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INTRODUCTION

The world of computer systems today is composed of very different kinds of crit-
ical architectures: from embedded safety-critical sensors and safety equipment
(e.g., train on-board equipment), to large, highly dependable multi-computers
(e.g. plant control systems), to smart resilient components for ubiquitous net-
works (e.g., biometrics monitoring applications). The common trend for all of
them is to become open and part of an integrated cyber world; still, each of
them brings specific challenges that need to be addressed for their assessment,
possibly leading to the different validation solutions [157], [171].

The evaluation of the behavior of critical systems is important in V&V (Verifi-
cation and Validation) and in fault forecasting [12], because it allows to estimate
the adequacy of a system with respect to the requirements given in its specifica-
tion. The scientific literature and the industrial practice show that validation of
critical systems through quantitative evaluation of resilience and dependability
attributes is a key issue.

Several approaches have been proposed to evaluate the dependability prop-
erties of a computer-based system. These are generally classified into three
categories: analytic, simulative and experimental. The analytical approach is
based on the construction of a parametric model of the execution environment,
while following a simulative approach we execute algorithms in a simulated
execution environment (usually based on a stochastic model) [12].

Finally, in the experimental approach, the process of evaluating a system is
based on observations of the behavior of the system under analysis. Experi-
mental measurement is an attractive option for evaluating an existing system
or prototype, because it allows to observe the real execution of the system to
obtain (hopefully, highly accurate) measurements of the system in its usage
environment [130].

Surveying the state of the art on experimental approaches, several method-
ologies exist for experimental evaluation of critical systems, which share to a
large extent similar foundations, and refer or include a huge set of techniques
explored and presented through years. To mention only a few representative
examples, we cite [8], [10], [61], [73], [111] and [131].

This Thesis proposes a general methodology for the experimental evaluation
of critical systems, born from an attentive analysis of the state of the art. Two
key aspects are tackled, that we consider major milestones of experimental
evaluation but that surveying the state of the art have been often underestimated.
These two aspects are:
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* Application of principles of metrology (i.e., measurement theory) to per-
form a metrological assessment of results and measuring systems [24],
[26]. In fact, while the attention to quantitative evaluation based on mea-
surements of dependability attributes is renown, as well as the common
sensibility in the identification of the measurands, there is seldom attention
to characterize tools and results for what they really are i.e., measuring in-
struments and measurement results. The application of knowledge available
in a recognized discipline such as metrology can result in increased trust
in the observations performed while assessing critical systems.

¢ The adoption of efficient techniques for data retrieval and sharing, to
improve reuse, comparison and sharing of measurement results [122], [48].
Despite the fact that sharing results and comparing them is of paramount
importance in the current dependability research community, only few
solutions actually exist, and are not widely used. Also, the approach
followed to quantitatively assess algorithms and systems is generally not
univocal, and varies from one work to another: this makes comparison
among results reported in different works difficult, if not meaning]less.
Finally, data collection, sharing, analysis and comparison is complicated
by the fact that there is no widely accepted format to describe the results
collected and there exist no widespread common guidelines on what data
to collect and how.

The methodology proposed in this Thesis is general for the experimental
evaluation of critical systems; that is, it is independent from the kind of system
or specific technique selected. Also, it specifically targets the industrial context,
because it supports the experimental evaluation activities performed as part
of standard-compliant V&V processes in industrial practices. The industrial
perspective of the approach is discussed examining the possible interplay of the
methodology with a framework for the support of V&V processes.

The conceptual methodology is applied to five case studies that embrace five
different categories of system, from COTS (Commercial Off-The-Shelf) testing to
testing of highly distributed and adaptive systems. In the following table the five
case studies are summarized, ordered by increasing systems’ distributedness
and dimension.

In details, this dissertation is organized in three parts as follows.

Part (i) describes the background, the objectives and the motivations at the
base of this work, and the state of the art on related topics. This part is comprised
of two chapters, Chapter 1 and Chapter 2.

Chapter 1 contains an overview on basic notions and definitions that constitute
the foundation of the research work presented. It shows basic concepts of
dependability and security, describes monitoring and experimental evaluation
activities, and discusses fundamentals of measurement theory.
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Overview of the case studies presented in the Thesis.

Chapter 2 identifies challenges, motivations and state of the art methodologies
for the experimental evaluation of critical systems. The objective of this Chapter
is to point out the relevance of i) the role targeted by the metrological assessment
of instruments and results and ii) (trustworthy) data comparison, sharing, and
archiving. The intended outcome of this analysis is to show to the reader the
relevance of defining a new methodology for experimental evaluation which
applies basics from metrology and guidelines for data comparison and sharing.

Part (ii) of the Thesis contains the conceptual methodology we propose for
the experimental evaluation, and its application to three case studies developed
in the academic context (the two remaining case study, that are closer to the
industrial context, are presented in the successive Part (iii)). Part (ii) is composed
of Chapter 3, Chapter 4, Chapter 5 and Chapter 6.

Chapter 3 describes the conceptual methodology developed, which stems
from the observations and challenges raised in Part (i). The methodology pre-
sented aims to overcome the limitations already mentioned. The methodology is
described, and then the five case studies that will be detailed in the following of
the Thesis are summarized to point out the peculiarities and different aspects of
the application of the methodology to the various case studies.

Chapter 4 describes the first case study. It is related to the experimental
evaluation of a middleware component, namely the software clock Reliable and
Self Aware Clock (R&SAClock, [23]). The Chapter focuses on the validation
methodology and the assessment of the measuring system, including the analysis
of faultload and workload intrusiveness and representativeness, and providing



vi

a set-up which can be reused for different instantiation of the tested software
clock.

The second case study (Chapter 5) focuses on the design, implementation
and metrological assessment of a new tool for dependability measurements
in distributed protocols, which allows the user evaluating the uncertainty of
measurement results involving time interval measurements. The tool is presented
along with an experimental campaign to measure distributed round-trip delays
on a Wide Area Network (WAN). This case study focuses more on the design
and implementation of the measuring instrument and on the collection of trusted
measurement results than on the execution of experiments and presentation of
results.

The third case study is instead reported in Chapter 6. The argument of this
case study is testing of SOAs (Service Oriented Architectures). In particular, the
focus of this Chapter is on lifelong testing of SOAs [70], [16], to present a testing
tool and related testing methodology for the continuous experimental evaluation
of SOAs, which is performed during both offline and online execution. The
approach for the design and use of such tool is based on the methodology of
Chapter 3, and defines service discovery and testing actions that are applied via
the introduction in the SOA of a testing service. In this case study emphasis is put
on the sharing of information between providers, both in terms of knowledge of
the SOA and results (outputs) of the testing activity performed.

The third and final part (Part (iii)) of this Thesis instead addresses the problem
of the applicability of our experimental evaluation methodology to industrial
V&V processes. Two case studies that result from cooperations with industries
are presented. This part is comprised of Chapter 7, Chapter 8 and Chapter 9.

Chapter 7 is devoted to discuss the relevance and applicability of our work
to industrial V&V processes. The need of strict methodological process in
industrial practices for the validation of critical systems is presented, then a
novel framework for V&V processes is introduced, and its relations to the testing
methodology is shown. The framework is named RACME (Resiltech Assessment
Certification MEthodology, [40]) and it is conceived to supports and guide a
V&V expert through a whole V&V process; it is customizable for different
systems and V&V processes. The Chapter first shows the RACME solution for
the management of any V&V and certification process, and then illustrates that
our methodology as it is can successfully fit processes managed by RACME.

The case study in Chapter 8 is developed in cooperation with Ansaldo STS
to experimentally evaluate cheap GPS devices, that are components of a safety-
critical system. The experiments performed aim to quantify the localization error
of cheap COTS GPS devices, to provide feedbacks of their behavior to the system
designers. The activity performed is part of the testing activities executed as a
support to the designers, rather than final assessment activities performed on
the prototype. These evaluation also allowed to accurately validate the behavior
of one fundamental component of the whole system, that is the GPS device.



The fifth case study presented in this Thesis is instead reported in Chapter
9. This case study is devoted to the validation through fault injection of the
prototype of a safety-critical railway trainborne equipment, the Driver Machine
Interface (DMI). This activity, performed in the context of a broader project and
in cooperation with Ansaldo STS, is executed as part of the planned set of V&V
activities for the final validation of the prototype.
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OBJECTIVES, MOTIVATIONS AND STATE OF THE
ART






CONTEXT OF THE RESEARCH

This Chapter presents an overview on basic notions that constitute the foun-
dation of the research work presented in this Thesis. We start introducing in
Section 1.1 basic concepts of dependability (and security). Then, Section 1.2 is
devoted to introduce monitoring activities and experimental evaluation activities,
together with areas where forms of monitoring and experimental evaluation
are applied. Finally, we discuss in Section 1.3 fundamentals of measurement
theory (metrology), a science that proposes standards and good practices for
the assessment of measuring systems and results and that we believe of utmost
importance in the experimental evaluation of critical systems.

1.1 DEPENDABILITY (AND SECURITY) CONCEPTS

When dealing with dependability and security of computing and communication
systems, the reference taxonomy and definitions are those given in [12]: this
work results from a previous work originated in 1980, when a joint committee
on “Fundamental Concepts and Terminology” was formed by the TC on Fault-
Tolerant Computing of the IEEE Computer Society and the IFIP (International
Federation for Information Processing) WG (Working Group) 10.4 “Dependable
Computing and Fault Tolerance” with the intent of merging the distinct but
convergent paths of the dependability and security communities.

1.1.1  System, service, faults, errors and failures

The starting point is the definition of system, environment and system boundary.

Definition 1. A system is an entity that interacts with other entities, i.e., other
systems, including hardware, software, humans, and the physical world with its natural
phenomena. These other systems are the environment of the given system. The system
boundary is the common frontier between the system and its environment.

We present the definition of function of a system, behavior, total state and
finally the definition of service and service interface.

Definition 2. The function of a system is what the system is intended to do. The
behavior of a system is what the system does to implement its function and is described
by a sequence of states.
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Definition 3. The service delivered by a system is its behavior as it is perceived by its
user(s); a user is another system that receives provided service. The part of the provider’s
system boundary where service delivery takes place is the provider’s service interface.

We are using the singular for function and service, but a system can implement
more than one function, and deliver more than one service.

Definition 4. Correct service is delivered when the service implements the system
function. A service failure, also abbreviated with failure, is an event that occurs when
the service delivered deviates from correct service.

The deviation from correct service may assume different forms that are called
service failure modes and are ranked according to failure severities. The defini-
tion of errors and faults is as follows:

Definition 5. The part of the system state that is liable to lead to subsequent failure is
called an error.

Definition 6. The adjudged or hypothesized cause of an error is called a fault.

A fault is active when it causes an error, otherwise it is dormant. A service
failure occurs when an error is propagated to the service interface and causes the
service delivered by the system to deviate from correct service. Service failure
of a system causes a permanent or transient fault for the other system(s) that
receive service from the given system.

This set of mechanisms constitutes the fault-error-failure chain of threats shown
in Figure 1.1.

activation ropagatio . causation,
> propag n; failure

...—> fault —> fault —> ...

error

Figure 1.1: Fault-error-failure chain [12].

When the functional specification of a system includes a set of several func-
tions, the failure of one or more of the services implementing the functions may
leave the system in a degraded mode that still offers a subset of needed services
to the user.

1.1.2 A taxonomy of faults, failures and errors

We detail the discussion on faults, failures and errors [12]. We start with the
presentation of the taxonomy for faults. All faults that may affect a system
during its life are classified according to eight basic viewpoints, leading to the
elementary fault classes, as shown in Figure 1.2.

If all combinations of the eight elementary fault classes were possible, there
would be 256 different combined fault classes. However, not all criteria are
applicable to all fault classes; for example, natural faults cannot be classified by
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Development faults
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Hardware faults
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I

Accidental faults

[introduced inadvertently]

Incompetence faults

— [result from lack of p by the ized human(s),
or fromi of the i

—— Capability

Permanent faults

. [presence is assumed to be continuous in time]
— Persistence )
Transient faults

[presence is bounded in time]

Figure 1.2: Elementary fault classes [12].

objective, intent, and capability. Knowledge of all possible fault classes allows
the user to decide which classes should be included in a dependability and
security specification.

The combined fault classes shown in Figure 1.2 belong to three major partially
overlapping groupings:

1. development faults, that include all fault classes occurring during develop-
ment;

2. physical faults, that include all fault classes that affect hardware;
3. interaction faults, that include all external faults.

We move now to describe a taxonomy of failures. The different ways in which
the deviation of a failed service is manifested are its service failure modes.
Each mode can have more service failure severities. The service failure modes
characterize incorrect service according to four view-points:

1. the failure domain;
2. the detectability of failures;

3. the consistency of failures;
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4. the consequences of failures on the environment.

The failure domain viewpoint leads us to distinguish between content (or value)
failures (the content of the information delivered at the service interface deviates
from implementing the system function) and timing failures (the time of arrival
or the duration of the information delivered at the service interface i.e., the
timing of service delivery, deviates from implementing the system function).
These definitions can be specialized. In fact, the content can be in numerical
or non-numerical sets (e.g., alphabets, graphics, colors, sounds), and a timing
failure may be early or late, depending on whether the service is delivered too
early or too late. Failures when both information and timing are incorrect fall
into two classes:

1. halt failure, or simply halt, when the service is halted (system activity, if
there is any, is no longer perceptible to the users); a special case of halt is
silent failure, or simply silence, when no service at all is delivered at the
service interface.

2. erratic failures otherwise, i.e., when a service is delivered (not halted), but
is erratic (e.g., babbling).

The detectability viewpoint addresses the signaling of service failures to the
user(s). Signaling at the service interface originates from detecting mechanisms
in the system that check the correctness of the delivered service. When the losses
are detected and signaled by a warning signal, then signaled failures occur.
Otherwise, they are unsignaled failures. The detecting mechanisms themselves
have two failure modes: 1) signaling a loss of function when no failure has
actually occurred, that is a false alarm, and 2) not signaling a function loss,
that is an unsignaled failure. When the occurrence of service failures result in
reduced modes of service, the system signals a degraded mode of service to
the user(s). Degraded modes may range from minor reductions to emergency
service and safe shutdown.

The consistency of failures leads us to distinguish:

¢ consistent failures: the incorrect service is perceived identically by all
system users;

* inconsistent failures: some or all system users perceive differently incorrect
service (some users may actually perceive correct service); inconsistent
failures are usually called Byzantine failures [112].

Grading the consequences of the failures upon the system environment enables
failure severities to be defined. The failure modes are ordered into severity
levels, to which maximum acceptable probabilities of occurrence are generally
associated. The number, the labeling, the definition of the severity levels, and
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the acceptable probabilities of occurrence are application-related, and involve
the dependability and security attributes for the considered application(s).

Generally speaking, two limiting levels can be defined according to the relation
between the benefit (in the broad sense of the term, not limited to economic
considerations) provided by the service delivered in the absence of failure, and
the consequences of failures:

* minor failures, where the harmful consequences are of similar cost to the
benefits provided by correct service delivery;

e catastrophic failures, where the cost of harmful consequences is orders of
magnitude, or even incommensurably, higher than the benefit provided by
correct service delivery.

Systems that are designed and implemented so that they fail only in specific
modes of failure described in the dependability and security specification and
only to an acceptable extent are fail-controlled systems. Instead a system whose
failures are to an acceptable extent halting failures only is a fail-stop system.

Finally, after presenting the taxonomy of faults and failures, we briefly discuss
here the errors.

A convenient classification of errors is to describe them in terms of the
elementary service failures that they cause, reusing most of the terminology
previously presented. Consequently, we can identify content versus timing errors,
detected versus latent errors, consistent versus inconsistent errors, minor versus
catastrophic errors.

Finally, some faults (e.g., a burst of electromagnetic radiation) can simultane-
ously cause errors in more than one component. Such errors are called multiple
related errors; on the contrary, single errors are errors that affect one component
only.

1.1.3 Dependability and its attributes

We have defined what is a system, its correct service and the threats which
can affect the service. All elements are now set to introduce the definition of
dependability. The original definition of dependability is as follows:

Definition 7. Dependability is the ability of a system to deliver a service that can
justifiably be trusted.

This definition stresses the need for justification of trust. An alternate defini-
tion, that provides the criterion for deciding if the provided service is dependable,
is:

Definition 8. Dependability is the ability of a system to avoid service failures that
are more frequent and more severe than is acceptable.
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Dependability is an integrating concept, which encompasses the following
attributes:

Awailability: readiness for correct service.
Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and the envi-
ronment.

Integrity: absence of improper system alterations.

Maintainability: ability to undergo modifications and repairs.

When addressing security, an additional attribute needs to be considered:
confidentiality i.e., the absence of unauthorized disclosure of information. Security
is a composite of the attributes of confidentiality, integrity, and availability,
requiring the concurrent existence of:

1.

2.

3.

availability for authorized actions only,
confidentiality,

integrity with “improper” meaning “unauthorized”.

The dependability and security specification of a system must include the
requirements for the attributes in terms of the acceptable frequency and severity
of service failures for specified classes of faults and use environment. One or
more attributes may not be required at all for a given system.

1.1.4 Means to attain dependability

Means to attain various attributes of dependability and security can be grouped
into four categories:

1.

2.

Fault prevention means to prevent the occurrence or introduction of faults.

Fault tolerance means to avoid service failures in the presence of faults;
systematic introduction of fault tolerance is often facilitated by the addition
of support systems specialized for fault tolerance.

. Fault removal means to reduce the number and severity of faults.

Fault forecasting means to estimate the present number, the future incidence,
and the likely consequences of faults; it is conducted by performing a
qualitative or quantitative evaluation of the system behavior with respect
to faults occurrence or activation.
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Fault prevention and fault tolerance aim to provide the ability to deliver a
service that can be trusted, while fault removal and fault forecasting aim to reach
confidence in that ability by justifying that the functional and the dependability
and security specifications are adequate and that the system is likely to meet
them.

The schema of the complete taxonomy of dependable and secure computing
is finally reported in the Figure 1.3.

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Dependability Faults
and —— Threats ~E Errors

Security Failures

— Atfributes

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

— Means

Figure 1.3: The dependability and security tree [12].

Since the context of this Thesis (experimental evaluation of computing systems)
falls in the category of fault forecasting, we detail fault forecasting in the
following.

Fault forecasting

Fault forecasting is conducted by performing an evaluation of the system behav-
ior with respect to fault occurrence or activation. Evaluation has two aspects:

¢ qualitative, or ordinal, evaluation, that aims to identify, classify, and rank
the failure modes, or the event combinations (component failures or envi-
ronmental conditions) that would lead to system failures;

¢ quantitative, or probabilistic, evaluation, that aims to evaluate in terms of
probabilities the extent to which some of the attributes are satisfied; those
attributes are then viewed as measures.

The quantitative evaluation of performance and of dependability-related
attributes is an important activity of fault forecasting, since it aims at probabilis-
tically estimating the adequacy of a system with respect to the requirements
given in its specification. Quantitative system assessment can be performed
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using several approaches, generally classified into three categories: analytic,
simulative and experimental [12]. Each of these approaches shows different pecu-
liarities, which determine the suitableness of the method for the analysis of a
specific system aspect. The most appropriate method for quantitative assessment
depends on the complexity of the system, the development stage of the system,
the specific aspects to be studied, the attributes to be evaluated, the accuracy
required, and the resources available for the study [164], [120].

Analytic and simulative approaches are generally efficient and timely, and
they have proven to be useful and versatile in all the phases of the system life
cycle. They are typically based on a parametric model of the analyzed system
and on a set of assumptions concerning the behavior of the system and/or of
the system environment.

Analytic approach is usually cheap for manufacturers. The accuracy of the
results obtained through an analytic approach is strongly dependent on the
accuracy of the values assigned to the model parameters and of the assumptions
on which the model is based.

Similarly to the analytic approach, the accuracy of the evaluation obtained
with the simulative approach depends on the accuracy of the assumptions made
for the system, on the behavior of the simulation environment, and on the
simulation parameters.

Experimental evaluation is an attractive option for quantitative assessment
of an existing system or prototype. A very high level of interest is paid to the
quantitative evaluation based on measurements, with special attention to eval-
uation of Quality of Service (QoS, [91]) metrics of systems and infrastructures.
Experimental evaluation allows to monitor the real execution of a system to
obtain highly accurate measurements of the metrics of interest. However, it may
turn out to be quite expensive e.g., when the interest is in very rare events, and
the obtained results are often difficult to generalize. In this case, appropriate
techniques based on active measurements and controlled experiments can be
adopted. In the experimental measurement-based approach, the required mea-
sures are estimated from measured data using statistical inference techniques,
and the data are measured from a real system or from its prototype. It is usually
an expensive approach, since it requires building a real system, performing the
measurements and statistically analyzing the data.

1.2 BASICS ON MONITORING AND EXPERIMENTAL EVALUATION

We present basics on monitoring and experimental evaluation of critical sys-
tems. The objective of this Section is to present an exhaustive introduction of
experimental evaluation, which is at the base of this Thesis. We note that a
discussion on experimental evaluation, in order to be complete, should not
disregard foundations on monitoring. That is why we first present basics and
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some significant application fields (identified mainly from [180]) for monitoring,
and then for experimental evaluation.

1.2.1  Monitoring

Monitoring can be defined as the process of dynamic collection, interpretation
and presentation of information concerning objects or software processes under
scrutiny [126].

A general view of monitoring can be summarized as follows. The behavior of
the system is observed and monitoring information is gathered; this information
is used to take decisions and perform the appropriate control actions on the
system. Monitoring involves observing the execution behavior or performance
of a target application in order to gain an insight into the current operation of
the system [186].

In general, when we deal with the monitoring of computing systems we have
one or more monitored elements (e.g., computers, operating systems, application
packages) send out signals or measurements of their well-being or distress to
a monitoring site, where thus various forms of processed information can be
extracted and decisions made.

In order to observe a target system, elements of a monitoring system, termed
probes, are attached to the system to provide information about the system’s
internal operation. The probes provide an intermediate output from the system
in addition to its end output, allowing the system to be seen as more than a black
box (see Figure 1.4). Such probes can be actual hardware probes that monitor
internal system signals; alternatively, some code to perform monitoring can be
added to the target software in order to output information about the system.
The added code can be regarded as software probes [186].

WORKLOAD

Output of
(inputs from the :> :> the system

environment)

a) Target system as a black box

Controller/ :> Output of the

actuator monitor/probes

WORKLOAD t .
(inputs from the :> :> Output o
Target system the system

environment)

b) Target system instrumented with a monitor

Figure 1.4: Target system a) as black box, and b) with probes.
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Monitoring may serve either or both of the following two purposes [180]:

¢ Supporting direct feedback control: the monitoring data trigger decisions
about, for example, dispatching maintenance technicians, or switching in
stand-by components.

¢ Providing data for assessing the dependability or resilience of the moni-
tored system.

We continue our discussion presenting forms of online monitoring according
roughly to areas of use: we present the use of monitoring in the diverse areas of
network and QoS monitoring, intrusion detection and prevention systems, em-
bedded system telemetry, monitoring of large-scale enterprise software, runtime
verification, and automatic failure reporting.

Network and QoS monitoring

Network monitoring is part of network management functions. It includes means
for the identification of problems caused by network failures and overloaded or
by failed devices, to enable corrective management actions or to produce long
term dependability measurements. Also, network monitoring has the purpose
of alerting network administrators to virus or malware infections, questionable
user activity and power outages [180].

Network monitoring systems typically use “network monitoring interface
cards” (NMIC), that are similar to standard NICs, but able to passively listen on
a network. NMICs have no MAC (Media Access Control) layer addresses and
are invisible to other devices on the network. Network monitoring systems may
listen to different application level protocols like for example FTP or SMTP. As
for communicating data, many protocols can be used, but the standard is the
Simple Network Management Protocol (SNMP, [35]). The protocol prescribes
an architecture in which a software component (denoted as agent) executes
on managed systems (network elements such as hosts, gateways, terminal
servers, and the like), collecting the desired network information, that is in turn
communicated to one or more managing systems.

Several works describe how monitoring can be used for an on-line control of
the Quality of Service of a system, as surveyed in [91], [11]. The general model
for approaching QoS monitoring problems can be summarized in the following
functional components [91]:

1. Monitoring application. This component serves as an interface. Its func-
tions include retrieving traffic information from monitors, analyzing such
information and providing analysis results to users.

2. QoS monitoring. This module is an additional one compared with the model
of traditional network monitoring systems. It provides mechanisms for
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QoS monitoring, to retrieve information from relevant monitors and derive
QoS-related parameters.

3. Monitor. This module gathers and records traffic information and commu-
nicates the information to the monitoring application. In particular, this
module performs real-time measurement of real-time flows and reports
the measured information to the monitoring application.

4. Monitored objects. These are the information such as attributes and activities
that are to be monitored in the network.

Intrusion detection and intrusion prevention systems

Intrusion detection is the process of monitoring the events occurring in a com-
puter system or network and analyzing them for signs of possible incidents,
which are violations or imminent threats of violation of computer security poli-
cies, acceptable use policies, or standard security practices. Intrusion prevention
is the process of performing intrusion detection and attempting to stop potential
incidents detected [158].

Intrusion detection and prevention systems (IDPSs, [158]) are primarily fo-
cused on identifying possible incidents, logging information about them, at-
tempting to stop them, and reporting them to security administrators. In addi-
tion, organizations use IDPSs for other purposes, such as identifying problems
with security policies, documenting existing threats, and deterring individuals
from violating security policies.

IDPSs are important mechanisms in the assessment of network security. De-
tecting both attempted and successful intrusions would of course allow mea-
surements of security (measurements of both absolute frequency of successful
intrusions and of the fraction of intrusions that are successful). However this
potential is limited by the fact that the IDPSs themselves are inevitably imperfect,
and exhibit false negatives (failing to raise an alarm following a real intrusion),
false positives (raising an alarm due to legitimate traffic) or event misclassi-
fication (raising an alarm following a real intrusion, but failing to classify it
correctly).

Embedded systems telemetry

The use of embedded systems has grown continuously for decades. The trend
required advances in monitoring of these systems to support hardware and
software maintenance, as well as dependability and performance assessment.
Consequently, embedded system telemetry acquired increasing interest. Teleme-
try is a technology that allows remote measurement and reporting of information.
This type of monitoring application is particularly valuable for embedded sys-
tems that cannot be suspended to examine variables values and programs flows.
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For example, let us consider compressors used to pump natural gas through a
pipeline: bringing an engine online is a very complex task and the variables have
to be examined at runtime to validate the working of the control system. On the
other hand, such an approach carries an overhead (with respect to performance
and resource usage) due to additional computation needed for communication
between the tool and the target embedded application [180].

As an example to illustrate current practices in telemetry of embedded systems,
we mention the Web Network Management Protocol (WNMDP, [187]) from Micro
Digital Inc. WNMP aims to ease and simplify administration and monitoring of
embedded systems using ordinary web browsers on a PC, mobile phone, etc.
without requiring a special program running on the client.

Monitoring large-scale enterprise software

Today’s enterprise software systems have severe availability requirements. Sat-
isfying stringent dependability requirements is, however, hard - enterprise
software is growing in size and complexity, and the necessary updates are
becoming more frequent. Each component in a system requires monitoring of its
resources, performance and state variables. This frequently leads to generating
an overwhelming amount of data, which are hard to collect and store, and are
complicated to analyze [134].

Despite the availability of large amounts of information regarding many
aspect of modern software systems, effectively managing their operation is
difficult. These systems can generate an overwhelming amount of information
that can be costly to collect and difficult to handle and analyze [108]. Each
software in a system can be monitored via numerous performance, activity,
resource utilization, and state-related metrics. Sources include log files, trace
files, event notifications, existing instrumentation and related interfaces, dynamic
instrumentation, etc. [134].

An effort in this respect is autonomic computing [108] and automated adap-
tive monitoring, in which the monitoring system continuously assess current
conditions by observing the most relevant data, to promptly detect anomalies
and to help identifying root-causes of problems.

Runtime verification

Runtime verification techniques are means for runtime failure reporting that typ-
ically rely on “formal methods” for designing the functions that detect failures
(and are thus not limited to crash failures). These techniques are motivated more
with verifying and improving software than by measuring its dependability
attributes.

In a nutshell, runtime verification works as follows. A correctness property ¢,
usually formulated in some linear temporal logic, such as LTL [150], is given
and a so called monitor that accepts all models for ¢ is automatically generated.
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The system under scrutiny as well as the generated monitor are then executed in
parallel, such that the monitor observes the system’s behavior. System behavior
which violates property ¢ is then detected by the monitor and an alarm signal
is returned [7].

In experimental evaluation, one approach is to generate a test monitor that
checks whether the application works correctly. Then, the system under test is
executed with typical inputs and it is observed whether the monitor complains.
The monitor generation as used for runtime verification is applicable in the
domain of testing as well.

Monitoring for software failures during software runtime confirms (or dis-
proves) whether an actual run of the software conforms to the requirements
specification, by checking whether it preserves certain formally specified proper-
ties.

Automatic failure reporting for software

Automatic Failure Reporting focuses on the problems of capturing failure data
from customer sides. Commercial and open-source software increasingly em-
ploys automatic failure reporting features. In fact there are many ways to
measure quality before and after the software is released; for commercial and
internal-use-only products, the most important measurement is the user’s per-
ception of product quality. Unfortunately, perception is difficult to measure, so
companies attempt to quantify it through customer satisfaction surveys and
failure /behavioral data collected from its customer base [135].

Collecting failure data requires a monitoring process resident on the cus-
tomer’s computer that detects processes and transmits the data. For example
in Windows XP this process is enabled by a dialog with the user as part of the
installation process. Once a system administrator logs onto a system for the first
time following a system reboot, the operating system automatically checks if
the cause of the system outage was a system crash. If so, it processes the system
dump file, generating a mini dump and an XML file containing versions of all
drivers on the system. These data are subsequently compressed. A prompt then
appears on the screen requesting the user’s permission to send these data to
Microsoft. If the user agrees, the data are sent via http post. This method also
allows the process to send a response back to the user by redirecting the http
request to a Web page containing possible solutions [135].

1.2.2  Experimental evaluation

Observations of a system can be done with purposes of experimental evaluation (or
testing) for V&V. We define in Figure 1.5 a typical measuring system for testing
purposes. The figure is based mainly on [81], but this architecture is general
and compatible with the architectures of most testing tools and frameworks
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(similarities can be found in several works, to mention a few [2], [33], [34], [44],
[92], [100], [104], [105], [114], [154], [183], [189], [190]).

Most of the components shown in the figure and many relations amongst
them are optional, and depend on the objectives of the evaluation. We place no
restrictions on the implementation of the components (they can be hardware
or software components, located on the target system or on a different system,
etc.) and on the number of instances of each component (depending on the
target system and on the objectives of the testing, one or more instances of a
component may be necessary).

We detail the components shown in Figure 1.5, starting from the target system
(or system under test). The target system is the subject of the experimental
evaluation; it can be a centralized or a distributed system, a mechanism, an
application, a set of functions, an hardware component, etc.

( )

measuring system

fault
library data analyzer

A4

fault workload 4

.. . library v A
In ect'on workload .

injector(s) enerator monitor

g logger(s)
k A )
A4
— ta rget system

Figure 1.5: A measuring system for the experimental evaluation of critical systems.

Instead, the measuring system (or measuring instrument) is the tool or instrument
used for the experimental evaluation. It can be located entirely on the target
system, or (partially) placed on a different system. Contact points with the target
system are needed.

The measuring system is composed of the controller, the monitor, the fault
injector, the logger or data collector, the data analyzer, the workload generator,
the fault library and the workload library, detailed in what follows.

1. The controller controls the experiment. For example, it can be a program
that can run on the target system or on a separate computer.

2. The monitor tracks the execution of the commands through its probes
and initiates data collection whenever necessary. The logger collects the
monitored data.

