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1. Introduction

This lecture aims at giving some ideas on a phenomenon that has a
particular interest for its technological applications and for the implications in
the econommic and ecological domains: the exploitation of geothermal resources
for energy production.

As we will point out, a reliable mathematical model of the phenomenon
could be an extremely useful tool to manage the industrial process and to ensure
its sustainability. On the other hand, the process is so complex and the different
mechanisms it involves are so many that it appears an almost desperate task to
incorporate all of them in a tractable mathematical model. Indeed, heat con-
duction and convection, multiphase/multicomponent fluid motion in anisotropic
porous media, vaporization, chemical reactions etc. are all entering the process
([3],[4]); thus the modelization consists primarily in identifying the phenomena
that play the key role in the different practical situations that are encountered
in different plants.

Let us start by describing the basic facts concerning geothermal energy
([1]).

It is well known that the earth mantle (i.e. the layer that is beneath the
terrestrial crust) has temperatures of several hundreths of degrees Celsius. It is
commonly believed that this temperature is maintained because of the nuclear
reactions occuring in the mantle and in the earth core involving radioactive
isotopes.



2

Figure 1:

Consequently, a thermal gradient always exists in the crust and its mag-
nitude depends on the thickness of the crust itself which is not the same every-
where. Figure 1 shows the zones where the geothermal gradient is higher. These
are the same zones where natural phenomena such as hot springs, geysers, etc.
have been known (and sometimes used) for centuries. They often coincide with
zones where volcanic activity is more intense. In the cases of hot springs and
geysers, the common features are two: a source of thermal energy sufficiently
close to the earth surface (stored in the rock at high temperature), and the
presence of water as energy carrier.

The industrial use of geothermal energy is rather recent. The first (small)
power plant exploiting geothermy was started one century ago in Larderello
(Italy). Several “geothermal wells” were drilled afterwards in the same region
so that they produce nowadays about 4 · 109 Kwh of electric energy per year.

It is just in the late Fifties of past century that exploitation of geothermal
energy starts outside Italy: in 1958 a plant was inaugurated in Wairakey (New
Zealand). Today several plants are active throughout the world (see Figure 2)
and electrical energy production by geothermal energy has increased by 300%
over the last 20 years ([7]).

The corresponding reduction of CO2 production (with respect to tradi-
tional plants) is of 100 million tons.

As we pointed out above in the case of natural phenomena, the exploita-
tion of geothermal energy is only possible when a “carrier” is available to trans-
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Figure 2:

port the energy to the earth surface. As a consequence the locations suitable
for geothermal plants should be such that ([6]):

• the crust is sufficiently “thin” (so that the geothermal gradient is suffi-
ciently “high” reaching values of several tenths of degrees per Km)

• there is a layer of porous rock (reservoir) where high pressure confined
fluids circulate, and

• the reservoir is capped by an almost impermeable layer (clay) to prevent
fluid and heat losses.

The depth at which exploitable reservoirs are found is between 2 and
4 Km. When a wall is drilled, i.e. when the impermeable layer is perforated
and the reservoir is reached, hot vapour is extracted that operates turbines to
produce electricity. This means that a geothermal plant can be defined as a
renewable energy source only if the reservoir is suitably “recharged” by inject-
ing water, since vapour extraction cannot be compensated just by atmospheric
natural phenomena.

This is the reason why the regional government of Tuscany launched a
research plan in order to get the scientific instruments enabling it to manage
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and monitor the exploitation of the resource (that remain a public property) by
the private societies that carry out the technology.

In this framework, our group was asked to:

1. set up a mathematical model to predict and to simulate the long-time be-
haviour of geothermal reservoirs in Tuscany under given industrial regimes
of energy production;

2. to check the possible environmental impact of the extraction of deep
geothermal fluids on the phreatic water;

3. to produce an user-friendly package to be used by governmental agencies
in their control activity, such that it is suitably interfaced with the GIS
database.

The members of the research group are: Fabio Rosso (also responsible
for the coordination of the groups of experts in geology, ecology and informa-
tion technology), Antonio Fasano, Angiolo Farina, Alessandro Speranza, Iacopo
Borsi, Maurizio Ceseri, Luca Meacci, Matteo Cerminara.

2. Starting a simplified mathematical problem

The spirit of this meeting is aimed at presenting, mainly to young scien-
tists and students, the variety of different applications of mathematical methods
rather than very specialized results. Thus this presentation will isolate a single
phenomenon from the complex interacting mechanisms entering the process and
will display a model that is sufficiently simple so that formal complications do
not hide some basic features, and sufficiently interesting from its mathematical
aspects. Moreover, in this setting, some elements of the qualitative behaviour
of the solution can be seen even without the help of numerical simulations.

