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Introduction

Geostatistics is concerned with the problem of producing a map of a quan-
tity of interest over a particular geographical region based on, usually noisy,
measurement taken at a set of locations in the region. The aim of such a
map is to describe and analyze the geographical pattern of the phenomenon
of interest.

Geostatistical methodologies are born and apply in areas such as envi-
ronmental studies and epidemiology, where the spatial information is tradi-
tionally recorded and available. However, in the last years the diffusion of
spatially detailed statistical data is considerably increased and these kind of
procedures - possibly with appropriate modifications - can be used as well
in other fields of application, for example to study demographic and socio-
economic characteristics of a population living in a certain region.

Basically, to obtain a surface estimate we can exploit the exact knowledge
of the spatial coordinates (latitude and longitude) of the studied phenomenon
by using bivariate smoothing techniques, such as kernel estimate or kriging
(Cressie, 1993; Ruppert et al., 2003). However, usually the spatial informa-
tion alone does not properly explain the pattern of the response variable and
we need to introduce some covariates in a more complex model.

Geoadditive models, introduced by Kammann and Wand (2003), answer
this problem as they analyze the spatial distribution of the study variable
while accounting for possible non-linear covariate effects. They represent such
effects by merging an additive model (Hastie and Tibshirani, 1990) - that
accounts for the non-linear relationship between the variables - and a kriging
model - that accounts for the spatial correlation - and by expressing both
as a linear mized model. The linear mixed model representation is a useful
instrument because it allows estimation using mixed model methodology and
software. Moreover, we can extend geoadditive model to include generalized
responses, small area estimation, longitudinal data, missing data and so on
(Ruppert et al., 2009).

A first aim of this work was to present the application of geoadditive
models in fields that differ from environmental and epidemiological studies.
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In particular, a geoadditive small area estimation model is applied in order
to estimate the mean of household log per-capita consumption expenditure
for the Albanian Republic at district level.

As we said, the geographical information is now more available in socio-
economic data. However sometimes we don’t know the exact location of
all the population units, just the areas to which they belong - like census
districts, blocks, municipalities, etc - while we know the coordinates for sam-
pled units. How can we continue to use the geoadditive model under these
circumstances? The classic approach is to locate all the units belonging to
the same area by the coordinates (latitude and longitude) of the area center.
This is obviously an approximation, induced by nothing but a geometrical
property, and its effect on the estimates can be strong and increases with the
area dimension.

We decided to proceed differently, treating the lack of geographical infor-
mation as a particular problem of measurement error: instead of use the same
coordinates for all the units, we impose a distribution for the locations inside
each area. To analyze the performance of this approach, various MCMC
experiments are implemented with different scenarios: missing variable (uni-
variate and bivariate), distribution (uniform and beta) and data (simulated
and real). The results show that, with the right hypothesis, the estimates un-
der the measurement error assumption are better than that under the classic
approach.

The thesis is organized in four chapters, followed by some concluding
remarks.

In the first chapter we present a particular class of semiparametric mod-
els - the additive models - that maintain the simple additive structure of
the classic regression model without imposing any assumption on the func-
tional relation between covariates and response variable. The fitting of such
models relays on nonparametric methods and we focus on penalized splines
smoothers and their mixed model representation, that allows estimation and
inference using mixed model methodology. Then we focused on the flexible
smoothing of point clouds to obtain surface estimates, like the kriging algo-
rithm and the radial smoothers family. Finally we present the geoadditive
models.

In the second chapter we introduce the concept of statistical analysis of
spatial data, presenting both potentialities and problems that arise from this
spatial approach. In addition. we present a general review on the use of the
spatial information in the main areas of statistical research: official statistics,
epidemiology, environmental statistics, demography and social statistics, and
econometrics. A particular emphasis is posed on the methods of small area
estimation in presence of spatially referenced data.
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In the third chapter we present the concept of measurement errors in
spatial data analysis. We define the problem of uncertainty and errors in
GIS from the point of view of the geographical information science, and we
illustrate the statistical approach to measurement error analysis. Then, we
deal with the matter of applying a geaodditive model to produce estimates for
some geographical domains in the absence of point referenced auxiliary data.
The performance of our measurement error approach is evaluated through
various Markov Chain Monte Carlo experiments implemented under different
scenarios.

The last chapter is devoted to the application of a geoadditive model in
the field of poverty mapping at small area level. In particular, we apply
a geoadditive small area estimation model in order to estimate the district
level mean of the household log per-capita consumption expenditure for the
Republic of Albania. We combine the model parameters estimated using
the dataset of the 2002 Living Standard Measurement Study with the 2001
Population and Housing Census covariate information. After the definition
of the geoadditive SAE model, we illustrates the results of the application.
In addition. we discuss the use of two possible MSE estimators through a
desing-based simulation study.
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Chapter 1

Semiparametric Regression
Models

1.1 Introduction!

In this chapter we present a particular class of semiparametric models - the
additive models - that maintain the simple additive structure of the classic
regression model without imposing any assumption on the functional rela-
tion between covariates and response variable. The fitting of such models
relays on nonparametric methods and we focus on spline-base smoothers. In
particular, in Section 1.3 we introduce smoothing splines in a generic struc-
ture, while we present penalized splines more in detail in Sections 1.4 and
1.5. In Section 1.6 we derive the mixed model representation of penalized
splines, that allows estimation and inference using mixed model method-
ology. Section 1.7 is focused on the flexible smoothing of point clouds to
obtain surface estimates: the kriging algorithm (subsection 1.7.2) and the
radial smoothers family (subsection 1.7.3) are presented. Finally, geoaddi-
tive models, that merge additive models and kriging under a common mixed
model framework, are discussed in Section 1.8.

1.2 Additive Models

The additive model, firstly introduced in the early 1980s (Friedman and
Stuetzle, 1981) and described in detail in the monograph of Hastie and Tib-
shirani (1990), is a generalization of the usual linear regression model. It

IFor the writing of this chapter, we mainly followed the structure of Ruppert, Wand
and Carroll (2003).



gained popularity in applied research as a flexible and interpretable regres-
sion technique because it maintains the assumption of additivity of the co-
variates effects, allowing nonetheless the presence of nonlinear relationships
with the response variable.

In general, considering k continuous covariates x;, i = 1, ..., k, the model
has a structure similar to

y= f(x1) + g(xa, x3) + ... + h(zk) +¢, (1.1)

where the f,g,...,h can be both parametric or smooth functions of one or more
covariates. There are several available methods to represent these smooth
functions, in the following we choose to focus on spline-base smoothers and
in particular on penalized splines.

1.3 Spline-base Smoothers

To introduce how splines work, let us consider a simpler version of (1.1),
containing one smooth function f of one covariate z;

yi = f(xi) + i, (1.2)

where y; is the response variable and the ¢; are i.i.d. N(0,c?) random vari-
ables. The function f in (1.2) needs to be estimated from the observation
(xi,:), so usually this operation is known as scatterplot smoothing.

To estimate f, we require that it is represented in such a way that (1.2)
becomes a linear model. This can be done by choosing a basis, that is by
defining the space of functions of which f (or a close approximation to it) is
an element. To choose the basis means to choose some basis functions Bj(x)
that span the defined space so that we obtain

flz) = Zﬁij(l")a (1.3)

for some values of the unknown parameters /3;. Substituting (1.3) into (1.2)
clearly yields to the linear model

q
Y; = ZBJBJ('TZ) -+ Ei, [ N(O, 0'3) (14)
j=1

and permits to use classic estimation methods.



For example, if we decide to use a truncated polynomial spline basis of
degree p, the basis functions are

La, ..o (v — k)%, .., (. — kr)E,

where (z — k)4 indicates the positive part of the function (x — k) and the
values k1, ..., ki, called knots, are the points at which the sections joint. The
spline function (1.3) with this basis becomes

K
f@)=Bo+ Pz + ..+ Bpa? + > Bulr — mi)h, (1.5)

k=1

and the unknown parameters fy, ..., B, Bp1, ..., Bpi can be estimated with the
ordinary least square method.

The truncated polynomial basis is just one of the possible bases available
in literature, some others are the cubic spline basis, the B-spline basis or the
radial basis. For a more complete and detailed description of bases functions
we refer to Ruppert, Wand and Carroll (2003, 2009) and Wood (2006).

In principle, a change of basis does not change the fit, though some bases
are more numerically stable and allow computation of a fit with greater
accuracy. Usually, reason for selecting one basis over another are ease of
implementation or interpretability (generally not so important since we are
usually interested in the fit, not the estimated coefficients of the spline).
More effective on the fit is the degree of the spline model.

After the selection of the basis, the locations and the number of the knots
must be chosen as well. Typically the knots would be evenly spaced through
the range of observed x values, or placed at quantiles of the distribution of
unique x values (see Ruppert et al., 2003). Finally, the choice of the number
K of knots (and consequently the number of basis functions) influences the
smoothness of the spline model: for K = 0 the equation (1.5) corresponds
to a polynomial regression, on the other hand for K equal to the number n
of observations the spline model corresponds to an exact interpolation of the
data. Our interest is to estimate the underlying trend between x and y in
regression (1.4) so an intermediate value 0 < K < n is required. However,
we need to choose carefully: with a value of K too small the resulting fitting
could be too smooth and ignore the real pattern of the data, but if we use
too many knots the fit could be too flexible and overfit the data.

Following the definitions in Hastie (1996), we call low-rank the smoothers
that use considerably less than n basis functions, while we call full-rank those
with a number of basis functions approximately the same as the sample size.
Hastie (1996) shows that both the smoothers produce approximatively the

3



same fits, as the low-rank splines tend to discard components of the full-rank
splines that aren’t significant to the final smooth.

The use of low-rank scatterplot smoothers go back at least to Parker and
Rice (1985), O’Sullivan (1986, 1988) and Kelly and Rice (1990), but they
have reach a high diffusion in the last years after the articles of Eilers and
Marx (1996) and Hastie (1996). When we have large sample sizes or several
smoothers, the use of K << n knots produces more parsimonious models
and reduce significantly the computational costs.

1.4 Penalized Splines

By choosing the basis dimension of the spline we can control the degree of
smoothing. An alternative way to approach this problem is to maintain fixed
the number of knots at a size a little larger than what we believe necessary
but to constrain their influence adding a penalty to the least squares fitting
objective.

Consider (1.4) in its matrix form

y=Xp+e, (1.6)

withy = [y], X = [Bj(x;)], B = [8,] and € = [¢;]. The penalized least squares
fit of (1.6) can be written as

v = X3, where 8 minimizes ly — X,@H2 +\3'Dg, (1.7)

for some number A > 0 and a symmetric positive semidefinite matrix D, and
its solution is R .
B=(X"X+AD) Xy. (1.8)

The fitted values for a penalized spline regression are then given by
y=X (X"X+ D) X7y

and, analogously to the usual linear regression model, we can define the hat
matriz Sy (also known as smoother matrix) as

Sy =X (XTX + AD) ' XT. (1.9)

The penalty BT DM is such that induces a constrain only on the param-
eters B corresponding to the knots, while leaves unconstrained the others.
The smoothing parameter A controls the trade off between model fit and
model smoothness: A = 0 corresponds to the unconstrained estimation, while
A — 00 leads to the pth degree polynomial fit.

4



We can choose various type of penalty, depending on the selected basis
and on the model assumptions. If we consider the truncated polynomial
spline basis of (1.5), a possible simple penalty (Wand, 1999) is to constrain
the sum of squares of the knots coefficients /3, so that

K
> B <C, (1.10)
k=1

with C' constant. The constrain (1.10) is analogous to define

D= Opt1)x(p+1) O@prixki ) (1.11)
Ok x(pt1) I

As we said, the penalty imposed by this matrix D is one of many possible
penalties: we can constrain other functions of the knots coefficients or of the
smooth function f. Some common alternative to (1.11) are the P-splines
suggested by Eilers and Marx (1996), which use a B-spline basis with a
difference penalty applied to the knots parameters, or the smoothing spline
penalty, which is related to the integrated squared derivative measure of
roughness (see Green and Silverman, 1994, ch.2).

Differently from the unpenalized splines case, once we provided enough
knots to cover the range of value of x; reasonably well, their number and
positioning does not make much difference to the fit result. However, as there
are computational advantages of keeping the number of knots relatively low,
studies have been done to evaluate the knots influence. Ruppert and Carroll
(2000) and Ruppert (2002) present two automatic algorithms for determining
the value K, the myopic algorithm and the full-search algorithm. However,
Ruppert et al. (2003) suggest to use these algorithms only after a preliminary
inspection of the complexity of the data and propose a default rule of thumb
for general cases:

k+1

7aT) )th sample quantile of unique x;

e knots locations: ry, = (
fork=1,.., K,

e knots number: K = min (% x number of unique x;, 35).

1.4.1 Selection of the Smoothing Parameter

The selection of the smoothing parameter A is much more important as it
has a profound influence on the fit. At this aim, model selection criteria can
be used to choose the appropriate value of A\. Several methods are proposed
in literature, the most common are the cross validation and the generalized



cross validation criteria. Both these methods are based on the ideal purpose
of choose A so that f is as close as possible to the real f, but they differ on
the way to measure that closeness.

The cross validation criterion selects the value A that minimizes

C )\_n ¢ A 2_” (yz_yAl)Z
V( )—Z yi — f-i(wis A) —2—2,
i=1 = (1= Sxa)
where f,i indicates the penalized spline regression estimator applied to all
the data but the (z;,y;) unit and S, ; is the ith diagonal element of (1.9).
The generalized cross validation criterion selects the value A that mini-

mizes
n A \2

Ty

The CV and GCV criteria are quite similar, but the latter has the nice
property of invariance (see Wood, 2006, ch.4). Other model selection criteria,
like the Mallows C, criterion or the Akaike’s information criterion (AIC),
can be used as well.

1.4.2 Degrees of Freedom of a Smoother

The choice of the smoothing parameter A has a great influence on the fitting
result, however the value of A does not have a direct interpretation as the
amount of “structure” that is being imposed on the fit.

Generalizing the concept of degrees of freedom for a linear model, we
can define the degrees of freedom of the fit corresponding to the smoothing
parameter \ as

dfﬁt = tl"(S,\). (1.12)
This quantity can be interpreted as the equivalent number of parameters that
we need to obtain the same fit with a parametric model.

Considering 1.9, we have

dfs, = tr(X (XTX + AD) ' X7T) = tr((X"X + AD) ' X" X).

For a penalized spline smoother with K knots and degree p, it is easily shown
that

tr(So) =p+1+ K,
tr(Sy) - p+1 as A — oo,
so positive values of A\ correspond to

p+1<dfss <p+1+ K.



1.5 Models with Multiple Explanatory Vari-
ables

Now suppose that we have two continuous covariates x and z for the response
variable y. The appropriate additive model is

where g; ~ N(0,02) and f, g are unknown smooth functions.

Each smooth function can be represented using penalized spline regression
in the same way as for the simple univariate model. Using the spline basis
seen in section 1.3, we have

K

f@)=Bo+ P+ Braalr — rf)s,
k=1
H

9(2) =0 + 712+ Y mea(z — Ky,
h=1

where By, ..., Bx+1 and 7o, ..., Yyg4+1 are the unknown parameters for f and g
respectively, while 7, ..., k% and k7, ..., K7, are the knot locations for the two
functions. To simplify notation we use truncated linear splines to represent
both f and g, however it is perfectly possible to use any others degree of
polynomial or any other alternative basis.

By substitution, (1.13) becomes

H

K
Yi = Po + P + Z Br1(zi — k)4 + 2+ Z%H(Zi — Kp)4 + i, (1.14)
k=1 h=1

with vy constrained equal to zero to avoid identifiability problems, and can
be written in matrix form y = X3 + € by defining

ﬁ:[ﬁo bim Pa oo Bryr 2o 7H+1]T
and

1 oy 21 (x1 =KDy oo (o1 —K%)r (;1— KDy . (21— K%)s
X — . . . . . . . . .

Uz zn (@n— KD g o (0 — K%y (2 — KD+ oo (20— K5+

The parameters B of the model (1.14) can be obtained by minimization
of the penalized least squares objective

ly — XB8|” + \.8"D.8 + \.8"D.3,

7



where A, and ), are the smoothing parameters and D, = diag(0,0, 1x,0p)
and D, = diag(0,0, 0k, 1) are the penalty matrices.
Defining A = A\, D, + A.D., the estimated parameters are obtained as

1

B=(X"X+A) Xy.