3. The workload generator generates the set of instructions (workload) that the
target system will execute during the tests (can be applications, bench-
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marks, or synthetic workloads). It reads the workload from a workload
library.

4. The fault injection instrument (can also be an instrument for error/failure
injection, depending on the characteristics of the experiments) is required
only in case of injection experiments. The injectors perform injections into
the target system as it executes commands from the workload generator.
The fault injector can be custom-built hardware or software. The fault
injector itself can support different fault types, fault locations, and fault
times, the values of which are drawn from a fault library.

5. The data analyzer, which can execute offline, performs data staging and
analysis.

As we did for monitoring, in what follows we survey main fields and re-
lated techniques for experimental evaluation. We present and discuss the major
approaches and techniques that can be considered for obtaining experimental
measures relevant for dependability analysis, via:

1. collecting the erroneous behaviors and failure data via measurements
carried out in the field;

2. conducting controlled experiments where the target system is explicitly
subjected to the application of artificial inputs.

The areas surveyed are not comprehensive of all the possible testing activities,
but are particularly significant to introduce the contribution of this Thesis. Fault
injection, robustness testing and field measurements are techniques applied
in the case studies shown in the following of this Thesis. Also, dependability
benchmark is a significant approach to improve comparison of critical system,
and although not applied in the case studies of this Thesis it is strictly correlated
to its intention and topics. Extensive discussions on experimental evaluation
approaches can be found in [180], [9], [170], [120].

Fault injection

Fault injection is an important experimental technique for the assessment and
verification of fault-handling mechanisms, as it permits to analyze a system’s
response to exceptional conditions. Fault injection allows to study how computer
systems react and behave in the presence of faults; it can serve different purposes,
such as assess the effectiveness of software- and hardware-implemented fault-
handling mechanisms, study the error propagation and error latency, verify
failure mode assumptions. However, fault injection is suitable for studying
emulated faults only, and typically requires a degree of knowledge on the inner
parts of the component, and the possibility to operate with them (e.g., adding
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software handle). It also fails to provide dependability measures such as mean
time between failures and availability [81].

Faults are injected either at the hardware level (logical or electrical faults) or
at the software level (code or data corruption) and the effects are monitored,
considering the system as a white-box. Choosing between hardware and software
fault injection depends on the type of faults we are interested in and the effort
required to create them. Hardware-implemented fault injection uses additional
hardware to introduce faults into the target system’s hardware. Depending on
the faults and their locations, hardware-implemented fault injection methods
fall into two categories [81]:

* hardware fault injection with contact. The injector has direct physical contact
with the target system, producing voltage or current changes externally
to the target chip. Examples are methods that use pin-level probes and
sockets.

* hardware fault injection without contact. The injector has no direct physical
contact with the target system. Instead, an external source produces some
physical phenomenon, such as heavy ion radiation and electromagnetic
interference, causing spurious currents inside the target chip.

To perform fault injection in software, there are two fundamental approaches:

e injection of faults that imitate mistakes of programmers, which is typically done
by changing the code executed by the target system;

* injection of software errors, to emulate the consequences of software faults
by manipulating the state of the target system.

In the following of this Thesis, we will apply fault injection principles in the
case study shown in Chapter 4 (applied to a middleware service), Chapter 5
(related to a measuring instrument for distributed measurements) and Chapter
9 (applied to an embedded system).

Robustness testing

Robustness measures the behavior of the system under non-standard conditions.
Robustness is defined in the IEEE Standard 610.12 — 1990 as the degree to which
a system operates correctly in the presence of exceptional inputs or stressful
environmental conditions [85].

The goal of robustness testing is to activate those faults (typically design or
programming faults) or vulnerabilities in the system that result in incorrect
operation i.e., robustness failure. Robustness tests stimulate at black-box the
target system in a way that triggers internal errors, and in that way exposes both
programming and design errors [183].

Robustness failures are typically classified using the CRASH criteria [111]:
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Catastrophic: the whole system crashes or reboots.

Restart: the application has to be restarted.

Abort: the application terminates abnormally.

Silent: invalid operation is performed without error signal.

Hindering: incorrect error code is returned (note that returning a proper
error code is considered as robust operation).

The measure of robustness can be given as the ratio of test cases that exposes
such faults, or, from the system point of view, as the number of robustness faults
exposed by a given test suite.

In the case study shown in Chapter 6, in the context of testing of Service-
Oriented Architecture, a tool for robustness testing of Web Service shall be
used.

Field measurements

Measuring a real-life system consists in recording naturally occurring errors and
failures in the system while it is running under typical user workload. Analysis
of such field data can provide valuable information on actual errors or failures
behavior, quantify dependability measures, and identify system bottlenecks.

Although field data (field measurements) are highly relevant to the research
community to understand and improve computer-based systems robustness
and reliability, the availability of such data remain hard to obtain. Often, the
few data available are based on open-source projects and published research
works [48]. One important initiative to mitigate the scarcity and fragmented
view of field data is the development of public repositories, to store data and
results based on that data originating from many sources and teams [184]. In
this direction, several initiatives have been proposed and are currently available;
we delegate such discussion to Section 2.4. We just mention here that despite
some initiatives on public repositories are available, the raw data from the vast
majority of research works on experimental dependability evaluation and on
field failure data are not available.

This Thesis devotes great attention to sharing and storing of data, which
will be explored in the methodology described in Chapter 3. In the case study
of Chapter 8 we report an example involving COTS GPS (Global Positioning
System, [106]) devices, where field data are collected in a real-case scenarios
under typical usage conditions.

Dependability benchmarking

The goal of benchmarking the dependability of computer systems [103], [53] is to
provide generic ways for characterizing their behavior in the presence of faults.
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Benchmarking must provide a uniform and repeatable way for dependability
characterization. A benchmark must be as representative as possible of a domain.
The objective is to find a representation that captures the essential elements of the
domain and provides practical ways to characterize the computer dependability
to help system manufacturers and integrators improving their products and
end-users in their purchase decisions [123].

Various results and initiatives are present on dependability benchmarking as
the IFIP WG 10.4 SIG (Special Interest Group) on Dependability Benchmarking
[1] and the EU project IST-2000-25425 DBENCH (Dependability Benchmarking)
[103]. In this Thesis we do not explicitly address benchmarking, but we address
comparison and experiments repeatability, which are important aspects related
to benchmarking. In the case studies presented in this Thesis (especially Chapter
4 and Chapter 8), analysis of data structures and measuring instruments shall
allow to guarantee experiments repeatability and systems comparison.

1.3 FOUNDATIONS OF METROLOGY

Metrology (measurement theory, [96]) has developed standards, theories and
good practices to make measurements, to evaluate measurements results, and
to characterize measuring instruments. We present fundamental concepts to
characterize measurement systems and methods according to metrological
criteria. Complete digests of metrological terms and concepts can be found

in [96], [95], [94] and [97].

1.3.1 Basic concepts

Measuring a quantity (namely the measurand) consists in quantitatively charac-
terizing it. The procedure adopted to associate quantitative information to the
measurand is called measurement. The measurement result is expressed in terms
of a measured quantity value and a related measurement uncertainty.

Accuracy is a concept that is often badly used; in metrology it must be intended
only in a qualitative way. It was formerly defined as the difference between the
measure and the true value of the measurand. As it is now commonly accepted
that the true value of the measurand can not be exactly known, the qualitative
concept of accuracy represents closeness of the measure to the best available
estimate of the measurand value.

Considering quantitative concepts, the measurement error, or error of measure-
ment, is the measured quantity value minus a reference quantity value (used as
a basis for comparison with values of quantities of the same kind).

Uncertainty provides quantitative information on the dispersion of the quantity
values that could be reasonably attributed to the measurand. Uncertainty has
to be included as part of the measurement result and represents an estimate of
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the degree of knowledge of the measurand. It has to be evaluated according
to conventional procedures, and is usually expressed in terms of a confidence
interval, that is a range of values where the measurand value is likely to fall.
The probability that the measurand value falls inside the confidence interval is
named confidence level. Uncertainty can also be expressed in terms of relative
uncertainty, which is the ratio of uncertainty to the absolute value of the estimate
of the measurand. Indirect measurements are instead performed when the mea-
surand value is not measured directly, but it is rather determined from direct
measurements of other quantities.

Uncertainly of indirect measures can be obtained in principle following several
ways. To give answer to the need for a univocal way of evaluating uncertainty,
which offers the opportunity of comparing results from different methods and
instruments, the Guide to the expression of Uncertainty in Measurements (GUM,
[95]) has been published in 1993, and amended in 1995, after years of discussions
within, but not limited to, the scientific community. Actually, since then, some
supplements to the GUM are being discussed, and some questions are still open
(e.g. alternative ways of evaluating uncertainty in indirect measurements in
particular cases) [94], [97].

According to the GUM, standard uncertainty, usually indicated as u, that is
uncertainty expressed as a standard deviation, can be evaluated in two ways:

1. statistically, as an estimate of the standard deviation of the mean of a set
of independent observations (Type A uncertainty).

2. on the basis of a scientific judgment using all the relevant information
available, which can include previous measurement data, knowledge of
the behavior and property of relevant materials and instruments, manu-
facturer’s specifications, data provided in calibration and other reports,
and uncertainties assigned to reference data taken from handbooks (Type
B uncertainty). This second way of evaluating uncertainty can be as reliable
as the first, especially when the independent observations are very few.

Uncertainty evaluation becomes more critical for measurand estimated through
indirect measurements. Specifically, let Y be the measurand, which is determined
through N other quantities Xj, X3, ..., Xy, according to the functional relation

Y= f(X],Xz,...,XN) (1.1)

which is also called measurement equation. An estimate of Y, denoted by vy, is
achieved from equation 1.1 using input estimates x1,x2, ..., xn for the values of
the N input quantities X1, X3, ..., Xy, that is

y =f(x1,%2,..., XxN) (1.2)
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First of all, the standard uncertainty (i.e., the uncertainty expressed as a standard
deviation) u(x;) of each estimate x; (i = 1,..N) involved in the measurement
function has to be evaluated. Then, we have to compose such standard uncer-
tainty to obtain the combined standard uncertainty u.(y); according to [95]:

Do\
uely) = Z( )uz(xi) (13)

where the partial derivatives % are equal to % evaluated in X; = x;. Equation

1.3, referred to as the law of propagation of uncertainty, is based on a first order
Taylor’s approximation of equation 1.1. Actually, equation 1.3 is the simplified
form to be used when the estimates x; can be assumed to be not correlated.
Otherwise, a further sum involving the estimated covariances associated with
each pair (x, ;) is needed under the square root in equation 1.3.

Singling out the most significant quantities of influence is important when we
have to characterize a measurement system. Those are quantities that are not
object of the measurement, but whose variation determines a modification in
the relationship between measurand and instrument’s output. Their presence
can significantly degrade the measure, as they can represent a major cause of
uncertainty. With regard to this, selectivity of a measurement system corresponds
to its insensitiveness to quantities of influence. In other words, the less variable
the output of a measurement system is due to the variability of the quantities of
influence, the more selective is the system.

Resolution is the ability of a measuring system to resolve among different
states of a measurand. It is the smallest variation of the measurand that can
be appreciated i.e., that determines a perceptible variation of the instrument’s
output.

Repeatability is the property of a measuring system to provide closely similar
indications in the short period, for replicated measurements performed i) inde-
pendently on the same measurand through the same measurement procedure, ii)
by the same operator, and iii) in the same place and environmental conditions.

Stability is defined as the property of a measuring system to provide closely
similar indications in a defined time period, for measurements performed inde-
pendently on the same measurand through the same measurement procedure
and under the same conditions for the quantities of influence.

To characterize a measurement system, and draw a comprehensive comparison
with alternative systems, some other indicators should also be taken into account,
such as measuring interval, measurement time, intrusiveness and compatibility.

The measuring interval of a measurement system is the range of values of
the measurand for which the measurement system is applicable with specified
measurement uncertainty under defined conditions.
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The importance of taking into consideration measurement time for a complete
characterization is intuitive: besides being directly linked to measurement costs
(in terms of resources occupation), the reciprocal of the measurement time gives
an upper bound to the number of measurements that can be performed in the
unit of time.

It is well known that any measurement system perturbs the measurand,
determining a modification of its value. Minimizing such perturbation, that is
minimizing the system’s intrusiveness, is therefore desirable when designing a
measurement system.

Finally, as measurement results are expressed in terms of ranges of values,
intervals measured through different instruments ought to be compared rather
than single values. Specifically, if results are expressed with the same confidence
level, they are said to be compatible if the related intervals overlap.

1.3.2 Uncertainty in measuring computing systems

We complete this discussion on metrology and uncertainty presenting a classifi-
cation of main measurements that can be performed on computing systems. We
identify two classes of measurements: measurements with negligible uncertainty
and measurements with non-negligible uncertainty [26].

The first class includes static quantities which depend on the static char-
acteristics of the system (e.g., software quality measurements as number of
source code lines), as well as countable dynamic quantities which depend on
a particular execution of the system (e.g., number of packets re-transmissions,
or number of queuing operations). Measurements belonging to this class are
typically characterized by very low (negligible) uncertainty.

The second class is identified by measurements with non-negligible uncer-
tainty, which generally refer to the dynamic behavior of the system and involve
the estimation of continuous quantities. Few examples are: end-to-end com-
munication delays, quality of clock synchronization, Mean Time To Failure,
Mean Time Between Failures. It is easy to note that this latter class includes
quantities whose measurement presents more challenges than those belonging
to the former one. Looking closer at this class, we identify the crucial role of time
measurements, that are typically the most critical ones to face when designing
and testing systems and services. However we acknowledge that the analysis
should not restrict only to time measurements: depending on the kind of system
and service, different kind of measurements which suffer of non-negligible
uncertainty may be involved and influence critical aspects of the system.

For the similar reasons, also relevant amongst measurements with non-
negligible uncertainty are spatial measurements (the uncertainty in spatial mea-
surements is a critical issue in algorithms for reliable localization and tracking)
and climate measurements.
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THE NEED OF METHODOLOGIES FOR THE
EXPERIMENTAL EVALUATION

This Chapter focuses on identifying current state of the art and related chal-
lenges on methodologies for the experimental evaluation of critical systems.
Additionally, this Chapter identifies the role targeted by the assessment of in-
struments and results according to principles of measurement theory, and it
describes state of the art approaches to trustworthy data comparison and results
sharing. The objective is to understand the current status and progress of the
experimental evaluation of critical system and to identify gaps which offer room
for improvements. In fact, the methodology that will be proposed in Chapter 3
derives from challenges and observations identified in the course of this Chapter.

The remaining part of this Chapter is organized as follows. In Section 2.1
we present main challenges for the monitoring and experimental evaluations,
and in Section 2.2 we describe the state of the art on methodologies for the
experimental evaluation of systems, with a particular focus on critical systems.
Then in Section 2.3 we show tools and practical case studies for the evaluation of
dependable systems taken from the literature, reviewed at the light of metrology
concepts and rules, and in Section 2.4 we illustrate alternatives for the sharing
and analysis of experimental results.

2.1 CHALLENGES IN MONITORING AND TESTING

The following is a discussion on the typical challenges encountered during
experimental evaluation activities in centralized and distributed systems. First it
explains the typical concerns that are raised when monitoring systems (monitors
are typically included in a measuring system for testing purposes: consequently,
the challenges here presented also apply to experimental evaluation), and then
it explains concerns that are specific to experimental evaluation.

We start showing typical challenges that are raised when monitoring systems.
The highlighted challenges are [77], [98], [127]:

* Direct and indirect observations. The behavior of some systems can be directly
observed, thereby making the process of monitoring relatively straight
forward. In computer systems most events of interest cannot be observed
directly without special facilities, thereby requiring the incorporation of a
monitoring infrastructure.

» Complete and incomplete observations, referring to whether the information
necessary in order to construct a particular model of an observed system
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is available or not. Incompleteness can cause problems when it is not
intended or not catered for; e.g., when information cannot be obtained
thereby hiding certain aspects of the system from the observer.

Presentation problems. In many cases it is necessary to modify the informa-
tion from the observed events in a system to overcome problems due to
i) events which appear in a form not amenable for immediate use by the
observer, ii) events occurring at a rate which cannot be easily used by the
observer, iii) overwhelming volume of observed events, and (in distributed
systems) iv) necessity of structures and processes which collect and order
the information from the observed events.

Monitor intrusiveness (perturbation). Every system is affected by being moni-
tored. The extent of the perturbation caused by the monitor may be not
negligible. There is typically a relation between the flexibility of the moni-
toring facilities, the cost of the implementation, and the intrusiveness of
the monitor.

Monitoring in distributed system raises specific challenges: i) no central
point of control (requires to consider more “threads of control”), ii) no
central set of observation (requires the collection of events observed locally
in order to construct global views), iii) no central source of monitoring
information (source of the monitoring information is not a single source,
and events will not necessarily be directly sent to the user or to a local file),
iv) no central point of decision making (the process of making decisions
in a distributed system may itself be distributed, having more than one
manager in a monitoring session), v) incomplete observability (it is not
possible to observe certain parts of the system at all or only partially),
vi) encapsulation and security (ensuring that the state of objects and
their associated procedures are protected from external observation and
interference creates a conflict with monitoring needs e.g., the usage of
monitoring facilities may clash with security requirements), and finally
vii) huge amount of data to be processed, possibly in real-time, to perform
short-term management or filter the logs.

In addition to the previous challenges, experimental evaluation of systems
(especially for quantitative evaluation) needs to take account of the following
challenges [120]:

e Variety of threats. A variety of threats and possible faults characterize

modern systems, as the fault model is becoming more and more complex.

* Costs. The experimental measurement-based approach is usually expensive,

since it requires building a real system (or a prototype), performing the
measurements and analyzing the data statistically. For this reason often
only a subset of the whole system is analyzed.
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e Intrusiveness of the measuring instrument. In the case of controlled exper-
iments aimed at active measurements (e.g., fault injection experiments),
the various components of the testing tool may interfere with the target
system. Intrusiveness relates to both probes and injectors. It is evident
that such probes should be non intrusive; rather, the target system should
evolve as in absence of the measuring system.

o Semantic gap. Frequently there is a semantic gap between the data collected
during experimental evaluation and the relevant measures of interests to
the user (the evaluator). Often low-level data (e.g., memory accesses of a
processor) are collected, that shall be translated to a higher level quality
of service characteristics (e.g., expected service delay) or dependability
measures. In the field of fault injection experiments, a related issue is
the representativeness of the data affecting the input domain, like the
workload and the faultload.

* Non-determinism (affects repeatability). Distributed, asynchronous systems
are inherently non-deterministic. Thus, two executions of the same exper-
iment may produce different, but nevertheless valid, ordering of events.
In field measurement or controlled experiments it may be difficult to re-
produce results of experiments. For example, we can consider dynamic
and adaptive systems where despite the geographic mobility of the nodes
is very carefully described and followed during the course of the exper-
iments, the results of the experiments may differ since the propagation
conditions are strongly influenced by changing environment conditions.

2.2 METHODOLOGIES FOR EXPERIMENTAL EVALUATION

In the following of this Section we survey methodologies for the experimental
evaluation of (critical) systems.

The analysis presented in this Section includes general methodologies, tools
and techniques ([62], [30], [73], [10], [8], [131]), notions from the field of software
quality metrics ([86], [101], [66]) which also devoted a high level of attention on
collection and analysis of relevant information, and finally standards for testing
and testability ([87], [89], [163]).

2.2.1 RODS

In [62], [30] the conceptual framework RODS (Rigorous Observation of Distri-
buted Systems) for the experimental evaluation and monitoring of distributed
systems is presented. The design of RODS is made using concepts from metrol-
ogy science. To support experimental evaluation and monitoring of heteroge-
neous systems, the framework proposed is composed of a sequence of steps and
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a set of tools that can be used for the evaluation and monitoring of several kinds
of nodes composing a distributed system.

Figure 2.1 describes the process of analysis of a distributed system using
the RODS methodology: the circles represent functions, the boxes represent
input/output.
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Figure 2.1: The RODS framework [30].

2.2.2  The NetLogger methodology

NetLogger is both a methodology for analyzing distributed systems and a set of
tools to help implement the methodology. The main concept of the NetLogger
methodology for experimental evaluation can be summarized as follows [73]:

1. All components must be instrumented to produce monitoring: applica-
tion software, middleware, operating system and networks. The more
components are instrumented, the better is.

2. All monitored events must use a common format and a common set of at-
tributes. Monitored events must also contain a precision timestamp which
is in a single timezone and globally synchronized via a clock synchroniza-
tion method.

3. Log all interesting events, for example entering and exiting any program
or software component, or begin/end of I/O operations.

4. Collect all log data in a central location.
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5. Use event correlation and visualisation tools to analyze the monitored
events logs.

2.2.3  Fault injection methodologies

Several tools and related methodologies for fault injection have been proposed
through years. In general, key principles are the definition of the system under
test, the workload, the faultload, injectors and probes. Amongst the many works
available, we survey three which devote a particular care to the methodology;
these are [10], [8] and [131]. The first two works explicitly focus on fault injection
methodologies, and the third is a representative example of the adaptation of a
basic methodology to a specific area.

The paper [10] discusses possible approaches to capture experimental data
and record them for exploitation in a repository, so that the research community
is able to exploit the recorded data. The guidelines to fault injection experiments
are organized in three steps:

* Planning the experiments. Two different ways to plan a campaign (i.e., the
injection of a series of faults) can be distinguished. In the first, a campaign
is made up of a series of independent experiments, in which a fault
pattern is injected and the target system is observed during a specific
timeframe. In such case, it is necessary to check the target system for
possible residual errors. In the second case, a series of faults are injected
during the execution of the workload. However, in that case the end of
each experiment is characterized by the occurrence of a specific failure
event (e.g., a crash).

* Collecting the outcomes. During the conduction of the experiments, much
attention is required to the target system and its operational profile, to
record data characterizing the target system itself, the production process
and the environment.

* Archiving the experimental data. Specific care needs to be taken in managing
and storing the outcomes of fault injection experiments. A popular format
for recording and analyzing data sets corresponds to the use of spreadsheet
tables. This phase may benefit of the support of databases.

In [8], a methodology for fault injection is proposed. According to the authors,
fault injection experiments correspond to a form of test campaign, characterized
by an input domain and an output domain. The input domain corresponds to
a set of injected faults F and a set A that specifies the activity (workload) of the
target system and thus, the activation profile for the injected faults. The output
domain corresponds to a set of readouts R that are collected to characterize the
target system behavior in the presence of faults and a set of measures M that are
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derived from the analysis and processing of the FAR sets. Together, the FARM
sets constitute the major attributes that can be used to fully characterize a fault
injection test sequence. A fault injection test sequence consists of a series of
experiments; each experiment specifying a particular point in the {F x A x R}
space. In practice, it is often the case that the definition of M has an impact on
the selection of the other attributes.

During each experiment in a fault injection test campaign, a fault from the
F set is injected that, in conjunction with the activity of the target system,
determines an error pattern. For increased confidence in the estimates obtained,
it is necessary to carry out a large number of experiments; for minimum bias
in the estimation, it is further recommended to select both the F and A sets by
statistical sampling among the expected operational fault and activation domains
of the target system [8].

In [131], an approach is proposed to evaluate the potential risk of using a given
(OTS) software component in a larger system. The approach to experimentally
measure the risk of reusing a given component C in a system S is represented
by the equation:

Risk. = prob(f.) - cost(f,).

The term prob(f.) represents the likelihood of the existence of residual software
faults in the component C, estimated through well-established software com-
plexity metrics, and the term cost(f.) represents the impact of the activation of
faults in the component C measured by software fault injection.

The proposal is based on three key elements [131]:

* The estimation of prob(f) by using complexity metrics of the target com-
ponent, following a model based on logistic regression [80].

* The experimental evaluation of cost(f) through the injection of software
faults in the target component and measuring its impact in the system
under analysis. The fault activation probability is evaluated during the
fault injection experiments.

¢ The use of a real workload and operational profile during the fault injection
experiments. The main intended use of the real workload is the comparison
of components for integration in a system for an application scenario.

2.2.4 Methodologies in software engineering

We present some results of assessment methodologies from software engineering
and software measurements. The IEEE 1061 Standard for a software quality
metrics methodology [86] proposes a methodology for software quality metrics.
The methodology is a systematic approach to establish quality requirements and
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identifying, implementing, analyzing and validating the process and product of
software quality metrics for a software system. It comprises five steps:

1. Establish software quality requirements.
2. Identify software quality metrics.

3. Implement the software quality metrics.
4. Analyze the software metrics results.

5. Validate the software quality metrics.

In [101] a framework for evaluating metrics in software engineering is pro-
posed. The evaluation framework is based on questions, which range from the
purpose and the scope of the measure, to the validity of the measures and the
expected measurement error.

Finally, we mention [66] in which the approach recommended aims to handle
key factors as causality and uncertainty, combining different (often subjective)
evidence. According to the roadmap on software metrics presented in [66], the
way forward for software metrics research lies in causal modelling, empirical
software engineering, and multi-criteria decision aids. The authors stress the
need of combining and successfully using (at the very end, to solve a decision
problem) information from testing measurement data, empirical data, subjective
information about the process/resources (e.g., the quality and experience of the
staff), and specific pieces of evidence such as the existence of a trustable proof
of correctness of a critical component.

2.2.5 Standards for testability and diagnosability

Testability according to [163] deals with those aspects of a system that allow
the status (operable, inoperable, or degraded) or health state to be determined.
According to [163], the writing of test procedures cannot and should not be
done separately from testability analysis.

The IEEE Artificial Intelligence Exchange and Service Tie to All Test En-
vironments (AI-ESTATE, [163]) standards are product information exchange
standards for test and diagnosis. The standards of the IEEE 1232 series [87], [89]
developed a means of exchange of information between diagnostic reasoners. As
the information models for the IEEE 1232 standards were developed, it became
apparent that these models could be used for standardizing testability and
diagnosability metrics.

The AI-ESTATE architecture is a conceptual model in which AI-ESTATE
applications may use any combination of components and inter-component
communication [163]. The intent of AI-ESTATE is to provide a formal, standard
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framework for the exchange of diagnostic information (both static and dynamic)
in a test environment.

The objective of the successive IEEE P1522 standard is to provide notionally
correct, inherently useful, and mathematically precise definitions of testability
metrics and characteristics. It is expected that the metrics may be used to either
measure or predict the testability of a system. The intent is not to restrict
the number or type of metrics, but to provide a sound, understandable, and
repeatable basis for measurements [163].

2.3 TRUSTWORTHY OBSERVATION OF CRITICAL SYSTEMS

In this Section measurement tools for the evaluation of critical systems present in
the literature are analyzed at the light of metrology concepts and rules. Without
expecting to be exhaustive, this Section i) investigates if and how deeply such
tools have been validated in accordance to measurement theory, and ii) tries to
evaluate (if possible) their measurement properties.

Note that issues with the way measurement is applied in assessing computer
dependability were first raised with respect to software reliability assessment.
Problems were identified separately in two communities of research and practice:
software reliability [32] and software metrics [14], [64]. There were three sets
of inter-related issues: confusion about the meaning of a measure (leading for
instance to redefining software “reliability” as a count of bugs in a piece of code,
or to seeking scalar measures for inherently multi-dimensional attributes), confu-
sion between problems of measurement and of prediction (leading for instance
to naive methods for inference from observed failures to future reliability), and
insufficient fitness for purpose of the metrics [65].

In the following of this Section, dependable computing systems are looked at
with the eye of the metrologist, with the intention of highlighting the peculiarities
of such modern systems, with particular regard to the quantitative assessment
of dependability and QoS metrics in accordance to measurement theory [24].
Section 2.3.1 proposes a classification of computer systems, from a metrological
point of view, and singles out the most important properties to be evaluated for
tools and, in general, for experimental campaigns of computing systems. Section
2.3.2 describes a number of well-known measurement tools for the analysis of
dependable systems, which are critically evaluated along the lines traced by
metrology concepts and rules.

2.3.1  Metrology and dependability

To adapt the metrology concepts of Section 1.3 to the field of dependable
systems is not trivial. In this Section, a classification of computing systems, and
of measurements that can be of interest on such systems are drawn. Then, on
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the basis of such classification, the most significant measurement properties
that should characterize measurement tools designed to operate on the different
kinds of systems are highlighted.

We start by classifying the computing systems whose QoS or dependability
attributes are to be measured along the following dimensions [182], [164]:

* Real-time: along this paths we start from time-free systems, characterized
by the absence of timing constraints or temporal requirements, to reach
the case of so called hard real-time systems, characterized by well-defined
constraints on their temporal behavior. A system is time-free when there
is no deadline for its operations, whereas it is hard real-time when the
correctness of its behavior is defined not only based upon the logical
correctness of the operations performed but depends also upon the time
frame in which such operations are performed.

e Criticality: along the criticality dimension at one extreme we find non-critical
systems, while the other extreme is represented by X-critical systems, which
may take many forms, e.g. safety-critical systems, or mission-critical systems
or life-critical systems. While the failure of the former does not imply any
significant damage, for the latter a failure could result in very dangerous
events such as loss of life, significant property damage, or damage to
the environment. There are many examples in different areas which fit
this definition, such as medical devices, aircraft flight control, or nuclear
systems.

¢ Centralized/Distributed: starting from the so called centralized systems
we may find several forms of distributed systems. While a centralized
system is made of a unique node, which may eventually be decomposed
in non-autonomous and closely-coupled parts, a distributed system is a
set of distinct nodes, with minor and even unstable coupling constraints,
interconnected by any kind of network, cooperating for common objectives.

The aforementioned dimensions constitute a quite simple categorization of
computing systems to which the concepts of metrology introduced in Section
1.3 should be applied. Depending on the category a system belongs to, the
metrology properties and indicators may be less or more important to be taken
into account and less or more difficult and costly to apply and to assess.

Among the fundamental properties that should be taken into consideration for
a significant characterization of measurement systems, those of major concern to
dependability evaluation can be identified in: uncertainty, repeatability, resolution
and intrusiveness.

Table 2.1 enlists the abbreviations used in the other tables presented in this
and in the next Section.

Table 2.2 describes the importance of metrological properties for the different
categories of systems introduced above, which should be considered to design
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CE Centralized Unc  Uncertainty
DI Distributed Int Intrusiveness
RT Real-time Res  Resolution
—RT  Non real-time | Rep Repeatability
CR Critical
—CR Non-critical

Table 2.1: Abbreviations used in Tables.

Unc | Int | Res | Rep
CE-—RT-—CR | X X
CE-—RT-CR X X
CE-RT-—CR XX XX | X
CE-RT-CR XX XX | XX | X
DI-—RT-—CR | X X

<

>
>

DI-—RT-CR X X X
DI-RT-—CR XX XX | X
DI-RT-CR XX XX | X X

Table 2.2: Summary on important metrological properties to consider in order to perform
confident measurements on computing systems.

measurement tools that can provide reliable results. A rank of the importance of
assessing a metrological properties in each configuration is provided; X stands
for recommended, XX for mandatory. We briefly explain the choices performed
in what follows.

Uncertainty. A quantitative evaluation of uncertainty is necessary to appreciate
the quality of the measurement. Such need is not only theoretical but has an
important practical implication. Let us consider, for example, a safety critical
system with hard real-time requirements; in such system there can be cases
when uncertainty is essential to state whether the system is compliant with
its requirements or not. If an indicator has to be below a given threshold, and
the measurements results confirms it is below that threshold, one would be
convinced that the system meets its requirements. What if after evaluating
uncertainty, the interval expressing the measurements results is, even partially,
over the threshold? In this case the available knowledge of the measurand
does not allow to state that the system meets its requirements with sufficient
confidence.

Uncertainty is even more important (and needs to be evaluated) in the case of
distributed systems. Time interval measurements carried out on such systems
can be significantly affected by offset and drift among distributed clocks. Another
case in which uncertainty is very important is when indirect measurements are
performed by combining results of several direct measurements. In such cases,
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the uncertainty of direct temporal measurements propagates on uncertainty of
indirect measurements.