With these goals in mind, we consider a one-dimensional geometry and
assume that a homogeneous porous medium occupies the slab 0 < x < L. Let
ε be the porosity and denote by θ the liquid content and by ps the saturation
pressure. The latter is the pressure at which water and vapour coexist and
depends on the temperature (Clapeiron’s law). For temperature in the range
(500oK, 700oK), it can be found via the following approximating formula

ps = 967.7 exp

[

17.39
T − 273

T

]

(2.1)

(T in oK, ps in Pa).
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Let us consider an isothermal situation and express the water content
(mass per unit volume of the porous medium) as a function of the pressure. It
is

θL = εφ(p − ps)ρ
L (2.2)

where ρL is the liquid density and φ is a function such that

{

φ(z) ∈ (0, 1), φ′(z) > 0, for z < 0
φ(x) = 1, for z ≥ 0

(2.3)

From a practical point of view, as long as the width of the capillary fringe
is negligible with respect to L, it is reasonable to approximate φ by a Heaviside
jump function and thus assume that the porous medium is completely saturated
by water for p ≥ ps and occupied by vapour for p < ps.

We will consider the following boundary value problem: for t = 0 the
region x ∈ (0, b) is occupied by liquid:

θL(x, 0) = ερL(x, 0), 0 < x < b, (2.4)

while for x ∈ (b, L) the vapour content is prescribed

θV (x, 0) = ερV (x, 0) = ερ̂V (x), b < x < L. (2.5)

In (2.5) θV is the vapour content (mass per unit volume of the porous
medium) and ρV is the vapour density.

On x = 0 water inflow (outflow) is prescribed for t > 0 as a linear function
of the difference of the pressure at x = 0 and an external pressure p0

pL
x (0, t) = γ(pL(0, t) − p0), t > 0, (2.6)

where we implicitly assumed the validity of Darcy’s law that expresses the vol-
umetric flux as a linear function of the pressure gradient.

From now on, we neglect the influence of gravity although to take it into
account just needs some formal complications. Of course this approximation
can be misleading whenever the pressure gradient (in the liquid) is of the same
order of magnitude of the gravimetric gradient; in such a case the (volumetric)
flux is proportional to the gradient of the “hydraulic head”

h(x, t) = p(x, t) − ρgx

if x is the vertical axis pointing upwards.
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In any case, neglecting the influence of gravity on the motion of the fluid
(besides of being an approximation that could be released with little additional
work) is less restrictive that the assumption we did considering isothermal situ-
ation. This is why the problem we will study is just focussed on a single aspect
of the problem we described in the introduction, whose modellization is much
more complicated.

On x = L we impose that the mass flow of the vapour is proportional to
the difference between the vapour pressure pV at x = L and an external pressure
p1, and we write

ρV (L, t)pV
x (L, t) = G(p1 − pV (L, t)), t > 0. (2.7)

We will look for a solution such that, for any t in a suitable interval (0, T ),
there exists a function s(t) with values in (0, L) such that the surface x = s(t)
separates the regions occupied by liquid (x < s(t)) and by vapour (x > s(t)).

The pressure has to be continuous on x = s(t):

pV (s(t)+, t) = pL(s(t)−, t) = pS , t ∈ (0, T ). (2.8)

Moreover the mass balance requires

ε[ρL(s(t)−, t) − ρV (s(t)+, t)]ṡ(t) = k[(ρV pV
x )+ − (ρLpL

x )−], t ∈ (0, T ) (2.9)

where k is the hydraulic conductivity, that will be assumed to be constant and
we used the following notation:

(ρV pV
x )+ = ρV (s(t)+, t)pV

x (s(t)+, t);
(ρLpL

x )− = ρL(s(t)−, t)pL
x (s(t)−, t).

(2.10)

In the liquid region

DL
T = {(x, t) : 0 < x < s(t), 0 < t < T},

and in the vapour region

DV
T = {(x, t) : s(t) < x < L, 0 < t < T},

we have to impose the respective mass balance equations.

