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Chapter 1

Introduction

Imaging sensors have become extremely affordable recently. Most of them

are carried in people pockets embedded in phones or cameras. It is estimated

that more than 4 billions of people own a mobile phone. Smartphones can

now even perform some basic automatic analysis of video content; this capa-

bility, augmented with the use of cloud-based services, certainly encourages

the acquisition and production of more video content.

The amount of videos produced daily in digital format grows astonish-

ingly fast; in fact, as an example, on Youtube “60 hours of video are up-

loaded every minute, resulting in nearly 10 years of content uploaded every

day“ [119] with a 25% of increase with respect to the 8 hours per minute

users were uploading as of May 2011 [174]. This data is often poorly an-

notated and user comments provide little or no information about the true

content of the video. Several social networks base their existence and ap-

peal on the possibility for their users to easily upload and share personal or

publicly available videos. On the one hand existing video archiving services

have added a social dimension, providing the possibility to comment and tag

content, while on the other hand more traditional social networks constantly

enhance media sharing features.

At the same time, the affordability of cameras and the growing per-

ceived need for security in city streets and public buildings pushes the video-

surveillance market. As examples of this trend, the city of Chicago is build-

ing a pervasive network, combining police and non-police cameras [24] and

the city of London has installed around ten thousand cameras as a crime

deterrent [37].
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4 Introduction

it can cope with occlusions, self-occlusions, illumination, scale and point-of-

view variations.

In the quest for systems able to automatically process huge amounts of

data, specifically for security and surveillance purposes, the definition of a

finite set of events to be recognised poses some hard-to-ovecome limitations.

The second problem this work addresses is the retrieval of events of interest

regardless of their specific nature. We cast the detection of these events of

interest as anomaly detection. This approach eases the challenge since it

requires the gathering of just the normal data, that we assume is available

in quantity.

Finally, since video data ultimately must be stored or transmitted, we

propose a method that can leverage both semantic high level features and

low level image features to reduce the disk space and bandwidth needed.

The rest of the thesis is organised as follows. We start with a review of

the state of the art in the analysis and annotation of events in Chapter 2.

This chapter serves to build a background for the subsequent chapters and

its emphasis is on approaches that exploit the temporal nature of videos; in

particular, we extensively review techniques based on local spatio-temporal

features that represent the foundation of most of the work presented in the

following chapters.

Chapters 3 and 4 deal with the classification of events belonging to spe-

cific known classes. We concentrate on the recognition of human actions

and activities. In Chapter 3 we define a novel descriptor based on the local

variations of appearance. The proposed descriptor is efficient and does not

require any parameter tuning. We adopt radius-based clustering and smooth

assignment of feature descriptors to create effective codebooks. We also deal

with the reduction of dimensionality by applying a novel technique based on

deep learning. Chapter 4 aims at defining a more compact representation

for local space-time features to alleviate the main drawbacks of space-time

descriptors: computational efficiency and high dimensionality. We use 3D

Zernike moments to compute a representation of space-time patches that is

not redundant by construction. Furthermore, given the hierarchical struc-

ture of the proposed descriptor, we formulate a novel measure of similarity

based on pyramidal matching of features. The proposed similarity is a valid

Mercer kernel.

Chapter 5 is a shift in the event retrieval paradigm with respect to pre-

vious chapters. We advocate the use of anomaly detection techniques when
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the classes of interests are too many or unknown in advance. We exploit

the features presented in Chapter 3 and a non-parametric technique in order

to build a model of the dynamic appearance of the scene. Our model uses

multiple scales and the context of local patterns to detect unusual events.

The system runs in real-time with no specific hardware or parallelisation of

any sort.

Finally in Chapter 6 we propose an application of semantic cue extraction

in videos that greatly reduces the storage and bandwidth requirements of

streaming video. The proposed method is based on the selective removal of

uninteresting areas with Gaussian blur and the successive compression with

the H.264 codec. Areas of interest can be detected with a detector or, in

case of limited available computing power, with a combination of cheap-to-

compute local features like image corners and edges.
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Chapter 2

Literature review

This chapter gives a brief survey of related work on event recog-

nition using local visual features. 1

2.1 Introduction

Semantic annotation of video content is a fundamental process that allows

the creation of applications for semantic video database indexing, intelli-

gent surveillance systems and advanced human-computer interaction sys-

tems. Typically videos are automatically segmented in shots and a repre-

sentative keyframe of each shot is analysed to recognise the scene and the

objects shown, thus treating videos like a collection of static images and

losing the temporal aspect of the media.

This approach is not feasible for the recognition of events and activities,

especially if we consider videos that have not been edited and do not contain

shots. Recognising the presence of concepts that have a temporal component

in a video sequence, if the analysis is done using simply a keyframe, is difficult

[157] even for a human annotator, as shown in Figure 2.1. A revision of the

TRECVid 2005 ground truth annotation of 24 concepts related to events and

activities has shown that 22% of the original manual annotations, performed

inspecting only one keyframe per shot, were wrong [65]. An event filmed

in a video is related to the temporal aspect of the video itself and to some

1Part of this chapter has been published as “Event detection and recognition for se-

mantic annotation of video” in Multimedia Tools and Applications (Special Issue: Survey

Papers in Multimedia by World Experts), vol. 51, iss. 1, pp. 279-302, 2011 [8].

7



8 Literature review

changes in the properties of the entities and scenes represented; therefore

there is need of representing and modelling time and properties’ variations,

using appropriate detectors, feature descriptors and models.

Several surveys on semantic video annotation have been recently pre-

sented. A review of multi-modal video indexing was presented in [142],

considering entertainment and informative video domains. Multi-modal ap-

proaches for video classification have been surveyed in [23]. A survey on event

detection has been presented in [82], focusing on modelling techniques; our

work extends this, providing also a review of low-level features suitable for

event representation, like detectors and descriptors of interest points, as well

as a review of knowledge representation tools like ontologies. A survey on

behaviour recognition in surveillance applications has been provided in [73],

while in [124] are reported the most recent works on human action recog-

nition. A survey of crowd analysis methods was reported in [177]. In this

chapter we survey methods that have been applied to different video domains,

considering edited videos (i.e. videos that have been created from a collection

of video material, selecting what elements to retain, delete, or combine, like

movies) and unedited videos (i.e. videos that have not been processed and

are simply the result of video recording, like surveillance videos).

(a) (b) (c)

Figure 2.1: Keyframe-based video event recognition. (a) Is it shot-on-goal

or placed-kick? (b) Is the person entering or exiting in/from the car? (c) Is

the aircraft landing or taking-off ?

The problem of semantic video annotation is strictly related to the prob-

lem of generic visual categorisation, like classification of objects or scenes,

rather than that of recognising a specific class of objects. Recently it has been

shown that part-based approaches are effective methods for scene and object

recognition [43,137,170,179] due to the fact that they can cope with partial

occlusions, clutter and geometrical transformations. Many approaches have
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been presented, but a common idea is to model a complex object or a scene

by a collection of local interest points. Each of these local features describes a

small region around the interest point therefore achieving robustness against

occlusion and clutter. To deal effectively with changes of viewing condi-

tions the features should be invariant to geometrical transformations such

as translation, rotation, scaling and also affine transformations. SIFT [93]

and SURF [10] features have become the de facto standards, because of their

good performance and (relatively) low computational cost. In this field, a

solution that recently has become very popular is the Bag-of-Words (BoW)

approach. It has been originally proposed for information retrieval, where it

is used for document categorisation in a text corpus, where each document is

represented by its word frequency. In the visual domain, an image or a frame

of a video is the visual analogue of a document and it can be represented

by a bag of quantised invariant local descriptors, called visual-words. The

main reason for the success of this approach is that it provides methods that

are sufficiently generic to cope with many object types simultaneously. The

efficacy of the BoW approach is demonstrated also by the large number of

systems based on this approach that participate in the PASCAL VOC and

TRECVid [138] challenges.

The problem of the detection and recognition of events and activities

is recently getting a larger attention, also within the TRECVid evaluation:

the high-level concept detection task of TRECVid 2009 [120] considered

the problem of event detection, with 7 out of 20 high-level concepts to be

detected that were related to events and actions [32]. The most recent ap-

proaches proposed in this task have started to cope with the problem of

representing videos considering the temporal aspects of it, analysing more

than one keyframe per shot and introducing some representation of the con-

text [120, 169]. Since 2008 a new dataset of airport surveillance videos, to

be used in a event detection task, has been added to the TRECVid evalua-

tion campaign; the dataset focuses mostly on crowd/group actions (e.g. peo-

ple meeting), human gestures (e.g. person running) and human activities

(e.g. putting an object somewhere).

2.2 Events and Actions

We refer to events as concepts with a dynamic component; an event is “some-

thing happening at a given time and in a given location”. In the video
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analysis community the event recognition task has never been tackled by

proposing a generic automatic annotation tool and the proposed approaches

are usually domain dependent. Video domains considered in this survey

are broadcast news, sports, movies, video-surveillance and user generated

content. Videos in the broadcast news, sports and movies are usually profes-

sionally edited while video-surveillance footage and user generated content

are usually unedited. This editing process adds a structure [141] which can

be exploited in the event modelling as explained in Sections 2.3.1. Automatic

annotation systems are built so as to detect events of interest. Therefore we

can firstly split events in interesting and non-interesting ; in the case of video-

surveillance interesting events can be specific events such as “people entering

a prohibited area”, “person fighting” or “person damaging public property”,

and so on; sometimes defining a-priori these dangerous situations can be

cumbersome and, of course, there is the risk of the non exhaustivity of the

system; therefore it can be useful to detect anomalous vs. non-anomalous

(i.e. normal) events [96, 132]. In this case an event is considered interesting

without looking at its specific content but considering how likely is given a

known (learnt) statistics of the regular events. Also in the sport domain the

detection of rare events is of interest, but systems need to detect events with

a specific content (typically called highlights, [14]) such as “scoring goal”,

“slam dunk”, “ace serve”, etc. Most of the domains in which video-analysis is

performed involve the analysis of human motion (sports, video-surveillance,

movies). Events originated by human motion can be of different complexity,

involving one or more subjects and either lasting few seconds or happen-

ing in longer timeframes. Actions are short task oriented body movements

such as “waving a hand”, or “drinking from a bottle”. Some actions are

atomic but often actions of interest have a cyclic nature such as “walking”

or “running”; in this case detectors are built to recognise a single phase of

it. Actions can be further decomposed in action primitives, for example the

action of running involves the movement of several body limbs [44]. This

kind of human events are usually recognised using low-level features, which

are able to concisely describe such primitives, and using per-action detectors

trained on exemplar sequences. A main difficulty in the recognition of hu-

man actions is the high intra-class variance; this is mainly due to variation

in the appearance, posture and behaviour (i.e. “the way in which one acts

or conducts oneself”) of the “actor”; behaviour can thus be exploited as a

biometric cue [64].
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Events involving multiple people or happening in longer timeframes can

be referred as activities [124]. Activity analysis requires higher level repre-

sentations usually built with action detectors and reasoning engines. Events

can be defined activities as long as there is not excessive inter-person occlu-

sion and thus a system is able to analyse each individual motion (typically

in sequences with two to ten people). In case of presence of a large amount

of people, the task is defined as crowd analysis [177]: persons are no more

considered as individuals but the global motion of a crowd is modelled [101].

In this case the detection of anomalous events is prominent because of its

applicability to surveillance scenarios and because of the intrinsic difficulty

of precisely defining crowd behaviours. Human actions are extremely useful

in defining the video semantics in the domains of movies and user generated

content. In both domains the analysis techniques are similar and challenges

arise mainly from the high intra-class variance. Contextual information pro-

vided by static features or scene classifiers may improve event recognition

performance [51,91,98].

2.3 Features for Actions and Events

Recognition of events in video streams depends on the ability of a system to

build a discriminative model which has to generalise with respect to unseen

data. Such generalisation is usually obtained by feeding state-of-the art

statistical classifiers with an adequate amount of data. We believe that the

key to solve this issue is the use of sufficiently invariant and robust image

descriptors. While tackling a problem such as single-object recognition (i.e.

find instances of “this object” in a given collection of images or videos) image

descriptors are required to yield geometric and photometric invariance in

order to match object instances across different images, possibly acquired

with diverse sensors in different lighting environment and in presence of

clutter and occlusions. An elegant way of dealing with clutter, occlusion and

viewpoint change is the use of region descriptors [93,104]; image regions can

be normalised [106] to obtain invariance to deformations due to viewpoint

change and another normalisation can be applied to obtain rotation and

partial photometric invariance [93].

This kind of description has been extended in the object and scene cat-

egorisation scenario exploiting the bag-of-words framework [137]. Through

the use of an intermediate description, the codebook, images are compactly
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represented. The codebook is usually obtained with a vector quantisation

procedure exploiting some clustering algorithm such as k-means. This in-

termediate description allows both fast data access, by building an inverted

index [114, 137], and generalisation over category of objects by representing

each instance as a composition of common parts [43]. As in the textual coun-

terpart the bag of visual words does not retain any structural information:

by using this representation we actually do not care where regions occur in

an image. As this comes with some advantages like robustness to occlusions

and generalisation over different object and scenes layouts, there is also a

big disadvantage in discarding completely image structure, since this actually

removes all spatial information. A local visual words spatial layout descrip-

tion [129] can recover some image structure without loss of generalisation

power. A global approach has been proposed by Lazebnik et al. [83]; in their

work structure is added in a multi-resolution fashion by matching spatial

pyramids obtained by subsequently partitioning the image and computing

bag-of-words representations for each of the sub-image partition.

Given the success of bag of keypoints representations in static concept

classification, efforts have been made to introduce this framework in event

categorisation. The first attempt in video annotation has been made by

Zhou et al. [180], describing a video as a bag of SIFT keypoints. Since

keypoints are considered without any spatial or temporal location (neither at

the frame level) it is possible to obtain meaningful correspondences between

varying length shots and shots in which similar scenes occur in possibly

different order. Again, the structure is lost but this allows a robust matching

procedure. Anyway temporal structure of videos carries rich information

which has to be considered in order to attain satisfactory video event retrieval

results. A different temporal information lies at a finer grained level and can

be captured directly using local features. This is the case of gestures, human

actions and, to some extent, human activities. Since gestures and actions

are usually composed of action primitives, which occur in a short span of

time and involve limb movements, their nature is optimally described by a

local representation.

As in static keypoint extraction frameworks, the approach consists of two

stages, detection and description. The detection stage aims at producing a

set of “informative regions” for a sequence of frames, while the goals of the

description stage are to gain invariance with respect to several region trans-

formations caused by the image formation process, and to obtain a feature
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representation that enables matching through some efficiently computable

metric.

2.3.1 Detectors

Space-time interest points located by detectors should contain information

on the objects and their motion in the world. Detectors are thus functions

computed over the image plane and over time that present higher values in

presence of local structures undergoing non-constant motion. These struc-

tures in the image should correspond to an object part that is moving in

the world. Since they deal with dynamic content they need to be robust

to motion generated by camera movements; these noisy detections have to

be filtered without damaging detector ability to extract interesting image

structures.

Local dynamic representations have been mostly derived directly from

their static counterparts [78, 118, 162, 164] while the approaches presented

in [32, 38] are explicitly designed for space-time features. Laptev extended

Harris corners keypoints to the space-time domain [78]; space-time corners

are corner-like structures undergoing an inversion of motion. Wong et al. em-

ployed a difference-of-Gaussian operator on space-time volumes, after a pre-

processing with non-negative matrix factorisation, in order to exploit the

global video structure. Willems extended the SURF [10] detector using

box filters and integral videos in order to obtain almost real time feature

extraction; finally, the saliency measure originally proposed by Kadir and

Brady [63] have been extended by Oikonomopoulos et al. [118]. The detec-

tor proposed by Dollár et al. [38] separates the operator which process the

volume in space and time; the spatial dimension is filtered with a Gaussian

kernel while the temporal dimension is processed by Gabor filters in order

to detect periodic motion. A similar approach, specifically designed for the

spatio-temporal domain, has been proposed by Chen et al. [32], which ex-

ploits a combination of optical flow based detectors with the difference of

Gaussian detector used by SIFT.

Region scale can be selected by the algorithm [78,162,164] both in space

and time or may simply be a parameter of it [38,80]; moreover scale for space

and time can be fixed as in [38] or a dense sampling can be performed to

enrich the representation [6,80]. Figure 2.2 shows an example of the response

of the detectors presented in [6], applied to the video surveillance domain.

All the above approaches model the detector as an analytic function of the
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frames and scales, some other approaches instead rely on learning how to

perform the detection using neural networks [68] or extending boosting and

Haar features used for object detection [156]. Kienzle et al. trained a feed-

forward neural network using, as a dataset, human eye fixations recorded

with an headmounted tracker during the vision of a movie.

