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a b s t r a c t

Impulsivity, a key symptom of ADHD (attention-deficit hyperactivity disorder), is also common in
obsessive-compulsive and addictive disorders. There is rising interest in animal models of inhibitory-
control impairment. Adolescent rats were tested daily in the intolerance-to-delay (ID) task (session
25 min, timeout 20 s), involving choice between either immediate small amount of food (SS), or larger
amount of food after a delay (LL). The mixed 5-HT(1A/7) agonist (8-OH-DPAT, 0 or 0.060 mg/kg i.p.) was
administered acutely just before the last three sessions at highest delays. In addition to the classical
choice parameter (percent LL preference), the spontaneous waiting (termed response time, RT) occurring
between end of a timeout (TO) and next nose-poke was calculated. The pace between consecutive
reinforcer deliveries is given by the mean inter-trial interval (mITI, i.e. TO þ RT). Hence, the impact of any
given delay may be proportional to this pace and be expressed as delay-equivalent odds, i.e. the extent by
which delays are multiples of the mITI. Data revealed that RT/mITI increased sharply from around 15 s/
35 s to around 30 s/50 s when imposed delay changed from 30 s to 45 s (i.e. odds from 0.91 to 1.06). This
suggests that rats adopted a strategy allowing them to keep in pace with perceived reinforcing rate. The
increasing delay constraint directly influenced the length of rats' spontaneous waiting (RT) before next
decision. For higher delays, with odds >1, rats shifted to a clear-cut SS preference, which is devoid of any
exogenous temporal constraint. A challenge with 8-OH-DPAT (0 or 0.060 mg/kg i.p.) decreased impulsive
choice but also increased RT. Thus, tapping onto 5-HT(1A/7) receptors slightly enhanced RT/mITI values,
possibly reflecting ability of rats to cope with slower reinforcing rates and/or with delay-cancelled
reward paces. In summary, delay-induced states of aversion may arise from the innate tendency to rely
on a regular rate of reinforcement. Conversely, a drug-enhanced capacity to cope with delay may involve
an internal ability to adjust expectancy about such a reinforcing rate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Attention-deficit hyperactivity disorder (ADHD) is heteroge-
neous, highly heritable, and affects 1e2% of children, representing
a social burden (Biederman, 1998). Beside core symptoms of
hyperactivity and impaired sustained attention, ADHD children
often display a disinhibited conduct and impulsivity (Snyder et al.,
2002; Willcutt et al., 2005; Doyle, 2006; Castellanos et al., 2006),
possibly arising from altered reward processes within fronto-
striatal circuits (Sagvolden and Sergeant, 1998; Oades, 1998;
Sonuga-Barke, 2005). The deficits in cognitive control and/or
motivation, seen in ADHD children, highlight the importance of
ral Neuroscience, Dept. Cell
ità, viale Regina Elena 299,

.

All rights reserved.
dopamine (DA) and serotonin (5-HT) systems' disruption in this
syndrome (Schultz et al., 1997; Hollander et al., 2000; Casey and
Durston, 2006). The variability of ADHD sub-populations, reported
in the medical literature, may be partly due to differences in the
relative dysfunction between DA and 5-HT systems (Sagvolden and
Sergeant, 1998; Oades, 1998).

Altered response-inhibition and impulsivity are key symptoms
of ADHD, which have been identified in several other neuro-
psychiatric conditions (Dell'Osso et al., 2006; Chamberlain and
Sahakian, 2007), namely: obsessive-compulsive disorder and other
manias (e.g. trichotillo- klepto- and pyro-mania), pathological
gambling and other compulsive consummation habits (like addic-
tion e.g. to Internet, to promiscuous sex, to shopping, to substances
of abuse). In line with this notion, there has been rising interest for
modeling the various facets of impulsivity in laboratory animals
(Evenden, 1999). For instance, two-choice operant tasks involve
a series of discrete decisions between two reward alternatives,
differing for size, nature, operant criteria to meet for obtaining
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them, and/or characteristics of their delivery (Salamone et al.,
2007; Roesch et al., 2007; Walton et al., 2007). We have underlined
elsewhere (Adriani and Laviola, 2009) that these protocols probe
animals for the balance between “innate, sub-cortical” drives and
“evolved, cortical” processes. In other words, these tasks allow to
evaluate a cognitive ability, i.e. to inhibit sub-cortical drives and
to express a more controlled response. Self-control is known to
require intact serotonergic function (Wogar et al., 1993; Harrison
et al., 1997; Puumala and Sirvio,1998; Dalley et al., 2002), especially
within the pre-frontal cortex (McClure et al., 2004; Ridderinkhof
et al., 2004) and its cortico-striatal projections (Cardinal et al.,
2004; Christakou et al., 2004).

