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INTRODUCTION 
 

During the course of my doctorate, carried out in the research group directed by 

Prof. Paola Mura, I mainly dedicated my studies to the development, chemical-physical, 

characterization and technological and biopharmaceutical evaluation of colloidal 

carriers and cyclodextrin complexes for drug delivery. 

In particular, I focused my research on the development of liposomes, as drug 

carriers, investigating various aspects of both their composition and the various 

techniques of preparation and characterization. 

Liposomes are colloidal phospholipidic vesicles extensively investigated as safe 

and effective drug carrier systems. An increase in therapeutic efficacy has been 

demonstrated for liposomal formulations of several drugs with respect to administration 

of plain drugs.  

The drugs that I examined for inclusion in various liposomal formulations have 

been different local anesthetics, such as benzocaine, butamben and prilocaine, and I also 

investigated the effect of their complexation with cyclodextrins. 

Another area which may benefit of liposomal formulation is that of 

chemotherapeutic agents. 

My research in this field was aimed at the development of a liposomal 

formulation for Irinotecan, a chemotherapeutic drug for colon cancer. 

Parallely, I also devoted my studies to the preparation and characterization of 

drug complexes with cyclodextrins. 

Cyclodextrins received an increasing interest in the pharmaceutical field due to 

their ability to favourably modify physical, chemical and biological properties of drug 

molecules through the formulation of inclusion complexes. 

The drugs that I considered for their formulation as cyclodextrin complexes were 

metformin, an oral antihyperglycaemic agent and oxaprozin, an anti-inflammatory 

agent. 

I  turned particular attention to the study of the influence of the method used for 

the preparation of the drug-cyclodextrin complex on the performance of the final 

product. 

During the three years of my doctorate I carried out two research stages abroad, 

respectively at the Laboratory of Pharmaceutical Technology of the University of 

Seville, Spain, under the guidance of Prof. Antonio Maria Rabasco Alvarez and Prof. 
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Maria-Luisa Gonzalez Rodriguez, and at the “Department of Biopharmaceutical 

Sciences and Pharmaceutical Chemistry” of the University of California, San Francisco, 

U.S.A., under the guidance of Prof. Francis C. Szoka . 

These internship periods allowed me to deepen and learn the use of new 

advanced techniques of microscopic investigation and of new methods of preparation of 

liposomes. 
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1. LIPOSOMES 

The liposomes are colloidal particles consisting of lipid bilayers that surround 

one or more aqueous compartments. The lipids, which may be of natural or synthetic 

origin, orient their head toward the polar regions of the double-layer, so that to be in 

contact with the polar medium. Hydrophobic tails are turned instead towards the inside 

of the bilayer. 

 

 

 
 

History and applications  

 

The discovery of liposomes is attributed to A.D. Bangham, who in the early 60s 

studied the behavior of lecithin and other phospholipids in the hydration phase 

(Bangham et al., 1965). Quote the words of his article: "The liposomes are small 

vesicles of spherical shape that can be produced from natural non-toxic phospholipids 

and cholesterol. There are pockets of microscopic spherical shape, the walls are made 

from phospholipids identical to those that form cell membranes."   

Head 
Tail 
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Since then numerous liposomal preparations were prepared to study biological 

processes and membrane proteins, exploiting their structural similarity with the animal 

cell. It was in the 70s that the liposomes were proposed as a carrier for drugs, but the 

early studies led to inadequate preparations with stability. In the early 90s the 

accumulated knowledge on polymorphism of lipids, the mechanisms of interaction 

between the liposome-membrane and drug-phospholipids made possible to overcome 

the initial difficulties and gain the first liposomal drugs (Lian et al., 2001). 

Due to their biphasic nature, the liposomes can accommodate both lipophilic and 

hydrophilic substances, then, in principle, any type of drug. They are also used to carry 

DNA, proteins and peptides.  

To ensure a sustained therapeutic action is necessary a sufficient stability over 

time, both in terms of shelf life and in vivo. Today liposomal formulations approved by 

the Food and Drug Administration U.S. are numerous, containing especially antifungals 

and anticancer drugs. 

Most of these contain as the main constituent phosphatidylcholine, with chains 

of varying length and varying degrees of saturation. It is often also included cholesterol 

to adjust the stiffness and increase stability in vivo. The physical characteristics such as 

size, surface charge and the fluidity of membrane play a key role in the 

pharmacokinetics and activity of liposomal preparations.  

The FDA in 2002 issued guidelines suggesting tests and controls that the 

industry should run for the development and marketing of liposomal preparations 

(Guidance for Industry: Liposome drug Products, FDA, 2002). 

 

Advantages and Disadvantages  

 

The liposomes are Drug Delivery Systems, able to direct and protect the drugs.  

They can also prolong the duration of the therapeutic effect, acting as a reservoir 

system. The main advantages of using these systems are: 

• Biocompatibility with biological membranes  

• Complete biodegradability  

• Application versatility: being able to encapsulate both lipophilic and 

hydrophilic drugs 

• Versatility of properties: the preparation method and the composition can 

modify many parameters, such as size, elasticity, etc.. 
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Among the limitations and problems in their use, it should instead remember: 

 

• Chemical Instability: the phospholipids exposed to oxygen, to light and high 

pH values, suffer reactions of oxidation and hydrolysis.  

• Physical Instability: vesicles tend to settle, merge or join; these phenomena 

can be reduced by using charged particles, i.e. adding charged components, 

such as stearylamine (SA) and  dicethylphosphate (DP). 

• Loss of the active: this process may be slowed by increasing the rigidity of 

liposomes or proceeding to the lyophilization. 

 

1.1 Preparation of liposomes 
 

Classification  

 

The classification of liposomes can be made according to procedures for the preparation 

or follow structural criteria (Torchilin et al., 2003). 

 

Classification according to the preparation method 

 

Thin Layer Evaporation (TLE): The phospholipids and other fat-soluble 

components are dissolved in a highly volatile organic solvent, such as dichloromethane 

or chloroform. The solvent is removed with the rotavapor until a thin lipid layer (thin 

layer) is obtained: 
 

 

 

The film is then hydrated with water and subjected to agitation with whirling 

vortex. Depending on its solubility characteristics, the drug can be dissolved in the 

hydration phase (water) or in the organic solvent, together with the phospholipids.  
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The suspension must be heated above the transition temperature of the 

phospholipids. With this technique are obtained liposomes with high degree of lamellar 

(MLVs). 

Sonicated Vesicles: in this case heating is not necessary. It can introduce the 

probe of sonicator  within a suspension (costant temperature 0°C because the probe 

tends to dissipate energy and increase the temperature) or immerse the container in a 

sonication bath. It is a good method for producing SUVs ( Small Unilamellar Vesicles) .  

Reverse Phase Evaporation Vesicles (REV) the preparation of the lipid film is 

the same shown above. Then add the water and air, usually in the ratio of 1:3 v/v. 

Everything is then sonicated to form an A/O emulsion. The solvent is then evaporated to 

reach the reversal phase. We maintain the conditions of agitation and low pressure until 

the complete removal of the solvent. 

 Frozen and Thawed Multilamellar Vesicles (FATMLV): as starting material is 

used a suspension of MLV. This is frozen in liquid nitrogen and then thawed in 

thermostat bath at a temperature higher than that of transition. The operation is repeated 

2 or 3 times at predetermined time intervals.  

Dehydration-rehydration Vesicles (DRV): liposomes MLV are first prepared. 

These are then sonicated, freeze dried and put in buffered solution.  

Vesicles by Extrusion Technique (VET): the liposomal suspension prepared by 

TLE or FATMLV is extruded through filters of polycarbonate (pores of about 400 nm). 

This method makes it possible to reduce the size. 
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Structural Classification  

 

It is based on morphological characteristics and size of the vesicles 

 

Abbreviation Name Diameter  

MLVs 
Multilamellar Vesicles 

 
> 0,5 µm 

OLVs 
Oligolamellar Vesicles 

 
0,1-1 µm 

SUVs 
Small Unilamellar Vesicles 

 
20-100 nm 

LUVs 
Large Unilamellar Vesicles 

 
>100 nm 

GUVs 
Gigant Unilamellar Vesicles 

 
>1 µm 

MVVs o OVVs 
Multi (o Oligo)vesicular Vesicles 

 
>1 µm 

 

 

 

 

 

 

1.2 Characterization of liposomes 
 

Several analytical techniques can be used to describe the characteristics of 

liposomes (Edwards et al., 2006). 

  

Microscopy 

  

Both the optical and the electronic microscopy are useful for the analysis of 

liposomes. Optical microscopy is easy to use, because it requires an ordinary optical 

microscope compound (MOC). The resolution is limited by the phenomenon of 

diffraction and is therefore relatively low (0.2µm). The transmission electron 

microscopy (TEM) allows magnification of 200,000 times, with a resolution of about 

0.1 nm (10 Å).  
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This technique works with the attachment (staining) of the sample on a 

polycarbonate film, using a solution of uranyl molybdate or tungsten. It is also request 

the generation of vacuum. All this can lead to artifacts in the analysis. In recent years 

other techniques has been proposed, such as the atomic force microscopy (AFM). 

Extremely versatile, it requires no special treatment and allows the sample analysis in a 

variety of environmental conditions (in water, dry condition,  at room temperature, hot 

condition, etc). It reach resolutions of 0.1 nm.  

 

Images of liposomes obtained by a number of techniques (Nallamothu et al., 

2006): 

 

 
 

Number of lamellar 

 

The number of lamellar of liposomes can be extremely variable: the fraction of 

phospholipids in the outer layer can range from 5% (LMV) to 70% (SUV) (Barenholz et 

al., 1977). A technique commonly used to determine the number of lamellar is the  31P 

NMR and the addition of Mn2+  reduces the signal of phosphorus of the polar heads; the 

degree of lamellarity is derived from the ratio of the signal before and after the addition 

of Mn2+. Other techniques are electron microscopy, the spread X-ray at small angles 

(SAXS) and methods based on changes in fluorescence signal, UV or visible of lipid 

marked after adding suitable reagents. 

 

Size 

 

The techniques available for the particle size determination are numerous. 

Among these one can remember the dynamic light scattering (DLS) or static (SLS), 
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microscopy, the size-exclusion chromatography (SEC), the field-flow fractionation 

(FFF), the analytical centrifugation and capillary electrophoresis. 

 

Phospholipids 

 

For this type of analysis, is usually employed a molybdate reactive-based, 

allowing the oxidation and coloring of phospholipids. Even some chromatographic 

techniques (HPLC, GC, TLC) may be used. 

 

Encapsulation efficiency 

 

The techniques for determining the amount of drug entrapped within liposomes 

are based on the measure of the concentration of active ingredient encapsulated in 

comparison with the total amount. The encapsulation efficiency percentage may be 

expressed as: 

 

 

Where Cin is the concentration of drug encapsulated, the  Cout that of extra-

liposomal drug and Ctot is the total concentration.  

The methods used for separation of drug encapsulated and non-encapsulated are 

dialysis, filtration, centrifugation, chromatography, gel-permeation chromatography and 

ion exchange. The methods of quantification can be Spectrophotometric, enzymatic or 

electrochemical. The amount of total active ingredient is usually determined after 

having caused the complete lysis of liposomes, with the addition of alcohol, heating and 

/ or use of surfactants (Grabielle-Madelmont et al., 2003). 

 

Zeta potential  

 

The charges exposed on the surface of liposomes play an important role on 

stability, the interaction with drugs and interaction with plasma proteins. The value of Z 
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potential can be achieved by measures the electrophoretical mobility of the particles, or 

using the spectroscopy correlation of photons (PCS). 

 

Deformability  

 

The use of ultra-deformable vesicles (increasing the elasticity of liposomes) facilitates 

the passage of the drug through the membranes, in some cases even through the skin 

intact (Schätzlein et al, 1997). There are various techniques for the measurement of 

vesicles deformability. Electron microscopy and atomic force (AFM) are applicable to 

particles above 10 microns and allow calculation of the elasticity constant of the 

generation of thermal fluctuations of the membrane (Lee et al., 2001).  

Another interesting method, but only for large particles, may be to join the 

vesicles with a spherical surface and draw a portion of the membrane with a 

micropipette. In this way, the phospholipids form, between the surface and the vesicle,  

a thin cylinder defined tether (neck). Depending on the suction pressure is measured 

variations in the form of vesicles, the tether and the portion of membrane sucked, 

obtaining a measure of deformability defined bending stiffness (Waugh et al, 1987). A 

technique applicable to particles below 10 µm is the extrusion.  

The liposomal suspension is introduced into a syringe and applying a positive 

pressure is forced to pass through a membrane, whose pore diameter is less than that of 

liposomes. The operation is repeated several times. The average diameter of liposomes 

is measured before and after extrusion (Van den Bergh et al., 2001). 

When the liposomes are well deformable, can change shape and pass through the 

pores: the diameter does not undergo changes before and after extrusion. If they are not 

very deformable, decreased in size or fail to pass the membrane. With this technique the 

elasticity can be expressed quantitatively using the following formula (Cevc, 1995): 

 

 

Where Rv is the radius of vesicles, Rp the pore, J  the flow or rate of penetration. 

J is calculated measuring the flow of a constant volume of suspension through the 

membrane as a function of time. 
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Thermometric Characteristics   
   

The liposomes can be in three different thermometric states:  

Gel: The alkyl chain fatty acids are tightly packed.  

Ripple: is also called wavy phase; alkyl chains are in the bending. The 

temperature at which they move from the gel is called “ripple temperature”.  

Liquid crystal: the lipid matrix is less packed and is characterized by an increase 

in the disorder and the degrees of freedom. The temperature of transition phase is called 

transition temperature. 

 

 

The differential scanning calorimetry (DSC) can reveal the phase transitions. 

Changes in Thermometric Characteristics  provide useful information for the study of 

interactions molecule-model membrane. 

Stability  

One of the major limitations in the use of liposomes as carriers of drugs is their 

low stability. During the preparation and or storage can undergo many changes, both of 

chemical and physical nature (Zuidam et al, 1996). 

 

Oxidation  

 

Even in the absence of specific oxidants, the fatty acid chains of phospholipids 

tend to oxidize, especially if there are double bonds. These reactions are catalyzed by 

light, sonication or traces of metal ions. Besides oxidation reactions, can occur 

rearrangements of double bonds that lead to the formation of conjugated double bonds.  

The main consequence of these degradation reactions is increased permeability 

of double layers and thus escape of drug. The degradation of phospholipids can be 

highlighted with thin-layer chromatography (TLC): The presence of a single blemish is 

a sign of good conservation. Another technique of analysis can be mass spectrometry. 
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The oxidation of liposomes can be reduced with certain precautions: use phospholipids 

very pure and free of oxidants, use of synthetic phospholipids, use of solvents and 

distillates without oxygen, avoid use of sonication and high temperatures, use inert 

atmosphere in preparation, use of antioxidants (α-tocopherol, vitamin C), low-

temperature preservation and protection from light (Storm et al., 1993). 

 

Hydrolysis  

 

The phospholipids dispersed in water can be hydrolyzed to free fatty acids, 

following a kinetics of pseudo-first order. These reactions are catalyzed by acids and 

bases, may lead to increases in average size of particles and facilitate aggregation 

phenomena. The reactions of hydrolysis have the minimum speed when the pH is 6.5. 

Some cares to minimize the hydrolysis may be: maintain the pH near to neutrality, limit 

the concentration of tampons, avoid high temperatures, use for the double layer of 

molecules with ether connections rather than esters, resorting to freeze-drying. 

 

Physical alterations 

 

The stability of liposomes can also be affected by physical alterations. The 

vesicles can get closer and join one another to form large multi-liposomal systems 

(aggregation), merge their membranes and form larger vesicles (fusion) or lose the drug 

contained inside.  

The aggregation is a reversible process, resorting to restlessness or mechanical 

changes in temperature. The membrane fusion is irreversible.  

The loss of the active drug is less for small vesicles with amphiphilic character. 

The lipid composition is important: for the liposomes with great rigidity, the drug  is 

more easily retained inside, but they are less used because drug delivery in vivo is too 

slow.  

The suspensions of liposomes with lipophilic drugs may break up into two 

phases, especially if the solubility of the drug in lipid is reduced with the storage at low 

temperatures.  

Physical alteration of liposomal dispersions can be minimized with the use of 

chelating ions (EDTA), cholesterol and other substances that increase the stiffness, 
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adding molecules which charge the lipid layer, using lyophilization with criprotector 

(Guidance for Industry: Liposome drug Products, FDA, 2002). 

 

Lyophilization  

 

The lyophilization or freeze-drying is used to improve the stability of liposomes. 

The removal of water can prevent the degradation reactions, especially those of 

hydrolysis. Obtaining a powder and thus reducing the vesicle mobility, reduces the 

molecular processes of chemical and physical degradation.  

Unfortunately, the liposomes can also be damaged by freeze-drying process and 

this almost always requires the use of crioprotector agents.  They are usually chosen 

among mono or disaccharides, whose mechanism of action has not yet been fully 

clarified.  

Probably they form a coating in the amorphous matrix between the liposomes, 

preventing their aggregation and fusion. They could also form hydrogen bonds with the 

heads of ionic phospholipids, expelling water and replacing it. The rehydration always 

cause some leakage of the active principle and fusion of liposomes, even with the use of 

crioprotectors. These incidents may in part be reduced by proper choice of 

crioprotectors, using charged liposomes, slowly cooling the sample (Guidance for 

Industry: Liposome drug Products, FDA, 2002). 

 

Preparation of sterile formulations  

 

To ensure the sterility of liposomes, they can be prepared in aseptic conditions, 

but it is a costly and complex procedure. The treatment in autoclave can be used (15 

min at 121 ° C), but the high temperature catalyzes the reactions of degradation. The 

technique is sometimes not usable, for example, when the suspension has a pH value 

very different from neutrality, phospholipids are partially oxidized, the drug is highly 

soluble in water (tends to leave the liposomes and go to the vehicle).  

Sterilizing filtration with pores of about 200 nm is effective in removing bacteria 

and not destructive for small liposomes,  but it does not allow the removal of viruses 

and small spores, and does not apply big and little deformable to liposomes.  

Gamma radiation cannot be used because it is too destructive (Guidance for 

Industry: Liposome drug Products, FDA, 2002). 
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Cyclodextrins in liposomes  

 

The idea of trapping drug-cyclodextrin complex in liposomes can combine the 

advantages of the use of cyclodextrins with that of the use of liposomes. These systems 

are called vesicles DCL (drug-in-cyclodextrin-in-liposomes). The advantages of such 

systems may be different (Cormack et al., 1994; Maestrelli et al., 2005; Cormack et al., 

1996): 

1) Increase the proportion of drugs not readily soluble in water which can be 

dispersed in the internal aqueous phase of liposomes.  

2) Inclusion in the aqueous compartment of drugs that prevent the formation or 

stability of the liposome if introduced into the lipophilic phase.   

3) When given intravenously, increased plasma half-life time of complex drug-

cyclodextrin, for slowing of renal clearence.  

4) Reduction of hemolytic and renal toxicity of cyclodextrins.  

5) Increased flexibility in the development of liposomal formulations. One may 

be able to get vesicles where the drug is inserted in the hydrophilic phase and in the 

lipophilic phase (double loading).  

6) Reduction of onset time of the drug and increased duration of action.  

7) Increased stability of the drug. It was demonstrated that liposomes containing 

a multilamellar riboflavin/γCD complex protect the drug from degradation to the light 

better than cyclodextrin complexation alone (Loukas et al., 1995). Other good results 

were obtained with drugs easily hydrolysable (Loukas et al., 1998).  

8) In some cases you may have even increased stability of the liposome. For 

example, the complexation with cyclodextrins has not only increased the encapsulation 

of nifedipine, but also improved the stability of the liposomes in plasma (Skalko et al., 

1996).  

 

It has already been successfully developed liposomes containing HPβCD 

complexs with dexamethasone, prednisolone, retinoic acid, ketoprofen and many other 

drugs. From the literature data HPβCD can be easily inserted into liposomes, but high 

doses can have a strong impact on vesicles (Fatouros et al., 2001).  

It has been proven that the reduction of stability is dependent on the 

characteristics of both the liposome (type of phospholipids, preparative technique, size, 

etc) and the type of cyclodextrin. The MeβCD was found to be the most destabilizing. 
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Some studies suggested that cyclodextrins are detrimental to the stability not only for 

emulsifying action, but also for the extraction of various components from the lipid 

double layer (Hatzi et al., 2007). It has also been showed that liposomes with greater 

strength, better resist to the destabilizing effect of cyclodextrins. It may therefore be 

useful to use phospholipids saturated and / or enter cholesterol into the composition of 

liposomes DCL. 

 

Liposomes with anticancer drugs 

 

It has now been over 35 years since it was discovered that vigorous dispersal of 

purified phospholipids in water resulted in the formation of microscopic closed 

membrane spheres (Bangham, 1968).  

These artificial membranes, referred to as liposomes, were found to consist of 

one or more lipid bilayers arranged concentrically around a central aqueous core. 

Studies on the membrane permeability of small molecules demonstrated that polar and 

charged molecules could be retained within liposomes, an observation that immediately 

suggested their potential as systems for the systemic delivery of drugs (Sessa and 

Weissmann, 1968).  

Unfortunately, a significant amount of technological development was required 

before this potential could be realized.  

In addition to a better understanding of the physical properties of membranes and 

their lipid components, techniques were required for the generation of unilamellar 

vesicles and encapsulation of drugs and macromolecules within them.  

Although a wide variety of methods were developed for the formation of 

liposomes (Hope et al., 1986; Lichtenberg and Barenholz, 1988), many of them did not 

generate liposomes of optimal size and polydispersity and often were technically 

demanding and time consuming.  

Furthermore, the drug-loading technology at the time was based on passive 

entrapment methods, which resulted in low encapsulation levels (<30%) and poor 

retention of drugs (Mayer et al., 1990a). Nevertheless, early animal studies using 

liposomal drug carriers were encouraging enough to warrant further development (see 

Mayer et al., 1990a and references therein).  

The development of extrusion technology for the rapid generation of 

monodisperse populations of unilamellar vesicles (Hope et al., 1985; Mayer et al., 
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1986b; Olson et al., 1979) allowed characterization of the physical properties and in 

vivo characteristics of a wide variety of liposomal systems.  

This information revealed that optimized drug delivery systems would possess 

two key parameters: a small size (on the order of 100 nm) and long circulation lifetimes 

(half-life >5 h in mice).  

The basic structural framework on which most delivery systems are based is the 

large unilamellar vesicle (LUV) with a diameter close to 100 nm. These systems 

possess internal volumes large enough to carry adequate quantities of encapsulated 

material but are small enough to circulate for a time sufficient to reach sites of disease, 

such as tumors or sites of inflammation. Vesicles that are much larger or smaller are 

rapidly cleared from the circulation. However, circulation lifetime is determined by 

factors other than size. Both circulation lifetimes and drug retention are dependent on 

lipid composition and were found to be greatly enhanced in systems made from 

phosphatidylcholine (or sphingomyelin) and cholesterol (Mayer et al., 1989, 1993; 

Webb et al., 1995, 1998a).  

Further improvements in circulation longevity were achieved by the inclusion of 

ganglioside GM1 in the vesicle formulation (Boman et al., 1994; Gabizon and 

Papahadjopoulos, 1988; Woodle et al., 1994) or by grafting water-soluble polymers 

such as poly (ethylene glycol) (PEG) onto the vesicle surface, thereby generating 

vesicles known as ‘‘stealth’’ liposomes (Allen, 1994, 1998; Allen et al., 1991; Woodle 

et al., 1994).  

A major advance in the design of the first generation of drug transport systems 

came with the development of methods for achieving the encapsulation and retention of 

large quantities of drug within liposomal systems.  

Perhaps the most important insight in this area was the recognition that many 

chemotherapeutic drugs could be accumulated within vesicles in response to 

transmembrane pH gradients (Cullis et al., 1997; Madden et al., 1990; Mayer et al., 

1986a).  

The ability of ΔpH to influence transmembrane distributions of certain weak 

acids and bases has been recognized (see Cullis et al., 1997 and references therein). The 

fact that many chemotherapeutics were weak bases led to investigate the transport of 

these substances into liposomes in response to membrane potentials and ΔpH. 

Subsequent studies led to considerably broader applications involving the transport and 
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accumulation of a wide variety of drugs, biogenic amines, amino acids, peptides, lipids, 

and ions in LUVs exhibiting a pH (for a review, see Cullis et al., 1997).  

Application of this technology led to the development of several liposomal 

anticancer systems that exhibit improved therapeutic properties over free drug. Early 

studies (see Mayer et al., 1990a and references therein) had shown that reduced side 

effects with equal or enhanced efficacy could be obtained in liposomal systems, despite 

low encapsulation levels and poor drug retention.  

This led to initial efforts to develop a liposomal version of doxorubicin, the most 

commonly employed chemotherapeutic agent, which is active against a variety of ascitic 

and solid tumors, but yet exhibits a variety of toxic side effects.  

The pH gradient approach (Mayer et al., 1989, 1990a–c, 1993) was expected to 

provide significant improvements in overall efficacy due to high drug-to-lipid ratios and 

excellent retention observed both in vitro and in vivo.  

This has been realized in liposomal doxorubicin preparations that are currently 

either in advanced clinical trials (Cheung et al., 1999; Chonn and Cullis, 1995) or have 

been approved by the U.S. FDA for clinical use (Muggia, 2001).  

Other liposomal doxorubicin formulations (Burstein et al., 1999; Campos et al., 

2001; Coukell and Spencer, 1997; Gokhale et al., 1996; Gordon et al., 2000; Grunaug et 

al., 1998; Israel et al., 2000; Judson et al., 2001; Northfelt et al., 1998; Shields et al., 

2001) are in various Phase I or II clinical trials, often with promising results.  

A variety of other liposomal drugs are currently in preclinical or clinical 

development; these include vincristine (Gelmon et al., 1999; Millar et al., 1998; 

Tokudome et al., 1996; Webb et al., 1995, 1998a), mitoxantrone (Adlakha-Hutcheon et 

al., 1999; Chang et al., 1997; Lim et al., 1997, 2000; Madden et al., 1990), daunorubicin 

(Gill et al., 1996; Madden et al., 1990; Muggia, 2001; Pratt et al., 1998), ciprofloxacin 

(Bakker-Woudenberg et al., 2001; Webb et al., 1998b), topotecan (Tardi et al., 2000), 

and vinorelbine, to name a few.  

Of these, the group of Prof. Szoka has been prominent in devising methods for 

the encapsulation of doxorubicin, vincristine, and ciprofloxacin (Szoka, 2004).  

Liposomal delivery systems are finally reaching a stage of development where 

significant advances can reasonably be expected in short terms. The first of the 

conventional drug carriers are reaching the market while new liposomal drugs are being 

developed and entered into clinical trials.  
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These advances stem from the fact that the design features required of drug 

delivery systems that have systemic utility are becoming better defined.  

Based on the studies indicated above, it is now known that liposomal systems 

that are small (diameter 100 nm) and that exhibit long circulation lifetimes (half-life 5 h 

in mice) following intravenous (iv) injection exhibit a remarkable property termed 

‘‘disease site targeting’’ or ‘‘passive targeting’’ that results in large improvements in the 

amounts of drug arriving at the disease site.  

For example, liposomal vincristine formulations can deliver 50- to 100-fold 

higher amounts of drug to a tumor site with respect to the free drug (Boman et al., 1994; 

Mayer et al., 1993; Webb et al., 1995, 1998a).  

This can result in large increases in efficacy (Boman et al., 1994). These 

improvements stem from the increased permeability of the vasculature at tumor sites 

(Brown and Giaccia, 1998; Dvorak et al., 1988) or sites of inflammation, which results 

in preferential extravasation of small, long-circulating carriers in these regions.  

The insights gleaned from conventional drug carriers have implications for the 

design of liposomal systems for the delivery of larger macromolecules.  

There is currently much interest in developing systemic vectors for the delivery 

of the therapeutic genetic drugs such as antisense oligonucleotides or plasmid DNA.  

To obtain appreciable amounts of a vector containing the antisense 

oligonucleotides or therapeutic gene to the site of disease, the vector must be stable, 

small, and long-circulating.  

Of course, the vector must also be accumulated by target cells, escape the 

endocytotic pathway, and be delivered to the nucleus.  

Over the past 20 years, the laboratory of Prof.Szoka has played a major role in 

the development of liposomal systems optimized for the delivery of both conventional 

drugs and, more recently, genetic drugs (Szoka, 2003).  

Early studies on the production of LUVs by extrusion led to the characterization 

of several liposomal drug delivery systems (Bally et al., 1988; Boman et al., 1993, 

1994; Chonn and Cullis, 1995; Cullis et al., 1997; Fenske et al., 1998; Hope and Wong, 

1995; Madden et al., 1990; Maurer-Spurej et al., 1999; Mayer et al., 1986a), the 

development of new approaches for the loading of drugs via generation of ΔpH (Fenske 

et al., 1998; Maurer-Spurej et al., 1999) or other ion gradients (Cheung et al., 1998), and 

finally new methods for the encapsulation of antisense oligonucleotides (Maurer et al., 
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2001; Semple et al., 2000, 2001) and plasmid DNA (Fenske et al., 2002; Maurer et al., 

2001; Mok et al., 1999; Tam et al., 2000; Wheeler et al., 1999) within liposomes.  

 

Encapsulation of Small, Weakly Basic Drugs within LUVs in Response to 

Transmembrane pH and Ion Gradients 

 

The Formation of LUVs by Extrusion Methods 

 

Many research questions in membrane science, specifically those involving the 

dynamic properties of lipid bilayers, can be addressed using very basic model 

membrane systems, such as the multilamellar vesicle (MLV) formed spontaneously 

upon vigorous agitation of lipid–water mixtures.  

These large (1–10 µm) multilamellar liposomes are ideal for biophysical 

investigations of lipid dynamics and order using techniques such as fluorescence, 

electron spin resonance (ESR), or broadband (2H and 31P) nuclear magnetic resonance 

(NMR). However, many properties of biological membranes, such as the presence of 

pH or ion gradients, cannot be adequately modeled using large, multilamellar systems.  

These kinds of studies require the use of unilamellar vesicles in the nanometer 

size range.  

Investigations relating ion and pH gradients to lipid asymmetry (Cullis et al., 

1997, 2000) were the driving force for the development of extrusion technology.  

While it was clear that MLVs were not appropriate for such topics, it was also 

apparent that the methods available for the generation of unilamellar vesicles, which 

included dispersion of lipids from organic solvents (Batzri and Korn, 1973), sonication 

(Huang, 1969), detergent dialysis (Mimms et al., 1981), and reverse-phase evaporation 

(Szoka and Papahadjopoulos, 1978), had serious drawbacks (Cullis, 2000).  

However, Papahadjopolous, Szoka, and co-workers (Olson et al., 1979) and had 

observed that sequential extrusion of MLVs through a series of filters of reducing pore 

size under low pressure gave rise to LUV systems. Further development of this method 

led to an approach involving direct extrusion of MLVs, at relatively high pressures 

(200–400 psi), through polycarbonate filters with a pore size ranging from 30 to 400 

nm.  
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This allowed generation of narrow, monodisperse vesicle populations with a 

narrow size distribution and diameters close to the chosen pore size (Fig. 1) (Hope et 

al., 1985; Mayer et al., 1986).  