Recent detectors and approaches lean toward a denser feature sampling,

since in the categorisation task a denser feature sampling yields a better

performance [116]. State-of-the art image classifiers are, by now, performing

feature sampling over regular multi-scale overlapped grids. This kind of

approach is probably still too computational expensive to be performed on

a sequence composed of hundred of frames. Finally, to the end of extracting

as much information as possible, multiple feature detectors, either static or

dynamic, have been used in conjunction [91,98,105].

Figure 2.2: Spatio-temporal interest point detector [6] running at different

temporal scales (blue low response, red high response); first row: original

video frames, second row detector response at temporal scale τ1 (mostly due

to the limbs), third row: detector response temporal scale τ2 (mostly due

to the torso), with τ1 < τ2. Frames taken from the ViSOR video repository

[154].
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2.3.2 Descriptors

The regions extracted by detectors need to be represented compactly. De-

scriptors are usually computed using a common pipeline as outlined in [163]

for static features and, partially, in [79] for dynamic ones: preprocessing, non-

linear transformation, pooling and normalisation. The preprocessing stage

is usually a smoothing operation performed using a 3-dimensional Gaussian

kernel [71, 78]. In order to obtain more robust descriptors a region normali-

sation can be applied [78]; the normalisation procedure proposed by Laptev

attempt to obtain camera-motion invariant regions in order to increase the

matching procedure reliability. Regions are transformed by computing an im-

age measurement; typical choices are: normalised brightness [38], image gra-

dients [78], spatio-temporal gradients [6,38,71,131] and optical flow [6,38,78].

Gradients are used to provide photometric invariance, 3-dimensional gradi-

ents are capable of representing appearance and motion concisely. Optical

flow descriptors can offer very informative low dimensional representations

in case of smooth motion patterns, but in presence of noise the performance

may degrade. Even if both carry motion information these two descriptions

have been found to be complementary [6] and the fusion is beneficial for

recognition. After computing this region transformation, the descriptor size

is still very high dimensional and there is no invariance to small deformations

(due for example to viewpoint change). Typically either global [38,79] or lo-

cal [6,71,131] histograms of gradient/optical flow orientation are computed.

The use of local statistics contribute to obtain invariance to little viewpoint

changes. A simpler approach is to apply PCA to the concatenated bright-

ness, gradient or optical flow values [38, 79]. A different technique is to

compute higher order derivatives of image intensity values [78]. Finally, fol-

lowing the approach of SIFT a descriptor normalisation and clipping can be

applied to obtain robustness w.r.t. contrast change [71]. As shown in [163],

for static feature descriptors, parameters can be learnt instead of “hand-

crafted”; Marszalek et al. performed such an optimisation by training on

datasets [98]. This technique shows an improvement over the handcrafted

values but it is also shows sensitivity to data: descriptors trained over Holly-

wood movies2 dataset does not perform as well on videos of the KTH dataset
3 and vice-versa. Figure 2.3 shows sample frames of these two datasets.

2http://www.irisa.fr/vista/actions/
3http://www.nada.kth.se/cvap/actions/

http://www.irisa.fr/vista/actions/
http://www.nada.kth.se/cvap/actions/
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(a)

(b)

Figure 2.3: Sample frames from actions in KTH (a) and Hollywood (b)

datasets.

2.3.3 Action representation

Actions can be represented as a collection of space-time pixel neighbour-

hoods descriptors. Statistical classification frameworks require an instance-

to-instance or an instance-to-class matching procedure. Local feature match-

ing can be done using simple metrics such as the Euclidean distance and ex-

ploiting [93] nearest neighbour distances to remove outliers. This technique

is highly effective in the single-object recognition task but can deliver poor

performance when generalisation power is needed as in a category recogni-

tion problem. As in object category recognition the intermediate codebook

representation can offer together generalisation power and dimensionality

reduction; in fact features which are often high dimensional (200+) are re-

placed with a code corresponding to a visual word in the dictionary. As

stated previously bag-of-words representations completely lack any notion

of the global features layout or their correlations. In action representation

the visual words are often associated with an action primitive such as “raising

an arm” or “extending a leg forward” and their spatio-temporal dependence

is a strong cue. These relations can be modelled in the codebook forma-

tion [92,131] or encoded in the final action representation [105,111,128,165].

Scovanner et al. [131] have grouped co-occurring visual words to capture

spatio-temporal feature correlations. Liu et al. have acted similarly on the

dictionary by iteratively grouping visual words that maximise the mutual

information. Niebles et al. [111] and Wong et al. [165] exploited graph-

ical models to introduce a structural representation of the human action
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by modelling relations among body parts and their motion. Savarese et

al. [128] augmented the action descriptor by computing visual words spatio-

temporal correlograms instead of a flat word-count. Finally Mikolajczyk

and Uemura [105] exploited vocabulary forest together with a star-shape

model of the human body to allow localisation together with recognition.

All these structural representations deal with relations between the feature

themselves and are suitable in the analysis of isolated actions or behaviours.

In the case of unconstrained scenarios, global layout representation can be

a better choice [41, 80, 81]. The main advantage is their reduced computa-

tional cost. Moreover their coarse description can deal better with a higher

intra-class variation. These approaches split the video volume with a coarse

spatio-temporal grid, which can have a uniform [41, 81] or non-uniform lay-

out [80], and by binning features in space and time, position dependent

feature statistics is computed.

2.4 Classification of complex events

Events that are characterised by complex or composite evolution are often

modelled by using a mid-level representation of the particular domain which

eases the event recognition. Therefore many works try to build classifiers

that are able to characterise the evolution and the interaction of particular

visual features. These kinds of representations are often used in specific do-

mains (for example in sports videos), where it is easier to define “in advance”

the relations among visual features. As briefly discussed in Section 2.3, many

methods proposed recently extend the traditional BoW approach. In fact,

the application of this part-based approach to event classification has shown

some drawbacks with respect to the traditional image categorisation task.

The main problem is that it does not take into account temporal relations

between consecutive frames, and thus event classification suffers from the in-

complete dynamic representation. Recently methods have been proposed to

consider temporal information of static part-based representations of video

frames. Xu and Chang [168] proposed to apply Earth Mover’s Distance

(EMD) and Temporally Aligned Pyramid Matching (TAPM) for measuring

video similarity; EMD distance is incorporated in a SVM framework for event

detection in news videos. In [157], BoW is extended constructing relative

motion histograms between visual words (ERMH-BoW) in order to employ

motion relativity and visual relatedness. Zhou et al. [180] presented a SIFT-
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detecting interesting behaviour as a semi-supervised problem. Indeed it is

often plausible to be able to collect a great amount of data to be regarded as

normal; robust models can be then trained with this data in order to detect

novel or anomalous patterns that are not respecting the known normal distri-

bution. In visual analysis anomalous pattern detection has been performed

mainly based on the analysis of trajectories [2,25,56] and more recently with

the use of local image descriptions [1, 70, 96, 102], based on optical flow or

appearance.



20 Literature review



Chapter 3

Event Detection with

Spatio-Temporal Features

Recognition and classification of human actions for annotation

of unconstrained video sequences has proven to be challenging be-

cause of the variations in the environment, appearance of actors,

modalities in which the same action is performed by different per-

sons, speed and duration and points of view from which the event

is observed. This variability reflects in the difficulty of defin-

ing effective descriptors and deriving appropriate and effective

codebooks for action categorisation. In this chapter we propose a

novel and effective solution to classify human actions in uncon-

strained videos. It improves on previous contributions defining a

novel local descriptor that uses image gradient and optic flow to

respectively model the appearance and motion of human actions

at interest point regions. In the formation of the codebook we

employ radius-based clustering with soft assignment in order to

create a rich vocabulary that may account for the high variability

of human actions. We obtain a strong reduction of computation

time by applying codebook size reduction with Deep Belief Net-

works with little loss of accuracy.1

1The work presented in this chapter is based on the preliminary work published as

“Effective Codebooks for Human Action Categorization” in Proc. of ICCV-WS Video

and Object Event Categorization (VOEC), 2009 [7]

21
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3.1 Introduction

With the continuous growth of video production and archiving, the need

for automatic annotation tools that enable effective retrieval by content has

accordingly gained increasing importance. In particular, action recognition

is a very active research topic with many important applications such as

human-computer interaction, video indexing and video-surveillance. Exist-

ing approaches for human action recognition can be classified as using holistic

or part-based information [8, 135]. Most of the holistic-based methods usu-

ally perform better in a controlled environment and are also computationally

expensive due to the requirement of pre-processing the input data. More-

over, these representations can be influenced by motions of multiple objects,

variations in the background and occlusions. Instead, part-based represen-

tations that exploit interest point detectors combined with robust feature

descriptors, have been used very successfully for object and scene classifica-

tion tasks in images [43, 179]. As a result, nowadays most video annotation

solutions have exploited the bag-of-features approach to generate textual la-

bels that represent the categories of the main and easiest to detect entities

(such as objects and persons) in the video sequence [52,140].

The definition of effective descriptors that are able to capture both spatial

and temporal features has opened the possibility of recognizing dynamic

concepts in video sequences. In particular, interesting results have been

obtained in the definition of solutions to automatically recognise human body

movements, which usually represent a relevant part of video content [107,

123, 124, 149]. However, the recognition and classification of such dynamic

concepts for annotation of generic video sequences has proven to be very

challenging because of the very many variations in environment, people and

occurrences that may be observed. These can be caused by cluttered or

moving background, camera motion and illumination changes; people may

have different size, shape and posture appearance; semantically equivalent

actions can manifest differently or partially, due to speed, duration or self-

occlusions; the same action can be performed in different modes by different

persons. This great variability on the one hand reflects in the difficulty of

defining effective descriptors and on the other makes it hard to obtain a visual

representation that may describe such dynamic concepts appropriately and

efficiently.
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3.1.1 Effective Spatio-Temporal Descriptors

Holistic descriptors of body movements have been proposed by a few authors.

Among the most notable solutions, Bobick et al. [17] proposed motion his-

tory images and their low-order moments to encode short spans of motion.

For each frame of the input video, the motion history image is a gray scale

image that records the location of motion; recent motion results into high

intensity values whereas older motion produces lower intensities. Efros et

al. [39] created stabilised spatio-temporal volumes for each action video seg-

ment and extracted a smoothed dense optic flow field for each volume. They

have proved that this representation is particularly suited for distant objects,

where the detailed information of the appearance is not available. Yilmaz

and Shah [172] used a spatio-temporal volume, built stacking object regions;

descriptors encoding direction, speed and local shape of the resulting 3D sur-

face were generated by measuring local differential geometrical properties.

Gorelick et al. [48] analysed three-dimensional shapes induced by the silhou-

ettes and exploited the solution to the Poisson equation to extract features,

such as shape structure and orientation. Global descriptors that jointly en-

code shape and motion were suggested in Lin et al. [88]; Wang et al. [158]

exploited global histograms of optic flow together with hidden conditional

random fields. Although encoding much of the visual information, these so-

lutions have shown to be highly sensitive to occlusions, noise and change in

viewpoint. Most of them have also proven to be computationally expensive

due to the fact that some pre-processing of the input data is needed, such as

background subtraction, segmentation and object tracking. All these aspects

make these solutions only suited for representation of body movements in

videos taken in controlled contexts.

Local descriptors have shown better performance and are in principle

better suited for videos taken in both constrained and unconstrained con-

texts. They are less sensitive to partial occlusions and clutter and overcome

some of the limitations of the holistic models, such as the need of back-

ground subtraction and target tracking. In this approach, local patches

at spatio-temporal interest points are used to extract robust descriptors of

local moving parts and the bag-of-features approach is employed to have

distinctive representations of body movements. Laptev [78] and Dollár [38]

approaches have been among the first solutions. Laptev [78, 130] proposed

an extension to the Harris-Förstner corner detector for the spatio-temporal

case; interesting parts were extracted from voxels surrounding local maxima
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of spatio-temporal corners, i.e. locations of videos that exhibit strong vari-

ations of intensity both in spatial and temporal directions. The extension

of the scale-space theory to the temporal dimension permitted to define a

method for automatic scale-selection. Dollár et al. [38] proposed a different

descriptor than Laptev’s, by looking for locally periodic motion. While this

method produces a denser sampling of the spatio-temporal volume, it does

not provide automatic scale-selection. Despite of it, experimental results

have shown that it improves with respect to [130].

Following these works, other authors have extended the definition of lo-

cal interest point detectors and descriptors to incorporate time or combined

static local features with other descriptors so to model the temporal evo-

lution of local patches. Sun et al. [145] have fused spatio-temporal SIFT

points with holistic features based on Zernike moments. In [162], Willems

et al. extended SURF feature to time and defined a new scale-invariant

spatio-temporal detector and descriptor that showed high efficiency. Sco-

vanner et al. [131], have proposed to use grouping of 3D SIFT, based on

co-occurrence, to represent actions. Kläser et al. [71] have proposed a de-

scriptor based on histograms of oriented 3D gradients, quantised using pla-

tonic solids. Gao et al. [47] presented MoSIFT, an approach that extend the

SIFT algorithm to find visually distinctive elements in the spatial domain. It

detects spatio-temporal points with a high amount of optical flow around the

distinctive points motion constraints. More recently, Laptev et al. [80] pro-

posed a structural representation based on dense temporal and spatial scale

sampling, inspired by the spatial pyramid approach of [83] with interesting

classification results in generic video scenes. Kovashka et al. [75] extended

this work by defining a hierarchy of discriminative neighbourhoods instead of

using spatio-temporal pyramids. Liu et al. [91] combined MSER and Harris-

Affine [106] regions with Dollár’s space-time features and used AdaBoost

to classify YouTube videos. Shao et al. [134] applied transformation based

techniques (i.e. Discrete Fourier Transform, Discrete Cosine Transform and

Discrete Wavelet Transform) on the local patches and used the transformed

coefficients as descriptors. Yu et al. [175] presented good results using the

Dollar’s descriptor and random forest-based template matching. Niebles et

al. [112] trained an unsupervised probabilistic topic model using the same

spatio-temporal features, while Cao et al. [27] suggested to perform model

adaptation in order to reduce the amount of labeled data needed to detect

actions in videos of uncontrolled scenes. Comparative evaluations of the per-
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formance of the most notable approaches were recently reported by Wang et

al. [158] and Shao et al. [135].

3.1.2 Suitable Visual Codebooks

According to the bag-of-features model actions are defined as sets of code-

words obtained from the clustering of local spatio-temporal descriptors. Most

of the methods have used the k-means algorithm for clustering because of

its simplicity and speed of convergence [43,112,137,170]. However, both the

intrinsic weakness of k-means to outliers and the need of some empirical pre-

evaluation of the number of clusters hardly fit with the nature of the problem

at hand. Moreover, with k-means the fact that cluster centres are selected

almost exclusively around the most dense regions in the descriptor space

results into ineffective codewords of action primitives. To overcome the limi-

tations of the basic approach, Liu et al. [92] suggested a method to automat-

ically find the optimal number of visual word clusters through maximisation

of mutual information (MMI) between words and actions. MMI clustering

is used after k-means to discover a compact representation from the initial

codebook of words. They showed some performance improvement. Recently

Kong et al. [74] have proposed a framework that unifies reduction of de-

scriptor dimensionality and codebook creation, to learn compact codebooks

for action recognition optimizing class separability. Differently, Uemura and

Mikolajczyk [105] explored the idea of using a large number of features rep-

resented in many vocabulary trees instead of a single flat vocabulary. Yao

et al. [171] recently proposed a similar framework using a training procedure

based on a Hough voting forest. Both these methods require higher efforts

in the training phase.

3.1.3 Our Contribution

In this chapter we propose a novel and effective solution to classify human

actions in unconstrained videos. It improves on previous contributions in the

literature through the definition of a novel local descriptor and the adoption

of a more effective solution for the codebook formation. We use image gra-

dient and optic flow to respectively model the appearance and motion of

human actions at regions in the neighbourhood of local interest points and

consider multiple spatial and temporal scales. These two descriptors are

used in combination to model local features of human actions and activities.
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Unlike similar related works [71, 131], no parameter tuning is required.

In the formation of the codebook we recognise that the clusters of spatio-

temporal descriptors should be both in a sufficiently large number and suffi-

ciently distinguished from each other so to represent the augmented vari-

ability of dynamic content with respect to the static case. To this end

radius-based clustering [62] with soft assignment has been used. In fact,

with radius-based clustering cluster centers are allocated at the modes cor-

responding to the maximal density regions, so resulting into a statistics of

the codewords that better fits with the variability of human actions with re-

spect to k-means clustering. Experiments carried on standard datasets show

that the approach followed outperforms the current state of the art meth-

ods. To avoid too large codebooks we performed codebook compression with

Deep Belief Networks. The solution proposed shows good accuracy even with

very small codebooks. Finally, we provide several experiments on the Holly-

wood2 dataset [80] and on a new surveillance dataset (MICC-Surveillance),

to demonstrate the effectiveness and generality of our method for action

recognition in unconstrained video domains.

The rest of the chapter is organised as follows: the descriptor is pre-

sented in Section 3.2. Action representation and categorisation is presented

in Section 3.3. The experimental results, with an extensive comparison with

the state-of-the-art approaches, are hence discussed in Section 3.5. Here we

also included experiments on unconstrained videos to demonstrate the effec-

tiveness of the approach also in this case. Conclusions are drawn in Section

3.6.