This kind of two-choice tasks shall be calibrated appropriately
(Adriani and Laviola, 2009), so that one alternative leads to
“optimal” benefit, i.e. the raw convenience in terms of quantitative
foraging (or any other measurable revenue), while the other
alternative may provide an “affective” benefit, with a more
emotional outcome (i.e. better feeling and/or avoidance of adverse
mood). Interestingly, when the optimal benefit loads on one option
and affective benefit loads on the other one during the task,
experimental subjects may develop a strong sub-optimal prefer-
ence. This appears however fully justified when based on innate,
temperamental attraction for specific features of gratification. For
instance, within intolerance-to-delay (ID) tasks (Evenden and Ryan,
1996, 1999), it is assumed that the constraint of waiting for delayed
gratification generates aversive states that could subjectively justify
the strategy of shifting towards immediate delivery of a smaller-
size reinforcer, despite lower payoff in the long term. It has long
been known that, as the delay to a reinforcer increases, its rein-
forcing value decreases (Mazur, 1997). The discounting functions
show how rewards' subjective values change as a function of the
time necessary to obtain them (Green and Myerson, 2004).
Different theories have proposed various equations to describe the
relation between delay and reinforcer value (e.g. Hull, 1943; Ainslie,
1975; Gibbon, 1977; Mazur, 1987, 1997; Shull and Spear, 1987;
Green et al., 1994). More recently, Ho et al. (1999) have developed
the “multiplicative hyperbolic model”, which attempts to bring
together the several quantitative principles of choice behavior. This
model assumes that the subjective value of a positive reinforcer
increases as a hyperbolic function of its size, and decreases as
a hyperbolic function of its delay and/or the odds against its
occurrence. Mazur (1995) demonstrated that the effectiveness of
delay-signalling lights in sustaining choice responses is due to its
action as a conditioned reinforcer that precedes and predicts the
primary reinforcer. The strength of such a conditioned reinforcer is
inversely related to the total time (i.e. the delay interval) spent in its
presence before the primary reinforcer is delivered. It is quite
evident that a refinement of ID tasks can be highly relevant to
a deeper validation of new preclinical models of ADHD.

In this respect, however, it is important to underline the notion
that impulsive choices may arise in some individuals because of
a differential perception of time itself (Wittmann and Paulus, 2008)
and/or reinforcing rate during a task (see e.g. Gallistel and Gibbon,
2000; Podlesnik and Shahan, 2008). Indeed, experimental subjects
might over- (or under-) estimate the duration of time intervals, and
thus experience an enhanced (or a diminished) “psychological cost”
associated with the waiting constraint. Alternatively, since experi-
mental subjects quickly adapt to emit responses according to
a perceived task reinforcing rate, they may cope with waiting
requirement by setting an “acceptable” temporal distance between
reinforcing events. There is considerable literature on rat's spon-
taneous waiting before initiating the next trial. A formal model of
voluntary waiting, termed “linear waiting model”, has been
developed (Staddon et al., 1991; Innis et al., 1993). These authors
demonstrated that duration of pauses following food presentation
(termed post-reinforcement pauses, PRP) was determined by the
preceding inter-food interval. Under simple fixed-interval (or
cyclic-interval) reinforcement schedules, the average pause
following food presentation stabilizes (or adjusts) at a constant
proportion (about one half to two thirds) of the inter-food interval
(Schneider, 1969). This adaptive behavior has been termed
“temporal tracking”, in that the average pause following food
presentation tracks the changes in inter-food interval durations
(Innis and Staddon, 1971). As such, after each reward delivery and
its timeout, the next decisionwill be expressed after an individually
variable period, termed response time (RT), which is however
a function of the imposed timeout (TO), since their sum (TO þ RT)
denote the duration of inter-food intervals. Of course, different
subjects may well over- (or under-) estimate their internal setting
of such an infradian rhythm, and this could reflect on either
a diminished (or enhanced) “subjective cost” of the waiting
constraint. In the present paper, we propose and discuss possible
influences by this “time (or rate) bias” on decision making within
the ID task. We propose that imposed delays are perhaps to be
compared to individual, subjective reinforcing rates. Altogether,
present results will provide room for theoretic understanding of
individual differences, in terms of baseline levels of impulsive (BLI)
behavior.

We presently provide a pharmacological validation of the notion
of a possible “time (or rate) bias” in the ID task. Indeed, the sero-
tonin (5-hydroxy-tryptamine, 5-HT) receptor type 7 (5-HT(7))
appears to be a good candidate for the setting of an internal,
infradian rhythm. It has been indeed proposed that the 5-HT(7)
receptor system could be involved in subserving circadian rhythms
via the hypothalamic internal clock (Hedlund and Sutcliffe, 2004;
Gannon, 2001). An altered perception of time intervals and
temporal rates may be postulated in animals treated with 5-HT(7)
agonist or antagonist drugs. Our group has recently demonstrated
a modulation of baseline impulsivity in rats treated with a 5-HT(7)
antagonist (Leo et al., 2009). Indeed, 8-OH-DPAT is a mixed 5-HT
(1A/7) agonist, well-known for effective modulation of impulsivity
in adult rats (see Poulos et al., 1996; Evenden and Ryan, 1999; Bizot
et al., 1999). Such an effect is possibly due to a stimulation of 5-HT
(7) receptors, since it was not blocked by the 5-HT(1A) antagonist
WAY-100635 (Bizot et al., 1999). Similarly, in reaction-time tasks, 8-
OH-DPAT decreases premature responding (Winstanley et al.,
2003; Blokland et al., 2005; but see Carli and Samanin, 2000). Other
results in operant behavioral tasks confirm that 8-OH-DPAT alters
temporal differentiation (Body et al., 2002a,b), and may disrupt
timing abilities (Asgari et al., 2006; Chiang et al., 2000). We
hypothesized that, since 8-OH-DPAT could affect the internal rate
setting of experimental rats, its influence on ID task decision
making could possibly tap onto a “time (or rate) bias” rather than
onto “true” modulation of a self-control capacity. Altogether,
present results provide insights on a key role for 5-HT(1A/7)
receptors in delay-based “impulsive” behavior.