The method is rapid and simple and can be performed for a wide variety of lipid 

compositions and temperatures. As it is necessary to extrude the lipid emulsions at 

temperatures 5–10°C above the gel-to-liquid crystalline phase transition temperature, 

the system is manufactured so that it may be attached to a variable-temperature 

circulating water bath.  

 
 

Fig. 1. Freeze-fracture electron micrographs of egg phosphatidylcholine LUVs 
prepared by extrusion through polycarbonate filters with pore sizes of (A) 400 nm, (B) 
200 nm, (C) 100 nm, (D) 50 nm, and (E) 30 nm. The bar in (A) represents 150 nm. 
[Reprinted from Hope, M. J., Bally, M. B., Mayer, L. D., Janoff, A. S., and Cullis, P. R. 
(1986). Chem. Phys. Lipids 40, 89–107, with permission.] 
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2. LOCAL ANESTHETICS: BENZOCAINE, BUTAMBEN, 

PRILOCAINE. 
 

A local anesthetic is a drug that causes reversible local anesthesia and a loss of 

nociception.  

When it is used on specific nerve pathways (nerve block), effects such as 

analgesia (loss of pain sensation) and paralysis (loss of muscle power) can be achieved.  

 

 
 

Clinical local anesthetics belong to one of two classes: aminoamide and 

aminoester local anesthetics.  

Synthetic local anesthetics are structurally related to cocaine. They differ from 

cocaine mainly in that they have no abuse potential and do not act on the 

sympathoadrenergic system, i.e. they do not produce hypertension or local 

vasoconstriction, with the exception of Ropivacaine and Mepivacaine that produce 

weak vasoconstriction.  

Local anesthetics vary in their pharmacological properties and they are used in 

various techniques of local anesthesia such as: 

• Topical anesthesia (surface)  

• Infiltration  

• Plexus block  

• Epidural (extradural) block  



 25 

• Spinal anesthesia (subarachnoid block)  

The local anesthetic lidocaine (lignocaine) is also used as a Class Ib 

antiarhythmic drug. 

 

                Mechanism of action 
 

All local anesthetics are membrane stabilizing drugs; they reversibly decrease the 

rate of depolarization and repolarization of excitable membranes (like nociceptors). 

Though many other drugs also have membrane stabilizing properties, all are not used as 

local anesthetics, for example propranolol.  

Local anesthetic drugs act mainly by inhibiting sodium influx through sodium-

specific ion channels in the neuronal cell membrane, in particular the so-called voltage-

gated sodium channels. When the influx of sodium is interrupted, an action potential 

cannot arise and signal conduction is inhibited.  

The receptor site is thought to be located at the cytoplasmic (inner) portion of the 

sodium channel. Local anesthetic drugs bind more readily to sodium channels in 

inactivated state, thus onset of neuronal blockade is faster in neurons that are rapidly 

firing.  

This is referred to as state dependent blockade. Local anesthetics are weak bases 

and are usually formulated as the hydrochloride salt to render them water-soluble. At 

the chemical's pKa the protonated (ionised) and unprotonated (unionised) forms of the 

molecule exist in an equilibrium but only the unprotonated molecule diffuses readily 

across cell membranes.  

Once inside the cell the local anesthetic will be in equilibrium, with the 

formation of the protonated (ionised form), which does not readily pass back out of the 

cell. This is referred to as "ion-trapping". In the protonated form, the molecule binds to 

the local anaesthetic binding site on the inside of the ion channel near the cytoplasmic 

end. Acidosis such as caused by inflammation at a wound partly reduces the action of 

local anesthetics.  

This is partly because most of the anaesthetic is ionised and therefore unable to 

cross the cell membrane to reach its cytoplasmic-facing site of action on the sodium 

channel. All nerve fibres are sensitive to local anesthetics, but generally, those with a 

smaller diameter tend to be more sensitive than larger fibres.  
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Local anesthetics block conduction in the following order: small myelinated 

axons (e.g. those carrying nociceptive impulses), non-myelinated axons, then large 

myelinated axons. Thus, a differential block can be achieved (i.e. pain sensation is 

blocked more readily than other sensory modalities). 

                    

               Undesired Effects 
 

Localized Adverse Effects 

 
The local adverse effects of anesthetic agents include neurovascular 

manifestations such as prolonged anesthesia (numbness) and paresthesia (tingling, 

feeling of "pins and needles", or strange sensations). These are symptoms of localized 

nerve impairment or nerve damage. 

                    

                   Causes 

 
Causes of localized symptoms include: 

 

1. neurotoxicity due to allergenic reaction,  

2. excessive fluid pressure in a confined space,  

3. severing of nerve fibers or support tissue with the syringe/catheter,  

4. injection-site hematoma that puts pressure on the nerve,  

5. injection-site infection that produces inflammatory pressure on the nerve 

and/or necrosis.  

  

                 General Adverse Effects 

 
General systemic adverse affects are due to the pharmacological effects of the 

anesthetic agents used.  

The conduction of electric impulses follows a similar mechanism in peripheral 

nerves, the central nervous system, and the heart. The effects of local anesthetics are 

therefore not specific for the signal conduction in peripheral nerves. Side effects on the 

central nervous system and the heart may be severe and potentially fatal.  

However, toxicity usually occurs only at plasma levels which are rarely reached 

if proper anesthetic techniques are adhered to.  
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Additionally, persons may exhibit allergenic reactions to the anesthetic 

compounds and may also exhibit cyanosis due to methemoglobinemia. 

 

Central nervous system 

 
Depending on local tissue concentrations of local anesthetics, there may be 

excitatory or depressant effects on the central nervous system. At lower concentrations, 

a relatively selective depression of inhibitory neurons results in cerebral excitation, 

which may lead to generalized convulsions.  

A profound depression of brain functions occurs at higher concentrations which 

may lead to coma, respiratory arrest and death.  

Such tissue concentrations may be due to very high plasma levels after 

intravenous injection of a large dose. Another possibility is direct exposure of the 

central nervous system through the CSF, i.e. overdose in spinal anesthesia or accidental 

injection into the subarachnoid space in epidural anesthesia. 

 

Cardiovascular system 

 
The conductive system of the heart is quite sensitive to the action of local 

anesthetics.  

Lidocaine is often used as an antiarrhythmic drug and has been studied 

extensively, but the effects of other local anesthetics are probably similar to those of 

Lidocaine. Lidocaine acts by blocking sodium channels, leading to slowed conduction 

of impulses.  

This may obviously result in bradycardia, but tachyarrhythmia can also occur. 

With high plasma levels of lidocaine there may be higher-degree atrioventricular block 

and severe bradycardia, leading to coma and possibly death. 

 

Hypersensitivity/Allergy 

 
Adverse reactions to local anesthetics (especially the esters) are not uncommon, 

but true allergy is very rare. Allergic reactions to the esters is usually due to a sensitivity 

to their metabolite, para-aminobenzoic acid (PABA), and does not result in cross-

allergy to amides.  
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Therefore, amides can be used as alternatives in those patients. Non-allergic 

reactions may resemble allergy in their manifestations.  

In some cases, skin tests and provocative challenge may be necessary to establish 

a diagnosis of allergy. There are also cases of allergy to paraben derivatives, which are 

often added as preservatives to local anesthetic solutions. 

 

Methemoglobinemia 

 

The systemic toxicity of prilocaine is comparatively low, however its metabolite, 

o-toluidine, is known to cause methemoglobinemia. As methemoglobinemia reduces the 

amount of hemoglobin that is available for oxygen transport, this side effect is 

potentially life-threatening.  

Therefore dose limits for prilocaine should be strictly observed. Prilocaine is not 

recommended for use in infants. 

 

Local anesthetics in clinical use 
 

Esters are prone to producing allergic reactions, which may necessitate the use of 

Amides.  

The names of Amidic drugs contain an "i" somewhere before the ending-aine. 

Most ester local anesthetics are metabolized by pseudocholinesterases, while amidic 

local anesthetics are metabolized in the liver.  

This can be a factor in choosing an agent in patients with liver failure (Stern, 

2002). 

Esters 

 

• Benzocaine  

• Butamben 

• Chloroprocaine  

• Cocaine  

• Cyclomethycaine  

• Dimethocaine/Larocaine  

• Propoxycaine  

• Procaine/Novocaine  
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• Proparacaine  

• Tetracaine/Amethocaine  

Amides 

 

• Articaine 

• Bupivacaine  

• Carticaine 

• Cinchocaine/Dibucaine  

• Etidocaine  

• Levobupivacaine  

• Lidocaine/Lignocaine  

• Mepivacaine  

• Piperocaine  

• Prilocaine 

• Ropivacaine  

• Trimecaine 

 

Combinations 

 
• Lidocaine/prilocaine (EMLA)  

 

 

2.1 BENZOCAINE 
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Benzocaine is a local anesthetic commonly used as a topical pain reliever. It is 

the active ingredient in many over-the-counter anesthetic ointments. Benzocaine is an 

ester, and can be prepared from the organic acid PABA (para-aminobenzoic acid) and 

ethanol by Fischer esterification.  

The melting point of benzocaine is 88-90 degrees Celsius, and the boiling point 

is 310 degrees Celsius. The density of benzocaine is 1.17 g/cm3. Pain is caused by the 

stimulation of free nerve endings.  

When the nerve endings are stimulated, sodium enters the neuron, which causes 

an electrical potential to build up in the nerve. Once the electrical potential becomes big 

enough the signal is propagated down the nerve toward the central nervous system, 

which interprets this as pain.  

Esters of PABA work as a chemical barrier, stopping the sodium from being able 

to enter the nerve ending. Allergic reactions occur with ester local anaesthetics (like 

benzocaine) because of the PABA structure.  

Benzocaine also is a well-known cause of methemoglobinemia. Since it may be 

used in topical creams with a concentration as much as 20%, it is not difficult to 

administer a dose sufficient to cause this problem. 

 
              2.2 BUTAMBEN 

 

 
 

Butamben (butylamino-benzoate), is a local anesthetic of very limited water 

solubility (approximately 140 mg/L at room temperature). 

Butamben is an ester, and can be prepared from the organic acid PABA (para-

aminobenzoic acid) and ethanol by Fischer esterification. The melting point of 

butamben is 57-59 degrees Celsius. 
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Esters of PABA work as a chemical barrier, stopping the sodium from being able 

to enter the nerve ending. Allergic reactions occur with ester local anaesthetics (like 

benzocaine) because of the PABA structure. 

 

               2.3 PRILOCAINE 

 

Prilocaine hydrochloride (PRLHCl) is a local anaesthetic drug of the amide type. 

The compound is official in the United States Pharmacopoeia (USP) and the 

Pharmacopoeia Europaea and is therapeutically used for intravenous regional anaesthesia 

and in dentistry where it shows a medium duration of action compared to other local 

anaesthetic drug compounds (Saia Cereda et al., 2004). 

 
 

 
Molecular structure of PRLHCl with atom numbers 

 

In none of the previous analytical studies dealing with the solid-state properties 

of PRLHCl the existence of different solid-state forms has been mentioned.  

Moreover, in the Cambridge Structural Database the crystal structures of all 

frequently used LA of the amide type can be found, such as Lidocaine , Lidocaine 

hydrochloride monohydrate, Dibucaine hydrochloride monohydrate, Mepivacaine 

hydrochloride, Bupivacaine hydrochloride, Bupivacaine hydrochloride ethanol solvate, 

Ropivacaine hydrochloride monohydrate, Phenacaine hydrochloride monohydrate (an 

amidine) but not that of PRLHCl.  

The hydrochloride salts of these compounds mostly crystallize in the space group 

P21 and the organization or molecular packing in the crystals show pronounced 
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similarities. Moreover, the protonated drug molecules in all cases (amide type and ester 

type LA) are linked by hydrogen bonds via the chloride anions forming parallel 

orientated, infinitive hydrogen-bonded chains.  

The multiple occurrence of solvated forms within the group of the amide type 

LA is likely due to the ability to form intermolecular hydrogen bonds with the N1 amine 

group.  

The alkyl side chain of the PRLHCl molecule may adopt different 

conformations. Such flexible aliphatic side chains are relevant for the formation of 

different (conformational) polymorphs and this is a common structural feature of local 

anaesthetics. 
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3. NON-STEROIDAL ANTI-INFLAMMATORY DRUGS: 

OXAPROZIN 
 

Non-steroidal anti-inflammatory drugs, usually abbreviated as NSAIDs or 

NAIDs , are drugs with analgesic, antipyretic and, in higher doses, anti-inflammatory 

effects - they reduce pain, fever and inflammation.  

The term "non-steroidal" is used to distinguish these drugs from steroids, which 

(among a broad range of other effects) have a similar eicosanoid-depressing, anti-

inflammatory action. As analgesics, NSAIDs are unusual in that they are non-narcotic 

drugs. NSAIDs are sometimes also referred to as non-steroidal anti-inflammatory 

agents/analgesics (NSAIAs) or non-steroidal anti-inflammatory medicines (NSAIMs). 

The most prominent members of this group of drugs are aspirin, ibuprofen, and 

naproxen. Paracetamol is not an NSAID because, although it is an antipyretic and 

analgesic, it is not an anti-inflammatory drugs. Beginning in 1829, with the isolation of 

salicin from the folk remedy white willow bark, NSAIDs are an important part of the 

pharmaceutical treatment of pain (at low doses) and inflammation (at higher doses).  

Part of the popularity of NSAIDs is that, unlike opioids, they do not produce 

sedation or respiratory depression and have a very low addiction rate. NSAIDs, 

however, are not without their own problems.  

 

Mode of action 

 

Most NSAIDs act as non-selective inhibitors of the enzyme cyclooxygenase, 

inhibiting both the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) 

isoenzymes.  

Cyclooxygenase catalyzes the formation of prostaglandins and thromboxane 

from arachidonic acid (itself derived from the cellular phospholipid bilayer by 

phospholipase A2).  

Prostaglandins act (among other things) as messenger molecules in the process 

of inflammation. A newly discovered COX-3 may also have some role. 
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Uses 

 

NSAIDs are usually indicated for the treatment of acute or chronic conditions 

where pain and inflammation are present.  

Recently research evidenced their potential for prevention of colorectal cancer, 

and treatment of other conditions, such as cancer and cardiovascular diseases. NSAIDs 

are generally indicated for the symptomatic relief of the following conditions:  

 

• Rheumatoid arthritis 

• Osteoarthritis 

• Inflammatory arthropathies (e.g. ankylosing spondylitis, psoriatic arthritis,  

Reiter's syndrome)  

• Acute gout 

• Dysmenorrhoea (menstrual pain)  

• Metastatic bone pain  

• Headache and migraine 

• Postoperative pain  

• Mild-to-moderate pain due to inflammation and tissue injury  

• Pyrexia (fever)  

• Ileus 

• Renal colic  

• They are also given to neonate infants whose ductus arteriosus is not closed 

within 24 hours of birth . 

 

Aspirin, the only NSAID able to irreversibly inhibit COX-1, is also indicated for 

inhibition of platelet aggregation.  

This is useful in the management of arterial thrombosis and prevention of 

adverse cardiovascular events. Aspirin inhibits platelet aggregation by inhibiting the 

action of thromboxane -A. In 2001 NSAIDs accounted for 70,000,000 prescriptions and 

30 billion over-the-counter doses sold annually in the United States (Green, 2001).  

With the aging of the Baby Boomer generation and the associated rise in the 

incidence of osteoarthritis and other such conditions for which NSAIDs are indicated, 

the use of NSAIDs may increase further still.  
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One study has suggested that taking NSAIDs (or COX inhibitors in general) 

while smoking marijuana may prevent the death of brain cells resulting from THC 

intoxication. However, neurotoxicity of marijuana is still a matter of dispute. 

 

3.1 OXAPROZIN 
 

 
 

Oxaprozin (3-(4,5-diphenyl-1,3-oxazol-2-yl) propionic acid) is a Non-Steroidal 

Anti-Inflammatory drug, mainly used for the treatment of pain, pyrexia and various 

inflammatory disorders and joint pain associated with osteoarthritis and rheumatoid 

arthritis.  

 Oxaprozin has become one of the leading NSAIDS on the US market, however 

its low aqueous solubility and poor stability may reduce its therapeutic effectiveness 

and enhance the appearance of some adverse events such as gastro-duodenal mucosal 

injury. Normal adult dosage is 1200 mg daily, not to exceed 1800 mg per day. 
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 4. ORAL ANTI-HYPERGLYCAEMIC DRUGS: 

METFORMIN. 
 

Anti-diabetic drugs treat diabetes mellitus by lowering glucose levels in the 

blood. With the exceptions of insulin, exenatide, and pramlintide, all are administered 

orally and are thus also called oral hypoglycemic agents or oral antihyperglycemic 

agents.  

There are different classes of anti-diabetic drugs, and their selection depends on 

the nature of the diabetes, age and situation of the person, as well as other factors. 

 

Diabetes mellitus type 1 is a disease caused by the lack of insulin. For the 

treatment of type 1 diabetes,  insulin must be used, which must be injected or inhaled. 

 

Diabetes mellitus type 2 is a disease of insulin resistance by cells. Treatments 

include (1) agents which increase the amount of insulin secreted by the pancreas, (2) 

agents which increase the sensitivity of target organs to insulin, and (3) agents which 

decrease the rate at which glucose is absorbed from the gastrointestinal tract. 

 

Several groups of drugs, mostly given by mouth, are effective in Type II 

diabetes, often used in combination.  

The therapeutic drug combination may include insulin, not necessarily because 

oral agents have failed completely, but in search of a desired combination of effects. 

The great advantage of injected insulin in Type II diabetes is that a well-educated 

patient can adjust the dose, or even take additional doses, when requested by blood 

glucose levels measured by the patient himself. 

 

Insulin 

 

Insulin is usually given subcutaneously, either by injections or by an insulin 

pump. Research is underway for other routes of administration. In acute care settings, 

insulin may also be given intravenously. There are several types of insulin, 

characterized by the rate by which they are metabolized by the body. 
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Secretagogues 
 

Sulfonylureas 

 
Sulfonylureas were the first widely used oral hypoglycaemic medications. They 

are insulin secretagogues, triggering insulin release by direct action on the KATP channel 

of the pancreatic beta cells. Eight types of these pills have been marketed in North 

America, but not all remain available.  

The "second-generation" drugs are now more commonly used. They are more 

effective than first-generation drugs and have fewer side effects. All may cause weight 

gain. Sulfonylureas bind strongly to plasma proteins.  

Sulfonylureas are only useful in Type II diabetes, as they work by stimulating 

endogenous release of insulin. They work best with patients over 40 years old, who 

have had diabetes mellitus for less than ten years.  

They can not be used with Type I diabetes, or pregnancy diabetes. They can be 

safely used in association with metformin or glitazones. The primary side effect is 

hypoglycemia. 

 

• First-generation agents  

o tolbutamide  

o acetohexamide  

o tolazamide 

o chlorpropamide  

 

• Second-generation agents  

o glipizide 

o glyburid 

o glimepiride 

o gliclazide   

 

Meglitinides 

 
Meglitinides help the pancreas to produce insulin and are often called "short-

acting secretagogues." Their mode of action is original, affecting potassium channels 

(Rendell, 2004). 



 38 

 By closing the potassium channels of the pancreatic beta cells, they open the 

calcium channels, hence enhancing insulin secretion (Healthvalue, 2007). 

 

They are taken with meals to boost the insulin response to each meal. 

 

• repaglinide- The maximum dosage is 16 mg/day, taken 0 to 30 minutes before 

meals. If a meal is skipped, the medication is also skipped.  

• nateglinide- The maximum dosage is 360 mg/day, usually 120 mg three times 

a day (TID). It also follows the same recommendations as repaglinide.  

 

Adverse reactions include weight gain and hypoglycemia. 

 

Sensitizers 
 

Biguanides 

 
Biguanides reduce hepatic glucose output and increase uptake of glucose by the 

periphery, including skeletal muscle.  

Although it must be used with caution in patients with impaired liver or kidney 

function, metformin has become the most commonly used agent for type 2 diabetes in 

children and teenagers.  

Among the most common anti-diabetic drugs, metformin, a biguanide, is the 

only widely used oral drug that does not cause weight gain. 

• Metformin may be the best choice for patients who also have heart failure 

(Eurich et al., 2007). 

• phenformin used from 1960s through 1980s, withdrawn due to lactic acidosis 

risk.  

• Buformin also withdrawn due to lactic acidosis risk.  

Metformin should be temporarily discontinued before any radiographic 

procedure involving intravenous iodinated contrast as patients are subjected to an 

increased risk of lactic acidosis.  

Metformin is usually the first-line medication used for treatment of Type-2 

diabetes. Initial dosing is 500 mg twice daily, but it can be increased up to 1000 mg 

twice daily.  

It is also available in combination with other oral anti-diabetic medications. 
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4.1 METFORMIN 

 

 
Metformin is an oral anti-diabetic drug bolonging to the biguanide class. It is the 

first-line drug for the treatment of Type 2 diabetes, particularly in overweight and obese 

people and those with normal kidney function, and evidence suggests it may be the best 

choice for people with heart failure.  

Metformin is the most popular anti-diabetic drug in the United States and one of 

the most prescribed drugs in the country overall, with nearly 35 million prescriptions 

filled in 2006 for generic metformin alone. 

It is also used in the treatment of polycystic ovary syndrome. When prescribed 

appropriately, metformin causes few adverse effects—the most common is 

gastrointestinal upset—and, unlike many other anti-diabetic drugs, does not cause 

hypoglycemia if used alone. It also helps to reduce LDL cholesterol and triglyceride 

levels, and may aid weight loss.  

As for 2008, metformin is one of only two oral anti-diabetics in the World 

Health Organization Model List of Essential Medicines (the other being glibenclamide). 

 

Indications 

 

The main use for metformin is in the treatment of diabetes mellitus Type 2, 

especially when this accompanies obesity and insulin resistance. Metformin is the only 

anti-diabetic drug that has been proven to protect against the cardiovascular 

complications of diabetes.  
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This was first shown in the United Kingdom Prospective Diabetes Study, a large 

study of overweight patients with diabetes.  

Unlike the other most-commonly prescribed class of oral anti-diabetic drugs, the 

sulfonylureas, metformin (taken alone) does not induce hypoglycemia. Hypoglycemia 

during intense exercise has been documented, but it is extremely rare.  

It also does not cause weight gain, and may indeed produce minor weight loss. 

Metformin also modestly reduces LDL and triglyceride levels. 

It is also being used increasingly in polycystic ovary syndrome (PCOS), non-

alcoholic fatty liver disease (NAFLD) and premature puberty, three other diseases that 

feature insulin resistance; these indications are still considered experimental.  

Although metformin is not licensed for use in PCOS, the United Kingdom's 

National Institute for Health and Clinical Excellence recommends that women with 

PCOS and a body mass index above 25 be given metformin when other therapies have 

failed to produce results.  

The benefit of metformin in NAFLD has not been extensively studied and may 

be only temporary. It may reduce weight gain in patients taking atypical antipsychotics.  

 

Mechanism of action 

 

Metformin improves hyperglycemia primarily through suppression of hepatic 

glucose production (hepatic gluconeogenesis).  

The "average" person with Type 2 diabetes has three times the normal rate of 

gluconeogenesis; metformin treatment reduces this by over one third. Metformin 

activates AMP-activated protein kinase (AMPK), a liver enzyme that plays an important 

role in insulin signaling, whole body energy balance, and the metabolism of glucose and 

fats; activation of AMPK is required for metformin's inhibitory effect on the production 

of glucose by liver cells.  

Research published in 2008 further elucidated metformin's mechanism of action, 

showing that activation of AMPK is required for an increase in the expression of SHP, 

which in turn inhibits the expression of the hepatic gluconeogenic genes PEPCK and 

Glc-6-Pase.  

Metformin is frequently used in research along with AICAR as an AMPK 

agonist. The mechanism by which biguanides increase the activity of AMPK remains 
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uncertain; however, research suggests that metformin increases the amount of cytosolic 

AMP (as opposed to a change in total AMP or total AMP/ATP).  

In addition to suppressing hepatic glucose production, metformin increases 

insulin sensitivity, enhances peripheral glucose uptake, decreases fatty acid oxidation, 

and decreases absorption of glucose from the gastrointestinal tract.  

Increased peripheral utilization of glucose may be due to improved insulin 

binding to insulin receptors. AMPK probably also plays a role, as metformin 

administration increases AMPK activity in skeletal muscle.  

AMPK is known to cause GLUT4 translocation, resulting in insulin-independent 

glucose uptake.  

Some metabolic actions of metformin appear to occur by AMPK-independent 

mechanisms; a recent study found that "the metabolic actions of metformin in the heart 

muscle can occur independent of changes in AMPK activity and may be mediated by 

p38 MAPK- and PKC-dependent mechanisms”.  

Metformin is not metabolized, but it is primarily excreted in the urine with an 

elimination half-life of 6.2 hours. 
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5. CYCLODEXTRINS 
 

Cyclodextrins (sometimes called cycloamyloses) are a family of cyclic 

oligosaccharides, composed of 5 or more α-D-glucopyranoside units linked 1->4, as in 

amylose (a fragment of starch).  

The 5-membered macrocycle is not natural. Recently, the largest well-

characterized cyclodextrin contains 32 1,4-anhydroglucopyranoside units, while as a 

poorly characterized mixture, even at least 150-membered cyclic oligosaccharides are 

also known.  

The most common cyclodextrins contain a number of glucose monomers ranging 

from six to eight units in a ring, creating a cone shape, thus denoting: 

• α-cyclodextrin: six membered sugar ring molecule  

• β-cyclodextrin: seven sugar ring molecule  

• γ-cyclodextrin: eight sugar ring molecule  

 
 

Cyclodextrins are produced from starch by means of enzymatic reaction.  

Over the last few years they have found a wide range of applications in food, 

pharmaceutical and chemical industries as well as agriculture and environmental 

engineering.  

Cyclodextrins, as they are known today, were called "cellulosine" when first 

described by A. Villiers in 1891. Soon after, F. Schardinger identified the three 

naturally occurring cyclodextrins -α, -β, and -γ. These compounds were therefore 

referred to as "Schardinger sugars".  
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For 25 years, between 1911 and 1935, Pringsheim in Germany was the leading 

researcher in this area, demonstrating that cyclodextrins formed stable aqueous 

complexes with many other chemicals.  

By the mid 1970's, each of the natural cyclodextrins had been structurally and 

chemically characterized and many more complexes had been studied. Since the 1970s, 

extensive work has been conducted by Szejtli and others exploring encapsulation by 

cyclodextrins and their derivatives for industrial and pharmacologic applications.  

 

Structure 

 

Typical cyclodextrins are constituted by 6-8 glucopyranoside units, and can be 

topologically represented as toroids with the larger and the smaller openings of the 

toroid exposing to the solvent secondary and primary hydroxyl groups respectively. 

Because of this arrangement, the interior of the toroids is not hydrophobic, but 

considerably less hydrophilic than the aqueous environment and thus able to host 

hydrophobic molecules.  

In contrast, the exterior is sufficiently hydrophilic to impart cyclodextrins (or 

their complexes) water solubility.  

The formation of the inclusion compounds greatly modifies the physical and 

chemical properties of the guest molecule, mostly in terms of water solubility.  

This is the reason why cyclodextrins have attracted much interest in many fields, 

especially for pharmaceutical applications: since inclusion compounds of cyclodextrins 

with hydrophobic molecules are able to penetrate body tissues, they can be used to 

release biologically active compounds under specific conditions.  

In most cases the mechanism of controlled dissociation of such complexes is 

based on pH change of water solutions, leading to the cleavage of hydrogen or ionic 

bonds between the host and the guest molecules.  
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Synthesis 

 

The production of cyclodextrins is relatively simple and involves treatment of 

ordinary starch with a set of easily available enzymes.  

Commonly cyclodextrin glycosyltransferase (CGTase) is employed along with 

α-amylase. First starch is liquified either by heat treatment or using α-amylase, then 

CGTase is added for the enzymatic conversion.  

CGTases can synthesize all forms of cyclodextrins, thus the product of the 

conversion results in a mixture of the three main types of cyclic molecules, in ratios that 

are strictly dependent on the enzyme used: each CGTase has its own characteristic α:β:γ 

synthesis ratio.  

Purification of the three types of cyclodextrins takes advantage of the different 

water solubility of the molecules: β-CD which is very poorly water soluble (18.5 g/l) (at 

25°C) can be easily retrieved through crystallization while the more soluble α- and γ-

CDs (145 and 232 g/l respectively) are usually purified by means of expensive and time 

consuming chromatography techniques.  

As an alternative, a "complexing agent" can be added during the enzymatic 

conversion step: such agents (usually organic solvents like toluene, acetone or ethanol) 

form a complex with the desired cyclodextrin which subsequently precipitates.  

The complex formation drives the conversion of starch towards the synthesis of 

the precipitated cyclodextrin, thus enriching its content in the final mixture of products. 
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Uses 

 
Cyclodextrins are able to form host-guest complexes with hydrophobic 

molecules given the unique nature imparted by their structure.  

As a result, these molecules have found a number of applications in a wide range 

of fields.  

In addition to the above mentioned pharmaceutical applications for drug release, 

cyclodextrins can be employed in environmental protection: these molecules can 

effectively immobilise inside their rings toxic compounds, like trichloroethane or heavy 

metals, or can form complexes with stable substances, like trichlorfon (an 

organophosphorus insecticide) or sewage sludge, enhancing their decomposition.  

In the food industry cyclodextrins are employed for the preparation of 

cholesterol free products: the bulky and hydrophobic cholesterol molecule is easily 

lodged inside cyclodextrin rings that are then removed.  

Weight loss supplements are marketed from alpha-cyclodextrin which claim to 

bind to fat and be an alternative to anti-obesity medications which avoids their possible 

unpleasant side effects.  

Other food applications include the ability to stabilize volatile or unstable 

compounds and the reduction of unwanted tastes and odour. Cyclodextrins are used in 

alcohol powder, a powder for mixing alcoholic drinks.  

The strong ability of complexing fragrances can also be used for another 

purpose: first dry, solid cyclodextrin microparticles are exposed to a controlled contact 

with fumes of active compounds, then they are added to fabric or paper products. Such 

devices are capable of releasing fragrances during ironing or when heated by human 

body. Such a device commonly used is a typical 'dryer sheet'. The heat from a clothes 

dryer releases the fragrance into the clothing.  

The ability of cyclodextrins to form complexes with hydrophobic molecules has 

led to their usage in supramolecular chemistry. In particular they have been used to 

synthesize certain mechanically-interlocked molecular architectures, such as rotaxanes 

and catenanes, by reacting the ends of the threaded guest.  

The application of cyclodextrin as supramolecular carrier is also possible in 

organometallic reactions. The mechanism of action probably take place in the interfacial 

region (Leclercq L. et al.,2007).  
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Wipff also demonstrated by computational study that the reaction occurs in the 

interfacial layer. The application of cyclodextrins as supramolecular carrier is possible 

in various organometallic catalysis.  

Both β-cyclodextrin and MβCD remove cholesterol from cultured cells. The 

methylated form MβCD was found to be more efficient than β-cyclodextrin.  

The water-soluble MβCD is known to form soluble inclusion complexes with 

cholesterol, thereby enhancing its solubility in aqueous solution.  

Methyl-β-cyclodextrin is employed for the preparation of cholesterol-free 

products: the bulky and hydrophobic cholesterol molecule is easily lodged inside 

cyclodextrin rings that are then removed.  

