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Chapter 2 

From Computer-Aided (Detailed) Design to 

Automatic Topology and Shape Generation  

Gaetano Cascini1 and Federico Rotini2 

Abstract This chapter surveys the evolution of Computer-Aided systems in terms 

of support to the earliest stages of design and more specifically to the embodiment 

design phase, when functional requirements and related structural and manufactur-

ing constraints must be translated into a working solution, i.e. the generation of 

topology and shape of a mechanical part. After an introductory discussion about 

the context and the limitations of current systems, the chapter summarizes the re-

search outcomes of two projects: the first, namely PROSIT (From Systematic In-

novation to Integrated Product Development), aimed at bridging systematic inno-

vation practices and Computer-Aided Innovation (CAI) tools with Product 

Lifecycle Management (PLM) systems, by means of Design Optimization tools. 

The second, coordinated by the authors, is a prosecution of PROSIT and proposes 

the hybriDizAtion of Mono Objective optimizations (DAeMON) as a strategy for 

automatic topology and shape generation. The latter is clarified by means of two 

exemplary applications, one related to a literature example about Genetic Algo-

rithms applied to multi-objective optimization, the second to an industrial case 

study from the motor scooter sector. 

2.1 Introduction 

The last century has seen the development of more and more structured methods 

and procedures to support the Product Development cycle, both in terms of tech-

niques to guide designers‟ decisions and of technologies to aid analysis and syn-

thesis tasks. Three main ages are recognized in literature [1]: the era of productivi-

ty characterized by an increase of demand by society for the acquisition of 
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technical objects and consequently the focus on productivity improvement and 

costs reduction; the era of quality characterized by the necessity for rigorous steps 

of measurement and monitoring the production in order to increase the profitabili-

ty, towards a total strategy of optimization of its efficiency; the era of innovation 

characterized by the need for structuring not only productivity and total quality, 

but also building a strategy of systematic innovation to bring in the market prod-

ucts addressing new users‟ needs or new ways to satisfy already identified needs 

and requirements. 

The first two ages have firstly involved the optimization of the production de-

partments (both methods and technologies) in order to reduce the unitary cost of a 

product, i.e. adopting lean production approaches, and to guarantee its quality, i.e. 

ensuring the robustness of the related manufacturing processes. 

More recently, the focus has been switched to the engineering design tasks 

since they dramatically impact costs and quality, but also due to the emergence of 

innovation as the key for being competitive in the global market. 

Despite methods and tools for engineering design have radically evolved in the 

last decades also thanks to the availability of computational resources not compa-

rable with any human effort, the engineering design process can still be considered 

as a series of three major stages: conceptual design, embodiment design, and de-

tailed design [2].  

Pahl and Beitz consider conceptual design as „„a search across an ill-defined 

space of possible solutions, using fuzzy objective functions and vague concepts of 

the structure of the final solution‟‟. According to this classification, embodiment 

design operates with a selected (during the conceptual design stage) initial design 

configuration and aims to further specify the subsets form in the whole system. 

Nevertheless, in order to be competitive in current markets, companies must 

combine the capability to propose innovative products and services with efficient 

development processes. In this perspective, the authors think that the vision of 

Pahl and Beitz on conceptual design needs to be updated, since a proper identifica-

tion of the design goal, as well as a formalization of the project constraints, are 

necessary to reduce, since the very beginning of the innovation process, waste of 

time and resources through useless trials and errors. 

Besides, the efficacy and the efficiency of the innovation process are highly 

impacted also by the adoption of suitable methods and tools in the embodiment 

design stage, i.e. that part of the design process in which, starting from the work-

ing structure or concept of a technical system, the design is developed, in accor-

dance with technical and economic criteria, to the point where subsequent design 

can lead directly to production [2]. 

Therefore, a crucial objective to be pursued is the development of means to 

support synthesis design tasks and not only the analysis of solutions generated 

upon the intuition and the experience of senior designers, since in modern organi-

zations all the employees should bring a creative contribution to value creation. 

The present chapter aims at presenting the authors‟ experience and vision about 

the evolution of Computer-Aided systems with respect to synthesis design tasks, 
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with a specific focus on the embodiment of mechanical parts starting from the 

functional requirements and the related structural and manufacturing constraints. 