3.2 Spatio-temporal Local Descriptors of Ap-

pearance and Motion

Spatio-temporal interest points are detected at video local maxima of the

Dollár’s detector [38] applied over a set of spatial and temporal scales. Us-

ing multiple scales is fundamental to capture the essence of human activity.

To this end, linear filters are separately applied to the spatial and tempo-

ral dimension: on the one hand, the spatial scale permits to detect visual

features of high and low detail; on the other, the temporal scale allows to de-

tect action primitives at different temporal resolutions. The filter response
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Figure 3.1: Response of the spatio-temporal interest point detector at two

temporal scales τ1 < τ2 (low response in blue, high response in red); first

row: original video frames, second row detector response at temporal scale

τ1 (mostly due to motion of human limbs); third row: detector response

temporal scale τ2 (mostly due to motion of human torso).

function is defined as:

R =
(

I ∗ gσ ∗ hev
)2

+
(

I ∗ gσ ∗ hod
)2

(3.1)

where I(x, y, t) is the image sequence, gσ(x, y) is a spatial Gaussian filter

with scale σ, hev and hod are a quadrature pair of 1D Gabor filters that

provide a strong response to temporal intensity changes for periodic motion

patterns, respectively defined as:

hev(t; τ, ω) = − cos(2πtω)e−t2/τ2

(3.2)

hod(t; τ, ω) = − sin(2πtω)e−t2/τ2

(3.3)

where ω = 4/τ . In the experiments we used σ = {2, 4} as spatial scales

and τ = {2, 4} as temporal scales. Figure 3.1 shows an example of temporal

scaling of human body parts activity during walking: torso has high response

at high temporal scale, while limbs respond at the lower scale.

Three-dimensional regions of size proportional to the detector scale (6x)

are considered at each spatio-temporal interest point, and divided into equally

sized sub-regions (three for each spatial dimensions along the x and y, and

two for the temporal dimension t), as shown in Figure 3.2.
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24px

24px

12px

Figure 3.2: Three dimensional region at the spatio-temporal interest point

corresponding to a swinging arm.

For each sub-region, image gradients on x, y and t are computed as:

Gx = I(x+ 1, y, t)− I(x− 1, y, t) (3.4)

Gy = I(x, y + 1, t)− I(x, y − 1, t) (3.5)

Gt = I(x, y, t+ 1)− I(x, y, t− 1) (3.6)

and the optic flow with relative apparent velocity Vx, Vy is estimated accord-

ing to [95].

Orientations of gradients and optical flow are computed for each pixel as:

φ = tan−1
(

Gt/
√

G2
x +G2

y

)

∈
[

−
π

2
,
π

2

]

(3.7)

θ = tan−1 (Gy/Gx) ∈ [−π, π] (3.8)

ψ = tan−1 (Vy/Vx) ∈ [−π, π] (3.9)

where φ and the θ are quantised in four and eight bins, respectively.

The local descriptor obtained by concatenating φ and θ histograms (H3DGrad)

has therefore size 3×3×2×(8+4) = 216. There is no need to re-orient the 3D

neighbourhood, since rotational invariance, typically required in object de-

tection and recognition, is not desirable in the action classification context.
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This approach is much simpler to compute than those proposed in [131]

and [71]. In particular, in [131] the histogram is normalised by the solid

angle value to avoid distortions due to the polar coordinate representation

(instead of quantizing separately the two orientations as in our approach),

moreover the size of the descriptor is 2048; in [71] the 3D gradient vector is

projected on the faces of a platonic solid. This latter approach requires ad-

ditional parameter tuning, to optimise the selection of the solid used for the

histogram computation and whether to consider the orientations of its faces

or not. Differently from [80] our 12-bin H3DGrad descriptor models the dy-

namic appearance of the three-dimensional region used for its computation,

instead of being a 4-bin 2D histogram cumulated over time.

The ψ is quantised in eight bins with an extra “no-motion” bin added

to improve performance. The local descriptor of ψ (HOF) has size 3 ×

3 × 2 × (8 + 1) = 162. Histograms of φ, θ and ψ are respectively derived

by weighting pixel contributions respectively with the gradient magnitude

MG =
√

G2
x +G2

y +G2
t (for φ and θ), and the optic flow magnitude MO =

√

V 2
x + V 2

y (for ψ).

In order to obtain an effective codebook for human actions these two

descriptors can be combined according to either early or late fusion. In

the former case the two descriptors are first concatenated and the combined

descriptor is hence used for the definition of the human action codebook. In

the latter a codebook is obtained from each descriptor separately; then the

histograms of codewords are concatenated to form the representation (see

Figure 3.3).

Figure 3.4 shows the classification accuracy measured with the KTH

dataset, using codebooks based on the H3DGrad descriptor (a), HOF de-

scriptor (b), and early (c) and late fusion (d), with 4000 codewords. Each

action, is represented by an histogram H of codewords w obtained according

to k-means clustering with hard assignment:

H(w) =
1

n

n
∑

i=1







1 if w = argmin
v∈V

(D(v, fi));

0 otherwise;
(3.10)

where n is the number of the spatio-temporal features, fi is the i-th spatio-

temporal feature, and D(v, fi) is the Euclidean distance between the code-

word v of the vocabulary V and fi.

We present in Table 3.1 the average accuracy obtained by H3DGrad and
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Codebooks

…

… …

Codebook

H3DGrad+HOF

H3DGrad

HOF

H(w)

STPatch

STPatch

Descriptor

Descriptors

Action Representation

Action Representation

H(w)

Figure 3.3: Two fusion strategies: early-fusion (at the descriptor level) and

late-fusion (at the codebook level).

Descriptor KTH Weizmann

H3DGrad 90.38 92.30

HOF 88.04 89.74

H3DGrad + HOF (early fusion) 91.09 92.38

H3DGrad + HOF (late fusion) 92.10 92.41

Table 3.1: Average class accuracy of our descriptors, alone and combined,

on the KTH and Weizmann datasets.

HOF respectively, and by the early and late fusion. From the figures, it

appears clearly that late fusion provides the best performance. This can

be explained with the fact that H3DGrad and HOF descriptors have quite

complementary roles (for example the boxing action is better recognised when

using H3DGrad descriptor while hand-clapping action is better recognised

by HOF, as shown in Figure 3.4 (a),(b)). Late fusion improves recognition

performance for all the classes except one. A similar behaviour was observed

with the Weizmann dataset, although in this case the improvement was not

so significant mainly due to the limited size and intra-class variability of the

dataset (see Table 3.1).
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A

B

(A) (B)

Figure 3.5: Log-log plots of codeword frequency using k-means and radius-

based clustering with hard assignment. Bold lines indicate regions where

the average cluster precision [103] is below 0.53. The dotted diagonal line

represents the Zipfian distribution. Two sample clusters are shown at near

frequencies, respectively obtained with radius-based clustering (A) (most of

the features in the cluster represent spatio-temporal patches of the same

action) and with k-means (B) (features in the cluster represent patches of

several actions). Patches of actions have different colors: boxing (cyan),

hand-waving (magenta), hand-clapping (yellow), running (green), walking

(red), jogging (blue).

same time high discrimination capability and good probability of occurrence.

In contrast radius-based shows a much less uniform frequency distribution.

Interestingly, with radius-based clustering, the codeword distribution of the

human action vocabulary is similar to the Zipf’s law for textual corpora. It

seems therefore reasonable to assume that codewords at intermediate fre-

quencies are the most informative also for human action classification, and

the best candidates for the formation of the codebook.

Due to the high dimensionality of the descriptor, codebooks for human

actions usually have cluster centres that are spread in the feature space, so

that two or more codewords are equally relevant for a feature point (code-

word uncertainty); moreover cluster centres are often too far from feature

points so that they are not any more representative (codeword plausibil-

ity). With radius-based clustering, codeword uncertainty is critical because

it frequently happens that feature points are close to the codewords bound-

aries [152]. Instead, codeword plausibility is naturally relaxed due to the

fact that clusters are more uniformly distributed in the feature space. To re-

duce the uncertainty in codeword assignment, we therefore performed radius-

based clustering with soft assignment by Gaussian kernel density estimation
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smoothing. In this case, the histogram H is computed as:

H(w) =
1

n

n
∑

i=1

Kσ(w, fi)
∑|V |

j=1Kσ(vj , fi)
(3.11)

where Kσ is the Gaussian kernel: Kσ(·, ·) =
1√
2πσ

e(−
d(·,·)2

2σ2 ) being σ the scale

parameter tuned on the training set, and d(·, ·) is the Euclidean distance.

Figure 3.6 compares the classification accuracy with codebooks obtained

with k-means clustering with both hard and soft assignment, and radius-

based clustering with soft assignment, respectively for the KTH and Weiz-

mann dataset. The plots have been obtained by progressively adding less

frequent codewords to the codebooks (respectively up to 4000 and 1000 code-

words for the two datasets). The performance of k-means is improved by the

use of soft assignment. With a small number of words radius-based cluster-

ing with soft assignment has lower performance than k-means due to the fact

that the codewords used have higher frequency than those used by k-means

(see Figure 3.5). As the number of codewords in the codebook increases,

radius-based clustering outperforms k-means, whether with hard or soft as-

signment. This reflects the fact that in this case radius-based clustering per-

mits to have also sparse regions being represented in the codebook. Besides,

soft assignment helps to reduce uncertainty in the dense regions. Figure 3.7

shows the confusion matrix for different human actions on KTH and Weiz-

mann datasets with radius-based soft assignment. The average accuracy is

respectively 92.66% and 95.41% for the two datasets.

3.4 Person tracking and data association

When multiple persons, possibly not interacting and performing different

and separate actions, there is need of a segmentation procedure to map

space-time interest points detected in the video to each subject. Person

tracking is used to assign the detected spatio-temporal interest points to

each person present in a video, to localise both in space and time each

recognised action. The tracker adopted in our system implements a particle

filter based tracking algorithm, presented by [5], that tracks position, size

and speed of the target, describing the target appearance with its colour

histogram (using hue and saturation channels). The tracker is initiated using

the human detector of [36], implemented in OpenCV. The detector is run
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Figure 3.6: Classification accuracy on KTH (top) and Weizmann (bottom)

datasets with codebooks created with k-means with hard assignment, k-

means with soft assignment and radius-based with soft assignment.
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Figure 3.7: Classification accuracy on KTH (left) and Weizmann (right)

datasets using radius-based clustering with soft assignment.

frame-wise to obtain both new targets to follow and measures for existing

tracks. Measures obtained from the people detector are associated to targets

by solving a data association problem, using a fast greedy algorithm that

has a much lower complexity than the optimal solution obtainable with the

Hungarian algorithm [166]. This greedy algorithm can be executed in real-

time, as needed in video-surveillance applications, and works as follows: a

matrix M that contains all the matching scores mi,j between the ith target

and the jth measure of the person detector is computed. The matching score

is computed as:

mi,j = e−
d2
i,j

D (3.12)

where di,j is the Euclidean distance between the static part of the model (po-

sition and size) of the target and the position and size of the detected person

(represented using top-left and bottom-right coordinates of the bounding

boxes) and D is adaptively chosen based on the target size.

The maximum mi,j are iteratively selected, and the i rows and j columns

belonging to target and detector in M are deleted. This is repeated until

no further valid mi,j is available. Two approaches are followed to avoid

the erroneous association of a detection to a target: i) only the associated

detections with a matching score mi,j above a threshold are used, to avoid

that a detection that is far from a target is matched; ii) if a detection overlaps
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Figure 3.8: Original frame, hue/saturation histogram and person detector

generated likelihood computed for the farthest target (highlighted with red

bounding box). In this example the pedestrian detector is run at a single

scale; histogram likelihood is generated using the values of the Batthacharya

distance between the template histogram and a corresponding (same scale

and aspect ratio) window. In both cases scale and aspect ratio variations

are not considered, for the sake of visualisation.

more than one target no association is performed. If a detection is not

associated to any target and does not overlap any existing target then it is

used to start a new track.

The template of the target appearance is updated every time a new de-

tection is associated to the track. In this way we prevent template drift and

we allow the color histogram to adapt with respect to illumination changes

and maneuvers which can change the target appearance. The state update

equation, defined over the 8-dimensional state vector xk (composed by 4 com-

ponents for position and size and 4 components for their velocities), realises

a 1st-order dynamic model:

xk = Axk−1 + vk−1, A =

[

I4 I4∆t

0 I4

]

, (3.13)

where I4 is an 4 × 4 identity matrix, ∆t is the time step and vk−1 is an

additive, zero mean, isotropic Gaussian uncertainty term that represents

the uncertainty in the state update. This uncertainty is parametrised in

terms of the standard deviation on each component of the state vector. The

measurement model exploits the results of the person detector whenever they

are available.
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The person detector likelihood is strongly peaked in presence of a target,

as shown in the third column of Figure 3.8. This behavior allows to detect

as distinct objects even very close pedestrians, but is not suitable to use it as

likelihood of the target [3] since in particle weight computation it could assign

very high weights to a few or no particles, and almost uniform low weights

to the remaining population, leading thus to a degeneracy problem. To deal

with this issue the target model of the particle filter is based on the color

histogram of the tracked object, aiming at robustness against non-rigidity,

rotation and partial occlusion [117]; after updating the template histogram

with the new measure histogram, weights are computed according to the

Batthacharya distance between the particle and the template histograms.

On the other hand the color histogram is too weak to be used as an aspect

model in a real-world video-surveillance scenario and should not be used

as a sole measurement provider, as shown in the second column of Figure

3.8; this is due to background pixels contaminating the template and the

lack of discriminativity of the histogram caused also by its subsampling (we

used eight hue bins and eight saturation bins, to reduce sensitivity to light

conditions).

To improve the particle filter capability to effectively track the target,

even if its appearance is not strongly characterised, the tracking method

implements a particular technique, based on the use of the similarity of the

current estimate with the original target histogram as an index of tracking

quality, to manage the uncertainty in the state update equation by means of

on-line adaptation of the error vk−1. In particular, let us consider the case

where the variances of position and size of the target are set to very high

values. In this case the filter samples over a wide enough area to maximise

the possibility of capturing the target in case of erratic changes in direction

or velocity. The pitfall in this strategy, however, is that it also increases the

likelihood that the particle filter will become distracted by spurious similar

patches in the background. Considering also the variances of the velocities

the problem is even worse: from equation 3.4, in the update equation for

propagating a particle from time k− 1 to k, the uncertainty in the dynamic

component is propagated to the static component. To reduce this effect a

blindness value is computed by passing the similarity of estimate and original

target histogram through a sigmoid; this blindness value is used to adjust the

variances in such a way that the noise in the static component of the state

observations is never amplified by the noise in the dynamic components.
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This allows the tracker to switch between two different behaviors: one that

relies on the predicted motion of the target and one that behaves like a

random-walk model.

Figure 3.9: Example of multiple person tracking, spatio-temporal interest

point detection and their association to the tracks.

3.4.1 Action classification and track annotation

By mapping the features associated to each tracked person in a video to the

vocabulary, we can represent it by the frequency histogram of visual words.

In order to reduce outliers, histograms of tracks that contain too few interest

points, are discarded. Then, the remaining histograms are fed to a classifier

to predict the action category.

3.5 Experimental Results

We have assessed our approach for categorisation of human actions in dif-

ferent conditions. Particularly, it has been tested on the KTH and Weiz-

mann datasets that show staged actions performed by an individual in a

constrained non-cluttered environment. Moreover, in order to have a more

complete assessment of the performance of the proposed solution even in real

world scenes with high variability and unconstrained videos, we also carried

out experiments on the Hollywood2 and MICC-UNIFI Surveillance datasets.

This latter, made publicly available at http://www.openvisor.org [155], in-

cludes real world video surveillance sequences containing actions performed

by individuals with cluttering and varying filming conditions. Experiments

were performed using non-linear SVMs with the χ2 kernel [179].

http://www.openvisor.org
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(a) Walking

(b) Running

(c) Pickup object

(d) Enter car

(e) Enter car (from a different view point)

(f) Exit car

(g) Handshake

(h) Give object

Figure 3.10: Sample frames of sequences from the MICC-UNIFI Surveillance

dataset.
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3.5.1 Experiments on KTH and Weizmann datasets

The KTH dataset, currently the most common dataset used for the eval-

uations of action recognition methods [158], contains 2391 short video se-

quences showing six basic actions: walking, running, jogging, hand-clapping,

hand-waving, boxing. They are performed by 25 actors under four differ-

ent scenarios with illumination, appearance and scale changes. They have

been filmed with a hand-held camera at 160 × 120 pixel resolution. The

Weizmann dataset contains 93 short video sequences showing nine different

persons, each performing ten actions: run, walk, skip, jumping-jack, jump-

forward-on-two-legs, jump-in-place-on-two-legs, gallop-sideways, wave-two-

hands, wave-one-hand and bend. They have been filmed with a fixed camera,

at 180× 144 pixel resolution, under the same lighting condition.