If we impose that water is incompressible, we have that liquid pressure
is divergence-free, i.e.

pL
xx = 0, in DL

T . 2.11
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On the other hand, mass conservation and Darcy’s law in the vapour
region are expressed by

ε
∂ρV

∂t
= k

∂

∂x

(

ρV ∂pV

∂x

)

, in DV
T . 2.12

Equation (2.12) has to be complemented with an equation of state for
the vapour. If we take the perfect gas equation (which is a reasonable approxi-
mation) and we recall that the temperature is constant, we have

pV (x, t) = rT0ρ
V (x, t), in DV

T , (2.13)

where r is the universal gas constant divided by the molar mass of water. 3.

Discussing time scales

First of all we have to give some necessary conditions on the data for the
existence of physically meaningful solutions, i.e. of solutions like that

pV (x, t) ≤ pS , in DV
T , (3.1)

pL(x, t) ≥ pS , in DL
T . (3.2)

To guarantee (3.2), we just need that pL
x (that does not depend on x,

because of (2.10)) is negative and thus:

p0 ≥ pS (3.3)

(the case p0 = pS corresponds to the particular case pL ≡ pS).
To guarantee (3.1) we need to impose conditions on p1 and on the initial

datum i.e. on pV (x, 0).
We have

Proposition Assume

p1 ≤ pV (x, 0) ≤ pS , s(0) < x < L. (3.4)

Then

p1 ≤ pV (x, t) ≤ pS , in DV
T . (3.4)

P r o o f. If p1 = pS , (3.5) follows immediately from the (weak) maximum prin-

ciple (see e.g. [5]).
For any δ ∈ (0, p1) assume that is exists

t̄ = sup{t : pV (x, t) > p1 − δ}.
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It would be, necessarily

pV (L, t̄) = p1 − δ,

but this would mean that pv reaches in (L, t̄) the minimum value in DV
t̄ , where

the equation (2.12) is uniformly parabolic. But, at the same point we would
have, because of (2.7)

(p1 − δ)pV
x (L, t̄) = Gδ > 0,

a contradiction. Since δ is arbitrary, the first inequality in (3.5) is proved.

At this point the proof of the second inequality is straightforward, since
if pV (L, t) would reach the value pS , then px would be negative.

Next, we find pL(x, t) in DL
T from (2.11), (2.6), (2.8). It is

pL(x, t) = pS +
γ(pS − p0)

1 + γs(t)
(x − s(t)), 0 < x < T. (3.6)

and we have to solve the following free boundary problem satisfied by the
unknown density of vapour ρ(x, t), where we dropped the suffix v to simplify
notation:

Problem (P): To find

• T > 0;

• s(t) ∈ C[0, T ] ∪ C1(0, T ), 0 < s(t) < L, t ∈ (0, T );

• ρ ∈ C2,1(DT ) ∪ C(D̄T ), ρx ∈ C(D̄T − {x = 0})

• the following equalities are satisfied:

∂ρ

∂t
= rTO

k

ε

∂

∂x

(

ρ
∂ρ

∂x

)

, in DT , (3.7)

s(0) = b ∈ (0, L), ρ(x, 0) = ρ̂(x), b < x < L, (3.8)

ρ(L, t)ρx(L, t) = G

(

p1

rTO
− ρ(L, t)

)

, 0 < t < T, (3.9)

ρ(s(t), t) =
pS

rTO
≡ ρO, 0 < t < T (3.10)

ṡ(t) =
k

ε(ρL − ρO)

(

pSρx(s(t), t) + ρLγ
pO − pS

1 + γs(t)

)

, 0 < t < T. (3.11)
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We normalize x with resepct to L, ρ with respect to ρo = pS/(rTO) and
time with respect to a characteristic time t̂ that will be chosen later. We call
x∗, t∗, ρ∗ the normalized quantities and we write:

∂ρ∗

∂t∗
= t̂

k

ε

pS

L2

∂

∂x∗

(

ρ∗
∂ρ∗

∂x∗

)

(3.12)

in D∗ ≡ {(x∗, t∗) : s(t∗) < x∗ < 1, 0 < t∗ < T ∗}.

s∗(0) = b∗ ≡
b

L
∈ (0, 1), ρ∗(x, 0) =

ρ̂(x∗)

ρo
= ρ̃(x∗), b∗ < x∗ < 1, (3.13)

2ρ∗(1, t∗)
∂ρ∗

∂x∗
(1, t∗) = H

(

p1

pS
− ρ∗(1, t∗)

)

, 0 < t∗ < T ∗, (3.14)

ρ∗(s∗(t∗), t∗) = 1, 0 < t∗ < T ∗, (3.15)

ds∗

dt∗
= t̂

k

ε

pS

L2

ρO

ρL − ρO

(

∂ρ∗

∂x∗
(s∗(t∗), t∗) +

ρL

ρO
j pO

pS
− 1

1 + js∗(t∗)

