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ABSTRACT

Long-time high-resolution simulations of the dynamics of a coronal loop in Cartesian geometry are carried out,
within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by the
motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the
physical mechanism responsible for the transport of energy from the large scales, where energy is injected by
photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary, different regimes of
turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-
like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy)
are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the
heating rate with axial magnetic field intensity , which depends on the spectral index of total energy for givenB0

loop parameters, must vary from for weak fields to for strong fields at a given aspect ratio. The predicted3/2 2B B0 0

heating rate is within the lower range of observed active region and quiet-Sun coronal energy losses.

Subject headings: MHD — Sun: corona — Sun: magnetic fields — turbulence

1. INTRODUCTION

In this Letter we solve, within the framework of RMHD in
Cartesian geometry, the Parker field-line tangling (coronal heat-
ing) problem (Parker 1972, 1988). We do this via long simu-
lations at high resolutions, introducing hyperresistivity models
to attain extremely large Reynolds numbers. We show how
small scales form and how the coronal heating rate depends
on the loop and photospheric driving parameters, and we derive
simple formulae that may be used in the coronal heating context
for other stars.

Over the years a number of numerical experiments have been
carried out to investigate coronal heating, with particular em-
phasis on exploring how photospheric field line tangling leads
to current sheet formation.

Mikić et al. (1989) and Hendrix & Van Hoven (1996) first
carried out simulations of a loop driven by photospheric mo-
tions using a Cartesian approximation (a straightened out loop
bounded at each end by the photosphere) imposing a time-
dependent alternate direction flow pattern at the boundaries. A
complex coronal magnetic field results from the photospheric
field line random walk, and although the field does not, strictly
speaking, evolve through a sequence of static force-free equi-
librium states (the original Parker hypothesis), magnetic energy
nonetheless tends to dominate kinetic energy in the system. In
this limit the field is structured by current sheets elongated
along the axial direction, separating quasi–two-dimensional
(2D) flux tubes that constantly move around and interact. Gals-
gaard & Nordlund (1996) carried out similar studies, while
Longcope & Sudan (1994) focused on the current sheet for-
mation process within the RMHD approximation, also used in
the simulations by Dmitruk & Go´mez (1999). The results from
these studies agreed qualitatively among themselves, in that all
simulations display the development of field-aligned current
sheets. However, estimates of the dissipated power and its scal-
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ing characteristics differed largely, depending on the way in
which extrapolations from low to large values of the plasma
conductivity of the properties such as inertial range power-law
indices were carried out. 2D numerical simulations of incom-
pressible MHD with magnetic forcing (Einaudi et al. 1996;
Georgoulis et al. 1998; Dmitruk et al. 1998; Einaudi & Velli
1999) showed that turbulent current sheets dissipation is dis-
tributed intermittently, and that the statistics of dissipation
events, in terms of total energy, peak energy, and event duration
displays power laws not unlike the distribution of observed
emission events in optical, ultraviolet, and X-ray wavelengths
of the quiet solar corona.

More recently, full 3D sections of the solar corona with a
realistic geometry have been simulated by Gudiksen & Nord-
lund (2005). While this approach has advantages when inves-
tigating the coronal loop dynamics within its neighboring co-
ronal region, numerically modeling a larger part of the solar
corona drastically reduces the number of points occupied by
the coronal loops. Thus, these simulations have not been able
to shed further light on thephysical mechanism responsible for
the coronal heating.

In § 2 we introduce the coronal loop model and the simu-
lations we have carried out; in § 3 wedescribe our numerical
results, and in § 4 we give simplescaling arguments to un-
derstand the magnetic energy spectral slopes. This will lead to
a quantitative asymptotic estimate of the coronal loop heating
rate, and of its scaling with the axial magnetic field, photo-
spheric velocity amplitude and coronal loop length.

2. THE MODEL

A coronal loop is a closed magnetic structure threaded by a
strong axial field, with the footpoints rooted in the photosphere.
This makes it a strongly anisotropic system, as measured by
the relative magnitude of the Alfve´n velocity km s�1v ∼ 1000A

compared to the typical photospheric velocity km s�1.u ∼ 1ph

This means that the relative amplitude of the Alfve´n waves
that are launched into the corona is very small. The loop dy-
namics may be studied in a simplified geometry, neglecting
any curvature effect, as a “straightened out” Cartesian box,
with an orthogonal square cross section of size , and an axial�⊥
lengthL embedded in an axial homogeneous uniform magnetic
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Fig. 1.—High-resolution simulation with ,v /u p 200 512# 512# 200phA

