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Overview

This thesis is devoted to the study of many-body one-dimensional quantum systems as

quantum wires, a recent intriguing topic which ranges between several branches of mod-

ern physics. A quantum wire is a communication channel between two quantum objects

which preserves the quantum coherence. The interest in quantum communication chan-

nels has raised in recent years as novel experimental techniques permit to access and ma-

nipulate single quantum objects with extremely good precision and long coherence times,

paving the way for the realization of a quantum computer, i.e., a device which exploits pecu-

liar features of quantum mechanics for elaborating and processing information. Quantum

entanglement is a fundamental resource, but it is responsible both for the power of quan-

tum computers and for the difficulty of building them, being it very fragile. Therefore, it has

become of utmost importance to understand what are the theoretical characteristics that

a quantum channel must possess for reliably transfer information between distant parts,

preserving all the relevant quantum features, notably entanglement.

Although flying quantum systems, e.g. photons in optical fibers, can be used as quan-

tum information carriers, in this thesis we focus on wires composed of localized quantum

systems, statically interacting with their (nearest) neighbours: the transmission occurs by

the coherent collective dynamics of the components. This scheme is suitable for short-

distance quantum communications, as those occurring between quantum processing units

in a quantum computer, since the wire can be fabricated with the same localized objects

of the processing units themselves. Many-body quantum wires have a generally rich and

complex dynamics with lots of different effects, as the spreading of the wave-function be-

tween different sites or the scattering between the elementary excitations. We have analysed

several models, with a special emphasis on spin- 1
2

chains, though our arguments can be ap-

plied with little effort to other many-body systems, such as chains of (Majorana) fermions

or excitonic systems. Moreover, we have devised a recipe for inducing a coherent ballistic

dynamics in systems described by Hamiltonians mappable to free-models with some suit-

able transformation, and we have applied it to different cases and models. Thanks to our

recipe the information flows coherently through the one-dimensional wire, allowing a fast

high-quality transmission of states and entanglement even in the limit of infinite sites, i.e.,

in principle, over macroscopic distances. Furthermore, the coherent ballistic information

flow entails an effective interaction between distant parts, and can thus be used to dynami-

cally generate long-distance entanglement in a fast and scalable way compared to previous

proposals.

The structure of the thesis is the following:

Chapter 1 presents the theory of composite quantum systems and a basic introduction to

quantum information concepts. Starting from the postulates of quantum mechan-

ics the description of the state of the components is derived, together with their dy-
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namics, and the effect of global measurements are discussed. The formal theory of

quantum channels, i.e. mapping between quantum states, is then introduced. Spe-

cial emphasis is given to quantum channels between qubits (quantum bits) which will

be used in detail in the subsequent chapters.

Chapter 2 reviews the theory of quantum information transmission. Teleportation is in-

troduced, and some figures of merit of the transmission quality of generic quantum

channels are analysed. The role of entanglement is then considered. Finally, explicit

expressions of the relevant figures of merit are given for quantum channels between

qubits.

Chapter 3 introduces the main motivation for using a spin chain as a quantum wire. We

consider a vast class of one-dimensional many-body models which contains some

of the most relevant experimental realizations of spin chains. In particular, we con-

sider spin- 1
2

XY and XXZ model with open boundary conditions. The detailed theory

for treating the dynamics is explained, both for XY models, which can be analytically

approached thanks to the mapping to quadratic fermionic models, and for the other

models where the dynamics is obtained numerically. Uniform interactions are con-

sidered and the quality of different wires is analysed depending on the parameters of

the model and on the initial state of the wire. Our results show a significant difference

between quasi-free fermionic systems (XY) and interacting ones (XXZ), where in the

former case initialization can be exploited for improving the entanglement transmis-

sion, while in the latter case it also determines the quality of state transmission. In

fact, we find that in non interacting systems the interference with the initial state of

the chain always has a destructive effect, and we prove that it can be completely re-

moved in the isotropic XX model by initializing the chain in a ferromagnetic state. On

the other hand, in interacting systems constructive scattering effects can arise with a

proper initialization procedure.

Chapter 4 reviews some proposals for increasing the quality of quantum wires that have

mostly inspired our research. Some of them are based on the engineering of the cou-

plings, others on the encoding of the initial state into a wave-packet extended over

multiple sites, and still others on connecting the distant parts to the wire with weak

couplings. It is then shown how this three approaches merge into our scheme for in-

ducing a coherent ballistic dynamics in systems described by quasi-free models.

Chapter 5 deals with the coherent ballistic dynamics in the XX model, where lots of ana-

lytical results are made available for supporting and explaining our idea. It is shown

that effective quantum-state and entanglement transfer can be obtained by tuning

the coupling between the wire endpoints and the two qubits there attached, to an

2
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optimal value. A general procedure to determine such value is devised, and scaling

laws between the optimal coupling and the length of the wire are found. We show

that a high-quality entanglement transfer occurs even in the limit of arbitrarily long

channels, almost independently of the channel initialization, and that the state trans-

mission fidelity exceeds 90% for any chain length.

Chapter 6 extends the results of Chapter 6 to the XY models, where the induction of a co-

herent ballistic dynamics is more complicated. Indeed, it is shown that another pa-

rameter, the local magnetic field on the external qubits, has to be tuned as well. Some

analytical results are obtained for the Ising model.

Chapter 7 considers a fast scalable method for achieving a two-qubit entangling gate be-

tween arbitrarily distant qubits in a network by exploiting the coherent ballistic dy-

namics. As explained in Chapter 5, this is achieved dynamically by switching on a

strong interaction between the qubits and the wire formed by a non-engineered XX

spin chain. The quality of the gate scales very efficiently with qubit separations. Sur-

prisingly, a sudden switching of the coupling is not necessary and our gate mechanism

is not altered by a possibly gradual switching. The wire is also naturally reset to its

initial state making complex resetting procedures unnecessary after each application

of the gate. Moreover, we propose a possible experimental realization in cold atoms

trapped in optical lattices and near field Fresnel trapping potentials, which are both

accessible to current technology.

3





1
Theory of composite quantum systems

1.1 Digest on quantum mechanics

In this section we briefly recall the postulates of quantum mechanics following standard

quantum information textbook [1, 2]. We concentrate on the mathematical structure of

quantum mechanics without specifying a particular physical system.

The first two postulates define the state space and the observables of a physical system.

Postulate 1. Associated to any isolated physical system is a Hilbert space H , known as the

state space of the system. The system is completely described by a a ray1 |ψ〉 ∈H in the system’s

state space.

Postulate 2. An observable, namely a property of a physical system that in principle can be

measured, is a self-adjoint (Hermitian) operator A on the state spaceH .

The third postulate defines how a quantum mechanical system changes in time. In ab-

stract terms:

Postulate 3. The evolution of a closed quantum system is described by a unitary transforma-

tion U, that is |ψ2〉 =U |ψ1〉, where |ψ1〉 and |ψ2〉 are the states of the system at a time t1 and

t2 respectively.

Every unitary operation can be obtained by composing a certain subset of unitary trans-

formations. These transformations in the quantum computation community [1] are called

universal quantum gates. However, from a physical viewpoint, the quantum dynamics is

described by the Hamiltonian operator H via the Schrödinger equation

iħh
d

d t
U =H U , (1.1)

1A ray is an equivalence class of vectors that differ by a multiplication by a nonzero complex scalar: the

states |ψ〉 and z |ψ〉, with 0 6= z ∈ C, describe the same physical object. A representative of this class (for any

non vanishing vector) is chosen to have a unit norm 〈ψ|ψ〉= 1.

5



CHAPTER 1. THEORY OF COMPOSITE QUANTUM SYSTEMS

where U is the resulting unitary evolution operator of Postulate 3. For instance, when H is

time-independent, U (t ) = e−i Ht
ħh . In this thesis the Planck’s constant ħh is always absorbed

into the definition of H or, in other words, ħh ≡ 1. The Schrödinger equation is the quan-

tum analogue of Hamilton’s equation in classical mechanics. It can not be justified without

making extra assumptions, and has been taken as another postulate, together with Postulate

3.

The fourth postulate deals with the description of composite quantum systems, made

up of two (or more) physical objects. It will be very important in this thesis, as it leads to the

quantum entanglement and other peculiar features of quantum mechanics.

Postulate 4. The state space of a composite physical system is the tensor product of the state

spaces of the component physical systems2.

Indeed, the “classical” Cartesian product is not suitable in quantum realms as it does not

preserve the Hilbert space structure of constituents3, as required by Postulate 1.

The first four postulates deal with the description of a closed quantum system, i.e., when

there are no interactions with the rest of the world. The interfacing between the quantum

realm and the classical reality is still debated, and there are different theories and interpre-

tations. One of the most famous and established is the so-called quantum decoherence [3].

The measurement process, which produces a single macroscopic result from the many pos-

sible quantum states, can be cast in the framework of quantum decoherence, and derived,

with extra assumptions, from the other postulates of quantum mechanics. Here, however,

we take a more pragmatic approach and we consider the measurement process as a separate

postulate, as in any standard Quantum Mechanics textbook.

Postulate 5. The outcome of the measurement of an observable A is an eigenvalue of A. Right

after the measurement the quantum state of the system lies in an eigenstate of A corresponding

to the measured eigenvalue.

Let A =
∑

n a n Pn the spectral decomposition of A, where each a n is an eigenvalue of

A and Pn is the corresponding orthogonal projection4 onto the space of eigenvectors with

2 Notation:

|ψ1ψ2〉 ≡ |ψ1〉⊗ |ψ2〉 .

3Indeed, the tensor product naturally arises when we require the following equivalence relations

|v1+v2, w 〉 ∼ |v1, w 〉+ |v2, w 〉, |v, w1+w2〉 ∼ |v, w1〉+ |v, w2〉, α|v, w 〉 ∼ |αv, w 〉 ∼ |v,αw 〉 .

4If a n are non-degenerate then Pn = |a n 〉〈a n |. In general the Pn ’s are Hermitian operators satisfying

Pn Pm =δnm Pm ,
∑

m

Pm =1 .

6



1.1. DIGEST ON QUANTUM MECHANICS
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Figure 1.1 – Bloch sphere.

eigenvalue a n . If |ψ〉 is the state of the system before the measurement, then the outcome

a n is obtained with probability

p (a n ) = ||Pn |ψ〉||2 = 〈ψ|Pn |ψ〉 , (1.2)

and after the measurement the quantum state becomes

Pn |ψ〉
p

〈ψ|Pn |ψ〉
. (1.3)

1.1.1 Qubit: the simplest quantum system

The indivisible unit of classical information is the bit, an object taking only two possible val-

ues: by convention 0 and 1. Similarly, the quantum system with only two orthonormal states

is called quantum bit or qubit, and is the unit of quantum information [1]. This orthonormal

states are usually called |0〉 and |1〉; they span the smallest nontrivial Hilbert space, i.e. the

two-dimensional space of states

a |0〉+b |1〉 ,

where a and b are complex numbers satisfying |a |2+ |b |2 = 1 and the overall phase is physi-

cally irrelevant.

Being a bidimensional quantum system, it is natural to interpret the qubit as the spin of

a spin- 1
2

particle. In this picture the states |0〉 and |1〉 are nothing but the spin-up state (|↑〉)
and the spin-down state (|↓〉) along a particular axis, that in this thesis is set by convention to

7



CHAPTER 1. THEORY OF COMPOSITE QUANTUM SYSTEMS

the z -axis. The two complex numbers a and b define the orientation of the spin in the three

dimensional space. Indeed, recalling the quantum theory of angular momentum [4], a finite

rotation R(~n ,α) of an angle α around the axis specified by ~n = (sinθ cosφ, sinθ sinφ, cosθ ),

is given by the following unitary operator

U (~n ,α)≡U (R(~n ,α)) = e−i α2 ~n ·~σ =1 cos
α

2
− i ~n · ~σ sin

α

2
, (1.4)

where 1 is the identity matrix and

σx =

 

0 1

1 0

!

, σy =

 

0 −i

i 0

!

, σz =

 

1 0

0 −1

!

, (1.5)

are the Pauli matrices satisfying the algebra

σµσν =δµν + i εµνγσγ, (1.6)

where εµνγ is the totally antisymmetric tensor (Levi-Civita symbol) and summation over re-

peated indices is adopted. As the spin operators transform under SU(2) rotations as a vector

UσµU † =Rµνσν , (1.7)

where R is the corresponding SO(3) rotation of the spin operator5, the rotated state U |0〉 is an

eigenstate of the rotated spin operator
∑

µRzµσµ. Therefore, the eigenstate |θ ,φ〉 of the spin

along the ~n = (sinθ cosφ, sinθ sinφ, cosθ ) axis, shown in Fig. 1.1, is constructed by rotating

the spin-up state |0〉 of an angle θ around the axis ~n ′ =
�

cos(φ+π/2), sin(φ+π/2), 0
�

, that

is |θ ,φ〉=U (~n ′,θ )|0〉. By direct calculation,

|θ ,φ〉= cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉. (1.8)

1.1.2 Entanglement

Quantum entanglement is a property of composite quantum systems with no analogues in

the classical theory. Indeed, in the classical case the state space (phase space) of a systems

composed of n parts is given by the Cartesian product of the n subsystem spaces. Hence,

no matter how the systems interact in their physical evolution, the total state is always a

product state of n separate systems. In contrast, according to postulate 4 of Quantum Me-

chanics, the composite state spaceH tot is the tensor product of the subsystems’ space. A

general state inH tot can be written as a superposition of product states

|ψ〉 =
∑

α1,··· ,αn

cα1,··· ,αn |α1, · · · ,αn 〉 , (1.9)

5As it is well known, the spinor representation U (~n ,α) of the rotation group is double valued and the two

SU(2) matrices U and −U give the same R matrix. But since we are considering a single qubit the sign is

irrelevant: only the global phase changes.

8



1.1. DIGEST ON QUANTUM MECHANICS

where we assumed for simplicity finite dimensional Hilbert spaces with basis {|αj 〉}. In gen-

eral the state (1.9) can not be written in a separable form

|ψ〉 6= |ψ1〉 · · · |ψn 〉 , (1.10)

with |ψj 〉 ∈ Hj , beingHj the Hilbert space of subsystem j . The states for which Eq. (1.10)

holds are called entangled and they span most of the Hilbert space, as the volume fraction

of the set of separable states quickly decreases for increasing n [5]. Indeed, the dimension

of the total Hilbert space dimH1⊗· · ·⊗Hn = dimH1×· · ·×dimHn is greater than the sum of

the dimensions of the subsystems’ Hilbert spaces: the state space grows exponentially with

increasing n , unlike the classical (separable) case where the total space grows “only” linearly

with n .

Let’s consider two systems A and B with Hilbert spaces HA and HB respectively. The

following very important result [6, 7] holds

Schmidt’s theorem. Every state |ψ〉 ∈HA ⊗HB can be expressed in the form

|ψ〉=
r
∑

i=1

p

λi |a i 〉⊗ |b i 〉 , (1.11)

where {|a i 〉}d A
i=1 is an orthonormal basis forHA with d A = dimHA , {|b i 〉}d B

i=1 is an orthonormal

basis forHB with d B = dimHB ; r ≤min{d A , d B} is called the Schmidt rank and the λi ’s are

called Schmidt coefficients.

The nontrivial result is that there is only one sum in (1.11). In fact, as in Eq. (1.9), every

state inHA ⊗HB can be written as

|ψ〉=
d A
∑

i=1

d B
∑

j=1

C i j |ã i 〉⊗ |b̃ j 〉 , (1.12)

where C is a complex valued matrix and the bases are arbitrary. The Schmidt theorem is

only a changes of basis: performing the singular value decomposition of matrix C

C =UDV † ,

where U is a unitary d A × d A matrix, V is a unitary d B × d B matrix and D is a diagonal

d A × d B matrix with non-negative real diagonal entries which, without loss of generality,

can be sorted in decreasing order. Setting |a i 〉 =
∑

j Uj i |ã j 〉, |b i 〉 =
∑

j V ∗j i |b̃ j 〉, and calling
p

λi the non-zero diagonal values of D, the Schmidt’s theorem follows.

The Schmidt coefficients are uniquely determined by C and obey

∑

i

λi = 1.

9



CHAPTER 1. THEORY OF COMPOSITE QUANTUM SYSTEMS

When the Schmidt rank is equal to one then λ1 = 1 and λi = 0, for i > 1, and the state is

separable. Otherwise when r =min{d A , d B} and each λi = 1
r

the state is called maximally

entangled6. The most famous maximally entangled states are the Bell states

|Φ±〉=
|00〉± |11〉
p

2
, |Ψ±〉=

|01〉± |10〉
p

2
. (1.13)

They are two-qubit (d A = d B = 2) orthogonal states and are related by local unitary opera-

tions

(σz ⊗1) |Φ±〉= |Φ∓〉 , (σz ⊗1) |Ψ±〉= |Ψ∓〉 , (σx ⊗1) |Φ±〉=±|Ψ±〉 . (1.14)

The Bell states are one of the fundamental building blocks of quantum computation [1]:

many quantum algorithms, like dense coding or teleportation (explained in the next chap-

ter), start with “Let two distant parts, Alice and Bob, initially share a Bell state”.

1.2 Quantum subsystems

The Dirac’s ket formalism is unable to describe in general the state of quantum components

when the composite system is in an entangled state, for instance no ket can represent the

state of the first qubit in the Bell state (1.13). The reason is the lack of a certain knowledge of

such a state, for which we need to draw on statistics. Let |ψ〉 be a ray in the physical Hilbert

space, then the density matrix associated to that state is

ρψ = |ψ〉〈ψ|.

Furthermore, the density matrix provides a means for representing quantum systems whose

state is not completely known, e.g. when the system could stay in one of the states |ψi 〉with

some probability p i . This happens for instance after the measurement of an observable

when the outcome is unknown. In the latter case, the |ψi 〉’s are the eigenvectors of the ob-

servable and p i = |〈ψi |ψ〉|2, being |ψ〉 the state before the measurement. The density matrix

of the ensemble {p i , |ψi 〉} is given by

ρ{p i ,|ψi 〉} =
∑

i

p i |ψi 〉〈ψi |.

6The term maximally entangled should depend on the particular measure chosen to quantify entangle-

ment, a subject of still active research [8]. Nevertheless, every entanglement measure should be an entangle-

ment monotone (see Section 2.4.2), i.e., it should be non-increasing, on average, under local operations and

classical communications (LOCC). However, Nielsen’s majorization theorem [9] states that |ψ〉 can be trans-

formed by LOCC to |ψ′〉 if and only if the respective Schmidt coefficientsλi andλ′i , assumed to be in decreasing

order, satisfy
k
∑

i=1

λi ≤
k
∑

i=1

λ′i for k = 1, · · · , n ,

where n is the dimension of the Hilbert space. The smallest element is obtained for λi = 1/n and thus no other

state can have greater entanglement.

10
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Formally, a density matrix is an operator satisfying the following properties:

• Hermiticity: ρ =ρ†.

• Positivity: 〈ψ|ρ|ψ〉=
∑

i p i |〈ψi |ψ〉|2 ≥ 0.

• Trρ =
∑

i p i = 1.

In the following, the space of density operators onH , i.e., the space of operators satisfying

the above conditions, will be denoted withBH .

The postulates of quantum mechanics can be rewritten and extended in the density ma-

trix formalism, and in particular:

• The average value of the measurement of an observable A is given by

〈A〉= Tr Aρ =
∑

i

p i 〈ψi |A |ψi 〉 .

• The density matrix evolves as

ρ
U−−→UρU † .

• Measurements are also easily extended to the density operator language. Suppose

the measurement is defined by the projection operators Pm . Then, if the initial state

was |ψi 〉, the probability of getting the result m is p (m |i ) = 〈ψi |Pm |ψi 〉, and after the

measurement |ψi 〉〈ψi | →
∑

m Pm |ψi 〉〈ψi |Pm . Accordingly,

ρ
{Pm }−−−→

∑

m

PmρPm , (1.15)

while the probability of getting the outcome m is

p (m ) =
∑

i

p (m |i )p i = Tr Pmρ.

When a state can be represented by a ray, such a state is called pure. Otherwise it is mixed.

Let’s consider a bipartite quantum system, composed of subsystems A and B , which

is in a generic state (1.12) and suppose that an observer have access only to the system

A. A generic observable OA acting on system A only can be decomposed as OA ⊗ 1B =
∑

a ,a ′,b 〈a |OA |a ′〉|ab 〉〈a ′b | where the rays |a 〉,|a ′〉 span the Hilbert space of system A and the

rays |b 〉 span the Hilbert space of system B . The expectation value on the state |ψ〉 is thus

〈O〉A = 〈ψ|OA ⊗1B |ψ〉=
∑

a ,a ′,b

〈a |OA |a ′〉〈ψ|ab 〉〈a ′b |ψ〉=

∑

a ,a ′,b

〈a |OA |a ′〉〈a ′b |ψ〉〈ψ|ab 〉= TrρAOA , (1.16)

11
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where

ρA =
∑

b

(1⊗〈b |) |ψ〉〈ψ| (1⊗ |b 〉)≡ Tr
B
|ψ〉〈ψ| , (1.17)

is the reduced density matrix of subsystem A obtained with a partial trace TrB on subsystem

B of the global density matrix |ψ〉〈ψ|. Because 〈O〉A has the form of Eq. (1.16) for any observ-

able OA acting on the system A, the density matrix ρA fully describes the state of system A

on its own. Taking into account Eq. (1.12), it holds ρA =C C † =U D2U †, i.e., in some suitable

basis |a i 〉

ρA =
∑

i

λi |a i 〉〈a i |.

Therefore, the Schmidt coefficient λi represents the probability of system A of being in the

state |a i 〉, and the same can be obviously rephrased for system B . For separable states the

Schmidt rank is one and the components are in a pure state. On the other hand, when r > 1

A and B are entangled and their state is mixed, represented respectively by the reduced

density matrices ρA , ρB . In particular, when A and B are maximally entangled the reduced

density matrix is the maximally mixed state.

With the Schmidt decomposition in hand, also the inverse operation of state reduction

follows: given any density matrix ρ on a Hilbert spaceH we can use (1.11) to write down a

pure state on a larger Hilbert spaceH ⊗H ′ whose reduction down toH is ρ. Consider a

density matrix ρ =
∑r

i=1 p i |ψi 〉〈ψi | in orhonormal form in the spaceH . A purification of ρ

is

|Ψ〉=
r
∑

i=1

p

p i |ψi 〉|φi 〉 ,

where |φi 〉 ∈H ′ are orthogonal rays. The auxiliary Hilbert space must have at least dimen-

sion r , but there is a lot of freedom in the choice of purification; for instance |Ψ〉 and1⊗V |Ψ〉
give the same density matrix ρ, provided V be unitary.

Entanglement between a quantum system and a thermal environment is nowadays an

important theoretical tool for studying and rephrasing classical statistical mechanics and

thermodynamical concepts [10, 11]. For instance, quantum statistical mechanics is usu-

ally teached by considering system-environment interactions: imposing some constraints

on physical observables, e.g. energy, the (canonical) density matrices arise provided the

extended system to be in a completely mixed state (equal a priori probability postulate).

However, in [12] it has been shown that the canonical density matrices typically result also

when the extended system is in pure states. This is clearly a consequence of purification,

and the key element is the quantum entanglement between the system and its environment

[12] .

12



1.2. QUANTUM SUBSYSTEMS

1.2.1 Measurement: POVM

In the quantum mechanical description of closed systems measurements are described by

a set {Pm } of orthogonal projection operators in the Hilbert space. We now briefly generalize

the measurement concept by supposing the considered quantum system to be part of an ex-

tended quantum system, with bigger Hilbert spaceH ext =H ⊕H ⊥. A generic ray |ψ〉 ∈H ext

is decomposed in two orthogonal parts |ψ〉= |ψ̃〉+ |ψ̃⊥〉 where |ψ̃〉 and |ψ̃⊥〉 are (unnormal-

ized) vectors in H and H ⊥ respectively. When orthogonal measurements are performed

inH ext with the projection operators {Pm }, the observer can know only the component of

|ψ〉 in his Hilbert space. Indeed let’s define Pm = |m 〉〈m |, where |m 〉= |m̃ 〉+ |m̃⊥〉. After the

measurement the new state is |m 〉, but the observer knows nothing aboutH ⊥ and for him

there is no physical distinction between |m 〉 and |m̃ 〉 (aside from normalization), so the final

state of the observer will be |m̃ 〉/
p

〈m̃ |m̃ 〉. The set of operators {Em },

Em =ΠPmΠ= |m̃ 〉〈m̃ | , (1.18)

where Π is the orthogonal projector onH , defines a POVM, positive operator value mea-

sure, and in abstract terms is composed by a set of non-negative Hermitian operators that

sum to unity inH :
∑

m

Em =Π

 

∑

m

Pm

!

Π=Π=1H .

They are not projectors, unless 〈m̃ |m̃ 〉= 1.

POVMs naturally arise not only with extended measurements on the direct product of

two Hilbert spaces. They arise also in the more common setup of composite quantum sys-

tems by performing joint projective measurements on the global Hilbert space, i.e., the ten-

sor product of the Hilbert spaces of the components. Indeed, let A and B be two systems with

Hilbert spacesHA andHB initially in the uncorrelated stateρ =ρA⊗ρB . By performing pro-

jective measurements {Pm } on the tensor productHA ⊗HB , the final density matrix is ρ′
A B
=

∑

m Pm ρA ⊗ρB Pm where the probability of getting the results m is p (m ) = TrA B
�

Pm ρA ⊗ρB

�

.

Therefore, for an observer accessing only system A, the probability of getting the result m

can be written as

p (m ) = Tr
�

EmρA

�

, Em = Tr
B

�

Pm (1HA ⊗ρB )
�

,

where the operators {Em } defines a POVM as

∑

m

Em =
∑

m

Tr
B

�

Pm (1HA ⊗ρB )
�

= Tr
B
1HA ⊗ρB =1HA .

The opposite point of view is tackled by the following theorem that we state without

proof [13]:

13
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Naimark’s theorem. Any POVM {Em } in the Hilbert spaceH can be dilated to an orthogonal

resolution of the identity {Pm } on a larger Hilbert space in such a way that Em =ΠPm Π, where

Π projects down toH .

1.2.2 Time evolution: Kraus operators

We have seen that the measurement postulate 5 has to be extended when we consider open

quantum systems, and in general the measurement is no longer described by a set of pro-

jection operators. As it can be expected, postulate 3 has to be generalized as well. Consider

an extended systemH =HA⊗HB , each subspace corresponding to a certain quantum sys-

tem, and, as in the previous section, assume a closed (unitary) evolution onH . We want to

look for the resulting description of the evolution onHA orHB only. Let’s concentrate on

A, while B can be either a different known quantum system or an unknown one, such as an

environment or a bath. After a global unitary operation U , e.g. a time evolution U =U (t ),

the state of subsystem A is clearly

ρ′
A
= Tr

B
U ρU †, (1.19)

whereρ is the initial state of the overall system. In general Eq. (1.19) requires the full knowl-

edge of both the state and the evolution of the extended system, but if initially A and B are

uncorrelated

ρ =ρA ⊗ρB , (1.20)

then we can safely trace out B and obtain a complete description of the evolution of A with-

out needing to know the full evolution of the extended system, i.e., the evolution can be

described in terms of operators acting on A only. Indeed, let ρB =
∑

b λb |b 〉〈b | then

ρ′
A
=
∑

b ,b ′

λb 〈b ′|U |b 〉ρA 〈b |U †|b ′〉=
∑

µ

AµρA A†
µ , (1.21)

where µ in this case is a multi-index µ= (b ′,b ) and the operators Aµ ≡ A (b ′,b ) =
p

λb 〈b ′|U |b 〉
acting onHA are the Kraus operators [14]. They satisfy

∑

µ

A†
µAµ =

∑

b ,b ′

λb 〈b |U †|b ′〉〈b ′|U |b 〉=
∑

b

λb 〈b |U †U |b 〉=
∑

b

λb1HA =1HA , (1.22)

as U is unitary, and λb are the eigenvalues of a density matrix. The form (1.21) is called

operator sum representation, or Kraus or sometimes Stinespring decomposition, and is

the most general mapping from density operators to density operators [14, 15], as shown in

the next section.

The Kraus operators Aµ give an intrinsic description of the dynamics of subsystem A

alone. However, the decomposition (1.21) is not unique. Indeed, if we supplement the evo-

lution U with another unitary evolution Ũ on subsystem B alone, clearlyρ′
A

does not change,
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ρA ⊗ρB U ρA ⊗ρB U †

ρA

∑

µ

AµρA A†
µ

time evolution: U

partial trace partial trace

time evolution: {Aµ}

Full

system

Reduced

system A

Figure 1.2 – Schematic picture of the time evolution of the full quantum system composed of

A and B and the corresponding time evolution of the reduced system A.

but the Kraus operators do

A ′(b ′,b ) =
p

λb 〈b ′|
�

1HA ⊗Ũ
�

U |b 〉=
∑

b ′′

〈b ′|Ũ |b ′′〉A (b ′′,b ).

In general, two sets of Kraus operators {Aµ} and {A ′µ} give rise to the same evolution provided

that Aµ =
∑

ν VµνA ′ν , with V unitary:
∑

µ

AµρA†
µ =

∑

µ,ν ,π

VµνA ′ν ρ (A
′
π)

†V ∗µπ =
∑

ν ,π

�

V † V
�

πν
A ′ν ρ (A

′
π)

† =
∑

ν

A ′ν ρ (A
′
ν )

†.

In this section we have derived the evolution of an open quantum system in a physical

way, starting from a unitary evolution in a bigger quantum system. Before going to the ax-

iomatic approach of the next section, let us take the opposite point of view and show that

every evolution in the Kraus form (1.21) can be recast as a unitary evolution of a bigger

quantum system. Consider the decomposition (1.21) and let {|bµ〉} be a basis onHB . From

the completeness relation (1.22) we can regard the Kraus operators Aµ as the orthogonal

columns of a unitary matrix U , by setting 〈a ′|Aµ|a 〉= 〈a ′bµ|U |a B〉 for some |B〉 ∈HB , i.e. by

defining U such that

U |ψA〉|B〉=
∑

µ

Aµ |ψA〉|bµ〉.

Clearly the freedom in the choice of |B〉 stems from the freedom in the choice of the Kraus

operators, as described before. Then
∑

µ

〈a |A†
µAµ|a ′〉=

∑

µ,a ′′

〈a B |U †|a ′′bµ〉〈a ′′bµ|U |a ′B〉= 〈a |a ′〉

∑

µ

〈a |AµρA A†
µ|a

′〉=
∑

µ,ã ,ã ′

〈abµ|U |ã B〉〈ã |ρA |ã ′〉〈ã ′B |U †|a ′bµ〉

=〈a |Tr
B

�

U
�

ρA ⊗ |B〉〈B |
�

U †
�

|a ′〉 ,

and the equations (1.22) and (1.19) arise with ρ = ρA ⊗ |B〉〈B |, thus providing the so called

environmental representation of the map (1.21).
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1.3 Quantum channels

After obtaining both the measurement and the time evolution of an open quantum system

by looking at the corresponding measurement and time evolution of an extended closed

quantum system, we now give a formal derivation of the properties that a quantum channel,

i.e. a map from density operators to density operators, has to satisfy. We have seen two

different quantum channels in (1.15) and (1.21), and we will show here that nothing more is

needed.

A quantum channel is a superoperator between (different) spaces of density operators

E :BH −→BH ′ .