It is also employed to disrupt lipid rafts by removing cholesterol from 

membranes. 

 

Study of inclusion complex  

 

There is a direct correlation between the stability of the complex and the 

improvement of the solubility of the "guest" molecule.  

To express quantitatively the increase in solubility, may therefore be useful to 

calculate the Association Constant Kc of the complex. 

This is calculated at constant temperature and pH, considering the following 

equilibrium: 

CD + G  CDG      (M-1) 

The method most used to study the formation of the complex of inclusion and to 

get the Kc is that of Higuchi and Connors (Higuchi et al., 1965), with whom is studied 

the change in solubility of the drug with increasing concentration of cyclodextrin.  

The diagrams obtained are of two types, called A and B.  

The curves of type A indicate the formation of inclusion complexes soluble, 

while those of type B are related to complexes with low solubility (Bs) or insoluble 

(Bi). 
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In the case of complexes of drug-cyclodextrin 1:1 molar ratio, can be calculated 

the costant association  from the slope of the linear portion of the curve: 

 

K = slope x S0 (1-slope) 

 

Where S0 is the solubility of the drug without cyclodextrin.  

Important factors that affect the formation and stability of the complex in 

solution are the temperature, pH, the presence of other solutes and other solvent. 

The choice of the method of solid complex preparation (grinding, kneading, etc.) 

can greatly influence the formation and the properties of the final product.  

The most effective method depends on the type of drug and cyclodextrin and 

must be selected case by case. 

 

Methods of formation of drug – cyclodextrin complex  

 

The preparation of drug–cyclodextrin binary systems in solid form can be carried 

out in various ways.  

Although the various techniques are not particularly difficult, it should be 

considered that there is not an effective method for any type of drug and cyclodextrin. 

Moreover, the product is always a mixture, i.e. a combination of complex and the 

molecule "guest" not included and empty cyclodextrin.  

The most effective techniques are generally those that provide a solid-state 

conversion of a solution containing the drug and cyclodextrins; in this case the main 

problem is often the identification of a effective common solvent. 
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1) The spray drying technique (SP) plans to separately solubilise the drug and 

cyclodextrin in the minimum amount of solvent, join the two solutions and remove the 

solvent by spray-drying.  

2) The coevaporation technique (COE) consists of preparing the solution of two 

components in the same way and the subsequent evaporation of the solvent, performed 

by using a rotavapor.  

3) The co-lyophilization technique (COL) has the fundamental requisite of an 

adequate water solubility of both the drug and the cyclodextrin. Again the two 

substances are dissolved separately and the two solutions are then combined, and 

freezed to about -20 ° C, then the solvent is sublimated by lyophilization. 

 

A reference is always prepared, constituted by the simple physical mixture (PM) 

of the two powders in the stoichiometric ratio as defined by solubility phase studies. 

Other preparation procedures used are cogrinding (GR) in ball mill, or kneading  (KN) 

in a mortar, or heating in sealed container (SH).  

All methods lead to partial or total inclusion of the drug in cyclodextrin and can 

reduce the degree of crystallinity of the drug to obtain an amorphous product, stabilized 

by the presence of cyclodextrins, with better characteristics of dissolution rate.  

The most effective method  depends on the type of drug and cyclodextrin, and 

must be experimentally selected. 

 

Advantages and disadvantages in the use of cyclodextrins  
 

Increased solubility  

 

The most obvious advantage in the use of cyclodextrins is to increase the 

solubility of drugs not readily soluble in water, and thereby increase their 

bioavailability.  

The cyclodextrin complexation can be useful even for drugs soluble in water: it 

can improves the absorption of these substances for through skin or mucous 

membranes.  

To explain this action different theories, have been developed (Loftsson et al., 

1997).  
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Firstly the increase in solubility of the drug improves its availability on the 

surface of the absorption barrier (skin, mucous membranes, eye, etc).  

It was noted that the choice of solvent, for its importance on the partition 

coefficient between vehicle and membrane, can markedly influence the improvement of 

bioavailability obtained with the cyclodextrins.  

Another important mechanism is involved. It has been described the ability of 

cyclodextrins to remove cholesterol from biological membranes, thus increasing the 

fluidity of membranes and facilitating the permeation of drugs, especially water-soluble 

(Matsuda et al., 1999). Unlike other enhancers, the cyclodextrins seem solubilise 

components of the membrane without entering inside, thus demonstrating a moderate 

and reversible effect. 

 

Reduced toxic effects  

 

The cyclodextrins were also employed to reduce the irritation caused by certain 

drugs.  

The increased efficiency and improved therapeutic activity can help to reduce the 

doses and therefore the toxicity of different active ingredients.  

In addition, the increase in solubility achieved by the inclusion in cyclodextrins 

can reduce the risks in the parenteral administration of compounds not readily soluble in 

water. 

 

Increased stability  

 

The cyclodextrins can improve the stability of many drugs, protecting them from 

dehydration, oxidation, hydrolysis.  

This sort of "molecular shield" offers protection against both interactions with 

the solvent and metabolic reactions. In some cases, the reactions are reduced 

degradation rate of more than 100 times (Nicolazzi et al., 2002). 

 

Checking the time of action  

 

The cyclodextrins are widely used in pharmaceutical formulations for a 

controlled release over time.  
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The hydrophilic derivatives (idrossipropilβ, dimetilβ, solfobutilβ, etc.) are 

particularly useful to shorten the on-set time of drugs not readily soluble in water; the 

hydrophobic ones (triacetilβ, etc.) may prolong the action of well-soluble drugs in their  

aqueous phase.  

Combining different cyclodextrins or integrating them with other drug delivery 

systems (liposomes, microspheres, etc) it is possible to adjust in various ways the drug 

bioavailability, for example simultaneously exploiting both effects: longer duration of 

action and shortening of the onset time (Ma et al., 2000).  

 

Limitations and problems  

 

In the use of cyclodextrins there are some difficulties to be taken into account. 

One of these is obtaining high efficiency of encapsulation, which depends on several 

factors: the size of the drug, the type of cyclodextrins, the technique of preparation of 

the complex, the choice of solvent.  

Another problem is the high molecular weight of cyclodextrins, which requires 

the use of large quantities of the substance and this could lead to pharmaceutical 

formulations of excessive size or volume.  

Further limits may be toxicity, the high cost, low solubility of natural 

cyclodextrins (Hirayama et al., 1999). 

 

Other types of cyclodextrins 

 

The natural cyclodextrins contain 18 (αCD), 21 (βCD) or 24 (γCD) hydroxyl 

groups that can be chemically modified. Many derivatives of natural cyclodextrins have 

been prepared to suitably modify their physical chemical characteristics, reduce the 

toxicity or increase the capacity of inclusion (Szente et al., 1999).  

There are several ways to quantitatively express the degree of substitution..  

The degree of molar substitution (MS) is the average value of moles of 

substituent agent, such as an acetyl group, for each mole of glucopyranose. In some 

cases, the group added contains points of attachment for more groups, which can also 

happen to form new binding reactions during the changeover.  

Then you can also find MS values higher than 3 per unit glucopyranose.  
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The degree of substitution (DS) is the average number of Hydroxyl groups 

replaced in each unit glucopyranose. Since each unit contains three Hydroxyl groups, 

this is the maximum possible value of DS. 

 

Hydroxypropyl β cyclodextrin (HPβCD)  

 

The HPβCD can be used for parenteral administration. The functionalization of 

hydroxyl has significantly reduced the haemolytic and nephrotoxicity effects of natural 

βCD.  

From in vitro studies HPβCD is not teratogenic; in acute toxicity studies on 

monkeys, a dose of 1 g / kg e.v. was not lethal (Brewster et al., 1990).  

The HPβCD does not accumulate in the body, the clearance is complete in a 

short time: in rats and dogs as long plasma half-life after intravenous administration is 

respectively 0.4 and 0.8 hours (Monbaliu et al., 1990).  

The chronic toxicity was studied in rats and no effect was observed after 

treatment of 50 mg /kg. A dose of 400 mg / kg was found to give blood renal and 

metabolic toxicity (changes in weight).  

Many of these effects are reversible after treatment.  

At these doses, although high, were not detected effects of embryotoxicity or 

teratogenicity in rabbits. Fertility problems were found only in rats (Coussement et al., 

1990). 

 

Triacetyl β cyclodextrin (TAβCD) 

 

In literature is reported the use of TAβ derivatives as carriers of drugs very 

soluble in water, in order to slow down the dissolution in aqueous media and gain 

extended-release forms.  

Even if some research about the subcutaneously administration of this 

cyclodextrin (Matsubara et al., 1994), has been conducted there are no sufficient data to 

ensure the safety of parenteral use. 
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6. CHEMOTHERAPEUTIC DRUGS: IRINOTECAN 
 

Chemotherapy, in its most general sense (Chemotherapy, Dorland's Medical 

Dictionary), refers to treatment of disease by chemicals that kill cells, specifically those 

of micro-organisms or cancer. In popular usage, it will usually refer to antineoplastic 

drugs used to treat cancer or the combination of these drugs into a cytotoxic 

standardized treatment regimen as opposed to a targeted therapy.  

In its non-oncological use, the term  may also refer to antibiotics (antibacterial 

chemotherapy). In that sense, the first modern chemotherapeutic agent was Paul 

Ehrlich's arsphenamine, an arsenic compound discovered in 1909 and used to treat 

syphilis.  

This was later followed by sulfonamides discovered by Domagk and penicillin 

discovered by Alexander Fleming. Other uses of cytostatic chemotherapeutic agents 

(including the ones mentioned below) are the treatment of autoimmune diseases such as 

multiple sclerosis and rheumatoid arthritis and the suppression of transplant rejections 

(see immunosuppression and DMARDs).  

The use of chemical substances and drugs as medication can be traced back to 

the ancient Indian system of medicine called Ayurveda, which uses many metals 

besides herbs for treatment of a large number of ailments.  

More recently, Persian physician, Muhammad ibn Zakarīya Rāzi (Rhazes), in the 

10th century, introduced the use of chemicals such as vitriol, copper, mercuric and 

arsenic salts, sal ammoniac, gold scoria, chalk, clay, coral, pearl, tar, bitumen and 

alcohol for medical purposes.  

The first drug used for cancer chemotherapy, however, dates back to the early 

20th century, though it was not originally intended for that purpose. Mustard gas was 

used as a chemical warfare agent during World War I and was studied further during 

World War II.  

During a military operation in World War II, a group of people were accidentally 

exposed to mustard gas and were later found to have very low white blood cell counts 

(Hirsch, 2006). It was reasoned that an agent that damaged the rapidly-growing white 

blood cells might have a similar effect on cancer.  

Therefore, in the 1940s, several patients with advanced lymphomas (cancers of 

certain white blood cells) were given the drug by vein, rather than by breathing the 
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irritating gas. Their improvement, although temporary, was remarkable (Goodman et 

al., 1946,1984).  

That experience led researchers to look for other substances that might have 

similar effects against cancer.  

As a result, many other drugs have been developed to treat cancer, and drug 

development since then has exploded into a multibillion-dollar industry.  

The targeted-therapy revolution has arrived, but the principles and limitations of 

chemotherapy discovered by the early researchers still apply (Joensuu, 2008).  

Cancer is the uncontrolled growth of cells coupled with malignant behavior: 

invasion and metastasis. Cancer is thought to be caused by the interaction between 

genetic susceptibility and environmental toxins. 

In the broad sense, most chemotherapeutic drugs work by impairing mitosis (cell 

division), effectively targeting fast-dividing cells. As these drugs cause damage to cells 

they are termed cytotoxic. Some drugs cause cells to undergo apoptosis (so-called 

"programmed cell death").Scientists have yet to identify specific features of malignant 

and immune cells that would make them uniquely targetable (barring some recent 

examples, such as the Philadelphia chromosome as targeted by imatinib).  

This means that other fast-dividing cells, such as those responsible for hair 

growth and for replacement of the intestinal epithelium (lining), are also often affected. 

However, some drugs have a better side-effect profile than others, enabling doctors to 

adjust treatment regimens to the advantage of patients in certain situations.  

As chemotherapy affects cell division, tumors with high growth fractions (such 

as acute myelogenous leukemia and the aggressive lymphomas, including Hodgkin's 

disease) are more sensitive to chemotherapy, as a larger proportion of the targeted cells 

are undergoing cell division at any time. Malignancies with slower growth rates, such as 

indolent lymphomas, tend to respond to chemotherapy much more modestly.  

Drugs affect "younger" tumors (i.e., more differentiated) more effectively, 

because mechanisms regulating cell growth are usually still preserved. With succeeding 

generations of tumor cells, differentiation is typically lost, growth becomes less 

regulated, and tumors become less responsive to most chemotherapeutic agents.  

Near the center of some solid tumors, cell division has effectively ceased, 

making them insensitive to chemotherapy. Another problem with solid tumors is the 

fact that the chemotherapeutic agent often does not reach the core of the tumor. 

Solutions to this problem include radiation therapy (both brachytherapy and teletherapy) 
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and surgery. Over time, cancer cells become more resistant to chemotherapy treatments. 

Recently, scientists have identified small pumps on the surface of cancer cells that 

actively move chemotherapy from inside the cell to the outside. Research on p-

glycoprotein and other such chemotherapy efflux pumps, is currently ongoing. 

Medications to inhibit the function of p-glycoprotein are undergoing testing as of June, 

2007 to enhance the efficacy of chemotherapy.  

There are a number of strategies in the administration of chemotherapeutic drugs 

used today. Chemotherapy may be given with a curative intent or it may aim to prolong 

life or to palliate symptoms. Combined modality chemotherapy is the use of drugs with 

other cancer treatments, such as radiation therapy or surgery.  

Most cancers are now treated in this way. Combination chemotherapy is a 

similar practice that involves treating a patient with a number of different drugs 

simultaneously. The drugs differ in their mechanism and side-effects.  

The biggest advantage is minimising the chances of resistance developed by any 

one agent. In neoadjuvant chemotherapy (preoperative treatment) initial chemotherapy 

is aimed at shrinking the primary tumour, thereby rendering local therapy (surgery or 

radiotherapy) less destructive or more effective. Adjuvant chemotherapy (postoperative 

treatment) can be used when there is little evidence of cancer present, but there is risk of 

recurrence. This can help reduce chances of developing resistance.  

It is also useful in killing any cancerous cells which have spread to other parts of 

the body. This is often effective as the newly growing tumours are fast-dividing, and 

therefore very susceptible.  

Palliative chemotherapy is given without curative intent, but simply to decrease 

tumor load and increase life expectancy. For these regimens, a better toxicity profile is 

generally expected.  

All chemotherapy regimens require that the patient be capable of undergoing the 

treatment. Performance status is often used as a measure to determine whether a patient 

can receive chemotherapy, or whether dose reduction is required. 

 

Types of chemotherapeutic drugs 

 

The majority of chemotherapeutic drugs can be divided in alkylating agents, 

antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other 

antitumour agents.  
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All of these drugs affect cell division or DNA synthesis and function in some 

way. Some newer agents do not directly interfere with DNA.  

These include monoclonal antibodies and the new tyrosine kinase inhibitors e.g. 

imatinib mesylate (Gleevec or Glivec), which directly targets a molecular abnormality in 

certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal 

tumors). These are examples of targeted therapies.  

In addition, some drugs that modulate tumor cell behaviour without directly 

attacking those cells may be used. Hormone treatments fall into this category of 

adjuvant therapies.  

Where available, Anatomical Therapeutic Chemical Classification System codes 

are provided for the major categories. 

 

Alkylating agents  

 
Alkylating agents are so named because of their ability to add alkyl groups to 

many electronegative groups under conditions present in cells.  

Cisplatin and carboplatin, as well as oxaloplatin, are alkylating agents. Other 

agents are mechlorethamine, cyclophosphamide, chlorambucil.  

They work by chemically modifying a cell's DNA. 

 

Anti-metabolites  

 
Anti-metabolites masquerade as purine (azathioprine, mercaptopurine) or 

pyrimidine - which become the building blocks of DNA.  

They prevent these substances from becoming incorporated in to DNA during 

the "S" phase (of the cell cycle), stopping normal development and division.  

They also affect RNA synthesis. Due to their efficiency, these drugs are the most 

widely used cytostatics. 

 

Plant alkaloids and terpenoids  

 
These alkaloids are derived from plants and block cell division by preventing 

microtubule function.  

Microtubules are vital for cell division, and, without them, cell division cannot 

occur. The main examples are vinca alkaloids and taxanes. 
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Vinca alkaloids  

 
Vinca alkaloids bind to specific sites on tubulin, inhibiting the assembly of 

tubulin into microtubules (M phase of the cell cycle).  

They are derived from the Madagascar periwinkle, Catharanthus roseus 

(formerly known as Vinca rosea).  

The vinca alkaloids include: 

• Vincristine 

• Vinblastine  

• Vinorelbine  

• Vindesine  

 

Podophyllotoxin  

 

Podophyllotoxin is a plant-derived compound which is said to help with 

digestion as well as used to produce two other cytostatic drugs, etoposide and 

teniposide.  

They prevent the cell from entering the G1 phase (the start of DNA replication) 

and the replication of DNA (the S phase). The exact mechanism of its action is not yet 

known. 

The substance has been primarily obtained from the American Mayapple 

(Podophyllum peltatum).  

Recently it has been discovered that a rare Himalayan Mayapple (Podophyllum 

hexandrum) contains it in a much greater quantity, but, as the plant is endangered, its 

supply is limited.  

Studies have been conducted to isolate the genes involved in the substance's 

production, so that it could be obtained recombinantively. 

 

Taxanes  

 
The prototype taxane is the natural product paclitaxel, originally known as Taxol 

and first derived from the bark of the Pacific Yew tree.  

Docetaxel is a semi-synthetic analogue of paclitaxel. Taxanes enhance stability 

of microtubules, preventing the separation of chromosomes during anaphase. 
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Topoisomerase inhibitors  

 
Topoisomerases are essential enzymes that maintain the topology of DNA. 

Inhibition of type I or type II topoisomerases interferes with both transcription and 

replication of DNA by upsetting proper DNA supercoiling. 

• Some type I topoisomerase inhibitors include camptothecins: irinotecan and 

topotecan.  

• Examples of type II inhibitors include amsacrine, etoposide, etoposide 

phosphate, and teniposide. These are semisynthetic derivatives of epipodophyllotoxins, 

alkaloids naturally occurring in the root of American Mayapple (Podophyllum peltatum) 

 

Antitumour antibiotics  

 
These include the immunosuppressant dactinomycin (which is used in kidney 

transplantations), doxorubicin, epirubicin, bleomycin and others. 

 

Monoclonal antibodies 

 

Monoclonal antibodies work by targeting tumour specific antigens, thus 

enhancing the host's immune response to tumour cells to which the agent attaches itself. 

Examples are trastuzumab (Herceptin), cetuximab, and rituximab (Rituxan or 

Mabthera).  

Bevacizumab (Avastin) is a monoclonal antibody that does not directly attack 

tumor cells but instead blocks the formation of new tumor vessels. 

 

Hormonal therapy 

 
Several malignancies respond to hormonal therapy, which, in the strict sense, is 

not chemotherapy.  

Cancer arising from certain tissues, including the mammary and prostate glands, 

may be inhibited or stimulated by appropriate changes in hormone balance. 

• Steroids (often dexamethasone) can inhibit tumour growth or the associated 

edema (tissue swelling), and may cause regression of lymph node malignancies. 

Dexamethasone is also an antiemetic, so it may be used with cytotoxic chemotherapy 

even if it has no direct effect on the cancer.  
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• Prostate cancer is often sensitive to finasteride, an agent that blocks the 

peripheral conversion of testosterone to dihydrotestosterone.  

• Breast cancer cells often highly express the estrogen and/or progesterone 

receptor. Inhibiting the production (with aromatase inhibitors) or action (with 

tamoxifen) of these hormones can often be used as an adjunct to therapy.  

• Gonadotropin-releasing hormone agonists (GnRH), such as goserelin possess 

a paradoxical negative feedback effect followed by inhibition of the release of FSH 

(follicle-stimulating hormone) and LH (luteinizing hormone), when given continuously.  

Some other tumours are also hormone-dependent, although the specific 

mechanism is still unclear. 

 

Side-effects 

 
The treatment can be physically exhausting for the patient. Current 

chemotherapeutic techniques have a range of side effects mainly affecting the fast-

dividing cells of the body.  

Important common side-effects include (dependent on the agent): 

• Pain 

• Nausea and vomiting 

• Diarrhea or constipation 

• Anemia  

• Malnutrition  

• Hair loss 

• Memory loss 

• Depression of the immune system, hence (potentially lethal) infections and 

sepsis 

• Weight loss or gain  

• Hemorrhage 

• Secondary neoplasms 

• Cardiotoxicity 

• Hepatotoxicity 

• Nephrotoxicity 

• Ototoxicity 
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Immunosuppression and myelosuppression 

 
Virtually all chemotherapeutic regimens can cause depression of the immune 

system, often by paralysing the bone marrow and leading to a decrease of white blood 

cells, red blood cells, and platelets.  

The latter two, when they occur, are improved with blood transfusion. 

Neutropenia (a decrease of the neutrophil granulocyte count below 0.5 x 109/litre) can 

be improved with synthetic G-CSF (granulocyte-colony stimulating factor, e.g., 

filgrastim, lenograstim, Neupogen, Neulasta).  

In very severe myelosuppression, which occurs in some regimens, almost all the 

bone marrow stem cells (cells that produce white and red blood cells) are destroyed, 

meaning allogenic or autologous bone marrow cell transplants are necessary. (In 

autologous BMTs, cells are removed from the patient before the treatment, multiplied 

and then re-injected afterwards; in allogenic BMTs the source is a donor).  

However, some patients still develop diseases because of this interference with 

bone marrow. 

 

Nausea and vomiting 

 
Nausea and vomiting caused by chemotherapy; stomach upset may trigger a 

strong urge to vomit, or forcefully eliminate what is in the stomach.  

Stimulation of the vomiting center results in the coordination of responses from 

the diaphragm, salivary glands, cranial nerves, and gastrointestinal muscles to produce 

the interruption of respiration and forced expulsion of stomach contents known as 

retching and vomiting.  

The vomiting center is stimulated directly by afferent input from the vagal and 

splanchnic nerves, the pharynx, the cerebral cortex, cholinergic and histamine 

stimulation from the vestibular system, and efferent input from the chemoreceptor 

trigger zone (CTZ). The CTZ is in the area postrema, outside the blood-brain barrier, 

and is thus susceptible to stimulation by substances present in the blood or cerebral 

spinal fluid.  

The neurotransmitters dopamine and serotonin stimulate the vomiting center 

indirectly via stimulation of the CTZ. The 5-HT3 inhibitors are the most effective 

antiemetics and constitute the single greatest advance in the management of nausea and 

vomiting in patients with cancer.  
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These drugs are designed to block one or more of the signals that cause nausea 

and vomiting. The most sensitive signal during the first 24 hours after chemotherapy 

appears to be 5-HT3. Blocking the 5-HT3 signal is one approach to preventing acute 

emesis (vomiting), or emesis that is severe, but relatively short-lived. Approved 5-HT3 

inhibitors include Dolasetron (Anzemet), Granisetron (Kytril), and Ondansetron 

(Zofran).  

The newest 5-HT3 inhibitor, palonosetron (Aloxi), also preventing delayed 

nausea and vomiting, which occurs during the 2-5 days after treatment. Another drug to 

control nausea in cancer patients became available in 2005.  

The substance P inhibitor aprepitant (marketed as Emend) has been shown to be 

effective in controlling the nausea of cancer chemotherapy.  

The results of two large controlled trials were published in 2005, describing the 

efficacy of this medication in over 1,000 patients (Gralla et al., 2005).  

Some studies (Tramer et al., 2001) and patient groups claim that the use of 

cannabinoids derived from marijuana during chemotherapy greatly reduces the 

associated nausea and vomiting, and enables the patient to eat. Some synthetic 

derivatives of the active substance in marijuana (Tetrahydrocannabinol or THC) such as 

Marinol may be practical for this application.  

Natural marijuana, known as medical cannabis is also used and recommended by 

some oncologists, though its use is regulated and not legal everywhere. 

 

Other side-effects 

 
In particularly, large tumors, such as large lymphomas, some patients develop 

tumor lysis syndrome from the rapid breakdown of malignant cells.  

Although prophylaxis is available and is often initiated in patients with large 

tumors, this is a dangerous side-effect that can lead to death if left untreated.  

Some patients report fatigue or non-specific neurocognitive problems, such as an 

inability to concentrate; this is sometimes called post-chemotherapy cognitive 

impairment, referred to as "chemo brain" by patients' groups (Tannock et al., 2004).  

Specific chemotherapeutic agents are associated with organ-specific toxicities, 

including cardiovascular disease (e.g., doxorubicin), interstitial lung disease (e.g., 

bleomycin) and occasionally secondary neoplasm (e.g., MOPP therapy for Hodgkin's 

disease). 
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6.1 IRINOTECAN 

 

 
 
Irinotecan (7-ethyl- 1 O-(4-[ 1 -piperidino]- I-piperidino) carboxylcamptothecin, 

CPT- 11) is a water-soluble prodrug that can be converted to SN-38, an active 

metabolite that exhibits antitumor activity via the inhibition of topoisomerase I activity.  

 

 

 
 

 

This camptothecin-based drug has passed clinical trials and is currently approved 

for the treatment of colonic, ovarian, and small cell lung cancer, and is increasingly 

used in combination with other standard chemotherapeutic agents for enhanced therapy. 

However, irinotecan was discovered to have serious side effects such as 

myelosuppression and gastrointestinal disorders (mainly diarrhea), which are 

recognized as constituting dose-limiting toxicity for this drug.  
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The basic labile characteristic of the lactone E ring in irinotecan is reversible and 

pH-dependent hydrolysis yields the inactive carboxylate species. Only lactone species 

can inhibit topoisomerase 1, but this active molecule is very rarely found under 

physiological conditions.  

Consequently, finding an effective drug delivery system to reduce toxicity and 

preserve the active form of the drug is very important. 
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7. EXPERIMENTAL DESIGN 
 

Experimentation is generally carried out to determine the relationship between 

factors acting on the system and the response or properties of the system. The 

information is then used to achieve the aims of the project (Goupy, 1993).  

One way of finding out which factors have an effect would be to change them 

one at a time (Lewis et al., 1999). The response y is then measured as a function of 

several values of the unfixed variable x1. At the end of the experiment on this first 

variable, a curve is drawn of  y= f( x1). It the experimenter wishes to study all the 

variables, the whole experiment must be repeated for each one (Goupy, 1993). This one-

factor-at-a-time method (OVAT) is inefficient, can give misleading results, and in 

general should be avoided (Lewis et al., 1999).  

In the vast majority of cases the preferred approach is to vary all factors together 

in a programmed and rational way, thus a maximum of information is gained from a 

minimum of experiments (Lewis et al., 1999). This strategy is called experimental 

design and can be defined as setting up experiments in such a manner that the 

information required is obtained as efficiently and precisely as possible (Lewis et al., 

1999). This chemometric tool offers several advantages and some of these are (Goupy, 

1993):  

• Fewer trials 

• Large number of factors studied 

• Detection of interaction between factors 

• Detection of optima 

• Best result precision 

• Optimisation of results 

• Model-building from the results. 

 

Common terms used in experimental design are here introduced and defined 

(Lundstedt et al., 1998): 

Experimental domain: the experimental range that is investigated (defined by the 

variation of the 

experimental variables); 

Factors: experimental variables that can be changed independently of each other; 

Independent variables: same as factors; 
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Continuous variables: independent variables that can be changed continuously; 

Discrete variables: independent variables that are changed step-wise; 

Responses: the measured value of the result(s) from experiments; 

Residual: the difference between the calculated and the experimental result. 

 

The response is a measurable manifestation of  the results obtained varying the studied 

factors.  

If k factors are considered, the response y can be written as  y= f(x1,x2,….xk), where f is a 

polynomial function (Peissik, 1995). The objective of the experimenter is to describe 

the dependence existing between an experimental response and the chosen factors by a 

mathematical model.  

There are different kinds of models to apply (Lundstedt et al., 1998):  

• Linear model (ε is the experimental error)  

!"""" +++++= kk xxxy ...
22110

 

• Linear model with an interaction between the different experimental variables 

(j≠k) 

.........
322311211222110
+++++++++= xxxxxxxxxy kkkk !!!!!!!  

!"" +++++ .........
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• Quadratic model 

!"""""""" +++++++++++=
22
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Independently from the kind of postulated model, the researcher is required to 

supply minimum and maximum values for each factor that define the experimental 

domain to be investigated during the optimization procedure.  

The combination of the different factor levels used to perform the actual 

experiments are then decided by which statistical design is chosen to estimate the 

coefficients of the model (Costa Ferreira et al., 2007).  

The experiments are then run in random chronological order, so that it is possible 

to prevent an uncontrolled factor causing a biased result.  

After estimating the model, analysis of variance (ANOVA) is performed on the 

regression results so that the most appropriate model with no evidence of lack of fit can 

be used to represent the data. 
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Statistical designs can be in outline classified in screening designs and response 

surface designs.  

Screening designs present two levels for each factor and provide simple models 

with information about dominating variables and information about ranges; linear 

models and interaction models are sufficient. In addition, screening designs provide few 

experiments/factors ratio which means that relevant information is gained in only a few 

experiments (Trygg & Wold, 2002). 

In full factorial design every level of a factor is investigated at both levels of all 

the other factors and this design allows the estimation of a factor independent of all the 

other effects. However, investigating more than 5 factors with the full fractional design 

becomes time consuming.  

In this case it is preferable to use a fractional factorial design, which  reduces the 

experimental runs without the loss of too much information regarding the estimated 

factors involved.  

This type of design is the most used for screening phase and takes advantage of 

the fact that 3-way and higher interactions are seldom significant. The downside is the 

loss of information for not performing all experiments (Trygg & Wold, 2002). Finally, 

if the effect of many factors is to be studied, Plackett-Burman designs can be efficiently 

used for estimating only the main effects (Lewis et al., 1999). 

After screening, the goal of the investigation is usually to create a valid map of 

the experimental domain given by the significant factors and their ranges. This is done 

performing response surface methodology (RSM), where a quadratic polynomial model 

is estimated.  

The higher order model has an increased complexity and therefore also requires 

more experiments than screening designs (Trygg & Wold, 2002). The most common 

used design in RSM are Central Composite, Box-Behnken, Doehlert and mixture 

designs, where factors are investigated at least at three levels and thus curved 

dependences can be modelled (Costa Ferreira et al., 2007). 

After running the experiments according to the experimental plan, the 

coefficients of the model are estimated and the obtained model is then examined by 

ANOVA to evaluate regression significance and lack of fit. 

SST is the total sum of squares of differences between the experimental values 

and the grand average of the data set. This sum has n-1 degrees of freedom since it 

represents the total variance in the data (Costa Ferreira et al., 2007). The total data 
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variance SST is divided into two main contributions, the sum of squares explained by the 

regression, SSregr , and the residual sum of squares, SSresid.  

Both summations are taken over all the experimental design levels, i= 1,2,…m 

and all the replicates performed at each level, j=1,2,…ni. SSregr  is a sum of squares of 

differences between values predicted by the regression and the average of all the 

response values and has p-1 degrees of freedom, where p is the number of coefficients 

in the model. SSresid is a sum of squares of differences or residuals between all the 

experimental values and the predicted values from the model.  