grid points and . Magnetic ( ) and kinetic ( ) energies as aRe p 800 E E1 M K

function of time ( is the axial Alfve´nic crossing time).t p L/vA A

Fig. 2.—Same simulation of Fig. 1. The integrated Poynting fluxS dynam-
ically balances the ohmic (J) and viscous (Q) dissipation. Inset shows a mag-
nification of total dissipation andS for .200≤ t/t ≤ 300A

field . This system may be described by the RMHDB p B e0 0 z

equations (Kadomtsev & Pogutse 1974; Strauss 1976; Mont-
gomery 1982): introducing the velocity and magnetic field po-
tentialsJ and w, , , and vor-u p � � (Je ) b p � � (we )⊥ z ⊥ z

ticity and current, , the nondimensioned2 2q p �� J j p �� w⊥ ⊥
RMHD system is given by

n�1�w �J (�1) 2np v � [J, w] � � w, (1)⊥A�t �z Ren

n�1�q �j (�1) 2np v � [ j, w] � [q, J] � � q. (2)⊥A�t �z Ren

As characteristic quantities we use the perpendicular length of
the computational box , the typical photospheric velocity�⊥

, and the related crossing time . The equationsu t p � /uph ⊥ ⊥ ph

have been rendered dimensionless using velocity units for the
magnetic field (the density in the loopsr is taken to be constant)
and normalizing by . Then the nondimensioned Alfve´n speeduph

in equations (1)–(2) is given by the ratio between thev v /uphA A

dimensional velocities. The Poisson bracket of two functions
g andh is defined as , where are[g, h] p � g� h � � g� h x, yx y y x

transverse coordinates across the loop whilez is the axial co-
ordinate along the loop. A simplified diffusion model is as-
sumed and is the Reynolds number, withn the hyperdif-Ren

fusion index (dissipativity): for ordinary diffusion isn p 1
recovered.

The computational box spans , and ,0 ≤ x, y ≤ 1 0 ≤ z ≤ L
with corresponding to an aspect ratio equal to 10. AsL p 10
boundary conditions at the photospheric surfaces ( )z p 0, L
we impose a velocity pattern intended to mimic photospheric
motions, made up of two independent large spatial scale pro-
jected convection cell flow patterns. The wavenumber values
k excited are all those in the range , and the average3 ≤ k ≤ 4
injection wavenumber is .k ∼ 3.4in

3. RESULTS

Plots of the rms magnetic and kinetic energies as a function
of time, together with the dissipation due to currents, vorticity,
as well as the integrated Poynting flux, are shown in Figures 1
and 2. As a result of the photospheric forcing, energy in the

magnetic field first grows with time, until it dominates over the
kinetic energy by a large factor, before oscillating, chaotically,
around a stationary state. Fluctuating magnetic energy is∼35EM

times bigger than kinetic energy .EK

The same generic features are seen in the rms current and
vorticity dissipation, although the time dependence of the signal
is more strongly oscillating. The ohmic dissipation rateJ is
∼6.5 times viscous dissipationQ. The Poynting flux, on av-
erage, follows the current dissipation (there is no accumulation
of energy in the box); however, a detailed examination shows
that the dissipation time series tends to lag the Poynting flux,
with notable decorrelations around significant dissipation
peaks. The spatial configuration of the currents which corre-
sponds to a snapshot at a given time is displayed in Figure 3
(Plate 1). The currents collapse into warped, torn sheets that
extend almost completely along the loop. The current peaks
are embedded within the 2D sheetlike structures, corresponding
to an anisotropic structure for the turbulence, in agreement with
previous results.

A dimensional analysis of equations (1)–(2) shows that the
only free nondimensional quantity is . We fixf p � v /Lu⊥ phA

and vary the ratio of the Alfve´n speed to photo-L/� p 10⊥
spheric convection speed . Both runs with standard sec-v /uphA

ond-order dissipation ( ), as well as hyperdiffusionn p 1
( ), have been carried out to obtain extended inertialn p 4
ranges in the resulting spectra.

The power spectrum of total energy in the simulation box,
once a statistically stationary state has been achieved, depends
strongly on the ratio . This was first found in simulationsv /uphA

by Dmitruk et al. (2003) devoted to understanding how aniso-
tropic regimes of MHD turbulence depend on boundary driving
strength, with whom our numerical work is in broad agreement.

