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Abstract.

We study the asymptotic behaviour of the solution of a hyperbolic-parabolic problem
in an isolated domain when ¢t — oco. The problem models the diffusion of n species of ra-
diative isotopes of the same element in a medium. The model is based on the assumption
that, since the isotopes are chemically indistinguishable, the flux of each isotope depends
on the gradient of the total concentration of the element weighted by the relative per-
centage of the isotope. We show that the asymptotic behaviour strongly depends on the
radiative law, and, in some cases, on the pointwise distribution of the initial concentration
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1 Introduction

We consider the model proposed in [4] for the diffusion of n species of isotopes of the same
element in a medium and based on the assumption that the flux of the i component .J;
is given by

C; . -
Ji - —D,—V 5 - ]_, ey Ty - iy 1.1
SVe, i n c ;_1 c (1.1)

where the coefficients D; are related to the interaction among the isotopes, which
are chemically indistinguishable, so that each component feels the gradient of the total

L . G
element concentration in a relative percentage —.

In the case of radioactive isotopes, we have to take into account the radioactive decay
law, which for spatially homogeneous distributions is a linear ODE system

C=AC, C=(c,..,c,) €R", (1.2)

A suitable n X n constant matrix, so that the problem is

Cit — —leJZ + AC, 1= 1, ey N (13)

If we assume that D; = maxD;, D, = minDj, ¢, = ¢ — Z?:l c; and define C =
(c1, ..., Ch1, ) then system (1.3) becomes

¢ x

et = (a(C)ez)z + (AC)y,
where a = D,, + Z;:ll (D; — Dn)& and A is obviously obtained from A (see [4]). In the
physical assumption that 0 < ¢; < ¢, 2 = 1,...,n, we have that the total concentration ¢
satisfies a uniformly parabolic quasilinear equation in divergence form, since 0 < D,, <
a < Dy, Vei, e > 0. Hence c(x,t) has a “parabolic” behaviour while, once ¢ is given,
the equations for the single species ¢; are first order linear equations, so that we expect
for ¢; a “hyperbolic” behaviour. In particular ¢; will have finite speed of propagation
and will in general be non smooth for ¢t > 0, showing the possibility of the onset of
regions depleted of a component ¢; and of strong oscillations also asymptotically, say a
“asymptotic localization property”.

This behaviour is in accordance with experimental data, as we have shown also nu-
merically (see [6], where we considered the case in which all D; are equal). The physical
motivation for model (1.1)-(1.3) comes in fact from examples of discordance between pre-
dictions and experiments in the co-diffusion of isotopic molecules (see [9], [10]): many
studies often assume that the isotopes ratios are constant, at the so called “secular equi-
librium” , however the analysis of isotopes in long-term experiments in bedrock and buffer
materials (see [16]) evidentiates changes in the original isotope composition, called “frac-
tionations”. This phenomenon can be observed e.g. in the field of Uranium mobilization
in geological media where there is, next to fractures surfaces, a narrow zone where the

(1.4)



U4 U8 activity ratio (the ratio of the concentrations of the two isotopes) is signifi-
cantly different from unity, i.e. from secular equilibrium. In some sense, the activity ratio
does not seem to support a simple classical diffusion mechanism: there are jagged areas
of enrichment and depletion of one isotope over the other, not as expected from classical
diffusion theory, even if the profile of the total Uranium is diffusion-like.

The assumption (1.1) on the flux, which gives rise to the "hyperbolic problem”, is an
approximation of a more complete model ([21], [3]), denoted ”parabolic problem” where
the resulting problem consists in a parabolic system strongly coupled:

0 C;
ot

~ C; n
=di Dz 7 DZ—Z AC, = 1, ceey T, = 7y 1.
1V< Ve, + CVC) + i n, c ;c (1.5)

where the additional term f)Z-Vci in the flux is taken into account, being D,- the usual
parabolic diffusion coefficients, due to the interaction of the i*" component with the sur-
rounding medium. The mathematical analysis of the above system in a bounded domain,
with Dirichlet boundary conditions was the object of paper [7], in the physically relevant
assumption that the total concentration of the element is positive and bounded, i.e.

K>c¢>k>0, i=1,...,n, k,K constant.