)

, 0 < t∗ < T ∗ (3.16)

where we wrote

H = 2GLρO, (3.17)

j = γL. (3.18)

The problem has clearly two time scales, one for the diffusion of vapour,
the other for the movement of the interphase. The ratio between them is
ρO/(ρL − ρO) ≈ ρO/ρL, i.e. about 10−3. This makes it reasonable to take
a quasi-steady approximation by choosing:

1

t̂
=

k

εL2
pS

ρO

ρL − ρO
, (3.19)

and writing
∂

∂x∗

(

ρ∗
∂ρ∗

∂x∗

)

= 0, in D∗, (3.20).

From now on we drop the ∗ to simplify notation. We have the following
problem:

∂

∂x
ρ2(x, t) = φ(t), in D∗, (3.21)

2ρ(1, t)ρx(1, t) = H

(

p1

pS
− ρ(1, t)

)

, t ∈ (0, T ) (3.22)

ρ(s(t), t) = 1, t ∈ (0, T ) (3.23)
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ṡ(t) = ρx(s(t), t) +
A

1 + js(t)
, s(0) = b, t ∈ (0, T ) (3.24)

where φ(t) is an unknown function of time only and

A =
ρL

ρO
γL

pO − pS

pS
. (3.25)

In the next section we will first analyze problem (3.21)-(3.24) in some
special cases, and then we will discuss in general this quasi-steady approxima-
tion.

Recall that, according to assumptions (3.2), (3.3), the rescaled density
satisfies the inequalities:

p1

pS
≤ ρ(x, t) ≤ 1. (3.26)

4. The quasi-steady case

A very simple situation corresponds to the case in which the second term
in (3.24) is dominant. This means that the effect of the vapour pressure on
the motion of the interface is negligible and this is in the same spirit of the
Green-Ampt approximation.

In this case s(t) is monotonically increasing and we have immediately

s(t) =
−1 +

√

(1 + jb)2 + 2jAt

j
, t ∈ (0, T ). (4.1)

On the other hand, (3.21) and (3.22) give

ρ2(x, t) = φ(t)(x − s(t)) + 1, (4.2)

with

φ(t) = H

[

p1

pS
−
√

φ(t)(1 − s(t) + 1

]

(4.3).

Consequently, φ(t) is the negative solution of the equation

φ2 −

[

H2(1 − s) + 2H
p1

pS

]

φ − H2

(

1 −
p2
1

p2
S

)

= 0. (4.4)

It is worthwhile noting that the solution of (4.4)is such that

φ(t)(1 − s(t)) > −1. (4.5)



11

Indeed, it is sufficient to evaluate the quadratic expression on the left hand side

of (4.4) for φ = −1/(1 − s(t)), obtaining
(

1
1−s(t) + H p1

pS

)2
. Since this value is

positive, we are on the left of the negative solution of the equation.
We can also note that the negative solution φ− of (4.4) is on the right of

the solution of the equation

x2 − 2H
p1

pS
x − H2

(

1 −
p2
1

p2
S

)

= 0 (4.6),

i.e.

|φ−| < H
pS − p1

pS
. (4.7)

Of course, the solution given by (4.1) and by (4.2) (where φ is the solution
φ− of (4.4)) exists in the time interval (0, T ) where

T = sup(t : s(t) < 1). (4.8)

Moreover to be consistent with the assumption (Green-Ampt like) of
negligible influence of vapour on the motion of the interface we also have to
impose the additional requirement

|ρx(s(t), t)| <<
A

1 + js(t)
, 0 < t < T. (4.9)

Since ρ(s(t), t) = 1, this corresponds to

φ− << 2
A

1 + jb
. (4.10)

Just to play a little more with this solution we may note that for

t <<
(1 + js0)

2

2Aj
(4.11)

we have

s(t) ≈ b +
A

1 + jb
t. (4.12)

Now we want to consider the case in which the first term in the r.h.s.
of (3.24) is not negligible. Note that the order of magnitude of the term

A
1+js(t) depends on the product of ρL

ρO
and γLpO−pS

pS
and it can be O(1) al-

though ρL/ρO = 103. Thus this is not in contradiction with the assumption of
quasi-steady process. A special interesting case is the one in which γ = 0 (i.e.
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the wall x = 0 is impermeable) and the motion of the free boundary is governed
by p1.