2. Methods

2.1. Animal subjects and treatment design

Animal experimental protocols were approved by institutional authorities, on
behalf of Ministry of Health, in close agreement with European Community Direc-
tives and Italian Law. All efforts were made to minimize animal suffering, to reduce
the number of animals used, and to use alternatives to in vivo testing.

The experiment used 10 litters of Wistar pregnant female rats (Harlan, Italy),
housed in an air-conditioned room (temperature 21 � 1 �C, relative humidity
60 � 10%) with a 12-h light/dark cycle (lights on at 8.00 a.m.). Water and food
(Enriched Standard Diet, Mucedola, Settimo Milanese, Italy) were available ad libi-
tum. On day of delivery, postnatal day (PND) zero, pups were culled to 6 males and 2
females. Only three male siblings per litter were used in the present experiment,
housed in pairs of non-siblings, and tested during the adolescent period (PND
30e44) in the intolerance-to-delay (ID) task. After the first four delay sessions, those



Table 1
Formulas used for calculations on data from the present experiment.

T(wasted) ¼ (no. of SS rewards) � (timeout) þ (no. of LL rewards)
� (delay þ timeout)

T(deciding) ¼ (total session time) � T(wasted)
spontaneous waiting (RT) ¼ T(deciding)/(total no. of SS þ LL rewards)
mean Inter-Trial Interval (mITI) ¼ timeout (TO) þ spontaneous waiting (RT)
Odds ¼ delay/mITI or Delay ¼ mITI � odds

Fig. 1. Mean (�SEM) response time (RT), i.e. the spontaneous waiting between the end
of a timeout period and the following nose-poke for a reinforcer (either LL or SS),
shown by adolescent rats in the ID task. The 8-OH-DPAT (0 or 0.060 mg/kg i.p.) was
administered acutely, 30 min before the last three sessions at highest delays (see
arrows). In the 8-OH-DPAT group, time needed to express a decision was somewhat
prolonged. *p < 0.05 when comparing each point to the preceding one. $p < 0.05 when
comparing vehicle- and drug-injected animals (n ¼ 10 each).
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rats (ten subjects) demonstrating insensitivity to delay were assigned to the delay-
insensitive subgroup and discarded from the drug treatments (Adriani et al., 2003,
2004). The delay-sensitive rats (twenty subjects) were randomly assigned to either
challenge with 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT, Sigma Aldrich,
Milan, Italy, at the dose of 0.060 mg/kg) or saline injection for 3 days. Rats under-
went ongoing drug treatment with this mixed 5-HT(1A/7) agonist (or vehicle)
30 min before the operant session. This was to assess the ongoing effects of a mixed
serotonergic agonist, mainly acting over 5-HT(1A) auto-receptors but also targeting
5-HT(7) (see also Leo et al., 2009).

2.2. Behavioral impulsivity task

Animals underwent a delay intolerance protocol, involving a choice between
either a single-pellet, immediate or a fivefold, delayed food reward (see Adriani
et al., 2003, 2004; Evenden and Ryan,1999). The body-weight gain of adolescent rats
in free-feeding condition and under food restriction was known from previous
experience (Adriani et al., 2003). We planned to reduce rats' daily gain to approxi-
mately 2 g/day, i.e. 2/3 off their free-feeding body-weight gain. In order to do this,
we removed the tray food 2 days before the experiment started. In order to maintain
rats throughout the experiment, in addition to pellets earned during sessions that
correspond to a mean of 6.75 g (i.e. approximately a half of a daily meal), extra
8.5 g � 1.5 g of standard food was given in the home cage after each daily session.
Accordingly, rats' weight on the last three testing sessions was 109.35 g � 1.96 g;
110.75 g � 1.92 g; 112.05 g � 2.03 g.

The food restriction was necessary to increase rats' motivation to work for food
delivery during the task. However, food restriction level obviously affects choice in
delayed-reinforcement paradigms, with more severe restriction having more
markedmotivation-enhancing effects (Bradshaw et al., 1983; Ho et al., 1999; see also
among others: Leander, 1973; Takahashi and Singer, 1980; Papasava et al., 1986;
Lamas and Pellón, 1995; Haberny et al., 2004). Each animal was then placed daily in
a computer-controlled operant chamber (Coulbourn Instruments, Allentown, PA,
USA), provided with two nose-poking holes, a chamber light, a feeder device,
a magazine where pellets (45 mg, BioServ, Frenchtown, NJ, USA) were dropped, and
a magazine light. The nose-poking in either hole was detected by a photocell and
was recorded by a computer, which also controlled food delivery. After the 25-min
session, animals were returned to their home cage, and given extra standard chow
(approx. 7e10 g/each).