The total degrees of freedom of the fit are
dfss = tr(X (XTX + A) 7' XT) = tr((X"X + A) T XTX).

However, we can also compute the degrees of freedom for each component.
Let =1+ (K + 1) + (H + 1) denote the number of columns in X and let

{[07 [17 [2}

be a partition of the columns indices {1,...,¢} such that I, corresponds to
the intercept [y, I; corresponds to f and Iy corresponds to g. That is:

Lo={1}, L={24,...(K+3)}, L={3(K+4),. ., (H+K+3)}

Define E;, j = 0,1,2, to be the ¢ x ¢ diagonal matrix with ones in the
diagonal elements with indices I; and zeros elsewhere, then corresponding
degrees of freedom for the jth smoother can be computes as

df; = tr(E; (XTX + A) ' X7X),

which is the sum over the indices I; of the diagonal elements of the matrix
(XTX + A) ™' XTX. Thus, we have that dfg, = dfy + dfs + dfs.

The selection of the numbers K and H of knots and of the smoothing
parameters A\, and A, follows the same rules and criteria presented for the
simple univariate model. Moreover, the extension to the additive model with
a higher numbers of smooth functions is straightforward.

1.6 Linear Mixed Model Representation of
Penalized Splines

A convenient way to work with penalized spline functions is to consider their
mixed model representation (Wand, 2003). In fact, as shown in Brumback,
Ruppert and Wand (1999), smoothing methods that use penalized basis func-
tions can be formulated as maximum likelihood estimators and best predic-
tors in a mixed model framework. This formulation is a useful instrument



because it allows estimation and inference using mixed model methodology
and software.

Consider once again the penalized spline regression with the truncated
polynomial spline basis. To simplify explanation, some changes in notation
occur and we rewrite model (1.6) as

K
Yi Iﬁo+519€i+---+5p9€f+zuk(%—/ik)‘i-i-é‘z" (1.15)
k=1

with g; ~ N(0,02). Let
Bo Uy
B=1: and u= | :
512 UK
be the coefficients of the polynomial functions and the truncated functions,
respectively. Corresponding to these vectors, define

1 €Ty - 1}1)
X —
1 x, -~ ab
and
(r1—r)f o (21— KRG
Z= : :
(zn — Kl)ﬂ s (@ — K“K)ﬁ

Then the penalized fitting criterion (1.7), divided by o2, can be written as

s lly = X8~ Zulf + % ). (1.16)

UE 0‘8
Instead of treat all the coefficients of (1.15) as unknown but fixed ele-
ments, as in the previous sections, now we define the u; as i.i.d. random
variables with distribution N(0,2) uncorrelated with the error component.
Then the formula (1.16) corresponds to Henderson’s criterion to obtain the
best linear unbiased predictor (BLUP) for linear mixed models (Robinson,

1991), with o2 = %

In summary, the mixed model representation of the penalized spline re-
gression is

y = Xﬁ + Zu —+ g, Cov |:l€1:| = |iz(:)u z(]);| (117)
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with 3, = 021, ¥. = 021, and the smoothing parameter A is automatically
p

o
selected as —=<.

oq
Let
Var(y) =V = ZX,Z" + %, (1.18)

be the covariance matrix of y. Following from the linear mixed model theory
(Henderson, 1975), if the variance components o2 and o2 are known, we

derive that the BLUPs of the model coefficients are

= (X"VIX)"'X"Vly, (1.19)
u=X,2"V iy - X3). (1.20)

However, in practical applications the variance components are usually un-
known and must be estimated from the observed data.

Replacing the unknown parameters with their estimated values 62 and &2
in (1.19) and (1.20), we obtain the empirical best linear unbiased predictors
(EBLUPs) of the model coefficients as

~ ~ -1 ~
8= (XTV—1X> XTV-ly, (1.21)
a=3%,2"V iy - X3), (1.22)

where the hat symbol indicates that the covariance matrices V, 3, and X,

contain the estimated values 62 and 62. Similarly, the smoothing parameter

~9

can be selected as A = A—;

o
u

1.6.1 Estimation of the Variance Components

There is a large and varied literature on estimation of the variance com-
ponents in mixed models, however mazimum likelihood (ML) and restricted
mazximum likelihood (REML) are today the most common methods for esti-
mating the parameters in covariance matrices (McCulloch and Searle, 2001).

If we consider again the covariance matrix V defined in (1.18), we can
rewrite it to show directly the connection with the unknown parameters o2
and o?:

V = 02ZZ" + o’1,.

The ML estimate of the matrix V is based on the model
y ~ N(XB,V).

10



The log-likelihood of y under this model is
1 _
(B, V) = =5 [nlog(2m) +log| V| + (y = XB)'V ! (y = XB)]  (1.23)
and the ML estimates of (3, V) are the ones that maximize (3, V).
We first optimize over 3 and we obtain, for any fixed V,

By = (XTVIX) T X TV ly,

which corresponds to the BLUP shown in (1.19). On substitution into (1.23)
we obtain the profile log-likelihood for V:

0,(V) = —% {nlog(?w) +log|V| +yTVL [I - X (XTVX) XTV—l] y}

and the ML estimates of the parameters o2 and 02 in V can be found by
numerical maximization of £,(V) over those parameters.

To obtain the REML estimate of V we proceed similarly to the ML
estimation, but the criterion function to be maximize over the parameters
o2 and o2 is the restricted log-likelihood

(V) = 6,(V) — £ 1og XTV'X].

The main advantage of REML over ML is that REML takes into account
the degrees of freedom for the fixed effects in the model. For small sample
sizes REML is expected to be more accurate than ML, but for large samples
there should be little difference between the two approaches.

1.6.2 Multiple Explanatory Variables

If we use a penalized spline regression model with two or more explanatory
variables, like in model (1.14), the linear mixed model representation is easily
straightforward. We can rewrite regression (1.14) as

K H
Yi = Po+ Bumi + Bazi + Z up (T — Ki)+ + Z ui (2 — ;)4 + &4,
k=1 h=1

with g; ~ N(0,02), uf ~ N(0,02) and uj ~ N(0,0?), all uncorrelated.
Define the coefficients vectors

Bo uy uj
B= 18, u,=]": and u, = | :

11



and the corresponding design matrices

1 1 21
X = :
1 x, 2z,
and
(@1 = K1)+ o (21— Ki )+ (21 =KD+ (21— K+
Z, = : : : L, = : : :
(Tn = K1)+ o (Tn — KR )+ (20 = K1)+ - (20— KR+

The penalized fitting criterion (1.7) divided by o2, now becomes

1 2 )\:Jc 2 >\z 2
;HY—XB—qux—Zzqu +§H“IH +;HuZ”

3 13 13

2 2
o o

and the smoothing parameters are selected as A\, = —; and A\, = —;
o o

The linear mixed model representation is then ! ’

Uy . 0 0
y=X0B+Z,u, +7Z.u, + ¢, Cov|ul|l =10 X2, O (1.24)
€ 0 0 X

with ¥, = 021, X, = 021y, 2. = 021,
Var(y) =V = 7,2, 27 + 2.2, 727 + =,

and the EBLUPs of the model coefficients are

~ ~ -1 ~
B = (XTV*X) XTV-ly, (1.25)
= 3.2'V iy — XB3), (1.27)

with 62, 62 and 62 obtained by ML or REML estimation.

If we have more than two explicative variables, the mixed model represen-
tation doesn’t change: smoothing components are added as a new random
effects term Zu, while linear components can be incorporated as fixed effects
in the X3 term. Moreover, the mixed model structure provides a unified and
modular framework that allows to easily extend the model to include gener-
alized responses, small area estimation, longitudinal data, hazard regression
models, missing data and so on (Ruppert, Wand and Carroll, 2009).

12



1.7 Bivariate Smoothing

In the previous sections we described how to handle smoothing functions
of one continuous variable. Analogously to scatterplot smoothing, bivariate
smoothing deals with the flexible smoothing of point clouds to obtain surface
estimates.

Bivariate smoothing is of central interest in application areas such as envi-
ronmental study, mining, hydrology and epidemiology, where is common the
use of geostatistics methods to analyze geographically referenced responses.
The main tool of geostatistics is kriging and it has a close connection with
penalized spline smoothing.

The geographical application, however, is not the only use of bivariate
smoothing as the method can be applied to handle the non-linear relation
between any two continuous predictors and a response variable.

1.7.1 Bivariate Basis Functions

Bivariate smoothing extends the penalized spline structure in two dimensions
using bivariate basis functions.

If we consider two continuous predictors s and t of the response variable
y, the general bivariate smoothing model is

yi = f(si,ti) + &4, (1.28)

where f is an unknown real-valued bivariate function.
The natural extension for truncated polynomial splines is to form all the
pairwise products of the univariate bases functions

Ls,....s" (s =), ., (s — k)E,

Lty t9, (= k)%, (8 — KY)L.

The resulting basis is known as a tensor product basis and the relative re-
gression spline model, for p = ¢ =1, is

K
Yi = Bo + Bisi + Pati + Pasiti + Z ug(s; — kp)+ +
k=1
o K oH (1.29)
D up(ti— s+ > uih(si — K (i — sh) 4 +ein

h=1 k=1 h=1

An inconvenience of tensor product splines is that the number of coeffi-
cients in model (1.29) increases really fast with the knots numbers K, H and
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the polynomial degrees p, q. Moreover, the basis depends on the orienta-
tion of the coordinates axes and it is not rotational invariant. This property
is not so relevant in a non-geographical application, but for geographical
smoothing is a desirable characteristic for the result to be independent of
axis orientation.

Rotational invariance can be achieved through the use of radial basis
functions, that are of the form

C ([[ts1) = (=%, &)

for some univariate function C. Since the value of the function at (s,t)
depends only on the distance from the knot (k% k"), the function is radially
symmetric about this point.

1.7.2 Kriging

The term kriging refers to a widely used method for interpolating or smooth-
ing spatial data.

Given a set of data y;, i = 1,...,n, at spatial location x;, x € R2, the
simple kriging model for interpolating the underlying spatial surface is

yi = p+ S(x;) + &, (1.30)

where S(x) is a zero-mean stationary stochastic process in R? and the ¢;
are assumed to be independent zero-mean random variables with common
variance o2 and distributed independently of S (Cressie, 1993). Interpolation
at an arbitrary location xo € R? is done through

Jo = 7+ S(x0), (1.31)

where S(xq) is the best linear predictor of S(x,) based on the data in y.
For a known covariance structure of .S, the resulting predictor is

S(x0) = ¢f (C + o2L,)(y — p1), (1.32)
where
S(Xl) COV{S<XO)7 S<X1)}
C = Cov : and ¢y = :
S(xn) Cov{S(x0), S(xn)}

The practical implementation of equation (1.32 requires the definition of
the covariance structure of S(x). The usual approach is to define a parsimo-
nious model for Cov{S(x), S(x + h)}, estimate the required parameters to
derive the estimates of C and &, and then substitute in (1.31) to obtain:

Jo = § + ¢ (C + 6°1,)(y — 71). (1.33)
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Usually, a common assumption to simplify the covariance structure of S
is the assumption of isotropy, that is

Cov{S(x),S(x+ h)} depends only on |h]. (1.34)

This is a stronger assumption than stationary, because it says that the covari-
ance is independent both of location and direction, and sometimes it couldn’t
be valid.
Condition (1.34) implies that
C = |:C (HXZ - X]H)] 1<i,j<n’

where

C(r) = 0z2Cy(r), oz = Var [S(x)],

with Cp(0) = 1. The functions C' and Cy are respectively the covariance
function and the correlation function of the isotropic process S(x) and they
should be chosen to ensure that C is a valid covariance matrix.

A simple way to characterize the class of functions that can be chosen as
correlation function is given by the Bochner’s theorem. It states that Cj is a
valid correlation functions is and only if it is the characteristic function of a
symmetric random variable (Ruppert et al., 2003).

The resulting class of candidate correlation functions is quite big. Quite
diffuse are the exponential correlation function

Co(r) = €717, (1.35)

for some p > 0, known as range parameter; and the gaussian correlation
function

Co(r)=e". (1.36)

Moreover, Stein (1999) strongly suggests the use of the Matérn family.

The classic approach to selecting Cy and its parameters, as well as o2
and o2, is through the variogram analysis. For a detailed description of pro-
cedures and others possible correlation functions we refer to Cressie (1993),
Ruppert et al. (2003) and Stein (1999).

1.7.3 Radial Smoothers

Kriging provides one method of radial smoothing, however it is not the only
one. Moreover, we will show that it belongs to a bigger family of radial
smoothers, known as general radial smoothers.
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To simplify explanation, we firstly present this family of radial smoothers
in one dimension. Because of the radial nature of the smoothing, the higher-
dimensional extension is immediate.

Recall the problem of scatterplot smoothing (1.2) using full-rank penal-
ized truncated linear splines and define

X=[1 z] \<icn and Z= [(z; — acj)+}1§m§n. (1.37)
We have seen in Section 1.4 that the fitted values are given by
y = XB + Zu,
where ,@ and 0 are obtained minimizing

T
Hy—Xﬂ—ZmF+AF]I>Fy

u u

with D = diag(0,0,1,...,1).

Now consider a linear transformation of the truncated linear basis in
such a way that X remain unchanged and Z becomes the radially symmetric
matrix

Zp = |z - xj”1§i,j§n‘
Such transformation can be expressed as

X Zg) = [X Z|L,

where L is an (n + 2) x (n + 2) matrix. The vector of fitted values is now
obtained as )
y = X0 + Zgrugr

and B and up are obtained minimizing

u

T
ly — X8 — Zgul|® + m L’DL m .
This new penalty is not easy to extend to the multivariate case and, more

important, it is still not radially symmetric. A simple way to answer both
the requests is to replace it with Au’Zpzu, so that the criterion becomes

llﬂ = argrgi]? (||y - X8 - ZRuH2 + /\uTZRu) . (1.38)

In addition, it can be shown (Green and Silverman, 1994) that the use of
(1.38) corresponds to the thin plate spline family of smoothers, where we
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penalize the integral of a squared derivative of f(z;). Specifically, in this
case we penalize the first derivative, which is appropriate for a linear spline,
however, it is possible to penalize the mth derivative for any m such that
2m — d > 0, where d is the dimension of .

Analogously to Section 1.6, we want to rewrite the estimates of 3 and
u as EBLUPs of a linear mixed model. The criterion (1.38) corresponds to
fitting the model

2r7-1
y = XB+ Zru+e¢, Cov [ﬂ = [ngR O;IJ .
However, this is not a valid linear mixed model because it implies that
Cov(Zru) = 02Zp even though Zp is not a proper covariance matrix as
it is not necessarily semi-positive definite.

Possible ways to obtain a valid mixed model are to replace Zg using
its positive definitization Zp = (Z}{g)TZ}%/Q or to use generalized covariance
functions (French et al., 2001). Another way is to use a proper covariance
matrix and this approach corresponds to the kriging method.

Low-Rank Radial Smoothers

Whatever is the final choice for the radial basis matrix, finally the radial
smoother parameters are EBLUPs for a mixed model of the form

y=XB+Zcu+e,
where X is defined by (1.37),
Cov(u) = 0(Zc*)(Zc )

and

1<i,j<n

for some real-valued function C' possibly containing parameters.

Such a smoother is full-rank, however for practical implementation the
low-rank version of radial smoothers is much more interesting.

Let kq,..., kg be a set of knots corresponding to the basis functions

C(|lx — ki), with1 <k < K.

Then the low-rank penalized radial smoothing spline is equivalent to fitting
the model
Yy = X,B + ZKu + €,
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with
Cov(u) = o2(Q:/) ()T,

u

Zie = [C (i = w1y cper (1.39)
Qe = [C (ki = )]y pese - (1.40)
Using the transformation Z = 7 Kﬂl}l/ ?, the final model can be written as
2
y=XB8+Zu+e, Cov m - [“ugK 0‘91 }

and can be estimated through mixed model software.

Higher-Dimensional Radial Smoothers

Radial smoothers in one dimension present performances similar to the ordi-
nary penalized splines presented in the previous sections. The real interest
in this kind of smoothers arises from their multivariate application.