It has n-p degrees of freedom, where n is the total number of experimental data 

used to determine the model. Regression significance can be tested by comparing the 

calculated variance ratio between regression and residuals with the tabled F-  

distribution value for p-1 and n-p degrees of freedom at the desired confidence level, 

usually 95%. The regression is significant if the calculated value is greater than the 

tabled one (Costa Ferreira et al., 2007). 

If there are replicates among the experiments, model quality can be judged by 

decomposing the SSresid into two contributions, the lack-of-fit and the pure error sums of 

squares, SSlof  and SSpe.  

The SSlof  is a sum of squares of differences between the values predicted at each 

level and the average experimental value at that level and has m-p degrees of freedom, 

where m is the number of distinct levels in the experimental design. The SSpe is a sum of 

squares of differences between all the individual experimental values and the average of 

the experimental values at the same level.  

It has n-m degrees of freedom. Regression lack of fit is determined performing 

an F-test by comparing the calculated variance ratio between lack of fit and pure 

experimental error with the tabled F-value for m-p and n-m degrees of freedom at the 

desired confidence level, usually 95%.  

If the calculated quotient is greater than the tabled value there is evidence of 

model lack of fit and the model must be discarded. If not, the model can be accepted at 

this confidence level as providing an adequate representation of the data (Costa Ferreira 

et al., 2007).  
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Table 1: ANOVA table 
Source of 

variation 

Sum of squares Degrees of 

freedom 

Mean square F ratio 

Regression ( )2ˆ yySS iregr !"=  p-1 1!pSSregr  

pn

SS

p

SS
residregr

!!1
 

Residuals ( )2ˆiiresid yySS !"=  n-p pnSSresid !   

Lack of fit 
peresidlof SSSSSS !=  m-p pfSSlof !  

fn

SS

pf

SS pelof

!!
 

Pure error ( )2iipe yySS !"=  n-m fnSSpe !   

 

p is the number of coefficients in the model; n is the total number of experimental data 

used to determine the model; m is the number of distinct levels in the experimental 

design. 

 

Doehlert designs 

 

The designs we have discussed so far are all symmetrical—that is, they have the 

same number of levels for each factor under study.  

Sometimes, however, it is advantageous to use designs where different factors 

are studied at different numbers of levels. A simple example is a 2 × 3 factorial design.  

Modern statistical design programs provide a wide variety of mixed k-factorial 

designs of the type 2p3k−p, where p < k and p factors are studied at two levels and the 

other k − p factors at three levels.  

Doehlert designs comprise another class of experimental designs, with which 

different factors can be studied at different numbers of levels. They are attractive for 

treating problems where specific information about the system indicates that some 

factors deserve more attention than others, but they also have other desirable 

characteristics.  

All Doehlert designs are generated from a regular simplex, a geometrical figure 

containing k + 1 points, where k is the number of factors. For two factors, the regular 

simplex is an equilateral triangle.  

For Doehlert designs of type D-1, which are the most popular, the coordinates of 

this triangle are those given in the first three lines of table 2, n coded units. The other 
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runs of the design are obtained by subtracting every run in the triangle from each other, 

as shown in the table. This corresponds to moving the simplex around the design center. 

 

Table 2. Coded factor levels for the two-factor Doehlert D-1 design 

 

Run 
 

x1 
 

x2 
 

Subtraction 
 

1a 0.0 0.0  

2a 1.0 0.0  

3a 0.5 0.866  

4b −1.0 0.0 1–2 

5b −0.5 −0.866 1–3 

6b −0.5 0.866 3–2 

7b 0.5 −0.866 2–3 

a The runs in bold face are those defining the initial simplex. 
b The other runs are obtained by subtracting every run from each other.  

For any number of factors k, one of the points of the simplex is the origin, and 

the other k points lie on the surface of a sphere with radius 1.0 centered on the origin, in 

such a way that the distances between neighboring points are all the same.  

Each of these points subtracted from the other k points forms k new points, so the 

design matrix has a total of k2 + k + 1 points.  

Since the points are uniformly distributed on a spherical shell, Doehlert 

suggested that these designs be called uniform shell designs.  

The coordinates of the D-1 designs for three and four factors are presented in 

table 3. Note that the design for k = 3 is the same as the corresponding Box–Behnken 

design. 
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Table 3. Coded factor levels for the three- and four-factor Doehlert D-1 designs 

Run 
Three-factor  

 
Four factor  

 

 
x1  

 
x2  

 
x3  

 
x1  

 
x2  

 
x3  

 
x4  

 

1 0 0 0 0 0 0 0 

2 1 0 0 1 0 0 0 

3 0.5 0.866 0 0.5 0.866 0 0 

4 0.5 0.289 0.817 0.5 0.289 0.817 0 

5 −1 0 0 0.5 0.289 0.204 0.791 

6 −0.5 −0.866 0 −1 0 0 0 

7 −0.5 −0.289 −0.817 −0.5 −0.866 0 0 

8 0.5 −0.866 0 −0.5 −0.289 −0.817 0 

9 0.5 −0.289 −0.817 −0.5 −0.289 −0.204 −0.791 

10 −0.5 0.866 0 0.5 −0.866 0 0 

11 0 0.577 −0.817 0.5 −0.289 −0.817 0 

12 −0.5 0.289 0.817 0.5 −0.289 −0.204 −0.791 

13 0 −0.577 0.817 −0.5 0.866 0 0 

14    0 0.577 −0.817 0 

15    0 0.577 −0.204 −0.791 

16    −0.5 0.289 0.817 0 

17    0 −0.577 0.817 0 

18    0 0 0.613 −0.791 
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Run 
Three-factor  

 
Four factor  

 

 
x1  

 
x2  

 
x3  

 
x1  

 
x2  

 
x3  

 
x4  

 

19    −0.5 0.289 0.204 0.791 

20    0 −0.577 0.204 0.791 

21    0 0 −0.613 0.791 

Despite being spherical, Doehlert designs have none of the classical properties of 

response surface designs.  

They are neither orthogonal nor rotatable, and the variance of the predicted 

values is not uniform over the experimental range. However, they have other interesting 

features that make them advantageous in some scenarios.  

Perhaps their most important property is the ability for uniform space-filling, 

which is unaffected by rotation. This is very convenient when one wishes to cover an 

experimental range, no matter how irregular, with a uniform grid of points.  

Doehlert designs then can be displaced to more promising regions while 

preserving some of the runs already carried out.  

This property is illustrated in figure 1. The initial two-factor design is a hexagon, 

where the letters BCDEFG denote its vertices. These points, along with the A center 

point, define five levels for the x1 variable but only three levels for x2. If the researchers 

decide to shift the initial design to higher values of x1 and lower values of x2 the 

PONLGFM hexagon can be used, which includes vertices F and G from the initial 

configuration.  

If experimentation is very costly or lengthy, the values already observed for the 

F and G vertices can be retained. In case the researchers wish to raise the levels of both 

x1 and x2, displacement to the BGLKJIH hexagon is warranted.  

This time, vertices B and G belong to the initial hexagon. Finally, if it is decided 

to shift the levels of only one variable, say x1, the experimenters might perform new 

runs only at the Q, R and S vertices to complete the new Doehlert design AESRQCD, 

which has two lower levels along x1 while keeping the same levels for x2.  

Note that the space-filling property of Doehlert designs is clearly illustrated in 

Figure 3. No gaps in the experimental region are left as one hexagon substitutes another. 
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Fig. 1. Hexagonal Doehlert two-factorial design with three possible displacements in the 

experimental space. 

 

Compared to central composite or Box–Behnken designs, Doehlert designs are 

more economical, especially as the number of factors increase.  

The basic hexagon in Figure 1 has six points lying on a circumference around the 

center point, whereas the two-factor central composite design has eight points, also 

lying on a circumference surrounding its center point.  

Likewise, the three-factor Doehlert design has 13 points, but the central 

composite design requires 15. On the other hand, central composite designs are 

rotatable, a general property that Doehlert designs do not have.  

Furthermore, since central composite designs consist of factorial and axial 

blocks, they provide the basis for an efficient sequential strategy.  

Linear models can be fitted in a first stage, after which the design can be 

augmented with complementary points, should quadratic models prove necessary.  

Finally, using full designs, Doehlert or otherwise, to fit second-order models is 

hardly practicable for more than four factors, since a five factor quadratic model has 

twenty coefficients to be determined and it is unlikely that all factors will be relevant. 

Fractional factorial screening designs to discriminate between inert and relevant factors 

should always be applied before higher order designs when many factors are being 

investigated.  
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Another very interesting feature of Doehlert designs is the possibility of 

introducing variations in new factors during the course of an experimental study, 

without losing the runs already performed.  

Sometimes we might wish to study first – say – the two factors that seem more 

promising, analyze the results, and only then introduce variation in a third factor, then in 

a fourth, and so on.  

With Doehlert D-1 designs this is possible, provided that all potential factors of 

interest are introduced in the experiments right from start, set at their average levels 

(that is, zero in coded units).  

For example, let us say that there are four factors of potential interest. We can 

begin with the two-factor design defined in Table 3, taking care to keep the levels of 

factors 3 and 4 fixed at zero in all runs.  

Then, when we wish to study the influence of the two factors that have been kept 

fixed, we only have to add to the initial design the runs corresponding to the rest of the 

rows in the four-factor design in the Table 3.  

As can be seen in Table 3, a Doehlert design of type D-1 with three or more 

factors always has one factor at five levels (the first one), one factor at three levels (the 

last), and the others all at seven levels.  

Two other Doehlert design types, D-2 and D-3, can be generated by different 

simplexes and result in different level distributions. 
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8. Development of Benzocaine liposomes. Optimization 

of Formulation Variables using Experimental Design 

methodologies. 
 

Benzocaine is an ester-type local anaesthetic agent widely used in topical, 

dermal, and mucous formulations.  

It is characterized by a rapid but short-lived effect compared with the potential 

duration of pain (Covino and Vassallo, 1976). Moreover, toxic effects of   benzocaine, 

due to systemic absorption, have been reported (Barclay and Vega, 2004).  

Therefore, it could be very helpful to develop a new delivery system aimed at 

both modulating drug release rate to prolong its therapeutic effect, and improving its 

localization in the skin to decrease systemic toxicity.  

Liposomes have been widely used as safe vehicles for topical drug delivery 

systems due to their ability to entrap drugs and deliver them to the skin, thus enhancing 

their therapeutic effectiveness (Margalit, 1995; Verma et al., 2003).  

Their delivery mechanism is associated with accumulation in the stratum 

corneum and upper skin layers of the liposomes, which act as a local drug reservoir, 

reducing side effects in virtue of a decreased systemic absorption (Fresta and Puglisi, 

1996; Mezei and Gulasekharam, 1982).  

In particular, it has been reported that liposomal formulations of some local 

anaesthetics exhibited improved clinical efficacy with respect to administration of the 

corresponding plain drugs (Bucalo et al., 1998; Fisher et al., 1998; Grant and Bansinath, 

2001; Lim et al., 2005).  

In a previous study carried out in our laboratory, it was been demonstrated the 

significant (P < 0.01) improvement of both intensity of anaesthetic effect and duration 

of action of benzocaine entrapped in multilamellar liposomes with respect to the plain 

drug (Mura et al., 2007). On the other hand, it has been demonstrated that the 

effectiveness of a liposomal formulation is clearly influenced by the composition and 

structure of the vesicles (Anderson and Omri, 2004; Kirjavainen et al., 1996; López-

Pinto et al., 2005).  

Therefore, we considered it worthy of interest to continue this study and evaluate 

in depth the effects of modifications of the composition of the liposomal vesicles, with 

the aim of optimizing the effectiveness of the benzocaine liposomal formulation. 
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However, due to the several possible variables that should be simultaneously considered 

in such a study, it was considered very difficult to assess the effects of their variations 

by using a conventional mono-varied approach; i.e. by varying one parameter at a time 

and keeping the others constant.  

Moreover, although an incremental improvement can be achieved through 

successive approximation experiments, it is not possible to establish when and whether 

the optimal formulation has actually been obtained, nor to identify and quantify possible 

interaction effects among the variables.  

Statistical experimental design methodologies are a powerful tool in the design 

of pharmaceutical dosage forms, allowing a rational and effective investigation of the 

influence of formulation parameters on the selected responses with a shortening of the 

experiment time (Gabrielson et al., 2002; Lewis et al., 1999).  

Moreover, multivaried strategies enable simultaneous evaluation of the influence 

of the different variables involved, being therefore particularly useful when, as in the 

present case, different factors have to be evaluated contemporaneously.  

In particular, the usefulness of statistical experimental design strategies in the 

development of different kinds of liposomes has been recently demonstrated, allowing a 

quick and efficient evaluation and prediction of the effects of formulation changes on 

the considered responses (El Samaligy et al., 2006; Seth and Misra, 2002; Sun and 

Zhang, 2004).  

Thus in the present work, an experimental design methodology was used to 

evaluate the effects of varying the composition of the liposomal vesicles and to optimize 

the benzocaine liposomal formulation in terms of percent of permeated drug.  

We started from the composition that was previously found to be the most 

effective; i.e., 50:50 w/w phosphatidylcholine/cholesterol mixture as lipid phase, and 

50:50 v/v ethanol/water mixture as hydrophilic phase (Mura et al., 2007).  

The considered variables for the lipid phase were the use of potassium 

glycyrrhizinate, as an alternative to cholesterol, and the presence of a cationic 

(stearylamine) or anionic (dicethylphosphate) surfactant, since it has been reported that 

all these components should increase the bilayer fluidity and/or the drug skin 

permeability (Fang et al., 2006; Mohammed et al., 2004; Trotta et al., 2004).  

As for the hydrophilic phase, the hydration volume and the percent of ethanol in 

the hydroalcoholic mixture were considered as other important formulation variables, 
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due to the solubilizing effect and the possible enhancer role shown by this solvent (Fang 

et al., 2006; Kirjavainen et al., 1999; Touitou et al., 1997).  

The first step of the study was a preliminary screening phase, according to a D-

optimal design strategy, aimed at identifying the most important factors influencing the 

selected response.  

Doehlert design was then applied for the response-surface study of the factors 

selected in the preliminary phase. 

 

8.1 Materials and Methods 

 

Materials 

 

Benzocaine base (BZC) (ethyl-4-aminobenzoate) (pKa = 2.8, log P = 1.9) was 

from Fluka-Sigma-Aldrich (Italy). Cholesterol (CH), l-α-phosphatidylcholine (PC), 

potassium glycyrrhizinate (KG), stearylamine (SA), and dicethylphosphate (DP) were 

provided by Sigma-Aldrich (Italy).  

All other reagents were of analytical grade. 

 

Software for Experimental Design 

 

The software NEMRODW was used for generation and evaluation of the 

statistical experimental design (Mathieu et al., 2000). 

 

Liposome Preparation 

 

Multilamellar vesicles (MLV) were prepared by thin-layer evaporation (TLE). 

According to this technique (Mura et al., 2007), the lipid phase (consisting of a mixture 

of 50 mg PC 40 mg of CH or KG, and 10 mg of DP or SA), was dissolved in 

chloroform, which was then removed under reduced pressure in a rotary evaporator at 

58°C, thus obtaining a thin film of dry lipid on the flask wall.  

Evaporation was continued for 1h after the dry residue appeared, to completely 

remove all the traces of the solvent.  

The film was then hydrated by adding a variable volume of an ethanol/water 

mixture (at different v/v ratios) under vigorous mechanical shaking with a vortex mixer 
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until vesicle formation. The BZC was dissolved at 1.0% w/v in hydrophilic phase 

during liposome preparation.  

All products were sealed in glass containers and stored in the dark at 4°C. 

 

Liposome Characterization 

 

Determination of Liposomal Size. The average particle size of the vesicles was 

determined by quasielastic light scattering (QELS) using a Brookhaven Instrument 

(New York, NY) endowed with a BI-9000AT correlator card and a BI-200 SM 

goniometer. The light source was the double frequency of a Coherent Innova diode 

pumped Nd-YAG laser, (λ= 532 nm, 20 mW).  

The laser long-term power stability was ± 0.5%. Self-beating detection was 

recorded using decahydronaphthalene (thermostated by a water circulating system) as 

index matching liquid.  

A probe was inserted in the sample to monitor temperature while simultaneously 

recording autocorrelation functions; the temperature was set at 20°C. The intensity of 

the laser light scattered by the samples was detected at an angle of 90°with an EMI 

9863B/350 photomultiplier.  

Liposome suspensions were suitably diluted with distilled water in order to avoid 

multiscattering phenomena. At least three independent samples were taken, each of 

which was measured at least twice, up to four times.  

For each specimen, 10 autocorrelation functions were analyzed using a 

cumulative analysis. Samples were analyzed 24h after their preparation. 

 

Determination of Encapsulation Efficiency. Liposome encapsulation efficiency 

was determined using the dialysis technique for separating the nonentrapped drug from 

liposomes (Maestrelli et al., 2005).  

The suitability of this method (which gave results comparable to those obtained 

by the ultracentrifugation technique) has been previously demonstrated (Maestrelli et 

al., 2005; Mura et al., 2007).  

According to this method, 3 mL of drug-loaded liposomal dispersion were put 

into a cellulose acetate dialysis bag (Spectra/Por®, MW cutoff 12000, Spectrum, 

Canada) immersed in a closed vessel containing 150 mL of a 50:50 v/v ethanol/water 

solution at 20°C, magnetically stirred at 30 rpm. Samples, withdrawn at given time 
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intervals from the receiver solution, were replaced with equal volumes of fresh solvent. 

The BZC was spectrometrically assayed at 282 nm (UV-1601 Shimadzu).  

The experiment was stopped when constant drug concentration values were 

obtained in subsequent withdrawals from the receiver phase (taking into account the 

progressive dilution of the medium).  

The percent of encapsulation efficiency (EE%) was calculated according to the 

following equation: 

 

EE%= [total drug]-[diffused drug]/[total drug]*100 

 

Each result is the mean of at least three separate experiments. 

 

In Vitro Permeation Studies Through Artificial Membrane 

 

Permeation studies of BZC from the different formulations through artificial 

membranes were performed for 24h at 37 ± 1°C using a Sartorius Model SM 16750 

apparatus (Sartorius Membranfilter GmbH, Gottingen, Germany).  

A cellulose nitrate membrane (effective permeation area 40 cm2) impregnated 

with lauryl alcohol (membrane weight increase 90–110%) as lipid phase was used as 

artificial lipophilic membrane simulating the epidermal barrier (Maestrelli et al., 2005; 

Mura et al. 1993).  

The receiver phase consisted of 100 mL degassed pH 7.4 phosphate buffer 

solution continuously circulating on the lower side of the diffusion cell by means of a 

peristaltic pump. Permeation experiments were performed in non-occlusive mode.  

The upper side of the diffusion cell (donor compartment) was filled with 1.5 g of 

the liposome suspension.  

Sink conditions were maintained for the duration of diffusion experiments.  

At given intervals, 3 mL samples were withdrawn from the receiver phase and 

spectrometrically assayed for drug content at 285 nm. No interference was found for 

other components. Samples were replaced with equal volumes of fresh receptor medium 

and the correction for the cumulative dilution was calculated.  

Experiments were repeated three times. The percent of drug permeated into the 

receptor compartment as a function of time was calculated and the results were 

averaged. 
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Gel Preparation 

 

A 0.5 % w/v Carbopol gel base was prepared by suspending 0.5 g Carbopol 940 

in 99.5 mL of bidistilled water, stirring for 24h at room temperature and then adding 

triethanolamine up to pH 7.0 for gelification.  

The resulting gel was stored in capped glass containers, at 4°C, in the dark.  

Gels loaded with the drug were prepared by mixing (50/50 w/w) Carbopol gel 

with a 1% w/v BZC aqueous solution or the different 1% w/v BZC liposomal 

suspensions, thus obtaining the final drug concentration of 0.5 % w/w. 

 

In Vivo Studies 

 

The anaesthetic activity of BZC formulated in aqueous Carbopol gel, as such or 

entrapped in liposomes, was assayed in vivo in albino rabbits according to the 

conjunctival reflex test (Ghelardini et al., 2001; Mura et al., 2007).  

Male albino rabbits (2.5–3.0 kg body weight) from Morini (San Polo d’Enza, 

Italy) were used. One rabbit was housed per cage and placed in the experimental room 

24h before the test for acclimatization. The animals were kept at 23 ± 1°C with a 12h 

light/dark cycle, fed with a standard diet and tap water ad libitum.  

All experiments were carried out in accordance with the National Institutes of 

Health (NIH) Guide for the Care and Use of Laboratory Animals, by making all efforts 

to minimize animal suffering and to limit the number of animals used.  

Rabbits were divided into as many groups (each formed by six rabbits) as the 

number of formulations to test. A fixed amount of each sample was instilled in the 

conjunctival sac of the right eye of the rabbit, whereas a corresponding blank 

formulation (without drug) was simultaneously instilled in the left eye as control.  

The external sides of rabbit eyes were then stimulated at interval times with a cat 

whisker to induce the conjunctival reflex and, consequently, the palpebral closure.  

The local anaesthetic activity of the drug is indicated by the necessity of a higher 

number of stimuli to provoke the reflex. 
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8.2 Results and Discussion 
 

In the present study, a multivariate strategy (Lewis et al., 1999) was utilized for 

systematically evaluating the effects of variations of the composition of a liposomal-

BZC formulation on encapsulation efficiency (EE%) and percent drug permeated after 

180 min (P%), chosen as the responses to be optimized.  

We started from the liposomal formulation that resulted in the best outcome in 

our previous study (Mura et al., 2007), consisting of a 50:50 w/w 

phosphatidylcholine/cholesterol mixture as lipid phase and of 10 mL of a 50:50 v/v 

ethanol/water mixture as hydrophilic phase.  

As for the lipophilic phase, we considered it worthy of interest to evaluate the 

effects of modifying the bilayer composition by replacing cholesterol with potassium 

glycyrrhizinate and adding a cationic (stearylamine) or anionic (dicethylphosphate) 

surfactant.  

These additives were selected based on previous studies, in which their presence 

in the lipid bilayers of the vesicles gave rise to higher drug skin-delivery (Fang et al., 

2006; Mohammed et al., 2004; Trotta et al., 2004).  

On the other hand, with regard to the hydrophilic phase, the effects of varying 

the percent (v/v) of ethanol in the hydroalcoholic mixture and the volume of the 

hydration phase were judged as important factors to be investigated, considering both 

the solubilizing power towards BZC and the potential permeation enhancer role of 

ethanol. Experimental design (Lewis et al., 1999) was the selected multivariate strategy 

for the optimization of the drug permeation, and the independent variables and their 

respective levels were: 

U1: cholesterol (CH) or potassium glycyrrhizinate (KG) 

U2: stearylamine (SA) (cationic surfactant) or dicethylphosphate (DP) (anionic 

surfactant) 

U3: % ethanol (40, 50, or 70 % (v/v)) 

U4: hydration phase volume (4, 7, or 10 mL) 

The following qualitative model was hypothesized among responses and factors 

under study that contained one constant plus, for each factor, a number of terms equal to 

its number of levels minus one (Broudiscou et al., 1996): 
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where y represents the response; b1A and b2A are the coefficients relative to the 

effect on the response of the level changes of the factors U1 and U2, respectively; 

whereas b3A, b3B, b4A, and b4B are the coefficients relative to the changes of level of 

the factors U3 and U4, respectively.  

The effects of variations in the factor levels on the responses was evaluated by a 

ninerun D-optimal matrix (Table 1). This matrix was obtained by applying a D-optimal 

algorithm to an asymmetric screening design, which enables a rapid examination of 

factors at different numbers of levels (Lewis et al., 1999).  

In compliance with this experimental plan, nine different liposome batches were 

then prepared (Table 2).  

 

 

 
 

Light scattering analysis of the obtained batches showed that they had 

substantially homogeneous dimensions.  



 82 

In fact, mean particle size of the vesicles was not greatly influenced by variations 

in the lipid bilayer composition, and it ranged from a minimum value of 490 ± 70 nm to 

a maximum of 600 ± 90 nm for the liposomal dispersions corresponding, respectively, 

to samples 5 and 9 in Table 2.  

These batches were then evaluated in random order for both encapsulation 

efficiency and percent drug permeated after 180 min.  

Statistical evaluation of the experimental results showed that, for both responses, 

the regression model explained the response variation due to the change in level factors.  

The graphic analysis of the effects was used to evaluate the different effect of 

factor levels and determine the most suitable level of each variable to be selected for 

optimizing the considered response (Furlanetto et al., 2006).  

The results of the graphic analysis are presented in Fig. 1.  

In particular, coefficients A, B, C, and D indicate the effects on the response due 

to the change of level of the factors U1, U2, U3, and U4, respectively.  

The lengths of the bars are related to the effects of the level on the response.  

The bars with maximum lengths are those relative to the levels that determine a 

maximization of the response.  

On the other hand, bars of similar length are indicative of factors whose level 

change has similar effects on the response.  

The obtained results point out that maximization of the two selected responses 

requested opposite levels of the considered factors.  

In fact, for example, in the case of factor U1, we would have to use the level 2 

(KG) for maximizing EE%, and instead the level 1 (CH) for P%.  

This finding was in disagreement with literature data (Trotta et al., 2004), where 

the presence of KG, rather than CH, resulted in more elastic liposomes, which were able 

to produce an increase in the amount of permeated drug.  

Possible interactions of KG with the ionic surfactant present in the bilayer 

structure could reduce its “elastic” properties and thus be responsible for this 

unexpected result.  

On the other hand, in the case of factor U2 (the ionic surfactant), the level 1 (SA) 

was better for EE% and, on the contrary, the level 2 (DP) for P%.  
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The higher effectiveness of SA vs. DP in improving drug loading into the 

vesicles, and at the same time its lower efficacy in promoting drug permeation, could 

presumably be due to electrostatic repulsive forces between the amino groups of BZC 

and SA molecules, as has been previously observed for other cationic drugs (Webb et 

al., 1995).  

In fact, considering that the drug is dissolved in the inner hydro-alcoholic phase 

of the vesicles, these repulsion forces could decrease the drug’s ability to cross the 

phospholipid bilayer.  

These results, as well as those related to the other considered variables (percent 

of ethanol and mL of hydration phase) all indicate that the factors favorable for 

improving the affinity of the drug for the liposomal structure and thus its incorporation 

into the vesicles (expressed by EE%) gave rise instead to a decrease of its permeation 

rate, and vice versa.  

Therefore, considering that drug permeation properties play a more important 

role than the encapsulation efficiency in determining the therapeutic efficacy of the 

liposomal BZC formulation, it was decided to favor P% as the most important response 

to be maximized.  
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For this reason, the second step of the statistical optimization involved only this 

response.  

Consequently, we fixed the qualitative factors, choosing CH as stabilizing agent 

and DP as ionic surfactant, as indicated by the graphic analysis of the effects for 

maximizing P%, and we continued the study of the quantitative factors (percent ethanol 

in the hydroalcoholic mixture and volume of the hydration phase) in a wider 

experimental domain, in order to investigate their effects on P% in greater detail.  

A response surface study was then carried out by means of a 9-run Doehlert 

design for two factors.  

According to this plan, seven distinct liposomal formulations were produced in 

random order and a total of nine permeation experiments were performed, including a 

threefold repetition of the central point.  

The experimental plan and the obtained responses are reported in Table 3.   

Figure 2 shows some representative drug permeation profiles obtained from 

these experiments. Analysis of variance (ANOVA) indicated that the assumed 

regression model was significant and valid (Lewis et al., 1999).  

From the response surface obtained (Fig. 3) it is possible to point out that poor 

results are obtained using low levels of both factors, thus revealing a negative 

interaction between the two factors.  
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However, the positive principal effect of the factor percent ethanol is clearly the 

most important one.  
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In fact, when this factor is at a high level, the response is always high, whatever 

the value of the hydration phase volume.  

Obviously, due to the negative interaction between the variables, the best results 

can be obtained using high values of percent ethanol and low values of hydration phase 

volume. In particular, the maximum response is obtained with 96% ethanol and 3 mL of 

hydration phase volume.  

Therefore, a BZC liposomal formulation was prepared according to the results of 

the statistical experimental design (lipid phase: PC-CH-DP 50/40/10 w/w; hydration 

phase: 3 mL of 96% ethanol solution) and evaluated for drug permeation properties in 

comparison with the best formulation of our previous study (Mura et al., 2007) tested in 

the same conditions (Fig. 4).  

The experiment was repeated three times and the experimentally obtained mean 

P% value at 180 min (23.8 ± 1.3) was found inside the confidence interval (P < 0.05), 

calculated around the predicted value (24.8%) of the response (Lewis et al., 1999). 

Moreover, the drug permeation profile from the optimized formulation was clearly 

better, not only than all the previously examined liposomal formulations (Fig. 2), but 

also than that of the starting reference formulation one (Fig. 4).  

The optimized BZC liposomal dispersion, together with the starting reference 

preparation, was then formulated as Carbopol aqueous gel to test its anaesthetic activity 

in the rabbit model in comparison with a gel containing a solution of the plain drug at 

the same concentration.  

It was necessary to use gel formulations, since they allowed deposition of a more 

constant and reproducible amount of the drug with respect to liquid formulations, and 

therefore reduced the variability of the in vivo experimental conditions.  

Results of in vivo studies, summarized in Table 4, confirmed our previous 

findings (Mura et al., 2007), showing that the entrapment of BZC in liposomes allowed 

a statistically significant extension (P < 0.01) of its duration of activity (from 30 to 60 

min) and also a significantly stronger anaesthetic power with respect to the formulation 

containing the plain drug.  

Moreover, the optimized formulation exhibited a further significant (P < 0.05) 

improvement of the intensity of the therapeutic effect during the first 15 min in 

comparison with the starting BZC liposomal reference preparation. 
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In conclusion, experimental design strategy was confirmed as a very useful tool 

in preformulation studies, allowing a rational approach to the development of effective 

liposomal formulations.  

In particular, graphic analysis of the effects enabled identification of the 

formulation factors active on the considered responses, and determination of their best 

level for response optimization.  

Moreover, the subsequent response-surface study pointed out a negative 

interaction between percent ethanol and volume of the liposome hydration phase, and 
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allowed prediction of the best formulation conditions for maximizing BZC permeation 

rate.  

A good correspondence (P < 0.05) has been found between the predicted and the 

experimental checkpoint, thus demonstrating the suitability of the proposed approach to 

optimize the composition of liposomal formulations and to predict the effect of 

formulation variables on the considered experimental response.  

Moreover, in vivo studies showed that the optimized formulation gave rise to a 

further significant (P < 0.05) improvement of BZC therapeutic efficacy with respect to 

the previously found best liposomal BZC formulation (Mura et al., 2007), thus 

confirming the relationship between the in vitro drug permeation rate and the intensity 

of its anaesthetic effect, and demonstrating the actual effectiveness of the proposed 

approach for the liposomal formulation optimization. 
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9. Development of benzocaine ethosomes. Influence of the 

preparation method on the properties and in vivo efficacy of 

drug-loaded ethosomes. 
 

 In my previous study (Mura et al. J. Lipos. Res. 2008), I found that vesicles 

containing ethanol in relatively high concentrations, therefore named “ethosomes”, 

revealed to be more efficient than classic liposomes (Mura et al., 2007) at delivering 

benzocaine through the skin in terms of quantity and depth according to the results 

obtained for other drugs (Touitou et al., 2000; Esposito et al., 2004; Godin and Touitou, 

2003; López-Pinto et al., 2005).  