During the training phase (six days), nose-poking in one of the two holes
resulted in the delivery of five pellets of food, whereas nose-poking in the other hole
resulted in the delivery of one pellet of food. After nose-poking in either hole, and
before food delivery, the chamber light was turned on for 1 s. Following food
delivery, the magazine light was turned on for 20 s, during which nose-poking was
recorded but was without scheduled consequences (timeout). During the testing
phase (eight days), a delay was inserted between nose-poking and large-reward
delivery. The chamber light was kept on to signal the entire length of this delay. The
small reward delivery was unchanged. Hence, animals had choice between a “LARGE &
LATE” (LL) or a “SMALL & SOON” (SS) reward. The delay length was kept fixed for each
daily session, and was changed progressively over days (from 0 s to 7 s, 15 s, 30 s,
45 s, 60 s, 75 s and finally 90 s on the eighth day). Animals received the drug
challenge(s) at the three longest delays of this sequence.

2.3. Design and data analysis

Data were analyzed by split-plot ANOVA. The general design of the experiment
had a 2-level drug factor (denoting acute challenge with the agonist drug vs vehi-
cle) � delay (set for each session). The litter was always the blocking unit, and the
ANOVA design comprised all within-litter factors. This approach is often used and
even recommended in studies involving developmental treatments (Zorrilla, 1997).
Multiple comparisons were performed with Tukey HSD. Criterion for exclusion was
LL preference lower than 50% at the end of the training phase, but it was not
necessary to exclude any rat from data analyses on the basis of this criterion.
Assignment to the delay-insensitive subgroup (“flat”, see Adriani et al., 2003) was
made when LL preference at delay¼ 45 s was higher than that shown at delay ¼ 0 s.
Ten rats were found to satisfy such criterion.

In the present paper, an innovative dependent variable termed response time
(RT) was calculated, according to the general procedure described elsewhere (e.g.
Adriani and Laviola, 2006, 2009). Briefly, the total time of a session (25min¼ 1500 s)
was divided into two components, defined as T(wasted) and T(deciding). One
portion of session time can be considered as “wasted” because of post-delivery
timeout periods, during which no effective demanding is possible. Then, the
remaining portion of session time is entirely available to rats for making a decision
about the next “adequate” nose-poke. The response time (RT), denoting the average
spontaneous waiting before each nose-poke, and hence the mean inter-trial interval
(mITI), can be calculated as described in Table 1. Then, curves for average sponta-
neous waiting (RT) were created for present animals, with the values of response
time on Y-axis plotted against raw delay duration on X-axis (see Fig. 1).

The ID task testing phase consisted indeed of two halves: 1) first four sessions,
when delays (up to 30 s) were introduced but animals were allowed to face them in
drug-free conditions; and 2) last four sessions at the highest delays (45 s and more),
including a baseline reference point plus the last three sessions, when the acute
challenge was also administered. Separate analyses were performed within these
two testing-phase halves. Preliminary ANOVAs were conducted on the first half, to
ascertain that rats assigned to SAL injection did not differ from their siblings
assigned to the drug challenge. Then, ANOVAs to evaluate the ongoing drug's effects
were indeed conducted on results from the second half (Leo et al., 2009).

The second dependent variable considered was the “classical” choice (%) for the
large reinforcer, namely percentage of LL over total LL þ SS choices, during the test
phase (Evenden,1999). To get a precious index of the impact exerted by the delay, we
proposed to look at delays in terms of “odds against discounting” (Adriani and
Laviola, 2006, 2009). For the ID protocol, delay-equivalent odds value can be esti-
mated as a proportion of the mITI, indicative of all SS events which are lost to the
subject because of the LL-bound delay. In other words, the delay-equivalent odds
value represents the number of crucial mITI intervals, i.e. the sum of all the timeout
(TO) periods plus all average spontaneous-waiting periods (RT), which would have
been generated by all the “lost” SS opportunities, and that could well fit within the
whole time constraint elapsed for any LL event (see Adriani and Laviola, 2006, 2009).
This delay-equivalent odds value is an interesting index that tells us about the
magnitude of the delay compared to the reinforcing rate of the task, which is paced
by the crucial mITI interval. We calculated, at each imposed delay value, the mITI
really expressed by animals and hence the delay-equivalent odds value. We used the
formulas reported in Table 1 and results are reported in Table 2. The typical ID task
curves for present animals were thus generated, but percent LL preference on Y-axis
were plotted against delay-equivalent odds, instead of raw delay duration, on X-axis
(see Fig. 2).



Table 2
At each imposed delay value, the mITI really expressed by animals and the delay-
equivalent odds value were calculated, using the formulas reported in Table 1. The
crucial mITI intervals derive directly from the average spontaneous-waiting periods
(RT, see Fig. 1 and Table 3) plus the fixed timeout period (TO, 20 s in this experiment)
of all rats, irrespective of individual delay-sensitivity. The delay-equivalent odds
values were then used as X-axis values for Fig. 2. Values are given as means � SEM
(n ¼ 30).