The next section of the chapter is dedicated to an overview of the related art 

with the aim of highlighting technological resources as well as the limitations of 

current systems. The third section presents the outcomes of a research project 

(namely PROSIT) aimed at integrating Computer-Aided Innovation systems with 

PLM tools, while the following proposes the prosecution of the PROSIT project 

developed by the authors, aimed at embodiment design automation through topo-

logical hybridization of partial solutions. The last section proposes a discussion on 

the expected trends of evolution in this domain and the conclusions of the chapter. 

2.2 Related art 

The related art here presented is divided in two subsections, the first dedicated 

to a brief survey on the role of computers for product development, the second fo-

cused on the description of optimization techniques in the field of Computer-

Aided Design.  

2.2.1 The role of computers in the early phases of the product 

development cycle 

Computers have gained more and more importance for product development since 

the dissemination of the first CAD systems prototypes in aerospace industry. No-

wadays, they play a crucial role in any industry in detail design tasks, as well as 

for planning production activities. The so called PLM (Product Lifecycle Man-

agement) systems claim to support any stage of Product Development. In fact, 

they are extending their domain of application upwards the preliminary phases of 

design and by embedding more abstract representations of the product (fig. 2.1, 

continuous arrows), but still they are far from systematizing inventive design 

phases and the link between the development of a conceptual solution and the de-

finition of the product geometry. Indeed, despite it is widely recognized the rela-

tive importance of conceptual design, due to its influential role in determining 

product's fundamental features, as a matter of facts, CAD/CAE systems are not 

conceived to allow fast input and representation of concept models, and conse-

quently they introduce inertial barriers in experimenting new models of design so-

lutions. Indeed they don‟t provide any support to designers in developing and ex-

pressing their creativity [3,4]. 

Recently, Computer-Aided Innovation (CAI) systems have started addressing 

these lacks [5], trying to leverage the potential of TRIZ [6], the Russian theory for 

inventive problem solving which constitutes the foundational pillar for most of the 
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CAI software systems. Besides, the domain borders of this emerging technology 

are still fuzzy and in any case CAI systems suffer of limited interoperability with 

downstream CAx tools [7].  

Thus, a relevant research topic to improve the efficiency of the innovation 

process is the development of computer-based means for bridging conceptual de-

sign with existing PLM systems and the detail design phase, i.e. the extension of 

the CAI domain towards the embodiment design (fig. 2.1, dashed arrows). 

 

Figure 2.1 Application domain of computer-based tools within the Product Development cycle. 

It is worth to mention that a few preliminary experiments to embed the prin-

ciples of TRIZ within CAD systems have been attempted with promising, but still 

not satisfactory, results [8-10]. The main limitation stands in the distance between 

product models in these two different categories of systems: CAI systems need a 

more abstract representation, function- or requirement-oriented, with fuzzy topol-

ogy and/or shape; besides, PLM systems are all structured assuming a more de-

tailed representation of the product, in most cases with explicit geometry and li-

mited possibilities to introduce variations through the control of pre-defined 

parameters. 

A different approach to bridge CAI and PLM systems has been proposed with-

in the PROSIT project [7], whose main outcomes are described in the section 3 of 

this chapter. The logic of PROSIT is to adopt the geometry generation capability 

of topological optimization systems (briefly overviewed in the next section) as a 

means to translate the CAI output into a product model manageable by currently 

available PLM systems. The authors have further developed this concept by de-

veloping a semi-automated procedure for conducting the embodiment design 

phase, through the hybridization of mono objective optimizations, as described in 

section 2.4.  

CAI

PLM

Product Development Cycle

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti

o
n

CAE
CAMCAD



2 Automatic Topology and Shape Generation  5 

Let‟s consider again the description of the embodiment design phase proposed 

in [2]: embodiment tasks involve a large number of corrective steps in which 

analysis and synthesis constantly alternate and complement each other. It is evi-

dent that those iterations negatively impact the efficiency of the whole design 

process, thus a relevant objective for a new method is reducing the need of correc-

tive steps. 

According to Kicinger et al. [11] Computer-Aided optimization systems are 

candidate means to improve design efficiency, thus from this point of view sup-

porting the intuition of the PROSIT project; besides, they claim that topology, 

shape and size optimization systems can respectively address the needs of concep-

tual, embodiment and detail structural design. Nevertheless, according to the op-

timization logic, conflicting requirements are approached looking for the best 

compromise solution, referred as optimal. Vice versa, it is necessary to highlight 

that compromise solutions typically are less competitive and have a shorter pers-

pective since, according to TRIZ, technical systems evolve by overcoming, and 

not compromising, contradictions [6]. It is clear that overcoming contradictions is 

essential in conceptual design, but avoiding compromise solutions in the embodi-

ment design phase allows to properly exploit valuable concepts. 