Since their dependence on the data is, by construction, only through the
point-to-point distances

|z; — Kl 1<i<n, 1<k<K, (1.41)

the extension to x; € R essentially involves replacing the distances (1.41)
with
lx; — kil 1<i<n,1<k<K.

For x; and K, € R, low-rank thin plate splines of higher dimensions
can be obtained by taking the design matrices X to have columns spanning
the space of all d-dimensional polynomials in the components of the x; with
degree less than m and

—1/2
Z = [C (Ilxi — "kH)LgignggkgK’ [C ([[ren — K'kH)] 1<k,h<K’

where

Ofr) = || for d odd,
|e||”™ *log||x|| for d even,

and m is an integer such as 2m — d > 0 that control the smoothness of C'(-).
Alternatively, we could use low-rank radial basis functions corresponding

to a proper covariance function as seen in Section 1.7.2. For example, the
two simplest member of the Matérn class are

aﬂ:{mm—wwm v=1/2, (1.43)

(1.42)

exp (= el /p) (L +[[x]l /o) v =3/2.
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1.7.4 Knots Selections

If we are working with full-rank smoothers, like in the classic kriging ap-
proach, the knots correspond to the predictors. With low-rank smoothers
however a set of K < n knots in R¢ needs to be chosen.

One possible approach is to put down a rectangular lattice of knots that
covers the range of all the predictors. This method is the multivariate ver-
sion of choosing equispaced knots on an interval in one dimension. If the
predictors are regularly spaced on the surface, this approach results in a
good selection of knots, otherwise it tend to waste a lot of knots by covering
empty areas.

A reasonable alternative strategy is to have the knots follow the distri-
bution of the predictor space. In one dimension, this corresponds to choose
the knots on the quantiles of the predictor distribution, but the extension to
higher dimensions is not straightforward as we lose the notion of quantile.

A way to handle the d > 1 case is to recall that select the sample quantiles
of = corresponds to mazimize the separation of K points among the unique
values x;. In higher dimensions, space filling designs are based on the same
principle of maximal separation (Nychka and Saltzman, 1998). The use of
space filling designs, like the clara algorithm of Kaufman and Rousseeuw
(1990), usually supported by some software packages, ensure coverage of the
covariate space as well as parsimony in the number of knots.

1.8 Geoadditive Models

As we presented in the previous section, we can obtain a map of the mean
of a response variable exploiting the exact knowledge of the spatial coordi-
nates (latitude and longitude) of the studied phenomenon by using bivariate
smoothing techniques. However, usually the spatial information alone does
not properly explain the pattern of the response variable and we need to
introduce some covariates in a more complex model.

Geoadditive models, introduced by Kammann and Wand (2003), answer
this problem as they analyze the spatial distribution of the study variable
while accounting for possible linear or non-linear covariate effects. Under the
additivity assumption they can handle such covariate effects by combining
the ideas of additive models and kriging, both represented as linear mixed
model.

Let s; and t;, 1 < i < n, be continuous predictors of y; at spatial location
x;, x € N2, A geoadditive model for such data can be formulated as

yi = f(s:) + g9(ti) + h(x;) + €5, g; ~ N(0,02), (1.44)
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where f and ¢ are unspecified smooth functions of one variable and h is
an unspecified bivariate smooth functions. Following the representation pre-
sented in Sections 1.6 and 1.7.3, the model (1.44) can be written as a mixed
model

o, 0 0 0
y=XB+Zu+e¢, Cov {ﬂ = 8 Utht Ug«gKm 8 (1.45)
0 0 0 o2,
where
B = [Bo,Bs. B, BL] . u=[uf, ..., uk,u, .., uf,,uf, ..., uf ]
X = [1’3i’ti>xﬂ1gign

and Z is obtained by concatenating the matrices containing spline basis func-
tions to handle f, g, and h, respectively

Z =7Z,7Z,],

Z, = [(Si - Hi)‘F? a (Si - K;(S)JF] 1<i<n’
[(ti - Ri)‘i’? X (ti - Ktkt)+} 1<i<n’
—1/2

Z,=[C(x;— K’i)]lgign,lgkng [C (k;, — “i)hgh,kgf{m :

This linear mixed model representation permits to fit model (1.44) simul-
taneously using mixed model methodology and software, to obtain the esti-
mates 3 and @ by the EBLUPs (1.21) and (1.22) and 62, 62, 62 and 62 by
REML/ML estimation.

The addition of others explicative variables is straightforward: smoothing
components are added in the random effects term Zu, while linear compo-
nents can be incorporated as fixed effects in the X3 term. Moreover, the
mixed model structure provides a unified and modular framework that al-
lows to easily extend the model to include various kind of generalization and
evolution.
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Chapter 2

Statistical Data and Spatial
Information

2.1 Introduction!

In this second chapter we introduce the concept of statistical analysis of
spatial data and we present a general overview on the use of the spatial
information in main statistical research areas.

Specifically, in Section 2.2 we define the concept of spatial data analysis
and we classify the types of spatial data, in relation to the specific objectives
of analysis in which they are involved. Section 2.3 presents the Geograph-
ical Information System (GIS), a powerful instrument for statistical spatial
analysis. The potentiality of the use of GIS in statistical analysis is illus-
trated with some generic examples, presenting also new issues and problems
that arise from this spatial approach. Finally, in Section 2.4 we present a
review on the use of spatial information in the main areas of statistical re-
search: official statistics (subsection 2.4.1), epidemiology (subsection 2.4.2),
environmental statistics (subsection 2.4.3), demography and social statistics
(subsection 2.4.4) and econometrics (subsection 2.4.5). A particular empha-
sis is posed on the methods of small area estimation in presence of spatially
referenced data (subsection 2.4.6).

1For the writing of this chapter, we mainly referred to Petrucci, Bocci, Borgoni, Civardi,
Salvati, Salvini and Vignoli (2009), final report of the “Indagine sulla georeferenziazione
dei dati nella statistica ufficiale” [Investigation on data georeferencing in official statistics]
promoted by the Commissione per la Garanzia dell’Informazione Statistica, Presidenza
del Consiglio dei Ministri.
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2.2 Spatial Data Analysis

Over the last twenty years, spatial data analysis has become a relevant in-
strument in most areas of observational sciences, from epidemiology to en-
vironmental to social sciences, since the focus on geographical locations and
on possible spatial patterns and relationships can help our understanding of
the studied phenomena.

Bailey and Gatrell (1995, p.21) define spatial data analysis as an analysis
that <involves the accurate description of data relating to a process operating
in space, the exploration of patterns and relationship in such data, and the
search for explanation of such patterns and relationships>. The object of such
analysis is to increase our knowledge of the process, evaluate the evidence in
accord with some hypotheses concerning it, or predict values in areas where
observations have not been collected. The data that we elaborate constitute
a sample of observations on the process from which we attempt to infer its
overall behaviour.

Obviously, not all data that can be located in space need to be subject to
this kind of analysis. Spatial data analysis is involved when data are spatially
located and explicit consideration is given to the possible importance of their
spatial distribution in the analysis or in the interpretation of results.

Bailey and Gatrell (1995) define four classes of data involving spatial data
analysis and for each one they outline specific objectives of analysis. The
first class is composed by a set of point events, or a point pattern, and we
want to investigate whether the proximity of the events, that is their spatial
configuration, represents a significant pattern. Sometimes these points have
some attributes associated with them distinguishing one kind of event from
another, but it is the spatial arrangement of the events themselves that is of
interest.

The second class of data comprise again a set of point locations, but the
pattern of these locations is not itself the subject of analysis. This time,
the locations are simply the sampled points at which a continuous variable is
measured and the aim of the analysis is to understand the process generating
these values and to use the information to model the variable of interest and
to make predictions elsewhere on the map. This kind of data is common in
the environmental sciences and we refer to it as spatially continuous data,
while the analysis techniques are usually known collectively as geostatistics.

The third class is area data, that is data that have been aggregated to a set
of areal units, such as districts, municipalities, census enumeration districts,
and so on. One or more variables are measured over this set of zones and
the analysis object is to understand the spatial arrangement of these values,
to detect patterns and to examine relationships among the set of variables.
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The final class of data is spatial interaction data and is composed by
data on flows that link a set of locations, either areas or points. The analysis
target is to understand and to model the arrangement of flows, and to use this
information to predict how the flows may change under different scenarios.

2.3 Statistical Spatial Data Analysis

The set of computational tools that lets handle spatial data analysis is known
as Geographical Information System (GIS). We can find a exact definition of
GIS in Bailey and Gatrell (1995, p.52): <A Geographical Information System
is a computer-based set of tools for capturing (collecting), editing, storing,
integrating, analyzing and displaying spatially referenced datas. In the last
years, we observed a big increment in the use of GISs in every area of applied
statistics. Starting from the merely use of GIS as a graphical tool, now it has
been discovered as a complete and powerful instrument for statistical spatial
analysis.

If we have two spatially referenced datasets, referring to the same region
but coming from different sources, we can easily join them together with
the use of GIS. This operation produces a new dataset that could be more
informative than both the single datasets together, since relationships among
the different sets of variables can now be evaluated. For example, in epidemio-
logy we can relate a dataset that records the incidence of a particular illness
with a dataset of environmental variables in order to evaluate the possible
presence of clusters of risk levels. Obviously, the more precise and detailed
is the spatial information, the more accurate will be the linkage.

When we want to join two datasets, but the point locations of the two
sets of variables do not coincide, we are in presence of a spatial misalignment
problem. A way to overcome it is to use some methods of spatial interpolation
(Madsen et al., 2008; Gryparis et al., 2009) or other GIS tools. Otherwise,
if one or both the datasets are composed by area data, usually we need to
transform the spatial supports in order to obtain a common spatial reference
for the join dataset. GIS methods and tools are available to solve this problem
of change of support. The problems presented here are connected to the more
general matter of analysis of measurement error in the GIS framework; an
introduction of this subject will be presented in the next chapter.

As we said, the object of many statistical spatial data analysis is to eval-
uate the spatial pattern of the studied phenomenon. However, the behaviour
of the single statistical units can be another target of analysis, especially in
demography and social statistics. Even when we are doing an individual level
analysis, the availability of spatial information can be very important.
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Firstly, the relative position of each unit to the others and its proximity
to specific points in the space (like schools, hospitals, etc...) can be relevant
to explain the spatial variability. This analysis of the spatial arrangement of
points involves the definition of spatial relations like distance, direction and
proximity between points and areas.

Secondly, the spatial information can be a proxy for some useful back-
ground variable that have not been or cannot be measured. Haining (2003)
define two sources of background influence: compositional effect and contex-
tual effect. The compositional effect refers to the difference between areas in
the composition of the population of statistical units. Such variability of the
areas can produce a spatial variability on the economical, social and demo-
graphical phenomena that are influenced by the population structure. The
contextual effect, on the other hand, is related to the difference between areas
in term of exposure to factors that might have a direct or indirect influence
on the studied phenomenon. These factors can be biological (like exposition
to urban pollution), economical, cultural, and so on.

At this point, it is clear that the spatial influence on the studied process
depends on the geographical scale at which the analysis is performed (scale
or aggregation effect) and on the “shape” of the areas of analysis (zoning
effect). When our data are the results of measurements aggregated on a
set of zones, an issue related to the previous effects is the modifiable area
unit problem (MAUP) (Holt et al., 1996). With this name, we refer to the
important fact that any results obtained from the analyses of these area
aggregations may be conditional upon the set of zones itself. If we have
data with highly detailed spatial information, we can try to perform the
analyses on alternative configurations of zones to evaluate the magnitude of
the MAUP.

The need of spatial information in the analysis follows from the first law
of geography (Tobler, 1970) that says: <everything is related to everything
else, but near things are more related that distant things>. This statement
highlights the fact that spatial observations are not mutually independent
and tend to be more “similar” to their neighbours. The presence of this
similarity between observation is usually measured by a spatial correlation
function and classical statistical methodologies need to be modified in order
to account for such relation. The application of spatial prediction methods,
like kriging or other geostatistical tools, relies on the preliminary study and
definition of a conform spatial correlation structure (Cressie, 1993).

As we said in the previous section, these kind of techniques needs to work
with point referred data. If we observe data that are strictly areal, or if we
have only area aggregated measurements, a possible way to continue to use
geostatistical techniques is to represent the areas by a set of points, one for
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each polygon. Typically, the geographical centre or centroid of each areal
unit is used. The problems that arise from this kind of approximation and
the proposal of a different approach are the objectives of Chapter 3.

2.4 Spatial Information in Research Areas of
Statistics

Spatial data analysis applies in every area of statistical study. In all fields
we have the common target of evaluate the spatial pattern of a studied phe-
nomenon, but methods and specifications can differ because of the nature
of the phenomenon itself. In the following subsections, we present a general
overview on the use of the spatial information in main statistical research
areas (Petrucci et al., 2009).

2.4.1 Official Statistics

The knowledge of the exact spatial location of statistical units is an important
instrument for the production of official statistics.

First, it can increase the performance of surveys and censuses conducted
by the official statistics producers, like Istat? and the other SISTAN offices?,
as it eases the procedure of detection and interview of the units, allows more
control on the collection operations, and enables spatio-temporal comparisons
and corrections between different definitions of spatial areas.

Second, the spatial referenced measurements allows the production of
thematic maps and atlas to portray the spatial pattern of studied events on
various spatial scales.

Last, the increasing availability of spatially referred microdata from ad-
ministrative sources supports the use of GIS, which increases the data qual-
ity and the production of statistics referred to geographical areas specifically
connected to the studied phenomenon, such as local labour systems, local eco-
nomical system or agricultural areas (Calzaroni, 2008; Romei and Petrucci,
2003).

2The Italian National Statistical Institute.

3SISTAN is the Italian National Statistical System, that is a network of about 10.000
statistical operators belonging to the statistical offices of: Ministries, national agencies,
Regions and autonomous Provinces, Provinces, Municipalities, Chambers of Commerce,
local governmental offices, private agencies and subjects with specific characteristics stated
by the law (http://www.sistan.it/english/index.htm).
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2.4.2 Spatial Epidemiology

Spatial epidemiology is concerned with describing and understanding spatial
variation in disease risk in relation to demographic, genetic, environmental
and socio-economic factors . Considering the aims and use of spatial analyses
in epidemiology, Elliott et al. (2000) distinguish four types of study: disease
mapping; geographical correlation studies; assessment of risk in relation to a
point or line-source; clusters detection and disease clustering.

Disease mapping is carried out to summarize spatial and spatio-temporal
variation in risk. This information can be used for simple descriptive purposes
of the spatial distribution of the studied phenomenon, to provide information
on health needs of a population to establish context for further studies or
to obtain clues on a disease aetiology by comparing the estimated risk map
with an exposure map.

Geographical correlation studies are focused on aetiological aspects of a
disease, evaluated by examine geographical variations in exposure to envi-
ronmental variables (measured in air, water or soil) and lifestyle factors (such
as smoking and diet behaviour) in relation to health outcomes measured on
a geographical scale.

The studies of the assessment of risk in relation to a point or line-source
are appropriate to evaluate local increments in a disease risk in relation to a
potential source of environmental hazard. The source could be either a point
(like a radio transmitter or a chimney stack) or a linear source (like a road
or a power-line). These studies required an highly localized approach as any
increased exposure due to the potential source is likely to extend only over
a small region.

Disease clustering is the tendency of disease cases to occur in a non-
random spatial pattern relative to the pattern of the non-cases. Clusters
detection studies are carried out to provide an early detection of raised inci-
dence if a disease when there is no specific aetiological hypothesis. Mainly,
the aim of such studies is to support the activity of monitoring and surveil-
lance of a geographical region, however they can be the preliminary stage of
a more detailed study about the disease diffusion.

For these spatial epidemiology studies (Lawson and Cressie, 2000; Waller
and Gotway, 2004), the ideal data would consist of precise information on the
population of a study region, including individual characteristics, personal
exposures in time and space and health records. Usually, such information is
not available for the whole population. In case-control studies, for example,
we can have detailed information collected for the cases, while it could be
harder to have it for the controls. Moreover, as pointed out by Gryparis
et al. (2009, p.1), <in many environmental epidemiology studies, the loca-
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tions and/or times of exposure measurements and health assessments do not
match. In such settings, health effects analyses often use the predictions from
an exposure model as a covariate in a regression models.