Intrusiveness. In general, performing measurements alters (to different extents)
the state and the behavior of the system under test. In computer science, we
can think of a target process which acts as the measurand, and of measures
collected with a process scheduled on the same CPU hosting the target process;
the schedulability of the entire system might be compromised, with consequent
harmful effects on measurement results.

Performing an analysis of the intrusiveness of a measurement system is
particularly important when measurements are carried out on computer systems
or infrastructures, since this often implies loading the system and, ultimately,
influencing its behavior in a non negligible way. The importance of intrusiveness
in computer systems is clear and well understood, although it is difficult to
quantify it. It should be evaluated as the impact of the measurement system
on the performance of the computer system, expressed in terms of memory
usage, CPU usage and/or operating system relative time. Intrusiveness is a
parameter of fundamental importance for all the cases of interest of this Chapter.
This is particularly true for real-time systems: a tool able to collect sufficiently
reliable data in a non real-time environment may behave very differently in a
hard real-time environment. Intrusiveness is thus particularly critical in hard
real-time systems, where timing predictability may be altered by the additional
overhead of monitoring tasks, or other mechanisms, e.g. fault injection probes.

Intrusiveness and uncertainty are related to each other since intrusiveness has
consequences on uncertainty. This explains why in Table 2.2 all the rows in
which intrusiveness is important exhibit the same importance for uncertainty.

Resolution. Resolution may be critical in real-time systems since it needs to
be much lower than the imposed time deadline to allow useful quantitative
evaluations of time or dependability metrics. In computing systems it can be
generally assumed that resolution of the measurement system for time interval
evaluation is equal to the granularity of the clock used in the experiment. In
a centralized context it can happen that resolution is of the same order of
magnitude of the measure, and it is thus of great importance to evaluate the
resolution. On the other hand, when experiments are performed on distributed
systems, uncertainty is usually far greater than resolution; in such cases, the
evaluation and the control of resolution may be less crucial.

Repeatability. Repeatability is often not achievable when measurements are
carried out on computer systems. The same environmental conditions can, in
fact, hardly be guaranteed. This is especially true with regard to distributed
systems, where differences among local clocks, in addition to the problems
of thread scheduling and timing of events, enormously increase the difficulty
of designing repeatable experiments. Critical systems are a class of systems
in which repeatability is very important. In such cases, great efforts to grant
the highest possible degree of repeatability are required and motivated. When
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performing experimental validation of a critical system, in fact, it is necessary to
observe the same behavior triggered by the same trace of execution.

2.3.2  Measurements properties in tools and experiments for dependability evaluation

Tools and experiments used for experimental quantitative evaluation of com-
puting systems are now described (the discussion extends and complements
results of [24] with the addition of some recent works), with the purpose of
understanding if they have considered and respected the aforementioned criteria
and to which extent this has been accomplished. With no intent to criticize any
individual experiment or experience, the objective is to investigate the general
consciousness about metrological properties addressed in the previous Sections.
The observations are based on an objective analysis of the considered works,
and no attempt to numerically quantify measurement properties on these works
is done. We do not want to question the results presented in the literature, but
just to show that underestimating or neglecting factors such as uncertainty,
intrusiveness, resolution and repeatability can easily reduce the trust in the
achieved measures or in the developed measurement system.

In the left part of Table 2.3 (columns Tool, Exp and System classification) the
works taken into consideration are classified according to the criteria introduced
related to the dimensions of systems. Note that the columns tool and experi-
ments are marked depending on whether the main focus was the tool or the
experiments performed (in some cases, both).

The considered works cover some very different situations in which depend-
ability measures have been collected. Such difference stems either from the
type of analysis performed or from the kind of system under study, covering a
spectrum of eight different systems typologies. Note that some works belong to
more than just one category of systems.

Let us now consider the right part of Table 2.3 (columns Relevant Properties
and Awareness). In the column Relevant Properties, the most relevant metrological
properties that should have been addressed are singled out for each paper.
The Awareness part of the table reports marks related to the measurement
properties for which some concern (often with quite good observations) has
been shown. Due to the very different, non-uniform, and often partial (or
missing) approaches we have observed (even the name of the four measurement
properties are different from a work to another), it has been actually difficult
to identify these elements in the surveyed works. Therefore, in some cases the
ticks in the table are the result of our own interpretation and understanding.
This does not necessarily mean that measurement properties have been ignored
by the related authors when designing tools and experiments, but we just note
that these properties have often not been given the adequate emphasis.
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Surveyed Work

System classification Relevant Properties Awareness
CE CE CE DI DI DI DI
—RT RT RT —RT —RT RT RT Unc Int Res Rep Unc Int Res Rep
CR —CR CR —CR CR —CR CR

XCEPTION [34]
GOOFI [2]
AVR-INJECT [46]
MAFALDA [61]
MAFALDA-RT [154]
MESSALINE [8]
FTAPE [177]

Loki [44] [49]
Neko/NekoStat [179] [63]
ORCHESTRA [52]
PFI Tool [51]

OS dependability
benchmark [99]
Impact Analysis
on Real-Time Sys [90]
Evaluating COTS [58]
Injection tools
Comparison [165]
Fault-Tolerant
Commercial Systems [178]
Log-based FFDA [149]
FORTRESS [67]
PLATO [15]
OLSR [54]
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Table 2.3: Surveyed works classification and metrological properties.
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Let us start analyzing uncertainty. Although a full consciousness of all mea-
surement properties is not achieved in most of the surveyed tools, it is important
to highlight that a quite exhaustive analysis of measurement parameters is, in
some cases, performed.

Loki [44], [49] is a tool for software fault injection; it makes a post-runtime
analysis, using offline clock synchronization, to place injections on a single global
timeline and determine whether the intended faults were properly injected; there
is a significant attempt to evaluate the uncertainty of the time instant at which
faults were injected, even though it is not referred to as uncertainty. Such a
deep analysis is performed only for time-stamping fault injection. Although the
approach to uncertainty is quite informal, i.e., far from uncertainty as dealt with
by the GUM [g5], this example denotes a significant and remarkable interest
in quantitatively evaluating the dispersion of the values that can reasonably
be attributed to the measurand. Uncertainty-related issues are taken into ac-
count in the experiments related to the testing/development of FORTRESS [67].
FORTRESS is a support system for designing and implementing fault-tolerant
distributed real-time systems that use COTS components. In the test case per-
formed, the FORTRESS fail-aware datagram service gives an upper bound on
the transmission delay of each delivered message.

The experiments reported in [54] evaluate the proactive routing protocol
Open Link State Routing (OLSR), to identify the parameters which strongly
affect the overall performance. Although the term “uncertainty” is not explicitly
mentioned, uncertainty issues are attentively considered: statistical methods for
the ANOVA (ANalysis Of Variance), also mentioned in the GUM, are applied
and the range of variability of collected data is carefully described.

Finally, the three experiments reported in [165] attentively analyze sources of
uncertainty affecting measurements results collected using three different fault
injection techniques (test port-based injection, exception-based injection, and
instrumentation-based injection). In most cases, the outcome of injecting a given
error resulted very similar for the three techniques, increasing the confidence
that the intended error is correctly injected, analyzed, and classified. Although
the main focus of the work is uncertainty, the paper debates also on repeatability,
intrusiveness and resolution, presenting a complete characterization of the
measuring instrument [165].

It has to be highlighted that, for some time, the measurement relative un-
certainty can be very low. This could explain the absence of assumptions or
concerns about uncertainty. A few examples of such situations can be found in
[177] and [99]. In [177], the FTAPE tool is used to measure the execution time
with/without faults. Such time interval is greater than 1000 seconds. In [99], a
dependability benchmark for operating systems (OSs) is developed and tested
on Windows 2000 OS; the restart time of the OS is measured, which is equal to
a dozen of seconds. Relative uncertainty here is very small, and in cases like
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these the absence of assumptions or concerns about uncertainty can therefore be
justified.

Regarding intrusiveness, we have observed that a large subset of the sur-
veyed tools show great consciousness of the importance of designing a non-
intrusive measuring instrument (Loki [44], ORCHESTRA [52], XCEPTION [34],
MAFALDA [61], MAFALDA-RT [154], FTAPE [177], GOOFI [2], PFI Tool [51]
and AVR-INJECT [46]).

In Loki, awareness about intrusiveness is clear: to be as non-intrusive to the
system as possible, at runtime the system does not block while notifications
about the system state are in transit. A post-runtime check is made to correct
possible problems due to non-compatible views of the system state.

In ORCHESTRA, a fault injection tool for distributed real-time systems, a deep
analysis about intrusiveness is performed. ORCHESTRA deals with real-time
systems with strict time requirements. It is designed to explicitly address the
intrusiveness of fault injection on a target distributed system. This operation is
performed by exploiting operating system support to quantitatively assess the
intrusiveness of a fault injection experiment on the timing behavior of the target
system and to compensate for it whenever possible.

In XCEPTION, a tool for software fault injection, an important attempt to
evaluate tools characteristics using system performance monitoring facilities is
made.

In MAFALDA, a fault injection tool for safety critical systems, the used fault
injection technique is chosen with awareness of problem of intrusiveness of the
tool.

In MAFALDA-RT, a tool for fault-injection in real-time systems (it is a com-
pletely new version of MAFALDA), the authors focus on the problems of
temporal intrusiveness. The authors identify the main causes of intrusiveness
in: i) the time related to the injection of faults, and ii) the time related to the
observation of the system behavior.

In FTAPE, the authors recognize the problem of intrusiveness of the fault
injection component and of the workload monitoring component, and they try
to estimate the time overhead comparing the time the workload requires to
execute with and without the fault injection and monitoring components.

In the fault injection Java tool GOOF], it is recognized that logging is a time-
consuming operation, thus GOOFI makes available two different logging modes:
a detailed (time-consuming) mode and a normal (less time-consuming) mode.

In [51], the fault injection tool PFI Tool (Probe/Fault Injection Tool) is pre-
sented. The authors recognize that their approach can be more intrusive than
others, but, despite this awareness, a metrological characterization of the tool is
missing.

In AVR-INJECT [46], a tool designed to automate the fault injection on nodes
of Wireless Sensor Networks (note that the target system has been classified as
centralized in Table 2.3 because the tool allows to study a single node and not
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the whole network), attention to lightweight fault injection is addressed through
very short perturbation functions executed at the user level.

In the experiments we have been considering, the intrusiveness of the measure-
ment tool used is considered in [178], [149] and [165]. In the experiment in [178]
a dependability benchmark for commercial systems is proposed and studied
on TMR-based prototype machines (using the FTAPE tool). The time overhead
of the fault injection tool used is accounted, even if intrusiveness is not looked
closely as in [177]. In [149], the potential intrusiveness of a log-based Field
Failure Data Analysis (FDDA) activity is acknowledged and possible distortions
on dependability measurements caused by collisions (two independent faults
which just occur coincidentally i.e., they are triggered near the same time [149])
are assessed through comparison of results obtained with both the proposed
heuristic and log tuples. Finally, in [165] the expected intrusiveness of the three
different fault injection techniques adopted is attentively discussed.

In most cases, missing observations about intrusiveness of the measurement
tool may be an acceptable approach for single experiments, still allowing reliance
on results, when a complete estimation of the uncertainty of the experiment
results is provided (assuming that intrusiveness of the monitoring tool was
already evaluated).

Resolution is usually the easiest parameter to estimate. However, it is fre-
quently not considered at all: the reason is probably that it is often considered
not important, at least if compared with intrusiveness and uncertainty. As an
example on resolution, we observe that PLATO [15] and Neko/NekoStat [179],
[63] use Java system calls to collect timestamps: this way the resolution of the
system is the granularity of the Java clock used, usually greater than granularity
of the system clock.

Finally, let us consider repeatability. The difficulty in reaching a satisfactory
level for repeatability has been taken into account in the experiments on com-
puter systems described in [178], even if the word repeatability is not explicitly
used. The authors show consciousness that, due to the aforementioned limits
on accurate timestamping, many executions of the same run will probably not
bring exactly the same results, because the event (i.e., the injected fault) may
not be signaled at the exact time instants when it is intended to occur. This
explains why a second execution of the same run does not necessarily recre-
ate a catastrophic incident that can, for instance, occur in the first execution.
Among the surveyed works, the problem of creating repeatable experiments is
discussed also in XCEPTION [34], MESSALINE [8], AVR-INJECT [46] and in the
experiments in [165].

In XCEPTION it is highlighted that good results are achieved in experiments
performed by using the spatial method for fault triggering (a spatially-defined
fault is injected when the program accesses a specified memory address, either
for data load/store or instruction fetch [34]), not in the temporal trigger methods,
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due to execution time uncertainties. This is an obvious limit, common to all
tools.

In MESSALINE it is observed that in distributed system it is really difficult
to perform repeatable experiments. Moreover, the type of the architecture has
usually a major impact on the difficulty to set up a reliable testbed and on the
repeatability of the experiments.

In AVR-INJECT [46] it is acknowledged that controllability and repeatability
of the experiments is improved by the knowledge of the target instruction (i.e.,
the fault trigger).

In [165] repeatability is discussed and solutions to improve repeatability (as
trying to recreate the exact same staring conditions) are proposed.

To complete the review two more works from Table 2.3 are briefly considered.
In [58] a comparison of the dependability of different real-time Java virtual
machines in the spacecraft software context is made. Some case studies are
performed to evaluate dependability of COTS components. The authors show
awareness of the problems encountered in Java and they use a Real-Time Java
[18], which surely fits better in real-time context. However, although the great
interest shown in precise timestamping, no information about measurement
properties is provided.

In [9o] the behavior of a real-time system running applications under operating
systems that are subject to soft-errors is studied. Although errors due to real-
time problems are recognized, no estimation about the quality and trustability
of the presented results is shown.

A further remark concerns comparison among measurement results provided
by different tools or experiments. In the surveyed tools, result comparison is
rarely dealt with in terms of compatibility. Actually while expressing measure-
ment results as intervals of values is the practice often followed in simulation
studies, it is not as common in experimental dependability evaluations (with few
exceptions as [165]). Comparison of results carried out in terms of compatibility
can, in fact, be carried out only after evaluating uncertainty.

To summarize, the main findings of this brief survey on tools and experiments
developed to assess dependability properties show that some consciousness
about the metrology properties is present, but the approaches are quite intuitive,
and usually quite incomplete as well. In particular, while there is a diffused
consciousness about intrusiveness, there is rarely a real effort to try to estimate
uncertainty and to determine solid bounds on the reliability and trustability of
the measures collected with the tools.

In the experiments, less attention is paid to these themes. This does not mean
that experiments are badly designed, nor that the measurement systems used for
the experiments are not properly constructed, but more explanations about the
measurement system should have been provided in order to allow to appreciate
or understand what level of uncertainty may be associated to the obtained
measures.
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2.4 ANALYSIS AND SHARING OF EXPERIMENTAL RESULTS

Developing tools and experiments for quantitative analysis and collecting ex-
periments results is a widespread activity. It is well-known that the analysis
of resilience assessment data is a complex task, as the evaluation experiments
usually produce large amounts of raw data, or data that are difficult to interpret.
The importance of tools or techniques that support the data analysis is evident;
several of such tools exist and are commonly applied, for example the very
well-known Microsoft Excel and Matlab.

Supporting tools ease data analysis, but this is not sufficient to guarantee
harmonization and comparability of results collected in different experiments
and by different people. In fact different tools (used in different ways by different
teams) lead to results that are presented very differently, making comparison
difficult (the approach followed to quantitatively assess algorithms and systems
is usually not univocal, varying from a work to another) [122], [10]. A related
aspect specific to the research community that is worthy to mention here, and
that we also briefly debated in Section 1.2.2, is that even if the final results
and the conclusions are usually presented in papers, raw data are not shared,
despite their availability would support the statements contained in the work
and other teams working on related topics. Such problems are well-known, as it
is witnessed by research initiatives and workshops devoted to the topic [166],
[83], [5]-

We present in what follows approaches for the analysis and sharing of experi-
mental results. The solutions proposed are mainly based on data repositories,
which are to the author knowledge the best way today to share results of ex-
periments and to organize data, allowing further confrontation and analysis by
other teams. We divide the discussion in two parts: first we show techniques to
acquire and manipulate large quantities of data produced during experiments
(Section 2.4.1), then we present existing public repositories and related toolsets
to store, compare and analyze experimental data (Section 2.4.2).

2.4.1 Data acquisition and manipulation techniques

The OLAP and data warehouse approach

OLAP (On-Line Analytical Processing, [110]) is a technique to perform complex
analysis over the information stored in a multidimensional data structure, typ-
ically a data warehouse, which is a global repository that stores large amounts
of data extracted from heterogeneous systems. A data warehouse coupled with
OLAP enable decision makers to analyze and understand business trends and
to transform raw data into strategic decision making information.

The data are organized in the data warehouse using a star schema, which
consists of a single fact table and a single table for each dimension. Facts are
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numeric or factual data that represent a specific business or process activity and
each dimension represents a different perspective for the analysis of the facts,
and it is described by a set of attributes. Normally, there are more than three
dimensions and the dimension attributes represent a detailed description of the
dimensional data.

The approach proposed in [122] for the experimental evaluation and analysis
of critical systems consists in collecting the raw data produced during the
experimental evaluation and storing them in a data warehouse structured as
a star schema. In the case of experimental evaluation, facts tables of the star
schema contain readouts collected during the experiments, and dimensions
tables contain the key features of performed analysis. The dimensions include
all the different perspectives that may be used to analyze those numerical facts.

For example, raw data representing things such as error detection efficiency
or error recovery time are facts, while sets of attributes describing the target
systems, the different configurations, the workloads, the faultloads, etc. represent
the dimensions.

Once the data warehouse is populated, the OLAP tools can be used to analyze
the data and compute the measures. As most of the tools allow analysis trough
the web, this is the natural way to share the raw data. This methodology allows
to analyze the usually large amount of raw data produced in dependability
evaluation experiments and to compare results from different experiments or
results from similar experiments across different systems.

Complex Event Processing (CEP)

When the purpose of the analysis is monitoring a distributed system, lighter
supports than OLAP tools and data warehouse may be preferable to collect
intermediate results for decision making phases. Complex Event Processing (CEP,
[121]) is a defined set of tools and techniques for analyzing and controlling the
complex series of interrelated events that drive modern distributed information
systems [121].

As an example, we mention StreamBase’s Event Processing Platform [168],
which is a software for rapidly building systems that analyze and act on real-
time streaming data. StreamBase provides a rapid application development
environment, a low-latency high-throughput event server, and connectivity to
real-time and historical data. The server queries and analyzes data streaming
into the systems and delivers results on-the-fly.
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2.4.2  Data repositories

The Software Reference Fault and Failure Data

The Error, Fault, and Failure Data Collection and Analysis Project [59], held at the
National Institute of Standards & Technology (NIST), aimed at helping industries
to assess software system quality by collecting, analyzing, and providing error,
fault, and failure data of software systems. The project maintains a repository
on software fault data, available upon request. Analytical and statistical use of
the data is possible through a tool developed within the project. Unfortunately,
a discouragingly low rate of data set submission led to a premature termination
of the project [48].

Computer Failure Data repository

The Computer Failure Data Repository (CFDR, [159]) is a recent initiative
supported by USENIX to create public repository on computer failure data.
It aims to accelerate research on system reliability by filling the nearly empty
collection of public data with detailed failure data from a variety of large
production systems. It contains raw data of experiments, a description of the
systems data, a description of data format, and results of data analysis, including
possible reports or papers presenting such data [159].

Data & Analysis Center for Software

The Data & Analysis Center for Software (DACS, [50]), established in the late
1970s, serves as the authoritative US Department of Defense (DoD) source for
state-of-the-art software engineering and technology information to support the
software community. It provides a centralized hub for collecting and distributing
software data and information and offers technical support for acquiring, devel-
oping, testing, validating, and transitioning software technology and processes.
The DACS website lists over 40 software technical and management areas where
users can get information on best practices, topic-area experts, tools, literature,
service providers, training and other related resources [50].

The AMBER RAW data repository

The AMBER Raw Data Repository (ARDR, [4]) represents an effort to integrate
and coordinate the European research and practice on assessment of critical
systems, promoting the exploitation of results and the dissemination of knowl-
edge. It provides users with raw data storage and OLAP analysis tools, while
affording access to third-party data stored in an online data warehouse. This
allows potentially any researcher either to compare their own data with data
from other research teams, or to further analyze and investigate the experimental
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raw data made available in the OLAP repository by other researchers, possibly
uncovering aspects of the results that were missed or not focused by the authors
of the experiment [4].
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A METHODOLOGY FOR THE EXPERIMENTAL
EVALUATION OF CRITICAL SYSTEMS

In the previous Part (i), several methodologies were introduced for experimental
evaluation, which share to a large extent similar foundations, and refer or
include a huge set of techniques explored and presented through years in the
state of the art. We propose in this Chapter our own methodology for the
experimental evaluation of critical systems, born from the analysis of the state
of the art performed in Chapter 2, which aims to overcome some of the common
limitations that we identified. In particular, the following aspects are tackled
that we believe deserve attention and need improvements:

* The necessity of a general methodology for the experimental evaluation of
critical systems i.e., a methodology that is independent from the kind of
system or specific technique selected. This is also due to the necessity to
target different contexts, from academic research to industrial practices,
to support both the planning and execution of tests and the writing of
documentation produced as part of V&V and certification processes (see
for example the IEEE Standard for Software Test Documentation [88] or
the standard IEC 61508 [84]).

¢ As support of the methodology, we identified that the exploitation of
principles from measurement theory could be used to assess results and
measuring systems thus increasing trust in the experimental evaluation.

* Finally, solutions to improve the reuse, comparison and sharing of data could
be included in the methodology. Should structured, fully depicted and
trusted results be provided, then tools and experiments could be better
compared. This calls for an approach to data sharing that is general (as
any existing tool and experimental setup should be used), eases comparison
and cross-exploitation of raw results from different experiments, and eases
sharing raw results within an organization or even world wide.

Consequently, we present the task and steps required, without contextualizing
them for specific systems or techniques. The application of the methodology
to various techniques and systems is demanded to the case studies reported in
Chapter 4 to Chapter 9.

The following of this Chapter is organized as follows. In Section 3.1 we present
an overview of the proposed methodology, while from Section 3.2 to Section 3.5
the various phases of the methodology are described. Finally, in Section 3.6 the
case studies that shall be presented in the following of this Thesis are briefly
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introduced to identify which are the main aspects of the methodology explored
in each case study.

3.1 OVERALL VIEW OF THE METHODOLOGY

The methodology is subdivided in four phases (numbered from 1 to 4), each of
them organized in steps, or tasks. We present the main phases and the lists of steps
that should be taken into account by the experts performing the experimental
evaluation.

A high level view of the overall methodology is presented through an UML
activity diagrams in Figure 3.1, which shows a comprehensive view of the four
phases and their relations.

start of experimental activity

________________ & el _

I end of PHASE 1 'PHASE 2 design and instrmentation’
= <<structured>> T : <<structured > :
1

,,,,,,,,,,,,,

end of PHASE 2

[truie]

further evaluations required?

[false] modifications required N
ftrue] [false]

on-the-fly mpdifications?

PHASE 4: analysis and recommendation’ | PHASE 3. execution and data collection T
§ , < <structured>> |
I I endof PHASE3 | !

end of experimental activity C

Figure 3.1: Activity diagram of the methodology.

As experimenting is typically iterative, the methodology is organized in four
iterative phases:

* PHASE 1: Planning and definition. This phase constitutes the planning and
the definition of the experiments. The objectives of the experiments, the
target system, the workload, the faultload and finally the experiments are
defined. Also, the organization of results can be defined in this stage, since
it allows to identify in an unambiguous way the purposes and contexts of
the analysis. The envisioned architecture of the measuring system should
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be sketched in this phase, to be refined and implemented in the following
phase 2.

Executing this phase attentively increases the possibility that the overall
experimental evaluation is successful; we recommend that at the end
of this phase a conclusive analysis is carried out to identify potential
lacks and major issues that may happen during the phases devoted to
implementation and execution (phase 2 and phase 3), and to decide if
re-iteration of phase 1 is required. At the end of phase 1, phase 2 is started.
Details on phase 1 are shown in Section 3.2.

PHASE 2: Design and instrumentation. Once phase 1 is completed, it is
necessary to build the required instruments for the experimental cam-
paign, and to integrate them in the system. Activities that are part of this
phases are the design and implementation of the measuring system (the
monitor, the fault injection instrument, the workload generator, and the
controller), and finally the integration with the system under test (e.g.,
the system under test is instrumented with the fault injection tool and
the required probes and loggers). At the end of this phase, the measuring
system (with the possible exception of the parts related to data analysis) is
defined, implemented and the system under test instrumented. If possible,
preliminary sample runs (executions) of experiments to verify the set-up are
executed. A metrological assessment of the measuring instruments and
of preliminary results is necessary at the end of this phase, to estimate
if the quality of results will be acceptable. This phase should be iterated
until feedbacks from the metrological assessment are positive; at this point,
phase 3 is started. Details on phase 2 are shown in Section 3.3.

PHASE 3: Execution and data collection. Once the system is instrumented, the
experiments are executed. During the execution of the experiments some
small modifications may be useful or necessary. For example, such modifi-
cations may be in terms of new experiments, a different configuration of
the set-up or even a different order in the execution of the planned experi-
ments. These modifications may be suggested by an analysis on-the-fly of
the results.

In Figure 3.1, this phase is also connected to phase 1 and phase 2. When
the experiments execution concludes, phase 3 terminates and phase 4 is
started. Details on phase 3 are shown in Section 3.4.

PHASE 4: Analysis and recommendations. The objective of this fourth phase
is to analyze, share and cross-exploit measurements results collected. Data
staging and analysis is performed on the measurement results collected to
draw conclusions, which are typically in form of summarizing results and
recommendations. From the conclusions, further experiments or modifica-
tions to the experiments may be derived, thus requiring the re-execution of
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the methodology (that is, restart from phase 1). Otherwise, the evaluation
activity terminates. Details on phase 4 are shown in Section 3.5.

Our methodology aims to provide a set of guidelines expressed through activ-
ities and relations between activities. We are aware that in many experiments,
some of the activities proposed are trivial or not relevant, and consequently it is
not required to address them explicitly or devote a particular care. Also, there is
a large set of techniques available to implement some of the activities proposed:
it is not our intent to enlist them here, nor to define classifications. There are
very relevant works in the dependability community which provide exhaustive
classifications and description of specific techniques, and to which we refer
(e.g., see [164], [124], [170], [180]). We demand the selection of techniques to the
comprehensive reviews of the state of the art for the experimental evaluation of
critical systems.

The four phases and the list of tasks (also called steps in what follows) that
are part of each phase are explored in Figure 3.2 through a Work Breakdown
Structure (WBS, [116]).

Methodology for
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Figure 3.2: WBS view of the methodology.



3.2 PHASE 1: PLANNING AND DEFINITION

The WBS is a model typically used in project management which allows to
“break” the project down into discrete components or tasks ). Note that the WBS
does not allow to appreciate the parallelism of activities; this will be identified
in the detailed description of each phase.

3.2 PHASE 1: PLANNING AND DEFINITION

Phase planning and definition is composed of the steps reported in Figure 3.3. At
the end of this first phase, a description document should be provided which
summarizes the outputs of each step i.e., defines the plan of the experimental
activity.

3.2.1  Objectives definition

The definition of the objectives (or targets) of the experiments is the first step to
start an experimental activity. The objectives should be defined clearly, through a
precise description of what is the target of the experimental evaluation. This de-
scription may also discuss what are the expectations of the experiments, because
these are often at the base of the establishment of experimental campaigns.

3.2.2  System definition

After defining the key objectives, the system under test (or target system) and
its boundaries are defined. Boundaries are particularly relevant as they allow
to separate in an unambiguous way the system under test from the other
components of the measuring system (see also the definition of system under
test and measuring system in Section 1.2.2). This distinction is fundamental to
understand events or components that may influence the system under test,
through the interfaces offered by its boundary elements, and may alter the
system behavior (e.g., in terms of repeatability, measurement uncertainty and
intrusiveness).

Finally, defining the boundaries allows to identify the functions and struc-
tures whose behavior does not compromise the quality of measurements. Such
functions and structures can be used to support the other components of the
measuring system (e.g., act as loggers), or to select the components that are not
required to be monitored or controlled during the experiments execution.

Note that the various configurations of the system may be classified as differ-
ent systems under test (target systems).
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Figure 3.3: PHASE 1: Planning and definition.

3.2.3  Quantities to assess

When performing experimental measurements, the quantities to assess should be
clearly identified. In fact, the faultload, workload, experiments and measuring
system will be defined to tackle the analysis of the quantities defined in this
step.

The definition of a quantity can be intuitive, especially in case of well-known
and countable quantities, or complex (e.g., for derived quantities which are
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indicators of QoS). Different approaches for the definition of the quantities can
be found in literature. For example in [62], [31] several fields are proposed
to describe a quantity, including motivations or applicability; instead in [102]
quantities are identified on the basis of their nature (qualitative/quantitative),
type (dependability /performance related), extent (comprehensive/specific) and
the assessment method (experimental/modeling).

To maintain our methodology intuitive, we only recommend few key fields to
define a quantity, which are name, acronym, description, and measurement unit (if
applicable). Obviously we do not restrict the possible usage of other fields.

3.2.4 Workload and faultload definition

The selection of an appropriate workload and faultload (workload definition and
faultload definition) can be performed in parallel (see Figure 3.3). A workload
represents a typical execution profile for the considered application area; that is,
the workload is the computational load for the system under test. A faultload
represents a typical set of faults affecting the operation of the system. A faultload
is described by the set of faults and their type, their intended location, insertion
time and distribution in time and space to be inserted into the system under test.
Previously collected field data measurements can be used for the definition of the
workloads and faultloads, in order to define experiments that are representative
of the system behavior in its real execution environment [45].

Finally, we note that the so-called stressload [45] can be derived combining
workload and faultload.

A discussion on how to select the proper workload (i.e., application, bench-
mark or synthetic workload [81]) and kind of faultload and fault injection
technique (i.e., hardware fault injection with or without contact, and software
fault injection at compilation or runtime [81]) would be inappropriate here, and
is demanded to works devoted to such topic as [45].

3.2.5 Experiments definition

The experimental evaluation activity is characterized by one or more exper-
iments to be executed on the target system. The experiments can be defined
combining the different workload, faultload and systems under test (the various
configurations of that target system) that were identified in the previous steps.
Additional information may be necessary, as the experiments duration; note
that in some cases such information may be derived from the description of the
workload, faultload or system under test.
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3.2.6 Architecture of the measuring system

An high level view of the architecture of our measuring system should be defined
during this step. This high level view should identify the main components, and
a generic view of their structure and connections. Also, their connections to the
system under test should be defined here. This high level view is required in
phase 1 as it is the first step to contextualize the experimental evaluation from a
conceptual work towards the practical execution of the target system. Knowledge
on the overall architecture, together with an investigation of possible problems
of the architecture and of the experimental campaign (see the step analysis and
planning), helps determining the completeness of the analysis performed during
phase 1 and the feasibility of the planned experimental activity.

In our methodology, we identify the following components as key parts of a
measuring system (see also Section 1.2.2):

1. A controller, which controls the experiment execution. In some cases, it
may correspond to the operator.

2. A workload generator and the related workload library, to generate the work-
load.

3. A monitor, composed of probes and loggers.

4. In fault injection experiments, a fault injection instrument, that includes
injectors and a fault library. Whenever possible, the specific technique
to be applied for fault injection should be decided in this phase, while
designing the high level view of the system (see also Section 3.3.1).

5. Data staging and analysis tools, to manage and analyze data.

These components will be detailed in successive phases of the methodology. The
controller, the workload generator, the monitor and the fault injection instrument
are explored in phase 2, the data staging and analysis tools are optional steps in
phase 1 and phase 2, and mandatory steps of phase 4.