Given ρ ∈BH , the quantum channel E

ρ′ = E (ρ) ,

must satisfy certain conditions to ensure that the output is a density operatorρ′ ∈BH ′ . The

first condition is:

(i) E is linear, as required by the postulates of quantum mechanics. In particular, in order

to preserve the probabilistic interpretation of the density matrix, E has to be a convex-

linear map on the set of density matrices, i.e.,

E

 

∑

i

p i ρi

!

=
∑

i

p iE
�

ρi
�

,
∑

i

p i = 1.

Indeed, the state E (ρ), where ρ =
∑

i p i ρi arises by initially preparing the system in

the state ρi with probability p i and then letting the system evolve through E . Anyway,

the same result has to be obtained when the system, with probability p i , is initially

prepared in ρi and then evolved to E (ρi ).

In order to describe the other properties of E , let us introduce a convenient matrix represen-

tation of the superoperator by defining the so called Choi matrix Ê . Let {|i 〉}, i = 1, . . . , dimH
and {|i ′〉}, i ′ = 1, . . . , dimH ′ be a basis respectively ofH andH ′. The Choi matrix is an op-

erator in the Hilbert spaceH ⊗H ′ and is defined by

〈k i ′|Ê |l j ′〉= 〈i ′|E
�

|k 〉〈l |
�

|j ′〉 , (1.23)

where the range of the indices is straightforward. By exploiting the linearity and using the

definition of Choi matrix (1.23) the map E takes the form

E (ρ) =
∑

i ′,j ′,k ,l

〈k |ρ|l 〉 〈i ′|E
�

|k 〉〈l |
�

|j ′〉 |i ′〉〈j ′| =
∑

i ′,j ′,k ,l

〈k |ρ|l 〉 〈k i ′|Ê |l j ′〉 |i ′〉〈j ′|

= Tr
H

��

ρT ⊗1H ′

�

Ê
�

, (1.24)
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where ρT = ρ∗ denotes the transpose of ρ. The matrix Ê is the only operator satisfying

(1.24). In fact, suppose that Ê and Ê ′ give the same map E by means of Eq. (1.24), then

TrH
�

ρT ⊗1H ′

�

Ê − Ê ′
��

= 0 for each ρ ∈ BH . By looking at the component expansion in

Eq. (1.24) it follows straightforwardly that Ê = Ê ′. In the following the properties of the map

E are introduced and analysed in the more simple language of the Choi matrix:

(ii) E has to preserve Hermiticity:

E (ρ) = Tr
H

��

ρT ⊗1H ′

�

Ê
�

= E (ρ)† = Tr
H

��

ρT ⊗1H ′

�

Ê †
�

, ∀ρ ∈BH .

Accordingly, Ê is Hermitian.

(iii) E has to be trace-preserving:

1= TrE (ρ) =
∑

i ′,k ,l

〈k |ρ|l 〉 〈i ′|E
�

|k 〉〈l |
�

|i ′〉=
∑

i ′,k ,l

〈k |ρ|l 〉 〈k i ′|Ê |l i ′〉, ∀ρ ∈BH .

Accordingly, 〈k i ′|Ê |l i ′〉=δk l and thus

Tr
H ′
Ê =1H . (1.25)

(iv) E has to be completely positive: this means that not only E has to map positive oper-

ators into positive operators, but, furthermore, if we introduce another Hilbert space

K of arbitrary dimensionality, 1⊗ E , where 1 is the identity map on K , must map

density matrices (positive operators) in K ⊗H to density matrices (positive opera-

tors) inK ⊗H ′. This physical requirement arises because E has to be valid when we

consider extended systems, i.e., tensor products of Hilbert spaces likeK ⊗H , and E is

only applied locally onto one subsystem of Hilbert spaceH . Let’s prove the following

important theorem [16]:

Choi’s theorem. The map E is completely positive if and only if the corresponding Choi

matrix Ê is positive.

Proof. Let’s consider two states |ψ〉 ∈ K ⊗H and |φ〉 ∈ K ⊗H ′, expressed in some

suitable basis |ψ〉 =
∑

k hψk h |k h〉 and |φ〉 =
∑

k h ′φk h ′ |k h ′〉. As a mixed state can be

purified into a pure state in a larger Hilbert space, with the freedom of choosing a large

enoughK there is no loss of generality in considering the two states to be pure. As Ê
is Hermitian, it admits the spectral decomposition

Ê =
∑

µ

Λµ |χµ〉〈χµ|. (1.26)
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Accordingly, setting 〈hh ′|χµ〉 = χhh ′
µ , one can test whether 〈φ| (1⊗E )

�

|ψ〉〈ψ|
�

|φ〉 is

positive:

〈φ| (1⊗E )
�

|ψ〉〈ψ|
�

|φ〉=
∑

h1,h2,h ′1,h ′2

〈φ|h ′1〉〈h1|ψ〉 〈h ′1|E
�

|h1〉〈h2|
�

|h ′2〉 〈ψ|h2〉〈h ′2|φ〉

=
∑

h1,h2,h ′1,h ′2

〈φ|h ′1〉〈h1|ψ〉〈ψ|h2〉〈h ′2|φ〉 〈h1h ′1|Ê |h2h ′2〉

=
∑

µ

Λµ
∑

h1,h2,h ′1,h ′2,k1,k2

φ∗k1h ′1
ψk1h1 ψ

∗
k2h2
φk2h ′2

χh1h ′1
µ (χh2h ′2

µ )∗

=
∑

µ

Λµ

�

�

�

�

�

∑

h,h ′,k

φk h ′ψk hχ
hh ′

µ

�

�

�

�

�

2

≥ 0 .

This must hold for arbitrary |φ〉 and |ψ〉, and therefore Λµ ≥ 0. The sufficiency of the

positivity condition immediately follows as well.

A completely positive linear map between density matrices is thus uniquely parametrized

by the corresponding Choi matrix, which is a Hermitian positive operator satisfying condi-

tion (1.25), implying that Tr Ê =
∑

µΛµ = dimH . The matrix Ê/dimH has thus all the prop-

erties of a density matrix inH ⊗H ′, a results known as Choi-Jamiołkowski isomorphism,

and, in fact, the set of completely positive maps is a subset of the set of density matrices.

Moreover, from the spectral decomposition (1.26) we can obtain the Kraus decomposition

(1.21) of the map:

E (ρ) = Tr
H

��

ρT ⊗1H ′

�

Ê
�

=
∑

µ

Λµ Tr
H

��

ρT ⊗1H ′

�

|χµ〉〈χµ|
�

=
∑

µ

Λµ
∑

i ′ j ′,,k ,l

〈k |ρ|l 〉 〈k i ′|χµ〉〈χµ|l j ′〉 |i ′〉〈j ′|=
∑

µ

AµρA†
µ,

where the Kraus operators can be obtained from the spectral decomposition (1.26)

〈h ′|Aµ|h〉=
p

Λµ 〈hh ′|χµ〉, (1.27)

and the condition (1.22) is satisfied thanks to Eq. (1.25). Indeed,

〈i |
∑

µ

A†
µAµ|j 〉=

∑

µ

Λµ
∑

k ′

〈χµ|i k ′〉〈j k ′|χµ〉=
∑

k ′

〈j k ′|Ê |i k ′〉=δi j .

A completely positive linear map, i.e., a superoperator mapping quantum states to quan-

tum states, has been described in two ways: in terms of the Kraus decomposition, which is

the standard expression in the quantum information community, and by means of the Choi

matrix, which has some advantages compared to the Kraus decomposition, as there is a one-

to-one correspondence (1.23) between the operator Ê and the superoperator E , and can be

built straightforwardly using the component expansion (1.24) when the relation between

the input state ρ and the output state E (ρ) is known.

18



1.3. QUANTUM CHANNELS

1.3.1 One qubit maps

The density matrix of a generic pure qubit state can be written in the basis {|0〉, |1〉} thanks

to Eq. (1.8)

|θ ,φ〉〈θ ,φ|=
1

2

 

1+ cosθ e iφ sinθ

e -iφ sinθ 1− cosθ

!

. (1.28)

As for mixed states, the most general density matrix for the qubit is

ρ =
1

2

 

1+ z x + i y

x − i y 1− z

!

=
1

2
(1+~r · ~σ) , (1.29)

where the vector ~r = (x , y , z ) satisfies r 2 ≤ 1 because of the requirement that the eigen-

values of ρ are non-negative. The expression (1.28) is recovered for r 2 = 1, by setting ~r =

r (sinθ cosφ, sinθ sinφ, cosθ ), and in general the space of two qubit density matrices is iso-

morphic to the Bloch ball of Fig. 1.1, whose boundary, the Bloch sphere, corresponds to

pure states.

A quantum channel between two qubits is, accordingly, a mapping between Bloch balls

(1+~r ′ · ~σ)/2= E (1+~r · ~σ)/2 and thus, thanks to the algebra (1.6),

~r ′ = Tr

�

~σ E
�

1+~r · ~σ
2

��

. (1.30)

The input and the output Hilbert space (H andH ′) coincide, and since the Pauli matrices

(together with the identity matrix) form a basis for the operators acting on the two dimen-

sional spaceH , the Choi matrix associated to the map (1.30) can be expressed in the form

Ê ∝ 14 + ~t · (12 ⊗ ~σ) + ~t ′ · (~σ⊗12) +
∑

µν Sµνσµ ⊗σν , where 1n is the n ×n identity matrix.

Imposing condition (1.25) it follows that the Choi matrix can be parametrized as

Ê =
1

2

 

14+~t · (12⊗ ~σ)+
∑

µν

Tνµ(σµ)T ⊗σν
!

, (1.31)

where we have added a partial transposition for convenience, as it will be clear in the follow-

ing. Since (σµ)T = (−1)µ+1σµ, there are no further assumptions in (1.31) which is obtained

simply by setting Sµν = (−1)µ+1Tνµ. The coefficients tµ and Tνµ can be obtained from

2Tνµ =Tr
�

(σµ)T ⊗σν Ê
�

=Tr
H ′

§

σν Tr
H

��

σµT ⊗1H ′

�

Ê
�

ª

= Tr [σν E (σµ)] ,

2tν =Tr
�

12⊗σν Ê
�

= Tr
H ′

§

σν Tr
H

�

(1H ⊗1H ′) Ê
�

ª

= Tr [σν E (1)] .

Thanks to the above equations, the mapping (1.30) can be found explicitly: r ′ν = tν +Tνµrµ.

Accordingly, a completely positive linear map from qubit to qubit is represented by the fol-

lowing affine transformation on the Bloch ball

~r ′ = T ~r +~t . (1.32)
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CHAPTER 1. THEORY OF COMPOSITE QUANTUM SYSTEMS

The above transformation has twelve parameters7: the 3-dimensional vector t describes a

translation of the Bloch ball, while the 3×3 matrix T causes rotations and distortions of the

Bloch ball. In particular, the three singular values of T modify the shape of the ball into an

ellipsoid while the remaining six parameters define the directions of the deformations and

change the orientation of the ellipsoid.

1.3.2 Symmetries

Most common quantum channels can be characterized in terms of symmetries. Let E :

BH →B ′
H be a quantum channel and let G be a group with unitary representations U and

U ′ onH andH ′ respectively. The quantum channel E is G-covariant if it is not varied by a

basis change induced by U and U ′:

E (Ug ρU †
g ) =U ′

g E (ρ)U
′
g

† , ∀g ∈G and ∀ρ ∈BH , (1.33)

or, equivalently, E (ρ) =U ′
g

†E (Ug ρU †
g )Ug . In order to verify the G-covariance one has not

to check all the elements of the group: the generators are sufficient. In fact, suppose that

g = g 1 g 2, then Ug = Ug 1Ug 2 and U ′
g = U ′

g 1
U ′

g 2
. By direct calculation it straightforward to

check that if (1.33) holds for g 1 and g 2, than it holds also for g . Accordingly, it is sufficient to

require that Eq. (1.33) holds for all the generators of the group. The condition (1.33) can be

written also by means of the Choi matrix

E (ρ) = Tr
H

��

ρT ⊗1H ′

�

Ê
�

= Tr
H

h�

U ∗
g ρ

T U T
g ⊗1H ′

��

1H ⊗U ′
g

†
�

Ê
�

1H ⊗U ′
g

�i

= Tr
H

h

�

ρT ⊗1H ′

�

�

U T
g ⊗U ′

g
†
�

Ê
�

U ∗
g ⊗U ′

g

�i

.

Hence, the G-covariance is equivalent to this simple condition on the Choi matrix

[Ê , U ∗
g ⊗U ′

g ] = 0, ∀g ∈ ~G, (1.34)

where ~G is the set of generators of the group G. If G is a Lie group, it can be studied by

linearizing the group in the neighbourhood of its identity, and studying the associated Lie

algebra: Ug ' 1− iεA g where A g is Hermitian, being Ug unitary. In this case U ∗
g ⊗U ′

g '

1⊗1− iε
�

A∗g ⊗1−1⊗A ′g

�

and G-covariance condition takes the form

[Ê , A∗g ⊗1] = [Ê , 1⊗A ′g ], ∀g ∈ ~G. (1.35)

Let us show some examples of two-qubit quantum channels where the input and output

Hilbert space are the same (Ug =U ′
g ):

7 These parameters have to satisfy some inequalities [17, 18], for making (1.32) a mapping between Bloch

balls.

20



1.3. QUANTUM CHANNELS

1. Invariance under rotation around the α axis: [Ê , (σα)∗ ⊗ 1] = [Ê , 1⊗σα] can be

expressed thanks to the expression (1.31) and (1.6)

−Tνµεµαγ(σγ)T ⊗σν = Tνµεναγ(σµ)T ⊗σγ+ tµεµαγ1⊗σγ

= Tµγεµαν (σγ)T ⊗σν + tµεµαγ1⊗σγ,

where the sum over repeated indices is understood. The conditions appear thus

Tνµεµαγ+Tµγεµαν = 0, ∀ν ,γ, and tµ 6=α = 0. (1.36)

The explicit form of the matrices T for α= 1, 2, 3 is

T
α=1
=









s1 0 0

0 s3 s2

0 −s2 s3









, T
α=2
=









s1 0 s3

0 s2 0

−s3 0 s1









, T
α=3
=









s1 s2 0

−s2 s1 0

0 0 s3









, (1.37)

for some s i . For example, when the system is invariant under rotation around the z

axis, the Choi matrix is

Ê =















1+s3+t
2

0 0 s1− i s2

0 1−s3−t
2

0 0

0 0 1−s3+t
2

0

s1+ i s2 0 0 1+s3−t
2















,

which describes the so-called squeezed generalized amplitude damping channel [19]

which represents a dissipative interaction of a qubit with a squeezed thermal bath.

The more common amplitude damping channel is obtained in the particular case

s1 =
p

1−γ, s2 = 0, s3 = 1−γ, t = γ, and describes the decay of the state |1〉 to |0〉 with

probability γ. The amplitude damping channel is an effective description of many

important relaxation processes, as the spontaneous emission from an atom, or the

relaxation process due to the coupling of the qubit with its surrounding environment

[1].

2. SU (2) invariance: the conditions (1.36) and (1.37) must hold all together and hence

tµ = 0 and Tνµ = sδµν . The affine transformation of the Bloch ball is simply ~r ′ = s~r and

hence

ρ′ = sρ+
1− s

2
12. (1.38)

The quantum channel described by Eq. (1.38) is the so-called depolarising channel. It

describes a qubit which with probability s is left untouched and with probability 1− s

is transformed to the completely mixed state.
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CHAPTER 1. THEORY OF COMPOSITE QUANTUM SYSTEMS

3. Invariance under exchange |0〉 ←→ |1〉. There are essentially two SU(2) transforma-

tions which cause this reflection, being σασzσα = −σz for α = x , y . This is not a Lie

group and we have to use (1.34) with Ug =U ′
g =σ

α. Asσασβσα = (2δαβ −1)σβ

tµ1⊗σµ(2δαµ−2)+Tνµ(σµ)T ⊗σν [(2δαµ−1)(2δαν −1)−1] = 0 .

The conditions are only those that have to be simultaneously verified for both α = x

and α= y , and accordingly

t3 = 0, T3α = Tα3 = 0, for α= 1, 2. (1.39)
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2
Quantum information transmission

A classical bit (such as a memory element or a wire carrying a digital signal) is usually a

macroscopic system, and is generally described by one continuous parameter such as volt-

age. Within this parameter space two well separated regions are chosen by the designer to

represent the boolean values 0 and 1. A quantum bit or qubit in contrast, is typically a mi-

croscopic system, such as an atom or a nuclear spin or a photon. The boolean states |0〉
and |1〉 are represented by a fixed pair of reliably distinguishable states of the qubit (for ex-

ample, horizontal and vertical photon polarizations or the states
�

�Sz =± 1
2

¶

of a spin S = 1
2

particle). According to the principles of quantum mechanics, a qubit can also exist in a su-

perposition of the basis states |0〉 and |1〉, and a pair of qubits is capable of existing in four

boolean states, |00〉, |01〉, |10〉 and |11〉, as well as all possible superpositions of them. These

include states such as 1
2
(|0〉+ |1〉)⊗ (|0〉+ |1〉) which are describable as a tensor product of

states of the individual qubits, as well as entangled states such as 1p
2
(|00〉+ |11〉) which do

not admit such a description. More generally, a quantum state of n qubits is represented

by a complex vector in a Hilbert space of 2n dimensions. The exponentially large dimen-

sionality of this space distinguishes quantum computers from classical analog computers,

whose states, being separable, are represented by a number of parameters that grows only

linearly with the system size. The ability to preserve and manipulate entangled states is the

distinguishing feature of quantum computers, responsible both for their power and for the

difficulty of building them.

Just as any classical algorithm can be expressed as a sequence of one- and two-bit op-

erations, any quantum algorithm (see Fig. 2.1 for an example of a quantum circuit) can be

expressed as a sequence of one- and two-qubit quantum gates, that is, unitary operations

acting on one or two qubits at a time. By using quantum gates and wires, with entangled

states flowing through them in the intermediate stages of a computation, certain compu-

tations mapping classical inputs to classical outputs can be done in far fewer steps than

any known sequence of classical gate operations. Most famously [20], a quantum computer

can factorise large integers in a time that is polynomial in the logarithm of the best classical

time, thereby threatening the security of cryptosystems based on the presumed difficulty
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|q0〉 •

|q1〉 • •

|q2〉 •

|s0〉 = |0〉 H • ⊕ • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

• |0〉 H • ⊕ • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

Operation
|s1〉 = |0〉 ⊕ ⊕⊕

LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

• |0〉 ⊕ ⊕⊕
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

c0 = 0 ⊕

c1 = 0 ⊕

Figure 2.1 – Example of quantum circuit operating on the qubits |qi 〉 and |s i 〉 and on the clas-

sical bits c i .

of factorising1. Another class of problems for which quantum computers seem to provide

exponential speed-up is the simulation of many-particle quantum systems [21, 22].

Quantum information theory generalizes the classical notions of source and channel

and introduces a new resource, entanglement, for achieving communication schemes that

have no classical analogue. For example, two forms of quantum information transmission

that have no classical counterpart are quantum teleportation and quantum superdense cod-

ing [1]. These involve an initial stage in which a pair of particles in a maximally-entangled

state is shared between two parties, followed by a second stage in which this shared entan-

glement is used to achieve, respectively, transmission of a qubit via two classical bits, or

transmission of two classical bits via one qubit.

2.1 Teleportation

Quantum teleportation is one of the most fascinating discoveries of quantum information

theory. It is a process of transmission of a generic unknown quantum state from one part

(“Alice”) to another (“Bob”) which is implemented not by directly sending particles through

a quantum channel, but via local operations, classical communication, and initially shared

entanglement.

Suppose indeed that Alice and Bob share the Bell state |Φ+A B 〉, written in Eq. (1.13). Alice

also has another unknown qubit |ψQ〉=α|0〉+β |1〉 (see Fig. 2.2) and she wants to teleport it

to Bob. The state must be unknown to Alice, because otherwise she can just phone Bob and

1This exponential speed-up depends on the quantum computer’s ability to vastly parallelize the perfor-

mance of a fast Fourier transform, using destructive interference among a number of parallel computation

paths that increases exponentially with the number of physical qubits involved in the computation.
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2.1. TELEPORTATION

|Φ+A B 〉

|ψQ〉
Q

A B

Figure 2.2 – Schematic picture of teleportation: Alice and Bob initially share a maximally en-

tangled state.

Alice’s measurement Bob’s state Bob’s operation

|Φ+〉 α|0〉+β |1〉 12

|Φ−〉 α|0〉−β |1〉 σz

|Ψ+〉 α|1〉+β |0〉 σx

|Ψ−〉 α|1〉−β |0〉 σzσx

Table 2.1 – Unitary operation to be performed by Bob depending on the state obtained by

Alice after the measurement.

tell him all the details of the state, so that he can recreate it. Moreover, Alice is not able to

obtain all the information about the unknown state |ψQ〉 by performing measurements: she

would obtain only the two diagonal states, e.g. |0〉 and |1〉, with some probability. However,

even if the state |ψQ〉 is unknown to her, Alice can teleport it to Bob via local operations and

classical communications. The initial state of the three qubits is

|ψQ〉|Φ+A B 〉=
�

α|0Q〉+β |1Q〉
� 1
p

2
(|0A 0B 〉+ |1A 1B 〉) .

This can be expanded and rewritten as

|ψQ〉|Φ+A B 〉=
1
p

2

�

α|0Q 0A 0B 〉+α|0Q 1A 1B 〉+β |1Q 0A 0B 〉+β |1Q 1A 1B 〉
�

=
1

2

h

|Φ+QA〉
�

α|0B 〉+β |1B 〉
�

+ |Φ−QA〉
�

α|0B 〉−β |1B 〉
�

+ |Ψ+QA〉
�

α|1B 〉+β |0B 〉
�

+ |Ψ−QA〉
�

α|1B 〉−β |0B 〉
�

i

.

Alice’s two qubits (QA) are now written in terms of the four Bell states (1.13), while the state

of B is written in terms of the original state to be teleported. Alice now measures in the Bell

basis her two qubits and then phones Bob to tell him the results of her measurement. Bob

then knows which of the four states α|0〉 ±β |1〉, α|1〉 ±β |0〉 he has and can apply a unitary

operation to his qubit, according to table 2.1, in order to obtain the original |ψQ〉.
In the standard teleportation scheme Alice and Bob initially share a maximally entangled

state for performing teleportation. What happens instead if Alice and Bob initially share
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CHAPTER 2. QUANTUM INFORMATION TRANSMISSION

a generic state τA B ? This could happen for instance if the maximally entangled state has

undergone some noise. What requirements τA B has to fulfil for making Alice able to perform

teleportation? In order to describe this situation in general let us consider a mixed state ρQ

to be teleported. As in the standard teleportation scheme, Alice performs a measurement

over the Bell basis, described by the set of projection operators |χµQA〉〈χ
µ
QA | where {|χµQA〉} =

{|Φ±A B 〉, |Ψ
±
A B 〉}, while Bob applies a µ dependent unitary operation Uµ

B on his qubit B . The

quantum channel which describes this process is

ρQ ⊗τA B −→
∑

µ

|χµQA〉〈χ
µ
QA | ⊗Uµ

B

�

ρQ ⊗τA B

�

|χµQA〉〈χ
µ
QA | ⊗ (U

µ
B )

† .

The resulting state ρ′
B

of Bob is obtained by taking the partial trace over A and Q , thus

ρ′
B
=
∑

µ

Uµ
B 〈χ

µ
QA |ρQ ⊗τA B |χ

µ
QA〉 (U

µ
B )

†.

Now we use the following trick [23]: let SQ B be the unitary idempotent operator exchanging

Q and B , i.e. ρQ ⊗τA B = SQ B τQA ⊗ρB SQ B where ρB is exactly the same state ρQ , but on qubit

B and the same holds for τQA . Moreover, by ordering the state |χµQA〉 such that |χµQA〉 = σ
µ
Q ⊗

1A |Φ+QA〉, as in Eq. (1.14), it follows

ρ′
B
=
∑

µ

Uµ
B 〈Φ

+
QA |σ

µ
Q SQ B

�

τQA ⊗ρB

�

SQ Bσ
µ
Q |Φ

+
QA〉 (U

µ
B )

†

=
∑

µ

Uµ
B 〈Φ

+
QA |S

2
Q Bσ

µ
Q SQ B

�

τQA ⊗ρB

�

SQ Bσ
µ
Q S2

Q B |Φ
+
QA〉 (U

µ
B )

†

=
∑

µ

Uµ
B 〈Φ

+
QA |SQ B

�

τQA ⊗σ
µ
B ρB σ

µ
B

�

SQ B |Φ+QA〉 (U
µ
B )

†.

The operator SQ B has a simple expression in terms of the Pauli matrices that can be checked

by direct calculation: SQ B = 1
2

∑

νσ
ν
Q ⊗1A ⊗σνB . Then

ρ′
B
=

1

4

∑

µ,ν ,λ

〈Φ+QA |σ
ν
Q ⊗1A τQAσ

λ
Q ⊗1A |Φ+QA〉U

µ
Bσ

ν
Bσ

µ
B ρB σ

µ
Bσ

λ
B (U

µ
B )

†.

By comparing Table (2.1) with Eq. (1.14) is straightforward to check that the standard tele-

portation scheme arises when we consider Uµ
B = σ

µ
B . Then, dropping the unimportant in-

dices,

ρ′
B
=

1

4

∑

µ,ν ,λ

〈χν |τ|χλ〉σµBσ
ν
Bσ

µ
B ρB σ

µ
Bσ

λ
Bσ

µ
B

=
∑

µ

〈χµ|τ|χµ〉σµB ρB σ
µ
B , (2.1)

where the last equality follows from direct calculations. Eq. (2.1) associates a quantum chan-

nel to the teleportation procedure that, being in the Kraus form (1.21), is completely posi-

tive. Therefore, the teleportation procedure can be also easily extended to the case in which
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the qubit to be teleported is part of a quantum register, i.e. an array of (possibly entangled)

qubits.

Moreover, the result of Eq. (2.1) can be generalized to higher dimensional systems [24,

25] by using the generators of the unitary group of d ×d matrices

Υnm =
∑

k

e
2πi k n

d |k 〉〈k ⊕m |, (2.2)

where ⊕ denotes the addition modulo d and n , m = 0, . . . , d − 1. They are clearly unitary,

satisfy the algebra

ΥnmΥn ′m ′
= e

2πi
d (n

′m−nm ′) Υn ′m ′
Υnm , TrΥnm = d δn0δm 0 , (2.3a)

Tr[Υnm (Υn ′m ′
)†] = d δnn ′δm m ′ , (2.3b)

and accordingly form a basis of the space of d × d unitary operators [26]. Moreover, the

set of maximally entangled bipartite states, i.e., those whose reduced density matrices in

diagonal form are proportional to the identity, can be constructed from the state

|Φ+〉=
1
p

d

∑

i

|i 〉|i 〉. (2.4)

Indeed, the others maximally entangled states can be constructed by applying local unitary

operations on |Φ+〉 for not changing the eigenvalues of the reduced density matrices. How-

ever, since U ⊗V |Φ+〉=UV T ⊗1|Φ+〉, the set of maximally entangled states is

|χµ〉 ≡ |χnm 〉=Υm m ⊗1 |Φ+〉=
1
p

d

∑

k

e
2πi k n

d |k 〉|k ⊕m 〉, (2.5)

where we have defined the multi-index µ= (n , m ). Let us generalize the qubit teleportation

to the case of d -dimensional systems, by considering also more general local quantum op-

erations on B described by a set of µ-dependent Kraus operators Bν (µ). As in the simplest

case of qubit teleportation, the teleportation quantum channel can be written as

ρ′
B
=
∑

µ,ν

Bν (µ)〈Φ+QA | (Υ
µ
Q )

† SQ B

�

τQA ⊗ρB

�

SQ BΥ
µ
Q |Φ

+
QA〉 Bν (µ)†

=
∑

µ,ν

Bν (µ)〈Φ+QA |SQ B

�

τQA ⊗ (Υµ)†ρBΥ
µ
�

SQ B |Φ+QA〉 Bν (µ)†,

where the swap operator can be found by generalizing the previous qubits’ case using the

definition (2.2): it is straightforward to prove that the Hermitian idempotent swap operator

is

SQ B =
1

d

∑

m n

Υm n
Q ⊗1A ⊗

�

Υm n
B

�†
=

1

d

∑

m n

�

Υm n
Q

�†
⊗1A ⊗Υm n

B .
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Specialising to the case in which Bob performs only unitary operations Bν (µ) =Υµ

ρ′ =
1

d 2

∑

µ,µ′,µ′′

〈Φ+|
�

(Υµ
′
)†⊗1

�

τ
�

1⊗Υµ′′
�

|Φ+〉ΥµΥµ′(Υµ)†ρΥµ(Υµ′′)†(Υµ)†

=
∑

µ

〈χµ|τ|χµ〉Υµρ (Υµ)† . (2.6)

where the commutation relations (2.3) have been used. In particular, thanks toΥnmΥm ′n ′(Υnm )† =

e
2πi

d (n
′m−nm ′) Υm ′n ′ , by summing over m , n and by recalling (m ′, n ′) =µ equation (2.6) follows.

Quantum teleportation with a shared arbitrary Bell state guarantees a perfect teleporta-

tion of the state, whereas in general, when the shared state τ is not a Bell state the telepor-

tation channel (2.1),(2.6) gives imperfect teleportation. In the next section a generic trans-

mission of a quantum state using a generic quantum channel E is considered and rigorous

measures of the transmission quality are defined.

2.2 State transmission

In the previous section the quantum teleportation protocol has been analyzed and described

as a quantum channel between the qubit Q , held by Alice, and the qubit B held by Bob. Now

we generalize the concept of state transmission2, by considering Alice and Bob connected by

a generic quantum channel E (see Fig. 2.3). This quantum channel can arise by assuming,

as in the teleportation scheme, that the distant parts share an entangled state and perform

local operations and classical communications, or that Alice and Bob are connected by a

physical medium, i.e. a quantum wire. In the latter case, it is the dynamics of the composite

system formed by the two qubits and the wire to trigger the transmission, for instance when

the qubit is encoded in a photon and the photon is let to fly over an optical fiber or when the

qubits and the wire are made of localized particles and the many-body dynamics of these

particles effectively induces the transmission. Each of these schemes can be described by a

quantum channel between Alice and Bob, provided that Alice and the rest of the system are

initially disentangled (1.20).

Suppose that Alice wants to transfer the state |ψ〉 to Bob via the quantum channel E . This

quantum channel could be noisy, e.g., due to the interaction with an external environment

or due to the internal interactions between the constituents of the channel which might

entrap the state inside without transferring it to the distant part. In order to check the quality

of transmission we can look at the overlap between the transmitted state E (|ψ〉〈ψ|) and the

initial state |ψ〉, i.e. we can calculate the fidelity of transmission

〈ψ|E (|ψ〉〈ψ|)|ψ〉. (2.7)

2Notice that a quantum state can be transmitted, but not cloned, because of the no-cloning theorem [27].
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|ψ〉

Figure 2.3 – Schematic picture of state transmission: Alice wants to transfer the state |ψ〉 of

one of her qubits to a qubit held by Bob.