In conclusions, a straightforward introduction of optimization systems in the 

product development cycle, even if beneficial for the efficiency of the process, can 

worsen its effectiveness by pushing the designer to the development of compro-

mise solutions. From this point of view, the development of Computer-Aided sys-

tems capable to support the creation of design embodiments beyond the adoption 

of trivial compromises is a relevant goal for extending the potentialities of CAI 

systems. According to this statement, the chapter describes an original approach to 

geometry definition which, despite not involving any inventive act by the design-

er, is capable to suggest a reduced number of potential topologies and usually re-

sults more effective than traditional optimization algorithms. 

2.2.2 Design optimization systems 

Designing by optimization techniques means translating a design task into a ma-

thematical problem with the following basic entities: 

• An objective function, i.e. the performance of the system that the designer 

wants to reach or to improve; 

• A set of design variables, i.e. the parameters of the system affecting the 

objective function; 

• A set of loading conditions and constraints representing the requirements 

the system has to satisfy. 

The optimization algorithm finds the value of the design variables which minimiz-

es, maximizes, or, in general, “improves” the objective function while satisfying 

the constraints.  
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The synthesis of product geometry from its functional architecture is an ex-

tended perspective for optimization systems; in [9] shape and topological varia-

tions of a 3D model are proposed as a means to generate an optimal geometry 

through the application of Genetic Algorithms (GAs in the following). Neverthe-

less, topological and shape variations are obtained through the modification of 

classical 3D modeling features, which dramatically limit the design space and im-

pact the practical usability of the proposed method. 

The typical classification of optimization systems according to the problems 

they approach is reported in [11]:  

• Topology (layout) optimization, also known as topological optimum de-

sign, looks for an optimal material layout of an engineering system; 

• Shape optimization seeks optimal contour, or shape, of a structural system 

whose topology is fixed; 

• Sizing optimization searches for optimal cross-sections, or dimensions, of 

elements of a structural system whose topology and shape are fixed. It is 

worth to add that a more general definition of this last class of systems re-

fers to parametric optimization, since also other properties of the elements 

can be assumed as design variables, e.g. the material properties. 

Topology Optimization [12] has received extensive attention and experienced 

considerable progress over the past few years to support design tasks related to the 

embodiment of functional schemes. It was developed in the structural field but re-

cently it has been applied to address design problems also in other fields such as: 

fluid dynamics, heat transfer and non linear structure behavior: examples of these 

novel applications of topological optimization can be found in [13, 14].  

Topology Optimization determines the optimal material distribution within a 

given design space, by modifying the apparent material density assumed as design 

variable. The design domain is subdivided into finite elements and the optimiza-

tion algorithm alters the material distribution within the design space, according to 

the Objective and Constraints defined by the designer. The Objective is consti-

tuted by one or more system performances that the optimization should improve. 

Each system performance is quantitatively assessed by an evaluation parameter 

that is assumed as metric. According to this statement, a mono-goal optimization 

task tries to improve a single system performance, while a multi-goal optimization 

task aims at improving a combination of performances. The constraints of the op-

timization task represent the operating conditions and the requirements the system 

has to satisfy. Among them, manufacturing constraints may be set in order to take 

into account the requirements related to the manufacturing process. Also the re-

gions of the design domain defined as “functional” by the designer, are preserved 

from the optimization process and considered as “frozen” areas by the algorithm. 

The topology at the end of the optimization process is identified by filtering the 

resulting material density distribution through a proper threshold having a value 

included within the interval (0,1) 