Aim of the present paper is the study of the asymptotic behaviour of the solution of

the problem in an isolated domain when ¢ — oo, in the assumption that all the D, are
equal. We will show in Sec.3 that the asymptotic behaviour as t — oo strongly depends
on the radiative law, i.e. on A.
Quite surprising it turns out that there are cases in which the asymptotic strongly depends
on the pointwise distribution of the initial concentration, the simplest case being the one of
a set, of stable isotopes, e.g. (CI3", C1*®), i.e. A = 0. But there are physical cases in which
the asymptotic is uniform, that is a typically parabolic behaviour, see e.g. (U234, U?8), or
more generally Example 2 in Sect.4, where we will give some explicit examples of matrix
A and discuss the corresponding behaviour.

2 Statement of the problem

After a suitable scaling on time, we can set D; = D = 1, Vi in system (1.4), and consider
the following Neumann problem in a bounded domain Q = {|z| < L}:

( . o
Cit = (2%) + (AC);, 1=1,...n—1
c

Ct = Cgq + ( é)na

2.1

ci(x,0) =cp(r) >0, i=1,...n—1, x €, (2.1)
ce(—L,t) ce(L,t)
\ C< ) C(_L>t) C( ) C(L>t)

As we mentioned before, in the physical assumptions

H1) c;p € H*Y(Q), 1>0, i=1,..,n, 0<cp <K, Co = iy Cio >0,



H2) positivity property for ODE: if ¢;o > 0, then ¢;(¢) >0, 1 =1,...,n,

there exists a unique classical solution of (2.1), moreover the total concentration ¢ satisfies
a uniformly parabolic equation, see Thm 5.3, 5.4 of [4]; here we use the notations of [18].
Then, as c is strictly positive, the solution constructed along the characteristics is the
“viscosity solution” obtained as the limit of the complete physical model (1.5), with
D;=D#0, D;=D=1as D — 0 (see [4]).

Remark that assumption H2) together with the uniqueness of the solution of the
ODE (1.2) imply that if Cy # 0 and ¢;p > 0, then ¢ = > ,¢; > 0 for t > 0 and
c<c, 1=1,...,n.

A common feature of this class of models (see also [2], [13], [14]) is that the ratio
r; = < has an evolution law simpler than the one of ¢;. In the case of isotopes, r; is
related to the activity ratio which e.g. for two species is z—;, but it is simpler to deal with
mathematically, since it is bounded by 1:

ri = Tint 4 P(r1, ae),  i=1,an—1, (2.2)
C

where P; is a polinomial of second degree.
This means that each r; evolves along the characteristics with the same law as the ratios
ci(t . . :
ﬁ, ¢;(t) being the solution of the ODE (1.2) C = AC.
i=1Ci
Since c is positive and regular, then we can define the characteristics starting at time
t=0inx =9 by X(t;x) as
dX(t;x Cy
7((1 o) _ _G X(0:20) = 0. (2.3)
t ¢ =X (t;zo)
In the assumptions H1), H2) the evolution of r; on the characteristics satisfies a
positivity property, i.e.
Cio

OST’io: —_— S 1 thenOSr,(X(t),m) S 1
Co

and (1, ¢) are solutions of the following problem:

( Ti = C—mrix+Pi(7‘1,...rn_1), i=1,..,n—1
o = cmcm + be,
ce(—L,t) = c,(L,t) =0, t >0, (2.4)
c(x,0) = ¢o(x), x €,
ri(z,0) = @) o,
\ CO(x>

where b depends on 7, ...r,,_1 and is defined by

b= (AF),, T=(r1, ..., n 1,1). (2.5)

A main information on the behaviour of the characteristics is obtained considering the
total mass and the mass of a single specie among two characteristics (the same information



is used in Ref. [2]), in particular, since we deal with a Neumann homogeneous problem,
r = —L and x = L are two characteristics, so that we will consider the characteristics
x=—Land x = X(t;20), zo < L to define:

mz(x>t):fchz(€>t)d§a Z.Zlv“wn_la
m(z,t) = [} e(&, 1) dE, (2:6)

m = (my,...,My_1,Mm),

and the masses in the whole Q as

M(t) = m(L,1). (2.7)
We proved in [4] that both M(¢) and m(X (¢;z),t) are the solutions of the ODE

Y =AY, (2.8)

with initial datum Y derived from Cy(z), i.e.

m(X (0;x9),0) = mg(zo), Ty € Q,

mao () :fchio(f)dg, 1=1,...,n—1, (2.9)

mg(x) = ffL 00(5) dg
We pointed out that both the evolution in time along the characteristics of the r; and
of the masses m; is the same as the one of the solution of the corresponding spatially
homogeneous problem.