Note that fundamentals from metrology should be taken into account in the
design of these components, following principles from Chapter 1 and observa-
tions from Chapter 2. Although the architecture design proposed in this step is
intuitive and may be refined afterwards, it is required that its design considers
basics from metrology. In fact, not only specific solutions for very pointwise
problems, but also the overall architecture design, may affect the quality of
measurement results. For example, a simple, well-known approach to reduce
intrusiveness is to execute on the target system only the smallest possible set of
operations, while demanding the logging and controlling activity to a separate
(distributed) node, connected to the target system.

As general and broad observations and guidelines, we mention that the quality
of measurements is generally increased by common practices as i) execute the
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data logging activities and the fault injection controller on a node different
than the system under test, in order to allocate on the system under test only
light probes and injectors [2], [34], ii) optimize as much as possible the logging
activities [2], since they are time-consuming, iii) control the perturbation of the
system [52], and iv) keep clocks tightly synchronized to reduce the possibility
of biased data due to poorly synchronized clocks [79]. Further information and
suggestions are not explored here, but can be found in the case studies reported
in the following of this Thesis.

3.2.7 Results planning

The planning of the results can help to structure and highlight the objectives,
the results and the key elements of our evaluation, thus it helps to define the
purposes and context of the analysis [122].

The planning of results can be defined in this stage, since it allow to identify
in an unambiguous way the purposes (and contexts) of the analysis. From the
analysis in Section 2.4, as possible technique to structure and organize results
we candidate the star schema presented in Section 2.4.1. Following [122], we
contextualize it for the organization of results in the experimental evaluation of
critical systems.

Note that in our methodology, differently from what is typically done in data
warehousing [110], the star schema is not necessarily bounded to the underlying
relational database. In other words, we can create a star schema even if we
have no intention of using a highly structured database for the management
of measurement results, but only to help defining in an (as much as possible)
unambiguous way the purposes and contexts of the analysis. This way, the star
schema simply acts as a reference diagram to verify the completeness of the
analysis and to explain what are the key components identified during phase 1
(consider that the star schema is usually intuitive).

Examples of star schemas for experimental evaluation can be found in the
case studies described in the following of this Thesis.

3.2.8 Analysis and planning

The analysis and planning considers as inputs all previous steps and related
outcomes. The objective of this step is to understand if phase 1 can conclude
or further iterations are needed. To decide this, an overview summarizing the
planned actions for the experiments execution is performed, analyzing potential
risks and possible recovery actions. This analysis consists basically in:

¢ understand the feasibility, also considering time and costs, of the planned
experiments;
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¢ perform a preliminary assessment of the expected metrological properties
of the envisioned architecture and the related problems. This analysis
is based on the conceptual work done during phase 1. In particular it
considers the high level definition of the measuring system, the knowledge
on the system under test, and considerations on workload, faultload and
experiments. Some examples on the observations based on knowledge
on the measuring instruments were reported in the step architecture of the
measuring system. Further considerations can be performed considering
also the specificity of experiments, workload and faultload, for example
on reproducibility of results and experiments.

The final objectives of this step are to understand possible lacks, estimate feasi-
bility of the planned actions, and make a plan for the successive phases. Such
plan may include estimation on expected timings, costs, required instrumenta-
tion, and workplan; an execution plan of the experiments may be also defined
(e.g., the test specification required in many industrial contexts [42], [57]). Ad-
ditionally, outcomes of this step may require to re-iterate some of the previous
steps.

3.2.9 Data processing tools

The optional step that we present here is the step data processing tools. Activities
as building script for data parsing and database loading can be performed in
this step to ease import of the results. This step is not mandatory, but can turn
useful during the successive phases. In fact, if data can be easily imported and
analyzed (or if a preliminary analysis can be performed), then quick feedback
on (ongoing) experiments can be achieved to decide on corrective actions.

Note that data processing is also optional in phase 2 and phase 3. It is instead
mandatory in phase 4. In fact, despite this step is actually needed only in phase
4, in which conclusive results are achieved, having preliminary data processing
(and analysis) allows to tune the experiments, the faultload, the workload and
the measuring system, and it helps timely identifying possible criticality in
the experimental activity or in the instantiation and set-up of the measuring
instrument.

3.3 PHASE 2: DESIGN INSTRUMENTATION

The phase design and instrumentation is composed of the steps reported in Figure
3.4 and described in what follows.

In this phase the measuring system is built and the system under test is
instrumented with the measuring instrument. Four parallel steps are identified
at the beginning of this phase: these are the design and implementation of i) the
monitor (probes and loggers), ii) the workload generator, iii) the fault injection



3.3 PHASE 2: DESIGN INSTRUMENTATION

instrument (fault library and injectors), and iv) the controller. These components
are designed and built on the basis of the outcomes of phase 1. The integration
of these four components in the system under test follows.

Note that foundations from metrology should be taken into account during
the design, the implementation and the integration of these components. A
metrological assessment is in fact performed to evaluate if the required metro-
logical properties are satisfied. Optionally, tools for data processing and analysis
can be instrumented with the measuring system.

At the end of this phase, all the instruments required to execute the experi-
ments are ready. Output of this phase is the complete design and implementation
of the measuring system, and the updated metrological assessment.
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Figure 3.4: PHASE 2: Design and instrumentation.
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3.3.1 Design and implementation of the monitor

The monitor tracks the execution of the system and initiates data collection
whenever necessary. We divide the monitoring part in two components: probes
and loggers.

Probes

In order to observe the target system, (hardware or software) probes are attached
(instrumented) to the system to provide information about the system’s internal
operation.

The probes must be capable of observing the internal operation of the system
to fulfill the purpose of the monitoring i.e., allow to measure the quantities of
interests.

A classification of monitoring systems can be performed according to the three
approaches used for probes: hardware, software and hybrid (i.e., hardware/-
software) [186]. We do not detail here specific probing solutions, as choosing
the right approach and implementing it is beyond the scope of this dissertation;
detailed discussions can be found in [186], [126].

Loggers

The loggers collects data from the probes. A logger can execute on the same
system where the probes are located or on a separate system (e.g., to reduce
intrusiveness). Data stored by the loggers constitutes the measurement results
collected during the experiments execution, and can be further analyzed to
derive the experiments results or to compute indirect quantities.

Information on loggers and logging techniques can be found in [73], [160].

3.3.2 Design and implementation of the fault injection instrument

For those experiments which include fault injection, the instrument in charge of
performing injections is designed and implemented in this step. It is composed
of a fault library and one or more injectors.

Fault library

The fault library describes the faults (including at least fault types, locations, and
times) that the injectors are able to inject [81]. The specific information to be
contained in the fault library depends on the characteristics of the fault injection
experiments and on the injectors.
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Injectors

The injectors inject faults into the target system as it executes commands from
the workload generator. An injector can be hardware or software. Each injector
can support different fault types, fault locations, and fault times, the values of
which are drawn from the fault library [81].

3.3.3 Design and implementation of the workload generator

The system under test executes a workload. The workload may derive from the
typical execution of the system in its environment (e.g., an application workload
which simply consists in setting up the system and let it operate in its usual
scenario), or may be designed ad-hoc for the execution of specific experiments.
In this second case, it is necessary to design and implement a component, called
workload generator, which is in charge of executing the workload.

The kind of events and parameters that need to be included in the workload
generator depends on the specific experiment and system under test; however,
generally the workload generator allows to generate events at specific time
instants or following a specific distribution [45].

3.3.4 Design and implementation of the controller

The controller controls the experiments to execute. The controller is typically
a program that can run on the target system or on a separate computer. Note
that in some experiments the controller may not be necessary, or may simply
be the expert (the operator) which guides the execution of the experiments (for
example, switches on/off a machine, starts or stops the monitored application,
etc.).

3.3.5 System integration

Once the previous components are implemented, they must be integrated and
plugged to the target system.

Note that some of the required components may not be available until the
last moment (e.g., when integration is performed right before going on-field; an
example is in the case study in Chapter 8, where the measuring instrument and
the system under test were provided by two different groups, and integrated
only when the two groups gathered on-field right before starting the execution
of the experiments). In such cases phase 2 is strictly connected to phase 3, also
from a temporal viewpoint.
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3.3.6 Instrument data parsing and analysis tools

An additional component that can be integrated in this phase is the data parsing
and analysis tool, for example a preliminary version developed during phase 1.
In the optional step instrument data parsing and analysis tools, instruments and
tools for parsing data and extracting results are defined and instrumented. This
step allows online analysis of the data collected on-field while an experiment
executes or at the end of each of the planned experiments, as described in phase
3. Extensive discussions and literature on online analysis can be found in [180],

[77], [167].
3.3.7 Assessment of metrology properties

As lengthily debated in this Thesis, a rigorous investigation of the fundamental
metrological properties is mandatory. The last step we plan for phase 2 is the
process to assess the quality in terms of metrological properties of the measuring
instrument and of the expected measurement results. That is, the objective of
this step is to acquire knowledge on how much confidence we should put in the
results of our experiments.

To perform this analysis, information acquired from data sheet, knowledge on
the measuring and target system and on their implementation, or preliminary
runs of ad-hoc experiments can be used. An attentive analysis of the system
under test, its boundaries and the measuring system is necessary. Phase 2 is
iterated until this step is performed successfully.

To ease the execution of this step, we present some guidelines and key refer-
ences focusing on resolution, intrusiveness, uncertainty and repeatability:

* Resolution. Of the four properties enlisted here, it is typically the easiest
to quantify. Often resolution is explicitly reported in the data sheet of the
system under test. For example, in case of time measurements, resolution
is typically the resolution of the local clock. In distributed time interval
measurements, the resolution is the maximum between the resolution
of the source node and that of the destination node. In case of position
measurements, it is typically the smallest variations in position that the
system is able to detect.

e Intrusiveness. Understanding the intrusiveness of a system is not trivial.
Golden runs (a golden run is a trace of the system executing without
any injections being made, hence, this trace can be used as reference [76])
can allow to understand the impact of the components of the measuring
instruments, to perform an offline analysis before the beginning of an
experiment. In many cases, it can be sufficient to bring evidence by reason-
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ing that the intrusiveness is negligible (with respect to the dimension of
measurement results).

Uncertainty. It is important and useful to evaluate the measurement uncer-
tainty in order to be aware of the quality of measurement results. This is
particularly true whenever we want to obtain direct or indirect measure-
ments in which time intervals related to different nodes of a distributed
system are involved. In fact amongst measurements, the most common
sources of uncertainty are in time measurements, where a significant cause
of uncertainty is usually represented by poor synchronization between
distributed clocks. Misalignment of distributed clocks may affect the qual-
ity of measurements: such misalignment is hard to estimate and predict,
and may vary due to many causes such as unexpected network delays,
temperature variations or even faults in clock synchronization mechanisms.
For example, exploiting clock synchronization protocols like the Network
Time Protocol (NTP, [129]) does not totally prevent from collecting some
severely incorrect data due to transient perturbations which cause an in-
crease in the dispersion of the values that can reasonably be attributed to
the measurand (e.g., a time interval); this can be unacceptable for some
applications. In Chapter 4 we will further debate on this specific example.

Repeatability. Determinism of the target system is needed to ensure repeata-
bility, including the starting state of the system: for example, in order to
completely ensure repeatability of every experiment, a fault injection tool
would have to copy the entire state of memory at start-up and restore it
in each experiment [165]. Repeatability is probably the most critical issue
to face, especially when performing time measurements in distributed
systems, due to limits on collecting accurate time values (executions of the
same run will probably not bring the same exact results [96]).

Extensive notions on how to assess a measuring system and the measurement re-
sults collected are reported in [95], [94], [97], [96]. Examples on their application
can be found in the case studies of this Thesis.

We single out and recommend some basic guidelines, i.e. operative rules that
should be kept in mind - and if possible put into practice - when measuring
dependability-related attributes [24]:

the measurand should be clearly and univocally defined;
all sources of uncertainty should be singled out and evaluated;

some attributes of major concern for dependability measurements, such as
intrusiveness, resolution and repeatability should be evaluated;

measurement uncertainty should be evaluated (according to the GUM);

63



64

A METHODOLOGY FOR THE EXPERIMENTAL EVALUATION OF CRITICAL SYSTEMS

* comparison of measurement results provided by different tools/experi-
ments should be made in terms of compatibility [96].

3.4 PHASE 3. EXECUTION AND DATA COLLECTION

The phase execution and data collection is composed of the steps reported in Figure
3.5 and described hereafter. This phase is iterated for each experiment executed.
Once all experiments have been executed, this phase terminates.
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Figure 3.5: PHASE 3: Execution and data collection.

Note that during the execution of the experiments, it may be required to
perform some (small) adjustments that is, to modify some of the outcomes of
previous phases. Consequently, from phase 3 it is possible to move back to
phases 1 or directly to phase 2.

In Figure 3.5 the possible transition to phase 1 is proposed at the end of each
experiment; the analysis of the collected data can lead to the decision of going
back to phase 1. Instead a potential transition to phase 2 is activated through
feedbacks from the usage of the measuring instrument.
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3.4.1 Execution of the next experiment

The core of phase 3 are three parallel steps, that are exercise the system, monitor
use and (in case of fault injection experiments) use of the fault injection instrument.
For each experiment, these steps are executed.

3.4.2 Online data processing and feedbacks

Objective of this optional step is to analyze the measurement results while still
executing the experiments. The objective is to provide quick feedback on the
results and the behavior of the measuring instruments, and to identify possible
modifications required to the experiments description or to the measuring
system. A more detailed analysis of the collected data is instead performed in
phase 4.

3.5 PHASE 4: ANALYSIS AND RECOMMENDATIONS

The phase analysis and recommendation is composed of the steps reported in
Figure 3.6 and discussed in what follows. In this phase, analysis of measurement
results is performed and conclusions are drawn. This is the last phase of the ex-
perimental evaluation; the outcomes of this phase determine if the experimental
activity terminates or restarts.

3.5.1 Data staging and analysis

We subdivide the data staging and analysis in two steps:
* adata staging step to structure and integrate the logged events in a database
¢ the analysis of measurement results (the step data analysis).

We represent these two steps in Figure 3.7.

Data staging

The inputs of data staging are events, data and intermediate results collected
by the loggers in phase 3 during the execution and observation of the system
(the purpose of data staging is to get data ready for loading into a presentation
server [110]). Data staging is quite a complex task that can be heavily intrusive.
That is why we plan it at the end of the experiments, when all data are collected
and available.

Any existing tool and experimental set-up can be used; the only information
required is the data format of the raw results produced during experiments,
in order to load them into the database. OLAP technologies, which include
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Analysis

general-purpose tools for the analysis of datasets, can be profitably used here.
Usage of OLAP technologies is also strictly connected to the structure of the
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database used to store results, which shall be defined according to the star
schema planned in phase 1.

The step data staging is composed of three parts, that are log collection, log
parsing and database loading (in Figure 3.7):

* Log collection. In log collection the logged events are collected (for example,
these can be files located on distributed computers) and merged, creating
a unique data log which contains the raw data.

* Log parsing. In log parsing the data log is parsed; raw data are extracted
from the data log and transformed in parsed data, for example in file
formats as CSV (Comma Separated Value; it is a standard data file format
used for storage of data structured in table form [162]), that are easier to
handle than the raw data. Log parsing include cleaning of the data (detect
and correct, or remove, corrupted or inaccurate records), fill missing data,
and put the data in a standard format easy to load in a database or manage.
Also, integration of data taken from several sources (e.g., transforming
timestamped events collected during the experiment execution into ap-
propriate metrics) is performed. Note that log parsing may also include
actions to make the data anonymous; this is particularly relevant in public
repositories where industrial or research groups providing data do not
want to disclosure their identity.

* Database loading. In database loading we create SQL (Structured Query
Language, [71]) queries starting from the content of the parsed files to
populate a data repository (e.g., a database or a data warehouse). As the
trace files of experiments can be difficult to handle due to their size, and
the information stored in each file can be structured in different ways, a
structured data repository can ease storing, manipulation and retrieval of
data.

Data analysis

Once experiments have been run, log files have been parsed and data have been
loaded into the database, the data can be analyzed to investigate the results. As
previously mentioned, a significant support can be provided by the usage of
approaches based on OLAP and data warehousing to analyze and share the raw
results stored in a common multidimensional structure (a star schema) [110].

3.5.2 Data comparison

Comparison of both raw data and final results is an important step as it allows
to compare different solutions. A typical challenge is comparing data (collected
analyzing the same or a different component) that were collected in different
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periods and/or by different groups. Often, quantities selected are different and
consequently effective comparison requires the availability of the raw data.

OLAP tools and techniques (including the star-schema introduced previously),
together with an attentive application of the methodology and the metrological
characterization of the results, ease comparison and cross-exploitation of raw
results from different experiments. In fact, results are stored in a common data
warehouse (that can be available to the entire scientific community, or within
the personnel of an organization), the experiments performed are attentively
described, and the metrological characterization improve confidence in results
and investigation of their compatibility.

3.5.3 Conclusions

After the attentive analysis of the data collected is performed, conclusions on
the experimental campaign are drawn. This step is organized in two parts: final
results and recommendations, to show a summary of results and main achievements
of the experimental campaign and recommendations that can be derived and
are proved by the results, and data archiving, which includes actions to store data
(for example, sharing to the community or archiving them in the database of a
factory, for further reuse).

These two parallel activity conclude phase 4; in case the outcome of the final
recommendations establishes that further experiments are required, phase 1 is
restarted.

Final results and recommendations

At the end of the experiments, final results are presented. These show sum-
marizing information and key aspects of the analysis. In particular, given the
objectives selected at the beginning of the experimental campaign, in this step it
should be presented if and why the initial objectives are satisfied. As an example,
a possible result is the completed tests plan and tests report according to the
IEEE standard 829-1998 for Software Test Documentation [88].

Recommendations may be generic observations or specific indications. For
example, i) they may indicate the need of additional experiments, requiring in
this case a new execution of the experimental campaign (back to phase 1), or
ii) they may provide inputs or feedbacks to the designers of a specific protocol,
or iii) they can be in form of outcomes that are part of a V&V process, and
consequently are part of a testing campaign performed to assess the proper
behavior of the target system.
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Data archiving

At the end of the analysis, measurement results collected can be archived.
Sometimes, data can be archived in public repositories (see Section 2.4), while
often they are internal to organizations (a factory or a research institution).
However, in both cases it is important that measurement results are stored in an
organized way, to be retrieved (and reused) with reasonably low effort whenever
needed. Note that data may be required after years, or by people different
from those which collected and stored the data: in such scenarios, reusing the
data is efficient or feasible only if they were stored using a well-defined and
documented structure. This is the reason why this dissertation put emphasis on
data archiving and sharing. Independently from being public or not, carefully
archived data can be further reused and explored, for example they constitute
the technical background for future works (possibly not even envisioned at the
time the experiments were performed) or they are used for comparison.

In this direction, in Chapter 7 the RACME (Resiltech Assessment and Certifi-
cation MEthodology) solution is presented. RACME merges challenges of data
archiving and retrieval, together with a methodological support to V&V pro-
cesses. Briefly, RACME is an industrial framework that copes with the previous
issues and proposes a methodology and related instruments to support V&V
processes and certification activities. The RACME solution aims to support the
V&V experts during the overall V&V process, showing the set of activities to be
performed, organizing the relevant inputs and outputs (e.g., experiments results
and tests report), detecting inconsistencies amongst different documents or miss-
ing elements, and finally helping the documents construction for certification

purposes [40].
3.6 METHODOLOGY APPLIED TO THE CASE STUDIES

In the remainder of this Thesis, our methodology shall be applied to five different
case studies, reported in Chapter 4, Chapter 5, Chapter 6, Chapter 8, and Chapter
9. Each of them presents different criticality, and consequently different care
is devoted to the various aspects of the methodology. To give evidence of the
application of the methodology, in this Section we discuss which steps have
been deemed particularly critical for each case study.

The five case studies span on different areas, and are i) the experimental
evaluation of a middleware service (a software clock) for resilient timekeeping
(Chapter 4), ii) the design, implementation and exercise of an improvement to
a measuring instrument for the analysis of distributed protocols (Chapter 5),
iii) the design, implementation and exercise of a testing service for dynamic,
highly adaptive Service Oriented Systems (Chapter 6), iv) the experimental
evaluation of COTS GPS devices used for localization (Chapter 8), and finally
v) the experimental evaluation of an embedded safety-critical system for train-
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borne equipment (Chapter 9). Case studies i) to iii) are “academic” case studies,
built in our lab and specifically targeting different aspects of the methodology
(i.e., the experimental evaluation process, the improvement of a pre-existing tool,
and the construction of a completely new tool), while case study iv) and case
study v) have been defined and carried out with tight cooperation of industries.

In the first case study, the methodology is applied to the experimental evaluation
of a software clock. As this case study represents a complete process for the
experimental evaluation (from the definition of the objectives till the conclusion
of the evaluation activity), all steps and aspects of the methodology have been
considered. Amongst them, the discussion in Chapter 4 devotes particular
attention to the analysis of the metrological properties of the measurement
tool, and of the quality of the expected results. Also, reuse of the measuring
instrument, and sharing and comparison of results are relevant topics discussed;
in fact results populate a database based on a star-schema, and scripts and tools
are used to automatize data staging and analysis. This ease re-executing the
experiments and comparing the results (in fact, in [21] the same set-up is used to
evaluate and compare different versions of the target system). We remark that the
experimental evaluation activity required some iterations, because preliminary
runs were executed to understand generic trends and correct small problems
(in particular, these allow to identify a systematic error, noticed during the first
runs, see Section 4.3).

The second case study focuses on the improvement of a pre-existing measur-
ing instrument for the evaluation of distributed protocols, rather than on the
execution of an experimental evaluation campaign (although a case study is
presented, it is mainly intended to show the effectiveness of the improvement to
the measuring instrument and not the application of the whole methodology).
The methodology here is applied mainly for the steps and phases related to the
measuring instrument design and instrumentation. The main aspect to note is
the particular care in the metrological analysis of the measuring instrument and
of the expected results. The case study also proves the relevance of devoting
attention to such topics; in fact it shows that underestimating potential sources
of uncertainty may lead to misleading conclusions and recommendations.

The third case study focuses on the design, implementation and exercise of
a measuring instrument for the experimental evaluation of Service Oriented
Architectures (SOAs). This measuring instrument (a testing service) is designed
to evaluate highly adaptive and dynamic systems; it is composed of several
different parts, and its complexity is on a different scale than the previous
measuring instruments. However, it still classifies as a measuring instrument for
the experimental evaluation of critical system and consequently the methodology
still holds. An important aspect reported in this case study is the proposed
approach for the sharing of tests results; in fact, a database is maintained and
accessed by people which use the testing service and benefit of the information
it maintains.
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The fourth and the fifth case study are performed in cooperation with industries.
In this two case studies, the Genova and Torino bases of Ansaldo STS made
available respectively the measuring instrument in the fourth case study and the
target system in the fifth case study. This implies that the duration of phase 3
(and partially phase 2) was limited by the time we had access to the instruments
and the prototype. Consequently phase 1 of the methodology acquired particular
relevance as carefully planning the experimental campaign reduced the risk of
(unexpected) difficulties during phase 2 and phase 3.

Going into details of the fourth case study, it is devoted to the experimental
evaluation of GPS devices to understand their measurement error. The analysis
presented in Chapter 8 allows to provide preliminary results and feedbacks to
the designers of the overall system in which the GPS devices are used and for
its V&V. Another aspect covered in this case study is the attention devoted to
build a highly reusable database (again, the database was structured as a star
schema) and scripts for its automatic population with the data collected.

Finally, the fifth case study is devoted to the experimental evaluation of a pro-
totype of a safety-critical embedded system. The four phases of the methodology
are attentively applied and described, as well as the metrological characteriza-
tion of results. Given the short time slot (one week) in which the prototype was
available for our tests (the prototype was held in an industry and not in our lab),
there was limited opportunity to iterate on phase 2 and phase 3. Consequently,
we devoted a particular care to the preliminary steps of the methodology (those
steps that could be performed without having the prototype at our disposal),
in order to optimize as much as possible our time in phase 2 and phase 3.
Finally, we remark that amongst conclusive results of the analysis, an important
recommendation was provided to the system designers to notify a potential flaw
in the system (a duration slightly exceeding the timeout, see Section 9.5) and a
related correction.
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Clock synchronization to an external timebase is a common requirement for
many pervasive and distributed systems. In some cases, a good clock synchro-
nization is a crucial requirement, as failing to fulfill it can have a severe effect
on the performance or even the safety of a system. Experimental evaluation of
clocks and clock synchronization mechanisms is mandatory to prove formal
theories [145], and typically requires a high quality clock for measures compari-
son and a particular care when defining the measuring system [181]. Different
solutions are possible [60], [142], [181], [79], [118] depending for example on the
environment and system in which clocks operate, the affordable costs for the
equipment, the desired quality of results, etc.

In this Chapter we describe the experimental evaluation of a middleware com-
ponent, namely the software clock Reliable and Self Aware Clock (R&SAClock,
[23], [19]). We focus on the validation methodology and the assessment of the
measuring system, including analysis of faultload and workload intrusiveness
and representativeness, providing a set-up which can be reused for different
instantiation of the tested software clock [20], [22].

The R&SAClock [23], [19] is designed to be self-aware of its synchronization
offset from the reference time. When asked to provide the time, R&SAClock
replies with an enriched time value, which also gives information on the confidence
that can be associated to the time value. Thus, the system can at any time reliably
predict its current offset. In the implementation considered here, the R&SAClock
is a C + + middleware service with regard to external synchronization.

Experimentally verifying its performance is a key factor of success for a clock
that is intended to be reliable in providing a tight upper bound to the offset
synchronization. However, to validate the R&SAClock, which provides a syn-
chronization uncertainty sometimes lower than 1 ms (millisecond), an accurate
methodology is needed. Consequently, the validation test bed shown in this
Chapter is based on a detailed analysis of which is the most suitable reference
time instant to compare with R&SAClock output. Moreover, the experimental
plan covers a relevant set of cases, including different values of the software clock
parameters and different types of workload, and takes into consideration the
possible occurrence of faults in the system under test and/or in the underlying
synchronization mechanism.

The rest of the Chapter is organized as follows. Section 4.1 introduces the
R&SAClock and the algorithm Statistical Predictor and Safety Margin (SPS, [19])
that computes synchronization uncertainty; these notions shall also be required
in Chapter 5. Section 4.2 and Section 4.3 report the experimental evaluation
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methodology and the analysis of results, while Section 4.4 reports a discussion
on the validation achieved in terms of degree of satisfaction of requirements,
or identification of directions for improving the R&SAClock implementation.
Further details can be found in [20], [22].

4.1 THE RELIABLE AND SELF-AWARE CLOCK
4.1.1  Basic notions of time and clocks

Let us consider a distributed system composed of a set of nodes. We define
global time as the unique time view shared by the nodes of the system, reference
clock as the clock that always holds the global time, and reference node as the
node that owns the reference clock. Given a local clock ¢ and any time instant
t, we define c(t) as the time value read by local clock c at time t. The behavior
of a local clock c is characterized by the quantities offset, accuracy, precision and
drift. The offset ©.(t) = t —c(t) is the actual distance of local clock c of the
node n from the global time at time t [129]. This distance may vary through
time. Accuracy A, is an upper bound of the offset [182]; accuracy is often
adopted in the definition of system requirements and therefore targeted by clock
synchronization mechanisms. Drift p.(t) describes the rate of deviation of a local
clock c at time t from global time [182]. Finally, precision 7 describes how closely
local clocks remain synchronized to each other at any time. Figure 4.1 exemplifies
the concepts of accuracy, drift, offset, precision and clock synchronization; the
outside thick dashed lines represents the bound in the rate of drift, a fundamental
assumption of clock synchronization mechanisms, since it allows to predict the
maximum deviation after a given time interval.

Despite their theoretical importance, accuracy and offset are usually of prac-
tical little use for systems. Synchronization mechanisms typically compute an
estimated offset 0. (t) (and an estimated drift p.(t)), without offering guarantees
and only at synchronization instants. We define the synchronization uncertainty
(or simply uncertainty) U (t) as an adaptive and conservative evaluation of offset
O (t) at any time t; uncertainty is such that A. > Uc(t) > O(t) > 0 [23], [19].

4.1.2  Specification of R&SAClock

R&SAClock is a software middleware service that provides to users (e.g., system
processes) both the time value and the synchronization uncertainty associated to
the time value. When a user asks the current time to R&SAClock (by invoking
the function getTime), R&SAClock provides an enriched time value:

[likelyTime, minTime, maxTime, FLAG].
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>

local time c(t)

>

...........

global time t

Figure 4.1: Time and clock.

LikelyTime is the time value computed reading the local clock c(t). MinTime
and maxTime are based on the synchronization uncertainty provided by the inter-
nal mechanisms of R&SAClock. FLAG is a Boolean value indicating whether the
current synchronization uncertainty is within an accuracy bound set as a require-
ment by the user (the FLAG value is not considered in this Chapter; instead it
shall be exploited in Chapter 5). Details on R&SAClock and its implementation
can be found in [23], [21].

From the perspective of a user of R&SAClock, the main expectations are the

following:

* arequest for the time value should be satisfied quickly, and
¢ the enriched time value should include the true time.
These can be more formally expressed as:

¢ REQI. The service response time provided by R&SAClock is bounded:
there exists a maximum reply time Agrt from a getTime request made by
a user to the delivery of the enriched time value (the probability that the
getTime is not provided within Agt is negligible).

* REQ?2. For any minTime and maxTime in any enriched time value generated
at time t, it must be minTime < t < maxTime with a coverage Acy
(by coverage we mean the probability that this equation is true). In other
words, given likelyTime = c(t), the true time t must be guaranteed within
the interval [minTime, maxTime] with a coverage Acy.
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4.1.3 The Statistical Predictor and Safety Margin (SPS)

We briefly describe the SPS algorithm for the computation of synchronization
uncertainty for a local software clock c that is disciplined by an external clock
synchronization mechanism. A complete description of the algorithm can be
found in [19]. To ease the readability of the notation, the subscript c is omitted
from the expressions presented in the rest of this Chapter. In Table 4.1 the main
quantities involved in the SPS are shown and explained.

Symbol Definition

to time in which the most recent synchronization is performed

@(to) estimated offset at time tg

p(to) estimated drift at time t,

M, m maximum and current number of (most recent) samples of the
estimated drift that the UEA collects (0 < m = M)

N, n maximum and current number of (most recent) samples of the
estimated offset that the UEA collects (0 < n =N)

Pas probability that the population variance of the estimated drift is
smaller than a safe bound on such variance

Pav a safe bound of the drift variation since ty is computed with
probability p g,

Pds ©Pav | thejoint probability of these two values represents the coverage
of the prediction function

Pos probability that the population variance of the estimated offset is
smaller than a safe bound on the variance

Pov a safe bound of the offset at to is computed with probability po.

Pos ©Pov | thejoint probability of these two values represents the coverage
of the safety margin function

Table 4.1: Main SPS quantities and parameters.

The set-up parameters used by SPS (detailed in Table 4.1) are: the four proba-
bilities pas, Pdav, Pos, Pov and the memory depth M and N. The coverage and
the performance (how much the synchronization uncertainty is effectively tight
to the estimated offset) achieved by SPS depend on these parameters.

We assume to the time in which the most recent synchronization is performed:
at time to the synchronization mechanism computes the estimated offset @)(to)
and possibly the estimated drift p(to) (if not provided by the mechanism, it can
be easily computed by the R&SAClock itself).