The above quantity depends on the state |ψ〉 to be transmitted. Thus, in order to have a

quantity which does not depend on the initial state we can consider the worst scenario by

minimizing (2.7) over the possible |ψ〉’s. However, the resulting quantity is highly non-linear

and an explicit formula can be found only in very simple cases (see the next section). An-

other simpler possibility stems by considering the average, instead of the minimum, over all

possible initial states, i.e.,

F=

∫

dψ 〈ψ|E (|ψ〉〈ψ|)|ψ〉 ,

where dψ is the unitary invariant measure over the pure-state space. This quantity, called

the average transmission fidelity, can be found explicitly using the twirling operator (A.1).

Indeed, thanks to (A.3),

∫

dψ |ψ〉⊗2〈ψ|⊗2 =

∫

dU U⊗2 |00〉〈00| (U †)⊗2 =
1

d (d +1)
(1⊗1+S) , (2.8)

where d is the dimension of the Hilbert space and S is the swap operator. Projecting the

above equation onto a suitable basis

∫

dψ 〈k |ψ〉〈j |ψ〉〈ψ|i 〉〈ψ|l 〉=
1

d (d +1)

�

δi kδj l +δk lδj i

�

,

and thus

F̄=

∫

dψ 〈ψ|E (|ψ〉〈ψ|)|ψ〉=
∑

i j k l

〈i |E (|k 〉〈l |)|j 〉
∫

dψ 〈j |ψ〉〈ψ|i 〉〈k |ψ〉〈ψ|l 〉

=
∑

i j

〈i |E (|i 〉〈j |)|j 〉+ 〈i |E (|j 〉〈j |)|i 〉
d (d +1)

=
1

d +1
+

1

d (d +1)

∑

i j

〈i i |Ê |j j 〉

=
1+ 〈Φ+|Ê |Φ+〉

d +1
, (2.9)

where we used the trace preserving condition and |Φ+〉 is defined in (2.4). As described in the

previous chapter the Choi matrix divided by d is isomorphic to a quantum state. So what is

the physical meaning of 〈Φ+|Ê |Φ+〉?
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|Φ+〉

Figure 2.4 – Schematic picture of entanglement transmission: Alice has two systems A and A ′

in the maximally entangled state |Φ+〉 and transmit the state of A to the system B held by

Bob via a quantum channel.

Immagine that Alice holds a maximally entangled pair (A ′, A) and transfers the state of A

through a channel E , as in Fig. 2.4, while A ′ is assumed to be isolated. If the pair (A, A ′) was

initially in the state |Φ+〉 then the state of the pair (A ′, B ) after the transmission is

ρ
A′B
= (1⊗E ) (|Φ+〉〈Φ+|) =

1

d

∑

a ã
bb̃

�

1⊗ |b 〉〈b |E |b̃ 〉〈b̃ |
�

(|a a 〉〈ã ã |)

=
1

d

∑

a ã
bb̃

〈b |E (|a 〉〈ã |)|b̃ 〉 |ab 〉〈ã b̃ |=
1

d

∑

a ã
bb̃

〈ab |Ê |ã b̃ 〉 |ab 〉〈ã b̃ |=
1

d
Ê . (2.10)

The Choi matrix Ê associated to the quantum channel E is thus the state resulting from

the application of the channel 1⊗E to the maximally entangled pair |Φ+〉. Therefore, the

quantity

f̄=
1

d
〈Φ+|Ê |Φ+〉 (2.11)

is the entanglement transmission fidelity for the state |Φ+〉, i.e. it represents the fidelity that

the maximally entangled state in the local pair (A ′, A) turns into a maximally entangled state

in the pair (A ′, B )made by two distant systems. Moreover, every maximally entangled state

can be generated from |Φ+〉 via a local unitary operation on A ′; but since A ′ is an isolated sys-

tem these local operations do not affect the entanglement transmission: the entanglement

transmission fidelity f̄ does not depend on the particular maximally entangled state to be

teleported, that is why it is called entanglement transmission fidelity. In Eq. (2.11) we have

thus proved the following theorem [28]

Horodecki’s theorem. The average transmission fidelity F̄ is related to the entanglement

transmission fidelity f̄ by

F̄=
d f̄+1

d +1
, (2.12)

where d is the dimension of the Hilbert space of the state to be trasported.

There are essentially two mechanisms that cause the average fidelity to deteriorate dur-

ing a transmission process: collective phenomenon due to the channel being an interacting
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system (possibly dissipative), and local rotations. As a matter of fact, the average fidelity

does not distinguish between bad transmission, i.e. due to decoherence or dispersion of the

state all over the channel, and good transmission with an extra rotation during the dynam-

ics; on the other hand, the latter can be safely handled by letting Bob to perform an extra

unitary rotation R . The maximal average fidelity achievable after removing such a local ro-

tation is

F= max
R∈SU(d )

∫

dψ 〈ψ|R†E (|ψ〉〈ψ|)R |ψ〉 (2.13a)

= max
R∈SU(d )

d

d +1
〈Φ+|

�

1⊗R†E R
�

(|Φ+〉〈Φ+|)|Φ+〉+
1

d +1
(2.13b)

=
d f+1

d +1
. (2.13c)

We call f the maximal entanglement fidelity

f= max
R∈SU(d )

1

d
〈Φ+|(1⊗R†)Ê (1⊗R)|Φ+〉=max

χ m.e.

1

d
〈χ |Ê |χ〉 , (2.14)

where the maximum is taken over the maximally entangled states |χ〉. Indeed, the states

(1⊗R)|Φ+〉, with varying R , give all the possible maximally entangled states.

2.2.1 Fidelity of teleportation

Thanks to the tools developed in the previous sections for general quantum channels we

can now calculate the fidelity of teleportation, i.e. the transmission fidelity with the telepor-

tation channel (2.6). In particular we will prove the following theorem:

Theorem 1. The maximal entanglement teleportation fidelity of the teleportation channel

E telep. is

ftelep. =max
χ m.e.

〈χ |τ|χ〉 , (2.15)

where the expression in the RHS of Eq. (2.15) is the fully entangled fraction of the shared state

τ.

Before going to the proof of the theorem, let’s discuss the main consequence of this re-

sult. In fact, according to (2.15), there are two possible ways for transferring a state over a

noisy quantum channel:

1. Directly transfer the state over the channel, as in Fig. 2.4.

2. First share an entangled state by sending entanglement over the channel, as in Fig. 2.4,

and then perform teleportation, as in Fig. 2.2, using the shared resource.

Eq. (2.15) states that these two transmission methods give the same fidelity.
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Proof. The Choi matrix for a channel expressed in the Kraus form (1.21) is in general

Ê =
∑

a ã
bb̃

〈b |E (|a 〉〈ã |)|b̃ 〉 |ab 〉〈ã b̃ |=
∑

µ

∑

a ã
bb̃

〈b |Aµ|a 〉〈b̃ |Aµ|ã 〉†|ab 〉〈ã b̃ | ,

and accordingly the entangled fraction is

〈Φ+|Ê |Φ+〉=
1

d

∑

µ

|Tr Aµ|2 . (2.16)

The fully entangled fraction Ê telep. for the teleportation channel (2.6) is the maximum over

the operators R of 1
d
〈Φ+|(1⊗ R†)Ê (1⊗ R)|Φ+〉. The latter is given by Eq. (2.16) with Aµ =

p

〈χµ|τ|χµ〉R†Υµ and then

max
χ m.e.

1

d
〈χ |Ê telep.|χ〉= max

R∈SU(d )

1

d 2

∑

µ

〈χµ|τ|χµ〉
∑

a ã

〈a |R†Υµ|a 〉〈ã |R†Υµ|ã 〉†

= max
R∈SU(d )

∑

µ

〈χµ|τ|χµ〉 〈Φ+|1⊗ (R†Υµ)|Φ+〉〈Φ+|1⊗ (R†Υµ)†|Φ+〉

= max
R∈SU(d )

∑

µ

〈Φ+|(1⊗R†)|χµ〉〈χµ|τ |χµ〉〈χµ|(1⊗R)|Φ+〉

= max
R∈SU(d )

〈Φ+|(1⊗R†)τ (1⊗R)|Φ+〉=max
χ m.e.

〈χ |τ|χ〉 ,

where in the penultimate equality we used the orthogonality of the maximally entangled

states.

2.3 Entanglement as a resource

As we have seen, the problem of state transfer is directly connected to quantum teleporta-

tion with a shared resource τ. When τ is a maximally entangled state the standard telepor-

tation protocol guarantees a perfect transmission. On the other hand, for a generic state

τ the fidelity of teleportation is uniquely determined by the fully entangled fraction (2.15).

When the fully entangled fraction is lower than a certain threshold, which will be derived in

this section, the teleportation does not provide a better transmission fidelity than that of an

ordinary classical communication channel [29]. To do better than a classical channel, the

shared quantum state must be entangled.

It is clear indeed that Alice can measure the state |φ〉 of her qubit, by applying a set of

projection operators |ψµ〉〈ψµ|, and send the measurement outcome to Bob, who will pre-

pare his state in the state obtained by Alice. After the measurement the state of Alice is

described by the density operator ρ =
∑d
µ=1 |〈φ|ψµ〉|2 |ψµ〉〈ψµ|, i.e., the measurement de-

fines a quantum channel with Kraus operators Aµ = |ψµ〉〈ψµ|. The entanglement fraction of
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this quantum channel, as given by (2.16), is f̄ = 1/d and, accordingly, the fidelity between

|φ〉 and the state after the measurement is, on average,

F̄cl. =
2

d +1
. (2.17)

In the remaining part of this section we will prove [30] that the teleportation cannot do

better than a classical channel when the shared resource τ is not entangled, that is f ≤ 1
d

for any separable state. A general mixed separable state [31] can be written as a classical

mixture of product mixed states

ρ =
∑

i

p iρ
i

A
⊗ρi

B
. (2.18)

These states satisfy the so-called reduction criterion for separability. It is given by the follow-

ing conditions that are satisfied by all separable states [31]

ρA ⊗1−ρ ≥ 0, 1⊗ρB −ρ ≥ 0. (2.19)

where ρA and ρB are obtained by taking the partial trace of ρ over B and A respectively. We

will now prove that f ≤ 1
d

for any state satisfying the reduction criterion (2.19). However,

the reduction criterion is not equivalent to separability (with the exception of the two-qubit

case), as there are also some entangled states satisfying the reduction criterion [30, 28].

Let fR = 〈Φ+|(1⊗R†)τ(1⊗R)|Φ+〉 be the entanglement fraction with respect to the max-

imally entangled state (1 ⊗ R)|Φ+〉. Clearly, f = maxR fR . By observing that 1 ⊗U |Φ+〉 =
U T ⊗1|Φ+〉, and accordingly |Φ+〉 is invariant under the application of U ⊗U ∗ rotations, it

follows that the entanglement fidelities obtained from both states (1⊗R†)τ(1⊗R) and

τ̃R =

∫

dU (U †⊗U T R†)τ(U ⊗RU ∗) =

�∫

dU U †⊗U †
�

1⊗R†)τ(1⊗R)
�T2

U ⊗U

�T2

,

where T2 is the transposition operation over the second Hilbert space only, are the same.

Using the expression (A.3) and noting that TrOT2 = TrO and TrOT2S = TrOST2 , where ST2 =

d |Φ+〉〈Φ+|, we obtain

τ̃R =
1−〈Φ+|(1⊗R†)τ(1⊗R)|Φ+〉

d 2−1
1⊗1+

d 2 〈Φ+|(1⊗R†)τ(1⊗R)|Φ+〉−1

d 2−1
|Φ+〉〈Φ+|,

=
1− fR

d 2−1
1⊗1+

d 2 fR −1

d 2−1
|Φ+〉〈Φ+|.

The reduced density matrix of the above state is
�

d 1−fR
d 2−1
+ d 2 fR−1

d (d 2−1)

�

1= 1
d
1. Since the identity

operator can be expressed in the basis given by |Φ+〉〈Φ+| and the other maximally entangled

states, the state τ̃R satisfies the reduction criterion (2.19) if 1
d
≥ 1−fR

d 2−1
+ d 2 fR−1

d 2−1
, i.e. if fR ≤ 1

d
for

each R . Hence, the fully entangled fraction for separable states is bounded from above by 1
d

.

We have thus proved that in oder to teleport a state with an average fidelity larger than the

classical value (2.17) the shared state between Alice and Bob must be entangled.
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2.4 Explicit formulas for two-qubits channels

In the case of a quantum channel between qubit states, thanks to the parametrization (1.31)

for the Choi matrix, the entanglement fraction is

f̄qubit =
1

4
〈Φ+|

 

14+~t · (12⊗ ~σ)+
∑

µν

Tνµ(σµ)T ⊗σν
!

|Φ+〉

=
1

4

 

1+
∑

µν

Tνµ〈Φ+|1⊗σµσν |Φ+〉

!

=
1+Tr T

4
, (2.20)

and accordingly

F̄qubit =
1

2
+

1

6
Tr T. (2.21)

Moreover, thanks to (1.7),

f= max
R∈SO(3)

1+Tr[RT ]
4

.

Let thus T = U D V T be the singular value decomposition of T , where D is diagonal and

U , V ∈O(3). Thanks to the Cauchy-Schwartz inequality for the Hilbert-Schmidt inner prod-

uct (X , Y ) = Tr X T Y [1] it holds that Tr[RT ] ≤ Tr D, where the equality arise by setting R =

U V T . However, when det T < 0, the matrix U V T does not belong to SO(3). In such a case we

have to set R =U V T diag(1, 1,−1). In general [32], if τi are the singular values of T ordered

in decreasing order

f=
1+τ1+τ2+ sign(det T )τ3

4
, (2.22)

F=
1

2
+

1

6

�

τ1+τ2+ sign(det T )τ3
�

. (2.23)

2.4.1 Minimum fidelity

The state dependent fidelity for the two qubit case is

〈ψ|E (|ψ〉〈ψ|)|ψ〉= Tr

�

1+~r · ~σ
2

E
�

1+~r · ~σ
2

��

=
1

2

�

1+~r ·Tr

�

~σ E
�

1+~r · ~σ
2

���

=
1+~r ·T~r +~r ·~t

2
. (2.24)

where we used (1.30) and (1.32). The minimization of the above equation in the general

case is a difficult problem which can not be solved analytically [33]. However, when the

channel is covariant under rotation around some axis, this minimization can be performed

analytically. Indeed, let us consider the case in which the system is covariant with respect to

rotations around the z axis (1.37) and set as usual ~r = (sinθ cosφ, sinθ sinφ, cosθ ). Then,

Eq. (2.24) takes the form

〈ψ|E (|ψ〉〈ψ|)|ψ〉=
(s3− s1)cos2θ + t3 cosθ + s1+1

2
,
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which has a stationary point in cosθs.p. = t3

2(s1−s3)
. Then,

Fmin =







1+s1

2
− t 2

3

8(s3−s1)
if s3 > s1+

|t3|
2

1+s3−|t3|
2

otherwise,
(2.25)

Fmax =







1+s1

2
+ t 2

3

8(s1−s3)
if s1 > s3+

|t3|
2

1+s3+|t3|
2

otherwise.
(2.26)

Hence, if t3 = 0 the system possesses also invariance under the exchange |0〉↔ |1〉, as shown

in (1.39), and the two computational states |0〉 and |1〉 are the best (worst) transmitted if

s3 > s1 (s1 > s3).

2.4.2 Concurrence

The fully entangled fraction f=maxχ m.e. 〈χ |ρ|χ〉, i.e. the maximum overlap of a stateρ with

the maximally entangled states, is one of the most important quantities for checking the

quality of state- and entanglement transmission, but is not a true measure of entanglement.

Indeed, an entanglement measure E has to satisfy the following requirements [34]

(i) E(ρ) = 0 if and only if the state is separable and E(ρ) = 1 for maximally entangled states

(2.5).

(ii) E must be an entanglement monotone: E must be invariant under local unitary op-

erations, i.e. E(U ⊗UρU † ⊗U †) = E(ρ), and decrease, on average, under LOCC. This

acronym stays for local operations and classical communications and includes all quan-

tum operations, e.g. measurements, performed locally in each subsystem. The entan-

glement monotone is the key paradigm of any entanglement measure: entanglement

cannot be created or increased by local operations, global operations are needed.

(iii) E is convex, i.e. entanglement cannot be increased by mixing: E
�
∑

i p i ρi

�

≤
∑

i p iE(ρi ).

The fully entangled fraction does not satisfy the first condition, and is not an entanglement

monotone [32]. Provided that a good entanglement measure E is given, the quality of entan-

glement transmission, in the scheme depicted in Fig. 2.4, is measured by the entanglement

transmission ratio

RE =
Eout

Ein
=

E[1⊗E (ρ
A′A
)]

E(ρ
A′A
)

=
E(ρ

A′B
)

E(ρ
A′A
)

, (2.27)

i.e. the ratio between the transmitted entanglement E(ρ
A′B
) and the initial entanglement

E(ρ
A′A
) held by Alice. Clearly, R≤ 1 as E is an entanglement monotone.
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Finding a proper and general measure of entanglement is a subject of active research

[8] and currently there is only one general measure of entanglement, the so-called concur-

rence, which holds only for the two qubits case. The physical meaning of this quantity is

unclear, though it is related with the so-called entanglement of formation [35], which quan-

tifies how many Bell states (1.13) are needed per copy of to prepare many copies of ρ using

local operations and classical communication. The mathematical proof that the concur-

rence is an entanglement measure and that it provides a computable formula for the entan-

glement of formation is quite long [36, 37, 38]. Therefore, here we only state the definition

without a proof.

The concurrence of a two-qubits state is

C(ρ) =max{0,
p

λ1−
p

λ2−
p

λ3−
p

λ3}, (2.28)

where λi are the decreasingly ordered eigenvalues of

R =ρ (σy ⊗σy )ρT (σy ⊗σy ) , (2.29)

and the transpose is performed in the standard basis {|00〉, |01〉, |10〉, |11〉}. This quantity has

a simple analytical expression when ρ is block-diagonal [39], and thus the eigenvalues are

simply those of the two block. Indeed, let

ρ =















A 0 0 f

0 B e 0

0 e ∗ C 0

f ∗ 0 0 D















, =⇒ R =















AD + | f |2 0 0 2A f

0 BC + |e |2 2B e 0

0 2C e ∗ BC + |e |2 0

2D f ∗ 0 0 AD + | f |2















.

The eigenvalues of the R matrix are (
p

BC ±|e |)2 and (
p

AD±| f |)2. Asρ is positive, | f |2 ≤ AD

and |e |2 ≤ BC and hence the concurrence is given by

C(ρ) = 2 max{0, | f | −
p

BC , |e | −
p

AD}. (2.30)

Let us consider now the entanglement transmission, as in Fig. 2.4, and let |λ〉
A′A

be a two-

qubit state initially held by Alice. As we are interested in the entanglement properties of this

state we assume |λ〉
A′A

to be in the Schmidt form (1.11),

|λ〉
A′A
=
p

λ |00〉
A′A
+
p

1−λ |11〉
A′A
=Λ⊗1|Φ+〉

A′A
, where Λ=

p
2

 p
λ 0

0
p

1−λ

!

as a generic state can be put in the Schmidt form by local unitary operations without thus

changing the entanglement content of the state. This initial state has a concurrence that

can be obtained straightforwardly: Cin = 2
p

λ(1−λ). When the state of A is sent to Bob via

a quantum channel E the resulting state is 1⊗E (Λ⊗1|Φ+〉〈Φ+|Λ⊗1) =
�

Λ⊗1 Ê Λ⊗1
�

/2,
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where we have removed the indices of the Hilbert space for compactness. The concurrence

of the transmitted state is obtaind thus by diagonalizing the matrix

Rout =

�

Λ⊗1
Ê
2
Λ⊗1

�

σy ⊗σy

�

Λ⊗1
Ê T

2
Λ⊗1

�

σy ⊗σy .

As ΛσyΛ⊗σy =Cinσy ⊗σy it follows that

Rout =
�

Cin
�2
Λ⊗1

 

Ê
2
σy ⊗σy Ê

2

T

σy ⊗σy

!

Λ−1⊗1 ,

and since the eigenvalues of the matrices A and UAU−1 are the same, we have shown the

important result [40]

Cout =Cin C

�

Ê
2

�

≡Cin C
�

(1⊗E ) (|Φ+〉〈Φ+|)
�

. (2.31)

This means that, provided that Alice initially holds an entangled pair (Cin 6= 0), the entangle-

ment transmission ratio (2.27) for the concurrence does not depend on the initial entangled

state but depends only on the capability of the channel to send a maximally entangled pair.

In other words, the entanglement transmission ratio is given by the concurrence of one half

of the Choi matrix Ê associated to a channel E

RE =
1

2
C
�

Ê
�

. (2.32)
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3
Quantum communication through spin

chains dynamics

Quantum Computers, when realized, hold the promise of speeding up the solution of cer-

tain problems perceived as difficult on a classical computer [41, 20, 42, 1]. They also hold the

promise of enabling controlled simulations of the behaviour of complex quantum systems

[21, 1]. The typical quantum computer is regarded as a collection of quantum two state sys-

tems (or “qubits”) on which arbitrary unitary operations can be performed. Different quan-

tum registers, i.e. arrays of qubits, are connected to each other by quantum communication

channels (which could effectively be physical shuttling of qubits [43, 44]). Most operations

would take place between qubits of the same register through, say, a common bus mode,

or direct interactions together with very fast qubit transfers within the register. Occasion-

ally, quantum channels would be used to transfer qubits from one register to another, and

thereby enable quantum gates between qubits of different registers.

Even if we are able to scale up quantum computers by some technology which does not

require internal communication channels, such channels will still be necessary to hook up

distinct quantum computers. For reasons of compactness, mobility and cost, we might just

prefer to have small sized quantum computers. However one may need to tackle very com-

plex problems for which the power of a single quantum computer will not suffice. It will then

become very important to combine the processing powers of distinct quantum computers

to obtain a computer with a greater processing power. Moreover, as the channel connects

quantum computers, some encoding and decoding of quantum states should easily be pos-

sible inside the quantum computers. The transmitted state (after decoding, if applicable)

should be transferable to a qubit or a group of qubits of the quantum computer that receives

it.

The usual approach envisaged for connecting quantum computers and registers, as de-

picted in Fig. 3.1, is to first map the state to be transmitted from the qubits of one processor

to a flying or mobile qubit. This flying qubit then traverses through a channel and reaches

a second processor, where its state is mapped on to the qubits of that processor. However,
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|ψ〉

Register A Register B

Figure 3.1 – Quantum state transmission between two distant quantum registers. The state of

one qubit in the register A has to be transmitted to the a qubit of a distant register B .

depending on the physical nature of the qubits of the processors, this approach could in-

volve either (a) interfacing between different physical systems such as stationary spins and

photons [45] or stationary and mobile spins [46] or (b) physically moving a quantum sys-

tem and subsequently bringing it to a halt elsewhere such as shuttling ions [43] or electrons

[44]. All the above can be complicated in many respects. So one can ask the question: is it

possible to transfer quantum information from place to place using only stationary qubits?

The first idea that comes to mind is to have a chain of qubits as shown in Fig.3.2, and swap a

quantum state perfectly in succession from one qubit to the next. A quantum state encoded

on a qubit at one end of the line can be transported perfectly through a series of swaps to

the qubit at the opposite end of the line. For example, in Fig.3.3, the strategy is to swap the

state in the following order: A → 1, 1→ 2, . . . and so forth until the state reaches the qubit

on the register B . This kind of data-bus, called a swapping channel, has been discussed, for

example, in Ref.[47]. However, such a data-bus requires the ability to modulate the strength

or nature of interactions between pairs of adjacent qubits (such as 1 and 2 or 3 and 4) in

time. Typically, this would require control fields on the wire varying over the scale of the

spacing between the qubits. If so much control is available on a chain of qubits, then why

not use the chain as a quantum computer? It will then be a gross under-utilization to use

it merely as a data-bus. Moreover, the requirement of so much control for the transfer of

a quantum state naturally implies that such a protocol is also very susceptible to errors in

these controls. For example, there are many pair-wise interactions to be switched on and off

in succession for transmission of the state of qubit A to that of qubit B in Fig.3.3, and errors

40



Spin chain data-bus

Register A Register B

Figure 3.2 – This figure depicts the possibility of transporting quantum information from one

quantum processor to another through a line of stationary qubits.

would accumulate in each of these steps. Thus the question arises as to whether we can uti-

lize systems with much lower control for connecting quantum registers. For example, if the

interactions between qubits in a chain are permanent and uncontrollable (always on and

constant in strength), and we are not allowed to apply any control fields to the single qubits,

could the chain still act as a quantum data-bus? The validity of the above possibility will en-

able us to use such a qubit chain as a data-bus in the true sense of the word. This is because

in the normal everyday use of the word “data-bus”, such as to denote a cable connecting two

computers, we do not envisage controlling every individual part of the cable and we mostly

let the information flow through it in its own natural way. A qubit chain in which inter-qubit

interactions are permanent, is an example of a spin- 1
2

chain.

In quantum mechanics, spins are systems endowed with tiny quantized magnetic mo-

ments. Bulk materials often have a large collection of spins permanently coupled to each

other. The mutual interaction of these spins makes them prefer alignment or anti-alignment

with respect to each other, resulting in diverse phenomena such as ferromagnetism and

anti-ferromagnetism. A spin chain models a large class of such materials in which the spins

are arranged in one dimension (as in Fig. 3.3) and permanently coupled to each other, usu-

ally with an interaction strength decreasing with distance. A common form of the Hamilto-

nian for the interaction between the nth and the m th spin is written as

Hnm =
∑

α

J αnm SαnSαm , (3.1)

where Sx
n , Sy

n , Sz
n are the operators for the components of the nth spin along the x , y and z
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A 1 2 N-1 N B

Figure 3.3 – The figure shows a spin chain: a system of spins perpetually coupled to each other

with an interaction strength which generally decreases with distance.

directions, respectively. An interaction of the above form is termed as Heisenberg interac-

tion, after his inventor, or exchange interaction, as it usually arises from the pure exchange

of the electrons’ states between neighbouring ions in a metal. Not only do examples of such

systems exist in nature [48], but they can also be fabricated in systems of any kind of qubits

[49, 50, 51], as qubits are isomorphic to spin-1/2 systems. If one indeed fabricates artifi-

cial systems, why would one fabricate a spin chain i.e., a system with permanent couplings

rather than a system where such couplings are also switchable? The obvious answer is that

such a system should have a much lower complexity of fabrication because they do not re-

quire an attached mechanism (such as electrodes) varying over the scale of the separation

of the qubits to modulate their interactions.

3.1 Quantum communication with unmodulated chain

Depending on the specific physical realization of the overall system, it might be easier to

act on the structure of the Hamiltonian (3.1) ruling the channel dynamics or to prepare the

channel in a specific initial state. For instance, spin chains in solid state physics represent

a vast reservoir of possible quantum channels, characterized by the most diverse Hamilto-

nians, though with fixed parameters [52, 53]. On the other hand, initializing a spin chain

embedded in a solid-state matrix might be a hard task. Quite complementary, recent pro-

gresses in optical lattices are making a real chance out of several theoretical proposals for

realizing spin chains with cold atoms [54, 55, 56, 57, 58, 59], though with some restrictions

on the structure of the effective spin Hamiltonians actually attainable [60]. Moreover, differ-

ent initial states can be realized in an optical lattice [61, 62, 63], and new cooling techniques

[64] also provide the possibility of reaching temperatures in which the magnetic phases are

not disturbed by thermal fluctuations and so the real magnetic ground state of the system

becomes reachable.

There are two essential features that characterize quantum channels made of interact-

ing localized objects: their dynamics is dispersive, due to the non trivial structure of the

many-body Hamiltonian that describes the channel, and it depends on the initial state of

the channel itself. Dispersion is always detrimental to quantum information transmission,

and designing a non dispersive channel requires a detailed engineering of the local cou-
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plings [65, 66], which is hard to achieve practically. It is therefore relevant to understand

up to what extent according to the type, the parameters and the length, a homogeneous

non locally engineered spin chain is usable for quantum communication. In particular, and

at variance with some recent works in which high quality transmission is achieved inde-

pendently of the system initialization [66, 67, 68] we would like to see whether or not one

can improve the quality of transmission by means of a specific initialization. Another issue

which is less studied in the literature (unless very few cases for the case of engineered chains

[69, 66]) is the effect of Hamiltonians which do not conserve the number of excitations. In

fact, our investigation includes a wide class of Hamiltonians which change the number of

excitations during the time evolution.

We consider quantum channels realized by finite spin-1/2 chains with homogeneous

nearest-neighbor exchange interaction of the Heisenberg type, possibly in the presence of a

uniform external magnetic field. As for the initial state of the channel we consider the ferro-

magnetic state, with all the spins parallel to each other, the Nèel state, where neighbouring

spins are anti-parallel, the state built as a series of singlets, and the ground state. In order to

study the interplay between the properties of the channel Hamiltonian and the structure of

the initial state in determining the quality of the transmission processes, we specifically deal

with different Hamiltonians and different initial states. We present a comprehensive study

for the transmission quality over the whole phase diagram of the XY and XXZ Hamiltonians

with the above initial states.

The quantum channel consists of N + 1 spin-1/2 particles sitting at sites 1 to N + 1 of a

one dimensional lattice and interacting through the Hamiltonian

Hch =
N
∑

n=1

�

jxSx
nSx

n+1+ jy Sy
nSy

n+1+ jzSz
nSz

n+1

�

+h
N+1
∑

n=1

Sz
n , (3.2)

where jα (α= x , y , z ) are the exchange integrals, h is an external uniform magnetic field ap-

plied in the z direction, and Sαn = σ
α
n/2 are the operators of the spin sitting at site n . We

prepare the channel in some initial pure state |ψch〉, which can be either entangled or sep-

arable with respect to single-spin states. An extra qubit which carries the information is

labelled by A, sits on the site with index 0, and is initially set in some arbitrary state ρA (0).

The schematic picture of the system is shown in Fig. 3.3.

At t = 0 the interaction between the qubit and the channel is suddenly switched on, via

HI = jxSx
0Sx

1 + jy Sy
0Sy

1 + jzSz
0Sz

1 +h Sz
0 . (3.3)

We use sudden switching for computational simplicity as the dynamics is not altered by a

more realistic finite switching time, provided that it is small compared to the characteris-

tic times set by the couplings of the Hamiltonian HI , as shown in Fig. 7.3(b) that will be

discussed in Chapter 7.
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The total Hamiltonian H = Hch +HI rules the dynamics of the overall system, whose

state at time t reads ρ(t ) = e−i Ht ρ(0)e i Ht where ρ(0) = ρA (0)⊗ |ψch〉〈ψch| and ħh = 1. The

density matrix of the qubit B, standing on site N+1, namelyρB (t ), is obtained by tracing out

the qubits A ≡ 0, 1, ..., N from ρ(t ). On the other hand, one can define the superoperator Et

which maps the initial density matrix of the qubit A, i.e. ρA (0), to the density matrix of qubit

B at time t , i.e. ρB (t ), according to

ρB (t ) = Et [ρA (0)]. (3.4)

This mapping defines a quantum channel (see Section 1.3). When the transmission of a

generic pure quantum state |ψA〉 is in order, according to the scheme depicted in Fig. 2.3, we

set ρA (0) ≡ |ψA〉〈ψA | and quantify the quality of transmission by the average transmission

fidelity (2.9) between the initial state |ψA〉 and the final state ρB (t ). There are essentially two

mechanisms that cause the average fidelity to deteriorate during a transmission process of

the type we are describing: dispersion, which is a collective phenomenon due to the channel

being an interacting many-body system, and local rotations. As a matter of fact, the average

fidelity does not distinguish between bad transmission, i.e. dispersion of the state all over

the chain, and good transmission with an extra rotation during the dynamics; on the other

hand, the latter can be safely handled with an extra unitary operation on the qubit B , thus

leaving dispersion as the only destructive effect in transmitting quantum states.