Since we want to study a set of isotopes which either decay or are stable, we will
assume that all the eigenvalues of the matrix A in (1.2) are non positive, precisely:

H3) All the eigenvalues of A are real, nonpositive and if the maximum eigenvalue is
zero, then it is semisimple (i.e. its algebraic multiplicity and geometric multiplicity
coincide)

In assumption H3) any solution of Y = AY with bounded initial datum Yy is bounded
for any time, remarking that the eigenvalues of A coincide with the ones of A, so we can
assume H3) directly on A.

From the ODE theory (see e.g. [1], [12]), we have a complete description of the
solutions of the ODE. Assuming that A has s < n distinct eigenvalues \; < ... < \; <0,
we denote, for i =1, ..., s:

w(A;) = algebraic multiplicity of A;,

v(\;) = geometric multiplicity of \;,

E()\;) = generalized autospace of \;,

h()\;) = the least integer k such that Ker (A — \I)F+! = Ker (A — M),

so that E()\;) = Ker (A — A\, 1)"*) | with I = Id matrix n x n.

Any solution is a linear combination of the product of exponential functions time polino-
mials ones. Quite precisely:

h(Ai)—1

: ( A ktk Ait
Y(t) =) { (A= \I) E] MY, (2.10)

=1 k=0



with YO = Zle Y07i, Yoﬂ' - E()\z)
Assumption H3) implies that the leading term in (2.10) as ¢ — +oo is of the order
tha)=LeMit and hence

limy_, 4o t~ PO De=MbY (1Y) =

1 5 - .
m(/\ — MDY = BY,,.

Here B is a constant n x n matrix, determined by the autospaces E()\;), 1 =1,...;s. To
be precise, denoted by

(2.11)

E()\z) _ {Vi’l, ...,Vi’”()‘i)}>
Bnxn — (V1717...’VS7/’1‘()\S)}7 (212)
B = Bdiag (I,),0)B~,

- . 1 - -
have Yo, = BYyand B= ——— (A — \, )"~ 1BY,.
we nave 01 0 an (h()\l) — 1)'( 1 ) 0

Concerning the mass m(z,t) we have that it is a linear function of = and

+ L
i OO0 Mty 4y —
i e 'm(x,t) 5T

uniformly in Q, where M., = (Bmgy(L)), > 0, for any initial data Cy € T' = {y € R" :
Yn >0, 0<y; <wyp, i=1,....,n—1, (By), > 0}.

In the next Section we will prove a similar result for m(z,t) for general not spatially
homogeneous initial data, see Thm 3.1.

Finally for any Cy € I' we have

Mo, (2.13)

lim ¢~ (MDD~ MiC = BC,. (2.14)

t——+o00

3 Asymptotic behaviour for { — oo

With the notations of Section 2, we define

F(z) = (BCy(2)),, F(x)=(F,...,F,_1,F)= BCy(x). (3.1)

Remark that the matrices involved are constant matrices, depending only on A. Moreover,
let M(t) to be the solution of Y = AY with initial datum Y, = my(L) and, as in Sec.2,

M = (Brno(L), = [ P (3.2)

~L
then we have the following

Theorem 3.1 In the assumptions H1), H2), H3) and for any Co(z) such that F(z) >
0 >0, Vo € Q we have



+L
lim ¢~ *OD=1) o=t £ — z
i e "'m(x,t) 5T

uniformly in Q, with My, > 0.

M., (3.3)

Proof.
Defined u = (1 + ¢)~(PA)=De=Nte(z ¢) then u is solution of

h(A) —1 ~
ut:um%—(b—)\l—%)u:umjtbu, re t>0,

u(z,0) = colx), =€, (3.4)
Up(—L,t) = u,(L,t) =0, t>0.