Briefly, SPS computes the uncertainty at a time t with a coverage, intended as
the probability that A. > U (t) > O,(t) > 0 holds. The computed uncertainty
is composed by three quantities: i) the estimated offset (computed by the syn-
chronization mechanism), ii) the output of a predictor function P which predicts
the behavior of the oscillator and continuously provides bounds that constitute



4.2 PLANNING AND INSTRUMENTATION

a safe (pessimistic) estimation of the oscillator drift and iii) the output of a
safety margin function SM which aims at compensating possible errors in the
prediction and/or in the estimation of the offset. The computation of synchro-
nization uncertainty requires a right uncertainty U,(t) and a left uncertainty
Uy (t): consequently, SPS has a right predictor and a right safety margin for right
uncertainty, and a left predictor and left safety margin for left uncertainty. The
output of the SPS at t = t¢ is constituted by the two values:

U, (t) = max(0,0 (to)) + Py (t) + SM,(to) (4.1)

Uy (t) = min(0,© (to)) + Py (1) + SM, (to). (4.2)

The estimated offset ©(to) is computed by the synchronization mechanism and
can contain errors. If the estimated offset is positive, it influences the computation
of an upper bound on the offset itself and consequently is considered in equation
4.1. If it is negative, it is ignored. A symmetric reasoning holds for equation 4.2.

The predictor functions (left and right) predict the behavior of the oscillator
and continuously provide bounds (lower and upper) which constitute a safe
(pessimistic) estimation of the oscillator drift and consequently a bound on
the offset. The oscillator drift is modeled with the random walk frequency
noise model, one of the five canonical models used to model oscillators (the
power-law models [17]), that we considered as appropriate and used. Obviously
the parameters of this random walk are unknown and depend on the specific
oscillator used. We compute them resorting to the observation of the last m
samples of the drift (where m smaller or equal to the set-up parameter M), and
using a safe bound on the population variance of the estimated drift values. The
coverage of this safe bound depends on the set-up probabilities pgs and pg.
(see Table 4.1).

The safety margin functions (left and right) aim at compensating possible
errors in the prediction and/or in the estimation of the offset. The safety margin
function is computed starting from the collection of the last n samples of the
estimated offset (where n is smaller or equal to the set-up parameter N). A
safe bound to the population variance of the estimated offset is computed. The
coverage of this safe bound depends on the set-up probabilities pys and pov
(see Table 4.1).

4.2 PLANNING AND INSTRUMENTATION

We present the main outcomes and results of the application of the methodology
for phase 1 and phase 2.
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4.2.1  System under test

The target system consists of an R&SAClock prototype, which is installed as a
software component on a computer, namely PC_R&SAC. In the system under
test, the local software clock is synchronized through the Network Time Protocol
(NTP, [129]). An NTP client (process daemon) running on PC_R&SAC synchro-
nizes the local clock using information from the NTP server(s). PC_R&SAC is
connected to one or more NTP servers through the Internet.

4.2.2  Workload, faultload and experiments design

A wide set of experiments are required in order to derive a meaningful validation.
The parameters to set for the experiments are:

1. the numbers of samples N and M, which represent the memory depth of
the algorithm and are chosen as M = N within the set [10, 40, 80];

2. the probabilities pas, Pav, Pos and pov, which represent the confidence
levels of the synchronization uncertainty computed by R&SAClock and
are always chosen as pas = Pdv = Pos = Pov =P,

3. the workload, which is expressed in terms of getTime requests per second
to R&SAClock;

4. the faultload.

The selection of a set of meaningful faults is based on the analysis of the criti-
cality of the algorithm: either the synchronization mechanism fails in estimating
the offset or the poor quality of the local clock. The first criticality may be due
either to:

1. a failure of the communication channel, which is emulated by closing the
port 123 that is used by NTP;

2. network delays and variable latency in the communication with the NTP
server(s), which are emulated by retaining the NTP packets and artificially
introducing a random delay on them, or

3. a crash of the process that manages the synchronization, which are emu-
lated by killing the NTP process running on the client or on the server.

The second criticality can stem from extreme operating conditions, such as
quick temperature variations, emulated through the Linux primitives adjtime.
Possible synchronization attacks are not explicitly considered, but are treated as
asymmetry in the communication delay with the NTP server(s).



4.2 PLANNING AND INSTRUMENTATION

4.2.3 Definition of the measuring instrument

The key of the validation methodology is to trigger R&SAClock asking the time
and then verify that the time t is actually within the interval (minTime, maxTime)
defined by the enriched time stamp. The final goal is to evaluate an experimental
coverage level for the implementation of R&SAClock under test (i.e., on a
specified node in a given network situation) under various operating conditions
involving: (i) different parameter values; (ii) different types of workload for the
node where R&SAClock is installed and (iii) for R&SAClock itself (intended
as number of time requests in the unit of time) and, finally, (iv) the possible
occurrence of faults of different nature in the system under test, including NTP.
We are also interested in verifying the performance of R&SAClock, and therefore
we also need to evaluate the time it takes to answer to a time request.
The basic components of a system for the validation of a software clock are:

¢ the system under test in which the clock is installed;
e a reference clock;

¢ a controller of the experiments which decides the workload and the fault-
load to use, and controls the experiments;

® a monitor that collects the results (i.e., the information on the current time)
given by the system under test and verifies their concurrence with the time
provided by the reference clock;

* the probes inserted in the system under test.

Being this a software clock, the probes are basically software instructions
inserted in the code of the node where the software clock is running, which are
mandated to capture certain events of interest and timestamp them.

Each time a client program makes a getTime request to R&SAClock, a soft-
ware probe timestamps the request and another probe timestamps the reply of
R&SAClock. Then, the enriched time value is compared to the time provided by
the reference clock.

Before describing the experimental set up, it is worth discussing which time
instant the enriched time value given by R&SAClock has to be compared to.

The correct way to proceed is not to think at R&SAClock as a (software) device
designed to answer the question “what time is it?”, regardless of the practical
use of the output it gives. Performing a meaningful validation of R&SAClock
means verifying if R&SAClock works properly and to what extent it is useful.
This means taking the time from the reference clock when R&SAClock provides
its answer, rather than when the question is made. In fact, we have to verify
the fulfillment of the requirement REQ2 at the moment the time information is
made available by R&SAClock to the client program.
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The design and implementation of the validation testbed follow three basic
rules: granting a time resolution sufficiently lower than that of the system under
test and keeping the software probes as simple as possible in order to reduce
the intrusiveness on the system under test and ultimately the uncertainty of the
measurement results.

The measuring instrument and the system under test are shown in Figure
4.2. The choice of keeping the monitoring system and R&SAClock on different
nodes is justified by the need of minimizing the intrusiveness of the monitoring
system on the operative system of the node the R&SAClock is installed on. For
the same reason, the option of having the reference clock as a second clock on
the same node of R&SAClock is not considered. In addition, when multiple
validations are to be made, it is more practical not to install a second (reference)
clock on all the systems under test.

PC_GPS PC_R&SAC
Controller Client

% (approximation of )
reference clock

&%
Y

G

local clock

NTP Servers

Figure 4.2: The measuring instrument and the system under test.

GPS

Our choice is to have a node (PC_GPS) including the reference clock and the
monitoring system. It is a HP Pavilion desktop. Being synchronized to a high
quality GPS receiver, the PC_GPS local clock is suitable to act as the metrological
reference clock as it is orders of magnitude closer to the true value of current
time than the clock of the target system.

The monitoring system consists of a software component for the control of the
experiment (Controller hereafter) that is composed of an actuator that triggers
the Client to make it request the enriched time value to R&SAClock, and of a
monitor that receives and processes the information received from the Client
about the completion of the getTime requests, accesses the reference clock, and
writes data on the disk. The Client is a software component located on the
target system, which performs injection functions to inject the faultload and to
generate the workload, and probing functions to collect the relevant quantities
and write this data on the disk.

PC_R&SAC is a Linux PC connected to (one or more) NTP servers by means
of an Internet connection and to the PC_GPS (another Linux-based PC) by means
of an Ethernet crossover cable.
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The Controller and the Client are two high-priority processes that communi-
cate using a socket. Figure 4.3 shows their interactions to execute the workload.
The Client waits for Controller’s commands. At periodic time intervals, the
Controller sends a message containing a getTime request and an identifier ID
to the Client, and logs ID and the Controller.start timestamp. When the Client
receives the message, it logs ID and the Client.start timestamp and performs
a getTime request to R&SAClock. When the Client receives the enriched time
value from R&SAClock, it logs the enriched time value, the Client.end timestamp
and ID, and sends a message containing an acknowledgment and ID to the
Controller. The Controller receives the acknowledgment and logs ID and the
Controller.end timestamp. At the end of the experiment, the log files created on
the two machines are combined pairing entries with the same ID and data are
processed.

PC_GPS PC_R&SAC
Controller Client | |R&SAClock
;,;\-“get:time D=t
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@r/" /nack lD=1”"
s ./ J
g &[T A
0 ¢ K “get:time ID=2"_| 99
«"‘; \50 OE ——get {;
:];": O§ ;“ c\%’ ;'; ge \tlmeo )
"7 /| Enriched Time
L—OG .‘ ] Value
e /“ aCK °

Figure 4.3: Controller, Client and R&SAClock interactions to execute the workload.

Controller and Client interact to execute the faultload as follows. The Con-
troller sends to the Client the commands to inject the faults (that are enlisted
in the following), and logs the related events. The Client executes the received
command and logs the related event. Data logging is handled by NetLogger
[73], which guarantees negligible intrusiveness.

As stated before, the enriched time value should be compared to the reference
time at the instant T3 i.e., t(T3). For t(T3), the following relation holds (see also
Table 4.2 for a definition of the symbols used):

t(T3) € (t(Tq) +01 + A3, t(Th) + A1g — 02 — 1). (4-3)
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Symbol | Definition

T time instant when the getTime request is started from the PC_GPS

T, time instant when the getTime request is started from the Client
towards R&SAClock

T3 time instant when R&SAClock completes the evaluation of the

enriched time value

Ty time instant when the enriched time value reaches the PC_GPS
i.e., the PC_GPS comes to know that R&SAClock has calculated
the enriched time value

t(Ty) reference time at the time instant T;

51,62 minimum transmission time (respectively, from PC_GPS to
PC_R&SAC and vice-versa)

T time elapsed between t(T3) and the beginning of the transmission

plus the time elapsed between the reception of the ack at PC_GPS
and the actual timestamping instant

Axy time interval [t(Ty) — t(Tx)

Table 4.2: Time instants and time intervals involved in a gettime request.

If the hypothesis of 57 + 02 being much smaller than A3 is correct, it is
possible to reduce the uncertainty on t(T3) to a small interval. Thus, the ful-
fillment of REQ2 can be verified by comparing the output (minTime, maxTime)
with the interval (T7 + 81 4+ A3, T4 — d2 — 1) shown in Figure 4.4. T3 is assumed
to be the median of this interval. The main contribution to the uncertainty on
T5 is given by the resolution, that is the amplitude of the interval where T3
falls. In the experiments such interval has come out to be of the order of 100us
(microseconds).

T3
i B3 i
|—61—!
: | H—I
T, T,+6, T 46,40, T,6,T T,

Figure 4.4: Time interval containing T3.

A reasonable hypothesis underlying equation 4.3 is that the delay between
any T; and the time its corresponding timestamp is taken, is the same for any
i. Moreover, it should be noted that Ay3 and A4 are measured on different
machines and, therefore, the interval in equation 4.3 could come out to be empty
(due to severely different drifts). In such a case, the monitoring system can
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estimate t(T3) by subtracting 0, and T from the time provided by its clock (i.e.,
the reference clock) at T4, when it receives the ack:

t(T3) =t(T4) = 02— (4-4)
4.2.4 Preparation of the structure of the results

In the star-schema of Figure 4.5, the facts table is R&SAClock_FACTS: the table
contains an entry for each enriched time value request performed by the moni-
toring system. Each entry is composed of the following values: MONITOR start,
MONITOR .end, Client.start, Client.end, likelyTime, minTime, maxTime, and flag.

TR
id INT id INT
@ #Processors INT < description TEXT
4 Processar Speed INT <% number_aof _clients INT
< RAM IMT 4 experiments_duration DOUBLE
< RAM Speed INT _ < request_for_second INT
& RAM Access Time FLOAT P GT_d INT
4 03 Suplier YARCHAR{45) < monitar_start DOUELE
% 05 Version YARCHAR(45) < mornitor_end DOLBLE
¢ 05 Release YARCHAR(4S) @ rsaclient_skart DOUBLE
% Cost T % rsaclient_end DOUBLE d INT

< likehykal DOUBLE < description TEXT
< mintai DOUBLE % injecion_start DOUBLE

< maxta DOUBLE < injection_end DOUBLE
4 flag BOOLEAN

! Expetiments_dim_id INT
! Phase_DIM_id INT

¥ SUT_DIM_id THT

¥ Workload_DIM_id INT

P Faultinad_DIM_id INT & start_date DATETIME
! Algorithm_DIM_id INT & end_date DATETIME

4rdescription TEXT

m

"id TMNT
4 description TEXT

Indexes

Tid INT

ul

id INT
4 wersion VARCHAR(4S)
< description TEXT

Indexes

Figure 4.5: Results presented by a star-schema.

The dimensions tables are six: Phases_DIM, Workload_DIM, Faultload_DIM,
Experiment_DIM, SUT_DIM and Algorithm_DIM. Phases_DIM contains the
identified scenarios, Workload_DIM contains the workload parameters (e.g., ex-
periments duration and number of getTime requests per second), Faultload_DIM
contains the faultload used in the experiments, Experiment_DIM contains infor-
mation on the experiments, SUT_DIM contains the description of the system
under test, and Algorithm_DIM contains the description of the synchronization
uncertainty algorithm in use.

4.3 ANALYSIS OF RESULTS

We describe the offline analysis of measurement results collected. We subdivide
the analysis in two phases: i) a data staging phase to structure and integrate the
logged events in a database, and ii) the analysis of measurement results.
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The data staging phase is composed of three steps: log collection, log parsing
and database loading. In log collection the logged events are merged in a unique
log file using NetLogger’s API (Application Programming Interface). In log
parsing we use an AWK script (AWK is a programming language for processing
text-based data [153]) to parse raw data and create CSV files, that are easier
to handle than the raw data. In database loading we create SQL (Structured
Query Language [71]) queries starting from the content of CSV files to populate
the database. This structure allows comparison of data collected from different
experiments and target systems. For example, in [21] it is used to support
comparison of different versions of the R&SAClock.

In the following, after discussing some preliminary results that allow to single
out the optimal choice for the synchronization period, which is one of the
parameters of NTP, some results are commented with the aid of figures trying
to put in evidence their dependence from the parameters of the SPS algorithm
and of the experimental setup. Then, the behavior of R&SAClock when some
realistic faults are injected and under stress conditions is evaluated.

The results are expressed in terms of coverage and performance. The former,
which permits to evaluate the fulfillment of REQ2, is calculated as the ratio of
the time the algorithm is wrong (i.e., the reference time instant does not fall
within the interval provided by the algorithm) to the observation time. The latter
is evaluated as the ratio of the average distance between likelyTime and globalTime
to the average width of the interval provided by the algorithm. As regards the
fulfillment of REQ1, Section 4.3.6 includes an analysis of the response time of
R&SAClock.

For each experiment, both the coverage and the performance are separately
evaluated for the first 6 hours and the last 4 hours of each experiments (transient
and steady-state, respectively).

We performed the experiments using as PC_R&SAC three different PCs (from
our lab) of different factories and quality, executing different Linux versions and
different NTP versions (4.0 or newer). The three PCs show a drift that varies
from 22 ppm (parts-per-million) to 61 ppm.

As stated before, we have to check REQ2 with respect to the time instant T3
i.e., REQ2 is fulfilled if equation 4.3 is verified. Actually, R&SAClock reads its
local clock at an instant between T, and T3, namely T*, and then processes its
data to compute the enriched time stamp and make it available to the client at
T3. This introduces a systematic error in the likelyTime equal to the deterministic
component of T3 — T*, which depends from R&SAClock implementation. The
results of our very first experiments gave evidence of this systematic error.

Therefore, according to the GUM [g5], which states that any systematic error
should be estimated and corrected, the R&SAClock has been modified as follows.
Just before giving its output result, R&SAClock reads the local clock once again
to estimate T3 — T* and adds this corrective term to the enriched time value
provided to the client.
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4.3.1  Effects of the synchronization period

Preliminary executions of the SPS algorithm made evident that the SPS fails
to satisfy its coverage requirement when NTP is configured to perform sparse
synchronization (an average of one synchronization every 10 minutes). The
problem is due to the assumption that the offset (and the estimated offset
computed by NTP) fluctuates around zero.

While in a long-term observation period it is reasonable to model the offset
as a zero-mean normally distributed random variable, when NTP performs
sparse synchronizations it is likely that the short-time average of the offset
is different from zero. The fact that NTP keeps the assumption of the offset
fluctuating around zero thus leads to an error in the offset estimation. Though
small (hundreds of microseconds in our runs of the experiments), this error is
sufficient to make the global time continuously outside of the interval (minTime,
maxTime).

In Figure 4.6 an example of this behavior is given. The configuration param-
etersare p =1—10"%, M = N = 40, 1 request per second (req/s). The central
line, marked as likelyTime, is the offset, the upper and lower lines, marked as
maxTime and minTime, are respectively the difference between maxTime and
the reference and between minTime and the reference time. NTP is set to have
variable synchronization periods between 16 s, which is the minimum possible
value, and 128 s.

<——maxTime

likelyTime

Milliseconds

<—minTime

o

Hours

Figure 4.6: Variable synchronization period.

At the beginning, minTime and maxTime converge towards likelyTime. After
hour 8, the global time is continuously outside of the interval (minTime, maxTime).
In order to avoid such a poor performance, in all the subsequent experiments,
the synchronization period of NTP has been chosen equal to 16 s.
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4.3.2  Effects of the algorithm memory depth

Figure 4.7 shows how R&SAClock behavior varies with its memory depth
(we vary the parameters M and N). The other configuration parameters are
p =1—10"°, while the workload is 1 req/s.
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(a) Memory depth M = N = 80. (b) Memory depth M =N = 10.

Figure 4.7: Results for different values of the memory depth.

Figure 4.7a shows the results when the algorithm processes the last 80 offset
and drift samples (M = N = 80), whereas Figure 4.7b refers to M = N = 10. It is
evident that a deeper memory permits to keep the synchronization uncertainty
low when the local clock is slightly unstable (i.e., when the likelyTime line is
close to the zero). In fact, the distance between minTime and maxTime is much
lower in Figure 4.7a than in Figure 4.7b. When only 10 samples are processed,
in fact, any small variation in the offset or in the drift provokes a great increase
in the synchronization uncertainty computed by R&SAClock.

However, after the transients, that is either at the beginning or after the local
clock has experienced some instability (see hour 9 in Figure 4.7a), the algorithm
takes more time to reduce the computed uncertainty when it has a deeper
memory, which may not be desirable.

This is the reason why 40 samples (M = N = 40) appears to be the most ade-
quate choice, unless some a priori knowledge on the clock behavior is available.

4.3.3  Effects of the synchronization uncertainty confidence level

As stated before, the choice of the probability p is directly linked to the confi-
dence level for the synchronization uncertainty computed by R&SAClock. Figure
4.8 shows the results for p = 0.99 and p = 0.9999, the workload being 1 req/s,
and the memory depth being 40 samples.

When the confidence level p is 0.99, the interval [minTime, maxTime] is much
narrower than when p is 0.9999. However, this implies that here and there such
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On the contrary, a wider interval more likely includes the zero, but represents a
wider synchronization uncertainty.
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(b) Coverage level p = 0.9999.

Figure 4.8: Results for different values of the coverage level.

4.3.4 Summary of the results

Table 4.3 summarizes the results of the experiments carried out with one of the
PCs, after fixing the NTP synchronization period equal to 16 s. For the sake
of brevity, similar outcomes that are achieved with the two other PCs are not
enlisted. As expected, the coverage decreases with the confidence level p. In all
the cases, the coverage is definitely very good, as it is higher than 0.99 even for
p = 0.99. Thus, REQ2 can be considered as fulfilled with success. Regarding the
performance index PI., it increases when p is lower. As regards the choice of
the number of samples to process, the figures confirm that 40 is by far the best
option, as it grants good performance both in the transient and the steady-state
phases, whereas a choice of M = N = 80 has extremely poor performance in the
transients, and only a slight enhancement in the steady-state.

. M, N Transient (start-up) phase | Steady-state phase

C PI [107] C | PL[1077]
0.999999 10 1 0.403 1 11.63
0.999999 40 1 73.095 1 25.90
0.999999 80 1 0.012 1 29.10
0.9999 40 1 5.618 1 111.1
0.999 40 1 52.225 0.9999 52.44
0.99 40 0.992 68.758 0.9949 32.40

Table 4.3: Coverage and performance results.
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4.3.5 Experiments in the presence of faults

Failure in the communication. After the experiment has been running for one
hour, the port 123 is closed, thus the NTP client is still active on the PC and
disciplines the clock, but on the basis of “old” data about the offset and the drift.
In such a case, R&SAClock increases the synchronization uncertainty until fresh
data are available, but keeps on providing correct results, since the reference
time is within the output interval (see Figure 4.9a, which is related to p = 0.9999,
from hour 1 to hour 2). After hour 2, the port is re-opened and NTP has fresh
data to process. Thus, after about 45 minutes, that is the transient needed to
collect M = N = 40 new samples (considering the actual sample collection
period is about 4 times the NTP synchronization period), the synchronization
uncertainty dramatically decreases.

<«——maxTime

likelyTime,

Milliseconds
o
Milliseconds

Failure
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minTime
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. . , . . . . .
0 1 2 3 4 5 0 1 2 3 4 5
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(a) A failure occurs in the NTP communication. (b) A temporary channel congestion occurs.

Figure 4.9: Results of injection experiments.

While R&SAClock can go on working properly even if the communication
between the NTP client and the server(s) goes down for one hour, killing the
NTP process implies a quick loss of synchronization, even with p = 1—107°.
This happens also when the NTP process is killed after one hour of correct
functioning. Such behavior could be easily expected, as now the clock is not
conditioned anymore, whereas in the previous case it went on being conditioned,
even if on the basis of old data.

Channel congestion. In this experiment, packets incoming on the port 123
are randomly delayed of a time interval uniformly distributed between 10 ms
and 20 ms. In other words, we are making NTP work in the conditions of an
asymmetric channel.

What happens in this case is that NTP gets convinced that it has to correct
the clock of an amount of time which is around 7 ms, not surprisingly about
half the average time we have delayed the packets. R&SAClock is unable to
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keep the reference time within its output interval: Figure 4.9b shows the results
obtained for p = 1 —107°, when after one hour we start to delay the incoming
packets. The dot-marked line is the offset estimated by NTP. NTP assumes the
communication channel is symmetrical and corrects the clock in the wrong
way. Then, the confidence interval becomes narrower and narrower, until after 1
hour 50 minutes from the beginning of the experiment, the reference time goes
outside R&SAClock output interval (the circle labeled as failure). Then, after
hour 2, we stop delaying the packets. R&SAClock first widens the confidence
interval as a consequence of the transient, but finally converges.

Poor quality of the local clock. In this experiment, after the first hour, the
drift of the local clock is modified every 60 s of a random quantity between —25
ppm and 25 ppm. Then, after a further hour, the local clock is left to its own
behavior till the end of the experiment. With a confidence level p = 1—10"¢,
R&SAClock succeeds even with such a poor clock (coverage = 1). With p = 0.99,
the coverage is 0.999.

4.3.6  Behavior under stress conditions

We conclude our analysis investigating the behavior of R&SAClock under stress
conditions, created by means of a suitable workload generator [169]. The goal
is to evaluate the ability of R&SAClock to satisfy very frequent requests and
thus these experiments focus on the implementation of R&SAClock software
prototype itself. In experiments of the duration of 30s, when multiple clients are
making getTime requests to R&SAClock, the mean response time of R&SAClock
showed a regular behavior, which doubles when the system CPU is stressed.
Regarding the throughput i.e., the number of getTime request completed in the
unit of time, it is seriously reduced when the CPU is stressed. However, for a
given operating condition of the CPU (idle or stressed), the throughput does not
seem to be affected by an increase in the number of concurrent clients, as long
as this is below 50.

4.4 CONCLUSIONS AND RECOMMENDATIONS

We applied the methodology for experimental evaluation to validate a software
clock that is designed to be aware of its synchronization uncertainty. The pro-
posed methodology permits to achieve a resolution of the order of hundreds of
microseconds.

The coverage of the software clock as it comes out from the experiments
is excellent, except when the communication between the NTP client and its
server(s) is of extremely poor quality. What is really satisfying is the 100% cover-
age experienced when the confidence level is above 0.999. This is, R&SAClock is
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suitable for applications needing a very high coverage, provided the parameters
are adequately chosen.

As regards the requirement of a prompt response by the clock, it is usually of
the order of 1 ms for a single client.

Future work should be oriented to modify R&SAClock in order to reduce its
processing and execution time, and to adapt the validation set-up in order to
validate R&SAClock in scenarios when it is synchronized through a GPS receiver
instead of NTDP, calling for a further reduction of the validation methodology
resolution.

The measuring instrument developed and the available solution for data
parsing, loading and analysis can be reused to ease comparison of data, re-
execution of the experiments, and (well-organized) data archiving. An example
can be found in [21], where two different algorithms to compute synchronization
are compared.



TIME MEASUREMENTS IN DISTRIBUTED PROTOCOLS

In this Chapter we focus on the design, implementation and metrological assess-
ment of a new tool for dependability measurements in distributed protocols,
which allows the user evaluating the uncertainty of measurement results in-
volving time interval measurements, and a related experimental campaign
performed to collect distributed round-trip delays on a Wide Area Network
(WAN).

The tool comes from the integration of Neko/NekoStat, a powerful highly
portable Java framework for the analysis of distributed algorithms [179], [63],
with a Java/C++ version of the R&SAClock. Details on the R&SAClock and
fundamentals on time and clocks applied in this Chapter are presented in
Chapter 4. The tool is presented along with an experimental case study [26],
[25].

With respect to the methodology presented in Chapter 3, this case study
focuses more on the design and implementation of the measuring instrument
and on the collection of trusted measurement results than on the execution of
experiments and presentation of results. This is why in the following of the
Chapter we do not detail some of the phases that are part of the methodology,
but instead we concentrate on tool design, implementation and assessment.

The following of this Chapter is organized as follows. In Section 5.1 the Neko
and NekoStat tool, that are the measuring instruments used, are presented; in
Section 5.2 the improvement of NekoStat to be aware of uncertainty in time
measurements is shown, and in Section 5.3 a case study where the measuring
instrument is exercised to evaluate a simple distributed protocol is illustrated.
Conclusions and recommendations are in Section 5.4.

5.1 THE NEKO AND NEKOSTAT TOOL

Neko [179] is a simple but powerful highly-portable Java framework that allows
defining and analyzing distributed algorithms. One of its most interesting
features is that the same Neko-based implementation of an algorithm can be
used for both simulations and experiments on a real network. The architecture
of Neko can be divided into three main layers, which are from the top layer to
the bottom layer (Figure 5.1):

e applications, which are developed by the programmer/user,

* NekoProcesses, which are the core of the testing framework, and
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e networks, which are network interfaces (towards real or simulated net-
works).

suopesijddy

send deliver send deliver

NekoProcess, NekoProcess,,

]
]
Network
(simulated or real)

Figure 5.1: The Neko architecture [179].

ssa@20.d
SEI]

SHIOM)ON

Neko can be used to tests distributed algorithms and systems. It allows to
test a system searching for qualitative (“on/off”) properties, such as termination,
validity, integrity, and agreement.

The tool is equipped with supports to obtain execution traces, both on sim-
ulated and on real environments. The potentialities of the Neko tool in the
rapid prototyping of distributed algorithms are thus evident: the possibility to
use simulated networks allows analyzing the algorithm in different conditions
(variable transmission delays, different probabilities of message losses, network
congestion, etc.) and, after that, it is possible to test the algorithm in real en-
vironments. Neko is thus very useful and versatile to test new algorithms, or
to compare already existing ones. Neko also allows performing fault injection
experiments at the network level as well as at the level of communications
between layers, and thus it can be used to study the behavior of the analyzed
algorithm with respect to specific injected faults or exceptional situations.

NekoStat is an extension to Neko that provides it with the ability to collect
events and to analyze them by means of statistical and mathematical tools [63].
Following the same idea underlying Neko, through NekoStat it is possible to
perform quantitative analysis of distributed algorithms, using both simulative
and experimental approaches.

The NekoStat functionalities and the related components implementing them
can be subdivided into two sets: mathematical functionalities, that handle the
numerical quantities, and analysis functionalities, that collect and analyze distri-
buted events. The implementation of the mathematical functionalities is the
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same both for simulation and real executions, whereas analysis supports are
internally different, still with a common interface. The evolution of experimental
analysis with NekoStat can be subdivided into different phases. In the first phase
the application layers and the EventCollectors are activated; at the occurrence of
an event, the application layer calls the StatLogger, which saves the event in the
local EventCollector.

At the termination of the experiment run, the StatLogger of the slaves sends
the local EventCollector to the master. The master can thus construct the global
history, merging all the events of the EventCollectors. At this point the last phase
of the analysis can start; the master StatLogger calls repetitively the StatHandler
with the information of every event of the global history. The same StatHandler
can thus be used both for simulative and experimental analysis of an algorithm
(Figure 5.2).

. Stat Event

Handler Coliector
Quantity

StatLogger StatLogger
Master Slave

StatLayer StatLayer

Event
ListFragmenter Collector ListFragmenter

ClockSynchronizer

ANG

Figure 5.2: Scheme of NekoStat functioning.

The main limitation of NekoStat as an instrument for dependability measure-
ments on distributed systems is that it does not allow evaluating the quality of
the measurements it performs; as is, NekoStat cannot be qualified as a suitable
measuring instrument. Apart from the formal metrological correctness, there
is the practical risk that the tool collects measurement results which are not
reliable, without discarding them before the data processing.

In order to enhance NekoStat to overcome the limitations previously men-
tioned, attention has been focused on time interval measurements, which consti-
tute a large majority of the direct measurements carried out by people working
in the field of dependability, as stated in Part i. When measuring time intervals
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in distributed systems, the most serious threat is represented by poor alignment
of distributed clocks to a (unique) global time view.

Simply using a synchronization mechanism like NTP does not allow to fully
trust the resulting offset, nor provides guarantees on the stability of the syn-
chronization along time. This is the reason why using time values obtained by
local clocks to compute time interval measurements, even if they are controlled
by a synchronization mechanism, can be unsatisfactory in many evaluation
tools. To face this problem, the NekoStat analyzer has been integrated with the
R&SAClock component described in Chapter 4.

5.2 IMPROVEMENT OF THE MEASURING INSTRUMENT NEKOSTAT

The proposed measuring instrument is an integration of NekoStat with the
R&SAClock software component. With reference to the classification of the
means to attain dependability, the proposed tool can be labeled as a quantitative
instrument for fault forecasting that can be also used for fault removal. As
depicted in Figure 5.3, the R&SAClock substitutes the typical NekoStat clock,
that is a virtual clock instantiated by NekoStat.
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Figure 5.3: Instrumenting the system with the R&SAClock.

A measurement algorithm on NekoStat that exploits the R&SAClock can
impose an accuracy requirement, that is the worst synchronization uncertainty
that the application can accept in order to work correctly. The accuracy required
by the application is a time value that is given in input to the enhanced ver-
sion of NekoStat at the beginning of the experiment through its configuration
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file. Thus, R&SAClock can give value to its output FLAG, which is a Boolean
value indicating whether the current synchronization uncertainty is within the
accuracy requirement or not.

As a further useful feature, in addition to the evaluation of the uncertainty
of time interval measurements, NekoStat can directly exploit FLAG to filter
measurement results affected by unacceptably high uncertainty, and exclude
them from the successive analysis. An example of the application of this feature
is given in the next Section.