The total energy spectrum, for values of , 200,v /u p 50phA

400, and 1000 is shown in Figure 4, together with fits to the
inertial range power law. As increases, the spectrumv /uphA

steepens visibly (note that the hump at the high wave-vector
values for the runs with large is a feature, the bottleneckv /uphA

effect, which is well known and documented in spectral sim-
ulations of turbulence with the hyperdiffusion used here; see,
e.g., Falkovich 1994), with the slopes ranging from�2 to
almost�3. At the same time while total energy increases, the
ratio of the mean magnetic field over the axial Alfve´n velocity
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Fig. 4.—Time-averaged total energy spectra for simulations with
. Hyperdiffusion ( ) has been used withv /u p 50, 200, 400, and 1000 n p 4phA

, , , and , respectively, and a grid with20 20 19 19Re p 3 # 10 10 10 10 512#4

points.512# 200

decreases, in good accordance with the theory. This steepening,
which may be interpreted as both the effect of inertial line-
tying of the coronal magnetic field and the progressive weak-
ening of nonlinear interactions as the magnetic field is in-
creased, has a strong and direct bearing on the coronal heating
scaling laws.

4. DISCUSSION

A characteristic of anisotropic MHD turbulence is that the
cascade takes place mainly in the plane orthogonal to the DC
magnetic guide field (Shebalin et al. 1983). Consider then the
anisotropic version of the Iroshnikov-Kraichnan (IK) theory
(Sridhar & Goldreich 1994; Goldreich & Sridhar 1997). Di-
mensionally the energy cascade rate may be written as

, where is the rms value of the Elsa¨sser fields2rdz /T dzl l l

at the perpendicular scalel, where because the�z p u � b⊥ ⊥
system is magnetically dominated .r is the average� �dz ∼ dzl l

density and is the energy transfer time at the scalel, whichTl

is greater than the eddy turnover time because oft ∼ l/dzl l

the Alfvén effect (Iroshnikov 1964; Kraichnan 1965).
In the classical IK case, . This corresponds to

2
T ∼ t t /t( )l A l A

the fact that wave packets interact over an Alfve´n crossing time
(with ), and the collisions follow a standard random walkt 1 tl A

in energy exchange. In terms of the number of collisionsNl

that a wave packet must suffer for the perturbation to build up
to order unity, for IK .2N ∼ (t /t )l l A

More generally, however, as the Alfve´n speed is increased
the interaction time becomes smaller, so that turbulence be-
comes weaker and the number of collisions required for effi-
cient energy transfer scales as

atlN p with a 1 2, (3)l ( )tA

wherea is the scaling index (note that corresponds toa p 1
standard hydrodynamic turbulence), so that

a�1 av lAT ∼ N t ∼ . (4)l l A ( ) ( )L dzl

Integrating over the whole volume, the energy transfer rate
becomes

2 a�1 a�2dz L dzl l2 2e ∼ � Lr ∼ � Lr . (5)⊥ ⊥ ( ) aT v ll A

Considering the injection scale , equation (5) becomesl ∼ �⊥

2 2 adz r� L� ⊥2 a�2⊥e ∼ � Lr ∼ dz . (6)⊥ �a�1a ⊥T � v� ⊥ A⊥

On the other hand, the energy injection rate is given by the
Poynting flux integrated across the photospheric boundaries:

. Considering that this integral is domi-e p rv dau · b∫in ph ⊥A

nated by energy at the large scales, due to the characteristics
of the forcing function, we can approximate it with

2e ∼ r� v u dz , (7)in ⊥ ph �A ⊥

where the large scale component of the magnetic field can be
replaced with because the system is magnetically dominated.dz�⊥

The last two equations show that the system is self-organized
because bothe and depend on , the rms values of thee dzin �⊥
fields at the scale : the internal dynamics depends on the�z �⊥
injection of energy and the injection of energy itself depends
on the internal dynamics via the boundary forcing. Another
aspect of self-organization results from our simulations: the
perpendicular magnetic field develops few spatial structures
along the axial directionz, and in the nonlinear stage its to-
pology substantially departs from the mapping of the boundary
velocity pattern that characterizes its evolution during the linear
stage. These and other features will be discussed more in depth
in A. F. Rappazzo et al. (2007, in preparation).

In a stationary cascade the injection rate (7) is equal to the
transport rate (6). Equating the two yields for the amplitude at
the scale ,�⊥

a/(a�1)∗dz � v� ⊥ A⊥ ∼ . (8)( )u Luph ph

Substituting this value in equations (6) or (7), we obtain for
the energy flux

a/(a�1)� v⊥ A∗ 2 2e ∼ � rv u , (9)⊥ phA ( )Luph

where . This is also the dissipation rate and1/2v p B / (4pr)0A

hence thecoronal heating scaling. The crucial parameter here
is because the scaling indexa (eq. [3]), on whichf p � v /Lu⊥ phA

the strength of the stationary turbulent regime depends, must
be a function off itself. The relative amplitude of the turbulence

is a function off, and asf increases the effect ofline-∗dz /v� A⊥
tying becomes stronger, decreasing the strength of turbulent
interactions (wave-packet collision efficiency becomes subdif-
fusive) so thata increases above 2. The ratio can also∗dz /v� A⊥
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Fig. 5.—Solid line: Exponent as a function ofa. Symbols: Valuesa/(a � 1)
of a corresponding to different values of , at fixed .v /u L/� p 10ph ⊥A

be interpreted as the rms value of the Parker angle and isVP

given by

∗ a/(a�1) 1/(a�1)dz � u� ⊥ ph⊥AV S ∼ ∼ . (10)P ( ) ( )v L vA A

This is actually an estimate of the average inclination of the
magnetic field lines, while the rms value of the shear angle
between neighboring field lines is at least twice that given by
equation (10), not considering that close to a current sheet an
enhancement of the orthogonal magnetic field is observed
(which leads to a higher value for the angle).