Since b depends only on (r1, ..., 7,_1) and the r; evolve on each characteristic as th~e solution
of the ODE problem, we have the following uniform estimate for the coefficient b in (3.4):

Lemma 3.1

h(A) — 1 A2
%v%s—l)e = = k(8)g(t), Ve e, t > 1, (3:5)

b < k(6)
Then, by classical methods, we have that u is uniformly bounded for any time, precisely

0 <wu <maxc eJo k(®)g(s) ds < k(d, maxcy), Vit > 0. (3.6)
Let us define now
v(z,t) = (14 )" PO D=ty (4 1), (3.7)

v 1s solution of

U= Vg + [ budé = vy + fz,t), z€Q, >0,
v(z,0) =my(z), x€Q,

v(=L,t) =0, t>0,

v(L,t) = (1 +t)"FOO-"De=Nty(L 1), > 0.

Since m(L, t) evolves as the ODE;, see (2.13), we have from the assumptions of the Theorem
that

(3.8)

v(L,t) — My as t — oo.

Since u is uniformly bounded for any time, from Lemma 3.1 we have that f (x,t) tends
to zero uniformly in €2 as t — oo.
From classical results, see [11], Cap.VI, Thm.1, (3.3) follows.
O

Proof. of Lemma 3.1
Fix any zo € €, then on the characteristic X (¢; x¢) for ¢ > 1 we have, see (2.5):
h(A1)) —1 (AC), h(A) —1
S IC B N TCRES

¢ =X (t;z0)




with C solution of the ODE Y = AY and Y, = C,.

Hence ) O )
- —<<A—A11—LI)C) . (3.9)
=X (t;xo0) ¢ t n

From the explicit expression for C (see (2.10)) we have for the denominator ¢ in previous
expression:

b—)\l—M

(X (t;20), 1) = OV (o) + 2 (w0, ), (3.10)
with
|zpe” i (POD=D) < (M + (s — 1)ek—22A1t)
< . |

and for the numerator in (3.9):

h(A) —

(A — >\1[ — 1[)@ = a(l‘o, t) + Zg(Io,t), (311)

with

A2—A1
2t’

[all < ko(h(h = DEPODIN ]| < ky(s — DM

for any z € Q, t > 1. } . B

All the constants above, k;, j = 1,2,3, depend on A and on max ||Cy(zo)|| in €2.

The assumption F'(zg) > 0 > 0 together with the above estimates give the result of the
Lemma.

OJ
The asymptotic behaviour of the characteristics follows from the previous Theorem:
Corollary 3.1 In the hypotheses of Thm 3.1 we have that
lim X(¢;20) = Xoo(xg) = 2L F(¢)dé — L, (3.12)
t—+00 My J_p

uniformly in .

Proof.  Recalling that m(X(t;2¢),t) evolves in time like the n’* component of the
solution of the ODE Y = AY with initial datum mg(z,), we have

N Zo
tliin t= OOV =Ml (X (t; 1), 1) = (Bmg(z0)), = / F(&)d¢é =m™(xy) < My
— T 00 —L
The uniform convergence of the mass m(x,t) proves the result, remarking that, for any
t, m is a monotone increasing function of x and m*(zy) is increasing in xg, so that there

X+ L
L0 = mt (o).

exists a unique X, such that 5T

O

Let us denote by X !'(z) the inverse function of the monotone increasing function
Xoo(x) defined in (3.12). From the previous Corollary and from the proof of Thm.3.1, we

¢
obtain the behaviour of the ratioes r;, = —, i =1,....n — 1:
c



Corollary 3.2 In the hypotheses of Thm 3.1 we have that

Fi( X :
tE+mooTi(:E’t) = I'iso(T) = F((Xi i=1,..,n—1, (3.13)

[
N~
88
S— | ~—
SN— | ~—

o0

uniformly in ).

Proof.

G . =
Let us recall again that any r; evolves along one fixed characteristic like —, with C

solution of the ODE Y = AY with initial datum C,
Moreover from the explicit expressions for ¢ and ¢; we have (see (3.1))

Fy + ze— Mt (hOn)-1)
T F A zpe Mt (O0-1)

T

where, as in Lemma 3.1, the following estimate holds:

||2]] < ks

h(\) — 1
(————Ef———'4—(8 —-1)6

A2—A1

Therefore we have that (3.12) holds uniformly in Q.

Remark 3.1

1. .

If u(A) = 1 then k(X)) = 1, and E(\;) = {v'}, where v' is the eigenvector
corresponding to A1, so that F(z) = BCy(x) = a;(z)v!, a; depending on the initial
data.

