averaging is not effective in reducing the 

observed pcs data.  

The conformation of the CABP tagged Menkes1 protein was thus 

calculated through the program PARAMAGNETIC DYANA, by fixing the 

structures of both the CalbindinD9k and the Menkes1 domains and using 

pcs to determine their relative position. The structure of CABP was fixed to 

the NMR 1KQV PDB structure, that of Menkes1 was fixed to the NMR 

1KVJ structure. All dihedral angles were kept fixed during the simulated 

annealing protocol except those at the connection between the two 

domains, i.e. the psi angle of GLN 76 of CABP and the phi and psi angles 

of the following MET residue of Menkes-1, corresponding to MET 5. Three 

pseudoresidues representing the magnetic anisotropy tensors and the 
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metal ions corresponding to Yb3+, Er3+ and Tb3+ were added. Restraints 

were introduced in the calculation to force these metal ions to be placed in 

the same position and to be coordinated to the CABP ligands. The 

magnetic susceptibility anisotropies were fixed according to the values 

obtained from pcs of CABP residues (for Yb3+) or to the values available in 

literature14 as calculated from pcs of Ln-substituted CABP (41.7×10−32 and 

−11.5×10−32 m3 for Tb3+, and 12.2×10−32 and −7.5×10−32 m3 for Er3+). 

1(A) 
1(B) 

 
 

Figure 8 (A,C) Conformation of the CABP 

tagged Menkes1 protein as calculated from 

pcs. (B) Best 10 conformations with 

smallest TF over the 200 calculated 

structures 
1(C)  

 

The lowest TF structure (3.42) is reported in Fig. 8A, C. Structures in a 

slight different position are obtained with TF in the range 3.45-3.61 (Fig. 

8B). The indetermination in the position of the Menkes1 structure with 

respect to the CalbindinD9k structure thus results to be actually modest, 

indicating  the low flexibility of the tag. The agreement between calculated 

and observed pcs values is shown in Fig. 8. 

Relative rigidity of the fused protein supports the use of CalbindinD9k as a 

new tag to insert paramagnetic lanthanides in diamagnetic proteins so 

permitting the use of additional experimental restraints in structural 

characterization and in protein-protein interaction studies.
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Genome sequencing projects have provided researchers with an 

unprecedented number of molecular information that promises to 

revolutionize our understanding of life and lead to new treatments of its 

disorders. However, genome sequences alone offer only limited insights 

into the biochemical pathways that determine cell and tissue function. 

These complex metabolic and signaling networks are largely mediated by 

proteins. The vast number of uncharacterized proteins suggests that our 

knowledge of cellular biochemistry is far from complete. In the 

postgenomic era, structural biology becomes a central discipline for the 

explanation, linking and exploitation of biological data in the life sciences. 

Indeed a large number of different scientific fields like bioinformatics, 

biochemistry and molecular biology are necessary in structural biological 

studies. 

 

In these three years three different projects were been developed with the 

common goal devoted to the investigation of metalloproteins using a 

multidisciplinary approach. In particular our attention was focused on two 

different area: the genomic analysis and the structural proteomic studies 

through the paramagnetic approach.   

In the first project we focused our attention on the degree of Single 

Nucleotide Polymorphism (SNP) in metalloproteins, since several studies 

have demonstrated the relationship between DNA sequence variations, as 

mutations or SNPs, and diseases69. In particular our research was devoted 

to analyse the human somatic Cytochrome c gene. Indeed the SNP density 

of the coding region of this gene (CYCS), reported by dbSNP database, is 1 

order of magnitude higher than the average SNP density. From the 

evolutional point of view, such variability could be the indication of an 

exceptional propensity of the human Cyt c protein to individual plasticity, 

although one detailed analysis of these data has been evidenced the 

possible existence of Cyt c variants (cSNP) affecting biological functions 

without being incompatible with life. 