Numerical simulations determine the remaining unknown
nondimensional dependence of the scaling indexa on f. The
power-law slopes of the total energy spectra shown in Fig-
ure 5 are used to determinea. Identifying, as usual, the eddy
energy with the band-integrated Fourier spectrum ,2dz ∼ k El ⊥ k⊥
where , from equation (5) we obtaink ∼ � /l⊥ ⊥

�(3a�2)/(a�2)E ∝ k , (11)k ⊥⊥

where for the slope for the “anisotropic Kol-a p 1 �5/3
mogorov” spectrum is recovered, and for the�2 slopea p 2
for the anisotropic IK case. At higher values ofa correspond
steeper spectral slopes up to the asymptotic value of�3.

In Figure 5 we plot the values ofa determined in this way,
together with the resulting power dependence of thea/(a � 1)
amplitude (8) and of the energy flux (9) on the parameterf.
The other power dependences are easily obtained from this last
one, e.g., for the energy flux (9) the power of the axial Alfve´n
speed is given by , so that in terms of thev 1 � a/(a � 1)A

magnetic field it scales as for weak fields and/or long3/2B B0 0

loops, to for strong fields and short loops.2B0

Dividing equation (9) by the surface we obtain the energy2�⊥
flux per unit area . Taking for example a coronal loop∗ 2F p e /�⊥
40,000 km long, with a number density of 1010 cm�3, v pA

km s�1, and km s�1, [for these parameters we2000 u p 1ph

can estimate a value of ], which models ana/(a � 1) ∼ 0.95
active region loop, we obtain ergs cm�2 s�1 and6F ∼ 5 # 10
a Parker angle (eq. [10]) . On the other hand, for aAV S ∼ 4�P

coronal loop typical of a quiet-Sun region, with a length of
100,000 km, a number density of 1010 cm�3, km s�1,v p 500A

and km s�1 [for these parameters we can estimate au p 1ph

value of ], we obtain ergs cm�24a/(a � 1) ∼ 0.7 F ∼ 7 # 10
s�1 and .AV S ∼ 0.9�P

In summary, with this Letter we have shown how coronal
heating rates in the Parker scenario scale with coronal loop and
photospheric driving parameters, demonstrating that field line
tangling can supply the coronal heating energy requirement.
We also predict that there is no universal scaling with axial
magnetic field intensity, a feature that can be tested by ob-
serving weak field regions on the Sun, or the atmospheres of
other stars with differing levels of magnetic activity.
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Dmitruk, P., Gómez, D. O., & Matthaeus, W. H. 2003, Phys. Plasmas, 10,

3584
Einaudi, G., & Velli, M. 1999, Phys. Plasmas, 6, 4146
Einaudi, G., Velli, M., Politano, H., & Pouquet, A. 1996, ApJ, 457, L113
Falkovich, G. 1994, Phys. Fluids, 6, 1411
Galsgaard, K., & Nordlund, . 1996, J. Geophys. Res., 101, 13445Å
Georgoulis, M. K., Velli, M., & Einaudi, G. 1998, ApJ, 497, 957
Goldreich, P., & Sridhar, S. 1997, ApJ, 485, 680
Gudiksen, B. V., & Nordlund, . 2005, ApJ, 618, 1020Å
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PLATE 1

Fig. 3.—Top: Side view of two isosurfaces of the squared current at a selected time for a numerical simulation with , grid points andv /u p 200 512# 512# 200phA

a Reynolds number . The isosurface at the value is represented in partially transparent yellow, while red displays the isosurface with2 5 2Re p 800 j p 2.8# 10 j p1

, well below the value of the maximum of the squared current that at this time is . Note that the red isosurface is always nested inside the yellow5 2 68 # 10 j p 8.4# 10
one and appears pink in the figure. The computational box has been rescaled for an improved viewing, but the aspect ratio of the box is 10; i.e., the axial length of the box
is 10 times bigger than its orthogonal length.Bottom: Top view of the same two isosurfaces using the same color display. The isosurfaces are extended along the axial
direction, and the corresponding filling factor is small.