Therefore in this case, for any = € Q,

TZOO(ZL’) = —

so that we have a unique limit independent of x for any initial datum satisfying the
assumptions of Thm 3.1. This is what is called ”secular equilibrium for the set of
isotopes”, see e.g. the couple (U?3*, U?*) and other examples in Sec.4.

S If 1 < p(M) = v(A) then again k(A1) = 1, but E(\) = {oh!, . o0} gl
being the (A1) independent eigenvectors of A corresponding to ;. Therefore

F(z) = BCo(z) = oy (2)v™ + ... + o) ()0,
and 7 () strongly depend on the pointwise distribution of Co, this is e.g. the case
of a set of n stable isotopes, i.e. A =0.

I 1 < w(A) < p(A) then h(A;) > 1. Recalling the explicit limits (2.11), (2.12)
and remarking that the vectors

wh = (A = AP G =1 ()
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are either zeros or eigenvectors of A corresponding to Ay, we have that r;,, either
behaves as in case 1 or as in case 2. For example if v(A\;) = 1, then all the w'? not null
are multiple of the unique eigenvector of A, v', so that F(z) = BCy(z) = oy (x)v!
and hence we have, as in case 1, a unique spatially homogeneous limit for r;, see
Example 2 in Sec. 4.

As a conclusion we have that, depending on the radiative decay law, that is on A,
we can have either a ”parabolic behaviour” with a secular equilibrium as in case 1,
or a "hyperbolic behaviour” possibly with strong oscillations in the limit as in case
2.

Remark 3.2

We have considered assumption H3) in order to describe the physical problem of
decaying or stable isotopes, but clearly (see (2.10)), all the results of Section 3 hold
without any restriction on the sign of \;, provided we still denote by A; the maximum
eigenvalue.

4 Examples and comments

Example 1
In the general case of n isotopes, assume that each one is either stable or decays out of
the element, that is A is a diagonal matrix and the ODE is

This is the case e.g. of the stable couple (C137,CI%), i.e. A = 0, and of the radiative
couple (U U?8) for which 0 < 7, < 73, very close one to the other so that as a first
approximation they can be taken equal.

Without loss of generality we can order the diagonal element, setting

A =7 <72 < ... <7, In this case h(A;) = 1 and we have that:

1.a) if u(A;) = 1, asymptotically we have the unique isotope 1, with
F(LU) = Clo(l’>, Moo = ml()(L),

and the limits for the r; are uniform for any initial datum such that c¢;o > k > 0,
that is
tlim ri =0, i=1,..,n—1 (4.2)
1.b) if n > p(A;) > 1 then the asymptotic distribution of the r; strongly depends on the
initial data. Precisely:

p(A1) p(A1)
F(z) =Y co(r), Meo= Y mi(L),
i=1 i=1

and
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: cin(X5H (7)) .
limy_ o 7 (2, ) 1=1,..., u(A),

(2,t) = S CZO(X_I( )) 1(A1) (4.3)
limy oo (2, t) = 0, = (M), ..

This can be observed in particular in the cases A = 0 and A = —vId in which the
r; are constant along the characteristics.

Example 2
A chain of n isotopes of which the i decays into the (i + 1), for any i = 1,...,n — 1,
and the n'* decays out of the element according to the following ODE:

{ ¢ = =711, (4.4)

Ci = Yi—1Cim1 — ViCi, 1 =2,..,M,

with v, >0, i =1,...,n.

This is the case e.g. of U%* U8, for which 0 < 7; << 7,. In this example the asymptotic
distribution is always uniform.

Infact let us analyze three possible situations:

2.a) Suppose that all the ~; are distinct, as it usually happens in nature, then the matrix
A has n negative distinct eigenvalues —v;, ¢ = 1,...,n and the solution of the ODE

C = AC with initial datum Cy can be expressed directly in the form:

C(t,Cy) = T(t)T'(0)~*Cy, (4.5)

with T'(t) = (e "'v!, ..., e !v") fundamental matrix for A (see [1]), and a direct
computation of the elgenvectors gives for any k=1,...,n

vkt =0, i=1,..k—1,
A | Jit1 — Tk i=k, ..,n—1

=i 7 ) PREXY ; (46)
n—1 Yj+1 — ’}/k
=1+>0" H Ll TR
Vi
Denoted by A\ = —min;—; _, 7 the maximum eigenvalue, say —~;, then

C(t, Co)e™t — (F(O) 1Co) v = auv" =F,
k

as t — oo.