Note that (4.2) and (4.3) are still valid and that

ρx(s(t), t) =
φ(t)

2ρ(s(t), t)
=

φ(t)

2
. (4.13)

Thus, the motion of the free boundary is given by

ṡ(t) =
φ−

2
+

A

1 + js(t)
. (4.14)

Since φ− is given in terms of s(t) (4.14) can be integrated to solve the problem.
It could be of some interest to note that if

H
pS − p1

pS
<< 1 (4.15)

we can get an estimate of φ− that is more accurate than (4.7). Indeed, (4.3)
gives for |φ| << 1

φ− ≈ H
p1 − pS

pS

2

1 + 2H(1 − s(t))
(4.16)

and thus the influence of vapour (governed by pS − p1) contrasts the influence
of liquid (governed by pO − pS) and slows down the front, and possibly make ṡ
become negative.

Of course, the interval of existence (0, T ) is now defined as

T = sup(t : s(t) ∈ (0, 1)).

5. Final remarks

If, instead of prescribing the condition (2.6) one prescribes the values of
the pressure (or the flux) for x = 0, the solution is even simpler. Of course, in
case of Neumann boundary conditions this corresponds to substitute the second
term on the right hand side of (3.24) by a given constant (or a given function
of time if the prescribed flux is variable).

In case of Dirichlet boundary conditions such term is replaced by a given
function of time B(t) divided by s(t), so that in the Green-Ampt approximation
we find, instead of (4.1)

s2(t) = b2 + 2

∫ t

0
B(τ)dτ. (5.1)



13

Also in the solution of the problem for the vapour pressure, prescribing Dirichlet
or Neumann boundary conditions yield significant simplifications that are left
to the reader.

We want to conclude the paper with some remarks on the complete prob-
lem (i.e. when the quasi-steady approximation is released) that has, in any case
an interest from a purely mathematical point of view.

Just to show how this case can be dealt with, we confine our attention
to the case in which the surface x = 0 is impermeable (i.e. γ = 0 or pO = pS),
and Dirichlet datum is prescribed on x = 1.

Then we refer to the coordinate

y = 1 − x (5.2)

and we write

σ(t) = 1 − s(t). (5.3)

Thus the problem to be studied is (with obvious definitions of symbols) the
following

∂ρ

∂t
= a

∂

∂y

(

ρ
∂ρ

∂y

)

0 < y < σ(t), t > 0 (5.4)

σ(0) = σ0 > 0, ρ(y, 0) = h(y), 0 < y < σ(t) (5.5)

ρ(0, t) = f(t), 0 < δ0 ≤ f(t) ≤ 1, t > 0, (5.6)

ρ(σ(t), t) = 1, t > 0, (5.7)

σ̇ = ρy(σ(t), t), t > 0, (5.8)

(we look for a classical solution in the usual sense).

Of course, the proposition we proved at the beginning of Sec. 3 is still
valid, so that equation (5.4) is uniformly parabolic.

Thus (5.4)-(5.8) is a problem of Stefan type with monotonic free bound-
ary, the only difference with respect to the classical Stefan problem being the
nonlinearity of the equation.

Results of well-posedness can be obtained e.g. by ([2]). The cases with
different boundary conditions can be dealt with as well.

References

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1] P. Ch e n g. Heat Transfer in Geothermal Systems, Adv. Heat Transf., 14,
1978, 1-105.



14

[2] A. F a s a n o, M. P r im i c e r i o. Free boundary problems for nonlinear parabolic
equations with nonlinear boundary conditions, J. Math. Anal. Appl., 72,
1975, 503-517.

[3] C. R. F a u s t, J. W. M e r c e r. Geothermal reservoir simulation: 1. Math-
ematical models for liquid- and vapor-dominated hydrothermal systems,
Water Resour. Res., 15, No 1, 1979, 23-30.

[4] C . R . F a u s t , J . W . M e r c e r . Theoretical analysis of fluid flow and

energy transport in hydrothermal systems, Open File Report 77-60, U.S.
Geological Survey, Reston.

[5] A . F r i e d m a n . Partial Differential Equations of Parabolic Type, Prentice
Hall, 1964.

[6] D . E . W h i t e . Charcteristics of geothermal resources, in : P . K r u g e r ,
C . O t t eeds. Geothermal Energy, Stanford University Press, Stanford,
1973.

[7] M . P . H o c h s t e i n . Classification and assessment of geothermal resources,
in: M . H . D i c k s o n , M . F a n e l l ieds. Small Geothermal Resources:

A Guide to Development and Utilization, UNITAR, New York, 1990.

Dipartimento di Matematica “Ulisse Dini” Received xx.xx.199x
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