Delay (s) mITI Delay/mITI ¼ odds

0 49.58 � 7.12 0
7 43.08 � 2.39 0.17 � 0.01
15 36.92 � 2.13 0.43 � 0.02
30 34.51 � 1.70 0.91 � 0.03
45 52.32 � 7.87 1.06 � 0.07
60 44.62 � 3.33 1.53 � 0.07
75 40.82 � 5.00 2.15 � 0.08
90 41.10 � 3.70 2.55 � 0.13
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3. Results

3.1. Response time

The general ANOVA, considering the whole testing phase, yiel-
ded a main effect of delay, F(7,126) ¼ 5.29, p < 0.001, supporting
a non-linear, sigmoid shape of the curve. Specifically, a marked
discontinuity was evident between imposed delays of 30 s and 45 s
(i.e. odds of 0.91 and 1.06). This peculiarity was somewhat unex-
pected, since the rats' preferencewas indeed similar for both delays
(around indifference, see below). The finding of such peculiarity
provided an evidence-based justification allowing to split the
Fig. 2. Effect of the 8-OH-DPAT, a mixed 5-HT(1A/7) agonist, on impulsivity shown by
adolescent rats in the ID task. Mean (�SEM) demands (%) for the large reinforcer (LL)
on Y-axis are plotted against delay-equivalent odds, instead of raw delay duration, on
X-axis. At each imposed delay value, the delay-equivalent odds value was calculated
using the mITI really expressed by animals (i.e. the average spontaneous-waiting
periods, RT, see Fig. 1, plus the fixed timeout, TO, period of 20 s in this experiment).
These values, calculated using the formulas in Table 1, are reported in Table 2. Arrows
denote injection with 8-OH-DPAT (0 or 0.060 mg/kg i.p.), which was able to signifi-
cantly enhance the LL preference at delay ¼ 75 s. *p < 0.05 when comparing vehicle-
and drug-injected animals (n ¼ 10 each).
whole ID task testing phase into two halves, as described in the
Methods section. Separate analyses were thus conducted.

The first half ANOVA yielded a main effect of delay,
F(3,54) ¼ 10.4, p < 0.001, confirming a progressive reduction of
response time when moving from no delay to a 30 s delay. In other
words, after the end of a timeout, decisions to nose-poke were
made progressivelymore quickly. The average spontaneous waiting
(RT) time decreased from around 30 s down to around 15 s (simi-
larly to what found previously for adolescent rats, see Adriani and
Laviola, 2006). As expected, no difference emerged between control
and to-be-challenged rats.

The second half ANOVA yielded a main effect of delay,
F(3,54) ¼ 6.99, p < 0.001, again confirming a progressive reduction
of response time when moving from 45 s to 90 s delay. There was
also a drug by delay interaction, F(3,54) ¼ 1.83, 0.10 < p < 0.05,
indicating an effect of mixed 5-HT(1A/7) stimulation. Post hoc
analyses revealed that a significant difference between control and
drug-challenged rats only emerged with a 75-s delay. Indeed, the
RT was again very quick in control animals. In the group treated
with 8-OH-DPAT, however, RT values decrease less sharply, sug-
gesting prolonged time span before expressing nose-poking. This
picture is possibly consistent with decreased impulsive choice,
observed with mixed 5-HT(1A/7) stimulation (see below).

3.2. LL preference as a function of delay-equivalent odds

LL preference of adolescent rats displayed a progressive
decrease across sessions, delay F(3,54) ¼ 22.9, p < 0.001, but still
remained above the level of indifference. Then, rats were chal-
lenged with the mixed 5-HT(1A/7) agonist 8-OH-DPAT (or vehicle)
on the second half of testing phase, when LL choices were
progressively decreasing across the level of indifference (50%) and
towards a clear-cut SS preference, delay, F(3,54) ¼ 8.83, p < 0.001.
Interestingly, LL choices were significantly higher in drug-injected
rats than in the corresponding controls, drug � delay interaction,
F(3,54) ¼ 3.83, p < 0.05 (see Fig. 2). Specifically, post hoc analyses
revealed significant difference between drug- and SAL-challenged
rats upon the second injection at the 75 s delay, i.e. at odds ¼ 2.15.
As outlined above, increased LL preference comes alongwith higher
RT values, perhaps suggesting an attempt to adapt on a slightly
prolonged reinforcing pace. This picture demonstrates the capacity
of a mixed 5-HT(1A/7) agonist to reduce impulsivity. Consistently,
waiting ability before next choice also appeared to be increased,
although not explicitly required by the task. These findings are
observed with 8-OH-DPAT when baseline levels of impulsive (BLI)
behavior are enhanced, as is typical of the adolescent phase (Laviola
et al., 2003). A very similar picture also characterizes adult rats after
5-HT(7) blockade (Leo et al., 2009).

3.3. Response time and LL preference in the “flat” subgroup

As expected from previous studies (Adriani et al., 2003, 2004),
some rats showed no sign of sensitivity or reactivity to the
increasing delay, and continued to prefer the LL option all along the
task. A slight decrease towards indifference was evident at the two
highest delays, but a clear-cut SS preference was never exhibited
(see Table 3). A formal analysis to compare this subgroup with the
two other rat groups was unnecessary, since these subjects were
indeed chosen explicitly for such kind of profile. In contrast, it was
interesting to explore whether this subgroup would show any
change in RT parameter as a function of delay.