Assume a unitary operator R , independent of the state |ψA〉, is found such that the aver-

age fidelity for the rotated final state R†ρB (t )R equals the maximum attainable value through

the specific channel, then one could get a quantitative estimate of the dispersiveness of

transmission, which might be a very useful tool for characterizing the channel’s suitability

for state-transfer processes. Aiming at such goal, we use the Optimal Average Fidelity (OAF)

given by Eq. (2.13). The Optimal Average Fidelity, once computed via Eq. (2.23), gives a

quantitative indication about how well a channel behaves, as far as pure-state transmission

is concerned.

When entanglement transmission comes into play, mixed state transmission must be

considered, and other strategies are necessary. Let us prepare the qubit A in a maximally

entangled state with an isolated qubit A ′, see Fig. 2.4. The dynamical evolution causes

the mixed state of qubit A to be transmitted to qubit B , thus generating entanglement be-

tween qubit A ′ and B . We can quantify the quality of such transmission by the entangle-

ment transmission ratio (2.32), which is nothing but the concurrence C(t ) of the state of

the qubits A ′ and B at time t , when initially A and A ′ are in the maximally entangled state

|Φ+〉= (|00〉+ |11〉)/
p

2.

Consistently with the transfer process, our scheme implies the existence of an arrival

time when both the optimal average fidelity F(t ) and the concurrence C(t ) get their max-

imum value. In fact, due to the finite size of the chain, the information travels from A to

B and viceversa multiple times, and the above quantities display multiple peaks during the
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dynamics. Here we concentrate on the first peak, whose position defines the arrival time

t = t ∗, as in a practical situation waiting for longer times is unwise due to the effect of deco-

herence.

3.2 Quasi-free Hamiltonians

In this section we consider the XY model defined by Eq. (3.2) with

jx = j (1+γ), jy = j (1−γ), jz = 0, (3.5)

where, j is the exchange coupling and γ is the anisotropy parameter. This model is exactly

solvable, as it turns into a free fermionic system, which makes valuable analytical results

available. Despite being mapped into a non-interacting system, the model in the infinite

N limit has a rich phase diagram featuring a quantum phase transition [70] at h = 1 and,

as far as the entanglement properties are concerned, the divergence of the entanglement

range when approaching the curve h2+γ2 = 1, where pairwise entanglement vanishes [71,

72, 73]. Moreover, its peculiar non equilibrium dynamics has been studied in the framework

of dynamical entanglement sharing [74], with periodic boundary conditions assumed.

Defining the operatorsσ± = σx±iσy

2
≡Sx ± iSy which satisfy the algebra

[σz ,σ±] =±2σ±, [σ+,σ−] =σz , (3.6)

σ+ = (σ−)† (σ+)2 = 0, (3.7)

the total XY Hamiltonian reads

H XY =
j

2

N
∑

n=0

�

σ+nσ
−
n+1+γσ

+
nσ

+
n+1+h.c.

�

+
h

2

N+1
∑

n=0

σz
n . (3.8)

This Hamiltonian can be mapped to a quadratic fermionic Hamiltonian through the Jordan-

Wigner transformation

cn =
n−1
∏

m=0

�

−σz
m

�

σ−n , (3.9)

where the operators cn are fermionic annihilation operators which satisfy the algebra (B.2),

as it can be easily proven. By substituting the spin operators with their fermionic counter-

parts Eq. (3.8) takes the form

H =
N+1
∑

n ,m=0

�

c †
n Anm cm +

1

2
(c †

n Bnm c †
m − cn Bnm cm )

�

, (3.10)

where, A is a symmetric matrix with elements Anm =
j
2
(δn ,m+1 + δn ,m−1) + hδn ,m and B is

an antisymmetric matrix with elements Bnm =
j γ
2
(δn ,m−1−δn ,m+1). This fermionic Hamilto-

nian can then be diagonalized with the procedure described in the appendix B. In the here
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considered case of finite N and open boundary conditions the analytical expressions of the

energies and of the diagonalizing matrices for finite γ and h are complicated [75], but they

can be determined numerically as explained in section B.2.

The spin data-bus can be conveniently characterized in terms of its dynamical behaviour,

which is investigated in the Heisenberg representation. The fermionic operators cn (t ) =

e+i Ht cn e−i Ht read

cn (t ) =
N+1
∑

m=0

Unm (t )cm +Vnm (t )c †
m , (3.11)

where the dynamical matrices U (t ) and V (t ) are written in (B.18). The dynamics of the z -

component of the spins follows as

σz
n (t ) = 2 c †

n (t )cn (t )−1 , (3.12)

while that of the other components is complicated by the Jordan-Wigner string of operators

(3.9). However, the dynamics of the boundary spins, i.e. those in position 0 and N + 1 is

straightforward since

σ−0 = c0 , σ−N+1 = ΠcN+1 =−cN+1Π , (3.13a)

σ+0 = c †
0 , σ+N+1 =−Πc †

N+1 = c †
N+1Π, (3.13b)

being the parity operator Π = exp
�

iπ
∑N+1

n=0 c †
n cn

�

≡
∏N+1

n=0

�

−σz
n

�

a constant of motion, as

[H ,Π]= 0. Accordingly, the dynamics of the last spin is given by

σ−N+1(t ) =Π





N+1
∑

n=0

UN+1n (t )cn +VN+1n (t )c †
n



 . (3.14)

When the channel is initialized in some state with a given parity (−1)p , that is
∏N+1

k=1

�

−σz
k

�

|ψch〉=
(−1)p |ψch〉, the time evolution of the expectation values 〈σα(t )〉 in the Heisenberg picture

reads

〈σ−N+1(t )〉=e iφu u (t )〈σ−0 〉+ e−iφv v (t )〈σ+0 〉 , (3.15a)

〈σ+N+1(t )〉=e−iφu u (t )〈σ+0 〉+ e iφv v (t )〈σ−0 〉 , (3.15b)

〈σz
N+1(t )〉=−1+u 2(t )

�

1+ 〈σz
0 〉
�

+v 2(t )
�

1−〈σz
0 〉
�

+2A(t ) , (3.15c)

where

u (t ) = |UN+1,0(t )|, φu (t ) = arg[UN+1,0(t )]+pπ, (3.16a)

v (t ) = |VN+1,0(t )|, φv (t ) =−arg[VN+1,0(t )]+ (p +1)π, (3.16b)

and A(t ) is the real function

A(t ) =
N+1
∑

j ,l=1

U ∗
N+1j (t )UN+1l (t )〈ψch|c †

j c l |ψch〉+V ∗N+1j (t )VN+1l (t )〈ψch|c j c †
l |ψch〉+ (3.17)

U ∗
N+1j (t )VN+1l (t )〈ψch|c †

j c †
l |ψch〉+V ∗N+1j (t )UN+1l (t )〈ψch|c j c l |ψch〉.

46



3.2. QUASI-FREE HAMILTONIANS

We prepare the qubit 0 in the density matrix which is parametrized by the vector ~a = 〈~σ0〉
of the Bloch sphere viaρA (0) = (I+~a ·~σ)/2. Correspondingly, the time evolution of the state of

the qubit N +1, ρB (t ) = (I +~b (t ) · ~σ)/2, is parametrized by the vector~b (t ) = 〈~σN+1(t )〉, which

is determined from (3.15). The mapping (3.15) defines a quantum channel from A to B , i.e.

from qubit 0 to qubit N + 1, which is represented as in (1.32) by the affine transformation
~b = T ~a +~t generated by the matrix T

T =









u cosφu +v cosφv u sinφu +v sinφv 0

−u sinφu +v sinφv u cosφu −v cosφv 0

0 0 u 2−v 2









=Sφv−φu









u −v 0 0

0 u +v 0

0 0 u 2−v 2









ST
φv+φu

, (3.18a)

and the vector ~t

~t =









0

0

u 2+v 2−1+2A









, (3.18b)

where the rotation matrix is

S2φ =









sinφ cosφ 0

−cosφ sinφ 0

0 0 1









.

Eqs. (3.18) show that the evolution in the x y -plane involves the two rotations Sφv−φu , ST
φv+φu

as well as the shrinking towards the center of the Bloch sphere embodied in u (t )− v (t ) and

u (t ) + v (t ). Notice that none of the quantities involved depends on the initial state |ψch〉,
thus relating the dynamics in the x y -plane only with the phase-diagram γ-h of the model.

In fact, the only dependence on the initial state is in the quantity A(t )which uniquely affects

the shift in the z direction, and represents the interference of |ψA〉 with |ψch〉 during the

evolution. Notice that in the XX case, where Vi j (t ) = 0 (see appendix B.3.1), the dynamics

(3.18) realizes a generalized amplitude damping channel [1].

The OAF, which measures the quality of state transmission, can be computed from the

affine map (3.18) using the formula (2.23): the singular values of T are |u (t ) + v (t )|, |u (t )−
v (t )|, and |u 2(t )−v 2(t )|, from which

FXY(t ) =
1

2
+

1

6

�

�u 2(t )−v 2(t )
�

�+
1

3
max{u (t ), v (t )}. (3.19)

This is a remarkable result as it is fully independent of the initial state of the channel (i.e. the

parameter A(t )) and depends only on the Hamiltonian parameters. Moreover, the rotation

47



CHAPTER 3. QUANTUM COMMUNICATION THROUGH SPIN CHAINS
DYNAMICS

Figure 3.4 – (a) u (t ∗) vs. γ and h; the peak is located at γ= 0.7 and h = 1. (b) v (t ∗) vs. γ and h.

Both figures are for N = 50.

that maximizes the average fidelity is found to be

R =







e−i φu
2 σ

z
for u > v ,

e i π2σ
x
e i φv

2 σ
z

for u < v .
(3.20)

In the XX case the effect of the magnetic field on the dynamics is only in the phase φu , as

shown in appendix C.2, and therefore one can always choose the magnetic field such that

at the arrival time t ∗, i.e. when fidelity peaks, φu (t ∗) = 0. On the other hand, in the XY case

the dynamical quantities depend on h in a complicated way, making the explicit rotation R ,

given in Eq. (3.20), necessary.

From Eq. (3.19) we see that the larger the difference between u (t ∗) and v (t ∗) the larger

the OAF. In particular, as seen in Fig. 3.4, we find that, whenever the fidelity is large, we see

that u (t ∗)� v (t ∗), so the qualitative behavior of the OAF is the same of u (t ∗). Moreover, in

the region 0 ≤ γ ≤ 1 and 1 ≤ h ≤ 2, u (t ∗) is large, taking its maximum value for γ = 0 (XX

case) and for γ= 0.7 and h = 1. This means that in the γ-h phase-diagram the line γ= 0 and

the point (0.7, 1) set the best possible Hamiltonian parameters, corresponding to the least

dispersive channel. This can be explained following the techniques of Chapters 5 and 6.

Indeed, the distribution of excited states is centered around an energy ≈ h. When γ = 0, or

when γ= 1p
2
' 0.7 and h = 1, this distribution is centered around the inflection point of the

dispersion relation (6.4): the dynamics involves mostly the excitations with almost-linear

dispersion relation and, accordingly, the transmission is more coherent.

The scaling of FXY(t ∗) for increasing length N is shown in Fig. 3.5 where it is clear that

for the best parameters (γ = 0, h = 0 and γ = 0.7, h = 1) the OAF decreases very slowly,

and it is larger than the classical value (2.17), i.e. 2/3, even for chains up to N = 240. This

can be proved in the XX case thanks to the analytical results of appendix C.2. In fact, using
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Figure 3.5 – Scaling of the OAF at the arrival time t ∗ versus length N , for different parameters

of the Hamiltonian.

Eq. (C.32), we can show that the solution of equation FXY(t ∗) = 2/3 is N = 240, in excel-

lent agreement with Fig. 3.5. The weak dependence of FXY(t ∗) on N for the best parameters

strengthens the statement that these indeed define the least dispersive channel, no matter

the length. Conversely, for non optimal parameters (for example γ = 1, h = 1) the OAF de-

creases quickly and becomes lower than the classical threshold value 2/3 for chains longer

than N = 32.

Let us now consider the entanglement transmission. The Choi matrix associated with

the channel is derived from the affine map (3.18) using (1.31). By explicit calculation the

Choi matrix is














u 2(t )+A(t ) 0 0 u (t )e iφu (t )

0 1−u 2(t )−A(t ) v (t )e iφv (t ) 0

0 v (t )e−iφv (t ) v 2(t )+A(t ) 0

u (t )e−iφu (t ) 0 0 1−v 2(t )−A(t )















. (3.21)

The quality of entanglement transmission, as measured by the entanglement ratio accord-

ing to (2.32), is thus given by one half of the concurrence of (3.21), which being in bloch

diagonal form, is given by (2.30), i.e.

C(t ) =max{0, Ĉ (u (t ), v (t )), Ĉ (v (t ), u (t ))} (3.22)

where,

Ĉ (x , y ) = x −
p

(y 2+A(t ))(1−x 2−A(t )).
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Figure 3.6 – Entanglement versus γ in a chain of length N = 20 for different initial states while

the magnetic field takes the values: (a) h = 0 and (b) h = 0.5j .

One can see that, at variance with the OAF, the entanglement transmission depends on the

initial state as it is a function of A(t ); this is due to the fact that during the dynamics the

initial state of qubits A and A ′ interferes with the initial state of the chain and deteriorates

the quality of the transmission.

In the following, we investigate different initial states of the channel in order to find out

to which state a better quality transmission might correspond. In particular, we will refer to

two fully separable states, namely the ferromagnetic state, with all the spins aligned along

the z direction, e.g. |0, 0, ..., 0〉, and the Nèel state, with neighbouring spins antiparallel to

each other, e.g. |0, 1, 0, 1, ..., 0, 1〉. Moreover, we will also study two different entangled initial

states, namely that defined by a series of singlet states, and the ground state of the channel

Hamiltonian.

Let us first consider the XX (γ = 0) model, so as to exploit the analytical expressions

available (see appendix C). We can prove that the concurrence achieves its maximum value,

i.e. u (t ), when |ψch〉 is initialized in a ferromagnetic state. In fact in this case, since Vi j (t )≡ 0,

it is

A(t ) =
N+1
∑

j ,l=1

U ∗
N+1j (t )UN+1l (t )〈ψch|c †

j c l |ψch〉. (3.23)

which is equal to 0 (1) when |ψch〉 consists in a tensor product of down (up) spins. For other

initial states, in which 0 < A(t ) < 1, the concurrence is lower than u (t ). In particular, when

h = 0 and the channel is initialized in its ground state, the system is invariant for exchange

of up and down spins, and thanks to (1.39), 2A(t ) = 1− u 2(t )− v 2(t ). Accordingly, C(t ) =

1/2 max{0, 2u (t )− 1+ u 2(t )}, which is evidently lower than u (t ), i.e. of the concurrence
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Figure 3.7 – Entanglement versus h in a chain of length N = 20 for different initial states while

the anisotropy parameter takes: (a) γ= 0.7 and (b) γ= 1.

when the channel is initialized in a tensor product of up or down states.

In Fig. 3.6(a) we plot the concurrence as a function of the anisotropy γ when h = 0 for

different initial states. As the figure clearly shows, increasing the anisotropy decreases the

quality of transmission.

In the limit of γ→ 1 the Hamiltonian Hch becomes Ising-like which has a poor transmit-

ting quality. As one can see, in Fig. 3.6(a), in the absence of magnetic field the ferromagnetic

initial state always gives the highest entanglement; in particular, when the anisotropy γ is

small the difference between this initialization and the others is evident.

One may improve the poor ability of entanglement transmission in highly anisotropic

chains (large γ) by switching on the magnetic field. This is clearly seen in Fig. 3.6(b) where

we set h = 0.5. Furthermore, we notice that the field does not essentially affect the transmis-

sion for small γ and, quite surprisingly, makes the ground state the best possible initial state

for strongly anisotropic chains.

In order to better understand the role of the magnetic field we consider the transmitted

entanglement for different initial states as a function of h. In Fig. 3.7 we plot the concurrence

for γ = 0.7 and γ = 1 and see that there exists a value of the field, slightly depending on the

initial state of the chain, above which the transmission becomes possible, even for large

anisotropies.

The existence of an exact solution for the XY Hamiltonian allows us to study the quality

of transmission for very long chains. In Fig. 3.8 we plot C(t ∗) as a function of N for differ-

ent initial states, which evidently differentiate the entanglement transmission through long
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Figure 3.8 – Scaling of the obtained entanglement at the arrival time versus length N for dif-

ferent initial states: (a) isotropic XX Hamiltonian (γ = 0 and h = 0); (b) anisotropic XY

Hamiltonian (γ= 0.7 and h = 1).

chains. In particular, in Fig. 3.8(a), we see that in the XX chain the ferromagnetic initial state

not only gives the highest concurrence amongst the different initializations but it also pro-

vides the best scaling with N . In Fig. 3.8(b) we plot C(t ∗) as a function of N for γ = 0.7 and

h = 1, i.e. for the parameters that define the less dispersive XY-like channel (see Fig. 3.4).

At variance with the state transmission case, where for such parameters the transmission

quality is as high as in the XX case (see Fig. 3.5), during entanglement transmission through

an XY chain we cannot avoid the interference A(t ) by properly choosing the initial state of

the chain, and a strong dependence on the length N appears; Fig. 3.8(b) in fact shows that

this gives rise to a significant lowering of the transferred concurrence.

Results for the Nèel state and the series of singlets are found to be very close to each

other (therefore only those for the former state are plotted): This shows that the inherent

entanglement in the initial state has a very little effect when a state is attached at one end of

a spin chain.

3.3 Interacting Systems

After studying the effect of the initial state on the transmission quality in free fermionic

systems, interacting models must also be considered, not only because they represent the

large majority of many-body systems, but also because they are usually characterized by an

extremely rich, though often difficult to be physically deciphered, phenomenology.
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For simulating interacting systems we cannot use the theory described in Section 3.2;

we have to consider the full 2N+2× 2N+2 sparse Hamiltonian matrix given by (3.2) and (3.3).

However, though the ground state can be efficiently computed using well-established tech-

niques [76], the full diagonalization of large (sparse) matrices, required for the dynamics,

can be effectively obtained only for very small N . Nevertheless, the dynamics can be effi-

ciently calculated using the Chebyshev expansion technique [77, 78, 79].

Let H̃ = (H − b1)/a be the rescaled Hamiltonian, where a = (E max − E min)/(2− ε) and

b = (E max+ E min)/2, being E max (E min) the largest (smallest) eigenvalue of H . Here we intro-

duced the small parameter ε for making the eigenvalues of H̃ well inside the range [−1, 1];

in practice we have used ε= 0.01. The evolution operator can be expanded as [78]

U (t ) = e−i t H = e−i t (a H̃+b ) = e−ib t



J0(a t )+2
∞
∑

k=1

(−i )kJk (a t )Tk (H̃ )



 , (3.24)

where the Jk ’s are the Bessel functions and the Tk ’s are the Chebyshev polynomials of the

first kind [80]. The importance of the Chebyshev expansion stems from the fact that the

Bessel functionJk (x ) starts to differ from zero only after x ≈ k . In particular, asJ
x+ξ(x/2)

1
3
(x )'

(2/x )
1
3 Ai(ξ), for large x [80], being Ai the Airy function, one can prove that J

x+8x
1
3
(x ) ≈

10−10/x
1
3 . When we are interested on time scales t < t max we can safely cut (3.24) up to

some order χ = [a t max+ 8(a t max)
1
3 ], with negligible errors. Here we used χ = [1.5a t max] for

safety.

For calculating the evolution of the initial state |ψ0〉 one has to accumulate the (sparse)

vectors |vk 〉= (−i )kTk (H̃ )|ψ0〉 for k up toχ . Thanks to the recurrence relations of the Cheby-

shev polynomials, the vectors |vk 〉 can be obtained [78] via

|vk+1〉=−2i H̃ |vk 〉+ |vk−1〉 ,

where |v0〉= |ψ0〉 and |v1〉=−i H̃ |v0〉. The evolved state is thus

|ψ(t )〉= e−ib t



J0(a t ) |v0〉+2
χ
∑

k=1

Jk (a t ) |vk 〉



 . (3.25)

The Choi matrix of the quantum channel is calculated thanks to the explicit definition Ê (t ) =
Tr0···N

�

1⊗U (t )|Φ+〉〈Φ+| ⊗ |ψch〉〈ψch|1⊗U †(t )
�

and all the figures of merit are evaluated.

3.3.1 XXZ Hamiltonian

Amongst the interacting Hamiltonians the XXZ spin model here discussed, and defined by

Eq. (3.2) with

jx = jy = j , jz = j∆ , (3.26)
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is known to describe many real systems and compounds, thus playing an essential role,

especially in one dimensional physics [53, 60].

This model has a very rich phase diagram: ∆ < −1 is the ferromagnetic phase with a

simple separable ground state with all spins aligned in the same direction. For −1 < ∆ ≤ 1

the Hamiltonian is gapless and the region is called X Y phase. ∆> 1 defines the Nèel phase,

where the spectrum is gapped and a finite staggered magnetization arises. In the Ising limit

∆� 1 the ground state is the Nèel state.

Dynamical transmission in interacting fermionic models is very different from the free

fermionic case, as it results from a complex combination of many different effects amongst

which the scattering between interacting excitations and the existence of localized states.

As a matter of fact, there is no transmission process which is generally independent of the

initial state of the channel. In particular we find that, depending on the value of∆, the best

transmission processes correspond to different initializations of the chain.

Let us first discuss the state transfer process. In Fig. 3.9(a) we see that even the OAF

strongly depends on |ψch〉: for ∆ > 0 the ground state clearly gives the best possible initial-

ization, while for ∆< 0 the phenomenology is much more complicated. When considering

the entanglement transmission in Fig. 3.9(b) the situation is somehow reversed, with a spe-

cific state, namely the ferromagnetic one, granting the best possible initialization for∆< 0,

and a more complex scenario for∆> 0.

The general phase diagram in Fig. 3.9 embodies the complex balance between the ef-

fect of interference, which can be varied by acting on the initial state of the chain, and the

dispersiveness of the channel which depends on ∆. As we already noted, in the XXZ case

also the OAF is affected by interference, and the overlap of F(t ∗) observed in Fig. 3.9(a) in

the∆= 0 point is due to its corresponding to a non-interacting model, for which, as proved

in section 3.2, the OAF does not depend on the initial state. On the other hand, there is no

∆ value where the entanglement transmission is independent of the destructive effects of

interference. Therefore, the only mechanism for removing such effect is that of choosing a

ferromagnetic initial state, whose dynamics can be resolved in the single particle sector [81]

where interference does not occur. The absence of interference is the reason why for ∆= 0

the C(t ∗) obtained with the ferromagnetic initial state is by far larger than the others. Finally,

in Figs. 3.9(a) and (b) we see that, given the initial state, F(t ∗)− 2/3 and C(t ∗) have a similar

behaviour as a function of∆, with a shift in C(t ∗) for the FM initial state, consistent with the

exact analysis given above for the XX case.

Indications about the effects of dispersiveness of the channel on the transmission pro-

cesses can also be extracted: the ground state is seen to minimize such effects for whatever

∆, though this implies a better entanglement transmission only for ∆ > 0.5 where interfer-

ence probably plays a minor role leaving dispersion as the main destructive effect.
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Figure 3.9 – Transferring properties of a XXZ chain with the length of N = 20 in its whole phase

diagram for different initial states: (a) optimized average fidelity at the arrival time t ∗ (the

black line indicates the classically obtained fidelity 2/3); (b) obtainable entanglement at

the arrival time t ∗.

55



CHAPTER 3. QUANTUM COMMUNICATION THROUGH SPIN CHAINS
DYNAMICS

3.4 Concluding remarks

In [82] we have studied the quality of state and entanglement transmission through quan-

tum channels described by spin chains varying both the Hamiltonian parameters and the

initial state of the channel. We have considered a vast class of Hamiltonians, including in-

teracting and non-interacting fermionic systems, which contains some of the most relevant

experimental realizations of one dimensional many-body systems, both in the framework

of solid state physics and in the realm of cold atoms in optical lattices.

We find that if a free-fermionic model is available and an XY-like spin Hamiltonian can

be effectively realized, then the best possible tuning of the parameters is that corresponding

to the XX model with a ferromagnetic initial state, both for state and entanglement transfer,

whose quality stays surprisingly high even for chains as long as N ' 240. In the anisotropic

case, a state transfer of the same quality as that attained at γ = 0, is obtained for γ = 0.7

and h = 1: referring to the framework developed in Ref. [68] and analyzed in chapter 5, we

infer that the relevant excitations lie in the linear zone of the dispersion relation and the

resulting dynamics is essentially dispersionless. Moreover, good results for both state and

entanglement transmission are found in a wide range of the parameters γ and h, providing

the channel is initialized in its ground state. When an interacting XXZ model with a specific

∆ is at hand, one has to choose whether to optimize the state or the entanglement trans-

mission, since these goals are obtained with different initial states. In fact, we find that the

optimal average fidelity is more sensitive to the dispersiveness of the channel, while the en-

tanglement transmission is more sensitive to the interference with the initial state of the

chain. As a matter of fact the former gets its maximum in the antiferromagnetic isotropic

(∆= 1) channel initialized in its ground state, while the latter is maximized by an XX (∆= 0)

channel initialized in a ferromagnetic state.

Our analysis shows that the fidelity and the entanglement do not necessarily quantify

the quality of quantum communication in the same way. Namely, highest entanglement

transfer can occur along a spin chain which is different from that giving the highest aver-

age fidelity. In fact, to the best of our knowledge, these results are the first example in which

state and entanglement transmission show different features due to the different role played

in such processes by dispersion, essentially set by the parameters of the Hamiltonian, and

interference, which explicitly depends on the initial state of the channel. However, when

we have higher entanglement one can always purify/distill entanglement using local oper-

ations [83] and subsequently use it for teleportation and eventually end up with a higher

fidelity.
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The protocol for state transfer described in the previous section has the advantage of being

the simplest experimental setup, as no dynamical control, no encoding, and no fine-design

of interactions is required. It might be the best procedure, thanks to its simplicity, for early

testing the transport properties of solid-state implementations of spin data-bus, for check-

ing the quality of a qubit array and for studying the quantum response to a “quantum im-

pulse”, which are all important aims. However, once the transport properties of spin-chains

are investigated, in order to really use them for connecting two distant registers in a quan-

tum computer, which is by far the main motivation, only perfect or near to perfect state

transfer is relevant. For example, the realization of a quantum gate between qubits in two

separate registers, as in Fig. (2.1), requires to perfectly transfer the state of a qubit from the

first register to the second one, do a gate between that qubit and a qubit of the second reg-

ister, and then perfectly transfer its state back to the first register. How to obtain such a

perfect communication bus is the problem to which many authors have proposed different

solutions, some based on the idea of engineering the bus itself by the specific design of its

internal interactions, others on that of intervening on the initialization process, by prepar-

ing the bus in a configuration found to serve the purpose, and still others using local or

global dynamical control on the chain. In each case, a severe external action on the physi-

cal system is required. Another approach considers a uniform spin chain data-bus weakly

coupled to the external qubits, where both the fidelity of state and entanglement transmis-

sion can be made arbitrarily high, provided that the interaction between the bus and the

qubits is arbitrarily small. This approach has both the advantage of being experimentally

feasible and of having a theoretical near to perfect state transfer. However, due to the weak

couplings involved, the transmission times are very long, and the overall system could suffer

from decoherence in such a long time.

In this section we first review some of these proposals which have most inspired our re-

search, and finally we introduce our idea for inducing a coherent ballistic transmission, that

will be further analysed an applied in detail in the next chapters. The main guideline is the

fact that excitations characterized by a linear dispersion relation are substantially transmit-
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ted coherently along a chain. We develop a general procedure for stirring up the coherent

excitations in quadratic (quasi-free) models, permitting the design of a fast transmission bus

without requiring engineering, nor pulse-shaping.

4.1 Perfect mirroring

The idea of perfect mirroring is to consider statically interacting qubits, with engineered

interactions between the neighbouring sites. With ad-hoc constructions, engineered chains

are suitable not only for transmitting states between the ends of the chain, but also for trans-

ferring whatever state (both pure and mixed) in position x to the position N −x+1, being N

the length of the chain. This method has been introduced in [84] for a single excitation and

then extended in [85] to multiple excitations. We give an overview of the main ideas using an

engineered spin-1/2 model. For a more rigorous treatment, being a mathematical subject,

there is a detailed review [86].

Let’s consider an XX model with arbitrary (different) interactions between nearest neigh-

bours

H =
1

2

N−1
∑

n=1

jn
�

σx
nσ

x
n+1+σ

y
nσ

y
n+1

�

+
1

2

N
∑

n=1

hn σ
z
n . (4.1)

This Hamiltonian is solved again by mapping (4.1) into a quasi-free fermionic model, H =
∑

nm Anm c †
n cm as in section 3.2 where

A =

























h1 j1

j1 h2 j2

j2 h3 j3

...

jN−2 hN−1 jN−1

jN−1 hN

























. (4.2)

Being isotropic in the x -y plane the matrix B (see Section 3.2) is null, and accordingly the

time evolution is given by (B.22). The Hilbert space has a natural Fock space structure,

thanks to the Jordan-Wigner mapping (3.9), and an arbitrary initial state of the chain can

be written as

|ψ〉=
∑

{n}

ψ(n 1, n 2, . . . , n N )(c †
1)

n 1(c †
2)

n 2 · · · (c †
N )

n N |0〉 , (4.3)

where |0〉 is the vacuum of the Fermi operators. The perfect mirroring occurs if there exist a

transmission time t ∗ such that the state in position n is transported to the position N−n+1,
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i.e.

|ψ(t ∗)〉=
∑

{n}

∑

{i n }

ψ(n 1, n 2, . . . , n N ) (U1,i 1(t
∗)c †

i 1
)n 1(U2,i 2(t

∗)c †
i 2
)n 2 · · · (UN ,i N (t

∗)c †
i N
)n N |0〉

=
∑

{n}

ψ(n 1, n 2, . . . , n N ) (c †
N )

n 1(c †
N−1)

n 2 · · · (c †
1)

n N |0〉 ,

=
∑

{n}

(−1)
ñ (ñ−1)

2 ψ(n N , n N−1, . . . , n 1) (c †
1)

n 1(c †
2)

n 2 · · · (c †
N )

n N |0〉 , (4.4)

where ñ =
∑

i n i and (−1)
ñ (ñ−1)

2 is an overall phase in each sector with constant number of

fermions. This happens when at the transmission time t ∗

U (t ∗)∝X , Xnm ≡δn ,N−m+1 , (4.5)

being X the reflection operator. As U (t ) =OT e−i E t O, where A =OT E O is the spectral de-

composition of A, Eq. (4.5) means that O X OT ∝ e−i E t ∗ for some t ∗. Accordingly X has to be

diagonal in the same basis of the matrix A and thus

[A, X ] = 0 . (4.6)

The above condition means that A has to be mirror-symmetric, i.e. symmetric with respect

to the “anti-diagonal”, a property called persymmetry in the mathematical literature [87]:

jn = jN−n and hn = hN−n+1. Furthermore, Eq. (4.5) forces the existence of a time t ∗ such that

e−i Ek t ∗ is proportional to the eigenvalues of X . Accordingly, by properly choosing the order

of the eigenvalues {Ek }
e−i Ek t ∗ = e iα(-1)k , (4.7)

with some unessential α. When the matrix A is persymmetric and the condition (4.7) holds

then perfect transmission is obtained between whatever sites which are at the same distance

from the opposite boundaries. Eq. (4.7) can be solved numerically using the inverse eigen-

value techniques, i.e. algorithms giving an Hamiltonian with the required spectrum [88].