Since all these cSNPs were obtained by computational methods only20, the  

aim of our research was the experimental validation of these putative 
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cSNP. Surprisingly, after our project of resequencing none of the all 

putative cSNPs, reported by dbSNP, was found in our individuals panel 

(190 chromosomes) and no other new SNPs were found. 

Moreover, our re-examination of all SNPs deposited in dbSNP by the same 

computational methods (EST-based), used for the prediction of snps in 

CYCS gene, casts serious doubts on the validity of this bioiformatic 

approach.  It is likely that it is not the computational approach itself that 

is faulty, but rather the reliability of the raw data, i.e. of the deposited EST 

sequences. 

In conclusion, quality of the EST sequences is not  good enough to 

discriminate a real SNP from an error and the data, provided from the 

computational methods EST-based,  are  not reliable. 

Moreover, from our resequencing of the human CYCS gene in a 95-

individuals panel we derived a likely monomorphism for the ORF of this 

gene in the human population, resulting in the absence of allelic variants 

of the Cyt c protein.  

 

In the second part of our research the attention was focused on the 

employment of several paramagnetic tags to obtain structural 

informations of protein complexes.  

In this frame, we initially exploited a peptide (LBT). The LBT sequence was 

attached to the HAH1 protein and several constructs were expressed. In 

this research, we used the adduct formed by the copper(I)-chaperone 

HAH1 and the first metal-binding domain of the human ATPase ATP7A 

(MNK1) as a model system to investigate the efficiency of the LBT tag in 

the analysis of protein-protein interactions. The insertion of the LBT on 

HAH1 did not interfere with the formation of the metal mediated adduct. 

Differen lanthanide metal ions (Er3+,Tb3+, Tm3+, Dy3+and La3+) were 

incorporated in the LBT-HAH1-(CuI)-MNK1 complex. The pcs data reveled 

a significant conformational freedom of the LBT with respect to the HAH1 

protein. In fact the values of the magnetic susceptibility anisotropy tensor 

calculated from PCS were significantly smaller than those expected. 

Despite these disappointing results, the PCS measured on copper(I)-MNK1 
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forming a complex with HAH1-LBT-Ln3+ have been exploited in calculation 

aimed to determine the structure of the adduct.  

The variability in the position of the LBT with respect to HAH1 leads to 

different configurations of the HAH1:MNK1 adduct. We therefore tried 

blocking the configuration of the LBT based on pcs data of HAH1 alone, 

and then keeping this configuration throughout structural calculations for 

HAH1:MNK1. Calculations are in progress. 

 

In the latter project, the entire CABP was successfully fused with MNK1 in 

order to demonstrate that the CABP can be used as paramagnetic tag. The 

results obtained so far indicate that CABP has a good affinity for the 

lanthanide metal ions and this affinity doesn’t significantly decrease, 

despite the fusion with MNK1. Indeed the comparison of the 2D HSQC 

spectra corresponding to the isolated CABP and to the CABP fused with 

MNK1 show that the fusion does not alter the general structure of the 

single proteins. Moreover the analysis of the pcs for the assigned 

resonances, collected with different lanthanide metal ions (Yb3+, Er3+ and 

Tb3+), suggests that the CABP protein experience a reduced mobility with 

respect to the tagged protein (MNK1). This is probably related to the steric 

volume occupied by tag and protein. 

 

The present results suggest that the fusion of CABP with target proteins is 

a powerful tool to obtain paramagnetic restrains useful to determine the 

structure of  protein complexes. 

Moreover, this tag can be fused to a multi-domain protein, where the  

domains reorient themself in different spatial position, in order to 

investigate the relative position of the domains and the entity of the inter-

domain mobility.  

The next step will be the fusion of CABP to the entire cytosolic N –terminal 

tail of ATP7A. In fact this protein construct contains six metal binding 

domais (MNK1-6) where the domain are connected each other by flexible 

loops. The induced PCS will provide us additional information to 

investigate mobility, metal binding properties, and protein-protein 
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inetractions.  

Efforts will be also dedicated to search other protein targets where the use 

of CABP as paramagnetic tag could be useful in solving biological and 

structural questions. 
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