Typically, population data are based on area aggregated counts. In such
situation, we can exploit area data to obtain surveillance atlas through a
range of methodologies, from simple choropleth maps (Cromley, 1996; Boffi,
2004) to more complex statistical models that account for possible sparsity
of the spatial information and for the spatial heterogeneity of the areas.
This kind of models has a big development, mainly as hierarchical Bayesian
models (Banerjee et al., 2004; Lawson, 2009), and is strongly connected with
the small area estimation problem, that will be presented in Subsection 2.4.6.

As seen in Section 2.3, we ought to remember that these procedure can
be subject to measurement errors due to spatial misalignment of the sources
or to data quality. Moreover, if the data are measured on some geographical
scale, the analysis could be influenced by the modifiable area unit problem.

2.4.3 Environmental Statistics

Spatially referenced data are extremely valuable to analyze and describe en-
vironmental phenomena and to understand the connections and interactions
between environment and human activities (Patil and Rao, 1994).

Similarly to spatial epidemiology, we can define four categories of envi-
ronmental studies: mapping of environmental indicators; estimation of the
spatial pattern of some environmental factor; clusters detection; planning of
spatial survey samplings and environmental monitoring networks.

The use of thematic maps of environmental indicators is connected with
the monitoring process of the environmental quality, like air or water quality.
This study is usually the first step for a mitigation intervention or for a
deeper analysis of the causes.

The study of the spatial pattern of a target environmental variable, such
as the presence of a specific substance in the ground or the level of a pollu-
tant in the air, or the estimate of the number of people living around some
urban infrastructure, like a highway or an airport, are all example of typ-
ical environmental spatial analyses. Usually, such analyses are conducted
with geostatistical methodologies and their results are useful in many re-
search areas, such as epidemiology, economics and natural science, but are
also exploited for legislative regulation.

Clusters detection studies are carried out to identify possible cluster of
high risk of natural events, like earthquakes, avalanches or landslides, in order
to predict and avoid possible disasters and protect the population.
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Obviously, this kind of analyses require a highly detailed information
about locations and sources of the studied phenomenon. To collect such
information we usually need the implementation of specific survey sampling
strategies and monitoring schemes. A detailed description of these sampling
procedures can be found in de Gruijter et al. (2006).

2.4.4 Spatial Demography and Social Statistics

In the literature of last years, it has been noticed a re-emerging interest of so-
cial sciences in issues concerning social processes embedded within a spatial
context (Goodchild and Janelle, 2004), that has introduced spatial analysis
methodologies among the more usual social and demographical tools. The
recent growing number of applications in spatial demography addresses space
in several ways, ranging from visualization of one or more variables in a map,
to sophisticated spatial statistical models that seek to explain why a partic-
ular spatial pattern is observed. These applications try to explain current
demographic issues, and represent important information for the design and
evaluation of realistic public policies (de Castro, 2007).

Voss (2007, p.458) defines spatial demography as <the formal demographic
study of areal aggregates, i.e., of demographic attributes aggregated to some
level within a geographic hierarchy.>, while a somewhat similar definition
(Woods, 1984, p.43) states that spatial demography is «demography viewed
from the spatial perspective. [...] Spatial, together with temporal, varia-
tions in mortality, fertility and migration are studied as preliminaries to the
investigation of population structure in its entirety.>

Both definitions presented are very generic, and would include a signifi-
cant list of studies, covering a wide range of topics, and applying a variety
of methods and spatial tools. Among these are: mapping demographic vari-
ables; analyzing the spatial and temporal patterns of variables of interest;
including variables describing location as covariates in regression models;
multilevel models, where the hierarchical structure of the data refers also
to spatial areas chosen a priori; and applications of geostatistical methods.
In summary, any demographic analysis performed with a spatial perspective
would fall under the definition of spatial demography (de Castro, 2007).

For a detailed discussion about spatial demography research on the three
demographic components of fertility, mortality and migration we refer to
de Castro (2007); while Goodchild and Janelle (2004) collect spatial appli-

cation in various fields of social sciences.
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2.4.5 Regional Economics and Spatial Econometrics

Richardson (1970, p.1) defined regional economics as the field concerned with
the role of <space, distance and regional differentiation in economicss.

The analysis of the regional spatial pattern of socio-economic processes
has become a relevant area of economics for several reasons: first, the spatial
clustering of economic activities is a product of the regional differences and
could reflect individual inequalities that are object of policies; second, the
geographical pattern can have great influence on the results of economic
policies; and third, exploring spatial clustering of economic activities is a
relevant input to model economic theories at a regional scale.

Research in this area focuses on the specification and estimation of spatial
effects in a theoretical economic model, and on the use of such estimates to
obtain spatial interpolations and predictions of the study variables. The set
of methodologies concerned with this target belongs to the field of spatial
econometrics (Anselin, 1988; Arbia, 2006), that is defined by Anselin (1988,
p.7) as <the collection of techniques that deal with the peculiarities caused
by space in the statistical analysis of regional science models>.

In Paelinck and Klaassen (1979), we can find five fundamental characteris-
tics of spatial econometric methodologies: the role of spatial interdependence
in spatial models, the asymmetry of spatial relations, the importance of ex-
planatory factors located in other spaces, the differentiation between ex-post
and ex-ante interaction, and the explicit modeling of space (Arbia, 2006).

For a detailed review of spatial econometrics applications we refer to
Arbia and Baltagi (2008), and Arbia (2006).

2.4.6 Small Area Estimation

Over the last decade there has been growing demand from both public and
private sectors for producing estimates of population characteristics at disag-
gregated geographical levels, often referred to as small areas or small domains
Rao (2003). This increasing request of small area statistics is due, among
other things, to their growing use in formulating policies and programs, in
the allocation of government funds and in regional planning. Demand from
the private sector has also increased because business decisions, particularly
those related to small businesses, rely heavily on the local socio-economic,
environmental and other conditions.

Censuses provide “total” information, but only on a limited number of
characteristics and once every ten years. Statistical surveys produce high
quantities of data and estimates, but cost constraints in the design of sample
surveys lead to small sample sizes within small areas. As a result, direct
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estimation using only the survey data is inappropriate as it yields estimates
with unacceptable levels of precision. In such cases small area estimation
(SAE) can be performed via models that “borrow strength” by using all the
available data and not only the area specific data. The most popular class of
models for small area estimation is linear mixed models that include indepen-
dent random area effects to account for between area variation beyond that
explained by auxiliary variables (Fay and Herriot, 1979; Battese et al., 1988).
Following mixed models methodology (Jiang and Lahiri, 2006), a BLUP es-
timator is used to obtain the small area parameter of interest (usually the
mean or total of the study variable). If, as usual, the variance components
are unknown, the correspondent EBLUP estimator is used instead (see Rao
(2003, Chapters 6-7) for a detailed description).

Under the classic SAE model we make the assumption of independence of
the area-specific random effects. If the small domain of study are geographi-
cal areas, this assumption means that we don’t take into account any possible
spatial structure of the data. Remembering again the first law of geography
however, it is reasonable to suppose that close areas are more likely to have
similar values of the target parameter than areas which are far from each
other, and that <an adequate use of geographic information and geograph-
ical modeling can help in producing more accurate estimates for small area
parameterss(Petrucci et al., 2005, p.610). In addition, Pratesi and Salvati
(2008, p.114) noted that geographical «small area boundaries are generally
defined according to administrative criteria without considering the eventual
spatial interaction of the variable of interest>. From all these considerations,
it is reasonable to assume that the random effects between the neighbouring
areas (defined, for example, by a contiguity criterion) are correlated and that
the correlation decays to zero as distance increases.

The first studies that connect spatial relations and SAE methods are
Cressie (1991) and Pfeffermann (2002). In the following years, many papers
have been published showing how the use of geographical information im-
proves the estimation of the small area parameter, both increasing efficiency
and diminishing bias. We refer, among others, to Saei and Chambers (2005),
Petrucci et al. (2005), Petrucci and Salvati (2006), Singh et al. (2005) and
Pratesi and Salvati (2008). In all these studies, the classical hypothesis of
independence of the random effects is overcome by considering correlated
random area effects between neighbouring areas modeled through a Simulta-
neously Autoregressive (SAR) process with spatial autocorrelation coefficient
p and prozimity matric W (Anselin, 1988). The corresponding estimators of
the small area parameters are usually known as Spatial EBLUP (SEBLUP).

In addition, the use of SAE models with spatially correlated random area
effects gives a possible solution to the problem of estimating the parameter of
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interest for the areas in which no sample observations are available. With the
traditional SAE model, the only prevision available for non-sampled areas is
given by the “fixed term” of the mixed model, since the estimation of the
random effect is not possible. On the contrary, the hypothesis of correlated
random effects allows the estimation of the area-specific effects for all areas,
both sampled and non-sampled. The addition of these estimated random
effects to the fixed component of the model gives the prediction of the small
area parameter in every area.

Spatial SAE models are applied in many area of statistical research: envi-
ronmental statistics, economics, demography, epidemiology, and so on. Every
study shows that the use spatially referred data produces estimates more re-
liable than that obtained by traditional methods.

Until now, we have considered the spatial structure of the data at the area
level: the only information used to built the proximity matrix of the SAR
process is about the small area locations. However, if the spatial location is
available for every unit, we can try to use it directly as a covariate of the
SAE model. As we have presented in Section 1.7, the application of bivari-
ate smoothing methods, like kriging, produces a surface interpolation of the
variable of interest. In particular, the geoadditive model defined in Section
1.8 analyzes the spatial distribution of the study variable while accounting
for possible covariate effects through a linear mixed model representation.
Exploiting the common linear mixed model framework of both small area es-
timation models and geoadditive models, we can define the geoadditive SAE
model. This model will have two random effect components: the area-specific
effects and the spatial effects.

The geoadditive SAE model belongs to a more general class of models in-
troduced by Opsomer et al. (2008), called non-parametric SAE model, where
the non-parametric component is a penalized spline model that accounts for
a generic non-linear covariate.

The model will be discussed in the last chapter of this work, where an
application on the estimation of the mean of household log per-capita con-
sumption expenditure for the Albanian Republic at different geographical
levels is presented.
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Chapter 3

Geoadditive Models and
Measurement Error

3.1 Introduction

In this chapter we present the concept of measurement errors in spatial data
analysis. In particular, in Section 3.2 we define the problem of uncertainty
and errors in GIS from the point of view of the geographical information
science, while in Section 3.3 we illustrate the statistical approach to mea-
surement error analysis. In Section 3.4 we deal with the matter of applying a
geaodditive model to produce estimates for some geographical domains in the
absence of point referenced auxiliary data. Instead of using the classic ap-
proach, that locate all the units belonging to the same area by the coordinates
of the centroid of each area, we treat this lack of geographical information
following a measurement error approach and imposing a distribution for the
locations inside each area. The performance of our measurement error ap-
proach is evaluated through various Markov Chain Monte Carlo experiments
implemented under different scenarios. Results are presented in Section 3.5.

3.2 Measurement Error in Spatial Analysis

In Chapter 2 we presented the concept of spatial data analysis in statis-
tics and we introduced some peculiar issues that occur when we deal with
spatially referenced data (like change of support or spatial misalignment)
and that are connected with uncertainty and measurement error problems in
spatial data.

Over the last years, a research area of geographical information science
has been developed to investigate how the uncertainty in spatial data arises
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and distributes through GIS operations, and to assess the plausible effects on
subsequent decision-making (Heuvelink, 1998; Zhang and Goodchild, 2002).
As pointed out by Leung et al. (2004), <with the ever increasing volume of
georeferenced data being generated, transferred, and utilized, the amount
of uncertainty embedded in spatial databases has become a major issue of
crucial theoretical importance and practical considerations.

Uncertainty in spatial databases, both in attribute values and in posi-
tions, generally involves accuracy, statistical precision, and bias in initial
values or in estimated coefficients. Moreover, spatial uncertainty includes
the estimation of errors in the final output that result from the propaga-
tion of external and internal uncertainty. It is thus important to be able
to track the occurrence and propagation of uncertainties (Goodchild, 1991).
Research on accuracy is strictly associated with the study of errors in GIS,
and the literature on this subject has been extensive and diverse (Goodchild
and Gopal, 1989; Heuvelink, 1998; Leung and Yan, 1998; Mowrer and Con-
galton, 2000; Stanislawski et al., 1996; Wolf and Ghilani, 1997; Zhang and
Goodchild, 2002).

The error taxonomy of Veregin (1989) recognizes that different classes
of spatial data exhibit different types of errors, and that errors may be in-
troduced and propagated in various stages of data manipulation and spatial
processing. Errors in spatial databases are generally divided in inherent er-
rors and operational errors: inherent errors are the errors present in source
documents, including the errors in the map used as input to a GIS; opera-
tional errors occur throughout data manipulation and spatial modeling and
are introduced during the process of data entry or through the data capture
and manipulation functions of a GIS (Leung et al., 2004). Moreover, from
the modeling point of view, the errors can also be classified as either system-
atic or random. While the systematic component can usually be removed by
model modification, it is impossible to avoid random errors in measurements
entirely (Wolf and Ghilani, 1997). Dealing with such measurement error, is
one of the most important problems in the use of georeferenced data.

In order to support the determination of error structures of location co-
ordinates in GIS, the concept of a measurement-based GIS (MBGIS) has
been proposed by Goodchild (1999). A MBGIS is «a system that provides
access to measurements used to determine the locations of objects, to the
geographical procedures (transformation functions) that link measurements
to quantities to be measured, and to the rules used to determine interpolated
positions>. The basic idea is to retain details of measurements so that error
analysis can be made possible. Moreover, Leung et al. (2004) propose a gen-
eral framework within which the statistical approach to measurement error
analysis and error propagation can be formulated.

34



3.3 Measurement Error in Statistics

The measurement error analysis approach presented in the previous section
is a geographical science approach. It involves some statistical tools and
concepts, but it is mainly a “technical” approach.

In statistics, the measurement error problem is concerned with the in-
ference on regression models where some of the independent variables are
contaminated with errors or otherwise not measured accurately on all sub-
jects. In literature, it is well established that disregarding the measurement
error in a predictor distorts its estimated relationship with the response vari-
able and produces biased estimates of the regression coefficients, both in
linear (Buonaccorsi, 1995; Fuller, 1987, Chapter 1) and in nonlinear models
(Carroll et al., 2006, Chapter 3). Hence, the most part of measurement error
analysis is about correcting for such effects.

Measurement error models are commonly composed of two components.
First, we have an underlying model for the response variable y in terms of
some predictors, distinguished between predictors measured without error,
indicated with z, and predictors that cannot be observed exactly, indicated
with x. Second, we can observe a variable w, which is related to the un-
observable x. The parameters in the model relating y and (z,x) cannot be
estimated directly, since x is not observed. The goal of measurement error
modeling is to obtain nearly unbiased estimates of these parameters indi-
rectly by fitting a model for y in terms of (z,w). In assessing measurement
error, careful attention must be given to the type and nature of the error, and
the sources of data that allow modeling of this error (Carroll et al., 2006).

A fundamental prerequisite for analyzing a measurement error problem
is the specification of a model for the measurement error process. There are
two general types: classical error model, where the conditional distribution
of w given (x,z) is modeled; and Berkson error model, where the conditional
distribution of x given (w,z) is modeled (Berkson, 1950). In their simplest
formulation, the two models correspond to:

e (lassical error model:

w; = X; + uy, with  E(ux;) =0
e Berkson error model:
X, =W; +u,, with  E(u;|w;) =0
where u can be distributed in various way.
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For a detailed description of both the specifications we refer to Fuller
(1987) and Carroll et al. (2006), however the basic difference between the
two types of error models is that we choose the classical model if the error-
prone variable is necessarily measured uniquely for every individual, while
we choose the Berkson model if all individuals in a small group or strata are
given the same value of the error-prone covariate.

The literature on statistical measurement error analysis is enormous, some
example are Carroll et al. (1993); Bollinger (1998); Richardson et al. (2002);
Chesher and Schluter (2002); Wang (2004); Carroll et al. (2004); Ganguli
et al. (2005); Ybarra and Lohr (2008); Torabi et al. (2009). In particular, in
the last years various applications on models with spatial measurement error
has been published (Zhuly et al., 2003; Gryparis et al., 2007; Madsen et al.,
2008; Goovaerts, 2009; Gryparis et al., 2009).