Table 3.2 reports the average accuracy of our method in comparison with

the most notable research results published in the literature. The perfor-

mance figures reported are those published in their respective papers. For a

fair comparison, our experiments have been performed with the setup sug-

gested by the creators of the KTH and Weizmann datasets [48, 130], that

has been used in [47,71,80,92,126,130,131,145,158,162,176]. In particular,

with the KTH dataset, SVM classifiers have been trained on sequences of

16 actors and performance was evaluated for the sequences of the remaining

9 actors according to 5-fold cross-validation. With the Weizmann dataset

SVM classifiers have been trained on the videos of 8 actors and tested on

the one remaining, following leave-one-out cross-validation.

While showing the best performance, our solution has also the nice prop-

erty that it does not require any adaptation to the context under observation.

Instead other solutions require some tuning of the descriptor to the specific

context. Namely, Laptev et al. [80] perform different spatio-temporal sam-

pling of video frames and define a set of descriptors; hence they represent

each action with the best combination of sampling and descriptors; Kläser

et al. [71] use a parametrised 3D gradient descriptor; parameter values are

optimised for the dataset used; Liu et al. [90] use both local and global

descriptors and select the best combination of them according to an optimi-

sation procedure; Scovanner et al. [131] optimise the codebook by associating

co-occurrent visual words.

Other researchers have claimed higher performance on the KTH datasets:

94.2% Bregonzio et al. [21]; 93.2% Liu and Shah [92]; 93.43% Lin et al. [88].

However, these results were obtained with classifiers trained on larger sets
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of data. Therefore, for the sake of fairness, they have not been included in

Table 3.2. An exhaustive list of the different experimental setups and results

has been recently published by Gao et al. [47].

Method KTH Weizmann Features Optimisations

Our method 92.66 95.41 H3DGrad + HOF -

Yu et al. [176] 91.8 - HoG + HOF -

Wang et al. [158] 92.1 - HOF -

Gao et al. [47] 91.14 - MoSIFT -

Sun et al. [145] 89.8 90.3 2D SIFT + 3D SIFT + -

Zernike

Rapantzikos et al. [126] 88.3 - PCA-Gradient -

Laptev et al. [80] 91.8 - HoG + HOF codebook,

sampling

Wong and Cipolla [164] 86.62 - PCA-Gradient -

Scovanner et al. [131] - 82.6 3D SIFT codebook

Liu et al. [92] - 90.4 PCA-Gradient + codebook

Spin images -

Kläser et al. [71] 91.4 84.3 3D HoG descriptor

Willems et al. [162] 84.26 - 3D SURF -

Schüldt et al. [130] 71.7 - ST-Jets -

Table 3.2: Comparison of classification accuracy with some state-of-the-art

methods on KTH and Weizmann datasets.

3.5.2 Tracker evaluation

We evaluate our tracking module quality by measuring multiple object track-

ing accuracy (MOTA) as defined by [11]. MOTA is an intuitive performance

metric for multiple object trackers and measures a tracker performance at

keeping accurate trajectories. For each frame processed a tracker should

produce a set of object hypotheses, each of which should ideally correspond

to a real visible object. In order to compute MOTA a consistent hypothesis-

object mapping over time must be produced; the complete procedure to

obtain this mapping is specified in detail in [11]. MOTA takes into account

all possible errors that a multi-object tracker makes: false positives, missed

objects and identity switches. False positives (fp) arise when, for example,

the tracker is initiated on a false detection or when an object is missed and

consequently a wrong pattern replaces the correct object hypothesis. Misses

or false negatives (fn) arise whenever an object is not mapped to any of the

hypotheses proposed by the tracker; finally identity switches (sw) happen
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whenever an object hypothesis is mapped to the wrong object, for exam-

ple after an occlusion or when an object tracker fails and another tracker is

reinitialised. Errors are normalised by the number of objects present (gt)

with respect to the whole sequence.

MOTA is defined as follows:

MOTA = 1−

∑

t fpt + fnt + swt
∑

t gtt
(3.14)

We represent persons as bounding boxes and we consider a mapping

correct if O∩H
O∪H ≥ 0.5, where O and H are the areas of the object and the hy-

pothesis bounding boxes mapped. We measured MOTA for all five sequences

in which our final recognition experiments were performed and another se-

quence. The last sequence is recorded with a PTZ camera, panning tilting

and zooming on targets and targets are instructed to produce overlapping

trajectories in order to create difficult situations for a multiple object tracker.

In the first five test sequences most of the errors are caused by false alarms of

the pedestrian detector that cause instantiation of trackers; in the classifica-

tion stage this empty tracks can be filtered since they usually do not contain

enough detected space-time interest points. In the last sequence most of the

errors are due to identity switches since target manoeuvres are more com-

plex. MOTA is quite satisfying in all sequences, considering also that, in

order to attain real-time performance, our appearance model is weak and no

online classifier is used to perform data association or learn the template.

Sequence FPR FNR SWITCH MOTA

1 27.92 2.92 0 68.35

2 38.56 12.40 2 49.82

3 13.15 32.16 0 54,67

4 23.65 9.18 0 67.20

5 15.02 27.48 0 57.74

6 14.59 3.82 52 79.38

Table 3.3: Multiple object tracking accuracy(MOTA) together with false pos-

itive rate (FPR), false negative rate (FPR) and amount of identity switches

(SWITCH).
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Figure 3.11: Sample frames from a challenging sequence. First and second

rows: the tracker is able to handle occlusions without losing the track or

switching object identities. Third row: occlusion is correctly handled be-

tween yellow target and orange target but a false positive arise (red target)

due to a false alarm of the pedestrian detector. Fourth row: after success-

fully handling the first occlusion the tracker lose the yellow target; a new

track is initiated (magenta) afterwards, and correctly tracked until the end

of the sequence.

3.5.3 Experiments on MICC-UNIFI Surveillance dataset

The MICC-UNIFI Surveillance dataset is composed by 175 real world video

sequences of human actions with durations ranging from 3 to 20 seconds.

The videos have been taken from wall mounted Sony SNC RZ30 cameras at

640×480 pixel resolution, in a parking lot. The scenes are captured from dif-

ferent viewpoints, at different degrees of zooming, with different shadowing

and unpredictable occlusions, at different duration, speed and illumination

conditions. Eight subjects perform seven everyday actions: walking, run-

ning, pick-up object, enter car, exit car, handshake and give object. A few

examples are shown in Figure 3.10. We followed a repeated stratified random



http://lastlaugh.inf.cs.cmu.edu/libscom/downloads.htm
http://vision.ucsd.edu/~pdollar/research.html
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Method MICC-Surveillance

Our method 86.28

k-means + soft 83.74

k-means 82.90

Dollár’s et al. [38] 72.50

MoSIFT [47] 75.88

Table 3.4: Comparison of classification accuracy on MICC-Surveillance

dataset with our method, k-means with soft assignment, k-means with hard

assignment, and with the descriptors proposed in [38] and [47].

3.5.4 Experiments on Hollywood2 dataset

The Hollywood2 dataset [99] is composed by sequences extracted from DVDs

of 69 Hollywood movies, showing 12 different actions in realistic and chal-

lenging settings: answer phone, drive car, eat, fight person, get out of car,

handshake, hug person, kiss, run, sit down, sit up, stand up. We performed

our experiments with the same setup of [80, 158] using the “clean” training

dataset, containing scenes that have been manually verified. This dataset is

composed by 1707 sequences divided in training set (823) and test set (884),

with different frame size and frame rate; train and test set videos have been

selected from different movies. To be comparable with other experimental

results the performance has been evaluated computing the average preci-

sion (AP) for each class and reporting also the mean AP over all classes.

Codebooks have been created using 4000 codewords, as in [158]. We have

compared our codebook creation approach with k-means clustering using

both soft and hard assignments, and with an implementation of the method

proposed in [80] using the provided descriptor and detector4. Results are

reported in Table 3.5, showing that the proposed method outperforms the

other approaches in the majority of action classes and in terms of mean AP.

3.5.5 Reducing the Codebook Size

Large codebooks, although being able to exploit the most informative code-

words as illustrated in Figure 3.5, imply high time and space complexity. Re-

duction of codebook size with preservation of descriptive capability is there-

fore desirable. Linear dimensionality reduction techniques such as Principal

4http://www.irisa.fr/vista/Equipe/People/Laptev/download.html

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
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Action k-means k- means + Our method Laptev et al.

soft [80]

Answer phone 0.178 0.186 0.195 0.134

Drive car 0.864 0.865 0.863 0.861

Eat 0.552 0.564 0.564 0.596

Fight person 0.564 0.557 0.578 0.643

Get put of car 0.362 0.364 0.362 0.297

Handshake 0.142 0.143 0.167 0.179

Hug person 0.251 0.257 0.275 0.345

Kiss 0.494 0.510 0.503 0.467

Run 0.631 0.636 0.659 0.619

Sit down 0.483 0.493 0.509 0.505

Sit up 0.215 0.231 0.227 0.143

Stand up 0.511 0.513 0.514 0.485

mean AP 0.437 0.443 0.451 0.439

Table 3.5: Comparison of per-class AP performance on Hollywood2 dataset

with codebooks created with our method, k-means with soft assignment, k-

means with hard assignment and with the detector+descriptor proposed by

Laptev et al. [80].

Component Analysis or Latent Semantic Analysis, are not suited to this

end because they are not able to handle high order correlations between

codewords that are present in human action representation [151]. We have

therefore applied nonlinear dimensionality reduction with Deep Belief Net-

works (DBNs) [53,151]. A DBN is composed of several Restricted Boltzmann

Machines (RBM) building blocks that encode levels of non-linear relation-

ships of the input vectors. It is pre-trained by learning layers incrementally

using contrastive divergence [28]. After pre-training, the auto-encoder is

built by reversing the network and connecting the top layer of the network

to the bottom layer of its reversed version. The auto-encoder is then used

to fine-tune the network using a standard back-propagation algorithm.

Since the action representation H(w) can be considered as a coarse prob-

ability density estimation of the features of a human action (see equation

3.11), given a set of space-time features F = {f1, f2, . . . , fn}, the value of

the i-th bin of H can be considered as the probability that a space-time
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descriptor f ∈ F is represented by the codeword wi. This probability can

hence be used as an input for an RBM according to [53].

Figure 3.14 reports plots of accuracy measured at different codebook

sizes, with PCA, LSA and DBN codebook reduction and radius-based clus-

tering with soft assignment, on the KTH dataset. Codebook reduction was

applied to a 4000 codewords codebook. The dimension of the input layer is

equal to the size of the uncompressed codebook and the dimension of the

output layer is the compressed codebook size. Each hidden layer is one half

the dimension of its input layer. The network depth ranges between five

and eight depending on the size of the output codebook. The performance

of our approach outperforms that of the method recently proposed in [74],

especially for the smaller codebook sizes.

Figure 3.15 reports plots of mean computation times for a KTH video

sequence as a function of codebook size for radius-based clustering with

soft assignment. The accuracy values of Figure 3.14 have been reported

on the plot for the sake of completeness. It can be noticed that strong

codebook size reductions result into time improvements of more than two

orders of magnitude. A compressed codebook with 100 codewords scores

89.57% recognition accuracy with respect to 92.66% of a 4000 codewords

codebook.

Figure 3.16 shows that DBN-compressed codebooks on the one hand

provide good accuracy even with very small codebook sizes, and on the other

hand make radius-based clustering still competitive with respect to k-means

clustering with 100 or less codewords.

Table 3.6 reports a comparison in terms of classification accuracy at

different codebook sizes with DBN, PCA and LSA on the MICC-UNIFI

surveillance dataset. Codebook reduction was applied to the 2000 codeword

codebook obtained with radius-based clustering and soft assignment in the

previous classification experiment. The smaller number of available training

videos, with respect to KTH, is responsible for the reduction in classifica-

tion accuracy, although the DBNs largely outperform the other methods.

This experiment shows another advantage of the use of DBNs over PCA and

LSA when the number of sequences available for training is relatively small,

i.e. the possibility to create larger dictionaries that usually yield higher clas-

sification accuracy although maintaining a speed improvement of an order of

magnitude. Table 3.7 reports a comparison of MAP performance obtained

using compressed codebooks created with DBN, PCA and LSA on the Hol-
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Figure 3.14: Classification accuracy on KTH dataset at different codebook

sizes, with different codebook reduction techniques, for radius-based cluster-

ing with soft assignment.

lywood2 dataset. Codebook reduction was applied to the 4000 codeword

codebook obtained with radius-based clustering and soft assignment used in

the classification experiment. Despite the challenging dataset, the perfor-

mance is still comparable with that obtained with full sized codebooks by

several approaches reported in [158].

Codebook size 6 50 100 250 500

DBN 0.386 0.397 0.412 0.431 0.474

PCA 0.333 0.378 0.405 - -

LSA 0.330 0.346 0.335 - -

Table 3.6: Classification accuracy on MICC-UNIFI dataset at different code-

book sizes, with different codebook reduction techniques, for radius-based

clustering with soft assignment. Using PCA and LSA it is not possible to

create codebooks larger than the number of training videos; using DBNs this

issue is not present.
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Codebook size 6 50 100 250 500

DBN 0.281 0.372 0.383 0.375 0.374

PCA 0.191 0.323 0.329 0.337 0.338

LSA 0.204 0.322 0.316 0.311 0.314

Table 3.7: Classification of MAP performance on Hollywood2 dataset at

different codebook sizes, with different codebook reduction techniques, for

radius-based clustering with soft assignment.

6 50 100 250 500 4000

10
−1

10
0

10
1

0.9266

0.8888

0.8888

0.8957

0.8633

0.7740

Codebook size

c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

 

 

Figure 3.15: Mean computation times for a KTH video sequence at differ-

ent codebook sizes with radius-based clustering and DBNs. The numbers

associated to the markers indicate the classification accuracy.

3.6 Conclusions

In this chapter we have presented a novel method for human action cate-

gorisation that exploits a new descriptor for spatio-temporal interest points

that combines appearance (3D gradient descriptor) and motion (optic flow

descriptor), and effective codebook creation based on radius-based clustering

and a soft assignment of feature descriptors to codewords. The approach was

validated on KTH and Weizmann datasets, on the Hollywood2 dataset and

on a new surveillance dataset that contain unconstrained video sequences

that include more realistic and complex actions. Results outperform the

state-of-the-art with no parameter tuning. We have also shown that a strong
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Figure 3.16: Classification accuracy as a function of codebook size, for DBN-

compressed and uncompressed codebooks. Radius-based clustering with soft

assignment is compared with k-means clustering with hard assignment.

reduction of computation time can be obtained by applying codebook size

reduction with Deep Belief Networks, with small reduction of classification

performance.
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Chapter 4

Pyramid Kernel Descriptors

Based on Space-time Zernike

Moments

Local space-time descriptors are the main and most powerful tool

for robust video representation and are the fundamental building

block in event recognition algorithms. Space-time descriptors are

usually carefully engineered in order to obtain feature invariance

to photometric and geometric variations. The main drawback of

these descriptors is high dimensionality and efficiency. In this

chapter we propose a novel descriptor based on 3D Zernike mo-

ments computed for space-time patches. Moments are by con-

struction not redundant and therefore optimal for compactness.

Given the hierarchical structure of our descriptor we propose a

novel similarity procedure that exploits this structure comparing

features as pyramids. The approach is tested on a public dataset

and compared with state-of-the art descriptors.1

1The work presented in this chapter has been published as “Space-time Zernike Mo-

ments and Pyramid Kernel Descriptors for Action Classification”” in Proc. of Interna-

tional Conference on Image Analysis and Processing (ICIAP), [34]

53
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4.1 Introduction

As shown in Chapter 3 one of the most powerful video representation for

event recognition is obtained through the computation of a set of features

describing local spatio-temporal regions. Indeed several techniques have been

developed in the recent years mainly based on the use of local descriptions of

the imagery. Following the success of SIFT [93] in object and scene recogni-

tion and classification [137], several space-time extensions of the local patch

descriptors have been proposed. Similarly to local image features [104, 106]

space-time features are localised through a detection step and then computed

on the extracted patches; videos are represented as a collection of descrip-

tors. Space-time descriptors represent the appearance and the motion of a

local region and are engineered in order to retain invariance to geometric and

photometric transformations. Laptev et al. [80] have defined a descriptor as

a concatenation of histograms of oriented 2D gradients and histograms of op-

tical flow. In order to reduce the computation burden an extension of SURF

have been presented in [162]. Scovanner et al. [131] extended the SIFT to

three-dimensional gradients normalizing 3D orientations bins by the respec-

tive solid angle in order to cope with the issue of the uneven quantisation

of solid angles in a sphere. To solve this issue Kläser et al. [71] proposed to

exploit 3D pixel gradients developing a technique based on Platonic solids.

Finally Ballan et al. [7] developed an efficient descriptor decorrelating the

spatial and temporal components and creating separated histograms of 3D

gradient orientations. However all of these descriptors are extremely high-

dimensional and often retain redundant information.