An analytic solution has been found in [85]: indeed by setting hn = 0 and jn =
p

n (N −n ),

the condition (4.7) is satisfied and the eigenvectors are written in terms of known special

polynomials.

This approach, despite giving perfect state transmission, is complicated in an experi-

mental perspective, as an experimentalist should be able to perform a fine tuning of the

interactions according to the law jn =
p

n (N −n ), a fortiori, as the quality deteriorates in

the presence of static noise [89]. Moreover, the dependence on N of the coupling strengths

avoids scalability: when the transmission distances are varied, all the nearest-neighbour in-

teractions has to be changed as well. Nonetheless, the condition (4.7) is one of the main

building blocks of our scheme. Indeed, the condition (4.7) is automatically satisfied in a

quasi-uniform system at the ballistc time t ∗ ≈ (N + 1)/v if the relevant excitations for the

dynamics have mostly a linear dispersion relation, i.e. Ek = v k , as in a finite uniform open

ended chain k = kn = πn
N+1

.
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4.1.1 Generalization to XY models

Here we introduce our generalization of the above arguments to XY models

H =
N−1
∑

n=1

�

jn
1+γn

2
σx

nσ
x
n+1+ jn

1−γn

2
σy

nσ
y
n+1

�

+
1

2

N
∑

n=1

hn σ
z
n , (4.8)

i.e. quadratic fermionic models not conserving the number of “particles”, where the matrix

A (see Section 3.2) is given by (4.2) and the pairing anti-symmetric matrix B is non-null

B =

























0 −j1γ1

j1γ1 0 −j2γ2

j2γ2 0 −j3γ3

...

jN−2γN−2 0 −jN−1γN−1

jN−1γN−1 0

























. (4.9)

In this case the perfect mirroring condition reads U (t ∗) = e iα X and V (t ∗) = 0, i.e. in matrix

language (see Section B.2.2)

 

P† QT

Q† PT

! 

e -i E t ∗ 0

0 e i E t ∗

! 

P Q

Q∗ P∗

!

=

 

e iα X 0

0 e−iα X

!

.

As in the XX case, this means that the matrix on the r.h.s. of the above equation can be

diagonalized using the same matrices of P and Q and that the energy-eigenvalues have to

satisfy the condition (4.7). Accordingly, these necessary conditions must hold





 

A B

−B ∗ −A∗

!

,

 

e iα X 0

0 e−iα X

!

= 0 =⇒ X A X = A, X B X = e 2iαB . (4.10)

The matrix A has to be persymmetric while there is still some freedom in the symmetry

properties of B . However, if B is real (as in the XY model), the parameter α, which in the

B = 0 case is a free parameter, has to be a multiple of π
2

: the matrix B thus has to be per-

symmetric, when for instance α = π
2

or anti-persymmetric, i.e. γN−n = −γn , when for in-

stance α = π. The physical origin of these constraints is still unclear, but there is a nice

argument supporting the persymmetric case α = π
2

. Indeed, the XY model does not con-

serve the number of particles and the phase (−1)
ñ (ñ−1)

2 in (4.4) is not a constant of motion.

However, the parity is conserved and (−1)
ñ (ñ−1)

2 e iπñ/2 = e iπñ 2/2 has a fixed value in each sector

with constant parity. In the persymmetric case insofar, the dynamics effectively mirrors the

state ψ(n 1, . . . , n N ) → ψ(n N , . . . , n 1) without relative phases when the initial state has con-

stant parity.
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4.1.2 Perfect transmission without mirroring

A many-body quantum system described by an XY spin model or by a quasi-free fermionic

model acts as a quantum mirror provided that the Hamiltonian is persymmetric and the

energy eigenvalues satisfy the condition (4.7). However, for designing a quantum bus con-

necting two distant registers, only the perfect transmission between the boundary spins of

the chain is required. We generalize thus the Lemma 2 of Ref. [86] for showing that, even

in the less-stringent case of perfect transmission only between the boundary qubits, the

Hamiltonian has to satisfy some symmetry, and as a particular case it can be persymmetric.

Indeed, let us assume that
 

P† QT

Q† PT

! 

e -i E t ∗ 0

0 e i E t ∗

! 

P Q

Q∗ P∗

!

e1 = e iαeN ,

being e i the vector with components (e i )j =δi j . Then it must be true that

e−i Ek t ∗Pk 1 = e iαPk N , e i Ek t ∗Qk 1 = e−iαQk N , ∀k .

In particular, this reveals that |Pk 1|2 = |Pk N |2 and |Qk 1|2 = |Qk N |2, and by rising the Hamilto-

nian matrix S of (B.11) to an integer power, m , we can relate

e T
1 Sm e1 =

∑

k

E m
k (|Pk 1|2− |Qk 1|2) = e T

N Sm eN .

For m = 1, this gives that h1 = hN . For m = 2, we find that h2
1+ j 2

1 (1+γ
2
1) = h2

N+ j 2
N−1(1+γ

2
N−1)

which can be solved for instance by setting j1 =±jN−1 and γ1 =±γN−1. Each time that m is

increased by 1, new variables are introduced on each side of the equation. Since this sides

must be equals the required symmetry properties occur.

4.2 Wave packet encoding

Near to perfect state transmission can be obtained also by conveniently encoding the initial

state to be transfered into a “wave packet” over multiple sites of the chain. In this case,

classical results about wave packet transmission can be exploited for designing the optimal

shape of the packet for better transmission [90, 91], depending on the Hamiltonian.

In fact, when a spin chain conserves the number of spin up (down)1, and the bus is ini-

tialized in the fully polarized state |0〉 ≡ |00 · · ·0〉, the dynamics becomes very alike that of a

classical wave packet: by initially setting the qubit A in the state α|0〉+β |1〉 the whole chain

evolves according to

|ψ(t )〉=α|0〉+β
∑

B

f BA(t )|B〉 , (4.11)

1 This means that [H ,Sz
tot], where Sz =

∑

n σ
z
n/2 is the total magnetization operator along the direction z .
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where |B〉 is the state |00 · · ·010 · · ·0〉, with |1〉 in position B , and f BA(t ) = 〈B|e−i t H |A〉. If the

Hamiltonian is translationally invariant, then it can be diagonalized with a Fourier transfor-

mation2 and accordingly

f A B (t ) =
1

N

∑

k

e 2πi (B−A)k
N e−i tωk ,

where N is the length of the chain, andωk is the energy as a function of the momentum in-

dex k , i.e. the dispersion relation up to an unimportant constant. Equation (4.11) is nothing

but the evolution of a delta-like wave-packet centered at position A. In typical cases, such

as a particle in a box or a harmonic oscillator, such a wave-function is known to disperse

(spread) rapidly in space. The standard solution is to place the particle in a Gaussian wave-

packet, which usually has a low dispersion and travels with a definite group velocity. The

same trick can be applied to spin chains by initially encoding the state α|0〉+ β |1〉 onto a

(Gaussian) wave-packet over multiple sites: |ψ(0)〉= α|0〉+β
∑

a φa |a〉, where φa ∝ e−(
a−A
σ )

2

.

The time evolved state |ψ(t )〉=α|0〉+β
∑

b φb (t )|b〉 is then described by the evolution of the

wave packet

φb (t ) =
∑

a

f b a (t )φa =
∑

k

e−i tωk
1

N

∑

a

e 2πi (b−a )k
N φa =

1
p

N

∑

k

e−i(tωk− 2πk
N b)φ̃k , (4.12)

where φ̃k is the discrete Fourier transform of φa . It is clear that ifωk = c k for some velocity

c the wave-packet travels coherently during the evolution without dispersion. On the other

hand, most systems have a non trivial dispersion relation and the wave-packet is expected

to spread during the evolution. Nevertheless, most dispersion relations have an inflection

point, i.e. there exists a certain k0 such that ω′′(k0) = 0, around which the dispersion rela-

tion can be approximated as a linear one. If the initial wave-packet φ̃k is centered around k0

in the momentum space then it is expected that the wave-function remains coherent dur-

ing the evolution. Consider indeed an initial Gaussian wave-packet centered around A in

coordinate space, and centered around k0 in the momentum space: φa ∝ e−(
a−A
σ )

2
+2πi a

N k0 .

When σ� 1 such a wave packet is very narrow in momentum space, centered around k0,

and we can expand ωk around k0 up to the third order, which is the first dispersive term,

being ω′′(k0) = 0. In this case a Gaussian pulse does not remain Gaussian but modifies its

shape becoming an Airy function [92, 93]. The wave-packet’s spread increases during the

transmission according to the formula [94]

σ(t )2 =σ2+
1

2

�

ω′′′(k0)t
25σ2

�2

.

In order to minimize the dispersion during the transmission over distances of the order of

N , the above equation has to be minimized for t =N /ω′(k0). The result is

σ∝N
1
3 , (4.13)

2 For translationally invariant Hamiltonians we have H =
∑

k ωk |k 〉〈k |where 〈B|k 〉= 1p
N

e 2πi Bk
N .
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which is then the optimal encoding width of the state onto a Gaussian wave packet. When

(4.13) holds the encoded wave-packet reaches the destination B without a significant change

of its shape. The transmitted Gaussian wave-packet can then be decoded. At the end, the

procedure effectively induces a state transmission between A and B where the correspond-

ing fidelity of transmission is observed to be very high [90], as expected.

Thanks to the Heisenberg principle, when (4.13) holds, the width ∆ of the wave-packet

in the momentum space is

∆∝N− 1
3 . (4.14)

This means that in order to minimize the dispersion, the number of involved modes in the

dynamics should scale with N as N
2
3 .

4.3 Qubits weakly coupled to the bus

Another approach for sending quantum information with near to perfect fidelity is by weakly

coupling distant qubits to a many-body system. Say for instance that the quantum many

body system is an arbitrary graph of spins interacting with each other via a coupling strength

J ' 1, while the sending and receiving qubits are coupled to the system through a coupling

ε where ε� 1. Then one can derive an effective Hamiltonian, acting on the distant qubits

only, provided that the local energies of the qubits are not in resonance with the energies of

the spin bus [95, 96, 97, 67]. One can also consider the resonant regime [95, 98, 99] where

practically one ends up to a three body Hamiltonian, i.e. the distant qubits and the resonant

mode. In the off-resonant case the effective Hamiltonian can be derived using the Fröhlich

method [95]. Let Htot = H + εV be the total Hamiltonian, H = Hb +Hq , where Hq is the

Hamiltonian of the qubits, Hb is the Hamiltonian of the spin bus, and εV is the coupling be-

tween the qubits and the bus. Let F be an Hermitian operator and set H ′
tot = e iεF Htot e−iεF .

Expanding H ′
tot in series of εwe get

H (2)
tot =H +ε

�

V + i [F, H ]
�

+ε2

�

i [F, V ]+
i 2

2
[F, [F, H ]]

�

+O (ε3) .

The best quadratic expansion is the obtained by choosing F such that

V + i [F, H ] = 0 . (4.15)

For such a condition the second-order Hamiltonian H (2)
tot becomes

H (2)
tot =H +

i ε2

2
[F, V ]+O (ε3) .

Let {|n〉} ≡ {|q ,b 〉} be the set of eigenvectors of H with eigenvalues En ≡ωq+Ωb , assumed to

be non-degenerate for simplicity: |q 〉 and ωq (respectively |b 〉 and Ωb ) are the eigenvectors
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and eigenvalues of Hq (respectively Hb ). A solution of Eq. (4.15), which is a particular case

of Sylvester equation [100], is

F =−i
∑

n ,m

〈n |V |m 〉
En −Em

|n〉〈m |=−
1

2

∫ ∞

−∞

e i t H V e−i t H sign(t )d t .

Then the effective Hamiltonian acting only on the external qubits can be obtained by tracing

out the bus, i.e.

H eff 'Hq +
ε2

2
Tr
b
ℑ
�

ρ

∫ ∞

−∞

e i t H V e−i t H V sign(t )d t

�

(4.16)

=Hq +
ε2

2

∑

qq ′q̃
bb̃

ρb 〈qb |V |q̃b̃ 〉〈q̃b̃ |V |q ′b 〉
�

1

ωq +Ωb −ωq̃ −Ωb̃

+
1

ωq ′ +Ωb −ωq̃ −Ωb̃

�

|q 〉〈q ′| ,

where ℑx = (x − x †)/(2i ) and ρ is the initial state of the bus, assumed to be diagonal: ρ =
∑

b ρb |b 〉〈b |. The integral in (4.16) can be expressed in terms of “standard” time dependent

correlation functions of the bus [101], and can be calculated analytically in some cases [95,

96]. For example when Hq = h0(σz
A +σ

z
B ) and V =

∑

q=A,Bσ
+
qσ

−
bq
+h.c., where bA , b B are two

arbitrary qubits of the bus, then

H eff = heff
A σ

z
A +heff

B σ
z
B + j eff(σ+Aσ

−
B +h.c ) .

where the effective couplings depend both on the Hamiltonian of the bus Hb and on the

initial state ρ, as well as the positions bA and b B . Forgetting the local rotations caused by

heff
A and heff

B which do not affect entanglement and can be safely handled with local counter-

rotations, the dynamics induced by the above Hamiltonian acts as a perfect permutation

operator between sites A and B on times t ∝ 1/j eff ∝ 1/ε2.

This method is powerful, as different kind of interactions, different initial states, and

different attachment positions can be safely handled with a proper effective coupling. It en-

sures an almost perfect transmission, where the imperfections arise as the effective Hamil-

tonian is not exact, and does make sense in an experimental point of view. However, the

drawback is that the time scales involved are very long, being of the order of 1/ε2 where

ε� 1, and in such a long time the system could suffer from decoherence, as an interaction

with the (thermal) environment can never be entirely removed.

4.4 Coherent ballistic dynamics

Now we introduce the idea of our method, that will be further analysed in the next chapters,

for inducing a coherent ballistic dynamics in systems modeled with quasi-free Hamiltoni-

ans. In some sense, our method gathers the three approaches described before in an unique,

simple idea.

64



4.4. COHERENT BALLISTIC DYNAMICS

Indeed we consider a scheme similar to the latter one, where the interactions between

the qubits of the bus are uniform, whereas the couplings j0 between the boundaries of the

bus and the external qubits A and B are different. This setting is the most natural one for

connecting distant registers, as it is clear from Fig. 3.2. We assume that the distant registers

are initially detached from the bus, and that the couplings j0, can be switched on and set to

a particularly tuned value. In the limit of very weak j0, according to (4.16) only the modes

which are in resonance with the local energies h0 of the qubits are involved in the dynamics,

but the resulting transmission times are very long, as we have seen. On the other hand, when

j0 increases, more and more normal modes in the neighbourhood of the resonant region are

involved. Considering quasi-free models, these modes do not interact and the resulting dy-

namics emulates a wave packet dynamics. Indeed, being the system almost translationally

invariant in the limit of big N , the energy eigenvalues Ek can be interpreted as a dispersion

relation, with k a quasi-momentum index. In this momentum space, the wave-packet is

peaked around the local energy h0 and has a width∆(j0) which increases for increasing j0, as

more modes come into play. A coherent ballistic evolution of the wave-packet is obtained, as

described in section 4.2, by setting the value of h0 to the inflection-point energy (the center

of the linear zone) and by setting j0 such that (4.14) holds. The difference with the approach

of section 4.2 is that the wave-packet lies in the quasi-momentum space, and its width can

be controlled only by properly choosing j0, without requiring the control of multiple qubits

in the neighbourhood of A and B . Moreover, as in finite systems k = kn ≈ πn/N , thanks to

the system’s mirror symmetry, when t ∗ ≈N /v , being v the group velocity in the linear zone,

the perfect transmission condition (4.7) is almost satisfied and a perfect reconstruction of

initial state on the qubit B is expected as well.

The advantages are evident. Only the couplings j0 and the local interaction h0 need to be

controlled, and in some particular cases, notably the XX model, only the tuning of j0 is suf-

ficient. There is no need for engineering, nor for controlling many (N
1
3 ) qubits and, thanks

to the non-weak couplings, the transmission times are fast. Recently it has been shown [89]

that our results are also stable against static perturbation. Indeed, in most situations the

transmission performance of our approach renders the full engineering of the couplings of

a spin chain unnecessary in order to obtain quantum state transmission with high fidelity

under static perturbations.

In the next chapters our approach will be derived more rigorously for both XX and XY

models.
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5
Optimal dynamics with the XX model

After the general introduction of the previous chapters, we consider here a specific model,

the XX spin chain, and we analyze in detail how to obtain the ballistic regime. As outlined

in Section 4.4, in the ballistic regime the transmission can be depicted [68, 90, 102] in terms

of a travelling wavepacket carrying the information about the state of the endpoint qubit

A, eventually yielding the state reconstruction at the opposite endpoint qubit B thanks to

the overall system’s mirror symmetry [84, 103, 66, 104]. The ballistic regime differs from that

arising in the limit of very weak endpoint couplings [97, 105, 106, 107, 67] where (almost)

perfect state transfer occurs at very long times as a result of a Rabi-like population transfer

involving only two or three single-particle modes. Understanding the basic mechanism of

ballistic transfer, where the number of involved single-particle modes will be shown to be

of the order of N 2/3, as in Section 4.2, allows us to devise an optimal value of the endpoint

interactions for any N , and vice versa. Remarkably, the corresponding transmission quality,

as witnessed by the state- and the entanglement fidelity, does not decrease to zero when the

data-bus becomes very long, but remains surprisingly high.

We consider the setup illustrated in figure 5.1: the data-bus connecting the qubits A and

B is a one-dimensional array of N localized S = 1/2 spins with exchange interactions of X X

Heisenberg type and a possible external magnetic field applied along the z direction. This

gives the total Hamiltonian the following structure

H =
N−1
∑

i=1

�

Sx
i Sx

i+1+Sy
i Sy

i+1

�

+h
N
∑

i=1

Sz
i + (5.1)

+ j0

∑

i=0,N

�

Sx
i Sx

i+1+Sy
i Sy

i+1

�

+h0
�

Sz
0+Sz

N+1

�

,

where Sαi =
1
2
σαi and the qubits A and B sit at the endpoint sites 0 and N+1 of a one-

dimensional discrete lattice on whose sites 1, 2, ..., N the spin chain is set. The exchange

interaction (chosen as energy unit) and the magnetic field h are homogeneous along the

chain, and an overall mirror symmetry is assumed, implying the endpoint coupling j0 and

field h0 to be the same for both ends. The N spins constituting the X X data-bus are col-

lectively indicated by Γ. We will focus our attention on how the state of the qubit B evolves

67



CHAPTER 5. OPTIMAL DYNAMICS WITH THE XX MODEL

A BΓ

C

Figure 5.1 – The endpoints of a quantum data-bus Γ are coupled to the qubits A and B, via the

interaction j0; A can be entangled with an external qubit C.

under the influence of the chain Γ, and depending on the initial state of the qubit A; the

latter is possibly entangled with an ancillary qubit C. The results of the analysis are used

for gathering insights on the quantum-information transmission through the chain, so as to

characterize the dynamical evolution of the overall system and to maximize the quality of

the quantum-state transfer.

Even though the overall scheme could also be used for realizing tasks other than quan-

tum information transfer, via the dynamical correlations that the chain induces between

A and B [108], our approach is specifically tailored for studying transfer processes along

the chain: the qubit B or the qubit-pair BC are considered as target system, depending on

whether the quantum-state of the qubit A or that of the qubit-pair AC are to be transferred,

respectively.

5.1 Dynamical evolution

In this section we specifically consider the Hamiltonian (5.1). The system A∪Γ∪B is prepared

in the state ρtot = ρA⊗ρΓ⊗ρB. The Hamiltonian (5.1) is diagonalized as in section 3.2 by

using a Jordan-Wigner transformation together with an orthogonal transformation. With-

out the anisotropy γ the matrix B is null, and the nearest-neighbour interaction between

the fermions is described only by the (N+2)× (N+2) tridiagonal mirror-symmetric matrix

A (see C.1.1); an orthogonal transformation O diagonalizes A and hence H [109, 110]. The

trivial time-evolution in the Heisenberg picture of the fermion operators entails the time-

dependent transformation

c i (t ) =
N+1
∑

i=0

Ui j (t ) c j , (5.2)

where, as in (B.22),

Ui j (t ) =
∑

n

Ok iOk j e−iEk t . (5.3)

The resulting quantum channel is the same of (3.18), provided that also the state of B has

a fixed parity, otherwise there are some further mixed terms (see Section C.4). The difference
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is that the parity (−1)p has to be changed to −p̃ 〈σz
N+1〉, being p̃ the parity of Γ, in order to

consider the structure Γ∪B . Following section 3.2, the optimal fidelity of transmission is

F(t ) =
1

2
+

1

6
u 2(t )+

1

3
|p̃ 〈σz

N+1〉|u (t ),

while the transmitted entanglement, as measured by the concurrence, is

C(t ) =max
�

0,
�

�p̃ 〈σz
N+1〉

�

�u (t )−
p

A(t )[1−u 2(t )−A(t )]
	

,

where, from (3.17),

A(t ) = |UN+1,N+1(t )|2
〈σz

N+1〉+1

2
+CN+1(t ) , (5.4)

C i (t ) =
N
∑

j ,j ′=1

U ∗
i j (t )Ui j ′(t )Tr

�

ρΓc †
j c j ′
�

. (5.5)

From the above formulas it appears that the choice of the initial state ρΓ⊗ρB plays an im-

portant role [82]: in particular, in order to get the largest concurrence and fidelity it must be

−p̃ 〈σz
N+1〉= (−1)p , (5.6)

meaning that ρΓ is an eigenstate of the parity and the state of qubit B is |↑〉 or |↓〉. As for

the initial state of the data-bus, the choices range, for example, from its ground state to a

fully polarized state. Such limitation in the choice of the initial state might be overcome

by applying a two-qubit encoding and decoding on states ρA and ρB, respectively [67, 111].

When (5.6) holds, the state transmission protocol can be simplified if at the arrival time t ∗

0=φu (t ∗) = argUN+1,0(t ∗)+pπ. (5.7)

Indeed, when condition (5.7) holds, according to (3.20), the state is not rotated around the

z -axis during the transmission, and no local unitary protocols for increasing the fidelity are

required. Condition (5.7) can be fulfilled by choosing a proper magnetic field [112] or the

parity of N , as we will see in the next section.

The above analysis shows that, provided that (5.6) holds, the quality of the state and

entanglement transfer

F(t ) =
1

2
+

1

6
u 2(t )+

1

3
u (t ), (5.8)

C(t ) =max
�

0, u (t )−
p

A(t )[1−u 2(t )−A(t )]
	

, (5.9)

mainly depends on u (t ) and increases with it.
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5.2 Optimal dynamics

We now have the tools for determining the conditions for a dynamical evolution that corre-

sponds to the best quality of the transmission processes. In C.1.1 the algebraic problem of

diagonalizing the X X Hamiltonian in the case of nonuniform mirror-symmetric endpoint

interactions is analytically solved. The eigenvalues of the matrix Ω can be written as

Ek = h + cos k , (5.10)

in terms of the pseudo-wavevector k , which takes N+2 discrete values kn in the interval

(0,π): from (C.20) and (C.13) it follows that these values obey

kn =
πn +2ϕkn

N+3
, (n = 1, ..., N+2) , (5.11)

with

ϕk = k − cot−1
�cot k

∆

�

∈
�

−π
2

, π
2

�

, (5.12)

∆=
j 2

0

2− j 2
0

, (5.13)

where we have set h0 = h. From the above equations it follows that the k ’s correspond to

the equispaced values πn/(N+3), slightly shifted towards π/2 of a quantity which is smaller

than π/(N+3), so that their order is preserved: therefore k can be used as an alternative

index for n , understanding that it takes the values kn , as done in (5.10). According to the

conclusions of the previous section, we focus on the transition amplitude u (t ), as given by

(5.3), which explicitly reads:

u (t ) =

�

�

�

�

�

∑

n

ρ(kn ) ei(πn−Ekn t )

�

�

�

�

�

, (5.14)

where, after (C.21), it is

ρ(k ) =
1

N+3−2ϕ′k

∆(1+∆)
∆2+ cot2 k

, (5.15)

and mirror symmetry is exploited according to (C.16): the transition amplitude above is a su-

perposition of phase factors with normalized weights,
∑

n ρ(kn )=1, entailing u (t )≤1, with

equality holding when all phases are equal. The distribution ρ(k ) is peaked at k =k0=π/2

and its width is characterized by the parameter ∆ (5.13) so that the smaller j0 the narrower

ρ(k ).

As u (t ) essentially measures the state-transfer quality, the condition for maximizing it at

some time t ∗, i.e., u (t ∗) ' 1, is that all phases πn−Ekn t ∗ almost equal each other. Assume

for a moment that the k ’s are equispaced values, as in the uniform case (see appendix C.1),

and that the dispersion relation is linear, Ek = v k : then (5.14) would read

u (t ) =

�

�

�

�

�

∑

n

ρ(kn ) eiπn (1−t /t ∗)

�

�

�

�

�

,
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with t ∗=(N+3)/v , so that u (t ∗)=
∑

n ρ(kn )=1, i.e., all modes give a coherent contribution

and entail perfect transfer. On the other hand, in our case Ek is nonlinear in k , and the kn

are not equally spaced due to the phase shifts (5.12) entering (5.11), so generally the different

modes undergo dispersion and lose coherence.

5.2.1 Transfer regimes

The dependence of∆upon j0 reveals the possibility of identifying different dynamical regimes,

characterized by a qualitatively different distributionρ(k ) (5.15) and hence, as for the trans-

fer process, a different behaviour of the transition amplitude u (t ). For extremely small j0

the distribution ρ(k ) can be so thin that (for even N ) only two opposite small eigenvalues

come into play, say differing by δω, and perfect transmission will be attained at a large time

t =π(δω)−1 (for odd N there is a third vanishing eigenvalue at k =π/2 and still two identical

spacings δω do matter). This is the Rabi-like regime.

A different regime is observed when j0 is increased: a few more eigenvalues come into

play and it may occur, in a seemingly random way, that their spacings be (almost) commen-

surate with each other, i.e., they can be approximated as fractions with the same denomina-

tor K , yielding phase coherence at t K =πK . By recording the maximum of u (t ) over a fixed

large time interval T , as j0 is varied (see [97]), a rapid and chaotic variation is observed. This

regime is clearly useless for the purpose of quantum communication.

As j0 further increases, the ballistic regime eventually manifests itself: ρ(k ) involves

so many modes that commensurability is practically impossible, and a more regular be-

haviour with short transmission time t ∗∼N sets in. The ballistic regime is characterized

by relatively large values of u (t ∗,∆) which is the quantity plotted in figure 5.2, reporting

numerical results for increasing chain lengths. It appears that each curve shows a max-

imum for a particular optimal value of ∆=∆opt(N ) or, equivalently, of j0= j opt
0 (N ): such

maxima are remarkably stable for very high N and yield very high transmission quality.

In Table 5.1 we report some of the optimal values ∆opt(N ) and j opt
0 (N ) for a wide interval

of chain lengths. This last ‘ballistic-transfer’ regime is the one we are interested in, since

it has three strong advantages: first, the transmission time t ∗ ∼ N is the shortest attain-

able; second, the maximum value u (t ∗,∆opt) of u (t ∗,∆) is such that one can achieve very

good state transfer, e.g., the corresponding transmission fidelity is far beyond the classical

threshold, even for very long chains; third, it is not necessary to fine-tune j0 to j opt
0 , since

from the data set reported in figure 5.2 it can be estimated that the relative loss in amplitude

is u opt−u (j opt
0 ±δj0)' 0.8

�

δj0/j opt
0

�2, e.g., a 15% mismatch in j0 results in a loss of less than

2% in the transition amplitude.

The above analysis gives a physical interpretation of what is observed in figure 3 of [97],

where the Rabi-like, intermediate and ballistic regimes emerge.

A qualitative picture of the ballistic regime can be obtained by viewing the transition am-
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N +2 ∆opt j opt
0 u (t ∗,∆opt)

25 0.243 0.625 0.968

51 0.181 0.554 0.949

101 0.138 0.493 0.932

251 0.098 0.422 0.913

501 0.075 0.374 0.900

1 001 0.058 0.332 0.890

2 501 0.042 0.284 0.879

5 001 0.033 0.252 0.873

10 001 0.026 0.224 0.868

25 001 0.0188 0.192 0.862

50 001 0.0148 0.171 0.859

100 001 0.0117 0.152 0.857

250 001 0.0086 0.1303 0.854

500 001 0.0068 0.1160 0.853

Table 5.1 – Optimal values∆opt and the corresponding j opt
0 and u (t ∗,∆opt) for different N .

Figure 5.2 – Value of u (t ∗,∆) as a function of ∆, for different wire lengths N . t ∗ is obtained

numerically by maximizing (5.14) around t 'N+3. These curves are very well fitted by the

function u (∆)=u opt−c [ln(∆/∆opt)]2, with c ranging from ∼0.17 (low N ) to ∼0.21 (large

N ).
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Figure 5.3 – Partial sum of the amplitude u`(t ∗) vs ` for N +2=51 and j0=0.58, together with

the corresponding frequency and density.

plitude (5.14) as a wavepacket with N+2 components. It can be evaluated by progressively

adding the contributions from symmetric eigenvalues, i.e., for odd N summing between

(N+1)/2∓ `, for `=0, 1, ..., (N+1)/2. This yields the partial sum u `(t ∗) shown in figure 5.3,

together with the corresponding frequency and density. One can see that the amplitude in-

creases only over the modes of the linear-frequency zone, i.e., where frequencies are equally

spaced, indicating that only those wavepacket components whose frequency lies in such

zone play a role in the transmission process.

5.2.2 Ballistic regime and optimal values

From the above reasoning, since the modes contributing to the amplitude lie in a range of

size∆ around k0, in order to get high-quality transfer processes it is necessary that the corre-

sponding frequencies be almost equally spaced, meaning that Ekn is approximately linear in

n . Actually, Ek has an inflection point in k0: its nonlinearity is of the third order in k −k0 and

the modes close to k0 satisfy the required condition. However, from the phase-shifts (5.12)

a further cubic term arises, which depends on ∆. As ∆ varies with j0, the latter can be cho-

sen so as to eliminate the cubic terms, yielding a wide interval with almost constant fre-

quency spacing. The latter can be expressed just as the derivative of Ekn with respect to n ,
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∂n Ekn = sin k ∂n k . The last term is evaluated from (5.11) and (5.12),

∂n k =
π+2ϕ′k∂n k

N+3
=

π

N+3−2ϕ′k
, (5.16)

ϕ′k =−
1−∆
∆
+

(1−∆2)cos2 k

∆[∆2+(1−∆2)cos2 k ]
, (5.17)

so that

∂n Ekn =
π sin k

N+3−2ϕ′k

=
π

t ∗

h

1+
�

2
1−∆2

t ∗∆3
−

1

2

�

cos2k +(cos4k )
i

, (5.18)

where t ∗=N+3+2 (1−∆)/∆ is the arrival time. It follows that one can minimize the nonlin-

earity of Ekn by setting the width to the value∆0 satisfying

∆0 =
h 4

t ∗
(1−∆2

0)
i1/3

−→
N�1

22/3N−1/3 , (5.19)

i.e., j0 ' 25/6N−1/6 for large N . Therefore the main mechanism that produces an optimal

ballistic transmission is that of varying the endpoint exchange parameter to the value j0

that ‘linearizes’ the dispersion relation. Actually, if the corresponding ∆0 = ∆(j0) is such

that ρ(k ) exceeds the region of linearity, further gain arises by lowering j0 so as to tighten

the relevant modes towards k0. However, at the same time Ekn becomes less linear and

the trade-off between these two effects explains why a maximum is observed. This is well

apparent in Fig 5.4, where for different values of∆ the shapes of ∂n Ek can be compared with

the excitation density ρ(k ): for∆=∆0 the density still has important wings in the nonlinear

zone, so the optimal value∆opt turns out to be smaller.