3.4 Lack of Geographical Information as
Measurement Error

In Section 2.3 we observed that the implementation of geostatistical methods,
like the geoadditive model, needs the statistical units to be referenced at
point locations. If the aim of our study is to analyze the spatial pattern or
to produce a spatial interpolation of a studied phenomenon, then we require
such spatial information only for the sampled statistical units. If, however,
we use a geoadditive model to produce estimates of a parameter of interest
for some geographical domains, the spatial information is required for all the
population units.

This information is not always easily available, especially when socio-
economic data are involved. Typically, we know the coordinates for sampled
units (which could be specifically collected for the analysis), but we don’t
know the exact location of all the non-sampled population units, just the
areas to which they belong (like census districts, blocks, municipalities, etc).

In such situation, the classic approach that allows the use of geostatis-
tical techniques is to locate all the units belonging to the same area by the
coordinates (latitude and longitude) of the geographical centre or centroid of
each area. This is obviously an approximation, induced by nothing but a ge-
ometrical property, and its effect on the estimates can be strong, depending
on the level of nonlinearity in the spatial pattern and on the area dimension.

Instead of using the centroids, we decided to treat this lack of geograph-
ical information following a measurement error approach. In particular, we
impose a distribution for the locations inside each area.
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Let x;; be the vector of the exact spatial coordinates for the unit 7 be-
longing to the area j and let w; be the coordinates of the centroid of the area
J, thus our hypothesis can be formulated as a Berkson-type error model:

X;; = W; + U5, (3.1)

where E(u;;/w;) = 0 and u can assume distributions with different parame-
ters in each area.

Our model is not a “complete” measurement error model as we assume
that the measurement error doesn’t influence the estimation of the geoaddi-
tive models parameters (as the spatial information is available for the sam-
ple), while it occurs when we predict the parameter of interest for the areas
with the whole population covariates.

In order to evaluate the performance of our approach with respect to
the centroids classic approach, various Markov Chain Monte Carlo (MCMC)
experiments are implemented under various scenarios.

3.5 MCMC Experiments

Considering the hierarchical Bayesian models formulation of additive models
(Ruppert et al., 2003, Chapter 16), we can exploit MCMC software for ana-
lyzing the performance of our measurement error approach. For the imple-
mentation of our experiments, we follow the settings and examples presented
in Crainiceanu et al. (2005) and Marley and Wand (2010).

All the analyses are implemented using the WinBUGS Bayesian inference
package (Lunn et al., 2000), a Windows interface to the BUGS inference engine
(Spiegelhalter et al., 2003). We access WinBUGS using the package BRugs
(Ligges et al., 2009) in the R computing environment (R Development Core
Team, 2009). As pointed out in (Marley and Wand, 2010, p.2), <employment
of BRugs has the advantage that an entire analysis can be managed using a
single R script and accompanying BUGS script. Because R is used at the front-
end and back-end of the analysis, one can take advantage of R’s functionality
for data input and pre-processing, as well as summary and graphical display>.

3.5.1 Model Specification

Consider the generic penalized spline regression with basis functions by

E; N(O, O'?),

K
i = Po + b1 + b(xi) + €i,
yi = Bo + Bz ;Ulc k() + € g ~ N(O,JZ).
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The hierarchical Bayesian formulation is

K
yi’ﬁﬂ? Bl? qum Ug 12(} N (50 + lei + Z ukbk(aj2>7 03) ) (3 2)
k=1 :

9 ind
ukloy, ~

(0, 03),

and we need to define the prior distributions for the parameters 3y, 81, 02, o2.
As suggested in Crainiceanu et al. (2005), we use the following non-informati-
ve priors:

ind
{BO; Bl ~ N(07 108) (33)

0,202 i Gamma(1078,107%).

The parametrization of the Gamma(a,b) distribution implies that the pa-
rameter has mean a/b = 1 and variance a/b* = 10®. Moreover, it should be
noticed that we parametrize the inverse of the variance, that is the precision
parameter 7, accordingly with WinBUGS specification.

In addition to (3.2) and (3.3), we need to specify our data structure, the
measurement error hypothesis and the mean estimators. We present here the
general case, that we will specify in detail for every experiment.

Suppose to have a population of N units divided in @) regions, and to be
interested in estimate the regional mean of a study variable y. We take a
sample of n units from which we collect the response variable y, the location
s and, possibly, some other covariates (that are known without error for all
the population units). To obtain the regional mean, we want to apply a
model-based mean estimator based on (3.2):

K
Ug = Ni eSS (Bo + Bisig+ Y fbkbk(siq)> : (3.4)
q k=1

i€S, i€R,

where N, is the total number of units in region ¢, ¢ = 1, ..., @, and S, and R,
indicate respectively the indexes of the sampled units and of the non-sampled
units belonging to region q.

We obtain the estimated parameters from the sampled units, but we
cannot use directly (3.4) as we don’t know s for the not-sample units. Thus,
the two working approaches are:

e Naive approach. Substitute s;, with the region centroid ¢,, that is a
constant for all the units in region ¢;

e ME approach. Define a distribution for s;, inside region ¢ and “sam-
ple” from it.

38



As we have noticed in the previous section, the ME approach is equivalent
to define a similar Berkson-type measurement error model for s;,

S = ot Viar  Vig % [,(0,), (3.5)
where 0, are the parameters of v distribution and depend on the region q.
To better analyze the performance of the two approaches, we decided
to work both with s univariate (so that the regions are actually intervals)
and s bivariate and to insert some known covariates; moreover, f, is consid-
ered uniform or beta and, finally, we used datasets completely simulated and
partially simulated. The list of scenarios is presented in table 3.1.

Table 3.1: Scenarios of the MCMC experiments.

Scenario Name Type of s fv Type of data
Univariate Uniform univariate uniform completely simulated
Univariate Beta univariate ~ beta  completely simulated
California univariate uniform  partially simulated
Bivariate Uniform bivariate uniform completely simulated
Albania bivariate  uniform real

3.5.2 Univariate Uniform Model
The model for the first experiment is

Yig = Bitiq + f(8iq) + € =

- (3.6)
= fo + ﬁttiq + 6ssiq + E uk(sz’q - l"dk;)+ + &5,
k=1

where ¢; ~ N(0,02), ux ~ N(0,02), t is a dummy variable known for the
whole population and s is a univariate variable that we hypothesize have
a uniform distribution in every region. The data are divided in Q = 4
intervals [a,; b,]. To model f(s), we consider a penalized truncated linear
spline function with K = 30 knots selected at the quantiles of s (as seen in
Section 1.4).

The appropriate hierarchical Bayesian model for this situation is

K
ind
yiq’ﬁOa ﬁh 587 u, 0-3 ~ <60 + ﬁttiq + Bssiq + Z uk<5iq - ’ik)-‘r? Jg) ;
k=1
ind

ulo? ~ N(0,021k),  Bo, B, Bs ~ N(0,10%), (3.7)

Tus Te nd Gamma(107%,107%).
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Figure 3.1: MCMC-base fitting of the univariate uniform model. The upper line
corresponds to ¢ = 1, the lower to ¢t = 0 and the pale green shaded regions are
pointwise 95% credible sets. The blue points are the sampled units. The vertical
dashed lines delimit the regions and the red stars indicate the centroids.

The measurement error hypothesis is

(ag + bq)
g = q 5 q
Sig = Cq + Vig, Viq ifIin Unif ((aq ; bq), (bq ; aq)) ) (38)

where a4, b, are the known boundaries of the interval ¢. It is immediate to
derive that the parametrization (3.8) corresponds to the hypothesis

ind

sig ~ Unif(agy; b,).
We fitted model (3.7) to a set of simulated data with

N =2000, n=300, B =04, o0.=02
f(s) = sin(37s®), t~ Ber(0.5), s~ Unif(0;1), (3.9)
a=0,0.2,0.5,0.82], b=1[0.2,0.5,0.821]

We implement the MCMC analysis' with a burn-in period of 15000 iter-
ations and then we retain 5000 iterations, that are thinned by a factor of 5,

!The WinBUGS model code is presented in appendix (Section A.1).
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Figure 3.2: Graphical summary of MCMC-based inference for the parameters of
the univariate uniform model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots, where present, correspond to the true values of
the parameters according to the simulation set-up.

resulting in a sample of size 1000 collected for inference. Figure 3.1 shows the
fitted function for model (3.6) as well as the pointwise 95% credible intervals.
In Figure 3.2 we summarize the MCMC output for the model parameters:
the true values (3.9) from which the data were simulated, shown as vertical
dashed lines in the posterior density plots, are inside the 95% credible sets;
the credible interval for o, is away from zero, which confirm the non-linearity
of the effect of s; and all chains are seen to be well-behaved.

Once we have obtained a good estimate of the model (3.6), we apply the
mean estimator (3.4) under the two approaches: the naive one and the ME
one with hypothesis (3.8). The posterior density distributions of the region
mean estimator? are presented in Figure 3.3: for each region, the red line
corresponds to the ME approach, the purple line to the naive approach and
the vertical green line is the true mean value (that is known since we are
using a simulated dataset). As we can see, the ME estimator has a better
performance, since the naive estimator underestimates the mean in region 1
and 2 and overestimates the mean in region 3 and 4.

2The summary of the MCMC output for the region mean estimators is presented in
appendix (Figure A.1).
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Figure 3.3: Posterior density of the region mean estimator for the univariate
uniform model. The red lines correspond to the ME approach, the purple lines to
the naive approach and the vertical green lines are the true mean values.

In addition, we implemented model (3.6) also without the dummy covari-
ate t. Since the results are quite similar to the case in which the variable ¢
is included, we don’t present the results here. However, the MCMC results
are included in appendix (Section A.1).

3.5.3 Univariate Beta Model

In the second experiment we consider again the model defined in (3.6)-(3.7),

but we change the hypothesis on the distribution of s: this time we suppose

that s has a beta distribution with different parameters in every region.
Thus, the measurement error hypothesis becomes

Sig = Cq —+ Viq,

in - b b -
Vig x Betagen (¢4;dy) on [aq 5 4 4 5 aq] . (3.10)

With Betage, we indicate a beta distribution defined on a generic interval
(instead of standard [0,1]). From (3.10) we derive the corresponding hypoth-
esis

ind
Sig S Betagen (cq;dy)  on [ag, byl -
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The generic beta distribution can be derived from the standard beta distri-
bution with the same parameters ¢,, d, using a simple linear transformation:

if ss;; ~Beta(c,;d,) then s, = a,+ (by — ag)ssiq.

The parameters c,,d, are estimated directly in the MCMC process®, by
adding the following priors to the hierarchical Bayesian model (3.7)

SSiQ’Cq7 dq iR(} Beta(cq; dq)y Cqs dq i’Ii(Ji UIlif(O; 100).
Again, we fitted the model (3.7) to a set of simulated data with settings

N =2000, n=400, B =04, o.=02
f(s) = sin(3ns®), t~ Ber(0.5), s, ~ Betagen(cy;d,),
a=10,0.2,0.5,0.82], b=1[0.2,0.5,0.82,1], (3.11)
c=[2,4,15,6], d=[32252].

The simulated distribution of s is presented in Figure 3.4.

Density
1.5 2.0 25

1.0

0.5
1

0.0
L

Figure 3.4: Distribution of the sampled covariate s for the univariate beta model.
The vertical dashed lines delimit the regions and the red lines correspond to the
true beta distributions according to the simulation set-up.

3The summary of the MCMC output for the parameters of the beta distribution is
presented in appendix (Figure A.8).
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We implement the MCMC analysis* with a burn-in period of 15000 iter-
ations and then we retain 5000 iterations, that are thinned by a factor of 5,
resulting in a sample of size 1000 collected for inference.

Figure 3.5 shows the fitted function and the pointwise 95% credible in-
tervals. It should be noticed the different distribution of the sampled units
with respect to the previous experiment: the data are now “grouped” in ev-
ery interval. In Figure 3.6 we summarize the MCMC output for the model
parameters and again we notice that the true values are inside the 95% cred-

ible sets, the credible interval for o, is away from zero and the chains are
well-behaved.

2.0

1.5

1.0

0.0
1

-1.0

BN . —— estimated f

: * : E3 ; * * :
f f T T T f

0.0 0.2 0.4 06 0.8 1.0

Figure 3.5: MCMC-base fitting of the univariate beta model. The upper lines
correspond to t = 1, the lower ones to t = 0 and the pale green shaded regions
correspond to pointwise 95% credible sets. The blue points are the sampled units.
The vertical dashed lines delimit the regions and the red stars indicate the centroids
of each region.

The posterior density distributions of the two region mean estimators
(ME and naive)® are presented in Figure 3.7: the ME estimator has a good
performance, especially in the regions where the function is more non-linear
or where the distribution of s is more asymmetric (as in region 2).

4The WinBUGS model code is presented in appendix (Section A.2).
5The summary of the MCMC output for the region mean estimators is presented in
appendix (Figure A.9).
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Figure 3.6: Graphical summary of MCMC-based inference for the parameters
of the univariate beta model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots, where present, correspond to the true values of
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naive approach and the vertical green lines are the true mean values.
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3.5.4 California Model

In the third experiment we use a partially simulated dataset. We consider the
California air pollution dataset presented in Breiman and Friedman (1985)
that consists of 345 sets of daily measurements of ozone concentration and
meteorology in the Los Angeles basin in 1976. The response is the ozone
concentration (in ppm) at Sandburg Air Force Base (CA) and we selected
three covariates: pressure gradient at Daggett (CA), in mmHg; inversion
base height, in feet; and inversion base temperature, in Fahrenheit degrees.

As suggested in (Marley and Wand, 2010, p.4), we standardize all the
variables before commencing the Bayesian analysis because <this makes the
priors scale invariant and can also lead to better behaviour of the MCMCs.
Thus, we define the standardized variables:

e s = standardized pressure gradient at Daggett. We treat it as the un-
known variable;

e x = standardized inversion base height;
e t = standardized inversion base temperature.
Instead of using the ozone variable, we decide to simulate a new response
y = sin(4ns — 0.2) + cos(67x + 0.35) + sin(37t* + 0.1) + ¢,

with 0. = 0.1. Figure 3.8 shows the pairwise scatterplots for the “new”
variables. The final dataset is composed by the variables s, x, ¢,y with 320
observations (observations that present extremely high or low values of the
variable s were deleted).

We fit the additive model

Yig = [o(Tig) + fs(Siq) + fi(tig) + €0 = m(Xig, Sig, Lig) + €1 =
K

= Bo + Baiq + PsSiq + Pitiqg + Z ug(@ig — K+t
o (3.12)

K Kt
+ ZUZ(SW — Kp)+ + Z up(tia = Ki)+ + €5,
k=1 k=1

where g; ~ N(0,02), u, ~ N(0,02), us ~ N(0,02), uy ~ N(0,02). The data
are divided in @) = 4 intervals [a,;b,]. To model f,, fs and f;, we consider
three penalized truncated linear spline functions with K, = K, = K; = 15
knots selected at the quantiles of x, s and ¢ respectively.
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Figure 3.8: Pairwise scatterplots for the variables of the California model.

The correspondent hierarchical Bayesian model is

ind
yz’q|ﬁ()7 Bwy 557 Bty U, Us, Uy, 0-52 ~ N (m(xiqa Siq7 tiq)y 0-3) )
1155’0326 ~ N(0, UachKz)u us,ag ~ N(0, 031K5)7
ind
ut|0152 ~ N(07 UEIKt)a 507 61‘7557 6t ~ N(07 108)7 (313)

ind _ _
Tar Tes Tty = ~ Gamma(107%,107%).

Observing the empirical distribution of s, we decide to assume the mea-
surement error uniform hypothesis:

Sigq S Unif(ay; by).
Finally, the experiment settings are
N =320, n=96, a=][0,0.2,0.50.82], b=10.2,050.82,1 (3.14)

and the MCMC analysis® is implemented with a burn-in period of 15000
iterations and a retain of 10000 iterations with a thinning factor of 5, resulting
in a sample of size 2000 collected for inference.

5The WinBUGS model code is presented in appendix (Section A.3).
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Figure 3.9 shows the fitted functions for model (3.12). The fitting is
quite good, but for the x variable: this is due to the great quantity of units
with value = 1, and the complete absence of units with 0.9 < z < 1.
In Figure 3.10 we summarize the MCMC output for the model parameters.
The credible intervals for o,, o, and o; are quite wide, this high variability
should be due to the moderate number of sampled observation.