In the same time, researchers have exploited moments and invariant mo-

ments in pattern recognition [45]. Moments are scalar quantities used to

characterise a function and to capture its significant features and they have

been widely used for hundreds of years in statistics for description of the

shape of probability density functions. Moments and in particular Zernike

moments are a common choice in shape representation [86]. Zernike moments

have been also proposed in action recognition as holistic features in [145] to

describe the human silhouettes. Representations based on Zernike polynomi-

als outperform other moment based descriptors in term of noise robustness,

information redundancy and reconstruction error [146].

Despite the fact that feature matching is an important step in the recog-

nition process few works have analysed it. Lowe [93] showed that in order

to retrieve meaningful patches it is necessary to look at the distances of the
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second nearest neighbour. More recently Bo et al. [16] provided a kernel

view of the matching procedure between patches. Their work formulates the

problem of similarity measurement between image patches as a definition of

kernels between patches. Since these kernels are valid Mercer kernels it is

straightforward to combine them or plug them into kernelised algorithms.

In this chapter we propose a new method for classification of human ac-

tions based on an extension of the Zernike moments to the spatio-temporal

domain. Furthermore, we propose a kernel suitable for matching descriptors

that can be hierarchically decomposed in order to obtain a multiple resolu-

tion representation. This kernel is inspired by multi-resolution matching of

sets of features [49, 83], but instead of matching sets of features we match

single space-time patches at multiple resolutions. To the best of our knowl-

edge 3D Zernike moments have never been used as local space-time features

and the pyramid matching scheme has never been used to define kernels

between single features but only to match sets of features. Experimental

results on KTH dataset shows that our system presents a low computational

time maintaining comparable performance with respect to the state-of-the-

art. The rest of the chapter is organised as follows. The generalisation of

the Zernike moments to the three dimensions is presented in the next sec-

tion. The Pyramid Kernel Descriptors are introduced in Section 4.3. The

techniques for action representation and classification are presented in Sec-

tion 4.4. Experimental results on the standard KTH dataset are discussed

in Section 4.5. Finally, conclusions are drawn in Section 4.6

4.2 Space-time Zernike Moments

We first describe the formulation of the Zernike moments in two dimensions,

and then introduce the generalisation to the space-temporal domain. Let

x = [x1, x2] be the Cartesian coordinates in the real plane R
2. Zernike

polynomials are a set of orthogonal functions within the unit disk composed

by a radial profile Rnm and a harmonic angular profile Hm (ϑ) defined as

follows

Vnm (ρ, ϑ) = Rnm (ρ) ·Hm (ϑ) (4.1)
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(a) (b)

Figure 4.1: a) Radial profile up to the 2nd order; b) Radial profile for the

6nd order.

where ρ =
√

x21 + x22, ϑ = tan−1
(

x2

x1

)

, Hm (ϑ) = eimϑ and

Rnm (ρ) =







(n−|m|)/2
∑

s=0

(−1)s(n−s)!ρn−2s

s!(n+|m|
2 −s)!(n−|m|

2 −s)!
for n− |m| even

0 for n− |m| odd

. (4.2)

The index n is named “order” and is a non-negative integer, and m

is called “repetition” and it is an integer such that n − |m| is even and

non-negative. In Figure 4.1 some examples of the radial profile Rnm are

shown. Both the Zernike polynomials and the radial profile Rnm (ρ) satisfy

the orthogonal condition

2π
∫

0

1
∫

0

V ∗
nm (ρ, ϑ)Vn′m′ (ρ, ϑ) ρdρdϑ =

π

n+ 1
δnn′δmm′ (4.3)

and
1

∫

0

Rnm (ρ)Rn′m′ (ρ) ρdρ =
1

2 (n+ 1)
δnn′δmm′ (4.4)

where δ indicates the Kronecker delta. Zernike polynomials are widely used

to compute the Zernike moments [86, 110].

Let f (x) be any continuous function, the Zernike moments are

Anm (x0) =
n+ 1

π

∫ ∫

‖x−x0‖≤1

f (x)V ∗
nm (x− x0) dx1dx2 (4.5)

where x0 denotes the point where the unit disk is centred. In this work we

are interested in the computation of the Zernike moments for functions as
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f : R3 7→ R where the third dimension is the time. To get the 3D Zernike

polynomials [26, 115], the harmonic angular profile is substituted by the

spherical harmonic functions

Y l
m (ϑ, ϕ) = N l

mP
l
m (cosϑ) eilϕ (4.6)

where P l
m denotes the Legendre function and N l

m is a normalisation factor

N l
m =

√

2m+ 1

4π

(m− l)!

(m+ l)!
. (4.7)

The spherical harmonic functions up to the 3rd order are shown in Figure

4.2. In this case, given an order n, we use only the values of m ≥ 0, and the

index l is an integer such as −m ≤ l ≤ m. Then, the 3D Zernike polynomials

are defined in spherical coordinates as follows

V l
nm (ρ, ϑ, ϕ) = Rnm (ρ) · Y l

m (ϑ, ϕ) (4.8)

and they satisfy the orthogonal condition within the unit sphere

1
∫

0

π
∫

0

2π
∫

0

[

V l
nm (ρ, ϑ, ϕ)

]∗
V l′

n′m′ (ρ, ϑ, ϕ) sin (ϑ) dϑdϕdρ = δnn′δmm′δll
′

. (4.9)

Let ξ = [x, t] be the generic point in the real plane R2 at the time t, the 3D

Zernike moments are

Al
nm (ξ0) =

3

4π

∫

‖ξ−ξ0≤1‖

f (ξ)

[

V l
nm

(

ξ − ξ0

σ

)]∗
dξ (4.10)

where ξ0 is the point where the unit sphere is centred, and σ tunes the size

in pixel of the unit sphere for each coordinate. This is necessary because the

patches, that we need to describe by using the 3D Zernike moments, can have

different sizes in space and time. We use these space-time Zernike moments

as descriptors for the local patches. The orthogonal condition (see equation

4.2) ensures that there is no redundant information in the descriptor, this

allows to have a compact representation of the local features. Figure 4.4

show that we can obtain a rough but representative reconstruction of space-

time cuboids from the 3D Zernike moments. In particular, we exploit the

phase of these complex moments since from preliminary experiments proved

to be more effective.
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Figure 4.2: Spherical harmonic functions up to the 3rd order.
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4.3 Pyramid Kernel Descriptors

We introduce a descriptor matching kernel inspired by multi-resolution match-

ing of sets of features [49, 83]; Grauman and Darrel [49] proposed the Pyra-

mid Matching kernel to find an approximate correspondence between two

sets of features points. Informally, their method takes a weighted sum of the

number of matches that occur at each level of resolution, which are defined

by placing a sequence of increasingly coarser grids over the features space.

At any resolution, two feature points match if they fall into the same cell

of the grid; number of matches computed at finer resolution are weighted

more than those at coarser resolution. Later, Lazebnik et al. [83] introduced

the Spatial Pyramid Matching kernel that work by partitioning the image

into increasingly fine sub-regions and computing histograms of local features

found inside each sub-regions.

Differently from these approaches our idea is to adapt the pyramid scheme

for computing the similarity between two descriptor points. This allows to

compute the similarity between two descriptors at multiple resolutions, ex-

ploiting a more distinctive representation when available and discarding it

when at higher resolutions becomes noisy. We call our proposed approach

“Pyramid Kernel Descriptors” because feature points are matched consider-

ing the descriptors as a multi-resolution set.

We consider a set of space-time interest points X = {ξ1, . . . ξs} and their

descriptors D = {d1, . . . , ds}, where each descriptor can be organised in p

sets {s1, . . . , sp} hierarchically ordered. The pyramid kernel between di and

dj is defined as a weighted sum of the similarities of sets found at each level

of the pyramid:

K(di, dj) =

p
∑

k=0

wkkc(s
k
i , s

k
j ) (4.11)

where wk is the weight and kc(s
k
i , s

k
j ) is a kernel to compute similarity be-

tween ski and skj . The similarity found at each level in the pyramid is weighted

according to the description resolution: similarities made at a finer resolu-

tion, where features are most distinct, are weighted more than those found at

a coarser level. Thus, if the p sets are arranged in ascending order the weight

at level k can be defined as wk = 2k−p. In this case our proposed kernel is a

valid Mercer kernel for the closure property of kernels since it is a weighted

sum of valid kernels. As described in Section 4.2, our description based on

space-time Zernike moments have a pyramid structure defined by the or-
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Figure 4.3: Examples of space-time interest points extracted at multiple

scales for different actions. Clips are taken from the KTH dataset: running,

walking, boxing and handwaving.

ders. In fact, lower order moments describe low frequencies of each cuboid

while higher order moments encode higher frequencies. We define sk as the

concatenation of the phases of the complex Zernike moments for the first

k orders: sk =
(

arg(A0
00), . . . , arg(A

l
km)

)

, where m and l are set according

to Section 4.2. We use a normalised scalar product: kc(s
k
i , s

k
j ) =

ski ·skj
‖sk

i
‖‖sk

j
‖ ,

as a kernel between ski and skj , which is a valid Mercer kernel. Note that

we normalise the scalar product computed at each level in order to have

comparable values in the final sum.

For example, if we use a two level pyramid kernel descriptor s0 =
(

arg(A0
00)

)

and s1 =
(

arg(A0
00), arg(A

−1
11 ), arg(A

0
11), arg(A

1
11)

)

and the corresponding

weights w0 = 1, w1 = 1
2 . The final kernel between two space-time Zernike

descriptors di, dj computed up to the nth order is:

K(di, dj) =

n
∑

k=0

2k−n
ski · skj

‖ski ‖‖s
k
j ‖
. (4.12)

4.4 Action classification

We represent an action as a bag of space-time interest points detected by

the adaptation described in Chapter 3 of the detector proposed by Dollár et

al. [38].

Each point is described using Space-time Zernike moments and then a

nearest-neighbor classifier based on the concept of instance-to-class similar-

ity [19] is used for action categorisation. We chose not to employ descriptor

codebooks (as in bag-of-words approaches) in order to better evaluate the

effectiveness of our descriptor alone.

The instance-to-class nearest-neighbour classifier estimates the class pos-
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Figure 4.4: Frames of a cuboid (top). Reconstructed cuboid from complex

3D Zernike moments up to the 6th order (bottom).
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Figure 4.5: Comparison of the two similarity techniques; right) detail show-

ing the effect of pyramid matching descriptors on high order moments.

terior probability given the query video clip with a non-parametric density

estimation based on local Parzen windows centerd on descriptors belonging

to the class. In [19] authors have shown that formulations based on more than

one nearest neighbour per query descriptor do not significantly outperforms

the simpler 1-NN formulation. Given this evidence, the implementation of

this simple but effective classifier boils down to obtaining the most similar

descriptor from the database for each feature extracted in a query clip (gen-

erally based on Euclidean distance between descriptors) and accumulating

a vote for the class to which the database descriptor belongs to. The class

with more votes is associated to the query clip. Instead of using Euclidean

distance, we use our pyramid kernel descriptors (Section 4.3) to select the

most similar descriptors which have, for each feature, the maximum kernel

values.

4.5 Experimental Results

We tested our approach on the KTH action dataset. We used a leave-one-out

procedure specifically we used the clips of 24 actors as a training set and the

clips of the remaining actor as a test set. Performance is presented as the

average accuracy of 25 runs, each with a different person. First we tested
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our descriptor using the nearest-neighbour classifier based on the Euclidean

distance and increasing the amount of moments (see Figure 4.5). With this

approach the use of high order moments degrades the performance of the

classifier. This is due to the fact that the high order filters response in small

scale cuboids is mostly noisy. Then we used our pyramid similarity kernel

increasing the levels of detail. As discussed in Section 4.3 levels with higher

order moments are weighted more than levels with lower order moments.

We can see that in this case we can exploit the higher details captured by

high order moments without degrading the overall classifier performance.

The confusion matrix reported in Figure 4.6 shows that as expected jogging

Figure 4.6: Confusion matrix for the KTH dataset.

and running are the most difficult actions to discriminate while for all other

classes results are quite satisfying.

In Table 4.1 we compare our descriptor computation time, storage needs

and accuracy on KTH dataset. Computation time is measured on our ma-

chine when the code was available while it is reported from the original

publication if not. The accuracy is reported from the experiments reported

in the original publication. We can see that Pyramid Zernike 3D descriptors

are the smallest in terms of storage and are fast as other non-trivial imple-

mentations and C/C++ implementations; note that Gradient PCA requires

only the projection of the concatenated pixel gradient values and that our

descriptor is implemented without any optimisation in MATLAB.
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Method Size Computation time Accuracy

Pyramid Zernike 3D 84 0.0300 s 91.30%

Gradient + PCA [38] 100 0.0060 s 81.17%

3D SIFT [131] 640 0.8210 s 82.60%

Ext Grad LBP-TOP + PCA [100] 100 0.1000 s 91.25%

3DGrad [6] 432 0.0400 s 90.38%

HOG-HOF2 [80] 162 0.0300 s 91.80%

HOG3D2 [71] 380 0.0020 s 91.40%

SURF3D2 [162] 384 0.0005 s 84.26%

Table 4.1: Descriptor complexity comparison together with accuracy.

4.6 Conclusions

In this chapter we have presented a method for action classification based

on a new compact descriptor for spatio-temporal interest points. We intro-

duce a new kernel suitable for matching descriptors that can be decomposed

in multi-resolution sets. The approach was validated on the KTH dataset,

showing results that have a low spatial and temporal computational com-

plexity with comparable performance with the state-of-the-art. Our future

work will deal with evaluation on more realistic datasets.

2c++ implementation
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Chapter 5

Unsupervised event detection:

anomaly detection

In this chapter we propose an approach for anomaly detection and

localization, in video surveillance applications, based on spatio-

temporal features that capture scene dynamic statistics together

with appearance. Real-time anomaly detection is performed with

an unsupervised approach using a non-parametric modelling, eval-

uating directly multi-scale local descriptor statistics. A method

to update scene statistics is also proposed, to deal with the scene

changes that typically occur in a real-world setting. The proposed

approach has been tested on publicly available datasets, to eval-

uate anomaly detection and localisation, and outperforms other

state-of-the-art real-time approaches. 1

5.1 Introduction

The real-world surveillance systems currently deployed are primarily based

on the performance of human operators that are expected to watch, often

simultaneously, a large number of screens (up to 50 [147]) that show streams

captured by different cameras. One of the main tasks of security person-

nel is to perform proactive surveillance to detect suspicious or unusual be-

1The work presented in this chapter has been published as “Multi-scale and real-time

non-parametric approach for anomaly detection and localization” in Computer Vision and

Image Understanding (CVIU), 2012, [12]

65
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haviour and individuals [66] and to react appropriately. As the number of

CCTV streams increases, the task of the operator becomes more and more

difficult and tiring: after 20 minutes of work the attention of an operator

degrades [50]. Operators usually take into account specific aspects of activ-

ity and human behaviour in order to predict possible perilous events [147],

although often they can not explain their own criteria used to detect an

unusual situation [66], or do not recognise unusual behaviours because they

have not gathered enough knowledge of the environment and of the common

behaviours they have to watch [143].

Video analytics techniques that automatically analyse video streams to

warn, possibly in real-time, the operators that unusual activity is taking

place, are receiving much attention from the scientific community in recent

years. The detection of unusual events can be used also to guide other

surveillance tasks such as human behavior and action recognition, target

tracking, and person and car identification; in this latter case it is possible to

use pan-tilt-zoom cameras to capture high resolution images of the subjects

that caused the anomalous events.

Anomaly detection is the detection of patterns that are unusual with

respect to an established normal behaviour in a given dataset, and is an

important problem studied in several diverse fields [31]. Approaches to

anomaly detection require the creation of a model of normal data, so to de-

tect deviations from the model in the observed data. Three broad categories

of anomaly detection techniques can be considered, depending on the ap-

proach used to learn the model: supervised [2,20,25,56,85,89,94,122], semi-

supervised [136,178] or unsupervised [1,18,22,59–61,70,102,121,153,167,173].

In this work we follow an unsupervised approach, based on the considera-

tion that anomalies are rare and differ amongst each other with unpredictable

variations.

The model can be learnt off-line as in [20,25,56,76] or can be incremen-

tally updated (as in [1,70,167,173]) to adapt itself to the changes that may

occur over time in the context and appearance of a setting. Our approach

continuously updates the model, to gather knowledge of common events and

to deal with changes in “normal” behaviour, e.g. due to variations in lighting

and scene setting.

Most of the methods for identifying unusual events in video sequences use

trajectories [2,25,56,60,61,67,76,121,122,136,178] to represent the activities

shown in a video. In these approaches objects and persons are tracked and
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their motion is described by their spatial location. Blob features have been

used in [29, 153, 167], without tracking the blobs. The main drawback of

tracking-based approaches is the fact that only spatial deviations are consid-

ered anomalies, thus abnormal appearance or motion of a target that follows

a “normal” track is not detected.