In the version that has been integrated in NekoStat, R&SAClock has been
implemented in Java/C++ for the NTP synchronization protocol and Linux
operating system (OS). R&SAClock lays on NTP synchronization protocol and
uses data and functionalities provided by NTP (via NTP-related system calls)
to get current time from virtual system clock, and values necessary to feed
the internal mechanisms that compute synchronization uncertainty. The time
resolution of the proposed tool is 1 ms, which is the resolution of the Java virtual
machine clock.

5.3 EVALUATION OF A SAMPLE DISTRIBUTED PROTOCOL

In the following, a simple but significant experiment is presented. It shows the
value added to NekoStat by the R&SAClock in terms of reliability and quality
of measurement results.

5.3.1 Objective of the experiment

The purpose is to measure the distribution of one-way delays (OWDs) on an
intercontinental end-to-end one-way transmission channel. In distributed com-
puting systems, OWD measurement is important to estimate some fundamental
dependability and networking metrics (examples are the Mean Time Between
Failure, Mean Time To Failure [12], or bandwidth parameters [151], [6]).

5.3.2 The target system

The communication path is an end-to-end User Datagram Protocol (UDP) chan-
nel on a Wide Area Network (WAN) between two nodes. It is a basic example of
a distributed application. No information on the network path or the competing
traffic is available. The hosts used for the experiment are two Linux servers:

* rcl.dsi.unifi.it, connected to the network of the University of Firenze (Italy),

* dmz.crhc.uiuc.edu connected to the network of the University of Urbana
(Illinois, USA).

The clock synchronization mechanism chosen on both servers is NTP.
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5.3.3 The experiment planning and the measuring instrument set-up

Each transmission delay is measured as the time between two events (detected
by NekoStat), the sending of a message by the sender process and the delivery
of the message at the receiver’s side. The R&SAClock allows associating the
synchronization uncertainty of the local clocks at the time the events occurred.

The experiment is built as follows. The NTP daemons of sender and receiver
hosts are started at the beginning of the experiment, when the two clocks are
about 120 ms apart from each other. Then the NekoStat application is run and
collects the events on the sender and receiver processes (at the rate of one event
per second; note that some events may have been lost due to the use of the UDP
transmission protocol).

Before starting the time interval measurements, R&SAClock is activated on
both hosts. R&SAClock is set up on the two systems with the same configu-
ration profile. The initial drift bound on both servers has been set to 20 ppm
(this bound has been computed on the basis of our experience on NTP drift
manipulation, and our observation on past behaviors of the drifts on the servers).
Then, instead of simply including measurement uncertainty, which is related to
the synchronization uncertainty, in each measurement result, a feature of the
R&SAClock is exploited to process the data. Specifically, the R&SAClock evalu-
ates the uncertainty associated to each one-way delay measurement, compares it
to a threshold, represented by the value of applicationAccuracy and consequently
forces the value of the parameter FLAG either to 0 or to 1.

In the experiment, if the FLAG value is 0 on both sender and receiver, this
implies that the precision 7t of the global system is lower than 8 ms, otherwise
it is greater than 8 ms. The value 8 ms has been arbitrarily chosen; it is about
10% of the delay that we commonly experienced by a packet transmitted on our
intended path (see Section 5.3.2). Thus, at the end of the experiment, each one-
way delay measurement result is associated to a value of the output parameter
FLAG. NekoStat gives two output files: one containing all the obtained measure-
ment results, and another including only the results affected by “acceptable”
uncertainty, according to the value of FLAG. This way, the comparison is made
possible.

5.3.4 Execution and analysis of results

Operatively the experiment is run only once, using the new version of Neko-
Stat. That is, measurement results are collected only once, but data are then
successively analyzed twice; the first time ignoring the information on mea-
surement uncertainty provided by the R&SAClock (as one would do with the
previous version of NekoStat), and the second time exploiting the information
on measurement uncertainty for the data analysis (done by the new version of
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NekoStat). In this case, the major contribution to measurement uncertainty is
given by synchronization uncertainty. In addition to that, we have uncertainty
due to the logging of events (i.e., the time needed by the operating system to
collect information about events); this action has a negligible impact, that is
surely under the Java virtual machine clock resolution, which is equal to is 1 ms.

Figure 5.4 shows all the obtained OWD measurement results, corresponding
to a total of about 34000 samples. By looking at these results, one may think that
the one-way transmission delay follows a multi-modal distribution, apparently
suggesting that multi-modes are due to network perturbations — which looks
sensible, whereas it is deceptive. Indeed, the multi-modality is only apparent, as
it is caused by the poor quality of some measurement results.
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Figure 5.4: OWD measurement results.

In fact, if results are filtered to exclude those characterized by poorer synchro-
nization, the distribution depicted in Figure 5.5 is achieved. Figure 5.5 shows
the OWD measurement results affected by “acceptable” uncertainty, which are
9109 out of a total of 34049 results, reported in Figure 5.4. This figure shows that
OWD in the path considered for the experiments can be reasonably modeled as
either mono- or bimodal. Due to the evaluation of synchronization uncertainty;,
made possible by the new feature NekoStat has been equipped with, a deceptive
and erroneous interpretation of the measurement results has been avoided.

In fact, if it is reasonable that different paths are utilized and/or competing
traffic met by each packet varies, and we cannot be 100% confident that the
OWD distribution is simply mono- or bimodal, it is also notable that a smoother
OWD distribution is attained taking into account uncertainty in the analysis of
measurement results.
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Figure 5.5: OWD measurement results characterized by synchronization uncertainty
lower than 8 ms.

In other words, this does not mean that we have measured competing traffic
or exactly determined how many network paths are involved, but we have for
sure increased the quality of measurement results.

5.4 CONCLUSIONS AND RECOMMENDATIONS

We presented an enhanced version of NekoStat, a tool supporting the analysis of
distributed algorithms and systems, which has been equipped with R&SAClock,
a software component capable of evaluating the uncertainty of time intervals
measurements.

In fact, when dependability measurements involving time interval direct
measurements are considered (and this is very often the case with regard to
distributed systems), erroneous analysis of measurement results can be avoided
thanks to the evaluation of synchronization uncertainty, which has been made
possible by the proposed tool. The comparison between the results of the experi-
ment carried out with and without R&SAClock show that following a correct
approach when designing a measuring instrument is not just a question of for-
mal correctness, but gives clear practical benefits to the analysis of measurement
results.

A final remark is that the R&SAClock solution proposed to improve the
experimental evaluation of distributed systems may also be applied to improve
time measurements for network and QoS monitoring. Although not explored
in this Thesis, examples of such approach can be found in [72], [37] where
uncertainty information is exploited to improve diagnosis of congested channels.
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SOA (Service Oriented Architecture, [148]) is a wide-spreading architectural
style used by many organizations. A SOA consists of several interacting services
that are designed to support the critical backbone infrastructure of organizations.
Software resources are packaged as “services” (and especially Web Services, WS,
the most popular type of services available nowadays), which provide standard
business functionalities and are independent from the state or context of other
services [148].

Services have a published interface and communicate with each other by
exchanging messages. In the particular case of Web Services, WSDL (Web
Service Description Language, [148]) files are exposed and SOAP (Simple Object
Access Protocol, [148]) messages are exchanged (the prior describe the network
services as a set of endpoints that operate on messages in a cross-platform way
and the latter represents requests for the execution of operations).

SOA allows developers to overcome many distributed computing challenges,
as software interoperability and reuse, adaptation (modification, reconfiguration
and flexibility) and evolution of the infrastructure. Due to their intrinsic char-
acteristics, SOAs are becoming a fundamental support for many organizations
to implement business-critical processes. However, the flexibility and dynam-
icity of SOA raise important issues that may prevent the applicability of this
architectural style to its full extent [70].

A relevant issue is V&V of SOAs. In fact, the provider (or the stakeholder)
of some services may not be aware of the existence of other services (or may
not have their control). Additionally, a SOA evolves during in-service, meaning
that services may be modified or new services can enter/exit the system while
in operation. Solutions for online V&V are deemed necessary as common
approaches for traditional, offline V&V conducted before deployment cannot be
fully applied in SOAs [70].

Amongst the possible V&V solutions, we focus on lifelong testing of SOAs
[70], [16], [13], to present a testing tool and related testing methodology for
lifelong testing of SOAs. The approach for the design and use of our measuring
instrument is based on the methodology of Chapter 3, and defines service
discovery and testing actions that are applied via the introduction in the SOA
of a testing service. Emphasis is put on the sharing of information between
providers, both in terms of knowledge of the SOA and results (outputs) of the
testing activity performed. A shared database is maintained and accessed by the
providers to acquire the information they need.
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The rest of this Chapter is organized as follows. Section 6.1 describes the
SOA environment that is at the base of our research, Section 6.2 presents the
architecture of our testing service and Section 6.3 sketches the main algorithms
used. Section 6.4 shows the case study and finally in Section 6.5 conclusions are
drawn. Further information can be found in [38], [39].

6.1 ENVIRONMENT DEFINITION

In the context of this work, a SOA is described from the point of view of the
providers interested in performing continuous validation.

We propose a representation for the SOA components which later serves to
support the testing approach. This view does not yet consider the testing service
as part of the SOA (it will be introduced in the next Section).

There are four key components in our approach: BPEL services (the WS-
Business Process Execution Language [138], or simply BPEL, is a standard for
business-critical process definition, which describes the interactions between
businesses or elements in some business), controlled services, within reach services,
and unknown services. The following paragraphs describe these components.

A BPEL service is a service that runs a BPEL process and to which a provider
can have full access. We assume that the provider has access to the description
(implementation) of the BPEL service.

A controlled service is a non-BPEL service owned by the provider or to which
the provider has access to extensive information such as the source code or the
executable files including debugging information.

A within reach service is a service that is part of the SOA and is known by the
provider; however the provider is not able to control it (except invoking it). A
within reach service may also be a service that runs a BPEL process. In practice,
the provider does not have access to the internals of a within reach service and
can only access the interface exposed via the WSDL file.

An unknown service is a service that is part of the SOA, but whose existence
and details are not known by the provider.

Obviously, it is not mandatory to have the four types of services in a given
SOA (there may exist zero or more instances of each type).

The BPEL, controlled, within reach and unknown services interact as follow.
The unknown services are invoked only by other unknown services and by
within reach services (obviously, if BPEL services or controlled services invoke
unknown services, they are no longer unknown, becoming instead within reach).
On the other hand, unknown services may invoke all the other types of services
(they can also act as users). BPEL services and controlled services invoke other
BPEL services, controlled services and within reach services. Finally, within
reach services may invoke any type of services, including the unknown ones.
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6.2 ARCHITECTURE OF THE TESTING SERVICE

The testing service is part of the SOA architecture itself and is managed by the
providers (possibly by more than one) that require the continuous evaluation of
the SOA. In practice, providers share the testing service in order to share/coordi-
nate validation efforts and information on the trustworthiness of the architecture.
Including the testing service as part of the SOA provides the flexibility needed to
perform lifelong testing, overcoming the problems introduced by SOA dynamic-
ity and evolution. In fact, testing tools that are not part of the architecture may
not be able to communicate continuously with the existing services (e.g., due
to authentication issues) and, consequently, are inadequate for lifelong testing
support.

The architecture of the testing service is a composite Web Service (i.e., it is
made of several coordinated and distributed WSs) that uses basic information
provided by one or more providers about the services that each provider knows,
owns or manages. This information is used to build an initial description of the
SOA and then to automatically discover the other services that operate within
it. This view is kept up-to-date at in-service by detecting services that evolve,
enter or exit the architecture. The services enlisted in the SOA description are
periodically tested by the testing service, according to tests plans that can be
properly configured. The approach is provider-centric, meaning that it considers
the point of view of a provider that needs to trust other providers” services, and
consequently favors extensive testing even at the risk of activating dormant faults
or degrading service performance. Note that at in-service, services copies are
used to avoid service degradation and error propagation caused by the testing
activity. Whenever required (and possible), tests are performed over copies of
the services rather than real ones (copies of the real services are automatically
deployed, tested in spite of the real services, and then undeployed), to guarantee
that the testing activity does not impact service performance or activates bugs
leading to service degradation or disruption.

The testing service is composed of the following services: the testing BPEL,
the testing controlled and the testing core. The key roles and interactions of these
components are exemplified in Figure 6.1. The parameter SOA status (0 or 1)
allows distinguishing if the testing service is operating in an offline SOA or at
in-service.

The testing BPEL monitors BPEL services and manages the deploy and unde-
ploy of their copy for testing purposes. An instance of a testing BPEL is created
and started for each existing BPEL service. This instance is able to recognize new
versions of the BPEL process and to detect the services that are invoked. The
first time it is started, the testing BPEL i) reads the description file of the BPEL
service it monitors and sends the list of the services discovered to the testing
core, and ii) tests the BPEL service. From the description of the BPEL process,
the testing BPEL automatically identifies the list of the participant services and
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Testing BPEL

copy of
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| WSDL I service

Testing Controlled
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Figure 6.1: A sample view of the testing service architecture.

retrieves their addresses from the WSDL files. Note that this solution is valid
for static binding (services to invoke are known at compile time), while for dy-
namic binding (services to invoke are decided at in-service) more sophisticated
approaches are needed, but are currently not realized in our testing service. For
example, viable alternatives for dynamic binding are to apply monitoring rules
to the BPEL process as in [16], or using Aspect-Oriented Programming (AOP,
[109]) to intercept messages as in [133].

When the SOA status is set to 1, and the BPEL service needs to be tested,
the testing BPEL creates a copy of the BPEL service by re-deploying it using a
different name. If this copy of the BPEL service interacts with some others BPEL
services or controlled services, copies of such services are also automatically
deployed. The copied BPEL service then interacts with such copies instead of
with the real services. Obviously, the invoked within reach services are used as
they are. Note that all the copies deployed are automatically undeployed when
the test completes.

Similarly to the testing BPEL, an instance of a testing controlled is created and
started for each existing WS, and the testing controlled monitors the controlled
service detecting the services it invokes. Additionally, the testing controlled
support testing of the controlled service (including the deploy and undeploy of
a copy of the controlled service for testing purposes during in-service testing).

The testing core is the main component of the testing service as it is in charge
of guiding the SOA testing activities: it selects the testing policies (when, what
and how to test), it collects and merges results, it traces the SOA evolution using
information received from controlled services, from BPEL services and directly
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notified by the providers, and it starts and halts the testing BPEL and testing
controlled.

6.2.1  Execution and interactions of the testing service

The testing core service maintains and updates the SOA description using the
information received from the providers and from the testing BPEL and testing
controlled services. If new providers join the testing service, then it uses the
additional information they may offer.

The testing core selects the services to test in the following way:

e if it is a within reach service, the test is executed by a testing module of the
testing core from an external point-of-view (by applying black-box tests
through the service interfaces, as proposed in [115]);

e if it is a controlled or BPEL service, then the test can be executed directly
by the testing module of the testing core (when considering black-box
tests) or by the controlled and BPEL services (when considering white-box
tests).

Test results are available to the providers that use the testing service.

The testing core receives information about the SOA status (0 = offline, 1 =
in-service) from the provider, and sends that information to the testing BPEL
and testing controlled services. If the SOA status is 0 (offline), then the services
are tested without deploying copies: during offline testing, the services are not
open to users and there are no major risks regarding error propagation or service
degradation.

On the other hand, if the SOA status is 1 (in-service), the testing BPEL and
testing controlled services create and test copies of their target services, in order
to avoid, or at least limit, the risk of service degradation and error propagation
(a web server typically isolates the various services that it is executing). Note that
within reach services cannot be copied (the testing service has no access to the
internals of within reach services and consequently it is not able to automatically
instantiate a copy). Acting from the point of view of a provider that needs to
trust other providers” services, we prefer to test services even at the risk of
activating dormant faults or degrading their performance.

Note that, if a service provider offers a testing infrastructure in parallel to the
production environment (common in web service scenarios), then it can be used
as target of the test, avoiding the deployment of copies.

In our current implementation, all tests are run by the testing module of the
testing core, which performs black-box robustness testing; also, it uses the same
test generation and execution method for BPEL services, controlled services and
within reach services.
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63 DISCOVERY AND TESTING ALGORITHMS

We describe the services discovery algorithm, the testing policy, and the testing
technique of the testing service.

6.3.1  SOA discovery and update algorithm

We only sketch the algorithm that describes the SOA discovery; a comprehensive
description of the algorithm can be found in [38].

The testing core contains the list of the services discovered (in the database
table services list). A service can be discovered via different sources: by the user
of the testing service (that manually adds it to the services list), by the testing
BPEL services, and by the testing controlled services. When the user adds a
service to the services list, he must declare it as being a within reach, a controlled
or a BPEL service.

When a service is classified as controlled or BPEL, the corresponding testing
BPEL or testing controlled service is queried for additional services it may
have discovered. Such newly discovered services are added as being within
reach. Afterwards, the various testing BPEL and testing controlled services act
proactively to notify the testing core of eventual changes and to update the list
of interacting services. Also, discovered connections amongst the services are
recorded in the database table services connections and evolution of the SOA is
traced in the SOA evolution table. Note that if a service is added by a provider
and also discovered by another source (e.g., a testing BPEL which invokes it), it
maintains the classification assigned by the provider.

A provider can manually remove from the list only the services that he
manually added. Instead, the services that were added through the automatic
discovery steps are automatically removed from the list when they leave the
SOA (i.e., when they are not required anymore by the corresponding testing
controlled or testing BPEL services).

6.3.2  Test schedule algorithm

We present the simple test schedule that is currently applied by the testing
service. More detailed scheduling policies can be set (configured) in the testing
service, but are not further explored in this Chapter.

Services included in the table services list are tested according to the policies
presented in this Section. If the SOA status is equal to 0, then no copies of the
services are performed, while if the SOA status is equal to 1, copies of BPEL
services and controlled services are tested instead of the original ones.

BPEL services and controlled services are first tested when they are added
to the services list. They are afterwards re-tested every time they are modified
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(i.e., when they evolve). On the other hand, within reach services are tested
periodically. The reason is that it is not possible to detect when the internals
of a within reach service changes (these services are remote and there is no
access to the deploy process). Consequently, we believe that periodic testing is a
good compromise to assess the service behavior (the time between tests can be
configured by the provider).

When a service is not reachable at testing time or is “not testable” (e.g.,
the service is online, but refuses connections or actions for testing), retrying
attempts are periodically performed (again, the time between retries can be
configured). Note that even if the service is not accessible, it may still be part
of the architecture: failed attempts do not lead to exclude the service from the
services list.

6.3.3 Implementation of the testing technique

The current version of the testing service executes robustness testing of WSs
through the usage of the API of the wsrbench tool [115]. Such API provide
means to automatically import and analyze the WSDL file of the target WS,
generate and execute the workload, and collect and analyze the results of the
tests. The robustness tests are invoked by the testing core, which targets the
various services one by one, collects results and stores them for further analysis.
Other types of tests can be added in the testing service by plugging the required
library, in the same way we did for robustness testing.

64 EVALUATION OF THE JSEDUITE SOA

Our testing service has been applied to the jSeduite SOA [55]. jSeduite is a free
SOA that deals with information broadcast inside academic institutions. It is
composed of atomic Web Services representing information sources and BPEL
orchestrations expressing business processes. jSeduite services use a MySql
database.

We started by identifying a subset of the jSeduite SOA, composed of 24 ser-
vices (see Figure 6.2): 6 BPEL services (represented in light gray in figure) and
18 JAX-WS (Java API for XML Web Services), represented in white. Some of the
services invoke external WSs and applications, represented in dark grey. We
distributed jSeduite on four Glassfish [172] servers (installed on four virtual ma-
chines running Linux Ubuntu OS, with addresses ranging from 192.168.81.128 to
192.168.81.131). A client application (producing a workload) is started, cyclically
querying the various services. Due to lack of space, we do not provide further
details on the experimental set-up and on the role and meaning of the services
and orchestrations involved; however an exhaustive description can be found
in jSeduite. We organized the case study in two steps, in which two different
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providers use (and share) the testing service, as described below. We set SOA
status to 1.

Figure 6.2: The subset of the jSeduite SOA selected as case study.

In Step 1, the first provider uses the testing service to test his own services
(Image Scraper and Picture Set), before opening them to external SOA users.
Obviously, the services list maintained by the testing core is initially empty. The
provider adds the services that he controls or knows to the services list. These are
the BPEL service Image Scraper (at this point, the corresponding testing BPEL is
started), the controlled service Picture Set v1.0 (at this moment, the corresponding
testing controlled is started) and two within reach services (Partner Keys Crud,
Partner Keys Finder). The testing service performs services discovery based on
the available information.

Table 6.1 presents a snapshot of the services list table and Figure 6.3 graphically
represents the part of the SOA discovered. The services automatically added
to the table are Flickr Wrapper, Partner Keys, and Picasa wrapper. These services
are discovered by the BPEL service in charge of monitoring the Image Scraper
component.

\wsd|_address | |kind_of_service last_tested ||address_gathered | test_result |retry

http://192.168.81.128:8080/jSeduite/Partnerkeys/PartnerkeysCRUDServi.. WITHIN_REACH |1287409634547 (1287409619062 Finished 1024000
http://192.168.81.128:8080/jSeduite/Partnerkeys/PartnerkeysFinderServ.. WITHIN_REACH |1287409655136 (1287409619064 Finished 1024000
http://192.168.81.128:8080/jSeduite/Partnerkeys/PartnerkeysService WITHIN_REACH |0 1287409680114 <NULL= -1
http://192.168.81.128:8080/jSeduite/PicasaWrapper/PicasaWrapperServiceWITHIN_REACH
http://192.168.81.128:8080/jSeduite/Flickrwrapper/FlickrwrapperService  [WITHIN_REACH
http://192.168.81.128:8080/jSeduite/PictureSet/PictureSetService CONTROLLED
http://192.168.81.128:9080/lmageScraperSenvice/imageScraperPort EBPEL_SERVICE

1227409680116 =<NULL> &b
1287409680117 <NULL= -1
1287409680127 <NULL> &b
1287409680113 <NULL= 1

© o © o

Table 6.1: Services list corresponding to the services discovered at step 1.

As shown in Table 6.1, the table services list contains the following data:
the WSDL address of each service (column wsdl_address); the type of service
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Figure 6.3: Services discovered at Step 1 of the case study.

(column kind_of _service, which can contain three values: within reach, BPEL,
or controlled); the most recent time it was tested, in milliseconds (column
last_tested: 0 means that it has not been tested yet); the time when the service
was discovered and added to the list, in milliseconds (column address_gathered);
the test outcome (column test_result: acceptable values are “Finished”, “Service
not reachable”, and “Error during test execution”; note that only two services
had been completely tested at the time the snapshot was captured); and the
time when the test should be retried, as imposed by the test schedule algorithm,
in milliseconds (column retry). Column retry is set after performing the test
of the corresponding service, and a retry value is selected depending on the
value of the column test_result. As controlled and BPEL services are tested only
when there are changes (and not periodically), if the test finishes with outcome
“Finished”, the value of the column retry is set to —1.

In Step 2 of the case study, the second provider starts using the testing service.
The second provider adds a within reach service (Feed Registry) and two BPEL
services (Picture Albums and Cached Feed Reader; the corresponding testing BPELs
are started) to the list. Additionally, the first provider, that owns the Picture Set
service, deploys a new version of it (Picture Set v2.0) which, compared to version
1.0, contains new connections to two other services. The part of the SOA that is
now known by the testing service is shown in Figure 6.4. For brevity, we do not
report the corresponding services list.

Services automatically added during the discovery process in this last step
are:

e Picture Album Registry, discovered through Picture Album;

e Picture Album Registry CRUD and Picture Album Registry Finder, discovered
via Picture Set v2.0; and

* Data Cache and Feed Reader, discovered through Cached Feed Reader.

Some services are discovered by more than one source, but they are obviously
enlisted in services list only once. These services are Partner Keys, Flick Wrapper,
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Figure 6.4: Services discovered at Step 2 of the case study.

Picasa Wrapper and Picture Set, which are discovered by the two BPEL services,
Picture Albums and Image Scraper. According to the proposed SOA discovery
algorithm [38], the first three services are classified as within reach services,
while Picture Set maintains the classification assigned by the provider (it remains
a controlled service). In our case study we discovered 15 out of the 24 services
(excluding the external services Picasa, Flickr, RSS service and api.wxbug.net,
considered as unknown in the context of the case study).

The providers that rely on the testing service can analyze the tests results to
identify possible robustness problems in the SOA and its services. We analyzed
the testing outcomes stored by the testing core and the most representative
robustness problems identified. According to the wsAS classification [115],
where failures are classified in ABORT failures (abnormal termination of the
execution of the WS by returning an unexpected exception) and SILENT failures
(absence of response from the service), jSeduite services are mostly affected by
ABORT failures. SILENT failures were identified only when testing the BPEL
processes.

The typical behavior of jSeduite Web Services is to reply to robustness tests
with messages formed according to SOAP standards. By inspecting the source
code, we observed that exceptions are caught (using Java throws statements and
try-catch blocks), and that the answers returned to the client are the descriptions
of the exceptions; i.e., no default values compliant to the data type expected by
the client are returned (except for some operations as the isValid operation of
Data Cache: in this operation, when an exception is caught, the answer returned
to the client is the Boolean value false and not the description of the exception).

During the tests we observed that the service Partner Keys CRUD crashes when
a malformed input value (containing null) is provided to the createPartnerKey
operation. In practice, the service tries to insert null values in a MySql table
that does not accept null values (the not null constraint is set). To fix this, we
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modified the source code of the service, adding data acceptance checks [152].
The modified version was then deployed.

Regarding BPEL processes, in some cases there was no response during
robustness tests, leading to SILENT failures (wsrbench did not receive an answer
within the allowed time interval, and consequently the wsrbench timeout expired).
This happened for example when submitting the fault Min Type Minus One
(sends the minimum number valid for the type Integer minus one [115]) in
the Image Scraper service. The reason for such robustness failures and for the
exceptions returned became evident when inspecting the source code of the
BPEL processes. In fact, we observed that some lines of execution missed proper
data input validation and exception handling: some faults were not handled
by the process itself, but the corresponding failure was managed by the BPEL
server, which contains specific policies to manage failures and create default
message responses.

In Figure 6.5 we provide a small excerpt of the testing results for the BPEL
service Cached Feed Reader (the third row from the top is expanded in the box
below). In this case, the incorrect input sent to the BPEL service is a null value,
instead of a positive integer. The BPEL process is not able to recognize that
the input parameter is an unexpected value, and it first queries the Data Cache
service (which returns false), and then it invokes the BPEL process Feed Reader
with an invalid parameter. Feed Reader returns an exception to Cached Feed Reader.
The BPEL process Cached Feed Reader does not manage the exception, which is
finally captured by the server. The process ended returning an unexpected fault
message (ABORT failure).

Figure 6.5: Cached Feed Reader: a screenshot of the results.
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65 CONCLUSIONS AND RECOMMENDATIONS

In this Chapter we presented a testing service that can be integrated in the SOA
and that is able to perform life-long testing of the architecture, by discovering
new services and automatically testing them. Our testing service, implemented
as a composite service that is subdivided in a testing core (the main component
of the testing service) and other services that are plugged to the SOA services,
supports the view of one or more providers during the whole lifecycle of the
SOA.

Information and test results are shared in our approach through the coop-
eration of the providers. In fact, the testing service is mostly effective when
information on the SOA and results of the tests are shared amongst the various
providers which rely on the testing service. However, we must note that the shar-
ing approach here proposed opens important questions, mainly i) who should
own the testing service, ii) which policies to apply for its management and iii)
what should be the agreement amongst providers. In fact the testing services
shares tests outcomes, and may have access to sensitive services information
and testing infrastructures. These questions are not easy to solve and require
further investigation, constituting directions for future work.

A final, important remark is that we focused here on BPEL and WSDL, but
the approach is general and can also be applied to other equivalent languages,
for example YAWL (Yet Another Workflow Language, [56]) and WADL (Web
Application Description Language, [74]), respectively. Also, it is important to
mention that in the current version of the testing service we are not considering
particular services as UDDI (Universal Description Discovery and Integration,
[148]) registers or infrastructures as ESB (Enterprise Service Bus, [148]); to
introduce them in the environment constitutes direction for future work.
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INDUSTRIAL PROSPECTIVES AND NEEDS

In industrial practices, V&V and certification activities are largely applied,
because critical systems need assurance that they meet the specifications and
fulfill the intended purpose. The ultimate goal is to provide an assurance
recognized by society (and in some cases by law) that a system is deemed safe
by the certification body [146].

Several different V&V processes exist and are currently applied, depending
on the application field considered [107]. For example, the CENELEC EN 50126
[41] describes the required V&V process for certification of railway equipment,
while the DO-178B [57] is devoted to airborne systems and the IEC 61508 [84]
instead refers to generic electronic safety equipment. The certification activity
performed according to the standards is typically aimed to assess that the
procedures enlisted in the standards were correctly and responsibly applied, and
a sufficiently large number of activities to guarantee the system’s dependability
requirements was performed.

As the time to market for critical embedded systems includes also the time
needed to obtain the approval from certification authorities, we observed in [40]
that the productivity of system development can be significantly improved by
defining a comprehensive methodology which describes the role played by each
task in the whole V&V process. A direction to achieve such improvement is the
development of integrated tool-chains which support the automatic application
of methodologies to speed up and automatize the systems V&V and certification
process.

RACME (Resiltech Assessment Certification MEthodology, [40]) is both a
framework and a methodology conceived to reach such goal. RACME supports
and guide a V&V expert through a whole V&V process; it is customizable for
different systems and V&V processes, and constitutes the chain that links the
various V&V activities, providing the required input, structuring information
and helping the V&V expert to retrieve such information.

RACME does not contain built-in applications to apply a specific V&V technique
(e.g., formal methods for software verification), but it constitutes the chain that
links the various V&V activities, providing the required input, organizing the
outputs and providing the V&V experts with the results they need (e.g., it uses
the output of the test execution to identify the requirements that are currently
not satisfied).

The main progresses that are intended with RACME methodology are sum-
marized by the following points:
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1. identification, monitoring and control of all safety and certification-related
activities and information within the system life-cycle;

2. improvement of the traceability, including artifacts from all the system
development life-cycle; and

3. leveling of the presentation, data and control layers [185], [173] with a
deep enhancement in terms of usability and, consequently, correctness of
the information treated.

The experimental evaluation methodology presented in this Thesis can be
applied also to the industrial practises for V&V, and complement the usage
of RACME and its intended contribution. Such possibility is tackled in this
Chapter: we show that the methodology presented in Chapter 3 can be matched
to RACME and thus adopted in V&V industrial processes. That is, the objective
of this Chapter is first to show the RACME solution for the management of any
V&V and certification process, and then to illustrate that our methodology can
successfully fit such processes supported by RACME.

The rest of this Chapter is organized as follows. In Section 7.1 we present the
state of the art on methodologies for V&V and the motivations to the RACME
approach. In Section 7.2 we show the RACME approach for the support of
V&V processes, and details on the RACME architecture and prototype. Finally,
in Section 7.3 we present our testing methodology in the context of V&V and
certification processes (supported by RACME).

7.1 METHODOLOGIES AND TOOLS SUPPORTING v&v

The process to support system V&V consists in the collection and elaboration
of evidence coming from results provided by (uncorrelated) tools performing
some of the V&V tasks and from (a large set of) documents.

Analyzing the state of the art of industrial solutions, we identified few results
regarding methodologies, platforms or frameworks that support the V&V experts
through the overall V&V process, allowing integration of outputs and task
coordination, and that do not limit their support to a specific V&V activity
or techniques. We identified the following results as relevant for the targets
previously enlisted: the DVDT tool [137], [143] and the tool suite IBM Rational
[82].

The concept of the documentation tool DVDT (Department of Defense VV&A,
Verification, Validation and Accreditation) [137], [143] is to produce standardized
VV&A documentation and VV&A XML schemas that facilitate VV&A informa-
tion sharing, discovering, and retrieving within the Global Information Grid
(GIG, [144]) enterprise. The DVDT automates the standardized documentation
templates to aid those involved in the Navy’s models and simulation efforts in
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collecting, organizing, and documenting information pertaining to the VV&A of
models and simulations.