Notwithstanding the high variability of the parameters, the posterior den-
sity distributions of the two region mean estimators (ME and naive)” pre-
sented in Figure 3.11 show that the ME estimator has a really good perfor-
mance, while the naive estimator is really poor. This result is influenced by
the high non-linearity between s and y. Moreover we want to highlight that
the uniform distribution of the measurement error hypothesis produce good
results, even if the data are not completely uniform.

Figure 3.9: MCMC-base fitting of the California model. The green shaded
regions correspond to pointwise 95% credible sets. The vertical dashed lines delimit
the regions and the red stars indicate the centroids of each region.

"The summary of the MCMC output for the region mean estimators is presented in
appendix (Figure A.11).
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Figure 3.10: Graphical summary of MCMC-based inference for the parameters
of the California model.
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Figure 3.11: Posterior density of the region mean estimator for the California
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approach and the vertical green lines are the true mean values.
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3.5.5 Bivariate Uniform Model

The forth experiment implements a bivariate smoothing model, where the
coordinates are unknown for the non-sampled units. This scenario is more
related to the measurement error issue that we introduced in Section 3.4.

The generic model for this experiment is

Yig = Bitiq + f(sig) + &

where g; ~ N(0,02), t is a dummy variable known for the whole population
and s is a bivariate variable that we hypothesize have a uniform distribution
in every region. The data are divided in ) = 9 rectangular regions that
can be represented by their vertices {(a1q, b1g), (24, b1q), (@24, b2g), (@14, b2g)]-
As we presented in Section 1.7, there are at least two family of bivariate
smoothers that we can use to model f(s): the tensor product smoother and
the radial smoother. Both the models have pros and cons: the tensor prod-
uct smoother, using the truncated linear basis functions (1.29) is relatively
easy to implement, but the number of random effects u increases really fast;
the thin plate splines (1.42) are more complex computationally (since the
Z matrix for the non sampled units needs to be computed inside BUGS) but
tend to have good numerical properties. In particular, as pointed out by
Crainiceanu et al. (2005, p.2), <the posterior correlation of parameters of
the thin-plate splines is much smaller than for other basis (e.g. truncated
polynomials) which greatly improves mixings.

We decided to implement both the models, however we present here only
the thin plate splines model as it produces better results. The model (3.5.5)

becomes
K

Yig = Bo + Bitig + BeSig + Z uy 2k (Siq) + €, (3.15)
k=1

where zi(s;,) are defined by (1.42), &; ~ N(0,02), u, ~ N(0,02), We consider
K = 64 knots selected on a regular grid on the space.
The hierarchical Bayesian model for this situation is

K
ind
yiqlﬁOJ 6157 s U, 03 ~ <60 + Bttiq + /Bssiq + Z ukzk<siq)7 0-62) )
k=1
ulo? ~ N(0,02Ix),  fo, B, B, ~ N(0,10%), (3.16)

Ty Te RS Gamma(107%,107%).
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The measurement error hypothesis is

Cqy = [(Chq ; az{I); (brg —; b2q)} : Siq = Cq t+ Vigs (3.17)
Coind oo (a1g — azg) (a2q — arg) (big — bag) (b2g — b1g)
Vig ~ Unif ( 5 ; 2 ; 5 ; 5 )

where Unif is a bivariate uniform distribution. The parametrization (3.17)
corresponds to the hypothesis

Siq 12(} Unif(alq; Q2q; blq; qu)- (318)
We fitted model (3.16) to a set of simulated data with

N =2000, n=2300, B =04 o.—02,
t ~ Ber(0.5), s~ Unif(0;0;1;1), (3.19)
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Figure 3.12: Bivariate normal mixture density for the bivariate uniform model.
The rectangular are the regions and the red stars indicate the centroids.

o1



The function f(s) is generated as a bivariate normal mixture density
(following Wand and Jones (1993)) and is represented in Figure 3.12. The
regions are obtained using a random binary splitting procedure.

We implement the MCMC analysis® with a burn-in period of 15000 iter-
ations and then we retain 5000 iterations, thinned by a factor of 5, resulting
in a sample of size 1000 collected for inference.

502
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Figure 3.13: MCMC-base fitting of the bivariate uniform model. The points
indicate the sampled units.

Figure 3.13 shows the interpolated spatial function for model (3.15).
Compared with the true function showed in Figure 3.12, we see that the
model produces a good fitting. In Figure 3.14 we summarize the MCMC
output for the model parameters: the true values (3.19) are inside the 95%
credible sets; the credible interval for ¢, is away from zero; and all chains
are well-behaved.

The posterior density distributions of the region mean estimators® are
presented in Figure 3.15: the red line corresponds to the ME approach, the

8The WinBUGS model code is presented in appendix (Section A.4).
9The summary of the MCMC output for the region mean estimators is presented in
appendix (Figure A.13).
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Figure 3.14: Graphical summary of MCMC-based inference for the parameters
of the bivariate uniform model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots, where present, correspond to the true values of
the parameters according to the simulation set-up.
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Figure 3.15: Posterior density of the region mean estimator for the bivariate
uniform model. The red lines correspond to the ME approach, the purple lines to
the naive approach and the vertical green lines are the true mean values.
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purple line to the naive approach and the vertical line is the true mean
value. As we can see, the ME estimator has generally a good performance:
in particular, the two methods have quite similar results if the relationship
between s and y is nearly linear (as in region 2 and 7); however, when the
relationship is highly non-linear (like, for example,in region 3, 4 and 5) the
ME estimator produces a really good result, while the naive estimator fails.

3.5.6 Albania Model

In the final experiment we apply model (3.15) (without covariate t) to some
variables from the dataset of the 2002 Living Standard Measurement Study
(LSMS) conducted in Albania!®. In this survey, the data are referred to
various geographical levels, and the spatial location of each household is
collected. Thus, we decide to model the household log per-capita consumption
expenditure (response variable y) against the household spatial location (s)
and to estimate the mean of y for the 36 districts of Albania (presented in

Figure 3.16(a)).
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| | |
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|

350000 400000 450000 500000

Figure 3.16: Map of the districts of the Republic of Albania with the correspond-
ing codes and locations of the households in LSMS dataset.

Again, we make the measurement error hypothesis of uniform distribution

0For a detailed description of the dataset we refer to Chapter 4.

o4



of s inside each region. Observing Figure 3.16(b), we are aware that this
assumption is not quite realistic, nonetheless we decided to proceed as a
possible first step to other future assumptions.

Moreover, differently from the simulated data utilized in the previous
experiment, the districts polygons are extremely irregular. This introduce the
issue on how to define the uniform distribution on the areas. We proceeded
in two ways (but only results of the second way are presented here):

e first, s;, has uniform distribution (3.18) on the bounding box of re-
gion ¢, that is the rectangular region with vertices [(a14, b1g), (@24, b14)s
(@2q, bag), (a1q, bag)] that includes the polygon g;

e second, s;, has uniform distribution on the points that compose the
polygon gq.

The first approach is quite easy to implement, but it includes as plausible
values of s all the points that lay outside the polygon but inside the bounding
box. On the other hand, the second approach considers only the points that
are inside the polygon but is more computationally intensive, as it needs to
define the list of points that lay inside the polygon and to associate an equal
selection probability to each point.

In addition, we want to highlight that the use of this second approach can
theoretically be generalized to other bivariate distributions of s by changing
the selection probabilities of the points.

The hierarchical Bayesian model is

K
ind
Yigl Bo, By, 1,02 N (ﬁo+5ssiq+ E Uka(Siq)aU§> ,
1

ulo? ~ N(0,021), o, B, = N(0,10%), (3.20)

Tus Te x Gamma(107%,107%),

and the experiment settings are N = 3591 and n = 718 (corresponding to a
sampling fraction of 20%).

The MCMC analysis!! is implemented with a burn-in period of 30000
iterations and a retain of 10000 iterations with a thinning factor of 5, resulting
in a sample of size 2000 collected for inference. Figure 3.17 summarizes the
MCMC output for the model parameters.

The posterior density distributions for the mean estimators'? (3.4) in
the 36 districts are presented in Figure 3.18. There are little differences

1 The WinBUGS model code is presented in appendix (Section A.5).
12The summary of the MCMC output for the region mean estimators is presented in
appendix (Figure A.15).
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Figure 3.17: Graphical summary of MCMC-based inference for the parameters
of the Albania model. The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel
estimates posterior density and basic numerical summaries.

between the performances of the ME estimator and the naive estimator and
the results do not show a definitive trend in all the regions'®. These results
are not unexpected, as we have already pointed out that the distribution of
the households on the Albanian surface is not uniform (see Figure 3.16(b)).
Moreover, in some regions the number of sampled units is really small and
this influences the reliability of the estimates, especially for the provinces that
are near the country boundaries. For example, if we consider the district 22,
we observe that both the estimators underestimate the true parameter.
Notwithstanding this single result, we are confident - on the basis of the
procedure’s properties discussed in this chapter - that the measurement error
approach considering a more realistic hypothesis on spatial distribution for
the households can improve the estimates of district mean of the household
log per-capita consumption expenditure, with respect to the centroids classic
approach. Definitely, further investigations should be done in this direction.

13Similar results are obtained from the experiment with the hypothesis of s uniformly
distributed on the bounding box.
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Chapter 4

Geoadditive Model for the

Estimation of Consumption
Expenditure in Albania

4.1 Introduction

This last chapter is devoted to the application of a geoadditive model in the
field of poverty mapping at small area level. In particular, we apply a geoad-
ditive small area estimation model in order to estimate the district level mean
of the household log per-capita consumption expenditure for the Republic of
Albania. We combine the model parameters estimated using the dataset of
the 2002 Living Standard Measurement Study with the 2001 Population and
Housing Census covariate information. In Section 4.2 we present the general
structure of the geoadditive SAE model. Section 4.3 illustrates the applica-
tion presenting the data (subsection 4.3.1) and the results (subsection 4.3.2).
Finally, in Section 4.4 we discuss the use of two possible MSE estimators
through a desing-based simulation study.

4.2 Geoadditive SAE Model

In Section 2.4.6 we generally introduced small area estimation methods and
their possible formulations for the analysis of spatial data. In this section we
present more in detail the geoadditive SAE model, that is obtained by the
union of the geoadditive model presented in Section 1.8 and the classic SAE
model (Rao, 2003) under the linear mixed model framework.

Suppose that there are T small areas for which we want to estimate a
quantity of interest and let y;; denote the value of the response variable for
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the ith unit, ¢ = 1,...,n, in small area t, t = 1,...,T. Let x;; be a vector of p
linear covariates associated with the same unit, then the classic SAE model
is given by

Yit = X3 + up + €t Eit ~ N(O,Gf), Up ~ N(O7O-12L)7 (4.1)

where 3 is a vector of p unknown coefficients, u; is the random area effect
associated with small area ¢ and e;; is the individual level random error.
The two error terms are assumed to be mutually independent, both across
individuals as well as across areas.

If we define the matrix D = [d;;] with

(4.2)

1 if observation i is in small area t,
it = i
0 otherwise

and y = [yu], X = [x}], u = [u] and € = [g;], then the matrix notation of
(4.1) is

y = X8+ Du +¢, (4.3)

u 0 u oIy 0
R R K A
The covariance matrix of y is

Var(y) =V = o2DD” + 0?1,

with

and the BLUPs of the model coefficients are
B=(XTVIX) ' XTVly,
u=0D'Viy - Xp).

If the variance components 02 and o2 are unknown, they are estimated by
REML or ML methods and the model coefficients are obtained with the
EBLUPs.

The formulation (4.3) is a linear mixed model, analogous to the geoaddi-
tive model (1.45), thus it is straightforward to compose the geoadditive SAE
model. Consider again the response y;; and the vector of p linear covariates
x;;, and suppose that both are measured at a spatial location s;;, s € R2.
The geoadditive SAE model' for such data is a linear mixed model with two

random effects components:

y=XB8+Zy+Du+e, (4.4)

!The same model formulation is in Opsomer et al. (2008), where is presented a model,
called by the authors non-parametric SAE model, that accounts for a generic non-linear
covariate.
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~ 0 ~ oI 0 0
E|u| = (0], Cov|ul=| 0 o 0
€ 0 5 0 0 o,

Now X = [xf;,s],],_,_ has p+ 2 columns, 8 is a vector of p + 2 unknown
coefficients, u are the random small area effects, «v are the thin plate spline
coefficients (seen as random effects) and e are the individual level random
errors. Matrix D is still defined by (4.2) and Z is the matrix of the thin plate
spline basis functions

~1/2
Z=1[C(s; - ”k)hgigmgkgk [C (kn — "‘k)hgi/z,k;gf( )

with K knots k; and C(r) = ||r|* log ||r]|.

Again, the unknown variance components are estimated via REML or ML
estimators and are indicated with 2, 62 and 62. The estimated covariance
matrix of y is

V =62272" + 62DD" + 671, (4.5)
and the EBLUP estimators of the model coefficients are

~ ~ -1 ~

3= (XTV‘1X> XTV-ly, (4.6)

y=622"V ' (y - XB), (4.7

a=a52DTV iy - XB). 8

For a given small area ¢, we are interested in predicting the mean value
of y
U =XB+ 7y + w

where X; and z; are the true means over the small area ¢t and are assumed to
be known. The EBLUP for the quantity of interest is

U= it,@ +Zy + e (4.9)

where e, is a vector with 1 in the ¢-th position and zeros elsewhere.

4.3 Estimation of the Household Per-capita
Consumption Expenditure in Albania

Poverty maps are useful tools to describe the spatial distribution of poverty
in a country, especially when they represent small geographic units, such as
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municipalities or districts. This information is extremely useful to policy-
makers and researchers in order to formulate efficient policies and programs.

As pointed out in Neri et al. (2005), <in order to produce poverty maps,
large data sets are required which include reasonable measures of income or
consumption expenditure and which are representative and of sufficient size
at low levels of aggregation to yield statistically reliable estimates. Household
budget surveys or living standard surveys covering income and consumption
usually used to calculate distributional measures are rarely of such a sufficient
size; whereas census or other large sample surveys large enough to allow
disaggregation have little or no information regarding monetary variabless.
Then, the required small area estimates are usually based on a combination
of sample surveys and administrative data.

The Republic of Albania is divided in 3 geographical levels: prefectures,
districts and communes. There are 12 prefectures, 36 districts and 374 com-
munes, however the Living Standard Measurement Study survey, which pro-
vides valuable information on a variety of issues related to living conditions
in Albania, is stratified in 4 big strata (Costal Area, Central Area, Mountain
Area and Tirana) and these strata are the smaller domain of direct estima-
tion. In order to map and estimate the mean of the household log per-capita
consumption expenditure for the districts of Albania, we apply a geoadditive
SAE model combining the model estimated using the survey data and the
census covariate information.

4.3.1 Data

The two main sources of statistical information available in Albania are the
2001 Population and Housing Census (PHC) and the 2002 Living Standard
Measurement Study (LSMS), both conducted in Albania by the INSTAT
(Albanian Institute of Statistics).

The 2002 LSMS provides individual level and household level socio-econo-
mic data from 3,599 households drawn from urban and rural areas in Alba-
nia. The sample was designed to be representative of Albania as a whole,
Tirana, other urban/rural locations, and the three main agro-ecological ar-
cas (Coastal, Central, and Mountain). The survey was carried out by the
Albanian Institute of Statistics (INSTAT) with the technical and financial
assistance of the World Bank.

Four survey instruments were used to collect information for the 2002
Albania LSMS: a household questionnaire, a diary for recording household
food consumption, a community questionnaire, and a price questionnaire.
The household questionnaire included all the core LSMS modules as defined
in Grosh and Glewwe (2000), plus additional modules on migration, fertil-
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ity, subjective poverty, agriculture, and nonfarm enterprises. Geographical
referencing data on the longitude and latitude of each household were also
recorded using portable GPS devices (World Bank and INSTAT, 2003).