Optical flow has been used to model typical motion patterns in [1, 29,

70, 85, 102], but, as noted in [76], this measure also may become unreliable

in presence of extremely crowded scenes; to solve this issue a dense local

sampling of optical flow has been adopted in [1, 89]. Local spatio-temporal

descriptors have been successfully proposed in [38,78] to recognise human ac-

tions, while more simple descriptors based on spatio-temporal gradients have

been used to model motion in [18, 76] for anomaly detection. Dynamic tex-

tures have been used to model multiple components of different appearance

and dynamics in [60, 96].

Another issue that is common to both tracking and blob-based approaches

is the fact that it is very difficult to cope with crowded scenes, where precise

segmentation of a target is impossible. It is also important to consider that

trajectory based methods rely on a long chain of algorithms (blob detec-

tion, data association, tracking, ground plane trajectory extraction) each of

which may fail, leading to the failure of the whole anomaly detection system.

Instead, approaches that are purely pixel-based, learning a scene representa-

tion independently of the explicit modelling of object motion, allow to skip

the chain of intermediate decisions required by the sequence of algorithms,

and detect an event directly from the representation of frames.

Some recent works consider the fact that, in some cases, an event can be

regarded as anomalous if it happens in a specific context; for example the

interaction of multiple objects may be an anomaly even if their individual

behaviour, if considered separately, is normal. These works consider the

scene [70, 76, 153], typically modelled with a grid of interest points, or the

co-occurrence of behaviours and objects [60, 61, 94, 102] like persons and

vehicles.

In this work we propose a multi-scale non-parametric approach that de-

tects and localise anomalies, using dense local spatio-temporal features that

model both appearance and motion of persons and objects. Real-time per-

formance is achieved using a careful modelling of dense sampling of overlap-

ping features. Using these features it is possible to cope with different types

of anomalies and crowded scenes. The proposed approach addresses the
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problem of high variability in unusual events and, using a model updating

procedure, deals with scene changes that happen in real world settings. The

spatial context of the spatio-temporal features is used to recognise contextual

anomalies.

The rest of this chapter is structured as follows: scene representation,

spatio-temporal descriptor and feature sampling are described in Section 5.2;

in Section 5.3 is presented the real-time anomaly detection method, with

multi-scale integration, context modeling and model updating procedure;

finally experimental results, obtained using standard datasets are discussed

in Section5.4. Conclusions are drawn in Section 5.5

5.2 Scene representation

Modeling crowd patterns is one of the most complex scenarios for detection

of anomalies in video surveillance scenarios. Describing such statistics is

extremely complex since, as stated in Section 5.1, the use of trajectories does

not allow to capture all the possible anomalies that may occur, e.g. due to

variations of scene appearance and the presence of unknown objects moving

in the scene; this is due to the fact that object detection and tracking are

often unfeasible both for computational issues and for occlusions. On the

other hand, global crowd descriptors are not able to describe anomalous

patterns which often occur locally (e.g. a cyclist or a person moving in an

unusual direction among a crowd). The most suitable choice in this context

is to observe and collect local space-time descriptors.

5.2.1 Feature sampling

Surveillance scenes are typically captured using low frame rate cameras or

at a distance, leading to a short temporal extent of actions and movements

(often just 5-10 frames). Therefore, it is necessary to sample these features

densely in order to obtain as complete as possible coverage of the scene

statistics. This approach is also motivated by the good performance obtained

using dense sampling in object recognition [62] and human action recognition

[159].

The solution adopted in the proposed method is to use spatio-temporal

features that are densely sampled on a grid of cuboids that overlap in space

and time. Figure 5.1 shows an example of spatial, temporal and spatio-



5.2 Scene representation 69

temporal overlaps of cuboids, and an example of application of overlapping

spatio-temporal cuboids to a video. This approach permits localisation of

an anomaly both in terms of position on the frame and in time, with a

precision that depends on the size and overlap of cuboids; it also models

the fact that certain parts of the scene are subject to different anomalies,

illumination conditions, etc., and is well suited for the typical surveillance

setup where a fixed camera is observing a scene over time. Considering the

position of the cuboids on the grid it is also possible to evaluate the context

of an anomaly, inspecting the nearby cuboids. Moreover, it makes it possible

to reach real-time processing speed, since it does not require spatio-temporal

interest point localisation. In our previous work [132] we have investigated

how the overlap affects the performance of the system, and determined that a

50% spatial overlap provides the best performance, detecting more abnormal

patterns without raising false positives, because spatial localisation of the

anomaly is improved. On the other hand temporal overlap does not provide

an improvement and, instead, may increase false detections.

5.2.2 Spatio-temporal descriptors

To compute the representation of each spatio-temporal volume extracted

on the overlapping regular grid, we exploit the descriptor based on three-

dimensional gradients computed using the luminance values of the pixels

(Figure 5.1) described in Chapter 3.

It can be observed that if the overlap of cuboids precisely matches the

subregions of nearby cuboids we can reuse the computations of these subre-

gions for different cuboid descriptors (Figure 5.2). Using a number of spatial

subregions that is a multiple of the overlap reduces the computational cost of

the descriptors [150]: considering that a 50% overlap of cuboids is optimal

then it is convenient to use an even number of spatial regions, since it is

possible to reuse 50% or, depending on the position of the cuboid, 75% of

the descriptors of nearby cuboids.

Therefore, we have divided the cuboid in 8 subregions, two along each

spatial direction and two along the temporal direction. This choice increases

the speed of the system of about 50%, with respect to a division of cuboids

in 3× 3× 2 regions [132].

This descriptor jointly represents motion and appearance, and it is robust

to illumination and lighting changes, as required in a surveillance context in

which a video might be recorded over a large extent of time. We do not
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Figure 5.3: Example of three descriptors computed on cuboids containing a

moving person, a cyclist and a moving cart

spatio-temporal features as a scene representation and we exploit the idea of

the adaptive threshold in order to learn, over time, local models for different

portions of the scene. Another significant difference with respect to [22] is

the use of pure data instead of clusters. We do not perform clustering on

data since we prefer not to corrupt data distribution in order to produce a

more accurate estimation of the distance threshold used to detect anoma-

lies. Also the model update procedure is different: since we are not applying

any clustering procedure to data, our model update can be performed just

by analyzing the detected anomalies stored over time; therefore it can be

performed more frequently, without the need to operate either in detection

mode or in maintenance mode.

As specified in Section 5.2 the use of local space-time gradients allows

us to detect a wider range of anomalies while an appearance based method
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restricts the anomalies that can be detected only to significant changes in a

scene, e.g. a car parked in a wrong place, the presence of a fire truck or an

unseen weather condition (rain, snow or fog).

5.3.1 Non-parametric model

In anomaly detection tasks a certain amount of normal data is usually avail-

able; our system can exploit this data as a training set to bootstrap itself

and run in a semi-supervised fashion. Our system can also be run on-line

with no previous knowledge of the scene, since a model update procedure is

used. To jointly capture scene motion and appearance statistics we use the

robust space-time descriptor, with dense sampling, described in Section 5.2.

In order to decide if an event is anomalous we need a method to estimate nor-

mal descriptor statistics. Moreover, since no assumptions are made on the

scene geometry or topology, it is important to define this normal descriptor

distribution locally with respect to the frame.

Given a set of triples composed of descriptors dq, their locations lq and

their scales sq extracted from the past T frames, we would like to evalu-

ate the likelihood of this data given the previously observed triples 〈d, l, s〉,

i.e. p (dq, lq, sq|d, l, s). The following assumptions are made: descriptors com-

puted from neighbouring cells and from cells extracted at different scales are

considered independent: this is a common Markovian assumption in low-

level vision [46] that, even if may not hold for overlapping cells, allows to

simplify the model and indeed proved to be effective, as reported in the

experiments. We do not pose any prior on the locations, i.e. we do not con-

sider any region of the frame more likely to generate anomalous descriptors.

Since we consider a sequence of frames anomalous if at least a cell of the

frame is considered as such, then the whole frame probability is obtained by

marginalizing out the cell locations i. In the case of a single scale model we

have:

p (dq, lq, sq|d, l, s) ∝
∑

i

p
(

diq, l
i
q|d

i, li
)

. (5.1)

For multi-scale models, we assume descriptors computed at different scales

independent (even if overlapped), therefore we obtain:

p (dq, lq, sq|d, l, s) ∝
∑

i

∏

j∈O i

p
(

diq, l
i
q, s

i
q|d

i, li, sj
)

, (5.2)
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where O i represent the set of patches overlapping region i.

To model the contextual anomalies, we need to compute the likelihood

of a given descriptor with respect to its neighbouring observed cells; since

we consider neighbouring models independent we obtain the following like-

lihood:

p (dq, lq, sq|d, l, s) ∝
∑

i

∏

j∈O i

∏

k∈N ij

p
(

diq, l
i
q, s

i
q|d

k, lk, sj
)

, (5.3)

where N ij represents the set of neighbouring locations at the same scale. The

evaluation of probabilities in equation 5.1, 5.2, 5.3 are performed through

non-parametric tests, as described in the following.

5.3.2 Implementation

Given a certain amount of training frames for each cell in our grid, space-

time descriptors are collected and stored using a structure for fast nearest-

neighbour search, providing local estimates of anomalies; an overview of this

schema is shown in Figure 5.4. The training stage is very straightforward,

since we do not use any parametric model to learn the local motion and

appearance; instead we represent scene normality directly with descriptor

instances.

A simple way to decide if an event happening at a certain time and

location of the video stream should be considered anomalous, is to perform a

range query on the training set data structure to look for neighbours. In this

work we have used a fast approximate nearest-neighbour search over k-means

trees, provided by the FLANN library [109]. A k-means tree is a hierarchical

indexing data structure obtained by recursively splitting data. Once an

optimal radius for each image location is learnt, all patterns for which the

range query does not return any neighbour are considered anomalies. The

problem with this technique is the intrinsic impossibility of selecting a priori

a correct value for the radius. This happens for two reasons: firstly, each

scene location undergoes different dynamics, for example a street will mostly

contains fast unidirectional motion generated by cars and other vehicles,

while a walkway will have less intense motion and more variations of the

direction; moreover a static part of the scene, like the side of a parking

lot, will mostly contain static information. Secondly, we want to be able to

update our model dynamically by adding data which should be considered

normal given the fact that we observed that kind of pattern for a sufficient
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Figure 5.6: Single scale anomalies detections and localisations, before inte-

gration.

the opposite behaviour. We propose to improve our previous work [132] by

exploiting a late fusion of the detection results of multiple models. This cap-

tures the abnormal patterns at different resolution. Since we aim at real-time

performance, a dense patch sampling in scale is not computationally feasible;

therefore, we limit the use of scales to two levels. Models are trained with

patches of different size, with a factor of 4× difference. Anomaly detection is

performed using the radius search with the optimal learnt distance and the
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Figure 5.7: Single scale anomalies detections and localisations, before inte-

gration (continued).

final detection result is obtained from the intersection of all the detections.

This allows the system to filter spurious small false positives and increases

the capability of the system to accurately localise even smaller objects (i.e.

pedestrians, cyclists). Moreover, space-time patterns that span more than

one overlapping cell will be more likely considered anomalous, while a single

isolated patch will be suppressed by the integration procedure. From a prob-

abilistic point of view two likelihood maps are generated non-parametrically.
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These maps represent how likely it is that a given space-time pattern it is an

outlier for the observed statistic; the final likelihood map is generated via a

product rule, resulting in the spatial intersection of the two detected areas,

following equation 5.2. In our implementation, in order to keep the system

executing in real-time, we used the following scales: 40 × 40 and 10 × 10,

with a 50% overlap of 20 pixels and 5 pixels, respectively. Figures 5.6 and

5.7 shows different anomaly localisations at these scales.

5.3.4 Context modelling

A purely data-driven method, as the approach proposed in this chapter, can

suffer from the lack of data in the case that statistics of patches from a region

is too complex. This is a well known problem in all instance based methods

like k-NN. To moderate this effect, we extend our model by considering the

anomaly likelihood of a patch with respect to the observations of the nearby

patches. Therefore we test the patch descriptor also against the models of

the eight neighbouring cells. With this technique we increase the amount

of data available for learning the local model of a part of the scene in a

sensible way; in fact a patch that it is anomalous for a region but not for the

neighbouring ones would not be considered as such, while patches that are

outliers for all the neighbouring regions will be considered anomalies. The

result of the detection is again obtained by product rule, therefore a patch

is anomalous if and only if it is evaluated as such by all the models in its

neighbourhood according to equation 5.3

5.3.5 Model update

Since applications for anomaly detection in video surveillance are designed

to be executed for a long time, it is very likely that a scene will change its

appearance over time; very simple examples are the event of a snowstorm,

the cars that enter and exit a parking lot or the placement of temporary

structures in a setting. It is therefore very important to provide a way to

update our model. Again, we propose a very straightforward data-driven

technique.

Together with the data-structure for each overlapping grid cell, we keep

a list of anomalous patterns. We exploit the same range query approach

presented in the previous subsection to look for normality in the abnormality

list. This list is inspected on a regular basis, and new data is incorporated
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by applying the following procedure. If an event happens very frequently it

is likely that it will a have certain amount of neighbours in feature space,

while truly anomalous event will still be outliers. After the estimation of an

optimal radius for the anomalous pattern list, we discard all outliers in this

list and incorporate all other data in the cell i training set. The optimal

radius r̂i for the updated cell is then recomputed.

Even if it is not required, since they can be used with default values, two

parameters of the system can be tuned to adapt them to a particular scenario:

grid density and overlap of cuboids. Reducing cuboid overlap can increase

the detection performance, while using a more or less dense spatio-temporal

grid can serve also as a system adaptation for a specific camera resolution

or frame rate. These two parameters are directly bound to physical and

technical system properties (e.g. camera resolution and computer processing

speed) that the user can easily adjust to figure out a proper configuration.

Instead, the system automatically computes the optimal radius parameter,

that is a quantity that is extremely task, scene and time dependent.

5.4 Experimental results

We tested our approach on the UCSD2 anomaly dataset presented in [96],

which provides frame-by-frame local anomaly annotation. The dataset con-

sists of two subsets, corresponding to different scenes using fixed cameras

that overlook pedestrian walkways: one (called Peds1) contains videos of

people moving towards and away from the camera, with some perspective

distortion; the other (called Peds2) shows pedestrian movement parallel to

the camera. Videos are recorded at 10 FPS with a resolution of 238 × 158

and 360×240, respectively. This dataset mostly contains sequences of pedes-

trians in walkways; annotated anomalies, that are not staged, are related to

appearance and behaviour. In particular, they are non-pedestrian entities

(cyclists, skaters, small carts) accessing the walkway and pedestrians moving

in anomalous motion patterns or in non-walkway regions. The first subset

contains 34 training video samples and 36 testing video samples, while the

latter contains 16 training video samples and 12 testing video samples. Each

sequence lasts around 200 frames, for a total dataset duration of ∼ 33 min-

utes. 10 videos of the Peds1 subset have manually generated pixel-level

binary masks, which identify the regions containing anomalies. We tested

2http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm

http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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our approach on the whole UCSD dataset. Each anomalous frame in the

testing set is annotated; for each cuboid classified as anomalous, we flag as

anomalous each region of the frames from which it was created; frames that

contain at least one anomalous region are considered anomalous. We follow

the evaluation procedure of [96]: in the frame level evaluation an abnor-

mal frame is considered correctly detected if at least one pixel of the frame

is detected as anomalous; in the pixel level evaluation an abnormal frame

is considered correctly detected only if at least the 40% of the anomalous

pixels are detected correctly and considered a false positive otherwise. A

“lucky guess” happens when a region different from the one that generated

the anomaly is detected as anomalous in the same frame. The frame level

detection evaluation does not takes into account this phenomenon. In our

previous work [132] we evaluated the best parameters for dense sampling

and overlapping of the spatio-temporal descriptors; the best results were ob-

tained for cuboids of 40×40 pixels, with 8 frames of depth, a spatial overlap

of 50% and no temporal overlap. In these experiments we used the same

parameters.

We compare our system with results of other state-of-the-art approaches,

as reported in [96]: MPCCA [70], Adam et al. [1], Mehran et al. [102] and

Mahadevan et al. [96]. Results are reported using the ROC curve and the

Equal Error Rate (EER) - that is the rate at which both false positives and

misses are equal. Both multi-scale integration and contextual modeling help

in lowering the EER, with respect to our previous work [132]. Our approach

achieves a similar performance on both Peds1 and Peds2 datasets, showing

the flexibility of the representation that is able to cope with diverse settings

and types of anomalies. The other competing real-time approaches have a

EER performance in the two datasets that varies between 6% to 11%; it can

also be noted that these performance variations of the other systems are not

uniform, thus there is no hint that a dataset is “more difficult” than the

other. Figure 5.8, Figure 5.9 and Table 5.1 report the results for anomaly

detection in Peds1 and Peds2. Figure 5.10 and Table 5.2 report results for

anomaly localisation on Peds1.