The dynamics in the ballistic regime is best illustrated by the time evolution of the mag-

netization (3.12) along the chain, plotted in figure 5.5 when the initial state is |↑〉⊗ |↓↓ · · · ↓〉⊗
|↑〉, and in figure 5.6 when the initial state is |↑〉|ΩΓ 〉|↓〉, being |ΩΓ 〉 the ground state of the chain

Γ. The initial magnetizations at the endpoints generate two travelling wavepackets: for non-

optimal coupling (j0=1, upper panel of figure 5.5 and left panel of figure 5.6) they change

their shape and quickly straggle along the chain; for optimal coupling (j0= j opt
0 , lower panel

of figure 5.5 and right panel of figure 5.6) they travel with minimal dispersion. This con-

firms that the coherence is best preserved when the optimal ballistic dynamics is induced.

In the latter the induced coherent propagation makes 〈Sz
B
(t ∗)〉, at the arrival time t ∗'N , an

almost perfect reproduction of the initial magnetization 〈Sz
A
(0)〉 of the qubit A, while in the

non-optimal case the dynamics is apparently more dispersive. In the next section we show

that such dynamics does in fact correspond to high values of the quality estimators for the

state and entanglement transfer.
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Figure 5.4 – The ‘group velocity’ vk ≡ [(N+3)/π] ∂n Ekn and ρ(k ) vs k for different values of∆.

The thicker curves correspond to∆0=0.3944 (5.19) that gives the flat behaviour at k0, and

to∆opt'0.1825.

5.3 Information transmission exploiting optimal

dynamics

The requirement (5.7), means that the state is not rotated by the dynamics when it arrives

on site B, though during the evolution it may undergo a rotation around the z axis. In [108]

it has been shown that φu (t ∗) = -π
2
(N+1) at the transmission time t ∗. Therefore, also with-

out applying a counter-rotation on qubit B [82], condition (5.7) can be fulfilled by choosing

N =4M±1 where the sign ± is given by (5.6) and thus depends on the initial state of the

chain. In the following we assume that conditions (5.6) and (5.7) are always satisfied.

Let us consider for the moment that Γ and B are initially in the fully polarized state

|↓↓ · · · ↓〉 ⊗ |↓〉. In that case A(t )≡0 and the transmission fidelity (5.8), as well as the concur-

rence (5.9), only depend on, and monotonically increase with, u (t ). The best attainable in-

formation transfer quality corresponds therefore to the maximum amplitude u opt≡u (t ∗,∆opt).

In Fig. 5.7 and in Table. 5.1 we report these values together with the corresponding optimal

∆opt as a function of the chain length N in a logarithmic scale; the inset shows that ∆opt

obeys the same power-law behaviour predicted in (5.19) for ∆0. Fig. 5.7 also shows that for

larger and larger N the maximal amplitude u opt does not decrease towards zero, but it rather

tends to a constant value of about 0.85, which is surprisingly high, as, e.g., it corresponds to

an average fidelity F(t ∗)¦0.9 (see Fig. 5.8). This can indeed be proven: we show in C.3 that
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Figure 5.5 – Dynamics of the magnetization σz
i (t ) at time t and site i when a) j0 = 1 and b)

j0 = j opt
0 . The initial state of the whole system is |↑〉 ⊗ |↓↓ · · · ↓〉 ⊗ |↑〉 and the length of the

chain is N +2= 250.
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Figure 5.6 – Time evolution of the on-site z -magnetization for N =50 and an initial state

|↑〉|ΩΓ 〉|↓〉; the qubit-wire coupling is j0=1 (left) and j0= j opt
0 =0.58 (right).

in the limit of N→∞ the optimized amplitude tends to u opt=0.8469. Basically, this tells us

that it is possible to transmit quantum states with very good quality also over macroscopic

distances. From (C.36) we can derive the asymptotic behaviour of the optimal coupling

j opt
0 ' 1.030 N−1/6 . (5.20)

In the optimal ballistic case the bus initialization is not crucial, as different initial states

satisfying (5.6) give rise to almost the same dynamics. In fact, the term CN+1(t ) entering (5.4)

essentially embodies the effect of bus initialization and it is expected to be small at t ∗: since

u (t ∗)' 1 in the optimal case, the dynamical prefactors UN+1,j (t ∗) in (5.5) are expected to be

small for j 6= N + 1 as the matrix U (t ) is unitary. This is apparent in figure 5.9, where for

j0= j opt
0 , CN+1(t ∗) stays well below 0.1 for N as long as 1000.

The transmitted entanglement, as measured by the concurrence (5.9), is shown in Fig. 5.10

as a function of j0 and t , with the bus initially prepared in its ground state. As expected, the

peak of the transmitted concurrence is observed for j0= j opt
0 ; away from j opt

0 the quality of

transmission falls down because u (t ∗) decreases and, accordingly, A(t ∗) is allowed to in-

crease. In fact, in the non-optimal ballistic case the quality of entanglement transfer does

depend on the initial state of the bus [113, 82]; for instance, when j0=1 and the chain is

initially in its ground state, the contribution of the overlap terms Tr[ρΓc †
j c j ′] in (5.5) is not

quenched by the dynamical prefactors, and higher values of CN+1(t ∗) (see figure 5.9) inhibit

the transmission of entanglement even if u (t ∗) 6= 0.

The effect of the optimization of j0 is clearly evident in the time behaviour, reported in

figure 5.11, of the minimum fidelity Fmin(t ) given by (2.25): its peak for j opt
0 occurs at the ar-

rival time t ∗=N+3+s with a time delay s that agrees with the asymptotic value s '2.29 N 1/3

derived in C.3. The ‘reading time’, i.e., the time interval during which the qubit B keeps be-

ing in the transferred quantum state, is tR '∆−1, as the same figure also shows; note that, in
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Figure 5.7 – Behaviour of the maximum attainable amplitude u opt and (inset) of the corre-

sponding optimal value of∆opt vs logarithm of the chain length N . The horizontal dashed

line is the infinite N limit of u opt.

F
(t

∗
)

N

Figure 5.8 – Scaling of the average fidelity at the transmission time and for j0 = j opt
0 as a func-

tion of the length N .

78



5.3. INFORMATION TRANSMISSION EXPLOITING OPTIMAL DYNAMICS

C
N
+
1
(t

∗ )

N

j0 = jopt0

GS
Neél

j0 = 1
GS
Neél

Figure 5.9 – CN+1(t ∗) for different initial states of the chain (ground state, anti-ferromagnetic

Neél state, and series of singlets [82]) when j0= j opt
0 and j0=1. The results for a series of

singlets are numerically indistinguishable from those with the Neél state.

Figure 5.10 – Evolution of the concurrence C vs j 0 and t . The length of the chain is N +2=250.

79



CHAPTER 5. OPTIMAL DYNAMICS WITH THE XX MODEL

F
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j0 = jopt0

j0 = 1
j0 = 0.8
j0 = 0.6
j0 = 0.3
j0 = 0.2

Figure 5.11 – Minimum fidelity vs time for different values of j0. The length of the chain is

N +2=251 and j opt
0 =0.422.

the optimal case, tR increases with N according to the asymptotic behaviour tR'1.89 N 1/3.

5.4 Concluding remarks

In [68, 114] we have shown that high-quality quantum state and entanglement transfer be-

tween two qubits A and B is obtained through a uniform X X data-bus of arbitrary length N

by a proper choice of the interaction j0 between the bus and the qubits. The value of such

interaction is found to control the transfer regime of the bus, which varies, as j0 increases,

from the Rabi-like one, characterized by very long transmission time, to an intermediate

regime, which turns useless for the purpose of quantum communication, and finally be-

comes ballistic for j0 of the order of the intra-bus interaction.

In order to get coherent transfer in the ballistic regime, it is desirable that the k -density

of the travelling wavepacket generated by Alice’s initialized qubit A be narrow and concen-

trated in the linear zone of the dispersion relation, i.e., with equispaced frequencies. As the

parameter j0 controls both the width of the k -density and the spacings of the frequencies

entering the dynamics, one can therefore improve the transmission quality up to a best bal-

ance obtained for an optimal value jopt(N )which for large N behaves as jopt(N )'1.03 N−1/6.

Remarkably, we have found that for such a choice the quantum-state-transfer quality indi-

cators are very high and, indeed, have a lower bound for N→∞ that still allows to efficiently

perform quantum-information tasks: e.g., the average fidelity of state transmission is larger

than 90 %. Moreover, as remarked in Section 5.2.1, a fine-tuning of j0 (and/or N ) is not

required, since even a relatively large mismatch from the optimal value does not affect sig-
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nificantly the quality of transmission.

The ballistic regime ensures fast transmission on a time scale of the order of N , at vari-

ance with the Rabi-like regime, and in the optimal case the reading time increases as N 1/3.

It is also to be noted that, if experimental settings constrain to a given value j exp
0 , yet one

can optimize the chain length in such a way that j exp
0 = j opt

0 (N ). The only requirement on

the initial state of the receiving qubit B and the spin bus is to possess U (1) symmetry, a con-

dition that can be fulfilled by several configurations concerning the spin bus, ranging from

the fully polarized state to the highly-entangled ground state. If a large magnetic field can

be switched on during the initialization procedure (in order to fully polarize the data-bus),

and switched off as soon as the transmission starts, then, from our analytical treatment it

emerges that temperature is not a major issue as far as the dynamical evolution of the data-

bus is concerned, though low temperatures are obviously necessary to protect the qubits

from phase and amplitude damping due to the solid-state environment.

To judge if the proposed scheme identifies a reasonable experimental framework, let us

estimate the magnitude of the involved physical quantities. Consider a solid-state imple-

mentation with lattice spacing of about 10 Å and intrachain exchange J '102 K. A quan-

tum state will then be transferred with fidelity 90 % along a bus of length 1 cm (N '107) us-

ing j0'1.03 N−1/6 J '7.0 K, with transmission time t =N ħh/(kB J )'0.75µs and reading time

tR'1.9 N 1/3ħh/(kB J )'0.03 ns.
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6
Optimal dynamics with the XY model

In this chapter we study the ballistic regime in more complicated models [115]. As in the pre-

vious chapter, the channel (Fig. 5.1) we consider is realized by a uniform (i.e., with identical

exchange coupling J =1 between neighbors) spin chain Γ of length N , to which an external

magnetic field h can be applied. In particular, we choose the X Y model, which also allows

for an anisotropy parameter γ and can be analytically approached as described in section

3.2. The only interactions that can be different are the endpoint exchange coupling j0 to

A and B, and the local magnetic field h0 on A and B; these parameters are assumed to be

identical for A and B, so that the overall system is mirror-symmetric.

Using the labels i = 1, . . . , N for the chain and i = 0 and i =N + 1 for the endpoint spins

A and B, the total Hamiltonian reads

H =
N−1
∑

i=1

h

(1+γ)Sx
i Sx

i+1+(1−γ)S
y
i Sy

i+1

i

+h
N
∑

i=1

Sz
i +

+ j0

∑

i=0,N

h

(1+γ)Sx
i Sx

i+1+(1−γ)S
y
i Sy

i+1

i

+h0(Sz
0 +Sz

N+1) .

The figures of merit for both state and entanglement transmission can be written using

the same language of Section 3.2. Thanks to the mirror-symmetry of the Hamiltonian, the

Eqs. (B.24) holds:

UN+1,0(t ) =
∑

k

Ok ,0Ok ,N+1 cos(ωk t )− i
O2

k ,0+O2
k ,N+1

2
sk sin(ωk t ) , (6.1)

VN+1,0(t ) =
∑

k

O2
k ,0−O2

k ,N+1

2i
sk sin(ωk t ). (6.2)

We assume that sk ' (−1)k and Ok ,0 ' ±(−1)kOk ,N+1. These relations are exact in the XX

case and are true with some approximation even in the XY case in most practical situations,

i.e. when we found that UN+1,0(t ∗) ≈ 1 and VN+1,0(t ∗) ≈ 0 at the transmission time t ∗. The

approximated evolution operator u (t ) = |UN+1,0(t )| is thus

u (t )≈

�

�

�

�

�

∑

k

ρ(k )e i (πk±ωk t )

�

�

�

�

�

, ρ(k ) =O2
k ,0 , (6.3)

83



CHAPTER 6. OPTIMAL DYNAMICS WITH THE XY MODEL

k

nk(ω)

ωk

Figure 6.1 – Dispersion relation of the spin- 1
2 X Y chain for γ = 0.5 and h = 0.54. The bell-

shaped distribution n opt(ω) (circles) is the optimized density of excitations vs. ω, corre-

sponding to h0 = 0.85 and j0 = 0.48.

and ρ(k ) is the density of excitations in the XY case.

The induction of a coherent dynamics in the XY model begins, as in the XX case, with the

analysis of the dispersion relation in the infinite chain limit,

ωk =
p

(h−cos k )2+γ2 sin2 k , (6.4)

displayed in Fig. 6.1. One can easily spot the existence of more or less wide regions of lin-

earity in the neighborhood of the inflection point(s) k0, where ωk ≈ const+ v k holds. By

tuning h0'ωk0 , the peak of ρ(k ) is made to sit at k0. Indeed, in the weak coupling limit

j0 � 1, only the modes which are almost resonant with the local energy h0 of the external

qubits are engaged in the dynamics. When j0 increases more modes are involved and the

optimal coupling j opt
0 is then numerically determined1 so as to fulfill Eq. (4.14).

The dispersion relation strongly depends on the parameters of the bus Hamiltonian, γ

and h: in particular, the region of linear dispersion sensibly shrinks as the anisotropy γ in-

creases, which might make the bus to be useless; however, the linear region can be extended

again by increasing the field h: therefore, one can act on the latter parameter so as to fulfil

the conditions for optimal dynamics. For example, in the extreme case of the Ising chain

(γ=1) for h=0 the dispersion relation becomes flat and does not allow for propagation;

however, a wide linear region can yet be obtained by applying a finite h on Γ.

1 Indeed, in the XY case the analytical expression for the density of excitations is unavailable, with the

exception of the Ising (γ= 1) case which will be analysed in the following, and we can only rely on the simpler

condition (4.14), without the analysis of the shifts (5.18).
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Figure 6.2 – Concurrence vs j0 and h0 for γ=0.5 and h=0.54. The chain length is N =50.

6.1 Optimal transfer

In the XX case without applied magnetic field we have seen that the inflection point k0=π/2

corresponds to ωk0=0. There is no need for an applied magnetic field because ρ(k ) is al-

ready peaked around this minimum energy, which is notably also the energy at the center of

the linear zone. The width ofρ(k ) only depends on the coupling j0 and reads∆= j 2
0 /(2− j 2

0 ).

Therefore, Eq. (4.14) ensures the existence of an optimal coupling j opt
0 which, at leading or-

der, is j opt
0 ∝N− 1

6 . More detailed arguments are given in Chapter 5.

In the XY case the analytical expressions are more complicated and the optimal param-

eters are found numerically. Here we consider the transmission of entanglement, following

the scheme of Fig. 5.1: the state of qubit A, which at t = 0 is maximally entangled with C,

propagates through the bus when j0 is switched on; if the information were transmitted ex-

actly, at some arrival time t ∗ the qubit B should be maximally entangled with C. Therefore,

the natural estimator of the quality of entanglement transmission is the maximum (reached

at t ∗) of the transmitted concurrence C(t ), as given by (3.22).

The dispersion relation of the XY model (6.4) is gapped, makingωk0 6= 0. Hence, at vari-

ance with the XX case, we have to switch on a local magnetic field h0'ωk0 , in order to in-

crease the average energy of the initial state and make ρ(k ) peaked around the linear zone.

In Fig. 6.2 we plot C(t ∗) for different j0 and h0, in the X Y model with γ=0.5 and h=0.54. It

is clear that for fixed j0 the best transmission is achieved when h0 ' ωk0 ' 0.89. With de-

creasing j0, the distribution ρ(k ) shrinks in width and the range of the optimal h0 extends

over the whole linear dispersion zone. On the other hand, decreasing j0 causes the packet

to become delocalized along the chain and the result is that there exists an optimal interme-
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C

t

Figure 6.3 – (b) Time evolution of the concurrence for different data-bus lengths; γ=0.5,

h=0.54, h0=0.85, and j0=0.49, 0.39, 0.34 for N =50, 250, 500, respectively.

diate value, j0 = 0.49, in agreement with Eq. (4.14), for obtaining an almost dispersionless

transmission.

Very good transmission is obtained also for considerably large N , as show in Fig. 6.3.

6.1.1 Ising case

The region of linear dispersion shrinks for increasing anisotropy γ, while in the Ising limit

(γ=1) with h=0 one has ωk =1, which does not allow for propagation. This explains the

observation [113] that in such limit no entanglement propagation takes place: indeed, a

vanishing group velocity means that nothing can be transmitted over the chain. However,

applying a finite h on Γ fixes the problem by inducing a finite group velocity.

The Ising model with open ends is diagonalized as explained in Section (C.1.2), and the

density of excitations (C.26) is obtained. In particular, we found that ρ(k ) is peaked around

(C.28)

ω̄=

È

2h2
0+(1−h2)j 2

0

2− j 2
0

,

and the width of this peak is given by (C.23)

∆=
h j 2

0
p

h2(2− j 2
0 )

2− (h2
0+ j 2

0 −1−h2)2
.

For making the optimal dynamics to emerge, the peak must be in the linear zone of the

dispersion relation Eq. (6.4) with γ = 1, i.e., ω̄ =
p

|1−h2|. This condition is satisfied by

setting

h0 =







p

(1− j 2
0 )(1−h2) for |h | ≤ 1 ,

p

h2−1 for |h | ≥ 1 ,
(6.5)
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Figure 6.4 – Concurrence (top), dispersion relation and density of excitations (bottom) for the

case of the Ising chain (γ=1) for different fields h = 0.1, 0.2, 0.4, 1.2. The corresponding

optimized endpoint interactions are h0 = 0.94, 0.93, 0.82, 0.82 and j0 = 0.39, 0.43, 0.48,

0.48. The chain length is N =50.

and the corresponding width is

∆=
max{|h |, 1}
p

|1−h2|

j 2
0

2− j 2
0

, (6.6)

while ∆ diverges at the critical value h = 1. However, as Eq. (6.5) for h = 1 forces h0 =

0, and accordingly (C.29) imposes Ok ,N+1 = 0, the above analysis, based on (6.3), does not

hold at h = 1. Indeed when Ok ,N+1 = 0 it follows that UN+1,0(t ) = VN+1,0(t ), and according to

(3.22) and (3.19) the corresponding transmission is very bad. Notice that the width ∆ has

a prefactor, as compared with the XX case, which is greater than 1. The optimal j0 is then

expected to be smaller than the XX counterpart.

In Fig. 6.4 we analyze the entanglement transmission in an Ising chain for various h,

with the optimal value for the parameters j0 and h0. Raising h the linear zone gets larger in

energy, and, furthermore, the group velocity increases, making the transmission faster and

better.

6.2 Concluding remarks

We have devised a procedure for achieving high-quality entanglement transmission be-

tween distant qubits. The procedure relies on tuning the qubit interaction and the coupling
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with a homogeneous quantum data-bus in order to induce a coherent ballistic dynamics.

There is no need for a specific design neither of the bus, nor of its initial state. Our approach

is then tested with the spin- 1
2

X Y model and extremely good entanglement transfer is ob-

tained. Due to the induced ballistic dynamics, the transfer time scale is considerably shorter

than in previous works [116, 97, 117, 107, 118] and essentially depends only on the group ve-

locity of the elementary excitations, which can be increased by varying the parameters of

the data-bus. Moreover, the quality of the state and entanglement transfer that we obtain

only weakly deteriorates as the length of the bus increases.
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7
Entangling gates between distant qubits

Universal quantum computation can be achieved by arbitrary local operations on single

qubit and one two-qubit entangling gate [119]. While single qubit operations are easily

achieved by local actions, the story is very different for the two qubit gate. In an array of

spins an entangling gate between neighboring qubits can be accomplished by letting them

interact. However, for non-neighboring qubits, a direct interaction is normally not possi-

ble, especially without disturbing the intervening qubits, unless there is a separate common

bus mode [120] or flying qubits. In realizations without an additional bus mode, such as

with cold atoms in optical lattices, one cannot choose an arbitrary pair of atomic qubits

for a gate operation and usually gates parallely occur between all neighboring pairs [121].

Thus, designing bus modes for logic gates between arbitrary and distant pairs of qubits is

of utmost importance in any physical realizations and various unconventional examples of

buses are continuously being proposed [122, 123, 67]. One possible realization is to have

both the qubits and the bus composed of the same physical objects, generally called spin

chains. The quality of an unmodulated spin chain, even as a data-bus, is affected by dis-

persion [112, 113]. Thus, in order to have a quantum gate between two qubits through such

buses [124, 125, 126, 67], delocalized encodings over several spins [90], delicately engineered

couplings [85] or very weak couplings between qubits and the bus [67] is thought to be nec-

essary. Here we exploit the high quality state transmission assured by the coherent ballistic

dynamics described in the previous chapters for achieving an entangling quantum gate be-

tween arbitrarily distant qubits. This is a very general mechanism and potentially applicable

to a variety of physical systems. In this chapter we will consider also its applicability to one

specific setup.

Cold atoms in optical lattices are now an established field for testing many-body physics

[54, 55, 56, 57, 58, 59]. In particular, chains of atoms in Mott insulator regime (one atom

per site) are being built experimentally [57, 58, 59], paving the way for realizing spin Hamil-

tonians [60]. With recent progress in cooling methods, the required temperatures for ob-

serving correlated magnetic quantum phases has become experimentally reachable [64]. In

this framework, series of multiple two-qubit gates, acting globally and simultaneously, have
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been proposed [127] and then realized [56]. Could the same framework solve the problem of

realizing quantum gates between any two selected neutral atom qubits? This is still an out-

standing problem, unless one uses the physical movements of neutral atoms to each other’s

proximity [128, 129]. While such movements may still have the ability to create a scalable

neutral atomic quantum computer [130], alternative methodologies, without the complex-

ity of mechanical processes, are worth pursuing for long range scalable gates, for the sake of

simplicity.

Recently, single site addressing in an optical lattice setup has been experimentally achieved

[58, 59]. Furthermore, local traps have been proposed for individual atoms using Near Field

Fresnel Diffraction (NFFD) light [131]. A new approach for scalable quantum computa-

tion has been suggested [132] through a combination of local NFFD traps, for qubits, and

an empty optical lattice, for mediating interaction between them. Since the interaction is

achieved through controlled collisions between delocalized atoms it may suffer a high de-

coherence when qubits, on which the gate is applied, are far apart [56].

In this chapter we describe our scalable, non-perturbative (i.e. not relying on weak cou-

plings) dynamical scheme [108] for achieving high-quality entangling gates between two ar-

bitrarily distant qubits, suitable for subsequent uses without resetting. Unlike previous pro-

posals, we do not demand encoding, engineering or weak couplings: we only need switch-

able couplings between qubits and the bus. We have also proposed an application, based

on a combination of NFFD traps and optical lattices, which is robust against possible im-

perfections.

7.1 Introducing the model

Let us describe our bus as a chain of spin 1/2 particles interacting through

HΓ = J
N−1
∑

n=1

�

σx
nσ

x
n+1+σ

y
nσ

y
n+1+λσ

z
nσ

z
n+1

�

, (7.1)

where σαn (α= x , y , z ) are Pauli operators acting on site n , J is the exchange energy and λ is

the anisotropy. The qubits A and B , on which the gate acts, sit at the opposite sides of the

bus, labeled by site 0 and N +1 respectively. The interaction between the bus and the qubits

is

HI = j0

∑

n=0,N

�

σx
nσ

x
n+1+σ

y
nσ

y
n+1+λσ

z
nσ

z
n+1

�

, (7.2)

where the coupling j0 can be switched on/off. For the moment the anisotropy λ is set to

zero. Initially the qubits are prepared in the states |ψA〉 and |ψB 〉 and decoupled from the

bus which is in the state |ψΓ〉, an eigenstate of HΓ, for instance the ground state. Since HΓ

commutes with the parity operator
∏N

n=1(−σz
n ), the state |ψΓ〉 has a definite parity (−1)p , for

some integer p . At time t = 0 the coupling j0 is switched on and the whole system evolves
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under the effect of the total Hamiltonian H = HΓ +HI , i.e. |Ψ(t )〉 = e−i Ht |ψA〉|ψΓ〉|ψB 〉. In

chapter 5 it was shown that by properly tuning j0 to an optimal non-perturbative value

j opt
0 ' 1.03J N−1/6 one can make the linear part of the dispersion relation to rule the dynam-

ics, thus almost satisfying the mirror-inversion condition [124] and resulting in a fast high-

quality transmission. In fact, when |ψB 〉 is initialized in either |0〉 ≡ |↑〉 or |1〉 ≡ |↓〉 an arbitrary

quantum state of A is transmitted almost perfectly to B after time t ∗ ' (0.25N +0.52N 1/3)/J .

When j0 = j opt
0 the dynamical amplitude u (t ) = |U0,N+1(t )| satisfies u (t ∗)' 1, and thus we set

U0,N+1(t ∗) = e iαN .

In any transmission problem there always might be an overall phase which is irrelevant

to the quality of transmission. However, exploiting this phase is the heart of our proposal

[108] for obtaining an entangling two-qubit gate between A and B . We define |Ψab 〉= |Ψ(0)〉
with |ψA〉= |a 〉 and |ψB 〉= |b 〉 where a ,b ∈ {0, 1}. When j0 is switched on the whole system

evolves and at t = t ∗ the states of A and B are swapped (see Fig. 5.6), while the bus takes its

initial state |ψΓ〉, as a result of the mirror inverting dynamics. Therefore, an almost perfect

transmission is achieved with an overall phase φab , namely e−i Ht ∗ |Ψab 〉 ≈ e iφab |Ψb a 〉. The

explicit form of φab follows from the dynamics depicted above with the freedom of setting

φ00 = 0. For instance to getφ10 we have

e−i Ht ∗ |Ψ10〉=e−i Ht ∗c0 |Ψ00〉 ' U0,N+1(−t ∗) cN+1 |Ψ00〉=

=(−1)p+1e−iαN |Ψ01〉 ≡ e iφ10 |Ψ01〉. (7.3)

This definesφ10 = (p+1)π−αN whileφ01 =φ10 due to the symmetry of the system. With sim-

ilar argument we get φ11 = π− 2αN . Therefore, the ideal mirror-inverting dynamics defines

a quantum gate G between A and B , which reads G |ab 〉 = e iφab |b a 〉 in the computational

basis. Irrespective of the value of αN when the pair A, B is initially in the state of |++〉, where

|+〉 = (|0〉+ |1〉)/
p

2, the application of the gate G results in a maximally entangled state be-

tween A and B . Furthermore, the phase αN is found to be equal to π
2
(N +1).

Since the dynamics is not perfectly dispersionless, |U0,N+1(t ∗)| is not exactly 1, meaning

that there is some entanglement between the bus and the qubits which prevents the gate G

from being a perfect unitary operation. In fact, the dynamics of the qubits is generally de-

scribed by a completely positive map: ρA B (t ) = Et
�

ρA B (0)
�

. To quantify the quality of the gate

we calculate average gate fidelityFG (t ) =
∫

dψ 〈ψ|G †Et
�

|ψ〉〈ψ|
�

G |ψ〉 where the integration

is over all possible two-qubit pure states. Using (2.9) for d = 4 we get

FG (t ) =
1

5
+

1

5
〈Φ+|1⊗G †Êt1⊗G |Φ+〉 (7.4)

where |Φ+〉 is defined in (2.4) and Êt is the Choi matrix (1.23) associated to the dynamical

map Et , which is numerically evaluated using the techniques described in section C.4.

In Fig. 7.1(a) we plot the time evolution of the average gate fidelity for a bus of length

N = 100 initially in its ground state: FG (t ) displays a marked peak at t = t ∗. The value at the
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Figure 7.1 – (Color online) (a) Evolution of the average gate fidelity for a chain of N = 100 and

j0 = 0.5J . (b)FG (t ∗) as a function of N . Insets show the optimal time versus N .

L R R+1L-1

Figure 7.2 – (Color online) (a) Local NFFD trap with two optical fibers, one for trapping (solid

blue) and one for unitary single qubit operations (dashed green). (b) Schematic interaction

between qubits (local traps) and the ending sites of the bus (optical lattice). (c) Adiabatic

cutting of the bus into three parts.
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k 1 2 3 4 5 6 7 8

FG (k t ∗) 0.984 0.961 0.939 0.918 0.898 0.879 0.861 0.844

FΓ(k t ∗) 0.966 0.926 0.884 0.840 0.795 0.748 0.701 0.654

Table 7.1 –FG (k t ∗) and FΓ(k t ∗) for up to 8 subsequent uses of the bus of length N = 8 without

resetting.

peak is plotted as a function of N in Fig. 7.1(b) where we remarkably see thatFG (t ∗) exceed

0.9 even for chains up to N = 100 and decays very slowly with N . Moreover, as shown in the

inset of Fig. 7.1(b) and unlike the perturbative schemes proposed in [97, 67] our dynamics is

fast.

Our dynamical gate works properly for arbitrary initial states of the bus with fixed par-

ity. Ideally after each gate application the parity of the bus remains unchanged making it

perfect for reusing without resetting. However, initialization in an eigenstate of HΓ, besides

automatically fixing the parity, has the advantage of simplicity for preparation and robust-

ness against disturbance. Let us initially set the bus in its ground state and define FΓ(t ) as

the fidelity between the ground state of HΓ and the density matrix of the bus at time t . To

see how the quality of the gate operation is affected by k subsequent uses of the bus, we

computeFG (k t ∗) and FΓ(k t ∗)which are shown in TABLE I for k = 1, . . . , 8 subsequent uses.

7.2 Application

We now propose an application of the above gate mechanism for a scalable neutral atom

quantum computer with qubits held in static traps. We consider a network of qubits each

encoded in two degenerate hyperfine levels of a neutral atom, cooled and localized in a sep-

arate NFFD trap [131]. In Fig. 7.2(a) we show a single atom confined in a NFFD trap. The

position of the minimum of the trapping potential is controlled by varying the aperture ra-

dius [131] through micro electro mechanical system technology, as proposed in [132]. Local

unitary operation on each qubit may be applied through an extra fiber, along with the NFFD

trapping fiber [132], as show in Fig. 7.2(a). The qubits in the network are connected by a bus

realized by cold atoms in an optical lattice, prepared in the Mott insulator regime [57, 58, 59].