Until now, several families of structural topology optimization methods have 

been developed, a wide literature review is presented in [15].  
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One of the most established families of topology optimization methods is based 

on the so called SIMP approach where SIMP stands for Solid Isotropic Material 

with Penalized intermediate densities [16, 17]. It uses a gradient based approach to 

search the optimal material distribution within the design domain. Thanks to its 

computational efficiency and conceptual simplicity it has gained a general accep-

tance in recent years and it is extensively used in the commercial software. The 

SIMP method is able to deal with optimization problems having a combination of 

a wide range of design constraints, multiple applied loads, and very large 3D sys-

tems. However, as proved by several papers as [12], SIMP gives solutions near to 

the global optimum only when the optimization problems are convex problems 

such as those related to the improvement of only one performance of the system (a 

classical example of an optimization convex problem is represented by the mini-

mization of the compliance of a structure that experiences only one load condi-

tion). Unfortunately it is not able to deal with non-convex problems such as multi-

objective optimization tasks that are typically related to the improvement of two or 

more performances of the system. In such cases SIMP could bring to local optimal 

topologies or converges to an infeasible, i.e. not manufacturable solution. This 

drawback is common to all the optimization methods based on the mathematical 

gradient approach.  

Instead of searching for a local optimum, one may want to find the globally 

best solution in the design domain. For this purpose GAs have become an increa-

singly popular multi-objective optimization tool for many areas of research. More 

recently, GAs have been gradually recognized as a powerful and robust stochastic 

global search method for structural topology optimization [18-20]. Besides, in or-

der to guarantee the robustness of the solution, GAs require more computational 

resources than the mathematical methods based on the gradient approach. This is 

due to the high number of design variables that are typically involved in the topol-

ogy optimization task and this is the main reason such that GAs still have not been 

implemented in commercial CAE tools [21]. Studies on GAs for topology optimi-

zation have been performed in recent years, but these attempts are referred to rela-

tively small problems, such as optimization of truss systems with few design va-

riables [22, 23] or 2D problems [24]. Moreover due to the stochastic searching 

nature of GAs, structural connectivity cannot be guaranteed; this is another main 

drawback for the application of GAs for topology optimization tasks. 

The above literature review shows that the topology optimization techniques 

based on the mathematical gradient approach are more efficient than GAs from a 

computational point of view, but they often bring to local optimum solutions when 

complex engineering problems have to be solved. Besides GAs present a high ro-

bustness in finding global optimal solution for multidisciplinary problems even if 

they are not able to deal with a high number of design variables, such as that 

commonly involved in topology optimization.  

However, since the design process has multidisciplinary characteristics, it im-

plies that improving one performance of a system often may result in degrading 

another. Such kind of conflicts cannot be solved using topology optimization 
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techniques based on the gradient approach since they are able to focus the design 

task only to one specific performance to be improved. Besides GAs are design op-

timization tools that allow to manage multiple goals just by defining complex mul-

ti-objective functions but this task requires the definition of a weight to be as-

signed to each specific goal [25]. Thus, the best compromise solution is generated 

on the base of an initial assumption made by the designer about the relative impor-

tance of the requirements, without taking into account the reciprocal interactions.  

2.3 Integrating Computer-Aided Innovation with PLM 

systems: the PROSIT project 

As briefly introduced in the previous section, the PROSIT project 

(www.kaemart.it/prosit), “From Systematic Innovation to Integrated Product De-

velopment”, aimed at bridging systematic innovation practices and Computer-

Aided Innovation (CAI) tools with Product Lifecycle Management (PLM) sys-

tems, by means of Design Optimization tools. 

The goal of PROSIT was to demonstrate that is possible to define a coherent 

and integrated approach leveraging on available theories, methods and tools as il-

lustrated in Fig. 2.2. 

 

 

Figure 2.2 Layered representation of approach/methods and tools supporting the problem solv-

ing tasks of a product development process 
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The rationale behind the adoption of Optimization systems as a bridging means 

is the following: 

• defining a single multi-objective optimization problem leads to a compro-

mise solution; 

• besides, defining N complementary mono-objective optimization prob-

lems, each with specific boundary conditions, leads to N different solu-

tions;  

• these solutions can be conflicting and this is the key to find contradictions 

to be overcome according to the principles of TRIZ. 

According to this statement, the PROSIT design flow is structured as depicted 

in Fig. 2.3. The process starts with the definition of a multi-objective optimization 

analysis; if the results satisfy the whole set of constraints and requirements the de-

signer can proceed towards the detailed design of the product. Besides, if the out-

put of the multi-goal optimization doesn‟t fit the product specifications, a set of 

single-goal optimization tasks, each representing a specific operating condition 

and/or a given design requirement, must be defined. 

 

Figure 2.3 Design flow according to the PROSIT approach. 
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the “geometrical contradictions” a subclass of TRIZ physical contradiction pro-

posed in [26]. 