Our approach, with the use of multiple scales and contextual queries,

obtains the second best result both in temporal and spatial anomaly detec-

tion after the method proposed in [96], and is far superior to all the others

in terms of spatial localisation and frame level localisation (except the close

result of Social Force for Peds1). However, it has to be noted that the ap-
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proach of [96] is not suitable for real-time processing since it takes 25 seconds

to process a single frame on a computer with a computational power (3 GHz

CPU with 2 GB of RAM) comparable to the one used in our experiments

(2.6 GHz CPU with 3 GB of RAM). The good results in spatial anomaly lo-

calisation imply that we are not taking advantage of lucky guesses, but that

we accurately localise the abnormal behaviours in space and time. Figure

5.11 shows a qualitative comparison of anomaly localisation of our approach

with state-of-the-art off-line approach [96].
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Figure 5.8: ROC curve to compare our method with state-of-the-art ap-

proaches on the Peds1 dataset. The dashed diagonal is the EER line.

Since our approach aims at real-time processing, we have evaluated the

impact of the dense sampling of cuboids, computing the average number of

processed frames per second while varying the spatial overlap of cuboids.

The plot in Figure 5.12 shows how the steps of our method affect the per-

formance. The use of multiple scales degrades the performance the most,

almost halving the frame rate. The overhead of context modelling depends

on the amount of features extracted, in particular it has little influence for

the single scale algorithm but it strongly affects the multi-scale one since
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Figure 5.9: ROC curve to compare our method with state-of-the-art ap-

proaches on the Peds2 dataset. The dashed diagonal is the EER line.

the complexity of that step depends linearly on the amount of feature ex-

tracted. We also measured the anomaly detection overhead by computing

the different frame rate in training (i.e. feature extraction and computation

only) and testing and we found that for the single scale approach, without

exploiting the context, it is only 3∼6% of the total computation time while

using the context it increases to 11∼12% of the total computation time.

For the multi-scale approach, the use of smaller patches (10× 10) increases

the burden of context modelling. Even with multiple scales and contextual

neighbourhood queries our system is able to process 8 frames per second,

with 50% patch overlap, and to obtain competitive results of detection and

localisation with respect to non-realtime systems that require several seconds

to process a single frame [96]. We expect that code optimisation exploiting

modern multi-core CPUs will greatly reduce the computational gap between

multi-scale and single-scale methods. Cuboid size does not affect the compu-

tation time since smaller cuboids imply an increased number of descriptors

which are faster to compute while bigger cuboids generate fewer but slower
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UCSPed1 UCSPed2 Average

Single scale 34% 32% 33%

Multi-scale 32% 31% 32%

Context+Multi-scale 31% 30% 30%

MDT (Mahadevan et al. [96]) 25% 25% 25%

MPPCA (Kim et al. [70]) 40% 30% 35%

Social Force (Mehran et al. [102]) 31% 42% 37%

Adam et al. [1] 38% 42% 40%

Table 5.1: Summary of quantitative system performance and comparison

with state-of-the-art (lower values are better). EER is reported for frame

level anomaly detection on Peds1 and Peds2 datasets together with the av-

erage over the two datasets.

Single scale Multi-scale Context+Multi-scale MDT MPPCA SF Adam

27% 28% 29% 45% 18% 21% 24%

Table 5.2: Detection rate on the anomaly localisation task (higher values are

better).

to compute descriptors. The main reason for the decrease of computational

performance when using the multi-scale approach is the increased number of

model queries made when using smaller cuboids.

Since in video surveillance the precision of the alarms is important, be-

cause a human operator may be disturbed by a high number of false alarms,

in Figure 5.13 we report the precision-recall curve for the UCSD dataset,

created varying the pa parameter from 10−5 to 10−2, showing a good per-

formance; considering low probabilities pa for the anomalies the recall is

reduced while raising the precision, and vice versa. In particular, the break-

even point at 0.71 of precision and recall is obtained for 10−4 ≤ pa ≤ 10−3

for Peds1 while for Peds2 the value of .87 is obtained for 10−5 ≤ pa ≤ 10−4.

5.5 Conclusions

In this chapter we have presented a multi-scale non-parametric anomaly

detection approach that can be executed in real-time in a completely unsu-

pervised manner. The approach is capable of localizing anomalies in space
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Figure 5.10: ROC curve to compare the localisation accuracy of our method

with state-of-the-art approaches using Peds1 dataset. The dashed diagonal

is the EER line (note that the plot of a random classifier is not diagonal in

this case, but close to zero).

and time. We have also provided a straightforward procedure to dynami-

cally update the learnt model, to deal with scene changes that happen in

real-world surveillance scenarios. Dense and overlapping spatio-temporal

features, that model appearance and motion information, have been used

to capture the scene dynamics, allowing the detection of different types of

anomalies. The proposed method is capable of handling challenging crowded

scenes that cannot be modelled using trajectories or pure motion statistics

(optical flow).

A comparison on a publicly available dataset shows that our method

achieves the best performance with respect to existing state-of-the-art real-

time solutions [1, 70, 102].
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Figure 5.11: Anomaly localisation results (top) compared with the best per-

forming method [102] (bottom) on the UCSD dataset.
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Figure 5.12: Comparison of the number of frames per second (FPS) processed

while varying the spatial overlap of cuboids, using single-scale and multi-scale

approach on the Peds1 dataset.
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Figure 5.13: Precision/Recall curve of our approach for the two datasets.

Break-even, i.e. the intersection with the dashed line, is reported in the

legend.



Chapter 6

Semantic adaptive video coding

for video surveillance

applications

This chapter describes an approach to adaptive video coding for

video surveillance applications. Using a combination of low-level

features with low computational cost, we show how it is possible

to control the quality of video compression so that semantically

meaningful elements of the scene are encoded with higher fidelity,

while background elements are allocated fewer bits in the trans-

mitted representation. Our approach is based on adaptive smooth-

ing of individual video frames so that image features highly cor-

related to semantically interesting objects are preserved. Using

only low-level image features on individual frames, this adaptive

smoothing can be seamlessly inserted into a video coding pipeline

as a pre-processing state. Experiments show that our technique

is efficient, outperforms standard H.264 encoding at comparable

bitrates, and preserves features critical for downstream detection

and recognition. 1 2

1This chapter has been published as “Adaptive Video Compression for Video Surveil-

lance Applications” in Proc. of International Symposium on Multimedia (ISM) 2011 [4].
2This work is partially supported by the EU EraSME ORUSSI Project and by SELEX

Communications.
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6.1 Introduction

Many critical video streaming applications require transmission of many

streams over limited bandwidth. Two such examples are video surveillance

networks and local UHF video streaming networks like those based on the

ETSI TETRA standard used in emergency and security services [125]. These

two example applications have several things in common, among them the

need to deliver reasonably high-quality video from multiple cameras spread

over large areas and to accomplish this using limited bandwidth [55]. One

way to optimise such systems is to control the amount of redundant or irrel-

evant information transmitted by each camera. In this article we describe a

system of adaptive video compression that automatically adjusts the amount

of information transmitted according to how semantically “interesting” a

part of a video is likely to be.

Consider the example of a video surveillance application, such as in a

hospital or airport, where hundreds of cameras might be deployed to monitor

tens of thousands of square meters. Systems of this type typically stream

raw video feeds from all cameras to a central server for observation, analysis

and possibly further processing. This creates a bottleneck at the central

server, and bandwidth limitations become a critical issue in overall system

efficiency. This bandwidth problem becomes even more acute when wireless

IP cameras are deployed – an option that is becoming increasingly popular

due to their rapid reconfigurability and lack of infrastructure requirements

such as cabling. Note also that a large percentage of bandwidth is expended

transmitting scenes of little or no interest because they do not contain objects

of semantic interest (e.g., people, cars or aeroplanes). In such application

scenarios selectively compressing video streams depending on the semantic

content of each frame can result in significant bandwidth savings.

Another video streaming application that can benefit from this type of

semantic adaptation are the UHF networks commonly used to stream video

from dash-cams installed in state and local police cars. Many police de-

partments require that dash-cams be used to record incidents and that they

stream video back to a central headquarters for monitoring and archiving.

At any one time, tens or even hundreds of cameras might be streaming video

and in this application bandwidth is severely limited by the limitations im-

posed by using UHF radio frequencies for transmission. Again, significant

amounts of bandwidth can be wasted transmitting irrelevant portions of the

video frame that contain no semantically relevant information in the form of
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faces, people, licence plates, etc.

In both of these examples, bandwidth is squandered by transmitting en-

tire video frames at high bitrates. That is, the same number of bits is

dedicated to encoding irrelevant portions of the frame, portions that have

no intrinsic value to either application because they contain static and un-

interesting objects, as is used to encode truly interesting parts of the frame

that contain people, identifying details of cars or faces. Our approach to

this problem is to detect interesting portions of video frames and allocate

more bits in the compressed representation to them. The rest of the frame

is allocated fewer bits in the compressed stream by smoothing away details

that would otherwise be unnecessarily encoded in the transmitted video.

Robust and accurate object detectors have almost become a commodity

technology in computer vision applications. Reliable, pre-trained detectors

exist for pedestrians [36], for text [144], and for a broad variety of general

object categories [40, 42]. Despite recent advances in efficient object detec-

tion [97], even single object detection still requires a significant amount of

computational resources. Application of multiple detectors in order to de-

tect semantically interesting scene elements (e.g., for cars, faces, people, text

and licence plates) would require massive computational resources for each

individual stream. As such, the detector approach is not feasible for our ap-

plication scenarios. Note also that new detectors would have to be trained

for each potentially interesting scene object, which limits the generality of

the detector approach as well.

Most modern detectors are based on high-frequency image features in the

form of edges, corner points or other salient image features. The two most

popular features are the Histogram of Oriented Gradients (HOG) [36,42,97],

which is based on a local histogram of image gradient directions, and SIFT

descriptors calculated at interesting points in the image [40, 77]. Both of

these descriptors are based on image derivatives calculated across a range

of scales in the image. As such, in order to preserve such features in a

compressed version of the video it is essential to preserve high-frequencies

in each frame and transmit them with reasonable fidelity. If we selectively

smooth a video frame, preserving regions containing many high-frequency

features, we are more likely to preserve recognisability, or “detectability”

using modern object detectors in the transmitted representation. At the

same time, if we smooth regions that do not contain dense, high-frequency

features we will can reduce the amount of information that must be encoded
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and thus transmitted.

This paper is organised as follows: in the next section we discuss some

of the related work on adaptive video encoding; the visual features used are

described in Section 6.3; a description of our approach to adaptive video

compression is provided in Section 6.4. Experimental results and a com-

parison of adaptive video coding with respect to standard H.264 coding are

reported in Section 6.5; and conclusions are drawn in Section 6.6.

6.2 Related Work

Traditional adaptive video compression approaches do not consider the se-

mantic content of video and instead adapt compression depending on the

requirements of the network or device used to deliver video to the end

user [148]. Semantic video compression, instead, alters the video by tak-

ing into account objects [30, 54, 69, 113] or a combination of objects and

events [15], using pattern recognition techniques. Kim and Hwang proposed

using video object planes (VOP) coding of MPEG-4 to encode differently the

interesting objects in the scene [69]. However in [15] it was shown that this

type of compression is less efficient than directly performing re-quantisation

blocks containing an object that is relevant to users.

Adaptation in the compressed domain has been performed through re-

quantisation [160], spatial resolution downscaling [133], temporal resolution

downscaling [84], and by a combination of them [87].

Huang et al. [54] use smoothing to control the amount of bits allocated

locally to encode each video frame. The more smoothing applied to a portion

of a video frame, the fewer bits will be used to encode that region. Their

approach is based on motion segmentation, however, and as such is highly

sensitive to scene and camera motion. As such it is not directly applicable

in cases where streams mobile or active cameras are used, or to detect static

objects, like the licence plates of parked cars. Our approach is directly based

on image features correlated with downstream detector features. As such, it

is applicable to any type of stream, independent of motion characteristics.

Our approach to adaptive video encoding is based on the observation

that the most useful image features for downstream object detection are

based on edges and salient interest points. As such, by preserving these

features we maximise the ability to detect semantically interesting scene

objects after transmission. At the same time, by smoothing features that
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are unlikely to contribute to positive detections we reduce the amount of

irrelevant information transmitted. Figure 6.1 illustrates our system for

adaptive video coding. The bottom diagram in Figure 6.1 illustrates the

standard H.264 video coding pipeline. At the top of Figure 6.1 is shown our

pipeline: before encoding each frame is passed through a sequence of low-level

feature extraction (Visual Interest Map), followed by selective smoothing

(Image Processing) which smooths details in uninteresting regions of the

images before H.264 encoding.

6.3 Visual Features for Adaptive Video Com-

pression

In most surveillance applications the most interesting objects are faces, peo-

ple and cars. Face and people detectors are both often trained on features

based on gradients [36, 156]. Other, more general object detectors are also

based on similar features [42]. Moreover edge features are often exploited to

estimate crowd density [35, 108] without resorting to object detection and

tracking.

Since all MPEG coding standards perform an initial step of spatial color

subsampling, as a form of lossy compression, the visual features we use for

this work are based on the luminance of pixels. Another advantage of this

is that the colour space used in MPEG and M-JPEG standards is YCbCr,

so it is possible to extract directly the luminance information from the Y

channel, without requiring any conversion.

As mentioned above, the features we use have been selected to be highly

correlated with those used for object detection. In particular, corner points

can be used to effectively detect text (useful in the case of license plates or

identifying text on clothing) in video [13,144], and edge features in the form

of image gradients are used in many state-of-the-art object detectors [40,42,

97]. Since our application scenario requires onboard adaptive encoding, we

selected the features used in order to minimise the computational resources

required.

For detecting corner features we use the FAST detector [127]. This de-

tector has recently been used on mobile phones to augment reality using the

limited computational resources of the mobile device [72]. The FAST detec-

tor is an approximation of the SUSAN detector in which a circular region

around a candidate corner is analysed to determine if differences between
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a high density of FAST corner responses, or a high density of Sobel edge

responses, should be preserved. Other regions can be smoothed in order to

reduce detail encoded in transmission. See Figure 6.2 for an example of the

extracted features on a typical video frame.

6.4 Adaptive Video Compression

MPEG video coding is based on two basic techniques [57, 161]: transform

domain-based compression (intra-coding), where blocks of 8 × 8 pixels are

processed to compute discrete cosine transform (DCT) of each, representing

it as a matrix of coefficients; and block-based motion compensation per-

formed on macroblocks, i.e. groups of 2 × 2 blocks (16 × 16 pixels), coding

them with motion vectors and with the DCT coefficients of the “residual

block” obtained from motion estimation. In both cases the DCT coefficients

are quantised, as a lossy compression step, so that the high frequency co-

efficients go to zero in order to represent them with efficient Run Length

Encoding (RLE) encoding and Variable Length Codes (VLC). The residual

block typically contains high frequency components that have to be quan-

tised differently from the intra-coded blocks.

In our approach we reduce the bandwidth needed for video streaming by

selectively smoothing parts of each frame. We do not directly exploit the

temporal structure of videos in order to reduce the need of buffering and

to allow visual feature extraction even on moving cameras. This approach

helps the encoder to more efficiently compress the DCT coefficients of both

intra-coded and residual blocks since they will contain fewer high frequency

components. The smoothing is defined by a set of semantic binary masks

which are generated by collecting statistics of low-level visual features in

a video frame. These masks could also be defined by a set of detectors

for objects of interest or anomalous frame regions. The result would be a

binary mask defined by the bounding boxes of objects detected in each frame

as shown in Figure 6.4. This approach performs extremely well (see Table

6.2 in Section 6.5) but does not allow a sufficient frame-rate on low-end

computational architectures and as discussed above does not generalise well

when the number of objects of interest increases.

We instead design our masks by splitting each frame into square pixel

regions. Region size is selected in order to optimally fit the DCT encoded

pixel macroblocks used in H.264 video encoding. We tested 8 × 8, 16 × 16
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and 32 × 32 regions. Smoothed regions will be assigned fewer bits by the

encoding algorithm, allowing more bits to be assigned to non-smoothed ones.

This approach will therefore decrease the bandwidth needed for streaming

while maintaining a high quality of interesting frame regions.

The amount of smoothing applied to each region is determined by the

density of Sobel and FAST features contained therein. Let I denote the

current image to be encoded, and F (x) and S(x) the FAST and Sobel feature

responses at pixel x, respectively. Also, let Bi denote the i-th block of the

image and let the function B(x) map pixel x to the block containing it. We

define the following feature threshold functions on local image blocks:

F (Bi) = {x|x ∈ Bi | F (x) > TF } (6.4)

S(Bi) = {x|x ∈ Bi | S(x) > TS}, (6.5)

where TF and TS are empirically determined thresholds on the FAST and

Sobel feature responses.