The general ANOVA, considering the whole testing phase, yiel-
ded no main effect of delay, F(7,63) ¼ 1.14, ns, supporting a linear
shape of the curve. Separate analyses were also conducted, but
neither first nor second half ANOVA yielded any effect of delay,



Table 3
Delay-insensitive adolescent rats in the ID task. Mean response time (RT), i.e.
spontaneous waiting (s) between the end of a timeout period and the following
demand for a reinforcer (either LL or SS); mean nose-pokes (%) for the large rein-
forcer (LL). Criterion for assignment to this “flat” subgroup (Adriani et al., 2003) was
LL preference at delay ¼ 45 s higher than that shown at delay ¼ 0 s (ten rats).
*p < 0.05 when comparing to the previous and/or the following points. Values are
given as means � SEM (n ¼ 10).

Delay (s) Response time (s) LL preference (%)

0 21.18 � 2.62 66.83 � 5.45
7 23.88 � 6.39 67.96 � 4.22
15 18.41 � 2.38 66.71 � 5.07
30 17.60 � 3.89 65.51 � 5.04
45 27.05 � 4.52* 67.81 � 5.40
60 18.36 � 3.49 56.65 � 6.36
75 18.60 � 2.99 49.22 � 7.08
90 22.56 � 6.37 49.21 � 6.63
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F(3,27) ¼ 1.39 and 1.32, ns, respectively, confirming no changes of
response time when moving across delays. However, post hoc
analyses revealed that RT at delay ¼ 45 s was significantly higher
compared to the previous and the following points. Similarly to the
other two rat groups, a slight discontinuity was also evident for
delay-insensitive subjects at imposed delay of 45 s (see Table 3).
This peculiarity may be used to suggest that this subgroup of
animals was somewhat “sensitive” to delay progression, and the
fact that they display little or no change in LL preference may
indeed represent lack of “reactivity”. Again, the finding of such
peculiarity further provides an evidence-based justification,
allowing to split the whole ID task testing phase into two halves, as
described in the Methods section.
4. Discussion

Most of reports (if not all of them) on two-choice ID tasks exploit
the choice of large reinforcement (LL%: percentage of LL over total
LL þ SS choices) as the principal (if not the only) index for the
measurement of cognitive impulsivity (Evenden and Ryan, 1996,
1999). We present novel evidence in favor of a role played by other
parameters, like: (1) average spontaneous waiting before a choice is
made (response time, RT) and consequently (2) time elapsing
between two consecutive reinforcing events (mean inter-trial
interval, mITI). The mere value of the delay duration has no
universal significance, rather its impact could be dependent on
other subjective temporal features within the task. Hence, we
propose a newway to look at the subjective impact of a given delay
on tested subjects. Specifically, individual coping might impose
a given pace to behavioral responses and (mal)adaptation to
response-outcome synchrony may explain (sub)optimal reactions.
In this line, we assume that the experimental subjects may set an
internal, infradian rhythm to cope with the ID task, and hence that
the impact of a given delay might be more appropriately compared
with this rhythm. In fact, values of such parameters like RT andmITI
vary considerably across individuals and also, as we report here, as
a function of the fixed, experimenter-imposed delay. We reported
earlier about RT and its role in the two-choice ID task (Adriani and
Laviola, 2006), and we presently provide a more detailed insight
onto the profile of this parameter during the course of the whole ID
task, i.e. as a function of delay duration.

A major constraint introduced by the experimenter onto the ID
task is the timeout (TO) interval, in that subjects are forced to
respond after at least the TO is elapsed. Subjects will spontaneously
show a slight interval of further waiting, termed RT. Of course, RT is
not only due to decision-making processes, but also (and mainly)
because of other non-controlled processes and sources of
distraction. However, two consecutive reinforcers will always be
spaced by a mean inter-trial interval, i.e. the timeout interval plus
the average spontaneous waiting of subjects (mITI ¼ TO þ RT). It is
known that lab animals are quickly paced to the reinforcing rate of
a given task (see e.g. Gallistel and Gibbon, 2000; Podlesnik and
Shahan, 2008). When food deliveries occur at regular intervals or at
fixed times following a signal, animals' prediction must involve
some kind of timing process (Staddon and Cerutti, 2003; Ludvig
and Staddon, 2004). A number of theories have been suggested to
account for such timing behavior (see, e.g. Gibbon, 1977; Killeen
and Fetterman, 1988; Staddon and Higa, 1991; Staddon et al., 1991;
Meck and Benson, 2002). A recent study of Lewis et al. (2003)
clearly demonstrated that circadian rhythm and interval timing
(measurement of learnt short intervals) are two completely inde-
pendent mechanisms. In the ID task, the overall reinforcing rate is
crucially imposed by individual mITI, and the impact of a delaymay
depend on the extent by which this pacing is altered (see Adriani
and Laviola, 2009). The introduction of delay is classically expected
to generate states of aversion, but their magnitude may depend on
the extent by which the subjective reinforcing rate is disturbed. In
other words, we propose that the impact of a given delay is
proportional to the subjective adaptation to reinforcing rates, and
hence can be expressed as a multiple of the mITI. If the delay is
small relative to the crucial mITI value, then the internal rhythm
driving overall perception of task reinforcing rate may well be
undisturbed. Only delays that are long enough, compared to the
crucial mITI value, will considerably generate asynchrony between
the subjective rhythmic expectation and actual task reinforcement,
thus generating a drive to shift towards SS. As a consequence,
a given delay length (e.g. 30 s) might have a quite low impact (i.e.
a low odds value) if subjects are paced to very long mITI (e.g. Koot
et al., 2009), while it would be perceived as much more frustrating
(i.e. equivalent to higher odds values) if subjects are paced to quite
a shorter mITI, as in the present study.