The covariates selected to fit the geoadditive SAE model are chosen fol-
lowing prior studies on poverty assessment in Albania (Betti, G. and Ballini,
F. and Neri, L., 2003; Neri et al., 2005). We have selected the following
household level covariates:

e size of the household (in term of number of components)

e information on the components of the household:
— age of the householder,
— marital status of the householder,
— age of the spouse or husband of the household,
— number of children 0-5 years,
— age of the first child,
— number of components without work,
— highest level of education in the household;

e information on the house:
— building with 2-15 units,
— built with brick or stone,
— built before 1960,
— number of rooms per person,
— house surface < 40 m?,
— house surface 40 — 692,
— wc inside;

e presence of facilities in the dwelling:
- TV,
— parabolic,
— refrigerator,
— washing machine,
— air conditioning,
— computer,
— car;

e ownership of agricultural land

All these variables are are available both in LSMS and PHC surveys (see
Neri et al. (2005) for comparability between the two sources); in addition,
the geographical location of each household is available for the LSMS data.
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The response variable is the logarithm of the household per-capita con-
sumption expenditure. The use of the logarithmic transformation is typical
for this type of data as it produce a more suitable response for the regression
model (see the distributions presented in Figure 4.1).

Histogram of per-capita consumption Histogram of log per-capita consumption
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Figure 4.1: Distribution of the household per-capita consumption expenditure,
both in original scale and in logarithmic scale.

4.3.2 Results

Estimates of the log per-capita consumption expenditure in each of the 36
district area are derived using the geoadditive SAE model presented in (4.4).

After the preliminary analysis of various combination of parametric and
non-parametric specifications for the selected covariates, the chosen model is
composed by a bivariate thin plate spline on the universal transverse Merca-
tor (UTM) coordinates, a linear term for all the other variables and a random
intercept component for the area effect. The spline knots are selected set-
ting K = 100 and using the clara space filling algorithm of Kaufman and
Rousseeuw (1990) that is available in the R package cluster (the resulting
knots location is presented in Figure 4.2). The model is then fitted by REML
using the 1me function in the R package nlme.

The estimated parameters are presented in Table 4.1, along with their
confidence interval at 95% and the p-values. With the exclusion of the inter-
cept and the coordinates coefficients (that are required by the model struc-
ture), almost all the parameters are highly significant. The exceptions are
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the coefficients of ‘'marital status of the householder’, 'number of children 0-5
years’ and ’'built with brick or stone’ that are significant at 5% level, and the
coefficient of "building with 2-15 units’ that is significant at 10% level.

Knot locations for bivariate spline smoothing

y_coord
46.0 46.5 47.0
1 | l

455
|

45.0
|

445
1

X_coord

Figure 4.2: Knots location (in red) for the thin plate spline component. Black
dots indicate the locations of the LSMS sample.

The resulting spatial smoothing of the log per-capita consumption expen-
diture is presented in Figure 4.3. The geoadditive SAE model (4.4) considers
two random effects, once for the bivariate spline smoother and once for the
small area effect, thus the estimated value of the log per-capita consumption
expenditure in a specific location is obtained as sum of two components, once
continuous over the space (showed in the second map) and once constant in
each small area (showed in the third map). From these maps, it is evident the
presence of both a spatial dynamic and a district level effect in the Albanian
consumption expenditure.

The estimated parameters (presented in Table 4.1) are then combined
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Figure 4.3: Spatial smoothing and district random effects of the household log per-capita consumption expenditure. The
first map (a) shows the smoothing obtained with the geoadditive sae model as sum of two components: the bivariate
smoothing, in map (b), and the small area random effects, in map (c).
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Table 4.1: Estimated parameters of the geoadditive SAE model for the household
log per-capita consumption expenditure at district level.

Parameter Estimate Confidence Interval p-value
Fixed Effects
Intercept 7.11 (-34.32;48.55) 0.736
X coordinate -0.0594 (-0.7807;0.6618) 0.872
Y coordinate 0.0393 (-0.8700;0.9487) 0.932
household size -0.0775 (-0.0913;-0.0638) < 0.001
age of the householder 0.0029 (0.0014;0.0044) < 0.001
marital status of the householder 0.0745 (0.0004;0.1485) 0.049
age of the spouse or husband -0.0021 (-0.0035;-0.0008) 0.001
number of children 0-5 years -0.0202 (-0.0382;-0.0023) 0.027
age of the first child -0.0023 (-0.0037;-0.0009) 0.001
number of components without work ~ -0.0661 (-0.0784;-0.0537) < 0.001
high level of education 0.0913 (0.0648;0.1178) < 0.001
medium level of education 0.2397 (0.2007;0.2788) < 0.001
building with 2-15 units 0.0261 (-0.0034;0.0557) 0.083
built with brick or stone 0.0342 (0.0001;0.0684) 0.049
built before 1960 -0.0442 (-0.0734;-0.0151) 0.003
number of rooms per person 0.1364 (0.1037;0.1690) < 0.001
house surface < 40 m? -0.0518 (-0.0932;-0.0105) 0.014
house surface 40 — 69° -0.0365 (-0.0625;-0.0105) 0.006
we inside 0.0511 (0.0190;0.0833) 0.002
vV 0.1066 (0.0510;0.1623) < 0.001
parabolic 0.0768 (0.0473;0.1062) < 0.001
refrigerator 0.1183 (0.0827;0.1539) < 0.001
washing machine 0.1140 (0.0843;0.1438) < 0.001
air conditioning 0.2434 (0.1593;0.3275) < 0.001
computer 0.2403 (0.1668;0.3138) < 0.001
car 0.3233 (0.2846;0.3621) < 0.001
ownership of agricultural land 0.0484 (0.0153;0.0815) 0.004
Random Effects
o 0.4096 (0.2700;0.6214) < 0.001
Ou 0.1756 (0.1290;0.2389) < 0.001
O 0.3285 (0.3208;0.3363) < 0.001
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with the census mean values as in (4.9) to obtain the district level estimates
of the average household log per-capita consumption expenditure. Due to
the unavailability of the geographical coordinates for the PHC dataset, the
true z; cannot be calculated. We approximate the missing information by
using the centroids of each small area to locate all the units belonging to the

same area?.

36-8.53

Figure 4.4: District level estimates of the mean of household log per-capita
consumption expenditure.

The district level estimates are showed in Figure 4.4 and in Table 4.2.
All the coefficients of variation® (CV) are less that 2%, with a mean value
of 0.91%, thus the estimates have low variability. The higher values are

2As we have discussed in Section 3.5.6, we are confident that a measurement error
approach considering a more realistic hypothesis on spatial distribution for the households
can improve the estimates, with respect to the centroids approach. Further investigations
will be done in this direction.

3The MSE - and consequently the CV - is calculated using the robust MSE estimator
of Salvati et al. (2008). For a discussion about MSE estimation see Section 4.4.

68



Table 4.2: District level estimates of the mean of household log per-capita con-
sumption expenditure. The root mean squared error (RMSE) and the coefficient
of variation (CV%) are obtained with the robust MSE estimator of Salvati et al.
(2008).

Code District Name Estimate RMSE CV%

1 Berat 8.91 0.0472 0.53
2 Bulgize 8.35 0.0514 0.62
3 Delvine 9.46 0.1552 1.64
4 Devoll 9.17 0.1529 1.67
5 Diber 8.96 0.0542  0.60
6 Durres 8.98 0.0601 0.67
7 Elbasan 8.93 0.0368 0.41
8 Fier 9.13 0.0441 0.48
9 Gramsh 8.82 0.0426 0.48
10 Gjirokast 9.52 0.1130 1.19
11 Has 9.15 0.1046 1.14
12 Kavaje 9.22 0.0535 0.58
13 Kolonje 9.05 0.1608 1.78
14 Korce 8.92 0.0630 0.71
15 Kruje 8.91 0.0758 0.85
16 Kucove 8.96 0.0449 0.50
17 Kukes 8.97 0.0753 0.84
18 Kurbin 8.67 0.0549 0.63
19 Lezhe 9.21 0.0773 0.84
20 Librazhd 8.88 0.0450 0.56
21 Lushnje 9.10 0.0576 0.63
22 Malesi e Madhe 8.93 0.1661 1.95
23 Mallakaster 9.11 0.0654 0.72
24 Mat 9.15 0.0969 1.06
25 Mirdite 8.79 0.1049 1.19
26 Peqin 8.74 0.0864 0.99
27 Permet 9.34 0.1365 1.46
28 Pogradec 8.88 0.0626  0.70
29 Puke 8.70 0.1388 1.60
30 Sarande 9.34 0.0809 0.87
31 Skrapar 8.93 0.0999 1.12
32 Shkoder 8.90 0.0640 0.72
33 Tepelene 8.95 0.0871 0.97
34 Tirane 9.23 0.0441 0.48
35 Tropoje 8.78 0.0679 0.77
36 Vlore 9.37 0.0635 0.68
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registered in those districts where the sample size is quite low (see Table 4.3).
In addition, district 22 suffers particularly from the centroid approximation
due to its geographical morphology: it is mostly mountainous and the urban
area is mainly in the south.

The map presents a clear geographical pattern, with the higher values in
the south and south-west of the country and the lower value in the mountain-
ous area (north and north-east). These results are consistent with previous
applications on the same datasets presented in literature (Neri et al., 2005;
Tzavidis et al., 2008).

4.4 MSE Estimation

Along with the definition of the non-parametric SAE model, Opsomer et al.
(2008) study the theoretical properties of the mean squared error (MSE) of
the small area mean estimator and propose both an analytic and a bootstrap
estimator for the MSE quantity. Alternatively, Salvati et al. (2008) pro-
pose a robust estimator of the conditional MSE of the same non-parametric
SAE model, based on the pseudo-linearization approach to MSE estimation
described in Chambers et al. (2007).

We decided to apply both the analytic estimator of Opsomer et al. (2008)
and the robust estimator of Salvati et al. (2008) and, in order to evaluate
their performance, a desing-based simulation study is implemented.

We build a fixed pseudo-population of N = 689733 households by sam-
pling N times with replacement and with probability proportional to the unit
sample weights from the LSMS dataset. A total of 500 independent stratified
random samples of the same size as the original sample is then selected from
this pseudo-population, with districts sample sizes fixed to be the same as in
the original sample. For each sample we apply the geoadditive SAE model of
the previous section and we calculate the EBLUP 4.9 for the mean household
log per-capita consumption expenditure of each district and the two relative
MSE estimates.

The behaviour of the empirical true root MSE and its estimators for each
district is shown in Figure 4.5. It can be seen that there isn’t a substantial
difference in the performance of the two estimators, even if the analytic
estimator of Opsomer et al. (2008) is always lower that the robust estimator
of Salvati et al. (2008). However, the robust estimator seems to better track
the irregular profile of the empirical RMSE, while the analytic estimator is
slightly over-smoothed. The anomalous value of district 22 is due to the
high value of the bias component (see Table 4.3) and both the estimators
undervalue it. After these considerations, we prefer to present the MSE
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Figure 4.5: District level of actual design-base RMSE (black line) and average
estimated RMSE. The red line indicates the robust estimator of Salvati et al. (2008)
and the green line indicates the analytic estimator of Opsomer et al. (2008).

estimated with the robust estimator of Salvati et al. (2008) (see Table 4.2).

The simulation study permits also to evaluate the performance of the
geoadditive SAE EBLUP. For each district we compute the Relative Bias
(RB) and the Relative Root MSE (RRMSE) defined as

. 1 Zn]\le (:’jtm - gt)
RB = — =
M Yt

and

ﬁ Z%d (Ytm — Gt)?
Yt

where 7; denotes the actual district mean ¢ and ¥, is the predicted value at

simulation m, m =1, ..., M.

The values of RB and RRMSE are shown in Table 4.3: all the values are
quite small and indicate that the geoadditive SAE EBLUP is quite stable.
Once again, we note the anomalous value of district 22, that presents a
relative bias of -3.64%.

RRMSE = \/

9
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Table 4.3: Relative bias (RB) and relative RMSE (RRMSE) of the geoadditive
SAE EBLUP for the mean household log per-capita consumption expenditure of
each district.

Code n, N, RB% RRMSE%

1 120 25422  0.0415 0.5253
2 128 8499 -0.2331 0.5315
3 16 3211 -0.1014 0.9636
4 16 6229 0.4183 0.6849
5 232 16529 -0.2085 0.3340
6 160 42332 -0.6805 0.8689
7 152 47709 -0.2717 0.4713
8 224 45729 0.7459 0.8192
9 120 7538  0.2225 0.4748
10 32 10948 0.0481 0.5735
11 48 3450 -0.0556 0.3822
12 88 18294 -0.0752 0.4343
13 8 2291  0.8891 1.1532
14 136 34914 -1.3420 1.3859
15 39 13477 0.2356 0.6724
16 32 11019 -0.3109 0.5480
17 184 12183 -0.0256 0.3023
18 64 12938 0.0352 0.3769
19 64 13538 0.9217 1.0422
20 200 14345 -0.0589 0.5352
21 152 31953 0.3629 0.5639
22 24 9294 -3.6434 3.8363
23 32 7067 -0.2909 0.7124
24 32 11803 -0.1271 0.4165
25 16 5468  0.1970 0.8839
26 24 8814 -0.4073 0.9564
27 16 2377 0.3386 1.1810
28 48 17418 0.1240 0.5389
29 24 8633 -1.1829 1.6128
30 48 9874 -0.0584 0.4638
31 16 0453  0.4741 0.9140
32 140 43578 -0.9057 1.0329
33 32 11202 0.1509 0.8862
34 684 121020 0.1318 0.4668
35 88 2876 -1.2654 1.3579

36 152 36308 0.6493 0.8853
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Conclusions

The aim of our work was to introduce the geoadditive models and discuss
their applicability in fields of statistics research that differ from their native
research areas. In fact, nowadays, the geographical information is frequently
available in many areas of observational sciences, and the use of specific
techniques of spatial data analysis can improve our understanding of the
studied phenomena.

The general review on the use of spatial information in statistics that we
presented in Chapter 2, shows how in the last years the interest to the spatial
data analysis is increased in every area of statistical research, from official
statistics to demography to econometrics. Particular interest is given to the
possible ways in which spatially referenced data can support local policy
makers, especially in areas of social and economical interventions. Strictly
connected with this subject are the spatial small area estimation methods
that exploit the spatial information to “borrow strength” from the neighbour
areas to produce more reliable estimations. As both the SAE models and
the geoadditive models are formulated as linear mixed models, it seems an
obvious choice to merge the two models in a geoadditive SAE model to exploit
the spatial information and produce estimates at small area level.

However, the use of geostatistics methodologies for these applications
is not always straightforward. If we use a geoadditive model to produce
estimates of a parameter of interest for some geographical domains, like the
small areas, then we need all the population units to be referenced at point
locations. This requirement is not so easy to be accomplished, especially if
we work with socio-economic data. Usually is much more easy to know the
areas to which the units belong - like census districts, blocks, municipalities,
etc.

If we have collected the required spatial information for the sampled units,
from previous datasets or from specific surveys, then we can continue to
use the geoadditive model with some approximations. The classic approach
is to locate all the units with their corresponding area centre, however we
decided to investigate a different approach, treating the lack of geographical
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information as a particular problem of measurement error and imposing a
distribution for the locations inside each area.

We analyzed the performance of our approach implementing some MCMC
analyses. In our experiments we consider first the case of a univariate miss-
ing variable, both with uniform distribution and with different non-uniform
distribution inside each regions, modeled with a beta distribution with pa-
rameters that differ in each area. Then we implement the case of a bivariate
uniform distribution. The results, presented in Chapter 3, show that, when
the distribution hypothesis of the missing variable is correctly specified, our
measurement, error approach produce better estimates of the region level
mean with respect to the same estimator under the classic approach. To
observe the effect of the distribution hypothesis choice, we implement two
experiments with real data. We can choose the distribution hypothesis by
visual inspection of the empirical distribution of the variable for the sampled
units. The results show that if the distribution hypothesis is approximatively
correct - like in the California experiment - then the ME approach produces
good estimations. On the other hand, if the hypothesis is completely untrue
- like in the Albania experiment - then the ME approach and the classic
approach are equivalent.

We want to highlight the fact that in our experiments we considered only
two kind of univariate distributions, but the same model can be implemented
with other distributions. The only demand is that the chosen distribution
needs to be defined on a closed interval or otherwise truncated. On the other
side, the beta distribution has the advantage to model many different shapes
depending on the parameters value, including even the uniform distribution
as a special case. Thus, we think that the beta distribution hypothesis could
be the best choice. Referring to the bivariate case, until now we have imple-
mented only the uniform case, but the next step should be the definition of
other bivariate distributions, like a truncated normal, or the bivariate beta
presented in Olkin and Ruixue Liu (2003) or some mixtures. A more complex
issue is the definition of a bivariate distribution on an irregular polygon,like
in the Albania experiment. We think that the idea proposed in the experi-
ment of assigning a selection probability to each point inside the polygon, can
provide a possible solution to such problem. On the other hand, it requires
some priors information to decide how to assign the selection probability.