Assuming there are n levels of smoothing, we will now define smoothing

masks that are based on feature densities in each image block. The masks

correspond to increasing feature densities. The i-th level mask corresponding

to FAST feature density is defined as:

MF
i (x) =

{

1 if τFi−1 ≤ |F (B(x))| < τFi
0 otherwise

, (6.6)

where τFi for i ∈ {0, 1, . . . , n} is a strictly increasing series of thresholds used

to determine which feature densities correspond to which mask. We require

that τF0 = 0 and τSn = w×h, where w and h are the width and height of the

image blocks used for encoding. These restrictions ensure that the sequence

of image masks Mi completely partitions the image:

⋂

i

⋃

x

MF
i (x) = ∅ (6.7)

⋃

i

⋃

x

MF
i (x) ◦ I = I (6.8)

.

The i-th level mask corresponding to Sobel feature density is similarly

defined:

MS
i (x) =

{

1 if τSi−1 ≤ |F (B(x))| < τSi
0 otherwise

, (6.9)
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with identical conditions on τSi as for FAST features above.

The final smoothed image can now be written as:

Is =

n
∑

i=1

(MS
i ◦MF

i ◦ I) ∗Gσi
, (6.10)

where MS
i ◦MF

i ◦ I represents the Hadamard (element-by-element) multi-

plication of the feature masks and image I, and Gσi
is a Gaussian function

with variance σ2
i . Is is an adaptively smoothed version of the original image

I. Based on the density of FAST and Sobel features in each w × h block of

the image, a variable amount of smoothing will be applied. The amount of

smoothing applied is controlled by the sequence σi, while the density thresh-

olds τSi and τFi are used to determine how interesting each block is in terms

of each feature.

6.5 Experimental Results

In order to evaluate the performance of our approach to adaptive video com-

pression, we acquired a set of three test videos using a real-world surveillance

setup. Two Sony SNC RZ30 cameras recorded videos of a parking lot at

640 × 480 pixels and 25 FPS for a total of 2327 frames. The videos were

been recorded in MPEG-4 format using the H.264 codec provided by the

open source library x264. Each video is encoded with an average bitrate of

3532,44 Kbit/s.

We evaluate the performance of our algorithm by measuring the struc-

tural similarity index (SSIM) [158] and comparing the non-H.264 compressed

videos and videos compressed with our approach, computing SSIM on the

computed masks. SSIM is a visual quality assessment metric that models the

perception of compression artefacts by the human visual system better than

other standard quality measures based on peak signal-to-noise ratio (PSNR)

or mean squared error (MSE). In fact MSE, and consequently PSNR, per-

form badly in predicting human perception of image fidelity and quality:

MSE values of distorted images that present dramatically and visibly differ-

ent visual qualities can be nearly identical [158]. For this reason its use has

been proposed to drive the motion compensation coding of H.264 [170] and

some encoders, like x2643, have started to use it to drive the adaptation of

3http://www.x264.org

http://www.x264.org
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(a) (b) (c)

Figure 6.4: Adaptive compression driven by pedestrian detector. A frame

with two people (a), the masks built with the pedestrian detector (b) and

the final adaptively encoded frame (c). All the scene but the two pedestrian

is smoothed.

values that a pixel can have. SSIM is typically computed on 8 × 8 pixel

windows, and can assume values between [−1, 1], where 1 means that two

images are identical. SSIM is measured in the non-smoothed regions only.

After an initial evaluation we found that the best performance is ob-

tained by exploiting both low-level features (FAST and Sobel), using blocks

of 16 × 16 and smoothing all regions without corners and with less than 3

non-zero pixels. Smoothing is performed using block filters approximating a

Gaussian filter of the correct σ. In a preliminary set of experiments we also

explored the possibility of using multiple levels of smoothing, in particular

we used three levels of smoothing selected with three thresholds for both

features. The performance of this approach is less appealing, see Table 6.1,

with respect to plain binary mask driven smoothing. Figure 6.3 illustrates

the performance of our approach, along with example masks derived from

low-level features, on a typical video frame. Note how semantically meaning-

ful features like the license plate and persons are preserved in the compressed

representation.

6.5.1 Feature and Compression Evaluation

We evaluated low-level features, mask size and type for a set of sensible con-

figurations. In particular, we tested the FAST and Sobel features separately

and together. Results are reported for each feature or combination for the

best window size. The average SSIM gain (∆SSIM) is obtained with the

following procedure: first videos are compressed with H.264 with Constant
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Method ∆SSIM (binary masks) ∆SSIM multi-level masks

Sobel 8 0.013 -0.002

FAST 32 0.024 0.009

Sobel + Fast 16 0.027 0.01

Table 6.1: Comparison of different low-level features and mask generation

strategies. Binary masks correspond to the situation where only two levels

of smoothing are used (n = 2), whereas for multi-level masking three levels

were used (n = 3). Average ∆SSIM is reported with respect to identical

bitrate video encoded with standard H.264 compression. CRF is varied in

order to obtain files of the same bitrate.

Rate Factor (CRF) in the range 25-20; for each of these files we compress

the original video (Vo) with our adaptive technique tuning the CRF (lower-

ing) in order to obtain approximately the same bitrate. We finally compute

∆SSIM as SSIM(Vac,Vo) - SSIM(Vc,Vo), where Vac and Vc are the adaptive

and H.264 coded videos, respectively. A negative value means that our tech-

nique degrades the video more than standard H.264 encoding, note that this

happens only for Sobel features alone and with multi-level masks. For all

other combinations we improve the SSIM without increasing the bitrate.

Apart from the increase of quality in regions of interest we are mainly

interested in the reduction of bandwidth. To this end we measure how the

file size decrease with the increase of CRF for adaptive encoded videos and

H.264 encoded videos. As shown in Figure 6.5 we are able to spare between

40% to 10% of the bandwidth depending on the quality of the final encoding.

It is also interesting to see how our encoder is able to retain the appearance

of the original video; Figure 6.5 shows the average behavior of our algorithm.

6.5.2 Efficiency of Our Approach

We report in Table 6.2 the frame rate of our approach compared with the

frame rate obtained using the pedestrian detector-based approach on the

same machine. Low-level features allow our system to run at a very high

frame rate, permitting our system to stream video in real-time. Though

pedestrian detection allows us to reduce the video size by a higher factor,

it should be noted that this is mainly due to the fact that masks generated

by the pedestrian detector drive the algorithm to smooth most of the frame,

reducing the bandwidth needed. Even if this seems a desirable property,
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Figure 6.5: Average file size obtained by varying the CRF. File size is nor-

malised with respect to the original (high quality) video.
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Figure 6.6: SSIM versus file size (normalised with respect to the original

video size). For a video size of about 20% of the original, the SSIM computed

on the interesting areas is above 0.9 and approaches 0.95. Even when video

size decreases rapidly, below 20% of the original size, SSIM still remains

above 0.8.
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Video Method Frames/sec Video Size (MB)

V1 Pedestrian Detector 1.3 2.2

V1 Sobel + Fast16 71.8 4.1

V2 Pedestrian Detector 1.6 3.0

V2 Sobel + Fast16 87.0 7.2

V3 Pedestrian Detector 1.9 15.5

V3 Sobel + Fast16 71.5 18.0

Table 6.2: Frame rate comparison for the two feature extraction approaches.

File size is also reported for the same CRF (17).

Video (size) Precision Recall ∆TP/P ∆FP/P

Original (7.9 MB) .92 .67 - -

Compressed (1.8 MB) .89 .81 .11 .09

Compressed (4.4 MB) .93 .84 .13 .05

Compressed (7.2 MB) .89 .84 .11 .09

Table 6.3: Performance of a pedestrian detector on the original and adap-

tively encoded frames. Precision is slightly reduced but recall is increased.

objects other than pedestrians are encoded with a lower quality. As an

example, license plates are unreadable and other car details are consistently

degraded.

6.5.3 Semantic Cue Preservation

Videos compressed and transmitted with our adaptive encoding will be sub-

sequently inspected either by personnel or machines. In the following experi-

ment we measure how encoded videos preserve the image features that allow

high level object detectors to extract semantic information from videos. In

particular, we processed a video with the Dalal&Triggs [36] pedestrian de-

tector before and after the adaptive encoding for three levels of adaptive

compression. From Table 6.3 it appears that the performance of the pedes-

trian detector is not substantially affected by our adaptive compression. In

particular, the precision on the compressed video is reduced but the overall

recall is improved. We also report the increase in true positives and false

positives for compressed videos, which also explains the increase in recall.
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6.6 Conclusions

In this paper we have presented a novel method for semantic video coding

based on low-level features that require a very limited computational re-

sources. The technique can be used as a pre-processing state before DCT

encoding, and is able to reduce the size of videos down to half the origi-

nal size, while maintaining the perceptive quality of the areas considered of

interest. The approach has been shown to have also a beneficial effect on

automatic analysis of the compressed video, improving the performance of

the person detector based on the histogram of gradients.



Chapter 7

Conclusions

7.1 Summary of contribution

This thesis makes a contribution to the field of video understanding. In

particular, we address the problem of detecting events in videos with a par-

ticular focus on the recognition of human actions. Our effort is dedicated to

designing robust representations for local space-time patterns and to the def-

inition of models that allow comparison between these patterns in order to

build supervised and semi-supervised systems. We explore different aspects

of video understanding, each requiring progressively less human supervision.

The first step to enable machines to automatically recognise video con-

tent is the design of a robust video representation. Indeed, we are not willing

to narrow the domain of videos to analyse. For this reason, in Chapter 3

we propose a novel local spatio-temporal feature that is efficient to com-

pute, adapts to various video domains without any tuning and represent

appearance and motion. We also show how to correctly quantise these high

dimensional features to obtain discriminative and rich codebooks of video

words by applying density-based clustering. Finally, we apply a nonlinear

dimensionality reduction technique to compress the codebooks, gaining in

the process two orders of magnitude in training and testing speed. We pro-

pose a complete semantic video retrieval system that, addressing several

issues in the recognition pipeline, improves over the state-of-the-art.

After this first step we recognise that local space-time feature design is

still an open issue. We therefore proceed, using a different approach, with

the definition of a novel feature in Chapter 4. We exploit Zernike moments to
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benefit from the orthogonality condition of Zernike polynomials that ensures

there is no redundancy in the representation. Unfortunately, high order

moments are extremely sensitive to noise. We deal with this issue with a

novel kernel for features that builds on the concept of pyramid matching.

Our similarity metric allows the preservation of the information from higher

order moments when discriminative and automatically discards it when it is

not. The proposed descriptor is extremely low dimensional and, thanks to

the pyramid kernel descriptor matching procedure, obtains state-of-the-art

performance.

Chapters 3 and 4 present methods to detect events belonging to a finite

set of known classes. To obtain a complete coverage of the video understand-

ing problem, we must cope with scenarios for which annotation of events of

interest is not available. This can happen due to the scarcity of annotated

video data or for the too wide range of behaviours that need to be retrieved;

finally, it is also possible that users do not know which are the events of

interest but rather only those which are not. To cover all these situations

we propose to shift the video annotation paradigm from supervised to semi-

supervised, casting the retrieval of unknown events of interest as anomaly

detection. In Chapter 5 we build on features presented in Chapter 3 to ob-

tain scene representation. We define a model for anomaly detection with the

real-time requirement in mind. Our model is based on non-parametric sta-

tistical tests and therefore requires almost no training time and very reduced

testing time. The use of context together with a multi-scale representation

greatly helps to suppress false positives. The scene model can be easily up-

dated with a procedure derived from the anomaly detection algorithm. Our

system runs in real-time on a modest platform and is the best among other

real-time systems proposed in the the literature.

Chapter 6 presents an application of concept detection in video. We

present an algorithm to reduce the bandwidth required for streaming video.

The proposed technique is applicable to all DCT based video codecs as a

simple preprocessing step. The approach is based on selective smoothing

of image blocks. The choice of blocks is semantically driven. Smoothing

masks can for example be generated with object, event or anomaly detectors.

Since these detectors are often based on low-level features we propose also a

technique based on the density of image structures like corners and edges to

drive the adaptive compression. Dropping the use of detectors reduces the

computational burden. This latter approach not only reduces the bitrate but
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videos encoded with our algorithm preserve important image features. We

performed further experiments with a pedestrian detector on videos encoded

with our algorithm. The detector did not significantly loose precision and

even improved recall.

7.2 Directions for future work

When it comes to scaling automatic video annotation to more data and

inevitably more concepts we will face several challenges. First of all there is

the need to obtain good annotation for a sufficient amount of video examples

for each concept. This can be partly overcome using social media and, in

the case of movies, the scripts. There is still a large amount of data for

which these approaches are not feasible. For user generated content uploaded

on social networks, the only “free” annotation available is the one we can

extract from tags or user comments, which are an imprecise and noisy source

of information. For video surveillance footage we do not have any means of

easily obtaining annotation.

Moreover, when it comes to describing the interaction of a person with

one or more other persons or objects, it is extremely complex to train discrim-

inative models, unless we make strong assumptions (i.e. maximum number

of people, maximum duration of the activity, strong prior on the point of

view, etc.). The complexity is also increased by the need to classify activi-

ties exploiting context. Finally, the articulated nature of the human body is

the main cause for the extreme variability of activities a human would define

similar or the same.

We believe that in order to scale a human activity understanding system

it is important to gather all the information available in order to build a

rich representation. Such information resides in the single subject location

and motion in the scene, the objects present in the scene (and their relative

position to people) and the mutual location and distances of the people

involved.

A possible approach is to start by densely sampling spatio-temporal fea-

tures and subsequently add structure to the sequence representation. We

can think of various way of adding structure to this bag-of-features: use a

global structure, a spatial pyramid may be a solution, but we can think of

adding the scene geometry if known; partition the scene not only globally

but also using the detection of people and their parts; use the context of
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persons to generate another partitioning of the scene.

Essentially, what we are describing is a progressive filtering of scene fea-

tures into a more structured model of global, contextual and personal fea-

tures that each correspond to a different aspect of the scene. We also propose

dealing with this kind of data with unsupervised learning.

An advantage of moving to this type of generative model would be that it

allows richer characterisation of agent behaviour in the scene, and would en-

able applications like retrieval and unsupervised characterisation of complex

actions that discriminative models do not.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Event Detec-

tion and Recognition for Semantic Annotation of Video”, Multimedia Tools

and Applications, vol. in press, 2011. (Special Issue: Survey Papers in Mul-

timedia by World Experts) [DOI:10.1007/s11042-010-0643-7]

2. M. Bertini, A. Del Bimbo, L. Seidenari. “Multi-scale and real-time non-

parametric approach for anomaly detection and localization”, vol. in press,

2012. (S.I.: Semantic Understanding of Human Behaviours in Image Se-

quences) [DOI:10.1016/j.cviu.2011.09.009]

International Conferences and Workshops

1. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Recog-

nizing Human Actions by Fusing Spatio-temporal Appearance and Motion

Descriptors”, in Proc. of IEEE International Conference on Image Process-

ing (ICIP), Cairo (Egypt), 2009.

2. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Effective

Codebooks for Human Action Categorization”, in Proc. of ICCV Interna-

tional Workshop on Video-oriented Object and Event Classification (VOEC),

Kyoto (Japan), 2009.

1The author’s bibliometric indices are the following: H -index = 3, total number of

citations = 27 (source: Google Scholar on January 25, 2012).
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3. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Human

Action Recognition and Localization using Spatio-temporal Descriptors and

Tracking”, in Proc. of AI*IA International Workshop on Pattern Recogni-

tion and Artificial Intelligence for Human Behaviour Analysis (PRAI*HBA),

Reggio Emilia (Italy), 2009.

4. L. Seidenari and M. Bertini, “Non-parametric Anomaly Detection Exploit-

ing Space-time features”, in Proc. of ACM MultiMedia (ACMMM), Firenze,

Italy, 2010.

5. L. Seidenari and Marco Bertini and Alberto Del Bimbo ,“Dense Spatio-

temporal Features For Non-parametric Anomaly Detection And Localiza-

tion”, in Proc. of ACM MultiMedia International Workshop on Analysis and

Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS),

Firenze, Italy, 2010.

6. A. D. Bagdanov, M. Bertini, A. Del Bimbo and L. Seidenari,“Adaptive

Video Compression for Video Surveillance Applications” in Proc. of ISM

Int‘l Symposium on Multimedia ,Dana Point(CA),2011.

7. L. Costantini, L. Seidenari, G. Serra, A. Del Bimbo and L. Capodiferro,“Space-

time Zernike Moments and Pyramid Kernel Descriptors for Action Classifi-

cation”, in Proc. of International Conference on Image Analysis and Pro-

cessing (ICIAP), 2011, Ravenna, Italy.

National Conferences

1. L. Ballan, M. Bertini,A. Del Bimbo,F. Dini,G. Lisanti,L. Seidenari and G.

Serra, “RECENT RESEARCH ACTIVITIES IN VIDEOSURVEILLANCE

AT UNIFI::MICC”, in Proc. of GIRPR National Conference, Marina di

Ascea (SA), Italy, 2010.

2. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Robust

space-time features combination for human action recognition”, in Proc. of

GIRPR National Conference, Marina di Ascea (SA), Italy, 2010.
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