Besides, the analysis and solution of contradictions according to the PROSIT 

project was still demanded to the designer, just providing a set of guidelines to 

overcome the conflicts according to the specific operational conditions of the 

technical system, as described in [7]. 

2.4 Embodiment design automation through topological 

hybridization of partial solutions 

Assuming the PROSIT framework as a reference logic, the authors have devel-

oped an original algorithm which approaches the geometrical contradictions 

emerging from the comparison of different mono-objective optimizations through 

a hybridization process. More in details, the hybridization is applied to optimized 

density distributions obtained by means of traditional topological optimization 

systems by assigning just one design requirement to the objective function. Then, 

the hybridization, namely DAeMON (hybriDizAtion of Mono Objective optimiza-

tioNs), is obtained through a TRIZ-inspired manipulation of the topologies to be 

combined, as summarized in this section. 

The minimal contradiction involves two alternative density distributions arising 

from two topological optimizations of the same technical system (TS) where dif-

ferent boundary conditions are applied, as schematically represented in figure 2.4: 

the symbols “+” and “-“ mean that the behavior of the TS under the i-th Boundary 

Condition improves and worsens respectively according to the goal function of the 

optimization problem. In other words, the diagram in figure 2.4 should be read as 

follows: the density distribution should assume the topology “” in order to im-

prove the behavior of the TS under the Boundary Condition #1, but then it de-

grades the behavior under Boundary Condition #2 and should assume the topology 

“” in order to improve the behavior of the TS under the Boundary Condition #2, 

but then it degrades the behavior under Boundary Condition #1. 

  

Fig. 2.4 Geometrical contradiction derived by the comparison of two topological optimizations 

obtained by applying alternative boundary conditions to the technical system. It is worth to no-

tice that the density distribution is not a scalar variable, but a 3D-array representing the opti-

mized density of each voxel of the design space. 
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Such a formulation clearly resembles a classical OTSM-TRIZ contradiction 

where the density distribution is the parameter under the control of the designer 

(CP) and the goal function under different Boundary Conditions constitutes the 

Evaluation Parameters of the Technical Contradiction [27]. 

More in general, a TS can experience more than two different operating condi-

tions and consequently more than two topologically optimized density distribu-

tions can impact the same contradiction. The properties of such a “generalized 

contradiction” are still under investigation as well as the most effective directions 

to generate a satisfactory solution [28]. In this chapter only contradictions in the 

form represented in fig. 2.4 are taken into account. 

 

2.4.1 Direct hybridization 

Once that a geometrical contradiction in the form represented in fig. 2.4 has been 

identified and the mono-objective optimized topologies “” and “” have been 

created, the simplest way to perform hybridization is to directly combine the den-

sity distributions according to the following formula: 

         (1) 

where: 

• ρ(x, y, z) is the distribution of density in the design space overcoming the 

geometrical contradiction; 

• ρi(x, y, z) is the distribution of density of the i-th mono-goal topological 

optimization problem; 

• Ki is the weight assigned to the result of the i-th mono-goal optimization. 

The simplest way to assign an appropriate value to the weights Ki is to refer to 

the potential impact of each loading condition estimated as maximum stress, max-

imum deformation, strain energy etc. Besides, a more efficient procedure to blend 

the optimized density distributions ρi(x, y, z) has been proposed in [29] and further 

developed in [30], by leveraging the potential of Genetic Algorithms to identify 

the global optimum, but still avoiding the drawbacks GAs meet when applied to 

classical topological optimization. 

In order to clarify the logic of the hybridization process, it is worth considering 

an exemplary case study taken from optimization literature, such that it is possible 

to make a comparison between traditional approaches and DAeMON. The prob-

lem has been taken from [24] where the multi-objective topology optimization has 

been performed by means of GAs and concerns the design of a steel plate having 

an overall dimension of 400 x 300 mm. The plate is discretized with 1200 (40x30) 

isoparametric plane stress finite elements, assuming an isotropic material with 

Young‟s modulus equal to 210 GPa and Poisson coefficient equal to 0.3.  

As depicted in fig. 2.5 left, the plate undergoes two different point loads, a ver-

tical force and a horizontal load, both with a magnitude of 200 N. By performing 

two different mono-objective optimizations according to the PROSIT logic, two 
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conflicting geometries emerge: fig. 2.5 shows the topologies “” (middle) and “” 

(right) in analogy with the model of geometrical contradiction represented in 

fig. 2.4. The direct hybridization brings to a set of solutions which depend on their 

blending proportion  (fig. 2.6). 