The concept of delay-equivalent odds value was first introduced
to compare the ID with the probabilistic-delivery (PD) tasks
(Adriani and Laviola, 2006). For the ID protocol, delay-equivalent
odds value is the number of all SS events, including all their timeout
(TO) periods plus an average value for spontaneous waiting
(RT, between the end of timeout and the next nose-poke), which
could fit within the time constraint (i.e. delay) elapsed for any LL
event. The formulas are:

mITI ¼ timeoutðTOÞþ spontaneouswaitingðRTÞ
Odds ¼ delay=mITI (1)

As such, the mITI represents a “crucial interval” within the task
(Koot et al., 2009; Adriani and Laviola, 2006, 2009). For instance, if
we assume that animals have a spontaneous waiting (RT) as low as
15 s in average, within a protocol where the timeout is set at 20 s,
then the mITI can be as low as 35 s (see indeed Table 2). In these
conditions, a delay ¼ 35 s in the ID task will be equivalent to
odds ¼ 1 in a PD task. In fact, a fixed delay of 35 s, triggered by any
LL nose-poking, will impose an extra temporal distance of 35 s
before the LL delivery, which is by definition followed by 35 s
(TO þ RT) before the next nose-poking is expressed. Out of these
two crucial mITI intervals, the first one is indeed a “lost” foraging
opportunity, and this justifies the assumption that odds against
discounting is indeed 1 in these conditions. Interestingly, had the
subject chosen twice for SS, the same two crucial mITI intervals
would elapse, reinforcer delivery would be regularly paced, but the
subject would have received two SS pellets instead of five LL
altogether. It is now pertinent to discuss whether animals are
responsive to this differential long-term payoff and/or the shift
from LL to SS is generated because of the altered delivery pace.



Fig. 3. Schematic comparison between temporal features of SS vs LL reinforcement at
odds ¼ 1, when rats expressed subjective indifference. Arrows represent nose-poking
by rats tested under the ID protocol. In case of SS selection, consecutive trials (nose-
poking plus the one-pellet food deliveries) are separated by the timeout (TO, 20 s) plus
the spontaneous waiting (response time, RT). In case of LL selection, an odds against
discounting of one “lost” feeding pace (before each five-pellet food delivery) is
produced when the delay interval is set to be as long as this mean inter-trial interval
(mITI). When imposed delay changed from 30 s to 45 s, the RT/mITI increased sharply
from around 15 s/35 s to around 30 s/50 s (see Fig. 1), hence the odds remained around
one (from 0.91 to 1.06, respectively). Despite their subjective indifference, performance
of rats is sub-optimal (each SS selection leads to much lower payoff in term of feeding).
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The present profile of RT and mITI values suggests that the
reinforcer delivery pace is somewhat independent from delay, at
least until imposed delays are low. Indeed, the RTandmITI decrease
when the imposed delay rises to 7 s, 15 s and 30 s. This profile
indicates that animals react to the first, lower delays with
a tendency to respond more quickly. We suggest that rats are just
trying to preserve the overall reinforcing rate. Indeed, any portion
of time elapsed because of imposed delays is reflected by a nearly
equivalent narrowing of the spontaneous waiting (RT), as predicted
according to a linear waiting model (Innis and Staddon, 1971; see
also Innis et al., 1993; Ludvig and Staddon, 2004; Staddon and
Cerutti, 2003). However, when delay lengths are further increased
(i.e. at delays of 30 s and 45 s), two phenomena come along
depicting a turning point in the performance of experimental
subjects: 1) animals now express their subjective “indifference
point” (i.e. 50% LL and 50% SS choices), which may well be seen as
an intermediate step during their shift from the previous LL to
a novel SS preference; and 2) the RT suddenly rises and peaks (see
Fig. 1) from around 15 s up to around 30 s, giving a corresponding
rise in the crucial mITI intervals from around 35 s up to around 50 s.

Thus, the adding of 15 s to the imposed delay results in a 15 s
longer RT, a finding that may seem counter-intuitive at first glance.
Why a longer constraint of “imposed” waiting should come along
with longer “spontaneous” waiting? One way to interpret these
findings is that rats are somewhat paced by the imposed delay,
which would be incorporated within their internal task-coping
rhythm. Consequently, they might express this pacing under the
form of “unnecessary” procrastination of their next response (see
e.g. Gallistel and Gibbon, 2000; Podlesnik and Shahan, 2008), as if
rats were trying to adapt to a time-structure perceived from the
task contingencies. Noteworthy, a specific step of the delay
progression (i.e. the 30 s and 45 s one) appears to be likely incor-
porated within the internal-clock rhythm. The consequence is that
a similar 15-s rise (i.e. the 35 s and 50 s mITI peak) is also observed
in the amount of time elapsing between food delivery and the
expression of a next nose-poke, even though the operant system
would be fully available to rats after a signaled timeout of 20 s only.