IBM Rational [82] suite is a broad collection of tools that support the different
phases of software life-cycle (e.g., it includes the IBM TeleLogic [82], a family of
products for system assessment). There are several different instruments, that
focus on many different activities of software life-cycle, for example: analysis,
modeling and design, management of software quality, management of software
modification, configuration and release, management of processes, projects and
portfolio.

This solution shows the following two limitations with respect to V&V and
certification issues. First, as its focus is not on the reusability of V&V results and
on the customization to different contexts and for different V&V processes, it
does not consider certification issues for different V&V standards and processes.
Second, there is a lack of integration and cross-check of outputs provided by
add-ons and tools that are useful for specific V&V activities.

We believe that V&V experts would benefit from such a support, because
it would improve organizing the large quantity of documentation produced,
facilitating the handling and retrieval of a large set of information, improving
consistency checks and non-regression. As final benefits, we believe that not
only V&V time and costs can be optimized, but that also certification evidence
can result easier to prove.

Another work we mention is the standard Software Assurance Evidence
Metamodel (SAEM, [140]) from the OMG (Object Management Group) for the
management of safety assurance evidence. The SAEM is a standard-independent
metamodel that is directed towards linking the certification evidence to safety
claims and the evaluation of these claims subject to the evidence. SAEM es-
tablishes the necessary fine grained models of evidence elements required for
detailed compliance and risk analysis. The structure of the SAEM provides the
basis for the logical design of tools for storing, cross-referencing, evaluating, and
reporting the elements of evidence for systems during the software assurance
process. This very recent initiative partially shares the goals of RACME, and
can also act as a relevant input for the structuring and organization of the
information stored in RACME.

The research community is well-aware of the challenges presented in this
Section, and several related works can be identified. We discuss here the works
[146], [147], [117] and [47].

In [146] a conceptual model is presented to characterize the evidence for
arguing about software safety. The model captures both the information require-
ments for demonstrating compliance with IEC 61508 and the traceability links
necessary to create a seamless continuum of evidence information i.e., a chain
of evidence.

In [147] model-driven engineering principles and technology is used to specify
and analyze safety evidence in order to show conformance to a safety standard.
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The approach establishes a sound relationship between a domain model of a
safety-critical application and the evidence model of a certification standard.
Briefly, this is realized by capturing the relevant standard as a conceptual model
using a UML class diagram and using this as a basis for creating a UML
profile. The profile is then augmented with constraints to aid system suppliers
in systematically relating the concepts in the standard to the concepts in the
application domain.

In [117] it is identified the existence of a dense web of safety-relevant infor-
mation and relationships. The paper discusses the benefits to both safety case
writers and readers of applying information modeling as the basis for creating
an electronically-based safety case. The usage of methodologies as GSN (Goal
Structuring Notation) is proposed to formally describe relationships between
entities.

In [47] the use of electronic formats for safety cases is described to meet
the requirements of a number of military and civil standards. An example of
electronic safety case is presented and it is discussed how this can be used to
manage a safety programme and to produce a safety case that will meet the
requirements of the certification authorities.

7.2 THE RACME APPROACH AND ARCHITECTURE

In this Section we describe the RACME approach and architecture: we first
present the RACME workflow, then we show a logic view of the RACME
framework and finally we present the RACME architecture and the available
prototype. Further details on RACME can be found in [40].

7.2.1  The RACME workflow

Many different V&V workflows may be applied in RACME, depending on the
characteristics of the V&V process, of the activities performed using RACME,
and of the activities that are performed without RACME (e.g., done by third
parties: consequently inputs to the activity shall not be extracted from RACME;
if needed, the activity outputs can be added in RACME).

We define a very general workflow, not specific or customized to a single V&V
process: customization may be required to adapt RACME to different standards
or different life-cycle. However, these customizations shall only mean a different
structure of the workflow, and consequently a different configuration of the V&V
process supported by RACME, without requiring any change to the framework.
We can note that different grains or parts of the workflow are required and used
for the different processes.

The generic RACME workflow for V&V is shown in Figure 7.1. The initial
inputs provided are the RACME configuration for the specific V&V process in
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use, the customer’s templates for documentation and the requirements of the target
system. These documents are loaded into RACME, and the requirements of the
target system are extracted from the documentation.

Figure 7.1: The RACME workflow for a generic V&V process.

The requirements provided as input are loaded into RACME and organized
according to the RACME internal notation (the structured requirements box in
Figure 7.1). Such requirements are then used to create a functional representation
of the target system. This functional schema is created by the V&V expert, using
the semi-formal language SysML (System Modeling Language, [139]), that
provides diagrams to describe requirements and is used as a mean to match the
requirements to the various parts of the system, at different grains and from
different perspectives. This matching facilitates cross-inspect of requirements
of different parts of the system. A supporting tool, external to RACME, to create
such SysML functional schema is required.

Once the functional schema is available, the V&V process can start; additional
inputs at this point are templates internal to the company that uses RACME and
standards that describe the V&V process. Note that these information are stored
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in RACME as default information, and do not need to be provided as inputs
each time RACME is used.

For any V&V process, the first action is to produce a V&V Plan, which enlist
the V&V activities that are planned.

Then, the activities identified in the V&V Plan are executed: RACME provides
the input for each activity and helps generating and formatting the outputs. In
this phases, instruments build-in in RACME are used to: i) trace requirements,
and ii) support the merging of results and the creation of the documentation.
During the V&V process, RACME helps to produce FTIs (Formal Technical
Inspections, they are largely used to collect non-conformities in documents/ac-
tivities), notes and log files, and the various intermediate results and documents.
Finally, at the end of the V&V process, the final V&V output (e.g., the safety case)
is produced.

7.2.2 A logic view of RACME

An abstract view of the RACME framework is depicted in Figure 7.2. A reposi-
tory stores the provided information and data. An engine provides the function-
alities to integrate data and correlate activities. RACME links the various V&V
activities, and uses inputs from the V&V experts and from information already
stored in itself.

--------------------------- V&V Process and System Life Cyclerps
\ \ |
Y v !
V&Vv vav |:> vav . :> V&V
Experts Activity 1 Activity 2 Activity N
Ternplatesz r_e_sults of Inputs for the next V&V
previous activities, data, o
activities
______ ‘_ _ RACME Interface _ _ '_ 1
Towards V&V Experts
StRaAngi;%s’ RACME Engine l Support to V&V process ‘ Safety
Config [ I L l case and| |
files, Requirements | [ Integration of | [ Document V&V
traceability results generation report
< Repository of Information and Data O

Figure 7.2: Logic view of RACME.
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RACME manages requirements, hazards, mitigation, FTI, tests plans and
reports through the following actions:

1. performs consistency checks between the produced output (i.e., output
consistency, traceability and non-regression verification),

2. visualizes different information regarding each item, and
3. manages their versioning.

As it can be noted in Figure 7.2, RACME does not support a specific V&V
activity (there are plenty of specific tools and techniques for that, surveyed in
several works as [93], [176]), nor integrates tools that support a specific activity.
It provides inputs to each activity, then it imports the results, and it processes
and integrates them to cover non-regression, compatibility and cross-checking
issues, as well as (semi-automatic) document generation. RACME allows to
integrate data from different and heterogeneous tools and data related with
different development life-cycles. Also, it allows to tailor the production of the
necessary information and evidences for the certification of embedded systems
according to different standards that often prescribe and dictate the structure
of the documentation (and of the individual documents) to be prepared for
certification approval.

7.2.3 The RACME architecture and prototype

We describe the overall RACME architecture and prototype. The implementation
of RACME is currently ongoing, consequently only a subset of its functionalities
is available in the running prototype.

Owverall RACME architecture

Figure 7.3 offers an high level view of the overall architecture of the RACME
framework.

Our plan is to implement the RACME architecture progressively, first building
a main core (the key parts of the RACME server: the DataBase Management
System DBMS, the file system, and the V&V Activity Manager) and then extending
and adding functionalities (components to manage specific aspects of the V&V
process, as the requirements manager and the tests manager, and plugins to deal
with documents 1/0).

Such plan is pursued organizing RACME in a way similar to a plug-in archi-
tecture [188]. Considering our incremental approach to implement the RACME
architecture, the benefit of the plugin architecture is to improve modularization,
because the code is cleanly separated into distinct modules, and the time re-
quired to replace or add components is reduced. Without reaching the complete
independence that characterizes a plugin architecture, our approach is based
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Figure 7.3: High level view of the RACME architecture.

on blocks which implement the different functionalities of the system and that
exchange only little key information to each other. Doing this, we find a tradeoff
between the advantages of the plugin architecture and its impact on the develop-
ment costs (a plugin architecture has typically, at least in its first stages, bigger
costs with respect to traditional solutions). A further advantage that derives
from the modularization is the “natural” interoperability of the system; this
plugin-like architecture allows to include the management of different kind of
data (as XML or SysML) with little changes: this is particularly important if we
consider the need of RACME to deal with functional specification written in
SysML and with inputs documents which may contain several different kinds of
data.

Each macro-functionality (the grey boxes of Figure 7.3) will be implemented
by a set of classes referencing mainly to each other and operating with tables in
a database.

Other concerns on the RACME architecture

Since RACME is a support for the V&V experts, its use should be internal to the
company, without imposing any standard or restriction to the customers (e.g.,
imposing a format for the documentation). RACME data acquisition from input
document is therefore managed through the concept of plug-in, that has to be
seen as a customized “map” to associate a semantic value to different parts of a
document, allowing to select information and importing them in the system.
RACME has critical relations with documents, and in particular “.doc(x)”,
“.xls(x)” and “.pdf” (these are in fact the main formats used by companies).
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Facilities to easily interface with these kinds of documents are very important,
especially: document import, parsing of the relevant information and database
population. The basis to import and parse documents is as follows. In industrial
documents, information is typically stored following specific patterns. For exam-
ple, requirements are univocally identified using a specific format. Consequently,
it is relatively easy to define a pattern, parse the document and extract the
relevant information.

Also, data extraction is an important topic for the RACME architecture. Extract-
ing data from documentation permits to consider (and consequently manage)
information as objects independent from the documents in which they were
originally contained. This reduces the inconsistencies that naturally rise in a
development process, in which different groups write documentation at differ-
ent stages. In RACME, information exists besides documents and when a new
document is released its contents is checked with data already present in the
RACME DBMS. Moreover, extracting data from a document naturally increases
data visibility and accessibility.

The natural attitude of many companies to use tools running on Windows
makes RACME Windows-oriented. This means that the tool can be developed
for Window OS, without a real need to be generic. Also, the user interface
is planned to run on a Windows machine and be Windows compliant. Such
considerations have led us to implement RACME in C# [119]. This language,
developed by Microsoft, eases handling of Microsoft Office documents and
offers facilities to implement a Windows-compliant user interface.

The RACME prototype

Our first RACME prototype covers only a subset of the RACME requirements,
but it allows to collect “field feedback” to evaluate the overall feasibility of
RACME as support to real V&V and certification processes, and consequently to
provide indications of possible modification and evolution. The lack of similar
tools and consequently of experience in this kind of interaction makes the need
of field feedback even more important: for the V&V experts at Resiltech S.R.L.
which cooperated with us in the design, implementation and use of RACME
this has been the first time that different pieces of V&V information (hazards,
audit, requirements, mitigation, actions) have been related to each other not only
in a conceptual way, but also through a supporting tool.

Our first prototype implements the features described in what follows, and
summarized in Figure 7.4.

Main data structures of the inner RACME database. A big attention is put
on the definition of data structures for the management of the requirements,
documents, FTIs, tests, semi-formal representation of the system, and hazards.
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Figure 7.4: The RACME prototype.

This development phase has clarified a lot of “not easy to answer” questions,
for example how to differentiate formats used to represent the information. In
fact, each piece of information has its own format and can differ significantly
from the others. From the analysis of the documentation of past projects, it has
been possible to extract the main data needed to represent the key information.
Inner tables have been optimized keeping in mind this set; moreover specific
spare fields have been inserted to allow the management of anomalous rep-
resentations. These inner tables have been related to each other and specific
rules to guarantee consistency and mandatory fields have been defined and
implemented in the database (in Figure 7.4 we show the key tables).

Storing the functional representation of the target system. During the V&V ac-
tivities it is fundamental to continuously take a look at the physical components
under analysis, in order to better evaluate risks and easily identify inaccuracies
of documentation. To simplify this goal, in RACME a SysML representation of
the target system is stored. This representation is imported through the SysML
plugin and stored in table System Representation. This allows to select data or
documentation related to different parts of the system.

Managing documents of the V&V process. Documentation produced in the
project is acquired from the RACME prototype, versioned and made easy to
recall and access. Information contained in RACME can be exported in order to
semi-automatically create documentation from templates.
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ALARP plugin. The ALARP plugin deals with the documentation format used
in the project ALARP (A railway automatic track warning system based on
distributed personal mobile terminals, [3]). Primary goal of ALARP is to build a
safety-critical ATWS (Automatic Track Warning System) to recall the attention
of a workgroup operating on a railway worksite about the presence of trains
approaching the worksite. We plan to use ALARP as a pilot project to gain
feedbacks from a real use case and to understand how to tailor RACME. Using
RACME on a specific project requires a specific plugin to deal with the project
documentation templates, formats and data.

Managing Technical Inspection (FTI). Management of the documentation al-

lows to associate information to each document (e.g., document non-conformities).

This naturally leads to the creation of FTIs documents. FT1s are created using
the FTI creator plugin.

Managing Hazard Analysis. The implementation of the main structures of
the database is coupled with the management of at least one V&V activity to
allow the evaluation of the core features of RACME. In this version of RACME,
we decided to implement the management of the hazard analysis process (haz-
ard identification and creation of the Hazard Log).

Managing requirements, mitigation, tests plans and tests reports. One of the
goals of RACME is to relate different activities on the basis of common data. The
main information stream that links V&V activities is represented by the chain
“requirements / mitigation (safety requirements coming from hazard analysis) /
actions (safety tasks that have to be monitored) / tests plan and tests report”.
In the RACME prototype this chain is implemented, making possible to relate
each requirement with the proof of its correct implementation in the system
(test reports, documents, etc. ).

7.3 A TESTING METHODOLOGY IN V&V AND CERTIFICATION PROCESSES

As previously illustrated, RACME does not contain built-in solutions to apply a
specific V&V technique, or does not support a specific V&V activity (e.g., it does
not implement a workflow devoted to the experimental evaluation). Specific
V&V activities are executed in parallel with RACME, using methodologies
and tools devoted to their execution. At “synchronization” points, inputs and
outputs are exchanged with RACME, and checks are performed on the integrity
and non-regression of requirements defined during the different stages of the
design process.
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RACME can integrate data produced using different and heterogeneous tools
and methodologies, because it imports and parses data and documents and
relates them, according to the rules specified in the definition of the workflow
and specific RACME plugins. As a result, any V&V activity performed as part
of a V&V process managed in RACME can interact with a proper RACME
workflow. Certification evidence for the overall V&V process and the single
activity is improved as a natural consequence of the usage of the RACME
support.

From the discussion above, it can be noted that i) the methodology for the
experimental evaluation can benefit from being complemented with RACME,
and ii) RACME can benefit from its usage. Regarding point i), RACME merges
challenges of data importing, archiving and retrieval, together with methodolog-
ical support to V&V activities (including testing activity): archiving and reuse
of data is one of the key topics we addressed when defining our methodology.
Regarding point ii), RACME can benefit from the usage of a testing methodology
because well-structured V&V activities ease their integration in the RACME
workflow. Consequently, this eases providing certification evidence.

In this Section we show the potential interplay of our methodology for experi-
mental evaluation and RACME, to bring evidence of the possible application
of the methodology to industrial contexts. Then, we briefly introduce two case
studies (that shall be explored in Chapter 8 and Chapter 9) where the experi-
mental evaluation is performed in cooperation with industrial partners in the
context of standard-compliant processes for V&V of safety-critical systems.

7.3.1 Interplay of the methodology and RACME

We start presenting the main usage of RACME when performing experimental
evaluation (experimental evaluation may be named differently in the various
standards, for example it is called it is called dynamic analysis and testing in the
railway standard EN 50128 [42]). RACME includes a Test Manager which is
devoted to the managing of inputs and outputs and requirements relations for
experimental evaluation activities; also, plugins built ad-hoc for a specific project
may complement the Test Manager. The main actions performed using RACME
during the experimental evaluation activity are the following:

1. Extract the documents templates for tests plan and test reports that are
stored in RACME.

2. Feed RACME with the information required to create and update FTIs (e.g.,
open a new FTI, modify an FTI due to system changes, add clarifications
or answers, close the FTI when the request for changes is fulfilled).

3. Insert in RACME the different versions of the tests plan that are produced.
RACME can import such versions, parse them to maintain the status of the
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test plan and to establish relations between system requirements and tests,
using the traceability matrixes included in the tests plan. Such relations are
used by RACME to verify the correctness of traceability and to guarantee
non-regression of requirements.

4. Similarly to the tests plan, RACME can import, parse and manage the
various versions of the tests reports and related requirements traceability,
and the tests data to automatically fill the tests report.

5. Through its management functionalities, RACME always maintains the
up-to-date version of each documents, the status of the FTIs (typically it is
open/close), and information on possible conflicts between requirements
(identified through verifications on up-to-date traceability matrixes).

We can reasonably assume that the overall experimental evaluation process
starts when the documents templates are downloaded from RACME and termi-
nates when final versions of all reports are in RACME. We revise the 4 phases
of our methodology, to understand the interactions of our methodology and
RACME during the experimental evaluation process of a critical system in
industrial practices. Such interactions are summarized also in Figure 7.5.

In phase 1, the templates are extracted from RACME; these templates shall be
used for the rest of the activity. During this phase, the tests plan is produced
and imported in RACME, with the support of the specific plugins developed in
RACME. Also, information to open and update FITs can be provided to RACME.
The outputs that can be extracted from RACME in this phase are the updated
FTIs and the current version of the tests plan (the most updated version of the
test plan; a V&V expert may produce and import in RACME different versions
of it).

In phase 2 and phase 3, the system is instrumented and the experiments are
executed. Preliminary versions of the test report can be drafted in this phases;
these versions do not contain the whole set of results, but include the description
of the measuring instrument, the set-up used for the experiments, and the
metrological characterization of the measuring system and of the expected
results. Similarly to the previous phase, information to open and update FTIs
(e.g., because errors in the system implementation are detected during the
system instrumentation) can be provided to RACME. The outputs that can be
extracted from RACME in this phase are the updated FTIs and the versions of
the tests plan (e.g., the most updated version provided in phase 1) and tests
report. Note that due to the rigor required in V&V and certification processes,
possible modifications to the measuring instrument performed while iterating
phase 2 and phase 3 must be attentively reported in the tests plan and tests
report.
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Figure 7.5: The experimental evaluation methodology and RACME.

In phase 4 the test outcomes are completely included in the tests report. Also
in this phase FTIs may be opened (e.g., to signal potential problems identified
during the analysis of results that are not part of the tests report) or updated.

The experimental evaluation activity concludes when the versions of the tests
report and tests plan maintained in RACME are final. FTIs that are still open
may be closed in successive phases of the V&V process.

We already discussed in Chapter 3 that experimenting is iterative, and our
methodology is consequently designed to support such iterations. This iterative
concept also applies to testing for V&V. For example, modifications of a system
may require to change the tests plan or to re-execute tests (in fact, for certification
purposes, tests are executed on the most up-to-date version of the system, and
changes in parts of the systems may require to re-execute the tests related to
those parts).

Finally, we note that the experimental evaluation phase terminates when the
final versions of tests plan and report are presented: this may require several
iterations, and changes in the system over a (reasonably) long span of time e.g.,
to meet feedbacks included in FTIs.
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7.3.2  Methodology applied to industrial case studies

Two case studies explored in Chapter 8 and Chapter g are introduced to identify
their relations to industrial V&V processes for certification purposes. In fact, the
experimental evaluation in these case studies is conducted with the cooperation
of industries and academia in the context of two broader projects. These case
studies refer to two different safety critical systems compliant to the SIL 2 require-
ments according to the railway standards CENELEC EN 50126 [41], CENELEC
EN 50128 [42], CENELEC EN 50129[43] (SIL stands for Safety Integrity Level
2; the mentioned standards propose both qualitative and quantitative classes
for the safety of equipments, and SIL 2 quantitatively means that the Tolerable
Hazard Rate THR per hour is required to be between 1077 < THR < 107 [43]).
Validation processes including experimental evaluation activities are planned
and executed for the two systems. Note that the second case study refers to the
ongoing ALARP project where the RACME prototype is applied.

The first case study (Chapter 8) is developed in the context of the ongoing EU
project ALARP, which focuses on the design, implementation and validation of
a SIL 2 ATWS (Automatic Track Warning System) to alert trackside workers on
trains approaching the worksite. The case study is devoted to the experimental
evaluation of cheap COTS GPS devices, that are adopted to localize railway
trackside workers. Since a key requirement in ALARP is the accurate localization
of workers, the experiments performed aim to identify the localization error
to provide feedbacks for the design of the localization solution [27], [28]. The
activity performed here in cooperation with the Italian company Ansaldo STS
was part of testing activities executed to support the designers, rather than final
assessment activities performed on the prototype. However, these evaluations
also allowed to accurately test one fundamental component of the ALARP
system, that is the GPS device.

The RACME prototype is used in the ALARP project to support the V&V
activity (see also the ALARP plugin presented in Section 7.2.3). The star schema
and the related database that were built to support the experimental evaluation
for the (fine-grained) storage of results can be uploaded in RACME, and using
the ad-hoc plugin the database can be queried to (semi) automatically fill the
tests report.

The second case study (Chapter 9) is in the context of the EU project SAFEDMI
(Safe Driver Machine Interface for ERTMS automatic train control, [155]). The
project focuses on the design, implementation and validation of a SIL 2 Driver
Machine Interface (DMI) for trainborne equipment. In the case study we report
our experience of fault injection testing on the DMI prototype, performed as
part of the planned V&V activities. With respect to the previous case study, the
system under test is in this case a (almost final) prototype. The tests plan is
executing according to the methodology presented in Chapter 3.
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At the time the experiments were planned and executed, the project was in its
terminal phase and most of the documentation was consolidated. Consequently,
in the application of the methodology, the documentation made available dur-
ing the course of the project (in particular the system requirements and the
design documents) constituted a fundamental input for the definition of the
experimental evaluation.

As results of the fault injection tests we performed, the safety mechanisms of
the DMI correctly identify the errors and a proper reaction is executed. Only
in one case a slight violation of the requirement was observed, analyzed, its
caused detected and a simple modification identified to solve the problem (this
in a V&V process would correspond to opening an new FTI). Although the
RACME prototype was not available at the time this experimental campaign was
performed, we present it here as it gives a clear idea of how the experimental
evaluation methodology can be applied in industrial practises.



EVALUATION OF COTS GPS DEVICES

It is well known that accurate localization in open space is nowadays an open
challenge [132]. This fact is the main reason behind several works that aim to
design algorithms to integrate, exploit and improve GPS-based technologies.
Relevant examples are DGPS (Differential GPS, [106]), StarFire GPS [75], or RTK
(Real Time Kinematic, [141]).

Each of these alternatives has both positive and negative aspects, as already
pointed out in many comparison works as [132], [113]. Which alternative fits
a certain system the best depends on the system requirements, such as the
operating environment, the required localization accuracy and the admissible
cost of the hardware devices.

This Chapter shows the experimental evaluation of COTS GPS devices, that
was performed in the context of the ALARP project [3]. We consider the lo-
calization requirements of the ALARP system, which demands that a railway
worker in a railway worksite is accurately localized for safety reasons, using
low-cost GPS-based techniques. Although the sources of localization errors for
GPS are well-known [106] and have already been widely analyzed in different
contexts [132], [113], the specificity and different requirements of ALARP make
a detailed investigation of localization errors in this context relevant.

The objective of the experimental evaluation here described is to experimen-
tally assess if and to what extent cheap GPS devices can be successfully applied
in the ALARP scenario. In particular, our work aims to investigate the local-
ization errors, with the goal of quantifying the contribution of systematic and
random errors achieved when using low cost GPS receivers and providing
feedbacks to the designer of the localization solution in ALARP.

This Chapter contains results of a first run of the experiments, and conclusions
and recommendation to be applied in successive experiments. Further details
on this activity can be found in [28], [27].

The remaining part of this Chapter is organized as follows. In Section 8.1 the
ALARP system and its localization requirements and devices are presented. In
Section 8.2 the planned experimental activity is described; results are instead
reported in Section 8.3. Finally, conclusions and remarks for the next iteration of
the experiments are in Section 8.4.
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8.1 CONTEXT, OBJECTIVES AND TARGET SYSTEM

We present the context where we operate, the objectives of the experimental
evaluations, and the target system.

8.1.1 The ALARP ATWS

ALAREP is a project partially funded by the European Commission whose goal is
the study, design and development of a safety-critical Automatic Track Warning
System (ATWS) for railway track-side workers.

The primary goal of an ATWS is to recall the attention of a workgroup
operating on a railway worksite about the presence of a train approaching the
worksite. The ALARP ATWS will be able to inform the trackside workers about
approaching trains on the track, emergencies on tracks and tunnels nearby the
workers (e.g., fires in a tunnel, toxic smoke, etc.), and escape routes in case of
emergencies. Additionally, it will keep track of the status and position of the
workers (to identify those at risk, or not responding, or to suggest escape routes).

The ALARP architecture will be based on the following components (see
Figure 8.1) [161]:

¢ the track-side Train Presence Alert Device (TPAD, [161]), able to sense
an approaching train on the interested track without interfering with
the signaling system, using long-range multi-spectral cameras and eaves-
dropping the train-network communication,

¢ a set of distributed, low-cost, wearable, context-aware, robust, trustable
and highly reliable, wireless Mobile Terminals (MTs, [161]) to inform the
workers about possible approaching trains and/or other events that could
put at risk their safety. The Mobile Terminal (MT) will be able to generate
alarms, and to communicate and interact through wireless connections
with other MTs and the track-side TPADs.

Figure 8.1: The ALARP scenario.



8.2 THE MEASURING SYSTEM AND THE EXPERIMENTS PLAN

8.1.2 Localization in a railway worksite

A typical railway worksite, in which the workers (the MTs) need to be localized,
is an operation area of maximum 700 m length, in which workers typically move
on foot (slow movement speed). The worksite can be located in place possibly
(partially) surrounded by foliage, in canyon, or near buildings (i.e., the MTs
may suffer limited visibility of GPS satellites). In ALARP, strict requirements on
localization accuracy are presented (in the order of less than one meter); also,
the MTs should be low-cost and based on COTS hardware, including the GPS
devices.

The objective of the experimental campaign performed is to assess the behavior
(and error) of the COTS GPS devices identified for the ALARP prototype (see
next Section) and the error correlation of such devices in worksite-like scenarios.

It is reasonable to expect errors due to satellite clocks (errors in the synchro-
nization of the different satellite clocks, typically in the order of 0.8 m to 4 m)
and ephemeral satellite orbits (errors in precisely establishing the spacecraft
location, typically on the order of 0.8 m.) when receivers use the same satellite
set. Also errors are expected due to ionospheric and tropospheric signal pertur-
bation and delays (given by the transition of the signal through the troposphere
and ionosphere), and due to the receiver’s design (errors due to the specific
design of the receiver). All these enlisted errors can be considered as systematic.
At the same time, we can expect that errors due the receiver’s thermal noise and
external interferences exhibits negligible variations from a receiver to the others
[106].

Conversely, we expect that multipath (reflection errors, one of the most signif-
icant and variable errors incurred in the receiver measurement process) affects
randomly the localization error and it is expected as the major issue in localiza-
tion measurements [106].

8.1.3 The target system

The target system is the ND-100S produced by Globalsat [69]. We also use
another GPS device, the Garmin 18 LVC [68]. The Garmin 18 LVC is a GPS device
of a higher category of price and performance than the Globalsat (it costs around
three times the Globalsat ND-100S). Using two receivers of different quality
allows to collect information on how the localization error varies depending on
the device used and on the tradeoff in performances and costs.

8.2 THE MEASURING SYSTEM AND THE EXPERIMENTS PLAN

Table 8.1 contains key acronyms used in the following of this Chapter.
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Acronym Definition
R7 The Trimble R7 reference station
R8 The Trimble R8 rover

GS1 A GlobalSat ND-100S USB Dongle GPS receiver
GS2 A GlobalSat ND-100S USB Dongle GPS receiver
G138 A Garmin 18 LVC receiver

Table 8.1: Main acronyms used.

8.2.1 The measuring system

A reference system allows to compare the data collected using the GPS devices
previously mentioned. The reference system is the Trimble system [174], [175]
composed of a stationary reference station Trimble R7 [174] and a roving device
Trimble R8 [175]. This Trimble system uses the GPS-based RTK [141] technology
to calculate the position with accuracy in the order of few centimeters (it is by
far more accurate than the others GPS devices considered as target system).

During the experiments, common laptops with OS Windows 7 are used to log
the NMEA 0183 sentences (the protocol National Marine Electronics Association
0183 [136] defines the information that GPS devices communicate e.g., the
estimated time and position, the visible satellites, the satellites used by the
devices to compute their position, etc.) provided every second on USB ports by
all devices involved (Globalsat ND-100S, Garmin 18 LVC, Trimble R7 and R8).
Note that the NMEA sentences contain the time instant at which the sentence is
generated, so we can log them without the need to investigate possible delays of
the laptops in timestamping and data collection.

8.2.2  Experiments description

We previously discussed the error sources for the ALARP scenario; amongst
those, some error sources are bounded to the characteristics of the environment
in which the worksite is placed (multipath, interferences) and to the satellite
visibility (satellite clock and ephemeris). Here, we focus on the case when devices
are close to a cliff (or to the side of a high building), and are consequently subject
to interference, multipath and limited satellites visibility. Devices may have
partial or no satellites visibility for a short period of time. Each time a receiver
loses and re-acquires satellites visibility, it may need to execute a transient
phase in which the computation of their position is particularly unreliable.
Additionally, the characteristic of the environment may increase multipath and
interference errors.



8.3 ANALYSIS OF RESULTS

The experimental campaign consists of four experiments, which are summa-
rized in Table 8.2: the first column is the experiment ID, the second column is
the description of the experiment.

Exp. | Description

Exp1 | R8, GS1, GS2, G18 are stationary and measuring on the same point. R7 is close
to them and with a free LOS (line of sight) towards them. The experiment
provides information on the error magnitude in presence of big obstacles on
one side.

Exp2 | R7, GS1 fixed in a relatively good satellite visibility. The others move along
an established path close to tall buildings. The experiment aims to capture
the effects that tall obstacles have on the position error.

Exp3 | Similar to Exp2, but all devices except R7 move along the established path.
This experiment also aims to compare the behavior of GS1 and GS2.

Exp4 | An hybrid path where GS1, GS2, G18 and R8 are roving alternating building
and plain scenarios.

Table 8.2: The planned experiments.

The first experiment (Exp1) is conducted near a tall obstacle on one side, and
aims to evaluate the accuracy of all the receivers involved in the experiments,
doing stationary measurements in a benign scenario. The second and the third
experiments (Exp2 and Exp3) refer to a building area’s worksite scenario; they
are mandated to study the systematic and random error when the GPS signal
is potentially obstructed by possible buildings, which can induce high signal
reflection and seriously affect the continuity of the GPS signal. Finally, in the
fourth experiment (Exp4), the devices follow an hybrid path where GS1, GS2,
G18 and R8 are roving alternating building and plain scenarios.

8.2.3 Planning of the results

A star-schema is created, and shown in Figure 8.2. This schema contains two
dimensions, Experiment and Receiver, and several fact tables (one for each kind of
NMEA 0183 sentence provided by the GPS devices). In other words, it consists
of a set of star-schemas with the same two dimensions tables.