 

Fig. 2.5 The plate is fully constrained at the corners on the left edge and the forces are alterna-

tively applied on the middle and the upper point of the right edge (left). Topologies obtained 

through mono-objective optimization under load case 1 and density threshold = 0.27 (middle) 

and under load case 2 and density threshold = 0.83 (right). 

 

Fig. 2.6 Hybrid solutions obtained through a different blending of the mono-objective optimiza-

tions related to the two different operating conditions. 

The resulting topology appears more effective (in terms of stiffness related to 

the overall mass) than a standard multi-objective optimization. At the same time, a 

comparison with the results obtained with a GA topological optimization pre-

sented in [24] reveals similar mechanical performances, but computational efforts 
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an order of magnitude smaller. Further details on this comparison and to other 

similar case studies are reported in [29]. 

 

2.4.2 Rotations and translations as possible mutations for 
extended hybridization 

Indeed, the investigation carried out by the authors about many different geome-

trical contradictions and related solutions [26] revealed that direct hybridization is 

not the only solution strategy which can be adopted to overcome a contradiction. 

Further relevant solution paths can be associated to TRIZ heuristics [6]: 

• different orientation of a geometrical feature, i.e. a rotation of a geometric-

al element, or in TRIZ terms, “Another Dimension” (Inventive Principle 

#17); 

• multiple copies obtained by a translation of a geometrical feature, as sug-

gested from the trend of evolution Mono-Bi-Poly of homogeneous systems 

(Inventive Standard 3.1.1) applied to geometrical features (figure 2.5, 

above); 

• a combination of the above, i.e. the trend Mono-Bi-Poly applied to sys-

tems with shifted characteristics (Inventive Standard 3.1.3) obtained by in-

troducing multiple copies of a geometrical feature, each with a proper po-

sition and orientation; the simplest case is obtained by duplicating a 

geometrical feature by means of a mirror operation (figure 2,5, below). 

 

 

 

Fig. 2.5 Mono-Bi-Poly transformation applied to geometrical features (above). Exemplary bi-

features obtained by a combination of rotations and translations of the original geometry (below). 

BI 

POLY 

MONO 

… 
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A general expression capable to represent all the above solution strategies is the 

following: 

  (2) 

where 

• N is the overall number of conflicting mono-goal optimizations (two if a 

classical TRIZ contradiction model is adopted, as represented in fig. 2.4); 

• Mi is the number of “copies” of the i-th solution (step of a mono-bi-poly 

trend); 

• Kij is the weight assigned to the j-th copy of the i-th distribution of density; 

• [ROT]ij is a general expression coming from Linear Algebra, describing a 

matrix 3 X 3 that contains Direction Cosines related to the angles between 

the coordinate axes of the initial and the rotated system, thus, in such con-

text, this term represents the rotation applied to the  j-th copy of the i-th 

distribution of density, 

• (x0, y0, z0)ij is the translation applied to the  j-th copy of the i-th distribu-

tion of density. 

The appropriate values for Mi, Kij, [ROT]ij and (x0, y0, z0)ij are still under inves-

tigation; nevertheless, a typical combination for axial-symmetric density distribu-

tion is: Mi = 1; Kij = 1; [ROT]11 = identity matrix (no rotations); [ROT]21 is a ro-

tation around the axis of the system, the angle being calculated as half the 

periodicity of the geometrical feature; (x0, y0, z0)i1 = null vector (no translations). 

An exemplary application of hybridization of rotated topologies refers to the re-

design of a motor-scooter wheel [31]. The test case has been inspired by a real 

case study developed during a collaboration of the authors with the Italian motor-

bike producer Piaggio. The goal of the project was the design of a plastic wheel 

for light moto-scooters mainly aimed at costs reduction, of course without com-

promising safety and mechanical performances.    

The traditional approach used in Piaggio to assess the conformity of a wheel to 

requirements consists in three different experimental tests:  

1. deformation energy under high radial loads/displacements (simulating an 

impact against an obstacle); 

2. fatigue strength under rotary bending loads (simulating the operating 

conditions such as curves); 

3. fatigue strength under alternate torsional loads (simulating the accelera-

tions and decelerations). 