The polarization and intensity of lasers are tuned so that one ends up [60]with the effective

Hamiltonian of Eq. (7.1). For the moment we assume that the distance between the two

qubits, on which we want to apply the gate, is equal to the length of the lattice such that the

two qubits interact with the atoms at the ending sites of the lattice, as shown in Fig. 7.2(b).

To switch on the interaction HI between the qubits and the bus we have to move the mini-

mum of NFFD trapping potential slightly higher such that the qubits move upwards and sit

at a certain distance from the ends of the lattice. By controlling such distance one can tune
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the interaction coupling to be j opt
0 . In order to simultaneously obtain interactions effectively

described by HΓ and HI we have to use the same spin dependent trapping laser beams in

both NFFD traps and optical lattice.

Now we consider a more general situation in which the optical lattice size is larger than

the distance between the two qubits on which we want to apply the gate (see Fig. 7.2(c)). In

this case if we simply switch on the interaction between qubits and two intermediate sites

(L, R) of the optical lattice, shown in Fig. 7.2(c), the two external parts of the lattice play the

role of environment and deteriorate the quality of the gate. To preserve the high quality of

our scheme we need to cut the lattice into three parts and separate the bus, extended from L

to R , from the rest of the optical lattice. This can be done by adiabatically shining a localized

laser beam on the atoms sitting on sites L−1 and R+1 to drive them off resonance, as shown

in Fig. 7.2(c). In this case driving the atom effectively generates a Stark shift between the two

degenerate ground state through a highly detuned classical laser beam with strength Ω and

detuning ∆ � Ω. This provides an energy shift δE = Ω2/∆ between the two degenerate

ground states, which can be treated as a local magnetic field in the z direction on sites L−1

and R + 1. Keeping Ω/∆ small one can control the strength Ω and detuning ∆ such that δE

becomes larger than J . When δE � J the bus is separated from the external parts of the

optical lattice. Moreover, as δE adiabatically increases, the bus moves into its ground state,

meanwhile splitting up from the rest. Despite the gapless nature of Hamiltonian (7.1) there

is always a gap ∝ J /N due to the finite size of the bus which guarantee the success of the

adiabatic evolution. In Fig. 7.3(a) we plot FΓ(t ) over the course of adiabatic cutting when

the whole lattice is initially in its ground state. In this adiabatic evolution δE is linearly

increased from 0 to 30J over the time interval of 100/J . Once the bus has been prepared

in its ground state the gate operation can be accomplished as discussed above. After the

operation of the gate one may want to glue the previously split optical lattice and bring

it back into its ground state. This can be done easily by adiabatically switching off δE as

shown in Fig. 7.3(a) where the fidelity of the state of the whole optical lattice with its ground

state is plotted.

7.2.1 Time scale

We now pause to give an estimation of t ∗ in the worst scenario in which N is of the or-

der of whole lattice size (' 100), although most gates are much faster due to smaller qubit

separations. The typical value for J in optical lattice realization is few hundred Hertz (e.g.

J = 360 h Hz in [133]). From the inset of Fig. 7.1(b) we get J t ∗ ' 30 for N = 100 and thus t ∗ '
13 ms which is well below the typical decoherence time of the hyperfine levels (' 10 minutes

[134]). Though, this is slower than other mechanisms for atomic gates [128, 129] our pro-

posal offers an alternative paradigm without involving physical movement. Note that for

static qubits separated by N sites a time O (N /J ) is the best possible in any physical realiza-
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Figure 7.3 – (Color online) (a) Evolution of FΓ(t ) under the adiabatic cutting (solid red). Evolu-

tion of the fidelity between the ground state of the whole optical lattice with the state of the

split one under the adiabatic gluing (dashed blue). δE/J is linearly varied between 0 and

30 over the time 100/J . (b)FG (t ∗) vs. switching time τ over which j0 is linearly switched on

from 0 to j opt
0 . (c)FG (t ∗) vs. δE/J after adiabatic cutting of the optical lattice. (d)FG (t ∗)

as a function of anisotropy λ. The length of the bus is set to N = 16.

tion, e.g. Josephson junction arrays with stronger J .

7.2.2 Imperfections

Cold atom systems are usually clean and almost decoherence free; however, in the above

proposed setup there might be some sources of destructive effects which may deteriorate

the quality of our scheme. In particular, we consider: (i) gradual switching of j0; (ii) imper-

fect cutting of the chain when δE is not large enough; (iii) existence of interaction terms

in the Hamiltonian which alter its non-interacting free-fermionic nature. In Fig. 7.3(b) we

showFG (t ∗) when j0 is gradually switched on from 0 to j opt
0 according to j0(t ) = j opt

0 t /τ, as

a function of switching time τ. It is indeed of general relevance that a plateau over which

FG (t ∗) remains constant is observed, even for τ as long as 1/j0. In Fig. 7.3(c) we plotFG (t ∗)
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as a function of the energy splitting δE on which the cutting process is based. As it is clear

from Fig. 7.3(c), when δE > 10J the bus is well isolated from the external parts, which guar-

antees the high quality of the gate. We have also studied the effect of the anisotropy λ, pos-

sibly entering HΓ and HI , due to imperfect tuning of laser parameters [60]. In Fig. 7.3(d) we

plot FG (t ∗) as a function of λ and observe weak deterioration of the gate quality as far as

|λ|< 0.2.

7.3 Concluding remarks

In [108], we have proposed a scalable scheme for realizing a two-qubit entangling gate be-

tween arbitrary distant qubits. In our proposal, qubits are made of localized objects which

makes single qubit gates affordable. The qubits interact dynamically via an extended un-

modulated bus which does not need being specifically engineered and, besides embodying

a quantum channel, actively serves to operate the entangling gate. Moreover, thanks to the

non-perturbative interaction between the qubits and the bus our dynamics is fast, which

minimizes destructive decoherence effects. Provided the coupling between the qubits and

the bus is properly tuned, the dynamical evolution of the whole system is essentially disper-

sionless, thus allowing several subsequent uses of the bus without resetting. Surprisingly, a

sudden switching of the coupling is not necessary and our fast dynamical gate mechanism

is not altered by a possibly gradual switching: this is of absolute relevance, not only from

practical viewpoints but also in a theoretical perspective. Our proposal is general and can

be implemented in various physical realizations. Specifically we have proposed an appli-

cation based on neutral atom qubits in an array of separated NFFD traps connected by an

optical lattice spin chain data bus, which are both accessible to the current technology.
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Prospects

In this thesis we have theoretically studied the quantum information transmission and ex-

change between distant parts. Our research has prompted several questions which could

be the topic of future examinations. Amongst these, the possible implementation of our

scheme using nowadays technology is of particular relevance. Indeed, no experiments have

been performed so far on using a spin chain as a quantum data-bus, although this is an

active theoretical subject, well motivated from a technological point of view, and there are

many experimental candidates for both general purpose quantum computation and quan-

tum information processing [135].

Our scheme has been guided all along by the quest for experimental simplicity, but there

are some theoretical simplifications that must be considered in looking for an implementa-

tion of the coherent ballistic quantum information transport. The problems that may arise

have common factors, which lead to general questions, and specific ones, depending on the

particular experimental setup.

Some general problems which can arise irrespective of the specific setup have been in-

vestigated in Chapter 7, as the gradual (non-sudden) switching of the coupling between the

qubits and the bus, or the role of spurious interactions. In future works other deviations

from the ideal case analysed in this thesis will be tackled, notably the role of imperfections,

noise and temperature in the quantum transmission capabilities of spin chains. Static im-

perfections in the couplings between nearest neighbours have been studied in [89], where

it is shown that our approach described in Chapter 5, requiring only the ability of control-

ling the boundaries, is more robust than those requiring the full engineering of the coupling

strengths. In Chapter 7 we have also shown that small imperfections in the Hamiltonian

do not affect much the dynamics. On the other hand, an exhaustive study of the effects of

temperature and system-environment interaction is still missing, even if it is expected that

both have negative consequences on the transmission quality [113]. As for the effect of tem-

perature, all the necessary formalism for handling thermal initial states have already been

developed (see Appendix B) and we can predict some possible results. For instance, it is

clear from (3.15), (5.4), and (5.5) that the dynamics of the magnetization along the z direc-

tion is not substantially altered by the temperature, while all the quantities depending on

the parity of the initial state do: the average parity of a thermal state (B.20), instead of being

an unimportant phase, goes to zero for increasing temperature. Accordingly, a temperature

threshold arises, depending on the gap of the Hamiltonian, above which the transmission

quality is suppressed [96], though no significant alterations are expected in the dynamics

of the z component magnetization. Finally, the study of the possible dynamical interaction

with a thermal environment is much more complicated, as the theory needs to be highly ex-

panded; nevertheless in some specific cases the dissipative evolution can be handled using

the theory described in [136] or numerically for very small systems.
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In addition to the problems described above, whose strength depends on the particular

setup, there could be also other specific ones. As a matter of fact, in order to use many-

body dynamics for transferring quantum information it is required a long coherence time

and the ability of performing single-site addressing and time-dependent measurements. An

imperfect implementation of these requisites could introduce further error sources. Under-

standing whether a current established experimental apparatus can be used as a coherent

ballistic quantum data-bus is complicated, as we have to fathom if the various requisites

might be somehow achieved in the near future.

Cold atom experiments are now established quantum simulators: they can effectively

implement a spin chain and seem the most convenient for testing the predictions of this

thesis. They have long coherence times, operating practically at zero temperature and with-

out decoherence. For this reason, in [108] and chapter 7 we have put forward a promising

possible experimental realization using cold atoms trapped in optical lattices and near field

Fresnel trapping potentials, each of which is accessible to current technology. However,

there are still no experiments mixing this two trapping techniques, and we are looking for

other possibilities.

Nuclear magnetic resonance experiments are now another promising candidate for quan-

tum information transport [137, 138, 139, 140]. However, their highly mixed (high-temperature)

initial state prevents the possibility of using such a setup for transferring superposition of

quantum states, using our theoretical scheme. Nevertheless our results might be observed

in current NMR experiments, as we strongly believe that the coherent dynamics of the z

component magnetization survives also for highly mixed initial states. Coherent dynamics

of the z component magnetization means that the two classical values |0〉 and |1〉 of the qubit

are faithfully transported, irrespective of what happens to their superposition, making the

spin-wire still useful for classical information transfer. Classical transmission over quantum

systems is motivated by the current growing interest in finding alternatives to conventional

electronics for transmitting signals. To this aim, several proposals are being put forward,

ranging from spintronics [141, 142] to quite visionary ones. The leading thread connecting

most of these proposals is the need of taking into consideration the quantum character of

the dynamical processes underlying the information manipulation, no matter whether the

information is classical or quantum. The application of the tools developed for the coher-

ent ballistic dynamics over quantum spin chains to the investigation of classical informa-

tion transmission along spin wires may thus represent a natural fruitful development of our

studies.
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A
Some mathematical results

A.1 The Weyl-Schur duality

The Weyl-Schur duality is an important, though simple, result of representation theory for

the n-fold tensor product of the Hilbert spaceH = Cd , that is the space
�

Cd
�⊗n . Consider

indeed an n-fold tensor product of rays inH : |ψ1〉⊗ · · · ⊗ |ψn 〉. We can let the permutation

group Sn act on this space by permuting the factors:

Pπ : |ψ1〉⊗ · · ·⊗ |ψn 〉 −→ |ψπ−1(1)〉⊗ · · ·⊗ |ψπ−1(n )〉.

This is a representation of Sn in which the permutation π is represented by an index permu-

tation matrix : for any |ψ(n )〉 ∈H ⊗n expressed in some suitable basis |ψ(n )〉=
∑

{i k }ψ
(n )
i 1,i 2,··· ,i n

|i 1i 2 · · · i n 〉

ψ(n )i 1,i 2,··· ,i n
−→ ψ(n )π(i 1),π(i 2),··· ,π(i n )

.

The space of rank-n tensors can serve also as a representation space of the unitary group.

Let U be an element of SU(d ). This unitary matrix induces in the tensor product space the

transformation

|ψ(n )〉 −→ U⊗n |ψ(n )〉.

The duality [143, 144, 145] stems from the fact that the two above representations turn

out to be commuting with each other. Every operator on H ⊗n that commutes with U⊗n ,

for all U ∈ SU(d ), is a linear combination of index permutation operators Pπ. Conversely,

any operator commuting with the index permutation operators Pπ, for all π ∈ Sn , is a linear

combination of tensor powers U⊗n .

A.1.1 The twirling superoperator

The twirling superoperator is defined by

Tn (A) =

∫

dU U⊗n A
�

U †
�⊗n

, (A.1)
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where A is an operator in H ⊗n and dU is the Haar measure over the unitary group, i.e.,

it satisfies dU = dUV = d V U for each unitary matrix V , and it is normalized such that
∫

dU = 1. The twirling superoperator is an important tool in quantum information as it

appears in tons of proofs. Since

V ⊗n Tn (A)
�

V †
�⊗n
=

∫

dU (V U )⊗n A
�

U †V †
�⊗n
=

∫

d (V †U ) (U )⊗n A
�

U †
�⊗n

=

∫

dU (U )⊗n A
�

U †
�⊗n
=Tn (A),

the twirling operator commutes with each U⊗n and, accordingly, from the Weyl-Schur du-

ality it is a linear combination of index permuting operators Tn (A) =
∑

πbπ Pπ. Multiplying

the two sides by Pσ, and taking the trace it holds that

aσ = Tr [PσTn (A)] = Tr [PσA] =
∑

π

bπ Tr [PσPπ] ,

i.e., a linear system of equations
∑

πMσπbπ = aσ arises, where Mσπ = Tr [PσPπ]. Even if

the matrix M is singular we can define M−1 as the Moore-Penrose pseudo-inverse1, which is

nothing but the standard inverse when M is invertible, and accordingly [147]

Tn (A) =

∫

dU U⊗n A
�

U †
�⊗n
=
∑

π,σ

�

M−1
�

πσ
Tr [PσA] Pπ. (A.2)

Case n = 2

When n = 2 there are only two index permuting operators: the identity operator P0 = 1⊗1
and the swap operator P1 =S such that S|i j 〉= |j i 〉. Since Tr P0 = d 2 and TrS =

∑

i j δi j = d

M =

 

d 2 d

d d 2

!

, =⇒ M−1 =
1

d (d 2−1)

 

d −1

−1 d

!

,

and thus

T2(A) =
d Tr A −Tr [SA]

d (d 2−1)
1⊗1+

d Tr [SA]−Tr A

d (d 2−1)
S. (A.3)

A.2 Theorems on tridiagonal matrices

Here we will consider some theorems which simplify considerably the analytic diagonaliza-

tion of tridiagonal matrices. In a tridiagonal symmetric matrix T the only non-vanishing

1The Moore-Penrose pseudo-inverse [146] of a matrix M can be computed from the singular value decom-

position (SVD). Indeed, let M =U D V † be the SVD of M . Then M−1 = V D−1 U † where the pseudo-inverse of

the diagonal matrix D is obtained by taking the reciprocal of each non-zero element on the diagonal, leaving

the zeros in place, and transposing the resulting matrix.
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terms are Ti ,i = a i and Ti ,i+1 = b i = Ti+1,i , where the indices range from 1 to n , being T a

n ×n matrix. It is useful to introduce the following notation for the submatrices of T

Tµ:ν =

























aµ bµ

bµ aµ+1 bµ+1

bµ+1
... ...
... ...

a ν−1 bν−1

bν−1 a ν

























, (A.4)

such that T ≡ T1:n .

Let χµ:ν (λ) = det
�

λ1µ:ν −Tµ:ν

�

be the characteristic polynomial of the reduced tridiago-

nal matrix Tµ:ν . This polynomial satisfies the recurrence relations

χµ:ν+1(λ) = (λ−a ν+1)χµ:ν (λ)−b 2
ν χµ:ν−1(λ), (A.5a)

χµ−1:ν (λ) = (λ−aµ−1)χµ:ν (λ)−b 2
µ−1 χµ+1:ν (λ), (A.5b)

which can be derived straightforwardly.

We prove now one of the most important theorems regarding tridiagonal matrices which

permits to derive analytically the eigenvectors of T from the characteristic polynomial [88]:

Paige’s theorem. Let T =O†ΛO be the spectral decomposition of the tridiagonal matrix T ,

where Λ= diag({λk }) and Ok i =O (k )i , being O (k ) the eigenvector of T with eigenvalue λk . Then

χ ′(λk )O
(k )
i O (k )j =χ1:i−1(λk )b i · · ·b j−1 χj+1:n (λk ). (A.6)

In particular,

O (k )1 O (k )n χ ′(λk ) =
n−1
∏

i=1

b i , (A.7a)

�

O (k )1

�2
χ ′(λk ) =χ2:n (λk ), (A.7b)

�

O (k )n

�2
χ ′(λk ) =χ1:n−1(λk ). (A.7c)

Proof. The proof is based on a simple property of the adjugate matrix. The adjugate matrix

is defined as the matrix of cofactors, i.e. (−1)i+j (adj T )i j is the determinant of the matrix that

results from deleting row j and column i of T . The importance of the adjugate stems from

the Cauchy-Binet formula T ·adj T = det T ·1. Accordingly, beingλ1−T invertible forλ 6=λk ,

adj(λ−T ) = det(λ−T )(λ−T )−1 =O† χ(λ)
λ−Λ

O =O† diag{δk (λ)}O ,
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where δk (λ) = χ(λ)/(λ− λk ) =
∏

j 6=k (λ− λj ). Taking the limit λ → λk on both sides and

evaluating the (i , j ) element of the matrix it holds that

�

adj(λk −T )
�

i j =χ
′(λk )O

(k )
i O (k )j .

The above equation is very general and holds for every diagonalizable matrix. Eq. (A.6)

comes out by explicitly calculating
�

adj(λk −T )
�

i j for the tridiagonal matrix (A.4).
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B
Quadratic Hamiltonians for Fermions

In this chapter we study the out-of-equilibrium dynamics of Hamiltonians that can be writ-

ten as a quadratic form Fermi operators

H =
n
∑

i ,j=1

�

A i j a †
i a j +

1

2

�

Bi j a †
i a †

j + B ∗i j a j a i

�

�

, (B.1)

where a †
i and a j are fermion creation and annihilation operators obeying the anti-commutation

relations

{a i , a †
j }=δi j , {a i , a j }= 0, {a †

i , a †
j }= 0. (B.2)

Although this method can be generalized to non-Hermitian matrices, as those occurring in

open quantum systems [148, 149, 136, 150], we restrict ourselves to the unitary evolution of

the system where the Hamiltonian is Hermitian. Accordingly,

A = A†, B T =−B. (B.3)

In the following section we consider the diagonalization of the Hamiltonian (B.1) by means

of a canonical transformation, and then we study the time evolution of physical observables.

B.1 Canonical transformation

Canonical (Bogoliubov) transformations [151] are transformations of the creation and an-

nihilation operators which preserve the commutation relations (B.2). In order to describe

them let us introduce the following notation

α=

 

a

a †

!

, αi = a i , αn+i = a †
i , i = 1, . . . , n . (B.4)

In this notation, the anti-commutation relations (B.2) take the compact form

{α,α†}=12n . (B.5)
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Let us now define a new set of creation and annihilation operators

b = Pa +Qa † , b i =
∑

j

Pi j a j +Q i j a †
j , (B.6)

which can also be written in the form

β =Mα , M =

 

P Q

Q∗ P∗

!

, β =

 

b

b †

!

. (B.7)

The transformation (B.7) preserves the anti-commutation relations (B.5) if M M † = 12n . It

follows that it is invertible; if also M−1 preserves the commutation relations, then it holds

that M−1 (M−1)† =12n and thus M † M =12n . A general invertible Bogoliubov transformation

is therefore given by (B.6) and (B.7) with a unitary matrix M . Accordingly, the matrices P and

Q satisfy

P P†+Q Q† =1, P† P +QT Q∗ =1, (B.8a)

P QT +Q PT =O, P†Q +QT P∗ =O. (B.8b)

An important result for the characterization of the Bogoliubov transformations is the

following theorem [152]:

Bloch-Messiah-Zumino’s Theorem. Every unitary matrix M of the form (B.7) can always be

decomposed into the form

M =

 

P Q

Q∗ P∗

!

=

 

U 0

0 U ∗

!  

P̄ Q̄

Q̄ P̄

!  

V † 0

0 V T

!

, (B.9)
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where

P̄ =

















































1
...

1

p1

p1

...

pn

pn

0
...

0

















































,

Q̄ =

















































0
...

0

0 q1

−q1 0
...

0 qn

−qn 0

1
...

1

















































,

and

p 2
k +q 2

k = 1.

Proof. The proof is based on this two properties: (i) a Hermitian matrix H can be diagonal-

ized by a unitary transformation U such that H̄ =U † H U is diagonal with real eigenvalues

hk ; (ii) a skew-symmetric matrix S can be brought into a canonical form by a (generally dif-

ferent) unitary matrix U such that S̄ =U † S U ∗ is decomposed into 2× 2 blocks of the form
 

0 sk

−sk 0

!

with real numbers sk along the diagonal line. In the next step we show that if

we have the relation

HS =SH ∗, (B.10)

then we can find a matrix U which diagonalizes H and brings S into the canonical form. For

this purpose we first diagonalize H and from (B.10) obtain in this basis (h i −h j )Si j = 0, that

is Si j = 0 if h i 6= h j . We can thus restrict to subspaces of degenerate eigenvalues h i . In these

105



APPENDIX B. QUADRATIC HAMILTONIANS FOR FERMIONS

subspaces H is proportional to unity. We can therefore bring S into canonical form in each

subspace without changing the diagonal character of H .

Let P = U P̄ V † be the singular value decomposition of P . Then, thanks to (B.8), the

matrices H =QT Q∗ =V (1− P̄2)V † and S =QT P∗ =−ST satisfy (B.10). Indeed

HS−SH ∗ =HS+ST H ∗ =QT Q∗QT P∗+P†Q Q†Q = (1−P† P)QT P∗+P† (1−P P†)Q

=−P† P(QT P∗+P†Q) = 0.

We can chose V such that V † S V ∗ = V †QT U ∗ P̄ is in the normal form, i.e. Q̄ =U †Q V ∗ is in

the normal form and accordingly Q =U Q̄ V T .

The proof ends by noting that Q is unitary in the subspace where the eigenvalues of P are

null, and accordingly this unitary matrix can be shifted both in the definition of U or V .

B.2 Diagonalization

The Hamiltonian (B.1) can be written in the form

H =
1

2
α† Sα+

1

2
Tr A, S =

 

A B

−B ∗ −A∗

!

, (B.11)

thanks to the notation (B.4). We show now that there exists a canonical transformation (B.7)

such that the matrix M S M † is real and diagonal, i.e. S =M †ΛM with Λ real and diagonal.

Since (σx ⊗ 1)S (σx ⊗ 1) = −S∗ if k =
�

xk yk

�T
is an eigenvector of S with eigenvalue Ek

then (σx ⊗1)k ∗ =
�

y ∗k x ∗k

�T
is an eigenvector of S with eigenvalue −Ek . This means that

by grouping the eigenvalues and the eigenvectors the matrix (B.11) can be diagonalized via

a canonical transformation [151] and written in the form

H =
1

2
α†

 

P Q

Q∗ P∗

!†  

E 0

0 −E

! 

P Q

Q∗ P∗

!

α+
1

2
Tr A

=
1

2
β †

 

E 0

0 −E

!

β +
1

2
Tr A, (B.12)

where E is diagonal and non-negative. That is, in terms of some diagonal Fermi operators

(B.6) the Hamiltonian takes the form

H =
∑

k

Ek b †
k bk +

1

2
Tr(A −E ). (B.13)

B.2.1 Ground state

The ground state |Ω〉 of Hamiltonian (B.1), thanks to the diagonal expression (B.13), satisfies

bk |Ω〉= 0, for each k . Let us express the ground state in terms of the vacuum of the original
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Fermi operators, i.e. the state |0〉 which is annihilated by all the a i annihilation operators.

Recalling the Bloch-Messiah-Zumino decomposition (B.9) we define the new operators

 

b̃

b̃ †

!

=

 

U 0

0 U ∗

!† 

b

b †

!

,

 

ã

ã †

!

=

 

V † 0

0 V T

!† 

a

a †

!

.

Clearly, the states |Ω〉 and |0〉 are annihilated also by b̃k and ã k respectively. For the indices

k such that pk = 1, and qk = 0 there is no pairing and b̃k |0〉 = 0 as well. On the other hand,

for the indices k such that pk = 0 then the Q̄ matrix is proportional to the identity and thus

b̃ †
k |0〉= 0. In the remaining case the operators b̃k and ã k are connected

b̃k = pk ã k +qk ã †
k̄

, b̃ k̄ = pk ã k̄ −qk ã †
k ,

being k̄ the index of the mode paired to the mode k . One can simply prove that

b̃k (pk −qk ã †
k ã †

k̄
)|0〉= pk qk (ã

†
k̄
− ã †

k̄
)|0〉= 0.

Accordingly, the ground state of the Hamiltonian (B.1) can be written in the so-called BCS

form [152]

|Ω〉=
∏

{pk=0}

ã †
k

∏

{pk 6=0}

�

pk −qk ã †
k ã †

k̄

�

|0〉 . (B.14)

The parity of this ground state, i.e. the eigenvalue of the operator Π = (−1)N where

N =
∑

i a †
i a i can be found thanks to Eq. (B.14). As U is unitary, N =

∑

i ã †
i ã i and Π =

∏

i

�

1−2ã †
i ã i

�

. Hence, the parity operator anti-commutes with all the creation (annihi-

lation) operators ã †
i (ã j ) and, according to (B.14),

Π |Ω〉=
∏

{pk=0}

(−1)|Ω〉 ≡ (−1)dim Ker P |Ω〉. (B.15)

B.2.2 Time evolution

The time evolution of a system governed by Hamiltonian (B.1) can be found straightfor-

wardly in the Heisenberg picture. Indeed, thanks to the diagonal form (B.13), the diagonal

Fermi operators evolve as bk (t ) = e i Ht bk e -i Ht = e -i Ek t bk and similarly b †
k (t ) = e i Ek t b †

k . Ac-

cordingly, since α(t ) =M †β (t ) and β =M α

 

a (t )

a †(t )

!

=

 

P† QT

Q† PT

! 

e -i E t 0

0 e i E t

! 

P Q

Q∗ P∗

! 

a

a †

!

=

 

P† e -i E t P +QT e i E t Q∗ P† e -i E t Q +QT e i E t P∗

Q† e -i E t P +PT e i E t Q∗ Q† e -i E t Q +PT e i E t P∗

! 

a

a †

!

. (B.16)
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The above transformation which represents the time evolution of the Fermi operators α is a

Bogoliubov transformation: it is clearly unitary, being a composition of unitary operations,

and it has the form (B.7). In standard notations

a j (t ) =
∑

`

Uj `(t )a `+Vj `(t )a
†
`, (B.17)

where

U (t ) = P† e -i E t P +QT e i E t Q∗, V (t ) = P† e -i E t Q +QT e i E t P∗. (B.18)

B.2.3 Expectation values

The expectation values of physical quantities with respect to the ground state or to a thermal

state can be found straightforwardly. Indeed, in matrix notation

〈Ω|

 

b

b †

! 

b

b †

!

|Ω〉 ≡

 

〈Ω|b b |Ω〉 〈Ω|b b †|Ω〉
〈Ω|b † b |Ω〉 〈Ω|b † b †|Ω〉

!

=

 

0 1

0 0

!

.

When the temperature is introduced, the ground state expectation value has to be replaced

with the thermal averaged state 〈·〉β = Tr[e−βH ·]/Z where Z = Tr[e−βH ]. The trace can be

performed in the Fock space spanned by |{n k }〉, where n k is the number of diagonal bk

fermions, i.e. |{n k }〉 =
∏

k

�

b †
k

�n k |Ω〉. The thermal averages are found straightforwardly as

usual thanks to the partition function Z =
∑

{n k }

∏

k e−βEk n k =
∏

k (1+ e−βEk ): 〈b †
k bk 〉β =

− 1
βZ

∂Z
∂ Ek
= 1

1+eβEk
, and 〈bk b †

k 〉β =
1

1+e -βEk
. In matrix notation

〈

 

b

b †

! 

b

b †

!

〉β =

 

0 1

1+e -βE

1

1+eβE 0

!

.

Since 〈αiαj 〉=
∑

k h M ∗
k i M ∗

h j 〈βkβh〉 the two-point correlation function matrices are

Ξ= 〈Ω|αα|Ω〉=

 

P† QT

Q† PT

! 

0 1

0 0

! 

P∗ Q∗

Q P

!

=

 

P†Q P† P

Q†Q Q†P

!

, (B.19a)

Ξβ = 〈αα〉β =

 

P† QT

Q† PT

! 

0 1

1+e -βE

1

1+eβE 0

! 

P∗ Q∗

Q P

!

=

 

P† 1

1+e -βE Q +QT 1

1+eβE P∗ P† 1

1+e -βE P +QT 1

1+eβE Q∗

Q† 1

1+e -βE Q +PT 1

1+eβE P∗ Q† 1

1+e -βE P +PT 1

1+eβE Q∗.

!

. (B.19b)

All other correlation functions can be be obtained using the Wick theorem [151] from con-

tractions of the basic matrices (B.19).
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Another important quantity is the parity of the thermal state, i.e. the expectation value

〈Π〉β . As Π anti-commutes with the Fermi operators a i and a †
j , it anti-commutes also with

the diagonal operators b †
k . As |{n k }〉 ∝

∏

k (b
†
k )

n k |Ω〉, it holdsΠ|{n k }〉= (−1)p
∏

k (−1)n k |{n k }〉,
where (−1)p is the parity of the ground state (B.15). Then

〈Π〉β =
(−1)p

Z

∑

{n k }

∏

k

e -βEk n k (−1)n k = (−1)p
∏

k

�

1− e -βEk

1+ e -βEk

�

= (−1)p
∏

k

tanh

�

βEk

2

�

. (B.20)

B.3 Particular cases

When the Hamiltonian matrix S is real the diagonalization procedure can be cast in a simpler

form. In such a case the matrices P and Q are real as well, and defining P = Φ+Ψ
2

and Q = Φ−Ψ
2

the conditions (B.8) simplify to the requirement that the matrices Φ and Ψ are orthogonal.

Moreover, the eigenvalue equation becomes

A(Φ+Ψ)+ B (Φ−Ψ)= (Φ+Ψ)E , −A(Φ−Ψ)− B (Φ+Ψ)= (Φ−Ψ)E ,

i.e. (A − B )Ψ = ΦE . The orthogonal matrices Φ, Ψ and the diagonal non-negative matrix E

can be obtained thus by means of the singular value decomposition of the matrix A − B :

A − B =ΦT E Ψ. (B.21)

In particular, as (A − B )T = A + B we have also the eigenvalue equations [109]

(A + B )(A − B ) =ΨT E 2Ψ , (A − B )(A + B ) = ΦT E 2Φ .

In the rest of the section the Hamiltonian matrix S is assumed to be real.

B.3.1 Conserved number of particles

When the pairing term is null, a lot of simplifications occur: the only need is to diagonalize

the matrix A, as B = 0. Eq. (B.21) can be cast in the standard eigenvalue decomposition

A =OT ΩO. However, in order to use the results of the previous section the eigenvalues E

need to be positive. This can be accomplished by going back to Eq. (B.21) and setting Φ=O,

E = |Ω| and Ψ = s O, where O and Ω are obtained from the eigenvalue decomposition and

s = sign(Ω) is the diagonal matrix whose diagonal entries are the signs of the eigenvalues.