This star-schema is implemented in a SQL database, where NMEA 0183
sentences are imported; this will ease retrieving, analysis and comparison of
results, for these experiments runs and the future experiments that are planned
with the same set-up.

83 ANALYSIS OF RESULTS

The experiments were executed during two raining days; consequently, the
unstable weather conditions compromised part of the tests plan. Also, we must
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Figure 8.2: The star-schema designed for the experiments.

note that weather condition can influence localization results and constitute
an additional source of error, thus making the analysis of the systematic and
random contributions to the errors in the collected measures more complex.
We report and discuss the results of the experiments. In Figure 8.3a and Figure
8.3b results of Exp1 are reported (we report a trace of 350 s duration). Figure
8.3a shows distance of GS1, GS2 and G18 with respect to R8 during stationary
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measurements. GST and GS2 show no transient phase (see Figure 8.3a), and
stabilize immediately (the slow convergence towards the x-axis is due to small
adjustment of R8 in its position calculation; this behavior of R8 can be noted in
Figure 8.3b in the bottom left corner). G18 exhibits a longer transient phase, but
once it stabilizes, it locates itself far closer to R8 with respect to GS1 and GS2
(this distance is below 16 meters, whereas GS1 and GS2 are more than 20 meters
far from R8).
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Figure 8.3: Results of Exp_1.

Figure 8.3b shows the latitude and longitude positions of GS1, GS2, G18 and
R8, for the same set of data shown in Figure 8.3a. Position estimations of GS1
and GS2 are (relatively) close one to the other (average distance of the two
estimations is 7.9 meters); this suggests that a systematic error can be identified
in GS1 and GS2 in stationary conditions of measurements, although further
investigations are required to confirm that.

Figure 8.4a and Figure 8.4b report results of Exp2. In Figure 8.4a, we present
results collected while moving the devices for 400 seconds in a court next to tall
buildings. In Figure 8.4b, we map latitude and longitude of the devices used for
a duration of 110 seconds (to ease the readability of the figure, we only map a
subset of the measures collected). G18 shows a reasonably stable behavior: its
distance from R8 is always less than 7 meters. Also, it reacts quickly to directions
changes and to speed variations (different walking speeds and direction changes
that were inevitable during the experiment). Finally, note that in Figure 8.4b
G18 often intersects the path of R8 (that is, our estimation of the true position).
Also in Figure 8.4b in some points G18 deviates from R8 (see the lower part of
lines of G18 and R8); this corresponds to a change of direction performed while
very close to a tall building: G18 is unable to react quickly and to detect the
direction change. GS1 and GS2 instead present a very irregular behavior. This is
because they update their position estimation very scarcely: G52 computes only
13 different positions in 110 seconds, as it can be noted from the few squares in
Figure 8.4b.
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Figure 8.4: Results of Exp_2.

In Figure 8.5a and Figure 8.5b we present results for Exp3. Figure 8.5a shows
the distance measured from R8 for GS1, GS2 and G18, during a run of 200
seconds; Figure 8.5b shows the latitude and longitude recorded by R7, R8, GST,
GS2 and G18 during the same run. The results show that G18 locates itself closer
to R8 than GS1 and GS2 (the maximum distance of G18 to R8 is slightly above 30
meters). GST and GS2 exhibit a similar behavior, but they both locate themselves
very far from R8 (from 40 m up to more than 160 m).
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Figure 8.5: Results of Exp_3.

Finally, in Figure 8.6 we give the result of Exp4, which lasts 890 seconds
and shows an hybrid path where GS1, GS2, G18 and R8 are roving alternating
building and plain scenarios. Figure 8.6 reports the distance of GS1, GS2 and
G18 from R8. As in the previous cases, G18 performs better than GS1 and GS2. In
two parts of Figure 8.6 (around second 200 and second 700), traces significantly
deviate from their average distances; this is due to the passage below a bridge.

It is interesting to compare the number of satellites that R8, GS1, GS2, and
G18 see during this experiment on an hybrid path. R8, which is able to detect
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Figure 8.6: R8, GS1, GS2 and G18 roving on an hybrid path (Exp4).

both GPS and GLONASS (GLObal NAvigation Satellite System, [78]) satellites,
always sees from 16 to 17 satellites. G18, instead, sees from 7 to 11 satellites (the
average is 10.89). GST and GS2 respectively show an average of 9.49 and 9.67
satellites; GS1 ranges from 9 to 11 satellites, whereas GS2 ranges from 9 to 12
satellites.

84 CONCLUSIONS AND RECOMMENDATIONS

Accurate localization of workers in a railway worksite is a challenging task,
due to specific characteristics of the environment and of possible localization
errors. We presented a set of experimental measurements aimed to evaluate
the localization errors of low-cost GPS devices, and in particular to distinguish
the systematic and random contribution to the localization error. This work
aims to provide a useful input for the context of the ALARP system in which
accurate localization of workers in railway worksites is required using low-cost
GPS devices.

The Chapter detailed the motivations and planning of the experiments, the
measuring instrument and its set-up, and the results achieved through a first
test session to evaluate three popular GPS devices GS1, G52 and GI18.

To summarize the achieved results, the following key observations can be
derived. First, possible systematic contributions to the localization error can
be identified for GS1 and GS2 when doing stationary measurements; from the
figures shown it appears that for a short period of time, in similar environmental
conditions and satellite visibility, similar localization errors are measured. On
the contrary, the behavior of GS1 and GS2 looks more unstable during motion
measurements. In fact, GS1 and GS2 have shown irregular sampling period,
where data are not continuously refreshed; if this problem cannot be fixed or
mitigated (we cannot here exclude possible configuration or setup errors in
GS1 and GS2), GS1 and GS2 may result inadequate for workers positioning in a
railway worksite.
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Second, during motion measurements, encouraging results were instead given
by G18, whose estimated positions always fluctuate around the true values (the
values computed by R8).

Results and observations presented constitute the starting point to define new
experiments and collect new data, to characterize the localization error that
should be expected in a railway worksite and to provide additional feedbacks
to the designers of the localization solutions that shall be applied in ALARP.
Ongoing activity is aimed to extend the experimental cases considered and,
possibly, the number and type of GPS receivers.



EVALUATION OF A RAILWAY EMBEDDED SYSTEM

In this Chapter we present the activity for the experimental evaluation of a safe
train-borne Driver Machine Interface (SAFEDMI, [29]), that we performed as
part of the V&V activities planned in the context of the SAFEDMI [155] project.
The measuring system built for the purpose and the results obtained on the
assessment of the DMI are scrutinized along basic principles of metrology and
good practices of fault injection.

We present a fault injection instrument and some experiments for the evalua-
tion of a safe railway train-borne Driver Machine Interface (SAFEDMI, [155]).
The safety requirements of the SAFEDMI are classified as SIL 2: we evaluate
the behavior of the SAFEDMI and of its safety mechanisms (mainly in terms
of reaction to the faults injected) through software-implemented fault injection
(SWIFI). The evaluation activity performed according to our methodology pro-
vides experiments that are easy to reproduce, and basics from metrology are
applied to improve confidence in the results. Further details are in [29], [36].

The rest of the Chapter is organized as follows. In Section 9.1 we introduce
the SAFEDMI system. In Section 9.2 we define our activity, then in Section 9.3
we show the fault injection instrument and in Section 9.4 we depict results.
Conclusions are in Section 9.5.

9.1 THE SAFEDMI SYSTEM

In railway train-borne equipment, the SAFEDMI [29] acts like a SIL 2 bridge
between the operator (the train driver) and the EVC (European Vital Computer:
it supervises the train movement). SAFEDMI communicates with the EVC as a
slave; it acquires and manipulates driver’s commands (using a keyboard) for the
EVC and it transforms EVC commands in graphical and audible information
(using an LCD screen and audio devices). The SAFEDMI itself is composed of
two components: the Driver Machine Interface (DMI) and the Bridge Device
(BD). The DMI is the core of the SAFEDMI: it manages the communication
activities with the EVC, with the BD, and with the driver (through a LCD screen
and a keyboard). The BD is a wireless access point that allows configuration and
diagnostic activities.

In the experimental activity reported in this Chapter we will focus only on
the DML
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9.1.1 The DMI operational modes

The DMI has four operational modes (or states): Start-up, Configuration, Normal
and Safe mode. In [29], another operational mode that allows automatic restarts
of the DMI is presented. This operational mode is not implemented in the
prototype that we are evaluating here, and consequently it will not be described
here.

In Start-up mode the initialization procedures and the thorough testing of
all devices are performed; diagnostic functionalities are also available. From
Start-up mode, the modes Configuration, Normal and Safe can be entered. In
Configuration mode safe software upload and configuration are performed by
means of wireless communication; after a successful configuration session, a
restart of the DMI is needed (transition to Start-up mode). In Normal mode the
DMI produces graphical and audio information to support train driving, as well
as it acquires and processes driver’s commands; periodic testing activities are
performed and diagnostic functionalities are available. Safe mode is entered when
a malfunctioning is detected and attempts to restart the DMI have failed. This
mode prevents further operations of the DMI. In this mode the LCD backlight
lamps are switched off, and the keyboard and EVC communications are disabled.

9.1.2 DMI architecture and mechanisms

Regarding the hardware, the DMI has a non-redundant hw architecture in-
cluding COTS components. Absence of hardware redundancy imposes a more
sophisticated software architecture, since safety requirements are accomplished
only by software mechanisms.

The software architecture is composed of five C modules (Global monitoring,
Checks and tests, Operations, Communications, I/O Manager) that are possibly
activated /deactivated when the DMI transits from one mode to another.

The Global monitoring module performs the role of execution monitor, software
watchdog, log manager, and diagnostic manager; it recognizes the conditions
that cause an operational mode change of the DMI and performs the operations
needed to reconfigure the system when a mode change happens. The thread
execution monitor of the Global monitoring module performs transition to Safe
mode whenever it receives notification of error detection by any safety mecha-
nism; it is a high priority thread that cyclically executes once every 100 ms. The
Checks and tests module performs checking and testing activities. The Operations
module contains the software objects involved in the implementation of the
functional requirements of the operational modes, as visualization and audio
emission procedures. The Communications module handles the EVC-related com-
munications, while the I/O Manager module contains the drivers of the DMI
hardware devices.



9.2 PLANNING OF THE MEASURING SYSTEM AND THE EXPERIMENTS

Regarding the safety mechanisms applied to guarantee SIL 2, in SAFEDMI
the reactive fail-safety principle was adopted [43]: as a consequence, efficient
error detection plays a crucial role. According to the safety standards [43], [42],
the DMI error detection addresses random faults that cover both permanent and
transient faults and residual systematic faults (mainly software design faults that
have not been identified by fault prevention and removal during development).
Due to lack of hardware redundancy, active permanent and transient faults in
the hardware and residual systematic faults are detected on the basis of their
effects on software execution through periodic test procedures and mechanisms
for on-line (run-time) error detection, mainly i) data acceptance/credibility
checks [152], ii) control flow monitoring [125], and iii) multiple computation
and comparison [164].

9.2 PLANNING OF THE MEASURING SYSTEM AND THE EXPERIMENTS

We identify the environment and the target system, the quantities to assess, the
workload, the faultload, the experiments to execute and the structure of results.

Environment and target system. The target system is the DMI prototype shown
in the left part of Figure 9.1. The DMI OS is the real-time OS VRTX [128]. The
DMI prototype we used for the evaluation is connected to a PC with OS Mi-
crosoft Windows (shown in the right part of Figure 9.1) where the applications
EVC Packet Generator (a simulator of the EVC [156]) and the diagnostic tool
D360 (a tool that receives events and information from the DMI and logs them
[156]) are executing.

The EVC Packet Generator does not require manual interactions of the opera-
tor with the DMI: as a consequence possible variations in different executions
of the same experiment due to manual interactions (the operator may commit
errors, or may press buttons with different timings in different executions) are
avoided. The EVC Packet Generator generates the same exact workload for each
experiment execution, and with the same timings (we will further discuss the
timings of workload generation in Section 9.4).

Quantities to assess. The relevant quantities to assess are both countable dy-
namic quantities with (expected) negligible uncertainty and non-countable
time-related quantities with non-negligible uncertainty.

Countable quantities are (number of):

¢ faults injected,
e errors detected,

e safe failures (i.e., after error detection, Safe mode is successfully entered
preventing further DMI operations),
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Figure 9.1: DMI, EVC Packet Generator and D360.

* system failures, and
® recoveries.
Non-countable quantities are instead:
* latency (time elapsed from the injection of a fault and its detection), and

¢ reaction (after detection, time needed to transit to Safe mode).

Workload. The workload is created by the EVC Packet Generator that commu-
nicates with the DMI. We distinguish between two different workloads: W_ID
Startup and W_ID Normal.

The first one is composed of the communications performed by the DMI
from the power-on to train mission successful termination (the train successfully
arrives at destination), transition to Safe mode or system failure; note that while
the DMI is in Start-up mode the communication with the EVC is not active,
and thus only scheduled activities of the DMI are performed (periodic tests and
boot operations). The second one is composed of the communications executed
since the DMI enters Normal mode up to train mission successful termination,
transition to Safe mode or system failure.

This workload is specific for the Normal mode and the Start-up mode. We
do not identify a workload specific for the Safe mode and the Configuration
mode: in Safe mode the DMI does not perform safety-critical operations (the
communication with the EVC, the keyboard and the LCD screen are disabled)
and the Configuration mode is not testable in current DMI prototype.

Faultload. We execute software-implemented fault injections (we do not have
the tools to consider hardware fault injection as a viable option). We perform
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run-time injections to inject faults at specific time instants. Due to the limited
possibility to operate at the lower levels of the DMI system, we can only insert
faults in the application level of the DMI (e.g., to modify the content of a variable
or to alter the execution flow); we emulate i) hardware faults by directly injecting
the errors and ii) software (systematic) faults.

The faultload we present is the set of faults shown in Table 9.1. For each fault
we define an ID (column Fault_ID) and a description of the fault. The selected
faultload addresses some of the critical functionalities of the DML

Fault_ID Description and additional comments

CFM_goto A goto is inserted in the function that controls the LCD lamp,
and forces an improper transition in the control flow graph.

CFM_check The thread Checks (it performs checking activities) is killed
while the DMI is executing, thus altering the correct execution
flow at task level.

DataAcc Visualization messages received from the EVC are not elab-
orated correctly by the DMI (the data received are not com-
puted correctly).

DuplExCPU | In the DMI, two identical graphic images are created in two
different RAM areas and compared: the CPU makes an error
while creating the text message of one of the images.

CFM_signature | An erroneous signature is inserted in the control flow moni-
toring graph of the audio output management function.

Table 9.1: Definition of the faultload.

Specification of the experiments. The experiments defined are reported in Table
9.2: for each experiment we define an ID (column Exp_ID), the selected workload
(column W_ID), the fault injected (column Fault_ID) and the time instant, after
power-on of the DMI, in which the injection is performed (column Time).

For each experiment, the system is run until mission successful termination,
transition to Safe mode or system failure. In Exp_1, Exp_3, Exp_4, Exp_5, and
Exp_6 the injection is performed 30 seconds after the power-on of the DMI (the
injection is performed while the DMI is in Normal mode); in Exp_2 the injection
is performed 2 seconds after the power-on of the DMI (the injection is performed
while the DMI is in Start-up mode).

Structure of the results. As shown in Figure 9.2, results are organized by a
star schema: the facts table is table Measurements Results, and the dimensions
tables are tables Experiments, Target System, Workload, Faultload and Safety
Mechanisms.
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Exp_ID W_ID Fault_ID Time
Exp_1 Normal | CFM_goto 30
Exp_2 Startup | CFM_goto 2
Exp_3 | Normal | CFM_check 30
Exp_4 | Normal | DataAcc 30
Exp_ Normal | DuplExCPU 30
Exp_6 Normal | CFM_signature | 30

Table 9.2: Definition of the experiments.

| TARGET SYSTEM

MEASUREMENTS RESULTS

TARGET SYSTEM SYS_ID T
Description

| SAFETY MECHANISMS

Pl

Experiment Exp_ID

TARGET SYSTEM SYS_ID
FAULTLOAD FAULT_ID
WORKLOAD W_ID

SAFETY MECHANISM SAFE_ID

SAFETY MECHANISM SAFE_ID

[l | faults injected

errors detected

Description
safe failures
system failures
WORKLOAD —Bﬁ
rECOVEries
WORKLOAD W_ID E'QI— latency
Description reaction

FAULTLOAD
FAULT FAULT_ID
Description

EXPERIMENTS
EXPERIMENTS Exp_ID
Time
Description

Figure 9.2: Structure of the data organized following a star schema.

9.3 MEASURING SYSTEM DESIGN, IMPLEMENTATION AND ASSESSMENT

We present the measuring system and we investigate its quality and the validity

of the results it collects.

9.3.1

Design and implementation

The measuring system and its interactions with the target system are shown in
Figure 9.3 and explained in what follows.

injections and work

load execution

LIBRARY

INJECTION TOOL

WORKLOAD
GENERATOR

MONITOR

monitoring, data collection and analysis

DATA COLLECTOR

EVC Packet
Generator

‘ D360 Diagnostic Tool

DATA ANALYZER

/

SYSTEM UNDER TEST

DMI prototype

Figure 9.3: The measuring system and its connections with the target system.
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We subdivide the measuring system in two functional blocks (the grey blocks
of Figure 9.3). The first block, that is composed of the software C components
library, injector and workload generator, deals with the injections and the work-
load execution: its function is to execute the experiments defined in Table 9.2.
The functions of the second block are monitoring, data collection and analysis:
this block monitors the target system, collects measurements results and ana-
lyzes them. The software components monitor (developed in C), data collector
and data analyzer belong to this functional block.

Regarding the first block, the workload generator is the EVC Packet Generator
located on the PC connected to the DMI (described in Section 9.2 and shown
in the right part of Figure 9.1); the library and injection tool are instead both
located on the DMI.

The library is the mean to inject the available faultload: it enlists the available
faults as well as the methods to inject them in the DMI. The identified faults
are implemented adding extra code in genuine DMI functions or developing
additional functions that are not part of the DMI genuine software. The number
of instructions needed to inject a fault is always small, and these instructions
are fast to execute: the perturbation they introduce on system scheduling and
the impact on the overall computational load can be considered negligible.

The injection tool allows to perform the run-time injections in the DMLI. It is
a cyclic, light and low-priority thread active on the DMI. This thread executes
cyclically once every 1000 ms with a deadline of 2000 ms. The injection tool
reads from a configuration file the instructions about the experiment to execute
(Fault_ID and injection Time), and uses the library to select and inject the faults.
The injection tool can inject a single fault or a sequence of faults at specific time
intervals one from the others.

Regarding the components of the second functional block, the data collector (or
logger) is the D360 diagnostic tool described in Section 9.2 and located on the PC
connected to the DMI (this PC is shown in the right part of Figure 9.1). It receives,
logs and organizes information received from the monitor, which executes on the
DMI to timestamp events and to communicate events and related timestamps
to the data collector. The data collector and the monitor communicate using a
dedicated serial channel, different from the serial channel for the communication
between the EVC Packet Generator and the DML

The monitor is an extension of the DMI log manager thread, that is a DMI
genuine thread used for diagnostic activities (so we do not introduce a new
thread in the system). The log manager thread is the thread with the lowest
priority in the DMI, and it has no deadlines: it executes only when other threads
are not running. As a consequence, to provide precise timestamping of events
it is necessary to collect each time instant (by invoking the DMI system call
getTime) as an atomic action with the raising of the event.

To reduce and control the system perturbation introduced by the monitor,
only events that are fundamental to collect the relevant quantities (defined in
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Section 9.2) are logged, and detailed traces of activities performed by the DMI
are not collected.

Finally, the data analyzer is an analyzer (e.g., an OLAP tool) that executes
offline to exploit the measurements results collected.

9.3.2 Assessment of the measuring system and of the confidence of the results

We assess the quality of the measuring system along the principles of exper-
imental evaluation and fault injection and the confidence of results through
principles of measurement theory: in particular, we comment on the resolution,
intrusiveness, repeatability and uncertainty showed by the measuring system.

The resolution of the measuring system is investigated only for time-related
quantities. System resolution for time instants is 2 ms; it is the resolution of the
DMI timer used as the base for the activities of the scheduler and of all threads.

Three components of the measuring system may perturb the DMI: the library,
the injection tool and the monitor. To investigate intrusiveness we need to analyze
perturbations in time and memory. Memory perturbation is negligible, since
the executable files, the dedicated variables and the dedicated memory areas of
library, injection tool and monitor are very small compared to the DMI memory.

Time perturbation needs a deeper investigation. The injections are performed
through few, quick instructions (they are not time-consuming operations as eras-
ing memory areas or accessing a significant quantity of data) that are executed
at worst in few microseconds. Both the injection tool and the monitor are low-
priority threads that execute mainly when other threads are not running, to be
as low intrusive as possible. The monitor sends data to the data collector using
a completely dedicated communication channel: thus this communication does
not alter the communication between the DMI and the EVC Packet Generator.

To further analyze intrusiveness, a schedulability analysis of DMI threads has
been performed using the Sched Analyzer [156] tool (it provides a pessimistic
estimation of the CPU computational load of the overall set of threads on the
CPU): it resulted that the set of threads is schedulable (threads deadlines are
guaranteed to be met, and there is enough CPU free time to guarantee that
the injection tool and monitor threads will execute without influencing other
threads execution) [156]. Thus, considering that resolution is 2 ms, we can state
that intrusiveness is negligible.

Repeatability instead cannot be guaranteed. The injection tool is a low priority
thread: this provides low intrusiveness, but it affects repeatability. In fact there
are no guarantees that the injections are performed exactly at due time instants.
The EVC Packet Generator affects repeatability as well: despite it is supposed
to generate always the same workload with the same exact timing, such exact
timing is not guaranteed because of the non-real time OS (Microsoft Windows
in use.
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In fact, the experiments Exp_1, Exp_4, Exp_5, and Exp_6 (Figure 9.4a, Figure
9.5b, Figure 9.6a and Figure 9.6b) show a high standard deviation of latency,
being 489 ms in Exp_1, 518 ms in Exp_4, 666 ms in Exp_5 and 953 ms in Exp_é.
This high standard deviation indicates somehow low repeatability.

As previously said, we have a limited number of observations: consequently
we compute a Type B uncertainty through an investigation of the system behavior
instead of a Type A uncertainty computed through standard deviation. Type
B uncertainty is estimated for time-related measurements as follows. When an
event is raised, the getTime system call is invoked as an atomic action with the
event: the contribution to uncertainty of this block of instructions is orders of
magnitude smaller than 2 ms (it is at worst microseconds). The resolution of the
target system (2 ms) is the most significant contribution to uncertainty, while
other contributions to uncertainty could be considered negligible. According
to [95], in such situations the true value is expected equally distributed in an
interval given by the measured value and the measured value plus the resolution
(e.g., if 10 ms is the measured value and the resolution is 2 ms, the true value
is expected within the interval [10; 12] ms). The expected true value should be
set as the midpoint of the identified interval with an uncertainty of at most half
the interval (e.g., if the interval is [10; 12], the expected true value is 11 + 1 ms
and confidence 1). However, our purpose is to estimate the safety of a critical
system: we prefer to differentiate from the approach proposed in [95] and to
report an uncertainty that is conservative, meaning that it must never err on
the side of being too small. Consequently, for each event, we pessimistically
consider that the corresponding time instant is collected with uncertainty of +2
ms. The uncertainty of the two time intervals latency and reaction is finally set
to £4 ms.

9.4 ANALYSIS OF THE RESULTS OF THE DMI

Having shown that the measuring system is adequate and able to provide trustful
results, now we analyze these results in order to understand how satisfactory is
the DMI behavior.

The results of the experiments are shown in Figure 9.4, Figure 9.5 and Figure
9.6. Each experiment consists of five or ten executions. In the figures, the time
interval elapsed from power-on of the DMI to the injection is represented in
dark grey, latency is represented in light grey and reaction is represented in
black. The errors are always detected by the DMI safety mechanisms and the
Safe mode is always successfully entered.

According to system requirements, reaction is always expected to be smaller
than 100 ms. In the experiments performed, the observed reaction is at worst
102 + 4 ms (this value of reaction is measured in Exp_2). Although the value is
at the limit, and some of the results obtained show a violation of the require-
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ment, nevertheless this has not been considered particularly serious. In fact, the
explanation of this violation can be traced considering the execution monitor -in
charge of performing transition to Safe mode- which is a high priority thread
with a cycle of 100 ms. From here it has been very easy to find how to fix this
problem and to provide a guarantee of being able to respect the 100 ms deadline:
it is sufficient to slightly shorten the cycle time of the execution monitor (e.g., to
96 ms) and still proving the schedulability of the entire set of tasks. However we
are aware that further observations are necessary and need to be performed to
confirm that such requirement on the reaction is fully respected.

As previously said, in Exp_1 we note the low repeatability of the five execu-
tions. Latency varies significantly from an execution to another. The measured
values of reaction vary too. The standard deviation of the latency is 518 ms and
the standard deviation of the reaction is 19 ms.
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(a) Five executions of Exp_1. (b) Ten executions of Exp_2.

Figure 9.4: Results of Exp_1 and Exp_2.

In Exp_2 the injections are performed while the DMI is in Start-up mode.
In Start-up mode there are no interactions between the DMI and the EVC
Packet Generator: as a consequence the EVC Packet Generator does not affect
the repeatability of the experiment. In fact latency varies slightly in the ten
executions of Exp_2 (minimum is 892 +£4 ms, maximum is 896 +£4 ms and
standard deviation is 2 ms). Instead the reaction varies significantly: reaction
is 6 =4 ms in six executions (the execution monitor activates slightly after the
error is detected i.e., the execution monitor commands transition to Safe mode
immediately after error detection) and 102 +4 ms in four executions as observed
before.

In Exp_3 shown in Figure 9.5a the injections are performed in Normal mode.
Ten executions of the experiment are performed: latency and reaction are stable
values, with the exception of the second execution of the experiment. In fact
latency is 1204 £ 4 ms in nine executions and 102 &4 ms in one execution (the
second execution).
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Figure 9.5: Results of Exp_3 and Exp_4.

This regularity appears to be due to the fact that the safety mechanism
detecting the CFM_Check fault (the execution monitor) executes independently
from the workload. Probably the low latency of the second execution is due to
minimal variations in scheduling activities of the DMI. In all executions, the
reaction is substantially null (0 +4 ms). The execution monitor in this case both
performs the detection of the errors and commands the transition to Safe mode:
thus the distance between the two events is only of a few instructions.

In Exp_4, Exp_5 and Exp_6 (shown respectively in Figure 9.5b, Figure 9.6a
and Figure 9.6b), latency varies significantly from an execution to another, but
the reaction is a stable value (in the experiments, standard deviation of reaction
is close to zero).
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Figure 9.6: Results of Exp_5 and Exp_é.

The cause is that the safety mechanisms that detect the errors in these ex-
periments are functions of high priority threads that are run just before the
execution monitor. These positioning in the schedule to a short, fixed distance
determines a reaction time which is not affected by the workload.
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9.5 CONCLUSIONS AND RECOMMENDATIONS

In this Chapter software-implemented fault injection has been applied on a DMI
prototype. The application of our methodology allowed collecting confident
results, which showed an adequate behavior of the safety mechanisms. Trustful-
ness in results has been estimated satisfactory and the experimental campaign
has shown that the safety mechanisms of the DMI correctly identify the faults
injected and a proper reaction is executed.

In particular the faults injected were almost always properly detected and Safe
mode correctly entered (thus preventing possible unsafe operations of the DMI).
Only in one case a slight violation of the requirement was observed, analyzed,
its caused detected and a simple modification identified to solve the problem.



CONCLUSIONS

The key role of computing systems and networks in a variety of high-valued and
critical applications justifies the need for reliably and quantitatively assessing
their characteristics. It is well known that the quantitative evaluation of per-
formance and dependability-related attributes is an important activity of fault
forecasting, since it aims at probabilistically estimating the adequacy of a system
with respect to the requirements given in its specification.

Quantitative system assessment can be performed using several approaches,
generally classified into three categories: analytic, simulative and experimental.
Each of these approaches shows different peculiarities, which determine the
suitableness of the method for the analysis of a specific system aspect. The most
appropriate method for quantitative assessment depends on the complexity
of the system, its development stage, the specific aspects to be studied, the
attributes to be evaluated, the accuracy required, and the resources available for
the study.

Focusing on experimental evaluation, increasing interest is being paid to
quantitative evaluation based on measurement of dependability attributes and
metrics of computer systems and infrastructures. This is an attractive option
for assessing an existing system or prototype, because it allows monitoring a
system to obtain highly accurate measurements of the system in execution in its
real usage environment.

A mandatory requirement of each experimental evaluation activity is to guar-
antee a high confidence in the results provided: this implies that the measuring
system (the instruments and features used to perform the measurements), the
target system and all factors that may influence the results of the experiments
(e.g., the environment) need to be investigated and that possible sources of
uncertainty in the results need to be addressed.

Current situation is that, even if the measuring systems are carefully designed
and actually provide confident results, that are not altered due to an intrusive
set-up, badly designed experiments or measurement errors, there is seldom at-
tention to quantify how well the measuring system (the tool) performs and what
is the uncertainty of the results collected. Methodologies and tools for the evalu-
ation and monitoring of distributed systems could benefit from the conceptual
framework and mathematical tools and techniques offered by metrology (mea-
surement theory), the science devoted to studying the measuring instruments
and the processes of measuring. In fact metrology has developed theories and
good practice rules to make measurements, to evaluate measurements results
and to characterize measuring instruments.
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Additionally, well-structured evaluation processes and methods are key ele-
ments for the success of the experimental evaluation activity. The approaches to
assess algorithms and systems are typically different one from the others and
lack commonly applied rules, making comparison among different tools and
results difficult. Despite the fact that sharing results and comparing them is
acknowledged of paramount importance in the current dependability research
community, it is a matter of fact that in the field of dependability the approach
to quantitatively assess algorithms and systems is not univocal, but generally
varies from a work to another, making the comparison among different tools and
results quite difficult, if not meaningless. Should structured, fully depicted and
trusted results be shared, then tools and experiments could be better compared.

Starting from these observations, this Thesis proposes a general conceptual
methodology for the experimental evaluation of critical systems. The method-
ology, subdivided in iterative phases, addresses all activities of experimental
evaluation from objectives definition until conclusions and recommendations.
The methodology tackles two key issues. The first is providing a metrological
characterization of measurement results and measuring instruments, including
the need to attentively report a description of such characterization. The second
is proposing techniques and solutions (mainly from OLAP technologies) for
the organization and archiving of measurement results collected, to ease data
retrieval and comparison.

The applicability of the methodology to industrial practices and V&V pro-
cesses compliant to standards is shown by introducing a framework for the
support of V&V process, and then discussing the interplay of the methodology
and the framework to perform the experimental evaluation activities planned in
a generic V&V process.

The methodology is then applied to five case studies, where five very differ-
ent kinds of systems are evaluated, ranging from COTS components to highly
distributed and adaptive SOAs. These systems are (in ascending order of dis-
tributedness and complexity) i) the middleware service for resilient timekeeping
R&SAClock, ii) low-cost GPS devices, iii) a safety-critical embedded system for
railway train-borne equipment (a Driver Machine Interface), iv) a distributed
algorithm prototyped and tested with an improved version of NekoStat, and v)
a testing service for the runtime evaluation of dynamic SOAs. Case studies i), iv)
and v) have been developed exclusively in the academic context (in University
labs), while case studies ii) and iii) have been performed in cooperation with
industries, to bring evidence of the effectiveness of the methodology in industrial
V&V processes. These five case studies offer a comprehensive and exhaustive
illustration of the methodology and its insight. They show how the methodology
allows tackling the previous issues in different contexts, and prove its flexibility
and generality.
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