These tests have been adopted as reference criteria for topology design optimi-

zation, under the constraint of manufacturability through injection molding and 

the goals of minimizing mass and maximizing the stiffness distribution on the rim 

wheel. The optimization problem has been set up as follows: 
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 Objective Function: maximize wheel stiffness; 

 Constraints: several upper limits for the mass of the wheel; manufactur-

ing constraints for injection molding process; 

 Loading conditions: radial and tangential loads applied on the rim of the 

wheel 

Rim profile and hub have been defined as non-design areas since they are func-

tional surfaces. The optimization task led to several topologies having different 

number of spokes (fig. 2.6). Their compliance to the design criteria above de-

scribed has been checked through virtual simulations.  

Results revealed that three and six spokes wheels widely satisfy the deforma-

tion energy test only when the radial load is applied on the areas of the rim direct-

ly supported by a spoke while, when the radial load is applied among them, the 

proof fails. The other topologies never satisfied the deformation energy criterion 

while all meet fatigue strength requirements (2, 3).         

A deeper investigation of the radial stiffness distribution along the wheel rim 

has been performed for each optimized geometry (fig. 2.7). As supported also by 

intuition, when the number of spokes rises, the stiffness of the rim on spokes de-

creases, while it increases among the spokes. 

According to these results a contradiction appears: a smaller number of spokes 

provides the highest radial stiffness in the areas of the rim directly supported by 

the spokes, but the deformation between two spokes is maximum. A bigger num-

ber of spokes allows to obtain a more uniform stiffness distribution along the rim 

but with low overall values. This technical contradiction can be modeled as shown 

in fig. 2.8. 

 

 

Figure 2.6 Output topologies obtained by topological optimizations: boundary conditions (loads 

and constraints), optimization constraint (overall mass), optimization objective and density thre-

shold are the same for all four instances. Only the number of the pattern repetition is clearly dif-

ferent. 
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Figure 2.7 Normalized radial stiffness distribution evaluated on the wheel rim for different to-

pologies: radial force applied on the spokes (dark) and in the middle between two adjacent 

spokes (light). 

 

CP:1

Small # Of Spokes

Big # Of Spokes

Density distribution

EP: 1

Stiffness under radial load 

on spokes

EP: 2

Stiffness under radial load 

among spokes
 

Figure 2.8 Model of the technical contradiction: EP1 is the stiffness on spokes, EP2 is the stiff-

ness among spokes. 

Taking into account these considerations, “three spokes” and “nine spokes” 

geometries have been selected to produce an improved “manipulated” topology 

through formula (2). The goal is the definition of a new topology, not identified by 

standard optimization systems, with a higher mechanical performance.  

Taking into account the functional surfaces, the hub axis is assumed as refer-

ence to apply the transformation. The rotation is defined as a half of the angular 

periodicity of the nine spokes wheel, thus 20°: such a value provides the minimum 

overlap between the original distributions of density. Figure 2.9 shows the profile 

of the original distribution of densities (3 and 9 spokes wheels) and the result of 

the manipulation; as a result of the density combination, a “Y” shaped spoke is 

suggested. It is worth to notice that such a topology is definitely different from 

any result provided by the optimization systems. 

A preliminary design of a Y-shape spoke wheel has been developed in order to 

compare its radial stiffness with the mechanical performance of the original geo-

metries.  Figure 2.10 summarizes the results of such a comparison. 
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Figure 2.9 Above: conflicting distributions of density according to the contradiction modeled in 

figure 8 (same overall mass). Below: density distribution automatically obtained by the applica-

tion of formula (2) to the conflicting pair (left)  and exemplary interpreted geometry (right). The 

darkness of the images is directly proportional to the optimized density.  

 

 

Figure 2.10 Comparison of radial stiffness distribution among “three spokes”, “Y” and “nine 

spokes” wheels. “Y” has an improved stiffness among spokes with respect “three spokes”. The 

behavior is similar to the “nine spokes” wheel but with an improved stiffness on spoke. “Y” is 

20% lighter than the other configurations. 

The analysis revealed that the suggested topology is 20% lighter than both the 

“three spokes” and “nine spokes” configurations. The “Y” version gives also an 

improvement of the rim radial stiffness among spokes. 