Hence, P = 1+s
2

O, Q = 1−s
2

O and accordingly

U (t ) =OT 1+ s

2
e -i E t 1+ s

2
O +OT 1− s

2
e i E t 1− s

2
O =OT e -iΩt O (B.22)

and similarly V (t ) = 0. Moreover, the eigenvalues of P can be only 0 or 1. The zero eigen-

values correspond to the subspace of negative energy states and, according to (B.14), the

ground state is the Dirac see, where all the negative energy states are filled.
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B.3.2 Reflection symmetry (Mirror symmetry)

The reflection symmetry occurs when the system is invariant under reflection, i.e. when the

Hamiltonian does not change by exchanging the sites i and n− i +1, being n the number of

sites. Formally this means that A i ,j = An−j+1,n−i+1 and Bi ,j = Bn−j+1,n−i+1, i.e.,

X A X = AT = A, X B X = B T =−B , (B.23)

being X the exchange matrix defined in (4.5). Matrices P satisfying the condition X P X = PT

are also called persymmetric. One important property of persymmetric matrices is that P X

and X P are symmetric, and thus can be diagonalized by standard eigenvalue decomposi-

tion. Let

(A − B )X =OT ΩO ,

be the eigenvalue decomposition of (A−B )X . Eq .(B.21) is obtained by setting O =Φ, E = |Ω|
and Ψ= s O X , where s = signΩ. Moreover, the commutation relations (4.10) impose that

 

P Q

Q∗ P∗

! 

X 0

0 −X

! 

P Q

Q∗ P∗

!†

=

 

x+ 0

0 x−

!

,

is diagonal, with diagonal x+ and x−. Explicit calculations show that x+ = −x− = s and

accordingly

U (t ) =
OT +X OT s

2
e -i E t O + s O X

2
+

OT −X OT s

2
e i E t O − s O X

2
(B.24a)

=
1

2

�

OT cos(E t )O +X OT cos(E t )O X − i X OT s sin(E t )O − iOT s sin(E t )O X
�

,

V (t ) =
OT +X OT s

2
e -i E t O − s O X

2
+

OT +X OT s

2
e i E t O − s O X

2
(B.24b)

=
1

2

�

OT cos(E t )O −X OT cos(E t )O X − i X OT s sin(E t )O + iOT s sin(E t )O X
�

.
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C
Some explicit formulas

C.1 Quasi-uniform tridiagonal matrices

In this section we cope with the analytical diagonalization of quasi-uniform tridiagonal ma-

trices, as those tackled in Chapter 5 and 6. Special emphasis is given to the spectrum and to

the density of excitations. The notations of Section (A.2) are assumed.

Let’s start with the diagonalization of n × n uniform tridiagonal matrices (A.4), where

without loss of generality, we can set aµ ≡ a and bµ ≡ −1. Setting also (λ− a )/2 → λ the

characteristic polynomial takes the form

Un (λ) = det















2λ 1

1 2λ 1

1 2λ
...

... ...















n×n

. (C.1)

The recurrence relations (A.5) read Un+2 = 2λUn+1 −Un whose analytical solution can be

found using the unilateral Z-transform [153]. Applying the unilateral Z-transform to the

recurrence relation we find z 2U(λ, z )−2λz−z 2 = 2λzU(λ, z )−2λz−U(λ, z )whereU(λ, z ) =
∑∞

n=0Un (λ) z−n , and we used the explicit resultsU0(λ) = 0 andU1(λ) = 2λ. From the above

expressions we findU(λ, z ) = z 2

z 2−2λz+1
. The solutionUn (λ) of the recurrence equation is then

given by the inverse Z-transform Un (λ) = 1
2πi

∮

U(λ, z ) z n−1 d z , where the closed contour

encircles all the poles ofU(λ, z ). Using standard residue calculus we find

Un (λ) =

�

λ+
p

λ2−1
�n+1

−
�

λ−
p

λ2−1
�n+1

2
p

λ2−1
, (C.2)

i.e. Un (λ) is the Chebyshev polynomial of the second kind [80] of order n .

Settingλ=±cos(k ) and using the known property of Chebyshev polynomialsUn (±cos(k )) =

(±1)n sin[(n+1)k ]
sin(k ) the secular equation Un = 0 defines k ≡ k j =

πj
n+1

while the eigenvectors are

Ok j =
Æ

2
n+1

sin
�

πj k
n+1

�

.
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In the following sections we deal with quasi-uniform `×` tridiagonal matrices, i.e. tridi-

agonal matrices composed of a uniform n×n block, as that of Eq.(C.1), and different “edges”.

In the following P(λ) is the characteristic polynomial of the complete matrix up to a con-

venient 2 factor, i.e. P(λ) = χ1:`(2λ), while the symbols ð and ù are added respectively for

the characteristic polynomials of the reduced matrices obtained by removing the leftmost

(rightmost) edge. For instance χ2:`(2λ) ≡ Pð(λ) and χ1:`−1(2λ) ≡ Pù(λ). The final goal is to

obtain an analytical expression of Ok 1 and Ok`, which characterize the distribution of exci-

tations, as seen in (5.14) and (6.3). Thanks to (A.7)

O2
k 1 = 2

Pð

P′
, O2

k` = 2
Pù

P′
. (C.3)

The above expressions are fractions of complicated polynomials of degree `− 1. In order

to simplify them we exploit the homogeneous n × n part and write the polynomials as a

combination ofUn andTn+1,

P(λ) = u (λ)Un (λ)+ t (λ)Tn+1(λ) , (C.4)

where Un are the Chebyshev polynomials of the second kind, Eq. (C.2), while Tn are the

Chebyshev polynomials of the first kind [80]. These polynomials satisfy the following im-

portant relations

Un−1(λ) =λUn (λ)−Tn+1(λ) , (C.5a)

Un−2(λ) = (2λ2−1)Un (λ)−2λTn+1(λ) , (C.5b)

T′n+1(λ) = (n +1)Un (λ) , (C.5c)

U′n (λ) =
n +1

λ2−1
Tn+1(λ)−

λ

λ2−1
Un (λ) . (C.5d)

that will be used in the following. Accordingly, the first equation of Eq. (C.3) can be written

as

O2
1k = 2

u ð(λk )Un (λk )+ t ð(λk )Tn+1(λk )
u ?

n (λk )Un (λk )+ t ?n (λk )Tn+1(λk )
, (C.6)

where u ð and t ð (respectively u ?
n (λ) and t ?n (λ)) are the coeffients of Pð (respectively P′(λ))

when expressed in the form (C.4). Thanks to (C.5)

u ?
n (λ) = u ′(λ)−

λ

λ2−1
u (λ)+ (n +1) t (λ), (C.7a)

t ?n (λ) = t ′(λ)+
n +1

λ2−1
u (λ). (C.7b)

The eigenvalues λk are the solutions of the secular equationP(λ) = 0, i.e

0= u (λk )Un (λk )+ t (λk )Tn+1(λk ) . (C.8)
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Thanks to the above secular equation, the high-degree polynomials Un (λk ) and Tn+1(λk )

can be removed from (C.7) and accordingly

O2
k 1 = 2

u ð(λk ) t (λk )− t ð(λk )u (λk )
u ?

n (λk ) t (λk )− t ?n (λk )u (λk )
, O2

k` = 2
u ù(λk ) t (λk )− tù(λk )u (λk )
u ?

n (λk ) t (λk )− t ?n (λk )u (λk )
. (C.9)

Further simplifications can be obtained by using the ansatzλk =±cos k . AsUn (±cos k ) =

(±)n sin[(n+1)k ]
sin k

andTn+1(±cos k ) = (±)n+1 cos[(n+1)k ] the secular equation (C.8) can be writ-

ten

sin
�

(n +1)k −2φk
�

= 0 , (C.10)

where the shifts are defined by

tan 2φk =∓
t (±cos k ) sin k

u (±cos k )
. (C.11)

In the following for convenience we will use slightly modified versions of Eqs. (C.10) and

(C.11):

sin
�

(`+1)k −2ϕk
�

= 0 , ϕk =
`−n

2
k +φk . (C.12)

So the ` eigenvalues correspond to

k j =
π j +2ϕk j

`+1
, (j = 1, . . . ,`) . (C.13)

Moreover, since 2φ′k =
∓t u cos k+(t ′u−u ′t ) sin2 k

u 2+t 2 sin2 k
, the eigenvector elements (C.9) read

O2
k 1 =

2 sin2 k

(`+1−2ϕ′k )
u ð(λk ) t (λk )− t ð(λk )u (λk )

u (λk )2+ t (λk )2 sin2 k
, (C.14a)

O2
k` =

2 sin2 k

(`+1−2ϕ′k )
u ù(λk ) t (λk )− tù(λk )u (λk )

u (λk )2+ t (λk )2 sin2 k
, (C.14b)

where λk =±cos k .

C.1.1 Mirror symmetric quasi-uniform matrix

Here we consider the matrix




























a 0 b0

b0 a b

b a b

b
... ...
... b

b a b0

b0 a 0





























(N+2)×(N+2)

. (C.15)
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It is known that (i) if b0 6=0 the eigenvalues are nondegenerate [88], (ii) the eigenvectors

corresponding to the eigenvalues ordered in descending order are alternately symmetric

and skew symmetric [87], i.e.,

Ok i =±Ok ,M+1−i , (C.16)

where M =N +2. Setting λ= a−ω
2b

, y = b0

b
and x = a 0−a

b
the characteristic polynomialP(λ) is,

up to unimportant constants,

P(λ) = det

























x +2λ y

y 2λ 1

1
... ...
... 1

1 2λ y

y x +2λ

























M×M

.

Thanks to the recursion relations (A.5) it holds

P1:j (λ) = (x +2λ)Uj−1(λ)− y 2Uj−2(λ) (C.17)

P1:N+2(λ) = (x +2λ)2UN (x )−2y 2(x +2λ)UN−1(λ)+ y 4UN−2(λ) , (C.18)

where 2≤ j ≤N + 1. In the notation of the previous section (n ≡N ,`≡M ), thanks to (C.5),

it holds

u (λ) =
�

x +(2− y 2)λ
�2
− (1−λ2)y 4 , t (λ) = 2y 2

�

x +(2− y 2)λ
�

, (C.19a)

u ð(λ) = u ù(λ) = x +(2− y 2)λ , t ð(λ) = tù(λ) = y 2 . (C.19b)

As in the thermodynamic limit in the uniform case the dispersion relation is ωk = a +

2b cos(k ), the rescaled eigenvalues are λ≡ λk =−cos(k ). Accordingly, the secular equation

is given by (C.12) with shifts

ϕk = k − tan−1 y 2 sin k

(2− y 2)cos k −x
. (C.20)

As for (C.14),

O2
k 1 =O2

k` =
2

M+1−2ϕ′k

y 2 sin2k

[(2−y 2)cos k −x ]2+ y 4 sin2k
. (C.21)

Note that for x =0 this expression is in agreement with [97] and that the term with ϕ′k be-

comes irrelevant for large M . In the most common case x <2−y 2 the maximum k0 of O2
k 1 is

located at

k0 = cos−1 x

2−y 2
. (C.22)

Expanding O2
k 1 around k0, the leading behaviour is found to be a Lorentzian,

O2
k 1 '

2

M+1

y 2

y 4+[(2−y 2)2−x 2](k −k0)2
,
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whose width (HWHM) is given by

∆'
y 2

p

(2−y 2)2−x 2
. (C.23)

When x and y are small, k0' (π−x )/2 and∆'y 2/2, so x rules the position of the peak, while

y determines its width.

C.1.2 More elements on the edges

Here we consider the matrix


































a 0 b0

b0 a 1 b

b a b

b a b

b
... ...
... b

b a b2

b2 a 2



































(n+3)×(n+3)

. (C.24)

As in the previous section, setting λ = a−ω
2b

, yi = b i

b
and x i = a i−a

b
the characteristic polyno-

mialP(λ) is, up to unimportant constants,

P(λ) =



































2λ+x0 y0

y0 2λ+x1 1

1 2λ 1

1 2λ 1

1
... ...
... 1

1 2λ y2

y2 2λ+x2



































M×M

, (C.25)

where M =N +3. Using straightforward algebra we find that

t ð(λ) = 2λ+x2+x1y 2
2

u ð(λ) = (λ+x1) (2λ+x2)− (1+λx1)y 2
2

tù(λ) = 2λ+x0

u ù(λ) = (2λ+x0) (λ+x1)− y 2
0

t (λ) = (2λ+x0) (2λ+x2)+
�

(2λ+x0)x1− y 2
0

�

y 2
2

u (λ) = (2λ+x2)
�

(2λ+x0) (λ+x1)− y 2
0

�

−
�

(2λ+x0) (1+λx1)−λy 2
0

�

y 2
2
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A matrix in the form (C.24) comes out in the Ising model. Indeed, the matrix Z T Z ,

being Z = A − B (see appendix B.3.2), takes the form (C.24). After a proper rescaling we

can consider (C.25) with x0 = (h2
0 − 1− h2)/h, x1 = (j 2

0 − 1)/h, x2 = (h2
0 + j 2

0 − 1− h2)/h,

y0 = h0 j0/h, y2 = j0. In the thermodynamic limit, the eigenvalues of Z T Z are ω2
k , being

ω2
k = 1+h2− 2h cos k the square of the dispersion relation (6.4). The rescaled eigenvalues

are thus λk = cos k and we can use (C.14). Indeed,

O2
k 1 ∝

y 2 sin2k

[(2−y 2)cos k −x ]2+ y 4 sin2k
, (C.26)

where y = j0 and

x =
1+h2−h2

0− j 2
0

h
. (C.27)

The peak of (C.26) is given by Eq. (C.22), and accordingly the energy of k0 mode is

ωk0 =
p

1+h2−2h cos k0 =

È

2h2
0+(1−h2)j 2

0

2− j 2
0

. (C.28)

Therefore, in the limit j0→ 0 the resonant mode is the one with energy |h0|, as expected, but

for finite j0 there is a shift.

Moreover, we find that

|Ok M |=
h0

ωk
|Ok 1| . (C.29)

Hence, when h0 'ωk0 , as we are interested in the neighbourhood of the resonant mode, we

can neglect the prefactor and consider |Ok 1| ' |Ok M |, as in chapter 6.

C.2 Analytical evaluation of UN+1,0(t ) in the

uniform XX model

In the XX model the time evolution is given by Eq. (B.22) where, as we have seen in Section

C.1, in the uniform case ωk = j cos
�

π(k+1)
N+3

�

+h and Ok n =
Æ

2
N+3

sin
�

π(k+1)(n+1)
N+3

�

, for k , n =

0, . . . , N + 1. Since the magnetic field causes only a constant shift in the dispersion relation,

in the following we set h = 0. In this case

UN+1,0(t ) =
N+1
∑

k=0

e−i tωk Ok 0Ok N+1 =
∞
∑

m=1

i−mJm (j t )
N+1
∑

k=0

cos

�

πm (k +1)
N +3

�

Ok 0Ok N+1

' i−N+1�JN+1(j t )+2JN+3(j t )+JN+5(j t )
�

=
4

i N+1

�

�

N +3

j t

�2

JN+3(j t )−
J ′N+3(j t )

j t

�

, (C.30)

where we used the Jacobi-Anger expansion and some properties of the Bessel functions Jn

[80]. The approximation consists in neglecting the Bessel functions of order m (N +3), with
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m ≥ 2, since they contribute only after times of order m N
j

. In fact, one can show that at the

transmission time t ∗, i.e., the time when UN+1,0(t ) takes its first peak, j t ∗ ' N − ξ(N /2)
1
3 .

Using the properties of Bessel functions [80]

u (t ∗)'
2

7
3

N
1
3

Ai(ξ)+
2ξ

5N

�

3ξAi′(ξ)+22 Ai(ξ)
�

, (C.31)

where Ai(ξ) is the Airy function. It can be proved [81] that the maximum of u (t ∗) is reached

for ξ=−1.019 and thus

u (t ∗) =
2.700

N
1
3

−
4.804

N
. (C.32)

C.3 Large-N limit of the amplitude in the

ballistic XX model

The transition amplitude (5.14) in the case of odd N =2M−1 reads

u (t ) =
M
∑

m=−M

∆(1+∆)
N+3+2ϕ′q

ei(πm−t sinqm )

∆2+ tan2 qm
,

where the summation has been made symmetric through the change of variable q=π/2−k .

The shift equation (5.11) turns into

πm = (N+3) qm +2ϕqm ,

with

ϕq = tan−1 tanq

∆
−q .

In the limit N→∞ one can write the sum as an integral setting

∑

m

1

N+3+2ϕ′q
(· · · ) −→

∫

dq

π
(· · · ) .

As we are interested in the region of the optimal value of∆∼N−1/3→0, we have

u∞(t ) = lim
N→∞

∆

∫
π
2

− π2

d q

π

ei[(N+3)q+2ϕq−t sinq ]

∆2+ tan2 q
.

Writing the arrival time as t =N+3+s , where s is the arrival delay, one has then

u∞(t ) = lim
t→∞
∆

∫
π
2

− π2

d q

π

ei[t (q−sinq )−sq+2ϕq ]

∆2+ tan2 q
.
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The relevant q ’s are of the order of∆∼N−1/3→ 0, so we change to q=∆x , with x of the order

of 1; keeping the leading terms for∆→ 0,

t (q − sinq ) −→
t∆3

6
x 3 ,

ϕq −→ tan−1 x ,

∆ d q

∆2+ tan2 q
−→

d x

1+x 2
,

and defining the rescaled counterparts of the arrival time t 'N and of the delay s ∼N 1/3,

τ≡
∆3

6
t , σ≡∆ s ; (C.33)

the final asymptotic expression results

u∞(τ,σ) =

∫ ∞

−∞

d x

π

ei(τx 3−σx+2 tan−1 x )

1+x 2
, (C.34)

that can also be rewritten in the form of a simple summation of phases by introducing the

variable z = tan−1 x ,

u∞(τ,σ) =
2

π

∫
π
2

0

d z cos(τ tan3 z −σ tan z +2z ) . (C.35)

As in the finite-N case, one has to maximize u∞(τ,σ) by finding the optimal values ofσ and

τ. For τ=0 it is easy to evaluate (C.34) analytically,

u∞(0,σ) = 2 e−σ σ ;

it is maximal for σ=1, giving u (0, 1)=2 e−1'0.736, to be regarded as a lower bound to the

overall maximum of u∞(τ,σ). The overall maximization has been performed numerically

using (C.35). It turns out that the maximum corresponds toσ=1.2152 and τ=0.02483, and

amounts to u∞(0.02483, 1.2152)=0.84690, in agreement with the behaviour shown in fig-

ure 5.7. The resulting scaling, from (C.33), tells that asymptotically

∆' 0.530 N−1/3 , s ' 2.29 N 1/3 . (C.36)

C.4 Evolution of the boundary spins: algorithms

Referring to Fig. 5.1, in this section we derive the explicit formulas for evaluating the time

evolution of the two boundary qubits Q = A ∪ B , with the assumption that before t = 0 both

A and B do not interact with the internal chain Γ: ρ(0) =ρQ⊗ρΓ(0). The state of Q at time t is
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given by the dynamical correlation functions according toρQ (t ) =
1
4

∑

α,β=0,x ,y ,z 〈σα0 (t )σ
β
N (t )〉σα0σ

β
N ,

whereσαn = 2Sαn for α= x , y , z are the Pauli matrices andσ0
n =1. Thanks to (3.13)

ρQ (t ) =














〈c †
0(t )c0(t )c

†
N (t )cN (t )〉 〈c †

0(t )c0(t )ΠcN (t )〉 〈c0(t )c
†
N (t )cN (t )〉 〈c0(t )ΠcN (t )〉

〈c †
0(t )c0(t )c

†
N (t )Π〉 〈c †

0(t )c0(t )cN (t )c
†
N (t )〉 〈c0(t )c

†
N (t )Π〉 〈c0(t )cN (t )c

†
N (t )〉

〈c †
0(t )c

†
N (t )cN (t )〉 〈c †

0(t )ΠcN (t )〉 〈c0(t )c
†
0(t )c

†
N (t )cN (t )〉 〈c0(t )c

†
0(t )ΠcN (t )〉

〈c †
0(t )c

†
N (t )Π〉 〈c †

0(t )cN (t )c
†
N (t )〉 〈c0(t )c

†
0(t )c

†
N (t )Π〉 〈c0(t )c

†
0(t )cN (t )c

†
N (t )〉















,

while for each boundary qubit we have

ρA (t ) =

 

〈c †
0(t )c0(t )〉 〈c0(t )〉
〈c †

0(t )〉 〈c0(t )c
†
0(t )〉

!

, ρB (t ) =

 

〈c †
N (t )cN (t )〉 〈ΠcN (t )〉
〈c †

N (t )Π〉 〈cN (t )c
†
N (t )〉

!

.

The Heisenberg evolution of the Fermi operators for quadratic Hamiltonians has been al-

ready discussed in Section (B.2.2), so the final step is the calculation of the expectation val-

ues with respect to the non-equilibrium initial state ρQ ⊗ρΓ(0). We define new Fermi opera-

tors acting only on the bus Γ: c̃n =
∏n−1

j=1

�

−σz
n

�

σ−n . In the compact notation (B.4)

α=











































c0

c1

...

cN

cN+1

c †
0

c †
1
...

c †
N

c †
N+1











































=

















































σ−0
−σz

0

−σz
0

...

−σz
0

σz
0σ

z
N+1σ

−
N+1

σ+0
−σz

0
...

−σz
0

−σz
0σ

z
N+1σ

+
N+1

















































⊗





















































1

c̃ †
1

c̃ †
2
...

c̃ †
N

Π̃

1

c̃1

c̃2

...

c̃N

Π̃





















































≡Q⊗C . (C.37)

where Π̃ is the parity of Γ, Π̃ = σz
0σ

z
N+1Π. The operators Qj act on the Hilbert space of the

boundary spins while the operators Cj act on the Hilbert space of the bus Γ. Calling M (t )

the time evolution matrix of (B.16) we find thus

〈αa (t )αb (t ) · · · 〉=
∑

a ′,b ′,···

(M a a ′(t )Mbb ′(t ) · · · )×Tr
�

ρQQa ′Qb ′ · · ·
�

Tr
�

ρΓCa ′Cb ′ · · ·
�

, (C.38)

while

〈Παa (t )αb (t ) · · · 〉= p̃
∑

a ′,b ′,···

(M a a ′(t )Mbb ′(t ) · · · )×Tr
�

ρQσ
z
0σ

z
NQa ′Qb ′ · · ·

�

Tr
�

ρΓCa ′Cb ′ · · ·
�

.

(C.39)
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APPENDIX C. SOME EXPLICIT FORMULAS

Thanks to (C.38) and (C.39) all the expressions in the density matrix ρQ (t ) can be obtained.

For example,

〈σ−0 (t )〉= U0,0(t )〈σ−0 〉+V0,0(t )〈σ+0 〉−U0,N+1(t )〈σ−N+1Π〉+V0,N+1(t )〈σ+N+1Π〉 , (C.40a)

〈σ+0 (t )〉= U ∗
0,0(t )〈σ

+
0 〉+V ∗0,0(t )〈σ

−
0 〉−U ∗

0,N+1(t )〈Πσ
+
N+1〉+V ∗0,N+1(t )〈Πσ

−
N+1〉 , (C.40b)

〈σ−N+1(t )〉=−UN+1,0(t )〈σ−0Π〉−VN+1,0(t )〈σ+0Π〉+ (C.40c)

+UN+1,N+1(t )〈σ−N+1〉−VN+1,N+1(t )〈σ+N+1〉 ,

〈σ+N+1(t )〉=−U ∗
N+1,0(t )〈Πσ

+
0 〉−V ∗N+1,0(t )〈Πσ

−
0 〉+ (C.40d)

+U ∗
N+1,N+1(t )〈σ

+
N+1〉−V ∗N+1,N+1(t )〈σ

−
N+1〉 ,

and

〈σz
n (t )〉=−1+U ∗

n ,0(t )Un ,0(t )
�

1+ 〈σz
0 〉
�

+V ∗n ,0(t )Vn ,0(t )
�

1−〈σz
0 〉
�

(C.41)

+U ∗
n ,N+1(t )Un ,N+1(t )

�

1+ 〈σz
N+1〉

�

+V ∗n ,N+1(t )Vn ,N+1(t )
�

1−〈σz
N+1〉

�

−U ∗
n ,0(t )Un ,N+1(t )〈σ+0σ

−
N+1Π〉+U ∗

n ,0(t )Vn ,N+1(t )〈σ+0σ
+
N+1Π〉

−U ∗
n ,N+1(t )Un ,0(t )〈Πσ+N+1σ

−
0 〉−U ∗

n ,N+1(t )Vn ,0(t )〈Πσ+N+1σ
+
0 〉

−V ∗n ,0(t )Un ,N+1(t )〈σ−0σ
−
N+1Π〉+V ∗n ,0(t )Vn ,N+1(t )〈σ−0σ

+
N+1Π〉

−V ∗n ,N+1(t )Un ,0(t )〈Πσ−N+1σ
−
0 〉−V ∗n ,N+1(t )Vn ,0(t )〈Πσ−N+1σ

+
0 〉

+
∑

k h

�

U ∗
n ,k (t )Un ,h(t )〈c̃ †

k c̃h〉+U ∗
n ,k (t )Vn ,h(t )〈c̃ †

k c̃ †
h〉+

V ∗n ,k (t )Un ,h(t )〈c̃k c̃ †
h〉+V ∗n ,k (t )Vn ,h(t )〈c̃k c̃ †

h〉
�

.

When Γ is initially in its ground state |Ω̃〉, more complicated expressions can be written in

terms of contractions of the the basic correlation matrix Ξab = 〈Ω̃|CaCb |Ω̃〉:

Ξ=













































1 0 0 · · · p̃

0

0
...

P̃TQ̃

0

0
...

p̃ 0 0 · · · 1

1 0 0 · · · p̃

0

0
...

P̃T P̃

0

0
...

p̃ 0 0 · · · 1

1 0 0 · · · p̃

0

0
...

Q̃TQ̃

0

0
...

p̃ 0 0 · · · 1

1 0 0 · · · p̃

0

0
...

Q̃T P̃

0

0
...

p̃ 0 0 · · · 1













































, (C.42)

where p̃ is the parity of |Ω̃〉, as given by (B.15), and we have used the expressions (B.19),

where the tilde means that all the operations are done only on the bus Γ. These results can
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be also trivially extended for including the temperature, following secion B.2.3. It should

be noted that we can not use the Wick theorem for evaluating 〈Ω̃|Ca ′Cb ′ · · · |Ω̃〉 in (C.38) be-

cause the Cj , due to the identity and the parity operators, do not depend linearly on cn

and c †
m . For example the most complicated quantity to calculate is 〈c †

0(t )c0(t )c
†
N (t )cN (t )〉=

〈α0(t )αN+2(t )αN+1(t )α2N+3(t )〉. In general the four-points correrlation functions is

〈αj1(t )αj2(t )αj3(t )αj4(t )〉=
∑

c1,c2,c3,c4

M j1c1(t )M j2c2(t )M j3c3(t )M j4c4(t )
h
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i

+
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�
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�
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∑
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∑
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h

M j1s1(t )M j2s2(t )M j3c1(t )M j4c2(t )Tr
�

ρQQs1Qs2

�

+
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�

ρQQs1σ
z
0Qs2σ

z
0

�

ζs2+
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�

ρQQs1Qs2

�

+
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�
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z
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z
0Qs2

�

ζs1+
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�
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(C.43)

where sn ∈ {0, N +1, N +2, 2N +3} are the boundary spin indices, cn ∈ {1, 2, . . . N , N +3, N +

4, . . . , 2N + 2} are the internal chain indices, and jn ∈ {1, 2, . . . , 2N + 3} are generic indices.

The extra term ζn = (−1)δn ,N+δn ,(2N+1) is due to the anti-commutation of the parity operator

Π̃with the reduced fermi operatos c̃n and c̃ †
n . Other important correlation functions are

〈αj1(t )αj2(t )〉=
∑

c1,c2

M j1c1(t )M j2c2(t )Ξc1c2 +
∑

s1,s2

M j1s1(t )M j2s2(t )Tr
�

ρQQs1Qs2

�

Ξ0s1Ξ0s2 , (C.44)

and

〈αj (t )Π〉= p̃
∑

s

M j s (t )Tr
�

ρQσ
z
0σ

z
NQs

�

Ξ0s1Ξ0s2 . (C.45)
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[147] F. Brandão, P. Ćwikliński, M. Horodecki, P. Horodecki, J. Korbicz, and M. Mozrzy-

mas, “Convergence to equilibrium under a random hamiltonian”, Arxiv preprint

arXiv:1108.2985, 2011.

[148] H. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University

Press, 2007.

[149] T. Prosen, “Third quantization: a general method to solve master equations for

quadratic open fermi systems”, New Journal of Physics, vol. 10, p. 043026, 2008.

[150] T. Prosen and E. Ilievski, “Nonequilibrium phase transition in a periodically driven x y

spin chain”, Phys. Rev. Lett., vol. 107, p. 060403, Aug 2011.

[151] J. Blaizot and G. Ripka, Quantum theory of finite systems. MIT Press, 1986.

[152] P. Ring and P. Schuck, The nuclear many-body problem. Springer Verlag, 2004.

[153] R. Attar, Lecture Notes on Z-Transform. Lulu Press, 2006.

134


	Overview
	Theory of composite quantum systems
	Digest on quantum mechanics
	Qubit: the simplest quantum system
	Entanglement

	Quantum subsystems
	Measurement: POVM
	Time evolution: Kraus operators

	Quantum channels
	One qubit maps
	Symmetries


	Quantum information transmission
	Teleportation
	State transmission
	Fidelity of teleportation

	Entanglement as a resource
	Explicit formulas for two-qubits channels
	Minimum fidelity
	Concurrence


	Quantum communication through spin chains dynamics
	Quantum communication with unmodulated chain
	Quasi-free Hamiltonians
	Interacting Systems
	XXZ Hamiltonian

	Concluding remarks

	Routes to perfection and near perfection
	Perfect mirroring
	Generalization to XY models
	Perfect transmission without mirroring

	Wave packet encoding
	Qubits weakly coupled to the bus
	Coherent ballistic dynamics

	Optimal dynamics with the XX model
	Dynamical evolution
	Optimal dynamics
	Transfer regimes
	Ballistic regime and optimal values

	Information transmission exploiting optimal dynamics
	Concluding remarks

	Optimal dynamics with the XY model
	Optimal transfer
	Ising case

	Concluding remarks

	Entangling gates between distant qubits
	Introducing the model
	Application
	Time scale
	Imperfections

	Concluding remarks

	Prospects
	Some mathematical results
	The Weyl-Schur duality
	The twirling superoperator

	Theorems on tridiagonal matrices

	Quadratic Hamiltonians for Fermions
	Canonical transformation
	Diagonalization
	Ground state
	Time evolution
	Expectation values

	Particular cases
	Conserved number of particles
	Reflection symmetry (Mirror symmetry)


	Some explicit formulas
	Quasi-uniform tridiagonal matrices
	Mirror symmetric quasi-uniform matrix
	More elements on the edges

	Analytical evaluation of UN+1,0(t) in the uniform XX model
	Large-N limit of the amplitude in the ballistic XX model
	Evolution of the boundary spins: algorithms

	Bibliography