Several authors evidenced that ethosomal formulations were able to enhance 

permeation through the stratum corneum barrier, improve drug skin accumulation and 

assure sustained drug release (Dayan and Touitou, 2000, Paolino et al., 2005).  

These effects are attributable not only to the solvent action of ethanol on the 

stratum corneum of the skin but also to the higher deformability and malleability of 

these vesicles that can better penetrate intact through the skin (Elsayed et al., 2006; 

Elsayed et al., 2007; Dubey et al., 2007).  

We previously demonstrated that classic liposomal formulations of BZC allowed 

a significant improvement of its therapeutic efficacy in terms of both intensity of 

anaesthetic effect and duration of action with respect to plain drug (Mura et al., 2007). 

Optimization, by means of an experimental design methodology, of the composition of 

BZC liposomal formulation enabled a further significant improvement of the drug 

anaesthetic efficacy with respect to the initial formulation (Mura et al., 2008).  

The hydrophilic phase of the optimized composition was composed of a 96% v/v 

ethanol-water solution (Mura et al., 2008), and thus the obtained vesicles can be 

considered as ethosomes (Touitou et al., 2000).  

The lipophilic phase consisted instead of a cholesterol-phosphatidylcoline-

dicethylphosphate (50:40:10 w/w) mixture (Mura et al., 2008); the presence of the 

anionic surfactant dicethylphosphate improved the flexibility of the vesicle membrane 7 

n and then its ability to penetrate into the skin (Trotta et al., 2004, Fang et al., 2006).  

However, it should be considered that the effectiveness of a liposomal 

formulation is clearly influenced not only by the composition of the vesicles, but also by 

their structure and dimensions, which are both closely connected with the technique 
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used for their preparation (Walde and Ichikawa, 2001; Maestrelli et al., 2006). 

Therefore we considered it worth of interest to extend our previous studies and, by 

keeping constant the vesicle composition, to investigate in depth the role of the 

preparation method on both the vesicle properties and the drug anaesthetic efficacy. 

Toward this purpose, ethosomes consisting of the optimized composition (Mura et al., 

2008) were prepared by different methods, namely thin layer evaporation, freezing and 

thawing, reverse phase evaporation, extrusion and sonication techniques, thus obtaining, 

respectively, multi-layer vesicles (MLV), frozen and thawed MLV (FATMLV), large 

unilamellar vesicles (LUV) and small unilamellar vesicles (SUV).  

The aim of this work was to find the most effective operative conditions to 

improve the effectiveness of BZC-loaded ethosomes in terms of both encapsulation 

efficiency and vesicle stability, as well of drug therapeutic efficacy.  

All ethosomal systems were characterized for drug encapsulation efficiency, 

particle size, Zeta-potential and morphology by using, respectively, dialysis, light 

scattering, Transmission Electron Microscopy and Confocal Laser Scanning 

Microscopy techniques, and checked for stability during storage at 4°C.  

Drug permeation behaviour from ethosomal gel formulations was evaluated in 

vitro by using artificial lipophilic membranes simulating skin behaviour, whereas the 

BZC anaesthetic efficacy was tested in vivo on rabbits. 

 

9.1 Materials and methods 
 

Materials 

 

Benzocaine base (BZC) (ethyl-4-aminobenzoate) (pKa=2.8, log P=1.9 (Clarke’s, 

2004), cholesterol (CH), dicethylphosphate (DP), and l -α-phosphatidylcholine (PC) 

were provided by Fluka-Sigma-Aldrich (Italy).  

All other reagents were of analytical grade. 

 

Preparation of ethosomes 

 

Ethosomes consisting of mixtures of PC, CH and DP (50/40/10 w/w) as lipid 

phase and 96% v/v ethanol-water as hydration phase (Mura et al. 2008) were prepared 

by different techniques. 
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Multi-lamellar Vesicles (MLV) were obtained by thin layer evaporation (TLE) 

(Bangham et al., 1965).  

Briefly, 100 mg of lipid mixture were dissolved in chloroform and evaporated 

under vacuum until solvent removal, thus obtaining a thin film of dry lipid on the flask 

wall. Evaporation was continued for 2 h after the dry residue appeared, to completely 

remove all traces of solvent.  

The film was then hydrated by adding the hydrophilic phase, containing 1% w/v 

of dissolved BZC, under vigorous stirring with a vortex mixer until vesicle formation. 

Frozen and thawed MLV (FATMLV) were obtained by submitting a given 

volume of MLV suspension to nine alternate cycles of freezing in liquid nitrogen for 30 

s and thawing in a bath at 58°C for 30 s (Mayer et al., 1985).  

Large Unilamellar Vesicles (LUV) were realized by reverse phase evaporation 

method (Szoka, 1978).  

In brief the lipid phase was dissolved in diethylether and then mixed with the 

hydrophilic phase containing 1% w/v of BZC (organic phase: hydrophilic phase 3:1 v/v) 

in a ultrasound bath (Transonic 460 H, Singen) at 0°C for 5 min at 355W, to obtain a 

water-in-oil emulsion.  

After removal of organic solvent under reduced pressure, a gel was formed that, 

upon vigorous mechanical agitation, evolved into a colloidal dispersion of large 

vesicles. 

Small Unilamellar vesicles (SUV) were prepared by extrusion or sonication. 

Extruded SUV (SUV ext) were obtained by forcing 2 mL of FATMLV for 5 times 

through a 0.2 nm polycarbonate membrane in a mini-extruder (Avanti Polar Lipid, 

Birmingham, AL).  

Sonicated SUV (SUV son) were realized by submitting MLV suspensions to 

ultrasonication (58 °C, 355 W energy, input time 60 s, idle time 60 s, with 10 cycle 

iterations (Mura et al., 2007). All batches were stored at 4°C. 

All products were quickly sealed in glass containers and stored in the dark at 

4°C. 

 

 

 

 

 



 92 

Determination of entrapment efficiency (EE%) of ethosomes 

 

Ethosomes entrapment efficiency (EE%) was indirectly measured by 

determining the amount of the non-entrapped drug using the dialysis method, according 

to a previously developed procedure, as reported in the chapter 8.1. 

 

Determination of particle size and Zeta-potential of ethosomes 

 

The average diameter and Zeta-potential of the ethosomes were determined with 

a Zetamaster apparatus (Malvern Instruments, Malvern, UK) at a temperature of 25±0.1 

°C. Samples were analyzed 24 h after preparation.  

For the particle size measurement, ethosome dispersions were properly diluted 

with distilled water, in order to avoid multiscattering phenomena.  

The intensity of the laser light scattered by the samples was detected at an angle 

of 90° with a photomultiplier.  

At least three independent samples were taken, each of which was measured at 

least twice, up to four times. For each specimen, 10 autocorrelation functions were 

analysed using a cumulant analysis.  

From this analysis, the z-average value was obtained, which approximates the 

diameter of the liposomes.  

The particle size distribution was characterised by means of the polydispersity 

index (P.I.), which is indicative of the width of the size distribution. 

As for surface charge determination, ethosome dispersions, suitably diluted with 

distilled water, were dropped into the Zetamaster electrophoretic cell and the Zeta-

potential determined by electrophoretic mobility (µ) measurements.  

The mobility µ was converted into Zeta-potential by the Smoluchowski equation 

Z=µη/ε, where η is the viscosity and ε the permittivity of the solution.  

For each batch were taken at least 5 independent samples, each of which was 

analyzed at least 3 times. 

 

Stability studies 

 

In order to investigate and compare the stability during the time of the different 

kinds of vesicles, each batch of ethosomes was stored at 4°C during 3 months.  
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At prefixed time intervals, samples were withdrawn and characterized for their 

mean particle size and EE% values. 

 

Transmission Electron Microscopy (TEM)  

  

The morphology of ethosomes was investigated by Transmission Electron 

Microscopy (TEM) (Philips CM 10, Philips, USA).  

Copper grids were coated with a collodion solution and then a drop of ethosomal 

dispersion was applied and kept in contact for 15 min.  

Finally, grids were picked up, blotted with filter paper, left dry for 3 min and 

then examined with TEM (Manosroi et al., 2004). 

 

Confocal Laser Scanning Microscopy (CLSM) 

  

CLSM studies were carried out to investigate the ethosome morphology and 

lamellarity directly in solution.  

Towards this aim, ethosomal dispersions were prepared by adding a hydrophobic 

fluorescent probe, i.e. rhodamine 6G, in the hydration phase.  

Analyses were carried out on a drop of suitably diluted, freshly prepared 

ethosomal dispersion using a Leica TCS SP II Laser Scanning Confocal Imaging 

System (Leica, Heidelberg, Germany).  

The apparatus was equipped with a Kr-Ar-He-Ne ion laser and a Leica DM IRE 

2 inverted microscope endowed with HC PL Fluotar Leica X10 and X20 dry objectives 

and HCX PLAN APO Leica X40 multi-immersion objective on its oil position (numeric 

aperture 0.85). Samples were analyzed by using the transmitted light and fluorescence 

(λexc= 488 nm, λem= 520 nm) (López-Pinto et al., 2005).  

 

Gel preparation 

 

A 0.5 % w/v Carbopol gel base was prepared according to previously developed 

procedure has reported in the chapter 8.1. 

 

 

 



 94 

In vitro Permeation Studies  

 

In vitro permeation studies from Carbopol gel formulations containing the drug, 

as such or entrapped in the different types of ethosomal vesicles, were performed for 3 h 

at 37±1°C using Franz diffusion cells (Vidrafoc, Barcelona, Spain), with an effective 

diffusion area of 2.54 cm2 and a receiver compartment of 14.5 ml volume (degassed pH 

7.4 phosphate buffer solution).  

The donor compartment was filled with 3 ml of gel. Cellulose nitrate membranes 

impregnated with lauryl alcohol (membrane weight increase 90-110 %) as lipid phase 

were used as artificial diffusion membranes simulating the epidermal barrier (Maestrelli 

et al., 2005).  

At appropriate intervals, 0.5 mL samples were withdrawn from the receiver 

phase and spectrometrically assayed for drug content at 282 nm.  

No interference was found for other components. Samples were replaced with 

equal volumes of fresh receptor medium and the correction for the cumulative dilution 

was calculated. Experiments were repeated three times.  

The % of drug permeated into the receptor compartment as a function of time 

was calculated and the results were averaged (C.V. < 1.5 %). 

 

 In vivo studies 

 

The anaesthetic activity of BZC formulated in aqueous Carbopol gel, as such or 

entrapped in the different kinds of ethosomal vesicles, was assayed in vivo in albino 

rabbits according to the conjunctival reflex test (Ghelardini et al., 2001), using the same 

procedure as reported in the chapter 8.1. 
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 9.2 Results and discussion 
 

Characterization of ethosomes 

 

The mean entrapment efficiency (EE%), particle size and Zeta-potential values 

of freshly-prepared vesicles obtained with the different examined procedures are 

collected in Table 1.  

 

Table 1: Drug entrapment efficiency (EE%), particle size, polydispersity index 

(P.I.) and Zeta-potential of the different kinds of ethosome vesicles 

 

 

 

 

 

 

 

 

 

 

As it is evident, MLV and LUV vesicles showed the highest EE% values, 

followed by SUV vesicles obtained by extrusion, then by FATMLV and, finally, by 

SUV obtained by sonication.  

These results were found to be dependent not only by the vesicles characteristics, 

such as in particular their dimensions, but also by the method used for their preparation. 

In fact, for example, the lower EE% value exhibited by FATMLV with respect to MLV 

vesicles, in spite of their higher particle size, can be attributed to the particular 

conditions used for their manufacture procedure.  

In fact, the alternating cycles of freezing and thawing of MLV vesicles required 

by FATMLV preparation method give rise to larger vesicles than the initial ones, but 

can bring about to some loss of the entrapped drug (Maestrelli et al., 2006).  

SAMPLE EE ± s.d. (%) diameter ± s.d. (nm) P.I. 
Zeta-potential ± s.d. 

(mV) 

MLV 94.8±2.1 392.7±0.5 0.2 -24.7±0.8 

LUV 90.9±2.3 484.3±10.0 0.3 -43.5±0.5 

FATMLV 79.2±4.9 586.9±30.0 0.3 -41.5±0.9 

SUV  

(by 

sonication) 

60.7±7.2 189.3±13.7 0.3 -20.4±7.4 

SUV  

(by extrusion) 
86.8±6.5 295.8±33.2 0.4 -21.5±1.1 
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On the other hand, SUV vesicles obtained by sonication showed the lowest EE% 

value.  

The reduced volume of the inner compartment with respect to the other 

formulations, due to the smallest dimensions of these uni-lamellar vesicles, can be 

considered the main factor responsible for this finding.  

In agreement with this consideration, the better EE% of SUV vesicles obtained 

by extrusion with respect to those prepared by sonication is attributable to their greater 

dimensions.  

At this regards, it should be pointed out that SUV extruded vesicles showed a 

mean particle size clearly higher (+47.5%) with respect to the pores of the membrane 

used for their extrusion.  

This phenomenon confirms the flexibility and deformability of these vesicles, 

which is attributable to the presence of both the anionic surfactant and ethanol in their 

structure (Trotta et al., 2004; Fang et al., 2006).  

However, a reduction in homogeneity in this batch can be evidenced, as 

indicated by the increase in polydispersity index.  

As for the surface charge, measurements of Zeta-potential values indicated that 

all the kinds of vesicles showed a sharp negative charge, which is mainly attributable to 

the presence of the negatively charged lipid dicethylphosphate.  

 

Stability studies 

 

As well known, the poor stability during storage represents a critical point in the 

development of effective vesicular systems, even though ethosomes seem to be more 

stable with respect to conventional liposomes (Dubey et al., 2007).  

Therefore, in order to investigate their stability on ageing, each lot of vesicles 

was stored at 4°C for 3 months and, at prefixed time intervals, samples were collected 

and analysed to determinate EE% (Figure 1) and particle size (Figure 2). 
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Figure 1 

 
Figure 2 

 

MLV and LUV vesicles resulted substantially stable in terms of both drug 

entrapping yield and particle dimensions, which remained almost unchanged during the 

considered storage period.  

Instead, FATMLV vesicles revealed a rapid decrease in particle size during the 

storage, probably due to the untidy and weak structure of their membranes that is easily 
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disrupted, and undergo rearrangements in vesicles of reduced dimensions and irregular 

morphology (Maestrelli et al., 2006).  

On the contrary, SUV vesicles showed a marked tendency to form aggregates, 

which was attributable to the very high surface area exposed to the dispersion medium, 

due to their smaller dimensions.  

This phenomenon was particularly evident for vesicles obtained by extrusion. 

Therefore, also considering their less homogeneous dimensional distribution, SUV 

vesicles obtained by extrusion were excluded from further studies.  

 

Morphological studies 

 

Morphological analysis of vesicles performed by TEM and CLSM revealed that 

all kinds of ethosomal dispersions consisted of homogeneous, regular, spherical-shaped 

vesicles, with the exception of FATMLV ones, which showed a less regular 

morphology due to the “traumatic” preparation method, as reported also by other 

authors (Mayer et al., 1985; Maestrelli et al., 2006).  

The size distribution of all ethosomal dispersions was in good agreement with 

findings of previous light scattering measurements.  
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Figure 3: presents, as an example, the TEM and CSLM micrographs of samples of 

MLV and LUV dispersions. TEM images show in both cases the presence of almost 

uniform, round-shaped vesicles and the substantial absence of aggregates. CSLM 

analysis confirmed, respectively, the actual multi- and uni-lamellarity of MLV and LUV 

vesicles. 

 

In vitro drug permeation studies 

 

Topical liposomal gel formulations were prepared by incorporation of drug 

ethosomal dispersions in a structured vehicle of Carbopol.  

This polymer was chosen due to its bioadhesive properties and its proved 

compatibility with both liposomes and ethosomes (Mura et al., 2007, 2008).  

A Carbopol gel formulation containing a drug aqueous solution was also 

prepared as a reference.  
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In vitro drug permeation studies from these formulations were performed by 

using an appositely developed artificial lipophilic membrane, which previously showed 

a satisfactory correspondence with permeation data obtained by using excised rat skin 

(Mura et al., 2007), thus allowing overcoming of problems of longer experimental 

times, higher costs and lower reproducibility related to the use of animal membranes. 

Results of permeation studies are shown in Figure 4.  

 
Figure 4 

The gel formulation containing the drug solution exhibited the highest 

permeation rate, since the drug is free to directly diffuse through the artificial 

membrane. Slower release rates were instead observed from gels containing ethosomal 

drug dispersions, due to the lower diffusion rate of the drug entrapped into the vesicles. 

Interestingly, different permeation profiles were observed, depending on the vesicle 

characteristics. In particular, the drug diffusion rate was in the order 

MLV>LUV≈FATMLV>SUVson. It could be hypothesized that, in agreement with our 

previous results (Mura et al., 2007), the drug permeation rate was directly related to the 

vesicle EE% and inversely related to the vesicle dimensions. In fact, the faster drug 

permeation shown by gel with MLV vesicles can be attributed to the favourable 

combination between the vesicle dimensions (lesser than FATMLV and LUV vesicles) 

and the optimal EE% (94.8 %). The apparent exception of sonicated SUV vesicles, 

which showed the lowest drug permeation from gel, in spite of their smallest 

dimensions, could be attributed to their lowest EE% (60.7%). 
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In vivo studies 

 

Results of in vivo experiments obtained from Carbopol gel formulations 

containing the plain drug or the drug entrapped in the different kinds of ethosomal 

vesicles are reported in Table 2.  

 

Table 2: Effect induced by different Carbopol gel formulations of benzocaine (BZC) on 

the rabbit conjunctival reflex test 

 N u m b e r  o f  s t i m u l i  t o  i n d u c e  c o n j u n c t i v a l  r e f l e x  

SAMPLE  
eye                         Time  After Treatment 

 
  10 min 

 

20 min 

 

30 min 

 

40 min 

 

 

 

60 min 

 

 

 

Control  

(empty gel) 
left 1.0 +0.0 1.5 +0.3 1.2 +0.2 1.0+0.0 1.0+0.0 

Control  

(empty gel) 
right 1.0 +0.0 1.2 +0.2 1.0 +0.0 1.0+0.0 1.0+0.0 

Gel+aqueous 

solution 
left 1.3 +0.3 1.2 +0.2 1.0 +0.0 1.0+0.0   1.0+0.0 

Gel+ 0.5%BZC 

aqueous sol. 
right 21.4+3.3* 17.8+2.5* 14.1+1.6* 2.3+0.2 1.0+0.0 

Gel + MLV  left 1.8 + 0.4 1.5 + 0.3 1.9 + 0.5 1.0+0.0 1.0+0.0 

Gel +0.5%BZC-

loaded MLV 
right 42.4+3.5*^° 36.4+3.2*^° 22.4+3.1*^ 12.3+2.9*^ 4.7+1.7*^ 

Gel + FATMLV 

solution 
left 1.3 + 0.5 1.6 + 0.2 1.0 + 0.0 1.0+ 0.0 1.0+0.0 

Gel +0.5%BZC-

loaded FATMLV. 
right 29.8 + 5.5*^ 29.8 + 4.5*^ 19.7 + 4.1*^ 10.2 + 2.5*^ 3.4 + 1.2* 

Gel + LUV  left 1.1 +0.0 1.2 +0.2 1.1 +0.0 1.3+0.0 1.2+0.0 

Gel +0.5%BZC-

loaded LUV 
right 40.2 + 4.6*^° 34.2 + 3.7*^° 21.9 + 4.3* 9.4 + 3.1*^ 2.0 + 1.5 

Gel + SUV  left 1.2 +0.0 1.1 +0.2 1.3 +0.0 1.1+0.0 1.1+0.0 

Gel +0.5%BZC-

loaded SUV 
right 27.1 + 5.2* 28.9 + 5.2*^ 22.7 + 3.4* 18.5 + 2.2*^° 11.9 + 1.8*^° 

There were 6 rabbits per group. Each value is the mean of 6 separate experiments. *P< 0.01 in comparison with control; 

^P<0.01 in comparison with gel+BZC solution; °P<0.05 in comparison with the other preparations 
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It is evident that BZC ethosomal formulations were successful in significantly 

improving both intensity and duration of the drug anaesthetic effect with respect to the 

corresponding BZC solution at the same concentration.  

Such findings can be attributed to the favourable effect of the ethosomal carriers 

that, in virtue of their great skin affinity and high deformability, undergo a preferential 

uptake and enable a better skin penetration of the entrapped drug. Interestingly, some 

important differences were observed, depending on the kind of ethosomal vesicles.  

In fact, the best results in terms of improved intensity of anaesthetic effect during 

the first 20 min after gel application were given by the formulation containing MLV 

vesicles, immediately followed by that with LUV vesicles, and then by those with 

FATMLV and sonicated SUV vesicles. The order of effectiveness was 

MLV≈LUV>FATMLV≈SUV, similar to that observed in permeation studies.  

However, as for the improvement in duration of drug action, the most effective 

formulations were those with SUV and MLV vesicles, and the effectiveness order was 

SUV≥MLV>LUV≈FATMLV. In particular, unexpectedly, SUV vesicles, which 

initially exhibited the lowest improvement in intensity of drug anaesthetic effect, 

showed instead the greatest prolongation of this effect, statistically higher (P<0.05) than 

that obtained with MLV vesicles. The initial behaviour can be attributed to the lowest 

EE% of SUV vesicles (as in in vitro experiments), while the final one is probably due to 

the reduced particle size and then to the very high surface area of these vesicles, that 

allows a more intimate and extended contact with the skin during the time (Verma et al., 

2003b).  

In conclusion, ethosomal formulations of BZC enabled a significant 

improvement of its therapeutic effectiveness in terms of both intensity and duration of 

anaesthetic effect. The study pointed out the influence of the structure and size of the 

ethosomal vesicles, and, consequently, of the technique used for their preparation, on 

the vesicle EE% as well on the permeation rate and in vivo anaesthetic efficacy of the 

entrapped drug. MLV vesicles obtained by thin layer evaporation can be considered as 

the best ones, by combining the highest EE% with the strongest initial improvement of 

intensity of the drug anaesthetic effect, and allowing a 100% increase of its duration.  

On the other hand, SUV vesicles, even if less effective than MLV in the initial 

phase, due to their low EE%, showed instead the highest drug-reservoir effect, due to 

their closer and more widen contact with the skin in virtue of their greatest surface area, 

thus allowing the longest extension of the drug therapeutic action. 
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10. Development of liposomes loaded with Benzocaine 

and Butamben as cyclodextrin complexes. Pre-

formulation and characterization studies  
 

This part of my thesis work has been carried out in collaboration with the 

Laboratory of Pharmaceutical Technology, University of Seville, Spain, under the 

guidance of Prof. Antonio Maria Rabasco Alvarez and Prof. Maria-Luisa Gonzalez 

Rodriguez.  

In our previous studies we have demonstrated the effectiveness of liposomal 

formulations to control the topical delivery of BZC, prolonging its effect and reducing 

its toxicity.  

In particular, in our previous works we developed liposome formulations able to 

improve BZC anaesthetic effect in vivo by entrapping the drug in the hydrophilic phase 

of liposomes or in ethosomes (Mura et al., 2007, 2008).  

On the other hand, also cyclodextrin (CD) approach has been used to increase 

drug bioavailability by topical route.  

In our laboratory it has been recently investigated the possibility of using a 

combined strategy aimed at simultaneously exploiting the cyclodextrin solubilizing 

power towards drugs and the liposome carrier function through the skin (Maestrelli et 

al, 2006) and it has been developed a liposome formulation loaded with ketoprofen-

cyclodextrin complex.  

Therefore, in this work, we thought it worthy of interest to use such a combined 

approach to prepare liposomes loaded with cyclodextrin complex of two different local 

aneesthetics i.e. benzocaine (BZC) or butamben (BTM). 

Moreover, since the corneal epithelium, at physiological pH, is negatively 

charged, adsorption through the skin may be improved by using positively charged 

liposomes that can enhance the bioavailability of entrapped drugs over neutral or 

negatively charged vesicles.  

For these reasons we considered interesting to add in the liposome formulation a 

positive cationic phospholipid such as stearylamine. 
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10.1 Materials and methods 
 

Materials 

 

Benzocaine base (BZC), Butamben (BTM), cholesterol (CH), stearylamine (SA), 

and l -α-phosphatidylcholine (PC) were provided by Fluka-Sigma-Aldrich (Italy), 

hydroxypropyl β-cyclodextrin (HPβCD) (MS 0.65) and βCD were a gift of Roquette. 

All other reagents were of analytical grade. 

 

Binary system preparation method. 

 

BZC-CD, BTM-CD equimolar systems with both HPβCD and natural βCD were 

obtained according to three different methods:  

Physical mixing: Physical mixtures (P.M.) were obtained by 15 min tumble 

mixing equimolar amounts of the respective simple components previously sieved (75-

150 µm sieve granulometric fraction).  

Co-grinding: co-ground products (GR) were prepared by ball-milling physical 

mixtures in a high-energy vibrational micro-mill (Mixer Mill MM 200 Retsch, GmbH, 

Düsseldorf, Germany) at a frequency of 24 hertz for 30 min. 

Coevaporation: Coevaporated products (COE) were prepared by coevaporation 

of equimolar drug-CD ethanol-water (5:5 v/v) solutions in a rotary evaporator 

(Heidolph Laborota 4000) at 85°C. The resulting products were then dried in a vacuum 

desiccator for 48 h to remove traces of solvents. 

Each solid product was sieved and the 75-150 µm granulometric sieve fraction 

used for the following tests. 

 

Phase Solubility Studies 

 

Phase solubility studies were performed at 25°C for 72 h by adding an excess of 

drug to 10 mL of pH 4.5 phosphate buffer solution containing increasing amount of CD. 

BZC was determined spectrophotometrically at 280 nm and BTM at 287.2 nm . 
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Dissolution rate studies 

 

Dissolution rate of both drugs, alone and from the different drug-CD binary 

systems, was determined during 60 min at 37°C according to the dispersed amount 

method, by adding 500 mg of drug or drug-equivalent in 100 ml of water in a 300-ml 

beaker, which was stirred with a three-blade glass propeller centrally immersed at 25 

mm from the bottom and rotating at a frequency of 100 rpm.  

At time intervals, 3 ml samples were withdrawn and spectrophotometrically 

analyzed for drug content, as described above.  

The same volume of fresh medium was added and the correction for the 

cumulative dilution was calculated.  

Each test was repeated four times (coefficient of variation < 1.5 %). 

 

X-ray powder diffraction (XRPD) 

 

X-ray powder diffraction patterns were taken at ambient temperature with a 

Brucker D8. The samples were analysed in the 5–36° 2θ range at a scan rate of 0.05°s−1
. 

 

Differential Scanning Calorimetry (DSC) 

 

DSC analyses were performed with a Mettler TA4000 Stare system equipped 

with a DSC 2  cell. Samples were sealed in pierced Al pans and scanned at 10 Kmin−1 in 

the 30–120°C temperature range under static air.  

 

Fourier transform infrared spectroscopy (FTIR) 

 

FT-IR spectra (Perkin-Elmer Mod. 1600) of individual BZC, BTM, HPβCD, 

βCD, and drug–CD binary systems were obtained as Nujol dispersion in the 4000–600 

cm−1 region. 
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Liposomes preparation method 

 

MLV (Multilayer vesicles) liposomes containing 1% w/v of drug were obtained 

by TLE (thin layer evaporation) using a phosphatidylcoline-cholesterol-sterylamine 

mixture in the molar ratio of 5.5:1:1.5.  

The lipid phase was dissolved in the minimum amount of an organic solvent 

(chloroform); it was then removed under reduced pressure using a rotary evaporator 

(Büchi R 200/205) at 55°C, thus obtaining a thin film of dry lipid on the wall of the 

flask. Evaporation was continued for 2 h after the dry residue appeared to remove the 

traces of organic solvent.  

Finally, the film was hydrated by adding the hydration phase under vigorous 

stirring in order to favour the formation of vesicles.  

In the absence of CD, the hydrophilic phase was a mixture of water/ethanol 

60:40 v/v, where the drug was dissolved.  

On the contrary, in the presence of CD, the hydrophilic phase was water, where 

the maximum drug solubility was 0.5 % w/v for BZC and 0.3% w/v for BTM. 

Therefore, to reach the final concentration of 1%, the remaining drug amount was 

dissolved in the lipophilic phase. 

 

Liposome characterization 

 

Particle size and charge (ζ potential), encapsulation efficiency (EE%) and 

liposome morphology (Confocal Laser Scanning Microscopy-CSLM) analyses were 

performed according to the previously developed procedures, as reported in the chapter 

8 and 9. 

 

In Vitro Permeation Studies Through Artificial Membrane 

 

Permeation studies of BZC and BTM from the different formulations through 

artificial membranes were performed for 24h at 37 ± 1°C using a Sartorius Model SM 

16750 apparatus (Sartorius Membranfilter GmbH, Gottingen, Germany).  

The procedure was the same as described in the chapter 8. 
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In Vitro Permeation Studies Through Artificial Membrane 

 

Permeation studies of BZC and BTM from the different formulations through 

artificial membranes were performed for 24h at 37 ± 1°C using a Sartorius Model SM 

16750 apparatus (Sartorius Membranfilter GmbH, Gottingen, Germany).  

The procedure was the same as described in the chapter 8. 

 

In vivo studies 

 

The anaesthetic activity of drugs formulated in aqueous Carbopol gel, as such or 

entrapped in the liposomes, was assayed in vivo in albino rabbits according to the 

conjunctival reflex test (Ghelardini et al., 2001) following the same procedure as 

described in the chapter 8. 

 

10.2 Results and discussion 
 

Studies of Binary systems of  BZC-CD and BTM-CD 

 

Phase solubility studies revealed the formation of 1:1 BZC-CD complex with 

both the examined CDs.  

Both the CD demonstrated a good solubilizing power toward BZC; K1:1 values 

were  352 and 1315 M-1 for  the complexes with HPβCD and βCD, respectively (Fig.1) 
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Figure 1: Phase solubility studies of BZC in the presence of βCD and HPβCD. 
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Also for BTM phase solubility studies revealed the formation of 1:1 complexes 

with both CDs, which shewed a very similar solubilizing power towards the drug.  

In this case, the K1:1 values were 273 and 290 M-1 for the complexes with 

HPβCD and βCD, respectively (Fig.2) 
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Figure 2: Phase solubility studies of BTM in the presence of βCD and HPβCD. 

 

Solid state studies 

 

DSC 

 

Thermograms obtained from the different binary systems are reported in figure 

3A and 3B.  

The thermal curve of pure BZC and BTM showed a typical sharp melting 

endotherm at about 94°C and 60°C, respectively, indicative of their anhydrous and 

crystalline state, while pure CD exhibited a broad endothermal effect corresponding to 

dehydration.  

The DSC curve for the untreated physical mixture consisted of the 

superimposition of the thermal profiles of drug with both CDs with no significant 

changes in the drug melting peak parameters (except for a shift to lower temperature), 

suggesting no drug–CD interactions. 
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Figure 3A: Thermograms of BZC, βCD, HPβCD and their  PM, GR and COE products. 

 

 

 

 
 

Figure 3B: Thermograms of BTM, βCD, HPβCD and their  PM, GR and COE 

products. 