Even if the stiffness evaluated on spokes worsens with respect to the “three 

spokes” wheel, “Y” configuration satisfies the deformation energy design crite-

rion. 
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2.5 Trends of Computer-Aided Design: discussion and 

conclusions 

Among the trends which characterize the evolution of Computer-Aided tools sup-

porting product development, a relevant aspect is the extension of the domain of 

application described in section 2.2 and depicted in fig. 2.1. Indeed, the engage-

ment of this trend can be seen as a transition from task-oriented applications to 

process-oriented systems: the former CAE tools were able to speed-up and some-

times automate several engineering tasks, but the integration was limited to prod-

uct data exchange formats. Then, PLM systems emerged as a “strategic business 

approach that applies a consistent set of business solutions in support of the colla-

borative creation, management, dissemination, and use of product definition in-

formation across the extended enterprise from concept to end of life - integrating 

people, processes, business systems and information” [32]. 

As observed above, current PLM systems are effectively integrated just with 

CAD-CAE applications, but their efficiency is still poor for the preliminary design 

phases. In order to extend the domain of application of PLM system, a necessary 

transition is to introduce a modeling approach capable of representing a product at 

different detail levels, from the functional requirements of the earliest stages of 

conceptual design, to the constructive details of the manufacturing stage.  

The present chapter summarizes the contribution of the authors towards the de-

finition of a model capable to represent a mechanical part since the intermediate 

stage of embodiment design. In fact, the density distributions generated by topo-

logical optimizations of mono-objective tasks can be seen as elementary custo-

mized feature for the definition of the geometry of a certain mechanical part dur-

ing the embodiment stage, when its functional role must be translated into a 

geometry to be manufactured and coupled with other subsystems.  

It is worth to highlight some characteristics of these customized modeling fea-

tures: 

• as mentioned in section 2.2, the result of a topological optimization is a 

distribution of density so that each cell of the design space assumes a 

fuzzy value between 0 and 1, which in turns means that boundaries are not 

rigid as it happens also with classical free-form modeling features; in facts, 

a density distribution can produce both topological and shape variations 

while, apart few exceptions, parametric modifications of a free-form sur-

face produce just shape variations; 

• compared with free-form surfaces where a shape variation is obtained by 

moving many control nodes, the output of a topological optimization pro-

duces different specific geometries by editing just one parameter, i.e. the 

threshold value of the density discriminating between void and filled 

space; 

• these customized modeling features can be combined according to a gen-

eral formula (2) which embeds several TRIZ inventive principles, thus in-
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heriting the potential to overcome the emerging geometrical contradic-

tions, as exemplarily shown in section 2.4;  

• it is important to note that the proposed hybridization approach usually 

leads to very different topologies with respect to traditional design multi-

objective optimization; the resulting geometry has often better perfor-

mance than the traditional one; 

• the specific hybridization strategy can be governed by means of GAs, thus 

inheriting their capability to search for a global optimum, but at the same 

time avoiding the unaffordable computational demand of the application of 

GAs to topological optimization; 

• compared with GAs, the DAeMON approach is also intrinsically robust 

against the definition of non manifold and/or non manufacturable geome-

tries. 

The adoption of topological optimization as a bridging element between the 

generation of a concept and the development of a detailed solution has also further 

advantages. 

In fact, topological optimization just requires to define the design space and the 

functional surfaces of the part to be designed. These surfaces, can therefore be 

linked to the function delivered by the part itself, thus creating a connection be-

tween the abstract product representation of the conceptual design stage with the 

geometrical details of the following phases. Moreover, this vision fits also with the 

trend towards the knowledge integration into CAD systems already approached by 

Knowledge Based Engineering (KBE) systems to automate configuration tasks of 

modular products [33]. 

With the aim of further extending the applicability of the DAeMON logic to 

more complex design problems, as well to fuzzier problem situations which 

emerge in the development of innovative projects, the authors are also working to 

define a systematic link between the outcomes of a conceptual analysis made with 

OTSM-TRIZ techniques [27] and the set up of the mono-objective optimizations 

which constitute the starting point of the proposed methodology [34].  

The long-term vision is a transition to a new generation of CAD systems which 

will guide the designer through a systematic analysis of the task to be accom-

plished until the functional architecture of the system has been defined [35]. Then, 

each functional component should be embodied starting from the definition of the 

optimal topology by means of the hybridization of the customized modeling fea-

tures, i.e. density distributions, described in this chapter. According to this pers-

pective, a further relevant direction of investigation is the definition of a link be-

tween a density-based representation of geometry and the classical feature-based 

approach, still more convenient for the following manufacturing stages. 
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