Let us remark that both I'(0) and T'(0)™! are inferior triangular matrices and, if
Y% = min~;, then the eigenvector v¥ has the first k& — 1 components null and the
other positive. Therefore we have that:
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if 4 = min;—; _, 7, then all the components of v! are positive and

Ul,n ,Ul,n L
F(ZI}') = Clo(,’ﬁ)m, Moo = m /Lclo(g)dé-,

Tioo = —— > 0, i=1,...,n—1 (4.7)
Therefore we have ”secular equilibrium” for all isotopes, each one in a proportion
depending only on 7; and independent of the initial data, provided the physical
assumption c¢yg > 0 > 0, that guarantees that the isotope 1 is initially present, i.e.
the start of the chain. Let us remark that also M., depends on the initial mass of
the isotope 1.

If v = min~;, 1 < k < n, then v, has the first £ — 1 components null, and the
others positive.

Then r;oo = 0 for ¢ = 1,...,k — 1 and positive for ¢ > k, which means that the
isotopes 1, ..., k — 1 vanish asymptotically, and the ”secular equilibrium” holds only
for the isotopes k, ...,n. However now ay(z) and M, depend on cy(x), i =1, ..., k.

In particular, when k& = n only the n'" isotope is present at oo.
2.b) Again let \; = —min~; be the maximum eigenvalue, with (A1) = 1, the other
eigenvalues possibly being non distinct.

Then the eigenspace E(\;) again consists of the unique eigenvector corresponding
to A1, so that the r; behave like in case 2.a). However the matrix I'(0) depends now
on the generalized eigenvectors, so that the dependence of F on the initial data is
different from the previous one.

2.c) If u(Ay) > 1, since in this example the geometric multiplicity v(A;) = 1 V\;, then,
recalling Remark 3.1.3, we have that if v, = min~y;, then

F(x) = BCo(z) = f(a)v",

with v* given by (4.6) (remark that if there is an index i > k such that v, = ~; then
vk =0, for j <i—1, so that all the isotopes up to i — 1 desappear asymptotically).

Therefore the behaviour of r; as t — oo is again uniform.

Let us remark that when all the eigenvalues coincide, that is v =~v > 0,7 =1, ...,n, then

since the matrix A is multiple of a Jordan normal form, we have (F);(x) = (CL(?)'&L and
n—1)!
mlo(L)

h(M\1) = n. Therefore only the n-th isotope remain asymptotically, but M., = CE]
n—1)!
depends only on the initial mass of the isotope 1.

Example 3
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A chain of n isotopes such that the i'h decays into the (i + 1), for any i = 1,...,n — 1,
and the n'* is stable. That is the radiative law is the same as in Example 2 (see (4.4))
but with v, =0, v >0,1=1,...n— 1. '

In this case the equation for the total concentration ¢ is uncoupled and the ODE C = AC
becomes

¢1 = —7ic1,
Cy = 7Y1C1 — 7202,

(4.8)

Cn—1 = Yn—2Cn—2 — Tn—-1Cn—1,

L ¢=0.

The maximum eigenvalue is Ay = 0 and then F(z) = (0, ..., 0, co(z)), Mo, = mo(L) so that
r; — 0,7=1,...,n—1as t — oo, that is for any physical initial datum only the stable
isotope remains asymptotically.

Remark 4.1

Many other examples combinations of the previous ones could be considered. Let us limit
ourselves to one that is a mixture of Ex.1 and Ex.2, for which isotopes 1 and 3 decade
out of the element and isotope 2 decades in isotope 3, that is:

¢1 = —7ic1,
Coy = —"2C2, (4.9)
C3 = 7Y2C2 — 7Y3C3,

It can be shown that if the +; are all distinct, then the asymptotic distribution for r; is
uniform, while if e.g. v; = 75 < 73 then

F(ZL’) = Clo(l’) + s CQQ(ZL’).

Y3—nN
If moreover F' > § > 0, then
rn — CIO(A&:)a rog — 020(?)7
F(z) F(2)

with # = X_'(x), that is we obtain an asymptotic non uniform distribution which depends

on the pointwise initial concentrations, that is an example of Remark 3.1.2.
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