 

Also for BTM series was observed a similar behaviour as shown in figure 3B. 

The loss of drug melting peak seems indicate that COE product with both CD and GR 

system with HPβCD allowed a complete drug amorphization and or complexation. 
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XRPD 

 

X-ray Powder diffractometry was used to investigate more in depth the 

differences in the solid-state between drug-CD products prepared by the different 

methods.  

Fig. 4A and 4B show the X-ray powder diffraction patterns of pure BZC, BTM, 

βCD, and their 1:1 mol–mol systems obtained by physical mixing, co-grinding and co-

evaporation.  

The diffraction patterns of both drugs and βCD displayed several sharp peaks, 

indicative of their crystalline nature.  

A crystalline pattern, given by the sum of the spectra of pure components, was 

obtained for the corresponding untreated physical mixtures.  

 

5 10 15 20 25 30 35

BZC bCD PM BZC-bCD GR BZC-bCD COE bzc-bCD

 
 

Figure 4A: XRPD patterns of pure benzocaine (BZC), pure βCD and BZC/βCD binary 

systems prepared by physical mixing, co-evaporation, and co-grinding. 
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Figure 4B: XRPD patterns of pure butamben (BTM), pure βCD and BTM/βCD binary 

systems prepared by physical mixing, co-evaporation, and co-grinding. 

 

The characteristic peaks of drug and βCD, even though markedly reduced in 

intensity, were still detectable in the products obtained by co-grinding.  

On the contrary, a diffuse pattern, with very few low-intensity peaks, was 

obtained for the samples prepared by coevaporation, suggesting an almost complete 

drug amorphization and/or complexation. 

Diffractograms of drug-HPβCD complexes, reported in figures 4C and 4D, 

definitely confirmed the DSC findings, showing the complete loss of drug crystallinity 

in COE products obtained with βCD and both GR and COE systems prepared with 

HPβCD. 
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Figure 4C: XRPD patterns of pure HPβCD and BZC/HPβCD binary systems prepared 

by physical mixing, co-evaporation, and co-grinding. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4D: XRPD patterns of pure HPβCD and BTM/HBβCD binary systems prepared 

by physical mixing, co-evaporation, and co-grinding. 
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FTIR analysis 

 

FTIR spectra of pure components and the respective drug–CD (1:1 mol/mol) 

products obtained by physical mixing, co-grinding and co-evaporation are presented, 

respectively, in Figures 5A and 5B .  

The reported section, between 1800 and 1600 cm-1, is indicative of C=O 

stretching bands characteristic of the two pure drugs.  

The FTIR spectrum of drug–CD physical mixture freshly prepared at 25 °C can 

be considered as the result of the sum of drug and CD spectra, thus confirming the 

absence of solid-state interactions between the components, as indicated by DSC 

results. No modifications were observed for GR systems with βCD.  

On the contrary, the FTIR spectra of drug–βCD products obtained by co-

evaporation and drug-HPβCD products obtained by co-evaporation and co-grinding 

showed some differences with respect to those of the corresponding physical mixtures, 

revealing a modification of the environment of drug and thus indicating some drug–CD 

interactions, in accordance with the results obtained by DSC analysis.  

The changes observed in the FTIR spectra of the various samples, such as shift 

of peaks, or their reduction in intensity up to almost complete disappearance, depended 

on their preparation method, suggesting different degrees of interaction and/or 

amorphization in the different products, thus confirming that coevaporated products 

obtained with both drugs and HPβCD allowed the better drug-CD interaction and a 

complete drug amorphization, as observed also by XRPD analysis. 
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Figure 5A: FTIR profiles of pure BTM, βCD, HPβCD and BTM/CD binary systems 

prepared by physical mixing, co-evaporation, co-grinding. 

 

 

BTM 
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Figure 5B: FTIR profiles of pure BZC, βCD, HPβCD and BZC/CD binary systems 

prepared by physical mixing, co-evaporation, co-grinding. 

 

 

Dissolution studies 

 

The results of dissolution studies are shown in Figure 6 were only the data 

obtained with the BZC series are reported, since a very similar trend has been obtained 

also with BTM. 
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Figure 6:  Dissolution rate of BZC from drug-CD systems 

 

 

The dissolution profiles evidenced that the binary systems with HPβCD had a 

better performance with respect to those with native CD. That’s probably due to a 

combined effect of both preparation technique and CD type.  

In fact coevaporation technique is probable able to increase the surface area 

exposed to the dissolution medium and reduce drug crystallinity, and HPβCD, due to its 

amorphous nature, is more effective than βCD to stabilize this amorphous form.  

Coevaporation resulted the best preparative technique, giving rise to the most 

effective dissolution profile and allowing achievement of a final drug solubility of 0.5 

% w/v for BZC and 0.3% w/v for BTM.  

Therefore, liposomes were prepared by adding this drug concentration, as CD 

complex, to the aqueous phase, and the remaining amount as plain drug to the lipophilic 

phase, in order to raise 1% w/v of final drug concentration in the liposomal formulation. 
 

Development of Liposomal formulation  

 

In order to select the most suitable amount of stearylamine (SA) to use for the 

liposome formulation, we prepared liposomes containing a fixed concentration of BZC 

at 1% w/v in the hydrophilic phase (H2O/EtOH 60/40 v/v), and different stearylamine 

amounts in the lipophilic phase (1:1:0; 6:1:1; 5,5:1:1,5 phosphatidylcholine 

(PC):cholesterol (CH):stearylamine (SA) molar ratio).  
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The obtained liposomes were characterized through the determination of 

encapsulation efficiency, particle size, ζ-potential and in vitro permeation rate, while 

therapeutic efficacy was assessed by in vivo studies. The results of these studies are 

summarized in Tables 1 and 2, respectively. 

          
 

Table 1: Liposome containing 1%BZC in the aqueous phase (H20/EtOH). 

 

The liposome formulation with the molar ratio 5.5:1:1.5 showed the best EE% 

and the highest permeation %, probably due to the greater amount of stearylamine in 

this formulation.  

It can be observed that the presence of stearylamine influenced not only, as 

expected, the ζ potential, but also the size of liposomes.  

In fact, ζ potential changed sign from negative (-60.84 mV), in the absence of the 

cationic additive, to positive (+33.27 mV), since SA is positively charged.  

Moreover, the particle size was reduced from 627 to about 390 nm for liposomes 

without and with SA.  

This finding could be attributed to a rearrangement or the liposomal bilayer as a 

consequence of the insertion of SA molecules. 

In vivo studies, reported in Table 2, showed that this formulation also had the 

greatest therapeutic effect, thus confirming that the positive charge of stearylamine 

could favourably modify the carrier properties of liposomes and increase drug 

permeation thorough the skin . 
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Table 2:Effect induced by BZC liposomal preparations in the rabbit cojunctival reflex 

test. 

 

Therefore, we choose the formulation (PC:CH:SA 5.5:1:1.5) for the lipophilic 

phase of the vesicles, and liposomes were prepared with a double-loading technique by 

adding BZC or BTM as plain drug in the lipophilic phase and the corresponding drug-

CD complex in the hydrophilic phase. In particular, we added the drug-Cd complex 

until its maximum solubility in the aqueous phase (water) i.e., 0.5% and 0.3% w/v for 

BZC and BTM respectively, and the remaining amount of the drug until 1% w/v was 

added in the lipophilic phase. 

Liposomes were successfully prepared with drug alone or as COE drug-HPβCD, 

as shown in figure 7.  

 
Figure 7: CSLM micrographs 
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The liposomes were characterized through the determination of encapsulation 

efficiency, liposome size and charge, and in vitro drug permeation rate, while the drug 

therapeutic efficacy was evaluated by in vivo studies.  

The results are summarized in Tables 3 and 4. 

 
 

Table 3: Liposome (PC:CH:SA 5.5:1:1.5 molar ratio) containing 1% drug, loaded in 

part in the aqueous phase, as CD complex, and in part as plain drug, in the lipophilic 

one. 

 

The double-charge technique, did not influence the liposomal size, with respect 

to the corresponding liposomes loaded with the plain drug dissolved in the lipophilic 

phase. Also the  ζ potential remained almost constant, changing from 25 to 31 mV and 

from 22 to 27 mV respectively, for BZC and BTM, passing from the single to the 

double-loading.  

A significant difference in size was instead observed between liposomes 

containing the drug all loaded the in the internal aqueous phase (see Table 1), and those 

containing the drug all loaded in the bilayer phase or, in the case of double-changed 

liposome, in part loaded in the aqueous phase, as CD complex, and in part as plain in 

lipophilic phase.  

This effect can be attributed to a bilayer rearrangement of the liposome, as a 

consequence of the presence of the drug in the bilayer, which give rise to an increase in 

the vesicle dimensions, raising from about 390 to around 700 nm.  

A reduction of EE% was observed with the double-charge technique.  
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The obtained results can be explained by the different preparation method of 

liposomes used in the two cases.  

In fact, the vesicles containing drug alone, due to the very low water solubility of 

the drug, were prepared by dissolving it in the lipophilic phase, and, due to the high 

lipophilicity of these drugs, they have a great affinity for the lipophilic phase of 

liposomes.  

By contrast, the vesicles containing the drug as hydro-soluble complex were 

prepared by dissolving it in the water used for hydration of the lipidic film.  

Therefore, since in the case of MLV liposomes the volume occupied by the 

aqueous phase is smaller than that occupied by the lipidic phase, when the drug is added 

to the organic phase, it is entrapped in greater amount in the multi-layer liposomal 

membrane, with respect to the hydrophilic complex into the aqueous core. 

In vivo studies showed that CD presence could improve the drug anaesthetic 

effect for the first 15 min compared with liposomes realized with drug alone. 

 

 
 

Table 4: Effect induced by liposomal preparations of plain Benzocaine (BZC), plain 

Butamben (BTM), or, respectively combined with BZC/HPβCD, and BTM/HPβCD on 

the rabbit conjunctival reflex test. 
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In conclusion, the addition of stearylamine in the lipophilic phase of liposome 

allowed an improvement of the drug anaesthetic effect, allowing a better drug 

permeation through the skin and a more easy penetration of drug inside the rabbit eye 

conjunctiva.  

Moreover, even if drug-cyclodextrin complexation reduced  the encapsulation 

efficiency, the CD presence can further improve the therapeutic action of the drug 

significantly enhancing its effect during the first 15 min. 
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11. Prilocaine-HPβCD complexes encapsulated in 

liposomes: pre-formulation and characterization 

studies.  
 

Considering the interesting and promising results obtained by the previous study 

(Chapter 10), we carried out further studies to evaluate the effect of the combined 

approach of liposomal formulation and cyclodextrin complexation applied to another 

anaesthetic drug, i.e. prilocaine.  

Prilocaine hydrochloride (PRL.HCl) is therapeutically used for intravenous 

regional anaesthesia and in dentistry, where it shows a medium duration action in 

comparison with to other local anaesthetic drug compounds. 

The base form has the same activity but it has a very low melting point, so it is 

liquid at ambient temperature and it is insoluble in water. Therefore, we considered 

interesting to complex it with cyclodextrin, in order to increase its water solubility and 

then can insert it in the aqueous phase of the liposomes.  

Moreover, in our previous work, we successfully obtained double-charged 

liposomes that revealed the best performance in terms of therapeutic activity of the 

formulation. So, also in this case, we prepared the liposomes by using the same 

lipophilic phase developed in the previous work (PC: CH: SA 5.5:1:1.5 molar ratio) and 

adding the drug in its lipophilic form to the lipid phase and in its water-soluble form as 

complex with CD, in the aqueous phase.  

The liposomes loaded with prilocaine and its complex with cyclodextrin were 

characterized for their physical-chemical properties and subsequently evaluated in vivo 

as for the drug anaesthetic efficacy. 

 

11.1 Materials and methods 

 

Materials 

 

Prilocaine hydrochloride (PRL HCl), cholesterol (CH), stearylamine (SA), and l-

α-phosphatidylcholine (PC) were provided by Fluka-Sigma-Aldrich (Italy), HPβCD(MS 

0.65) was a gift of Roquette. All other reagents were of analytical grade. 
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Preparation of Prilocaine base 

 

To prepare prilocaine base (PRL) 100 mg of PRL HCl were dissolved  in 20 ml 

of water and NaOH 1M was added in equimolar amount. CHCl3 was added to extract 

PRL then the solution was filtered and the organic solvent removed through evaporation 

by a rotary evaporator. PRL was obtained as an oil. 

 

Preparation of PRL-CD complex and its characterization 

 

PRL-CD equimolar systems with HPβCD were obtained according to the 

coevaporation technique (COE) by adding an aqueous solution of HPβCD to PRL. The 

system was stirred 3 h and then the solvent was removed by evaporation. It was 

obtained a white powder. 

 

X-ray powder diffraction (XRPD) 

 

The X-ray powder diffraction patterns were taken, for all solid samples, at 

ambient temperature with a Brucker D8. The samples were analysed in the 5–30° 2θ 

range at a scan rate of 0.05°s−1
. 

 

Differential Scanning Calorimetry (DSC) 

 

DSC analysis was performed with a Mettler TA4000 Star® system equipped with 

a DSC 25cell. Samples were sealed in pierced Al pans and scanned at 10K min−1 in 30–

300°C Temperature range under static air.  

 

Fourier transform infrared spectroscopy (FTIR) 

 

FT-IR spectra (Perkin-Elmer Mod. 1600) of individual PRL HCl, PRL, HPβCD 

and PRL-HPβCD binary systems were obtained as Nujol dispersion in the 4000–600 

cm−1 region. 

 

 



 124 

 

Liposome  preparation method 

 

MLV (Multilayer vesicles) liposomes containing 1% w/v of drug were obtained 

by TLE (thin layer evaporation) with a phosphatidylcoline-cholesterol-stearylamine 

molar ratio of 5.5:1:1.5. The hydrophilic phase was water.  

To obtain loaded MLV liposomes, PRL was added in the lipophilic phase, while 

PRL.HCl and PRL-HPβCD complex, were added to the hydrophilic phase at different 

concentrations. In order to reach the suitable drug concentration, a double charge was 

performed. 

 

Liposome characterization 

 

Particle size and charge (ζ potential) and encapsulation efficiency (EE%) were 

determined according to the previously described procedures, as reported in the chapter 

10. Drug was assayed according to European Pharmacopoeia 6th edition by HPLC 

analysis using a Merck Hitachi Elite Lachrom chromatograph with UV-VIS detector at 

λ=240nm .The column was a C18 (Merck Hibar RT 150 x 4.6mm, 5µm). 

The mobile phase was a mixture 40:60 acetonitrile /phosphate buffer pH 8.0, 

T=40°C, flux 1ml/min and the volume injected= 20µl. The Standard curve was realized 

in a concentration range between 2 and 20 µg /ml (LOQ=0,492 µg/ml, LOD= 0,14775 

µg/ml) 

The liposome elasticity was determined by measuring the size of the liposomes 

before and after filtration through a microporous filter with pore diameter of 100 nm 

(Isopore, Millipore, Bedford, MA, USA) using a LiposoFast-Basic (Avestin Europe 

GmbH) connected to a 3 Atm pressure source.  

 

In vivo studies 

 

The anaesthetic activity of PRL, as such or entrapped in the different kinds of 

MLV vesicles, was assayed in vivo in Wistar mice according to the backbone muscle 

test. 

For the tests were used twelve Wistar mice. Animal rooms were kept at a 

temperature of about 23 °C with a light/dark cycle of 12 h. 
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 The animals were fed with a standard diet and tap water ad libitum. All 

experiments were carried out in accordance with the NIH guide for the Care and Use of 

Laboratory animals. All efforts were made to minimize animal suffering and to limit the 

number of animal used.  

The day before the test, the back of each animal was shaved using a depilatory 

cream and 4/6 circles with a diameter of 0.7 cm were drawn in ink on the skin of the 

animal, at a distance of about 1 cm apart. The test was carried out by injecting in the 

centre of each circle a different sample. In one of the circles was injected a suspension 

of liposomes without the drug as control. The volume injected was 0.1 mL.  

The painful stimulation was induced with the penetration subcutaneously (about 

1 mm in depth) with a thin syringe at the centre of each circle.  

It was recorded a negative response to the test, or lack of local anaesthetic effect, 

each time the stimulus was followed by contraction of the muscle ridge, forming 

obvious folds of skin on the back. The absence of this response was instead recorded as 

a positive test, or presence of a local anaesthetic effect.  

The experiment does not provide quantitative assessments, but only information 

on the timing of action of the drug. Each sample was tested at least four times, including 

the control. 

 

11.2 Results and discussion 
 

Solid state studies 

 

DSC 

 

The thermal curves obtained for pure components PRL.HCl, HPβCD and for the 

PRL-HPβCD complex are reported in Figure 1.  

The DSC curve of pure PRL HCl showed a typical sharp melting endotherm at 

169,0 °C (ΔH=118,69 J/g) indicative of its anhydrous and crystalline state, while pure 

HPβCD exhibited a broad endothermal effect corresponding to its dehydration. It was 

not possible to obtain a DSC profile of PRL because it’s an oil at ambient temperature.  

The DSC curve of PRL-HPβCD COE product was typical of an amorphous 

substance. 
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Figure1: Thermograms of PRL.HCl, HPβCD and COE PRL-HPβCD. 

 

XRPD 

 

X-ray powder diffractometry was used to investigate more in depth the solid-

state properties of the products. Figure 2 shows the X-ray powder diffraction patterns of 

PRL.HCl, HPβCD and COE PRL-HPβCD.  

 
Figure 2: XRPD patterns of PRL HCl, HPβCD  and COE PRL-HPβCD 
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The diffraction pattern of PRL.HCl, displayed several sharp peaks, indicative of 

its crystalline nature.   

A diffuse pattern was obtained for HPβCD and also for the complex with PRL 

prepared by coevaporation suggesting the formation of an amorphous complex product, 

confirming DSC results. 

 

FTIR 

 

FTIR spectra of pure components, PRL.HCl, PRL, HPβCD, PRL-HPβCD COE 

are presented respectively in Figures 3 and 4.  
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Figure 3: FTIR spectra of Prilocaine chlorohydrate (PRL.HCl) 

 

In the FTIR spectrum of the PRL.HCl, the most intense and characteristic signal 

is that of the carbonyl stretching at around 1700 cm-1.  

Other characteristic peaks are or of very low intensity or are covered by the nujol 

dispersion, that causes the intense CH stretching band at around 2900 cm-1 and two 

intense peaks due to CH bending at 1376 cm-1 and 1461 cm-1. 

 

3295 
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Figure 4: FTIR spectra of PRL base, HPβCD and PRL-HPβCD binary system prepared 

by co-evaporation. 
 

The FTIR spectrum of PRL base showed a similar pattern to that of PRL:HCL 

characterized by a sharp peak at about 1700 cm-1 indicative of C=O streching.  

The spectrum of oleous liquid PRL base was recorded on the pure sample, not 

dispersed in nujol but directly applied to the tablets of NaCl.  

This led to obtain a “cleaner” spectrum, without the strong peaks of stretching at 

around 2900 cm-1 and of bending at 1376 cm-1 and 1459 cm-1, typical of nujol.  

It should be noted, however, a particularly broad band with maximum at 3295 

cm-1 associated to NH stretching.  

This enlargement is likely due to the presence of hydrogen bonds and can 

suggest the presence of residual water, used to dissolve the PRL.HCL for the following 

obtaining of PRL base by NaOH addition.  

The HPβCD pattern did not show characteristic peaks that can be distinguished 

from those of nujol.  

The spectrum of PRL-HPßCD coevaporated product showed that the signals of 

the drug were significantly flattened as a consequence of the interaction with the 

cyclodextrin molecules.  

We note, however, a very wide band between 3200 cm-1 and 3500 cm-1 

attributable to NH stretching.  

The presence of residual water seems even greater than in the case of PRL base.  
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The C=O stretching band, that in the spectrum of the drug exhibits an intense 

signal peaked at 1683 cm-1, in the coevaporated product is very weak and shifted to a 

slightly lower frequency (1675 cm-1).  

This could suggest the presence of solid-state interactions between the drug and 

cyclodextrin.  

In the spectrum of the coevaporated product is also present the bending band at 

around 1525 cm-1, even though strongly reduced in intensity in comparison to that of the 

drug.  

The bending peak at 1462 cm-1, present in the spectrum of COE, is more intense 

than that of pure drug at 1455 cm-1, due to the superimposition of the bending band of 

nujol at 1459 cm-1. 

 

Loaded-liposomes 

 

The liposomes were loaded with different drug concentrations by adding the 

PRL base to the lipophilic phase and the chlorohydrate form and the complex of the 

base form with cyclodextrin to the aqueous phase. 

It was possible to add the chlorohydrate form to all the different tested 

concentrations (1%, 2.5% , 5% w/v), while for PRL base we cannot overcome the 2.5% 

w/v because we have instability problems.  

We also prepared double-charged liposomes, by adding PRL in the lipophilic 

phase and PRL-HPβCD complex in aqueous phase.  

The results obtained in terms of particle size, ζ-potential and deformability of the 

vesicles, expressed as ratio diameter size, and poly-dispersion index are reported in 

Table 1. 
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LIPOSOMES D P.S. (nm) 
n=5 

ζ potential (mV) 
n=5 

P.I. 
 n=5 

empty 1.09 431 +34.6 0.202 
PRL HCl 1% 
in aqueous phase 

1.04 
 331 +59.6 0.185 

PRL HCl 2.5% 
in aqueous phase 

1.43 
 659 +55.4 0.158 

PRL HCl 5% 
in aqueous phase 

1.22 
 506 +55.4 0.130 

PRL base 1% + 
HPβCD 
in aqueous phase 

1.04 
 479 +36 0.190 

PRL base 1 
in lipophilic phase 

1.07 
 433 +32.5 0.270 

PRL base 2.5% 
in lipophilic phase 

1.09 
 367 +25.1 0.330 

PRL base + HPβCD 
Double charging 0.5 + 
0.5 % 

1.08 
 375 +28.0 0.180 

PRL base  + HPβCD 
Double charging 1 + 1 
% 

1.11 324 +28.7 0.280 

 
 

Table 1: Ratio diameter size (D), particle size (P.S), ζ potential and poly-dispersion 

Index (P.I)  

 

From Table 1, we can see that there is not a close relationship between the size 

of vesicles (P.S.) and concentration of loaded drug.  

Moreover, it can be observed that the loading of large amounts of PRL.HCl leads 

to particles with bigger size.  

It is also interesting to note that liposomal suspensions loaded with the 

hydrochloride form of the drug are more homogeneous, with Polidispersion Index 

values lower than those of vesicles containing the base form. 

As for the ratio between the diameters of the vesicles before and after extrusion 

(D), it is very close to 1 when the vesicles have sufficiently small dimensions. For 

liposomal dispersions with the average diameter greater than 500 nm extrusion causes a 

quite marked reduction in size.  

These results agree with those published by some authors who carried out an 

analogous study (Trotta et al. 2004). 
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The values of  ζ−potential obtained are all positive, especially for the presence of 

stearylamine. The liposomes containing the drug in the hydrochloride form gave the 

higher values of potential, and thus these preparations should have less problems of 

physical stability. For liposomal suspensions containing large amounts of the drug in the 

base form, phenomena of merge and aggregation are more likely. 

 

In vivo studies 

 

Results of in vivo studies are reported in Figures 5, 6 and 7. 

 

 

 
 

Figure 5: Liposomes with PRL base 5%, PRL HCl 5%, PRL HCl solution 0.5%, PRL 

HCl 5% solution and empty liposomes. 

 

 

As shown in Figure 5, liposomes containing PRL and PRL.HCl have both the same 

effect, showing a more prolonged anaesthetic effect and a delayed start of action with 

respect to the PRL solution, thus confirming the potential of liposomal formulation as 

effective delivery systems for this kind of drug. 
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Figure 6: Liposomes with PRL.HCl 1%, PRL.HCl 1% solution, liposomes with PRL 

base 1% plus CD, PRL base solution 1% plus CD solution. 

 

In Figure 6 we can see that liposomes containing PRL.HCl 1% have an activity 

three-times superior in terms of duration of drug anaesthetic effect with respect to the 

simple solution with PRL.HCl 1%.  

Liposomes containing the drug as complex with cyclodextrin showed a reduced 

lag time before the appearance of the drug anaestethic effect with respect to other 

liposomal formulation and, moreover, they showed the longest duration of effect.  

This behaviour can be attribute to the cyclodextrin enhancer properties that 

improve the drug effectiveness.  
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Figura 7: Liposomes with double charge (0.5+0.5%), PRL base 1%, Double charge 

1+1% and PRL base 2%. 

 
In figure 7, the double-charged liposomes with the total drug dose of 2% w/v 

showed the best therapeutic activity, exhibiting the longest duration of effect and a 

beginning of the effect in a shorter time than the other liposomes preparations.  

It was supposed a synergic effect between liposomal carrier and cyclodextrin on 

drug activity. 

 

In conclusions, we developed and tested ten liposomal preparations containing 

the drug as free base or as hydrochloride salt varying drug concentrations from 1 to 5 %, 

and using it complexed or not with HPβCD.  

These tests allowed to verify the actual formation of the vesicles and to 

accurately characterize the liposomes.  

The best formulations have been then selected to evaluate their effectiveness in 

vivo. Liposomal suspensions have shown greater effectiveness, especially in terms of 

occurrence and duration of action compared to the corresponding non-liposomal 

preparations.  

Moreover, the use of cyclodextrin complexation has proved to be useful to 

further increase the duration of the drug anaesthetic effect and reduce the time for the 

appearance of the effect.  
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The liposomes that have provided the best results were those with PRL base in 

the aqueous phase complexed with hydroxypropyl-β-cyclodextrin and those "double-

charged", with prilocaine base in the aqueous phase, complexed with cyclodextrin, and 

in the lipophilic phase as free base.  

The results obtained have led to a marked improvement in the drug therapeutic 

activity.  

The use of vesicles type DCL (drug-in-cyclodextrins-in-liposomes) represents a 

good approach for controlling the release of prilocaine and avoid the use of 

vasoconstrictors for the prolongation of the anaesthetic effect. 
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12. Comparative study of oxaprozin complexation with 

natural and chemically-modified cyclodextrins in 

solution and in the solid state. 

 
Cyclodextrin complexation of anti-inflammatory drugs generally allowed 

obtainment not only of improvement of solubility, but also of additional advantages 

such as masking of taste, lowering of dose, reduction of side effects (particularly gastric 

irritation) (Otero-Espinar et al, 1991; Elkheshen et al., 2002; Imai et al., 1984).  

In the present work we investigated the possibility of improving the 

unfavourable chemical-physical properties of oxaprozin, a very poorly water soluble 

NSAID, by cyclodextrin complexation.  

With this aim we carefully examined the performance of a series of 

cyclodextrins, both natural (α−, β−, γ− Cd) and derivative (hydroxypropyl-βCd, 

heptakis-2,6-di-O-methyl-βCd, amorphous randomly substituted methyl-βCD and semi-

crystalline methyl-βCD), in order to evaluate the role of both the cyclodextrin cavity 

size, their amorphous or crystalline state and the presence and type of substituent on 

their ability to establish effective interactions with the drug.  

Moreover, several methods have been proposed for complex preparation, and the 

best process must be chosen for each guest to be complexed with each cyclodextrin 

(Mura et al., 1999; Al-Marzoqi et al., 2007). Therefore, equimolar solid systems of the 

drug with the selected cyclodextrins were prepared by different techniques (physical 

mixing, kneading, co-grinding, coevaporation, sealed-heating and colyophilization), in 

order to investigate the influence of the preparation method on the physical-chemical 

properties of the end product and to arrive to a rational and careful selection of the most 

successful system for improving the oxaprozin dissolution properties.  

Drug-cyclodextrin interactions in solution and in the solid state were investigated 

by phase-solubility analysis, Differential Scanning Calorimetry (DSC), Powder X-ray 

Diffractometry, Fourier Transform Infrared Spectroscopy and Scanning Electron 

Microscopy.  

The dissolution rate of the different solid-systems was determined according to 

the dispersed amount method. 
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12.1 Materials and methods 
 

Materials 

 

Oxaprozin (OXA) was a gift from S.I.M.S. (Incisa Valdarno, Firenze, Italy) and 

was used as received. Crystalline α-cyclodextrin (αCd), γ-cyclodextrin (γCd) and 2,6 

di-O-methyl ß-cyclodextrin (DIMEB) were purchased from Sigma Chemical Co. (Saint 

Louis U.S.A.).  

Amorphous methyl-ß-cyclodextrin (RAMEB), with an average molar 

substitution degree per anhydroglucose unit of 1.8 was a gift from Wacker-Chemie 

GmbH (München, Germany).  

Crystalline β-cyclodextrin (βCd), partially crystalline methyl-ß-cyclodextrin 

(CRYSMEB), and amorphous hydroxypropyl-ß-cyclodextrin (HPβCd) with an average 

substitution degree per anhydroglucose unit of 0.65 was kindly donated by Roquette.  

 

Phase-solubility studies 

 

An excess amount of drug (60 mg) was added to 10 mL of pH 5.5 phosphate 

buffer solutions containing increasing concentrations of Cd in sealed glass containers 

preserved from the light and electromagnetically stirred (500 rpm) at constant 

temperature (25 °C) until equilibrium (3 d).  

Aliquots were withdrawn, filtered (0.45 µm pore size) and spectrometrically 

assayed for drug concentration at 285.2 nm (UV/VIS 1600 Shimadzu 

spectrophotometer, Tokyo, Japan).  

The presence of Cd did not interfere with the spectrophotometric assay of OXA. 

In fact it has been verified that the UV absorbance (at the selected λmax) of a 4.0 µg/mL 

OXA solution did not change in the presence or not of different concentrations of any of 

the examined Cds.  

Each test was performed in triplicate (coefficient of variation (C.V.) <3%).  

The apparent 1:1 binding constants of the different OXA-Cd complexes were 

calculated from the slope of the straight lines of the phase-solubility diagrams (Higuchi 

et al., 1965). 
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                   Preparation of solid systems 

 

Six different methods were used for the preparation of equimolar drug-

cyclodextrin solid systems.  

Physical mixing: Physical mixtures (PM) were obtained by 15 min tumble 

mixing equimolar amounts of the respective simple components (75-150 µm sieve 

granulometric fraction).  

Kneading: Kneaded products (KN) were prepared by adding a small volume of 

ethanol to a known amount of the physical mixture. The resultant mixture was kneaded 

thoroughly with a pestle to obtain homogeneous slurry and continued until the solvent 

was completely removed. The sample was kept in an oven at 40°C for 24 h to remove 

traces of solvent. 

Co-grinding: co-ground products (GR) were prepared by ball-milling physical 

mixtures in a high-energy vibrational micro-mill (Mixer Mill MM 200 Retsch, GmbH, 

Düsseldorf, Germany) at a frequency of 24 hertz for 30 min. 

Coevaporation: Coevaporated products (COE) were prepared by coevaporation 

of equimolar drug-Cd ethanol-water (5:5 v/v) solutions in a rotary evaporator (Heidolph 

Laborota 4000) at 85°C. The resulting products were then dried in a vacuum desiccator 

for 48 h to remove traces of solvents. 

Sealed-heating: Sealed-heated products (SH) were prepared by heating in sealed 

glass containers at 90°C for 3 h known amounts of drug-Cd physical mixtures, added of 

10 µl bidistilled water. Then the samples were removed and kept in a desiccator 

overnight to remove traces of water. 