As a further evidence of pace-keeping by rats, calculations (see
Table 2) reveal that these two key delay lengths of 30 s and 45 s
appear quite similar from a subjective viewpoint, as delay-equiva-
lent odds display just a 0.91e1.06 increase! It is important to
underline that rats express indifference for either SS or LL at these
delay intervals. Indeed, SS options can lead rats to gain a one-pellet
delivery per each crucial mITI interval, while LL options result in the
“loss” of one potential mITI-paced food delivery, caused by the
delay constraint. Intriguingly, rats' indifference implies that two
one-pellet mITI-paced food deliveries (deriving from SS choice) are
subjectively perceived as equivalent to the “loss” of one entiremITI-
paced delivery plus a five-pellet delivery at the second mITI pace
(deriving from LL choice). Hence, despite the objective convenience
of LL in terms of overall payoff, these “lost paces” can affect the rats'
performance much more than relative sizes of the two alternatives,
indeed, as the value of the fivefold, “bulk” prize appears greatly
discounted. This situation of subjective indifference is depicted
in Fig. 3.

Interestingly, SAL-injected control rats overtly displayed a shift
towards SS preference when imposed delays were equivalent to
much more than odds ¼ 1 in terms of mITI. This profile suggests
that rats may become very intolerant to situations in which the
“bulk” prize requires them to invest more than one mITI-paced
feeding opportunity. This consideration is confirmed by the striking
drop in the RT (back from 30 s to 15 s) observed at delay ¼ 75 s,
when control rats ceased to show indifference and overtly exhibi-
ted a preference for SS choices. In other words, once the novel
SS-preference strategy is established, a drop in the internal rhythm
or pace is likely to come along with adaptation to the new rein-
forcing rate, where the mITI stabilizes around a value as low as 40 s.
Indeed, accepting the “loss” of two ormoremITI-paced deliveries of
food should be necessary to get the “bulk” prize at the longest
delays (see Table 1). In these conditions, a quick nose-poking for SS
begins to be expressed shortly after a timeout completion, in
a quasi-automatic manner, as is confirmed by the low value
observed for the RT parameter.

The effect of 8-OH-DPAT consisted of a slight but significant rise
in LL selection, and is classically discussed as a lower delay intol-
erance (Evenden and Ryan, 1996, 1999). The effect was clear at
delay ¼ 75 s when, as outlined above, mITI is around 40 s and delay
is roughly equivalent to odds ¼ 2. These values imply that, upon
drug challenge, rats are apparently more prone to accept (or less
disturbed by) the “loss” of a couple mITI-paced feeding opportu-
nities, associated with each LL selection, and this allows them to get
the five pellets altogether. While it is clear that, meanwhile, control
subjects rather prefer to get three mITI-paced pellets with three
consecutive SS selections, 8-OH-DPAT challenged animals are able
to select the “bulk-prize” option more often. Noteworthy, the drug
effect is evident not only from the LL preference, but also from the
RT profile, in that both curves are slightly higher in 8-OH-DPAT than
control rats. This finding may indicate either a slower time
perception or, perhaps, an adaptive attempt to stay in pace with the
increasing delay length, possibly by setting a somewhat longer
internal rhythm.

Along with explanations tapping onto temporal mechanisms,
another possibility more linked to motivational aspects can be
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offered. Specifically, 8-OH-DPAT challenged rats could get a much
greater gratification from a fivefold reinforcer. This possibility
would rely on attractiveness of a “bulk” size rather than on
temporal contingencies like the “loss” of mITI paces. The question
of amount-dependent temporal discounting has been extensively
investigated in both humans and animals (Farrar et al., 2003; Green
et al., 2004; Ong and White, 2004). As a matter of fact, in all
previous experiments where reinforcer delay and magnitude have
been manipulated, amount-dependent temporal discounting has
never been demonstrated (Rodriguez and Logue, 1988; Belke et al.,
1989; Ito and Nakamura, 1998; Mazur, 2000). In our opinion,
therefore, such alternative could only be verified or ruled out by
running a PD task, directly assessing the animals' temptation to
gamble (Adriani and Laviola, 2006, 2009).

5. Conclusion

Wehave recently hypothesized that a functional linkmight exist
between accumbal 5-HT(7) expression and self-control ability in
the ID task (Leo et al., 2009). Specifically, a selective 5-HT(7)
antagonist was able to enhance basal delay intolerance, and to
block the enduring reduction in impulsivity generated from an
adolescent exposure to methylphenidate (Adriani et al., 2007).
Accordingly, pharmacological modulation of 5-HT(7) system may
be useful to control impulsive-behavior symptoms. The present
results highlight the need to verify whether that putative role could
be ascribed to drug efficacy on temporal mechanisms, such as time
perception or infradian rhythm setting, or to an action over more
“motivational” processes, such as the subjective attractiveness vs
discounting of reward. Future studies should actually comprise
both these endpoints.

The present results, suggesting delay intolerance to be elicited
when delay is equivalent to odds>1, confirm our previous reports
(e.g. Koot et al., 2009). In summary, even though a further and
deeper validation should be carried out, we propose that the
concept of delay-equivalent odds values may allow to compare ID
task results across various studies, differing for objective (e.g. the
TO, the total session duration, etc.) and for subjective (e.g. the
spontaneous RT, and hence the mITI) parameters. Consistently, we
propose that food-restricted rodents may experience a delay-
induced aversion as a consequence of inability to adapt internal
rhythms to changes in the pace of tasks' reinforcing events,
sometimes independently from the actual size(s) of food delivery.
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