Colyophilization: Colyophilized products (COL) were prepared by freeze-drying 

(Lyovac GT2, Leybold-Heraeus) at –50 °C and 1.3.10-2 mm Hg 100 mL of equimolar 

drug-Cd water-ethanol solutions at suitable concentrations on pre-chilled shelves of 20 

cm diameter and 18 mm height. Samples were kept in a desiccator, due to their high 

hygroscopicity. 

Each solid product was sieved and the 75-150 µm granulometric sieve fraction 

used for the following tests. 
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Differential scanning calorimetry (DSC) 

 

DSC analyses of the individual components or the different OXA-Cd 

combinations were performed using a Mettler TA4000 Stare system equipped with a 

DSC 25 cell. Weighed samples (5-10 mg, Mettler M3 Microbalance) were scanned in 

Al pans pierced with a perforated lid at 10 °C/min from 30 to 200°C temperature range 

under static air. The instrument was calibrated using Indium as a standard (99.98% 

purity; melting point 156.61°C; fusion enthalpy 28.71 J.g-1). 

 
Fourier transform infrared spectroscopy (FT-IR) 

 

FT-IR spectra (Perkin-Elmer Mod. 1600) of the individual components and of 

the different OXA-Cd solid systems were obtained as Nujol dispersion in the 4000-600 

cm-1 region. 

 
X-ray Powder Diffractometry (XRPD) 

 

The X-ray powder diffraction patterns of the individual components or the 

different OXA-Cd combinations were taken at ambient temperature with a Bruker D8-

advance apparatus (θ/θ geometry) using a Cu Kα radiation and a graphite 

monochromator, at a 40 mV voltage and 55 mA current, over a 5-40° 2θ  range at a scan 

rate of 0.05 °s-1.  

 

Scanning Electron Microscopy (SEM) 

 

Surface morphology of pure components and the different drug-Cd equimolar 

systems obtained by different techniques was examined using a Philips XL-30 Scanning 

Electron Microscope equipped with an image analysis system.  

Prior to examination, samples were sputter coated with gold–palladium under 

argon atmosphere (to render them electrically conductive) using a Fine Coat Ion Sputter 

(JFC-1100 JEOL).  
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Dissolution studies 

 

Dissolution rates of OXA, both alone and from the different drug-Cd systems, 

were determined in pH 5.5 phosphate buffer at 37+0.5°C according to the dispersed 

amount method, by adding 30 mg of drug or drug-equivalent to 300 mL of pH 5.5 

phosphate buffer, in a 400 mL beaker.  

A glass three-blade propeller (19 mm diameter) was immersed in the beaker 25 

mm from the bottom and rotated (f = 100 min-1). Suitable aliquots were withdrawn with 

a filter-syringe (pore size 0.45 µm) at the specified times and the drug concentration 

was spectrometrically assayed (UV/VIS 1601 Shimadzu).  

The same volume of fresh medium was added to the beaker and the correction 

for the cumulative dilution was calculated. Each test was repeated three times 

(coefficient of variation <5%).  

Dissolution was characterised through the percent of drug dissolved after 10 min, 

as index of the rate of dissolution, and the Dissolution Efficiency at 60 min, as index of 

the totality of the process.  

Dissolution efficiency (D.E.) was calculated from the area under the dissolution 

curve at time t (measured using the trapezoidal rule) and expressed as a percentage of 

the area of the rectangle described by 100 % dissolution in the same time (Khan et al., 

1975).  

 

12.2 Results and discussion 
 

Phase-solubility studies 

 

The solubility of OXA increased linearly with increasing cyclodextrin 

concentration, giving in all cases AL-type phase-solubility diagrams, indicative of the 

formation of soluble complexes of probable 1:1 mol:mol stoichiometry (Fig. 1) 

(Higuchi et al., 1965).  

 



 140 

 

 

 

 

 

Figure 1. Phase-solubility studies of oxaprozin (OXA) and natural (A) or derivative (B) 

cyclodextrins in pH 5.5 buffered water at 25 °C. 

 

The apparent 1:1 stability constants, calculated from the straight lines of the 

diagrams, and the relative solubilizing efficiency values are collected in Table 1. 

 

 

 

 

A 

B 
 



 141 

Table 1 Apparent stability constants of 1:1 complexes of oxaprozin with the different 

examined Cds, and related solubilizing efficiency values 

 

Cd type K 1:1 

M-1 

Solubilizing 

efficiency* 

αCd 60 2.25 

βCd 350 8.70 

γCd 80 2.69 

HPßCd 1445 31.0 

DIMEB 1750 35.9 

RAMEB 2240 45.6 

CRYSMEB 1660 34.2 

 

*ratio between solubility of drug in the presence of 20 mM Cd (or 12.5 mM ßCd) and 

drug alone in pH 5.5 phosphate buffer at 25 °C. 

 

Among the natural Cds, βCd was clearly the most effective partner, indicating 

that its cavity has the most suitable dimensions to accommodate the OXA molecule. 

However, the stability constants of the complexes with all the examined βCd-

derivatives were distinctly higher than that of the parent βCd.  

Analogous results have previously been obtained with other NSAIDs derivative 

of propionic acid such as naproxen (Bettinetti et al., 1989), ketoprofen (Mura et al., 

1998) and flurbiprofen (Cirri et al., 2005).  

The better performance of these derivatives has been attributed to the presence of 

hydroxypropyl and even more of methyl substituents that expanded the hydrophobic 

region of the macromolecule, by capping the edge of the cavity, and increased substrate 

binding via a hydrophobic effect.  

The stability constant values of the complexes with OXA were in the order 

RAMEB>DIMEB≈CRYSMEB≥ HPβCd>>βCd>>γCd≈αCd. The same rank order was 

observed also as for their solubilizing efficiency towards OXA (Table 1). 

Based on these results, βCd, among the natural Cds, and RAMEB and DIMEB, 

among its derivatives, were selected for further studies as the best potential carriers for 

OXA. Solid drug-Cd binary systems with selected Cds were then prepared at 1:1 molar 
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ratio (as indicated by phase-solubility studies) by using different techniques (physical 

mixing, kneading, coevaporation, co-grinding, sealed-heating, and freeze-drying), in 

order to select the most suitable one for the preparation of solid inclusion complexes 

(Mura et al., 1999). The solid-state properties of the obtained products were then 

examined by DSC, FT-IR, XRPD and SEM analyses.  

 

Solid-state studies 

 

The DSC curves of pure components and of the various drug-Cd equimolar 

systems obtained with the different techniques are shown in Figure 2, whereas the 

relevant thermal parameters are collected in Table 2.  

 

Table 2 Thermal parametres of oxaprozin (OXA), alone and in its equimolar physical 

mixtures (P.M.),sealed-heated (S.H.), kneaded (KN), coground (GR), coevaporated 

(COE) and colyophilized (COL) products with the examined Cds. 
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Figure 2. DSC curves of pure oxaprozin (OXA), ßCd, DIMEB and RAMEB and of 

equimolar drug-Cd physical mixtures (P.M.), sealed-heated (S.H.), kneaded (KN), co-

ground (GR), coevaporated (COE) and colyophilized (COL) products. 

 

 

The DSC curve of OXA was typical of a crystalline anhydrous substance, with a 

sharp fusion endotherm peaked at 161.3 °C.  
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Liberation of crystal water from βCd (14.5 % as mass fraction) was observed as 

an intense endothermic effect peaked at about 119 °C. Broader endotherms were instead 

associated with water losses from βCd-derivatives, respectively of 5.7% and 16% as 

mass fraction for DIMEB and RAMEB, respectively.  

The thermal profile of the drug maintained its shape in its PM with βCd, while a 

marked broadening with a concomitant shift to lower temperatures was evident in its 

blend with DIMEB and even more with RAMEB. The characteristic drug melting peak 

appeared practically unchanged in all the examined binary systems with ßCd, except in 

COE products, where it appeared to be strongly reduced in intensity, and in GR 

products, where it almost totally disappeared.  

This modification of the DSC melting peak can taken as a proof of interactions 

between the components and/or of consequent progressive drug amorphization. As 

previously observed with other NSAIDs, (Mura et al., 1998; Mura et al., 1995; Mura et 

al., 2002) hydrophilic βCd-derivatives were more effective than natural βCd in 

establishing solid-state interactions with the drug.  

In fact, OXA fusion endotherm was markedly broadened and reduced in 

intensity in all the systems with DIMEB and RAMEB, up to its complete disappearance 

in KN and GR products.  

Moreover, it was confirmed that also the crystalline or amorphous state of the 

carrier plays a role in inducing drug amorphization, mediated by a highly dispersed 

physical state of the drug within the carrier matrix (Mura et al., 2002).  

In particular the amorphous derivative, i.e. RAMEB, demonstrated the highest 

amorphizing power toward the drug with all the preparation techniques used, as can be 

observed by comparing the corresponding ΔHfus values of OXA in the different systems 

(Table 2). On the other hand, as for the influence of the preparation method, co-grinding 

technique appeared as the most powerful in inducing drug-Cd interactions as well as 

drug amorphization with all the examined Cds.  

This was a rather unexpected result, since colyophilization technique often 

showed to be more efficacious in this regard than simple co-grinding (Bettinetti et al., 

1992; Blanco et al., 1991; Junco et all., 2002).  

However, the suitability of Cd co-grinding technique to obtain and stabilize 

drugs in the amorphous form has been well demonstrated (Mura et al., 2001;Mura et al., 

2002; Cirri et al., 2004).  
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X-ray diffraction patterns (Fig. 3) substantially confirmed the results of DSC 

analysis. In fact, only the co-grinding technique allowed total or almost total sample 

amorphization of products with derivatives and natural βCd, respectively.  

On the contrary, typical drug crystallinity peaks were present in both COE and 

COL systems with βCd and some slight residual drug crystallinity, as revealed by the 

characteristic peak of OXA at 9 °2 Θ, was still detectable in the corresponding systems 

with RAMEB and DIMEB. 

 
Figure 3. X-ray diffraction patterns of pure oxaprozin (OXA), ßCd, DIMEB and 

RAMEB and of equimolar drug-Cd physical mixtures (P.M.), coevaporated (COE), co-

ground (GR), and colyophilized (COL) products. 

FTIR analysis further evidenced the greatest effectiveness of the co-grinding 

technique in producing effective drug-carrier solid-state interactions.  
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In fact, no important variations with respect to the corresponding physical 

mixture were observed in the patterns of the products obtained with the different 

techniques, except the co-ground systems, where a broadening of the characteristic acid 

carbonyl stretching band of OXA accompanied by a significant shift from 1718 to 1700 

cm-1 was observed, as is shown in Fig. 4 for the series of OXA-RAMEB binary 

systems.  

This effect can be attributed to the breakdown of the intermolecular hydrogen 

bonds and formation of a monomeric dispersion of drug as a consequence of the 

interaction with the Cd (Mura et al., 1998). 

 
 

Figure 4. FT-IR spectra of pure oxaprozin (OXA), ßCd, and RAMEB and of 

equimolar drug-Cd physical mixtures (P.M.), coevaporated (COE), colyophilized 

(COL), and co-ground (GR) products. 

 

Selected micrographs obtained from SEM analysis are shown in Fig. 5.  
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Figure 5. SEM micrographs of of equimolar drug-Cd physical mixtures (P.M.), co-

ground (GR), coevaporated (COE) and colyophilized (COL) products. 

 

 

OXA particles appeared under scanning electron microscopy as polyhedric 

crystals with smooth surfaces, partially agglomerated in bundles.  

ßCd and DIMEB consisted of large crystalline particles of rather irregular shape 

and size, whereas RAMEB appeared as amorphous spherical particles.  



 149 

In keeping with the DSC and X-ray analyses findings, the characteristic drug 

crystals, mixed with Cd particles, were clearly evident in all physical mixtures.  

Distinctive drug crystals, dispersed or adhered to the surface of the carrier, were 

well detectable in all the products with ßCd, except the GR one.  

In fact, in this case, the original morphology of both drug and ßCd disappeared, 

and only amorphous pieces of irregular size were present, making it no longer possible 

to differentiate the two components.  

A similar aspect was found for GR products with DIMEB and RAMEB, while 

some residual drug crystals were still noticed in the corresponding COE and COL 

systems. 

 

Dissolution studies 

 

The most significant dissolution parameters obtained from the different OXA-

Cd systems examined are collected in Table 3, while the drug dissolution profiles from 

selected binary products are shown in Figures 6 and 7.  

As for the influence of the preparation technique (Fig. 6), dissolution tests 

revealed that co-grinding was clearly the most effective one in improving the drug 

dissolution behaviour, followed by colyophilization, and then by coevaporation while 

sealed-heating (curve not shown) was the worst one, giving results not significantly 

different from the simple physical mixture.  

These results were in full agreement with those of solid-state studies.  

In fact, the best dissolution profiles shown by co-ground products can be 

attributed to the higher amorphization degree and stronger drug-Cd solid-state 

interactions obtained with the co-grinding technique, as revealed from DSC, X-ray 

diffractometry and FT-IR analyses. 
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Table 3 Percent dissoved at 10 min (P.D.10)  and Dissolution Efficiency (D.E.60) at 
60 min of oxaprozin (OXA), alone and from its equimolar physical mixtures (P.M.), 
sealed-heated (S.H.), kneaded (KN), coground (GR), coevaporated (COE) and 
colyophilized (COL) products with the examined Cds. 

 
sample P.D.10 D.E.60 

OXA 6.5 6.9 

OXA-ßCd P.M. 9.8 10.3 

OXA-DIMEB P.M. 11.3 12.6 

OXA-RAMEB P.M. 12.4 13.0 

OXA-ßCd S.H. 10.2 10.8 

OXA-DIMEB S.H. 11.6 12.9 

OXA-RAMEB S.H. 12.7 13.3 

OXA-ßCd KN 12.4 13.1 

OXA-DIMEB KN 13.5 14.0 

OXA-RAMEB KN 14.1 14.7 

OXA-ßCd GR. 16.4 18.4  

OXA-DIMEB GR 28.6 29.7 

OXA-RAMEB GR 46.6 46.9 

OXA-ßCd COE 13.0 13.7 

OXA-DIMEB COE 16.3 17.0 

OXA-RAMEB COE 17.3 18.1 

OXA-ßCd COL 14.1 14.8 

OXA-DIMEB COL 17.4 18.7 

OXA-RAMEB COL 18.1 19.7 

 
 

 
Figure 6. Dissolution curves of oxaprozin (OXA) alone and from equimolar physical 

mixtures (P.M.), kneaded (KN), co-ground (GR), coevaporated (COE) and 

colyophilized (COL) products with ßCd. 

On the other hand, a comparison of the performance of the three different 

carriers (Fig. 7) evidenced the same trend observed in previous phase solubility studies.  
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Figure 7. Dissolution curves of oxaprozin (OXA) alone and from equimolar co-ground 

(GR) and colyophilized (COL) products with ßCd, DIMEB and RAMEB. 

 

              In particular, RAMEΒ confirmed to be the best partner for OXA, exhibiting the 

highest complexing and solubilizing power, and giving rise to the product with the best 

dissolution profile.  

Moreover, over-saturation levels were not achieved with respect to the drug solubility 

values obtained in phase-solubility studies, and therefore high stability of the obtained 

solutions is expected. 

 

In conclusion, cyclodextrin complexation was successful in improving OXA 

dissolution properties. βCd showed the best performance among the natural Cds, 

indicating that its cavity was the most suitable for accommodating the drug molecule. 

The presence of substituents on the rim of the βCd cavity significantly improved 

its complexing and solubilizing effectiveness towards the drug, and methylated 

derivatives were better than the hydroxy-propylated ones. 

Moreover, also the amorphous nature of the partner was important.  

In fact, among the examined methyl-derivatives, RAMEB proved to be the most 

effective in performing solid-state interactions and in improving drug wettability and 

dissolution properties. 
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Therefore the choice in pharmaceutical formulations of the amorphous RAMEB 

rather than the crystalline DIMEB can be recommended, also taking into account 

economic considerations. 

However, the anhydrous and nonhygroscopic nature of crystalline DIMEB could 

be particularly advantageous in case of moisture-sensitive formulations (Mura et al., 

2001). 
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13. Physical–chemical characterization of binary 

systems of metformin hydrochloride with triacetyl-β-

cyclodextrin. 
 

 

In the last years cyclodextrins (CyDs) received an increasing interest in the 

pharmaceutical field due to their ability to favourably modify physical, chemical and 

biological properties of drug molecules through the formation of inclusion complexes 

(Hirayama et al., 1999). Recently, several kinds of chemically modified CyDs have 

been prepared in order to improve the physicochemical properties and inclusion abilities 

and extend the spectrum of the pharmaceutical applications of the parent molecules 

(Uekama et al., 1998; Loftsson et al., 2007) .  

Among these, the hydrophilic CyDs have been extensively employed as helpful 

carriers to improve dissolution rate and bioavailability of poorly water-soluble drugs 

(Loftsson et al., 2005; Mura et al., 2005; pinto et al., 2005; Liu et al., 2006). On the 

contrary, there are less data about the use of the hydrophobic CyD derivatives, such as 

the peracylated ones, which have been proposed as sustained-release carriers for highly 

soluble drugs with short biological half-lives, in virtue of the formation of poorly water-

soluble complexes (Nakanishi et al., 1997; Fernandes et al., 2002; Fernandes et al., 

2003).  

Metformin hydrochloride is an oral anti-hyperglycaemic agent highly water-

soluble, whose low bioavailability and short and variable biological half-life (1.5–4.5 h) 

needs frequent administrations to maintain effective plasma concentrations, thus making 

the development of sustained-release forms desirable (Marchetti et al., 1989).  

Moreover, the oral absorption of metformin is mainly confined to the upper part 

of the gastrointestinal tract, thus requiring the development of suitable delivery systems 

with a timely modulation of the drug release rate (Sheen et al., 1996; Vidon et al., 1988; 

Marathe et al., 2000).  

Thus, we considered it worthy of interest to evaluate the effectiveness of 

triacetyl-β-cyclodextrin (TAβCyD), a hydrophobic CyD derivative practically insoluble 

in water, as a carrier for obtaining a slow-dissolving complex of the drug, to be used for 
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the subsequent development of a well-timed sustained-release oral dosage form of 

metformin.  

It is known that different methods can be employed for preparing solid drug–

cyclodextrin complexes, and the choice of the most efficacious one should be carefully 

evaluated case by case (Mura et al., 1999; Juno et al., 2002).  

In particular, an in depth characterization of the solid-state properties of the 

obtained products is strongly advisable, since they can affect the drug–carrier 

interactions, which in turn influence the dissolution rate and drug stability (Bettinetti et 

al., 2002).  

Therefore, in the present work, equimolar drug–TAβCyD solid compounds were 

prepared by different methods, i.e., physical mixing, kneading, co-grinding, sealed-

heating, and spray drying and characterized by differential scanning calorimetry, X-ray 

powder diffractometry, Fourier transform infrared spectroscopy and scanning electron 

microscopy, in order to carefully investigate and compare the physical–chemical 

properties of the obtained products, for a rational selection of the best one.  

In addition, the in vitro dissolution behaviour of the different products was 

determined according to the dispersed amount method, with the aim of studying 

possible implications of the system preparation method on the dissolution properties of 

the drug. 

 

13.1 Materials and methods 
 

Materials 

 

Metformin hydrochloride (MF·HCl) was kindly supplied by Menarini (Firenze, 

Italy). Triacetyl-β-cyclodextrin (TAβCyD) (Cavasol® W7 TA) was a kind gift of 

Wacker-Chemie (GmbH, Germany). All other chemicals and solvents were of analytical 

reagent grade. 

 

Preparation of solid binary systems 

 

MF·HCl–TAβCyD equimolar systems were obtained from the individual 

components previously sieved (75–150 µm): (a) by tumble mixing for 20 min with a 

turbula mixer (physical mixtures, PM); (b) by ball-milling physical mixtures in a high 
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vibrational micro-mill for 30 min at 24 Hz (co-ground systems, GR); (c) by wetting 

physical mixtures in a mortar with the minimum volume of an ethanol–water 1:1 (v/v) 

solution and grinding thoroughly the slurry with a pestle to obtain a paste which was 

then dried under vacuum at 40 ◦Cup to constant weight (kneaded systems, KN); (d) by 

heating physical mixtures in sealed containers at 90°C for 2 h (sealed-heated systems, 

SH); (e) by dissolving physical mixtures in an ethanol: water 8:2 (v/v) solution and then 

spray-drying (IRA Mini Spray Ho, Italy) under the following conditions: inlet 

temperature, 120 °C; outlet temperature, 70 °C; flow rate of the solution, 13mLmin−1; 

atomising air pressure, 3 kg/m2; vacuum conditions of 70mm H2O (spray dried systems, 

SP).  

To exclude any effect of sample preparation method on the drug and carrier 

physicochemical characteristics, samples of pure MF·HCl and TAβCyD have been 

treated with the same techniques used for preparation of equimolar binary systems. 

 

Differential scanning calorimetry (DSC) 

 

DSC analysis was performed with a Mettler TA4000 Stare system (Mettler 

Toledo, Switzerland) equipped with a DSC 25 cell.  

Samples of about 5–10 mg were accurately weighed (Mettler MX5 

microbalance) in sealed aluminium pans with pierced lid and scanned at 10 Kmin−1, 

under static air atmosphere, in the 30–200°C temperature range. Measurements were 

carried out at least in triplicate.  

The instrument was calibrated using Indium as a standard (99.98 % purity; 

melting point 156.61°C; fusion enthalpy 28.71 J g−1). 

 

 X-ray powder diffractometry (XRPD) 

 

The powder X-ray diffraction patterns were taken at ambient temperature with a 

Brucker D8 apparatus (θ/θ geometry) using a Cu K αradiation and a graphite 

monochromator. The samples were analysed in the 5–30◦ 2θ range at a scan rate of 

0.05◦s−1. 
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Fourier transform infrared spectroscopy (FTIR) 

 

Infrared spectra were recorded using a Perkin-Elmer Model 1600 

spectrophotometer on KBr disks in the range between 4000 and 400 cm−1. 

Scanning electron microscopy (SEM) 

 

Surface morphology of pure components and their equimolar binary systems 

obtained by different techniques was examined using a Philips XL-30 scanning electron 

microscope equipped with an image analysis system.  

Prior to examination, samples were sputter coated with gold–palladium under 

argon atmosphere (to render them electrically conductive) using a gold sputter module 

in a high vacuum evaporator. 

 

Dissolution rate studies  

 

In vitro dissolution rate studies of MF·HCl alone and from all the drug–carrier 

binary systems obtained with the different techniques were performed according to the 

dispersed amount method.  

Samples containing 50 mg of drug or its equivalent as binary system with 

TAβCyD were added in a 400mL beaker containing 300mL of intestinal artificial fluid 

(phosphate buffer at pH 6.5) at 37±0.5 °C, and stirred at 100 rpm with a glass three-

blade propeller (19mm diameter) immersed in the beaker 25mm from the bottom. At 

settled time intervals, samples were withdrawn with a syringe-filter (pore size 0.45 µm) 

and replaced with an equal volume of fresh medium.  

The drug concentration was spectrometrically determined (UV–vis 1600 

Shimadzu spectrophotometer, Tokyo, Japan) at 232.2 nm. Each test was repeated three 

times (coefficient of variation < 5%).  

Dissolution efficiency (DE) was calculated from the area under the dissolution 

curve at time t and expressed as a percentage of the area of the rectangle described by 

100% dissolution in the same time (Khan et al., 1975). 

 

13.2 Results and discussion 
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Solid-state studies 

In order to correctly and accurately investigate drug–carrier solid-state 

interactions and exclude possible solid-state modifications due to the sample treatment, 

solid state studies were performed not only on the various MF·HCl–TAβCyD binary 

systems obtained with the different preparation techniques, but also on the pure 

components subjected to these same processes. 

 

Differential scanning calorimetry (DSC) 

The thermal curve of pure MF·HCl (Fig. 1A, curve a) indicated its crystalline 

anhydrous state and was characterized by a sharp endothermic fusion peak at 231.0±0.6 

◦C with an associated fusion enthalpy of 292±12 J/g.  

The thermal behaviour of TAβCyD (Fig. 1A, curve b) was instead more 

complex. The sample immediately started losing the weakly hydrogen-bonded water (as 

shown by the broad initial endothermic band), transforming into a lower melting 

anhydrous polymorph II which fuses at 191.8±1.9°C and then recrystallizes into a 

higher melting form, whose fusion endotherm peaked at 219.8±2.0°C.  

An analogous thermal behaviour has been described by Bettinetti et al. for 

commercial TAβCyD. The thermal profile of the drug was almost unaffected by the 

different treatments, including spray drying (DSC curves not shown); on the contrary, in 

the case of TAβCyD this happened only for the sealed-heated product (Fig. 1B, curve 

b1).  

In fact, the DSC profiles of TAβCyD treated with both the kneading and co-

grinding techniques were different from that of the original sample (Fig. 1B, curves b2 

and b3). In particular, after the initial dehydration band, the appearance of a glass 

transition at about 135°C was observed followed by an exothermic effect, peaking at 

164.9°C. This can be attributed to the recrystallization of an amorphous form, obtained 

during the mechanical treatment of the sample, into the higher melting crystalline form, 

characterized by a sharp fusion peak at 219.8°C.  

A similar thermal behaviour was observed for X-ray amorphous TAβCyD and 

TAβCyD obtained, respectively, by microwave drying of a propanol–water solution or 

by spray drying of a water–acetone solution (Bettinetti et al., 2006).  

Finally, the spray-dried sample (Fig. 1B, curve b4) exhibited a flat profile with 

the complete disappearance of both exothermic and endothermic phenomena, 

suggesting the formation of a more stable amorphous form of the CyD.  
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The thermal curve of the physical mixture (Fig. 1A, curve c) was practically the 

sum of those of pure components, showing an initial broad endothermic band, due to 

water evaporation, followed by three sharp endothermic peaks, due, respectively, to the 

melting of the two polymorphic forms of TAβCyD and then of the  drug. 

 

 
 

The binary product obtained by sealed-heating (Fig. 1A, curve d) displayed a 

very similar behaviour to that of the physical mixture, accounting for the absence of 

apparent solid-state interactions between drug and CyD.  

On the other hand, the thermal profiles of both the binary kneaded and coground 

products (Fig. 1A, curves e and f) showed the presence of an additional exothermal 

effect, followed by the fusion peak of the higher melting polymorphic form of TAβCyD 

and then of the drug.  

DSC analysis of pure components made it possible to exclude drug–carrier 

interactions as being responsible for such exothermal phenomenon and to correctly 

attribute it to the presence of a TAβCyD unstable amorphous form, obtained during 

kneading or grinding process, which, during the DSC heating, recrystallizes into the 

more stable higher melting crystalline form (Fig. 1B, curves b2 and b3).  

Some reduction of fusion enthalpy and lowering of melting temperature of 

MF·HCl, observed in the binary kneaded and, particularly, in the coground products, 
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can be ascribed to some drug–CyD interactions occurring during sample preparation 

(Mura et al., 1999). The DSC curve of the spray-dried binary product (Fig. 1A, curve g) 

showed the complete disappearance of all melting peaks corresponding to both 

components, indicating total system amorphization as a consequence of strong drug–

carrier interactions and/or drug inclusion complexation.  

In fact, the absence of the drug melting peak in this system is not attributable to 

the spray-drying process, which does not substantially affect the solid-state properties of 

MF·HCl, since the thermal behaviour of the spray-dried drug alone was very similar to 

that of the untreated sample (curve not shown). 

 

X-ray powder diffractometry (XRPD) 

  

The X-ray diffraction patterns of MF·HCl, TAβCyD, and their respective 

equimolar binary systems obtained with the different techniques are shown in Fig. 2A, 

whereas representative spectra of pure components after the different treatments are 

presented in Fig. 2B.  

A series of sharp and intense typical diffraction peaks indicated the crystalline 

state of pure MF·HCl. Also the TAβCyD diffraction pattern was characterized by the 

presence of several sharp peaks indicative of its crystallinity.  

The diffraction pattern of the physical mixture was simply the superimposition of 

those of pure components (Fig. 2A, curve c), indicating the presence of both MF·HCl 

and TAβCyD in the crystalline state.  

The diffraction characteristics of the individual components were maintained 

also in the binary product obtained by sealed-heating (Fig. 2A, curve d), confirming the 

ineffectiveness of this technique in establishing solid-state drug–CyD interactions, in 

agreement with the results of DSC analysis.  

The loss of crystallinity observed in the kneaded product (Fig. 2A, curve e), and 

even more in the co-ground product (Fig. 2A, curve f), can be considered as a 

consequence of drug–carrier interactions brought about by the mechanical treatment. In 

fact, the kneading and co-grinding processes caused almost complete amorphization of 

pure TAβCyD (Fig. 2B, curves b2 and b3), whereas it did not markedly reduced drug 

crystallinity (Fig. 2B, curves a1 and a2).  



 160 

On the other hand, the spray-dried compound, according to DSC analysis results, 

presented a completely amorphous diffraction pattern, with the disappearance of the 

characteristic crystallinity peaks of both MF·HCl and TA(CyD (Fig. 2A, curve g).  

Considering that the spray-drying process caused amorphization of pure carrier 

(Fig. 2B, curve b4) but, in agreement with DSC results, it did not cause an appreciable 

reduction of crystallinity of pure MF·HCl (Fig. 2B, curve a3), the result obtained for the 

binary spray-dried product could be imputable to the formation of strong interactions 

between drug and TAβCyD and/or to the possible drug inclusion complexation. 
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Fourier transform infrared spectroscopy (FTIR) 

 

FTIR spectra of MF·HCl, TAβCyD, and their respective equimolar binary 

systems in the 4000–3000 and 2000–1500 cm−1 regions (selected as the most interesting 

ones to point out eventual drug–carrier solid-state interactions) are shown in Fig. 3.  
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The FTIR spectrum of pure MF·HCl showed two typical bands at 3369 and 3294 

cm−1 (Fig. 3A, a) relative to the N–H primary stretching vibration and a band at 3155 

cm−1 due to the N–H secondary stretching, and characteristic bands at 1626 and 1567 

cm−1 (Fig. 3B, a) assigned to C N stretching. TAβCyD displayed a very strong band at 

1741 cm−1 due to the C O vibration of the acetyl group (Fig. 3B, b).  

The physical mixture spectrum (Fig. 3A and B, c) can be considered as the sum 

of pure MF·HCl and TAβCyD spectra.  

No significant shifts or reduction in intensity of the FTIR bands of MF·HCl were 

observed in the binary sealed-heated product (Fig. 3A and B, d).  

On the contrary, the FTIR spectra of the binary kneaded (Fig. 3A and B, e) and 

even more so of the co-ground (Fig. 3A and B, f) products presented appreciable shifts 

and reduction in intensity of the characteristic MF·HCl bands, evidencing the presence 

of more or less intense solid-state interactions between the components.  

The FTIR spectrum of the spray-dried compound, on the other hand, showed a 

strong reduction (Fig. 3B, g) or the complete disappearance (Fig. 3A, g) of the 

characteristic MF·HCl bands, indicative of strong drug–carrier interactions and, 

possibly, inclusion complexation of the drug, thus substantially confirming the results 

previously obtained by DSC and X-ray diffraction analysis. 
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Scanning electron microscopy (SEM) studies 

SEM analyses were performed on pure MF·HCl and TAβCyD samples and on 

their equimolar combinations obtained by different preparation methods, in order to 

gain insight about the possible morphological changes caused by the different 

treatments. MF·HCl particles appeared as lamellar, rather irregular-sized, crystals, with 

a tendency to self-agglomerate (Fig. 4A); on the contrary TAβCyD consisted of 

homogeneous small crystals (Fig. 4B).  

The micrographs of the drug–carrier equimolar physical mixture and sealed-

heated product (not shown) clearly displayed MF·HCl crystals dispersed on the surface 

of the almost unmodified carrier particles.  

The kneaded and co-ground products presented instead a different morphology, 

showing a uniform, finely dispersed, powder with an evident particle size reduction and 

loss of crystallinity with respect to the original components (Fig. 4C).  

However, the most marked change in morphology was undoubtedly observed for 

the spraydried product, which appeared formed by amorphous round particles of very 

homogeneous and small dimensions (2–5 µm) (Fig. 4D).  

These findings were consistent with the above results of solid-state studies, 

confirming complete system amorphization and very intimate interaction between the 

components brought about by the spray-drying process of the drug–carrier mixture. 
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Dissolution studies 

The dissolution profiles of MF·HCl alone and from its different binary systems 

with TAβCyD in simulated intestinal fluid (pH 6.5) are shown in Fig. 5, whereas the 

related dissolution parameters, expressed as percent drug dissolved, and dissolution 

efficiency values at various times are presented in Table 1. MF·HCl completely 

dissolved within a few minutes, reflecting its high aqueous solubility.  

The dissolution from the physical mixture showed approximately the same 

behaviour of pure MF·HCl, with only a very slight initial slowing down of the drug 

dissolution rate, due to the presence of the hydrophobic cyclodextrin, which reduces the 

drug wettability.  

The sealed heated product presented a dissolution profile similar to that of the 

physical mixture, reaching 100% dissolved drug within less than 10 min, thus further 

confirming the incapability of this technique to promote formation of effective drug–

carrier interactions.  

 

 
 

On the contrary, the MF·HCl dissolution rate from kneaded and even more from 

co-ground products was significantly retarded, reaching 100% of dissolved drug after 

about 40 min and 2 h, respectively.  

The observed significant slowing of drug dissolution rate can be attributed to the 

interactions between the drug and the hydrophobic carrier established during the sample 

treatment, which were more or less intense, depending on the different conditions used 

for the kneading and co-grinding methods, respectively. Finally, the clearly greater 

effectiveness of the spray-drying method in inducing powerful drug–CyD interactions, 

which has already emerged from solid-state studies, was further confirmed from the 

results of dissolution tests.  
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In fact, the spray-dried systems showed the greatest retarding effect on the 

dissolution rate of MF·HCl, and allowed obtainment of an almost linear slow-dissolving 

profile, reaching 100% of dissolved drug after only about 7 h. 

 
In conclusion, this work has demonstrated the actual effectiveness of the 

hydrophobic cyclodextrin-derivative TAβCyD as a carrier for obtaining a slow-

dissolving form of MF·HCl, but it has pointed out that it is strongly dependent on the 

preparation technique used for obtaining the drug–carrier product.  

In fact, the results have pointed out the fundamental role played by the 

preparation method in promoting efficacious interactions between the components, able 

to adequately modify the drug dissolution behaviour.  

In particular, results of solid state studies were all consistent in indicating that 

the most evident drug–carrier solid-state interactions occurred in the MF·HCl–TAβCyD 

system obtained by spray-drying, followed by those prepared by co-grinding and then 

by kneading.  

The spray-dried product also gave rise to the most intense effect on the drug 

dissolution rate, as clearly indicated by the time to dissolve 100% MF·HCl, which 

varied from less than 10 min for sealed-heated systems, to about 40, 120 and 420 min 

for kneaded, co-ground and spray-dried products, respectively.  
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Therefore, the MF·HCl–TAβCyD spray-dried and co-ground products were 

selected as the most effective candidates for the subsequent development of a well-

timed sustained-release dosage form of the drug. 

 

 

14. THE LIPOSOMAL FORMULATION OF IRINOTECAN 
 

In the last year of my PhD, I joined 6 months to the group of Francis Szoka, 

Professor of Biopharmaceutical Sciences and Pharmaceutical Chemistry at the 

University of California, San Francisco. Prof. Szoka is well known in the scientific 

world for his studies in the liposome field, particularly for the development of liposomal 

structures specific for cancer chemotherapy and for gene delivery. 

During this period, a study has been undertaken aimed at finding the best 

formulation and the most suitable preparative conditions for the development of an 

effective liposomal formulation of the anticancer drug Irinotecan.  

With this aim, two types of formulations, i.e. 1 (DSPC:CHOL:DSPE-

mPEG2000-55:40:5) and 2 (DSPC:CHOL-55:45) have been investigated.  

We chose distearoylphosphatidylcholine (DSPC) together with cholesterol (CHOL) as 

basis liposomal formulation, since this combination showed to be particularly effective 

for the encapsulation of anticancer drugs (Ramsay et al., 2007); we then carried out a 

modified formulation by replacing a part of CHOL with a corresponding part of 

distearoylphosphatidylethanolamine-m PEG2000, which was used to prevent the attack 

by the immune system and increase the circulation lifetime of liposomes in the blood 

circle, and thus increase the chance for the drug to enter target sites so as to improve the 

efficiency of drug delivery (Chou et al., 2002). Eight different experimental protocols 

for the production of such liposomal formulations have been then investigated.  

The drug, which is a weak base, has been encapsulated using the “remote-

loading” technique. This technique, is based on the drug loading on preformed 

liposomes and it exploits the permeability of the liposomal membrane to the neutral 

form of the basic drug (Fenske et al., 2005).  

The drug diffuse within the liposomal core according to the concentration 

gradient and after it is protonated; thus it remains entrapped within the liposomal 

vesicle, being the membrane impermeable to the charged form. The method involves the 

formation of a trans-membrane pH-gradient, which can be obtained through the use of 
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different buffers. This method allows efficient drug encapsulation, generally greater 

than 80%, but also presents some disadvantages.  

For example, several clinical formulations of such liposomal drugs require the 

generation of the pH gradient just prior to drug loading, due to gradient and/or drug 

instability.  

A second disadvantage is the potential hydrolysis of lipids at acidic pH, which 

can introduce liposome instability during long-term storage. The ideal loading method 

would allow an efficient encapsulation at neutral pH, to prevent drug and lipid 

degradation (Dicko et al., 2007). For each evaluated liposomal formulation and 

experimental protocol, the encapsulation efficiency (EE%) has been determined and in 

vitro drug release studies have been performed. The study will continue with in vivo 

studies to evaluate the antitumoral activity of the selected formulation prepared 

according to the most effective experimental protocol. 

 

14.1 Materials and methods 
 

Materials 

 

Irinotecan was purchased from Ivy Fine Chemicals (Cherry Hill, NJ, USA). 

Distearoylphosphatidylcholine (DSPC) and 1,2-distearoylphosphoethanolamine-N-

[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) were purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL, USA). Cholesterol (CHOL) was purchased from 

Sigma-Aldrich. Sephadex G25 Column was purchased from GE Healthcare. All other 

reagents were of analytical grade. 

 

Protocols investigated 

 

Five different protocols to encapsulate Irinotecan in the liposome according to 

the remote-loading methodology were selected by literature data, while three new 

protocols were carried out by myself. During the study I devoted particular attention to 

the following experimental variables:  

- pH and composition of internal buffer 

- pH and composition of external buffer 

- drug/lipid molar ratio 
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- type of solvent for drug solution 

- incubation time.  

The 8 different protocols investigated are summarized in Table 1. 

 

 

Table 1: Investigated Protocols 

PROTOCOL 

INTERNAL 

BUFFER 

EXTERNAL 

BUFFER 

DRUG/LIPID 

molar ratio 

DRUG 

SOLUTION 

INCUBATION EE% 

FROM 

PAPER 

1 Drummond 

et al., Cancer 

Res 2006 

 

650mM TEA-SOS 

pH=6 

5mM HEPES,5% 

Glucose pH=6.5  

5mM Hepes, 140mM 

NaCl pH=6.5 

 

0.75:1 

5mM HEPES,  

5% Glucose 

pH=6.5 

 

30min al 60°C 

and then quench 

on ice for 15min 

 

 

100% 

2 Ramsay et 

al., Clin 

Cancer Res 

2008 

 

 

300 mM Copper 

sulphate 

300 mM sucrose, 

20 mM HEPES, 

150 mM EDTA 

pH=7.5 

20mM Hepes, 150mM 

NaCl pH=7.5 

 

0.2:1 

 

 

ddWater 

 

 

1 hour at 50°C 

 

 

98% 

3 Dicko et 

all., Int. J. 

Pharm. 2007 

 

100 mM  Copper 

gluconate, 180 

mM TEA  pH=7 

300mM sucrose, 

40mM Phosphate, 

10mM EDTA pH=7 

20mM Hepes, 150mM 

NaCl pH=7.5 

 

0.2:1  

300mM 

Sucrose, 

40mM 

phosphate 

pH=7 or 

ddWater 

 

1 hour at 50°C 

 

 

>95% 

4 Tardi et al., 

Biochim 

Biophys. 

2007 

100mM Copper 

gluconate, 

220mM TEA 

pH=7.4 

300mM sucrose, 

20mM Hepes, 30mM 

EDTA pH7.4 

20mM Hepes, 150 mM 

NaCl pH=7.5 

 

0.1:1  

 

ddWater 

 

1 hour at 50°C 

 

>95% 

5 Chou et al., 

J. Biosci. 

Bioeng. 2003 

500mM Citrate 

buffer pH=3 

500mM Sodium 

Citrate buffer pH=7 

0.3:1   

ddWater 

 

10 min at 60°C 

 

97-99% 

 

6 

300mM 1,2,3,4 

butane 

tetracarboxylic 

acid 

pH=6(w/NH4OH) 

5mM Hepes, 5% 

Glucose pH=6.5 

5mM Hepes,140mM 

NaCl pH=6.5 

 

0.2/1 

 

ddWater 

 

1 hour at 50°C 

 

 

7 

650 TEA-phytic 

acid pH=6 

5mM Hepes, 5% 

Glucose pH=6.5 

5mM Hepes,140mM 
NaCl pH=6.5 

0.2/1 ddWater 1 hour at 50°C  



 169 

 

8 

 

250mM 

ammonium 

sulphate 

5mM Hepes, 5% 

Glucose pH=6.5 

5mM Hepes,140mM 
NaCl pH=6.5 

 

0.2/1 

 

ddWater 

 

1 hour at 50°C 

 

 

                   

 

 Liposome preparation 

The liposomes were first prepared by thin layer evaporation. Liposomal 

Irinotecan was then obtained according to the pH-gradient loading technique.  

The influence of the main parameters that govern this process, including drug 

loading time, incubation temperature, buffer composition for hydration, and pH, was 

investigated.  

The uptake of Irinotecan into liposomal systems in response to the magnitude of 

the pH gradient was also examined.  

The phospholipids and cholesterol were dissolved in chloroform according to 

two different formulations: 1) DSPC:CHOL:DSPE-mPEG(2000), 55:40:5 (where 

DSPE-mPEG2000 was used to obtain stealth liposomes and avoid they are recognized 

by the immune system), and 2) DSPC:CHOL, 55:45.  

The solvent was evaporated under a stream of nitrogen and dried under vacuum 

for at least 2 h. The thin lipid layer thus obtained was hydrated with an internal buffer, 

according to the related protocol.  

Then the sample was sonicated at 70°C for 10 min. The resulting lipid 

suspension was extruded 11 times at 70 °C through two polycarbonate filters with 200 

nm diameter and 11 times at 70°C through two polycarbonate filters with 100 nm 

diameter at moderate pressure using a liposome extruder (Lipex Inc., Vancouver, BC). 

The resultant LUVs typically possessed a mean vesicular diameter of about 110 

± 30 nm as determined using Phase Analysis Light Scattering (ZetaPALS, Brookhaven 

Instruments Corp., Holtsville, NY). The LUVs external buffer was exchanged, using 

Sephadex G-25 size exclusion chromatography, with the first internal buffer. After, the 

vesicular diameter was determined using the same Light Scattering.  

Then Irinotecan was incubated in the presence of preformed liposomes, which 

were maintained at 50°C for 10 min prior to drug addition.  

Drug uptake was determined at indicated time points by sampling different 

aliquots and separating encapsulated from free drug using Sephadex G-25 spin columns 

equilibrated with the appropriate buffer. 
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                   Liposome Characterization 

Determination of Liposomal Size.  

 The average particle size of the vesicles was determined by light scattering 

using Phase Analysis Light Scattering (ZetaPALS, Brookhaven Instruments Corp., 

Holtsville, NY). 

 

                  Determination of Encapsulation Efficiency (EE%). 

  

 Irinotecan EE% was determined by UV spectrophotometric assay of drug 

concentration in solution at 370 nm.  

Briefly, a portion of the samples collected from the spin Sephadex G-25 columns 

was adjusted to a suitable final volume with the buffer. Subsequently, Triton X-100 1% 

was added to lyse the liposomes and the samples were heated in a water bath at >90°C 

until the cloud point of the surfactant was observed.  

The samples were then cooled to room temperature and the absorbance was 

determined; drug concentration was then determined using a freshly prepared Irinotecan 

standard curve. (Agilent/Hewlett Packard UV–Vis spectrophotometer (model 8453), 

Agilent Technologies, Mississauga, ON, Canada). The experiments were performed in 

duplicate. 

The EE% was then calculated according to the following equation : 

 

[Encapsulated drug]   /  [Total drug]  x  100  =  % EE 

 

                   In vitro studies: Leakage assay 

 

 The liposomes were added to fetal bovine serum. The release experiments 

were carried out at 37°C. Aliquots collected at selected time points over 24 h for 5 days, 

were centrifuged using columns bio-spin 6 and Sepharose CL-2B at 2,250 rpm for 2 
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min at 10°C using Microcon YM-100 centrifugal filters units (Millipore, Billerica, MA) 

to separate the encapsulated drug from the released one.  

All samples were analyzed by UV spectrometry at 370 nm to determine the 

concentration of Irinotecan. (Agilent/Hewlett Packard UV–Vis spectrophotometer 

(model 8453), Agilent Technologies, Mississauga, ON, Canada). 

The percent of drug release was calculated as the ratio between the free drug at a 

given time and total encapsulated drug (Watanabe et al., 2008).  

The percent of drug retained was obtained by the ratio between the drug still 

encapsulated after a given time and total encapsulated drug (at time = 0):  

 

[Encapsulated] t=n   /   [Encapsulated] t=0   x  100  =  % retained 

 

                14.2 Results and discussion 
 

Drug encapsulation efficiency  

 

 Table 2 shows the EE% values obtained from the two Irinotecan liposomal 

formulations prepared according to the eight different experimental protocols 

investigated.  

 The formulation 1 (DSPC:DSPE-mPEG(2000):CHOL;55:5:40) made 

according to the protocol n. 5 (internal buffer: 500mM Citrate buffer pH=3, external 

buffer: 500mM Sodium Citrate buffer pH=7) and the protocol n. 7 (internal buffer: 650 

TEA-phytic acid pH=6, external buffer: 5mM Hepes, 5% Glucose pH=6.5, 5mM Hepes, 

140mM NaCl pH=6.5), and the formulation 2 (DSPC:CHOL; 55:45) prepared 

according to the protocol n.1 (internal buffer: 650mM TEA-SOS pH=6, external buffer: 

5mM Hepes, 5% Glucose pH=6.5, 5mm Hepes, 140mM NaCl pH=6.5) didn’t work 

well, because during the liposome preparation, the size of the vesicles began too big, 

more than 1000 nm. 

 Formulation 1 (DSPC:DSPE-mPEG(2000):CHOL;55:5:40) made according 

to the protocol n. 2 (internal buffer: 300 mM Copper sulphate, external buffers: 300 mM 

sucrose / 20 mM HEPES/15 mM EDTA pH=7.5 and 20 mM Hepes, 150mM NaCl 

pH=7.5) exhibited the maximum encapsulation efficiency (EE%=78.07%).  

 In the case of formulation 2 (DSPC:CHOL; 55:45) the best results were 

obtained by using the Protocol n. 5 (internal buffer: 500mM Citrate buffer pH=3, 
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external buffer: 500 mM Sodium Citrate buffer pH=7), which allowed obtainment of 

98.64% of encapsulation efficiency (EE%). 

 

 

 

Table 2: EE% values obtained with formulations 1(DSPC:DSPE-
mPEG(2000):CHOL;55:5:40)  and 2 (DSPC:CHOL; 55:45) prepared according to the 
eight investigated protocols  

 Formulation 1 Formulation 1 

R 

Formulation 2 Formulation 2 R 

Prot 1 EE%= 19.28% EE%= 19.49%   

Prot 2 EE%= 78.07% EE%= 55.87% EE%= 43.47% EE%= 39.70% 

Prot 3 EE%= 9.87%  EE%= 8.98% EE%= 12.42% 

Prot 4 EE%= 33.93%  EE%= 28.84% EE%= 34.52% 

Prot 5   EE%=98.64% EE%= 65.03% 

Prot 6 EE%= 48.86% EE%= 37.86% EE%= 53.83% EE%= 39.03% 

Prot 7   EE%= 45.18%  

Prot 8 EE%= 54.95% EE%= 38.55% EE%= 17.74%  

 
In vitro studies 

Leakage assay 

The % drug retained after 5 days, for the two liposomal Irinotecan formulations 

prepared according to the eight protocols, (shown in the Table 3) were determined to 

evaluate whether the rate of Irinotecan release from the liposomes was influenced by the 

drug loading method used. 

The results of % Irinotecan retained as a function of time from the two liposomal 

formulations prepared according to the different experimental protocols (see Table 1) 

are shown in the following graphs (from Fig. 1 to Fig. 13). 
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Figure 1: Formulation1 protocol 1: Internal buffer: 650mM TEA-SOS pH 6.0; External 
buffer 1: 5 mM Hepes, 5% Glucose pH 6.5;External Buffer 2: 5 mM Hepes, 140 mM 
NaCl pH=6.5.  
 

 

 

 

 

 

 

 

 

Figure 2: Formulation1 protocol 2:Internal buffer: 300 mM Copper sulfate; External 
buffer 1: SHE Buffer:300 mM sucrose / 20 mM HEPES/15 mM EDTA pH=7.5; 
External Buffer 2: HEPES-buffered saline:20mM Hepes,150mM NaCl pH=7.5.  
 

 

 

 

 

 

 

 

Figure 3: Formulation 1 Protocol 3: Internal buffer:100 mM copper gluconate/180 mM 

TEA pH=7; External buffer 1:SHE Buffer: 300 mM sucrose/ 40 mM Phosphate/10mM 

EDTA pH=7; External Buffer 2: HBS buffer: 20 mM HEPES, 150 mM NaCl,  pH=7.4.  
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Figure 4: formulation 1 protocol 4: Internal buffer: 100mM copper gluconate/220mM 

TEA pH=7.4; External buffer 1: SHE Buffer: 300mM sucrose/20mM HEPES/30mM 

EDTA pH=7.4; External Buffer 2:HBS Buffer: 20mM HEPES/150 mM NaCl 

pH=7.4%.  

 

 

 

  

 

 

 

Figure 5: Formulation 1 protocol 6: Internal buffer:300mM 1,2,3,4 butane 

tetracarboxylic acid pH=6 (water/NH4OH); External buffer 1: 5mM Hepes, 5% Glucose 

pH=6.5; External Buffer: 2 5mM Hepes,140 mM NaCl pH=6.5.   

 

 

 

 

 

 

 

 

 

Figure 6: Formulation 1 Protocol 8: Internal buffer: 250 mM ammonium sulphate;  

External buffer 1: 5 mM Hepes, 5% Glucose pH=6.5; External Buffer 2: 5 mM 

Hepes,140mM NaCl pH=6.5.  
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Figure 7: Formulation 2 Protocol 2: Internal buffer: 300 mM Copper sulfate; External 

buffer 1: SHE Buffer:300 mM sucrose / 20 mM HEPES/15 mM EDTA pH=7.5 

;External Buffer 2: HEPES-buffered saline:20mM Hepes,150mM NaCl pH=7.5. 

 

 

 

 

 

 

 

 

 

Figure 8: Formulation 2 Protocol 3: Internal buffer:100 mM copper gluconate/180 mM 

TEA pH=7; External buffer 1:SHE Buffer: 300 mM sucrose/ 40 mM Phosphate/10mM 

EDTA pH=7; External Buffer 2: HBS buffer: 20 mM HEPES, 150 mM NaCl,  pH=7.4. 

 

 

 

 

 

 

 

 

Figure 9: Formulation 2 Protocol 4: Internal buffer: 100mM copper gluconate/220mM 

TEA pH=7.4; External buffer 1: SHE Buffer: 300mM sucrose / 20mM HEPES/30mM 

EDTA pH=7.4; External Buffer 2:HBS Buffer: 20 mM HEPES/150 mM NaCl pH=7.4. 
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Figure 10: Formulation 2 Protocol 5: Internal buffer:500mM Citrate buffer Ph=3; 

External buffer: 500mM Sodium Citrate buffer pH=7.  

 

 

 

 

 

 

 

 

Figure 11: Formulation 2 Protocol 6: Internal buffer:300mM 1,2,3,4 butane 
tetracarboxylic acid pH=6 (water/NH4OH); External buffer 1: 5mM Hepes, 5% Glucose 
pH=6.5; External Buffer: 2 5mM Hepes,140 mM NaCl pH=6.5. 
 

 

 

 

 

 

 

 

 

Figure 12: Formulation 2 Protocol 7: Internal buffer: 650 TEA-phytic acid pH=6; 
External buffer 1: 5mM Hepes, 5% Glucose pH=6.5; External Buffer 2: 5mM 
Hepes,140mM NaCl pH=6.5.  
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Figure 13: Formulation 2 Protocol 8: Internal buffer: 250mM ammonium sulphate;  
External buffer 1: 5mM Hepes, 5% Glucose pH=6.5; External Buffer 2: 5mM 
Hepes,140mM NaCl pH=6.5.  
 

 
Table 3: % Irinotecan retained after 5 days inside liposomal formulations 1 

(DSPC:DSPE-mPEG(2000):CHOL; 55:5:40) and 2 (DSPC:CHOL; 55:45) prepared 

according to the eight investigated protocols  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 14, in the case of the liposomal Formulation 1 

(DSPC:DSPE-mPEG(2000):CHOL; 55:5:40) the highest % of Irinotecan retained inside 

the liposomes after 5 days was obtained with the Protocol n. 3 (internal buffer: 100 mM 

Copper Gluconate, 180 mM TEA pH=7, external buffer: 300mm Sucrose, 40 mM 

phosphate, 10 mM EDTA pH=7 and 20 mM Hepes, 150 mM NaCl pH=7.5). The result 

obtained was 39.47%. 

 
type of Protocol 

 
Formulation 1 

 

 
Formulation 2 

 
Prot 1 

 
%retained=37.14% 

 

 

 
Prot 2 

 
%retained=21.04% 

 

 
%retained=35.62% 

 
Prot 3 

 
%retained=39.47% 

 

 
%retained=35.71% 

 
Prot 4 

 
%retained=33.65% 

 

 
%retained=17.27% 

 
Prot 5 

 

  
%retained=37.18% 

 
Prot 6 

 

 
%retained=31.19% 

 

 
%retained=23.85% 

 
Prot 7 

 

  
%retained=2.97% 

 
Prot 8 

 
%retained=8.55% 

 

 
%retained=5.62% 
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Figure 14:% Irinotecan retained after five days in liposomal formulation 1 
(DSPC/CHOL/DSPE-mPEG2000 (55:40:5)) prepared according to the different eight 
experimental protocols  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: % Irinotecan retained after five days in liposomal formulation 2 

(DSPC/CHOL (55:45)) prepared according to the different eight experimental protocols 
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pH=3, external buffer: 500 mM Sodium Citrate buffer pH=7). The result obtained was 

37.18%. 

In conclusion, the best liposome formulation was Formulation 2 (DSPC:CHOL; 

55:45) prepared according to the Protocol n. 5 (obtained from the paper of Chou et al., 

2003) where the internal buffer was 500 mM Citrate buffer pH=3, the external buffer 

was 500 mM Sodium Citrate buffer pH=7, the molar ratio was 0.3:1 and the incubation 

time was 10 min at 60°C. It gave the  EE%=98.64% and % retained drug (after 

5days)=37.18%. 

This Protocol allowed obtainment of the best results in terms of both EE% and 

% retained drug over all the tested protocols for the formulation 2 and this result is 

probably due to the wide difference of pH between internal and external buffer. 

Instead, for the formulation 1 (DSPC:DSPE-mPEG(2000):CHOL;55:5:40)  the 

best preparation protocols were the Protocol n. 2 (obtained from the paper of Ramsay et 

al., 2008) where the internal buffer was 300 mM Copper sulphate, the external buffers 

were SHE buffer: 300 mM sucrose / 20 mM HEPES/15 mM EDTA pH=7.5 and 

HEPES-buffered saline: 20mM Hepes,150 mM NaCl pH=7.5, the molar ratio was 0.2:1 

and the incubation time was 1 hour at 50°C, and the Protocol n. 6, where the internal 

buffer was 300 mM 1,2,3,4 butane tetracarboxylic acid pH=6 (water/NH4OH), the 

external buffers were 5 mM Hepes, 5% Glucose pH=6.5 and 5 mM Hepes,140 mM 

NaCl pH=6.5, the molar ratio was 0.2:1 and the  incubation time was 1 hour at 50°C. 

The results were for Protocol n. 2, EE%= 78.07% and % drug retained (after 5 

days)=21.04%, and for Protocol n. 6, EE%= 48.86% and % drug retained (after 5 

days)=31.19%. This kind of formulation is very important for the aim of the work, 

because it contains DSPE-mPEG(2000) that gives the stealth effect and improves the 

long term circulation of the liposomes. This effect is particularly advisable in liposomal 

formulations of anticancer drugs, since longer blood residence time will result in 

repeated passages through the tumor microvascular bed of high concentrations of 

vesicles and, consequently, improved uptake of liposomes by tumors. 

 The protocol n. 2 didn’t had the maximum results in terms of % Irinotecan 

retained, however it represents the best compromise for this formulation, due to its 

highest value of EE%. 
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            CONCLUSIONS 

 
The work performed in this doctoral thesis has highlighted the importance of 

liposomal formulations and of cyclodextrin complexation in pharmaceutical field.  
Liposomal formulation of local anaesthetics allowed an improvement of their 

therapeutic effectiveness in terms of intensity and/or duration of action.  

It has been demonstrated that the drug release rate and skin penetration ability 

are dependent by the liposomal carrier composition and by the vesicle characteristicss 

(such as size, lamellarity, etc.), which in their turn are strictly related to their preparation 

method.  
Regarding the composition of liposomes, we started from the classical 

composition of the lipidic phase consisting in a mixture of phosphatidylcholine and 

cholesterol, and we evaluated the effect of variations in their relative amount, and of the 

addition of other compounds on the drug encapsulation efficiency, Zeta-potential and 

vesicle stability, drug release rate and permeability and carrier guidance on the target.  

With this purpose, we investigated the effect of the addition of cationic 

(stearylamine) or anionic (dicethylphosphate) surfactants.  

In particular we demonstrated the favourable effect of the presence of 

dicethylphosphate, which improved the flexibility of the vesicle membranes, thus 

increasing the permeability of liposomes from gel formulation through the skin.  

As for the composition of the hydration phase, we pointed out the importance to 

use ethanol-water mixtures, rather than water alone.  

In fact, the greater the amount of ethanol in the mixture, the higher was the drug 

permeation rate. The use of experimental design was very useful in this study, since it 

enabled to reduce the number of experiments to obtain the optimized composition.  

The experimental design allowed variation of several parameters simultaneously, 

and examination of possible interaction among the variables, thus confirming as a 

valuable investigative tool in the pharmaceutical field. 

A following study performed with the optimized liposomal composition, 

allowed to demonstrate the importance of the liposome preparation method on the 

performance of the final product.  
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With this aim, the liposomes were prepared by different techniques, and 

characterized for their physicochemical properties, encapsulation efficiency and drug 

permeation. The work enabled a rational selection of the most suitable preparation 

technique of the liposomal dispersion as a function of the desired effect for the carried 

anaesthetic drug in terms of improvement of intensity of action or prolongation of its 

duration. 

Cyclodextrin complexation using a highly soluble derivative of native β-

cyclodextrin (i.e. amorphous randomly substituted methyl-β-cyclodextrin (RAMEB)) 

was successful in improving the wettability and dissolution properties of an anti-

inflammatory drug such as oxaprozin, thus allowing a reduction of the dose, and, 

consequently, of the appearance of side-effects. 

On the other hand, cyclodextrin complexation using a hydrophobic derivative of 

native β-cyclodextrin practically insoluble in water (i.e. triacetyl-β-cyclodextrin) was 

effective in properly reducing the dissolution rate of metformin hydrochloride 

(MF·HCl), an oral anti-hyperglycaemic agent very highly soluble in water.  

The obtained slow-dissolution complex is suitable for the development of a 

sustained-release formulation of the drug, able to prolong its duration of action and 

reduce the frequency of administration, thus bettering the patient compliance. 

Subsequent work has also demonstrated the efficacy of cyclodextrin 

complexation for the development of “drug - in cyclodextrin - in liposome” delivery 

systems, which showed a further improvement of the therapeutic effect of the carried 

drug compared with liposomes containing the plain drug.  

This new technique has been successfully applied for the development of 

liposomal formulations of butamben of prilocaine, both as complexes with a highly 

soluble derivative of native β-cyclodextrin, i.e. hydroxypropyl-β-cyclodextrin (HP-β-

cyclodextrin). It was also assessed the effectiveness of a double-loading methodology 

able to increase both liposome encapsulation efficiency and therapeutic effectiveness of 

the carried hydrophobic drug.  

It was possible to add the drug both in the liposomal lipid phase, by dissolving it 

in the organic solvent together with phospholipids, and in the hydration phase, by 

dissolving it as cyclodextrin complex. 

Finally, a study has been undertaken aimed at developing an effective liposomal 

formulation of the anticancer drug Irinotecan. Two types of liposomal lipid phase 

formulations (i.e. distearoyl-phosphatidylcholine – cholesterol – distearoylphosphatidyl-
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ethanolamine-mPEG2000, DSPC:CHOL:DSPE-mPEG2000 55:40:5 and distearoyl-

phosphatidylcholine – cholesterol, DSPC:CHOL 55:45) were tested. The drug loading 

was carried out according to eight different experimental protocols on preformed 

liposomes (obtained by thin layer evaporation) using a passive remote-loading 

technique based on the presence of a pH gradient between outside and inside of 

liposomal vesicles.  

The study allowed identification, for each examined formulation, of the best 

experimental protocol in terms of encapsulation efficiency and drug release. In 

particular, the formulation containing DSPE-mPEG2000 was selected, since it gives rise 

to stealth-liposome, with a long plasma circulation time.  

A longer blood residence time will result in repeated passages through the tumor 

microvascular bed of high concentrations of vesicles and, consequently, in a greater 

efficiency of their extravasation process. 
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