The final part of the thesis is devoted to the application of a geoadditive
model in the field of poverty mapping at small area level. The geoadditive
SAE model introduced is applied in order to estimate the district level mean
of the household log per-capita consumption expenditure for the Republic
of Albania. The results of our analysis shows that the consumption expen-
diture has both spatial dynamics and area specific effects. The map of the
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estimated district means presents an evident geographical pattern, with the
higher values in the south and south-west of the country and the lower value
in the mountainous area (north and north-east), confirming the results of pre-
vious applications on the same datasets presented in literature. Differently
from other methods of analysis that exploit some spatial information, like
the spatial SAE model, the geoadditive model produces not only the map of
estimated mean values, but also a spatial interpolation of all the observation.
Thus, with this model we can produce an estimated value in any point of the
country.

When we produce estimates of a parameter of interest over some pre-
specified area, we should always consider the modifiable area unit problem
(MAUP). With the geoadditive model we obtain a continuous surface esti-
mation over the entire area, without define the area a priori, thus the MAUP
can’t occur. In our application the geoadditive model is associated with a
SAE model, so in this case we need to define the areas before estimate the
model, however the possible MAUP - if occurs - will be only related to the
definition of the small area and not to the spatial interpolation of the studied
phenomenon.

Finally, the results of the design-based simulation study, presented in
Chapter 4, show that the geoadditive SAE EBLUP for the mean is quite
stable, and that the performance of the robust MSE estimator of Salvati
et al. (2008) is slightly better than the performance of the analytic MSE
estimator of Opsomer et al. (2008). However, the two estimator are quite
comparable.

In conclusion, exploiting the available geographical information, the use
of a geoadditive model can improve the understanding of the phenomenon
of interest describing and analyzing his spatial behaviour. Moreover, even if
we don’t know the exact location of all the population units, the geoadditive
models could still be applied with good results using the mean estimator with
the measurement error approach.

1)
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Appendix A

Outputs of the MCMC
Experiments

A.1 Univariate Uniform Model

WinBUGS code

for (i in 1:n1) {
mul[i] <- beta0 + betas*s1[i] + betat*ti1[i] +
inprod(ull,Z1[i,1)
y1[i] ~ dnorm(mul[i], tauEps) }
for (i in 1:n2) {
s2Hat [i] ~ dunif(aVals[i], bVals[i])
y2Hat [i] <- betal + betas*s2Hat[i] + betat*t2[i] +
inprod(ul],Z2Hat[1i,])
centrVals[i] <- (aVals[i] + bVals[i])/2
y2Naive[i] <- betal + betas*centrVals[i] + betat*t2[i] +
inprod(ull,Z2Naive[i,]) }
for (k in 1:numKnots) {
for (i in 1:n2) {
Z2Hat [i,k] <- (s2Hat[i]-knots[k])*step(s2Hat[i]-knots[k])
Z2Naive[i,k] <- (centrVals[i]-knots[k])*step(centrVals[i]-
knots[k]) }
ulk] ~ dnorm(0.00000E+00,taul) }
beta0 ~ dnorm(0.00000E+00,1.00000E-08)
betas ~ dnorm(0.00000E+00,1.00000E-08)
betat ~ dnorm(0.00000E+00,1.00000E-08)
taulU ~ dgamma(1l.00000E-08,1.00000E-08)
tauEps ~ dgamma(1l.00000E-08,1.00000E-08)
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Figure A.1: Graphical summary of the MCMC output for region mean estimators

for the univariate uniform model.

parameters according to the simulation set-up.
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The columns are: parameter, trace plot of
MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates posterior density and basic numerical summaries. The
vertical dashed lines in the density plots correspond to the true values of the
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Figure A.2: Graphical summary of the MCMC output for four randomly chosen
couples (once for each region) of non-measured and response variables for the
univariate uniform model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots correspond to the true values of the parameters
according to the simulation set-up.
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A.1.1 Model without the dummy covariate
WinBUGS code - partial

for (i in 1:n1) {
mul[i] <- betal + betas*s1[i] + inprod(ull,Z1[i,])
y1[i]l ~ dnorm(mul[i], tauEps) }
for (i in 1:n2) {
s2Hat[i] ~ dunif(aVals[i], bVals[i])
y2Hat [i] <- betal + betas*s2Hat[i] + inprod(ul[],Z2Hat[i,])
centrVals[i] <- (aVals[i] + bVals[i])/2
y2Naive[i] <- betaO + betas*centrVals[i] +
inprod(ul],Z2Naive[i,]) }

Graphics
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Figure A.3: MCMC-base fitting of the univariate uniform model without covari-
ate t. The blue points are the sampled units and the pale green shaded region
corresponds to pointwise 95% credible sets. The vertical dashed lines delimit the
regions and the red stars indicate the centroids of each region.
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Figure A.4: Graphical summary of MCMC-based inference for the parameters of
the univariate uniform model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots, where present, correspond to the true values of
the parameters according to the simulation set-up.
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Figure A.5: Posterior density of the region mean estimator for the univariate
uniform model without covariate t. The red lines correspond to the ME approach,
the purple lines to the naive approach and the vertical green lines are the true
mean values.
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Figure A.6: Graphical summary of the MCMC output for region mean esti-
mators for the univariate uniform model without covariate ¢t. The columns are:
parameter, trace plot of MCMC sample, plot of sample against 1-lagged sample,
sample autocorrelation function, kernel estimates posterior density and basic nu-
merical summaries. The vertical dashed lines in the density plots correspond to

the true values of the parameters according to the simulation set-up.
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Figure A.7: Graphical summary of the MCMC output for four randomly cho-
sen couples (once for each region) of non-measured and response variables for the
univariate uniform model without covariate ¢t. The columns are: parameter, trace
plot of MCMC sample, plot of sample against 1-lagged sample, sample autocorre-
lation function, kernel estimates posterior density and basic numerical summaries.
The vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.
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A.2 Univariate Beta Model

WinBUGS code

for (i in 1:n1) {
ss1[i] <- (s1[i] - aValsi[i])/(bVals1[i] - aValsi[i])
mul[i] <- betal0 + betas*sli[i] + betat*t1[i] +
inprod(ull,Zz1[i,])
y1[i]l ~ dnorm(mul[i],tauEps) }
for (i in 1:n2) {
s2Hat[i] <- (bVals2[i]l-aVals2[i])*ss2Hat[i] + aVals2[i]
y2Hat[i] <- betal + betas*s2Hat[i] + betat*t2[i] +
inprod(ul],Z2Hat[i,])
centrVals[i] <- (aVals[i] + bVals[i])/2
y2Naive[i] <- betaO + betas*centrVals[i] + betat*t2[i] +
inprod(u[],Z2Naive[i,]) }
for (t in 1:numRegions) {
for (i in (1im1[t] + 1):1limi[t + 1]) {
ss1[i] ~ dbeta(c[t], dl[t]) }
for (i in (1im2[t] + 1):1im2[t + 11) {
ss2Hat [i] ~ dbeta(c[t], d[t]) }
c[t] ~ dunif(0.00000E+00, 100)
d[t] ~ dunif(0.00000E+00, 100) }
for (k in 1:numKnots) {
for (i in 1:n2) {
Z2Hat [i,k] <- (s2Hat[i]-knots[k])*step(s2Hat[i]-knots[k])
Z2Naive[i,k] <- (centrVals[i]-knots[k])*step(centrVals[i]-
knots[k]) }
ulk] ~ dnorm(0.00000E+00,taul) }
beta0 ~ dnorm(0.00000E+00,1.00000E-08)
betas ~ dnorm(0.00000E+00,1.00000E-08)
betat ~ dnorm(0.00000E+00,1.00000E-08)
taulU ~ dgamma(1.00000E-08,1.00000E-08)
tauEps ~ dgamma(1.00000E-08,1.00000E-08)
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Figure A.8: Graphical summary of MCMC-based inference
eters of the univariate beta model. The columns are: parameter, trace plot of
MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates posterior density and basic numerical summaries. The
vertical dashed lines in the density plots, where present, correspond to the true

values of the parameters according to the simulation set-up.
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Figure A.9: Graphical summary of the MCMC output for region mean estimators
for the univariate beta model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots correspond to the true values of the parameters

according to the simulation set-up.
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Figure A.10: Graphical summary of the MCMC output for four randomly chosen
couples (once for each region) of non-measured and response variables for the
univariate beta model. The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel
estimates posterior density and basic numerical summaries. The vertical dashed
lines in the density plots correspond to the true values of the parameters according

to the simulation set-up.
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A.3 California Model

WinBUGS code

for (i in 1:n1) {
mul[i] <- betaO+betax*xl[i]+betas*sl[i]+betat*tl[i]+inprod(Ux[],
Zx1[i,])+inprod(Us([],Zs1[i,])+inprod(Ut[],Zt1[i,])
y1[i] ~ dnorm(mull[i],tauEps) }
for (i in 1:n2) {
s2Hat [i] ~ dunif(aVals[i],bVals[i])
y2Hat [i] <- betaO+betax*x2[i]+betas*s2Hat [i]+betat*t2[i]+
inprod (Ux[],Zx2[i,])+inprod(Us[],Zs2Hat [i,])+
inprod (Ut [],zt2[1,])
centrVals[i] <- (aVals[i] + bVals[i])/2
y2Naive[i] <- betaO+betax*x2[i]+betas*centrVals[i]+betat*t2[i]+
inprod(Ux[],Zx2[i,])+inprod(Us[],Zs2Naive[i,])+
inprod (Ut [],zt2[i,]) }
for (k in 1:numKnots) {
for (i in 1:n2) {
Zs2Hat [i,k] <- (s2Hat[i]-knotsS[k])*step(s2Hat[i]-knotsS[k])
Zs2Naive[i,k] <- (centrVals[i]-knotsS[k])x*
step(centrVals[i]-knotsS[k]) }
Ux[k] ~ dnorm(0.00000E+00,tauUx)
Us[k] ~ dnorm(0.00000E+00,taulUs)
Ut[k] ~ dnorm(0.00000E+00,tault) }
beta0 ~ dnorm(0.00000E+00,1.00000E-08)
betax ~ dnorm(0.00000E+00,1.00000E-08)
betat ~ dnorm(0.00000E+00,1.00000E-08)
betas ~ dnorm(0.00000E+00,1.00000E-08)
tauUx ~ dgamma(1l.00000E-08,1.00000E-08)
tauUs ~ dgamma(1l.00000E-08,1.00000E-08)
taulUt ~ dgamma(1l.00000E-08,1.00000E-08)
tauEps ~ dgamma(1.00000E-08,1.00000E-08)
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Figure A.11:

parameters according to the simulation set-up.
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Graphical summary of the MCMC output for region mean esti-
mators for the univariate beta model. The columns are: parameter, trace plot
of MCMC sample, plot of sample against 1-lagged sample, sample autocorrela-
tion function, kernel estimates posterior density and basic numerical summaries.
The vertical dashed lines in the density plots correspond to the true values of the
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Figure A.12: Graphical summary of the MCMC output for four randomly chosen
couples (once for each region) of non-measured and response variables for the
univariate beta model. The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel
estimates posterior density and basic numerical summaries. The vertical dashed
lines in the density plots correspond to the true values of the parameters according

to the simulation set-up.
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A.4 Bivariate Uniform Model

WinBUGS code

for (i in 1:n1) {
mul[i] <- betaO+betat*tl[i]+betals*sill[i]+betals*s12[i]+
inprod(Us([],Zs1[i,])
y1[i] ~ dnorm(mull[i],tauEps) }
for (i in 1:n2) {
s2Hat1[i] ~ dunif(aValsi[i],bVals1[i])
s2Hat2[i] ~ dunif(aVals2[i],bVals2[i])
y2Hat [i] <- betaO+betat*t2[i]+betals*s2Hatl[i]+beta2s*s2Hat2[i]+
inprod (Us[],Zs2Hat[i,])
centrValsl[i] <- (aVals1[i] + bValsi[i])/2
centrVals2[i] <- (aVals2[i] + bVals2[i])/2
y2Naive[i] <- betaO+betat*t2[i]+betals*centrValsi[i]+
beta2s*centrVals2[i]+inprod (Us[],Zs2Naive[i,]) }
for (k in 1:numKnots) {
for (i in 1:n2) {
distHat[i,k] <- sqrt(pow(s2Hatl[i]-knots1S[k],2) +
pow(s2Hat2[i]-knots2S[k],2))
Zs2Hat [i,k] <- pow(abs(distHat[i,k]),2)*log(abs(distHat[i,k]))
distNaive[i,k] <- sqrt(pow(centrValsl[i]-knots1S[k],2) +
pow(centrVals2[i]-knots2S[k],2))
Zs2Naive[i,k] <- pow(abs(distNaivel[i,k]),2)*
log(abs(distNaive[i, k1)) }
for (h in 1:numKnots) {
MAT[h,k] <- tauUs * TAUmat[h,k] } }
Us[1:numKnots] ~ dmnorm(meanUs[], MAT[,])
beta0 ~ dnorm(0.00000E+00, 1.00000E-08)
betat ~ dnorm(0.00000E+00, 1.00000E-08)
betals ~ dnorm(0.00000E+00, 1.00000E-08)
beta2s ~ dnorm(0.00000E+00, 1.00000E-08)
tauls ~ dgamma(1.00000E-08, 1.00000E-08)
tauEps ~ dgamma(1.00000E-08, 1.00000E-08)
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Graphics

Figure A.13: Graphical summary of the MCMC output for region mean esti-
mators for the bivariate uniform model. The columns are: parameter, trace plot
of MCMC sample, plot of sample against 1-lagged sample, sample autocorrela-
tion function, kernel estimates posterior density and basic numerical summaries.
The vertical dashed lines in the density plots correspond to the true values of the

parameters according to the simulation set-up.
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Figure A.14: Graphical summary of the MCMC output for four randomly chosen
couples (once for each region) of non-measured and response variables for the bi-
variate uniform model. The columns are: parameter, trace plot of MCMC sample,
plot of sample against 1-lagged sample, sample autocorrelation function, kernel
estimates posterior density and basic numerical summaries. The vertical dashed
lines in the density plots correspond to the true values of the parameters according
to the simulation set-up.

93



A.5 Albania Model

WinBUGS code

for (i in 1:n1) {
mul[i] <- betaO+betals*si[i,1]+beta2s*s1[i,2]+
inprod(Us([],Zs1[1i,])
y1[i] ~ dnorm(mull[i],tauEps) }
for (i in 1:n2) {
indice[i] ~ dcat(pSample[(baseSample[i]+1): (baseSample[i]+
nSample[i])])
ind[i] <- baseSample[i] + indicel[i]
s2Hat1[i] <- disPoints[ind[i],1]
s2Hat2[i] <- disPoints[ind[i],2]
y2Hat [i] <- betaO+betals*s2Hatl[i]+beta2s*s2Hat2[i]+
inprod(Us[],Zs2Hat[i,])
y2Naive[i] <- betaO+betals*centrVals[i,1]+beta2s*centrVals[i,2]+
inprod (Us[],Zs2Naive[i,]) }
for (k in 1:numKnots) {
for (i in 1:n2) {
distHat [i,k] <- sqrt(pow(s2Hat1[i] - knotsS[k,1],2) +
pow(s2Hat2[i] - knotsS[k,2],2))
Zs2Hat [i,k] <- pow(abs(distHat[i,k]),2)*log(abs(distHat[i,k]))
distNaive[i,k] <- sqrt(pow(centrVals[i,1] - knotsS[k,1],2) +
pow(centrVals[i,2] - knotsS[k,2],2))
Zs2Naive[i,k] <- pow(abs(distNaive[i,k]),2)*
log(abs(distNaive[i,k])) }
for (h in 1:numKnots) {
MAT[h,k] <- tauUs * TAUmat[h,k] } }
Us[1:numKnots] ~ dmnorm(meanUs[],MAT[,])
beta0 ~ dnorm(0.00000E+00,1.00000E-08)
betals ~ dnorm(0.00000E+00,1.00000E-08)
beta2s ~ dnorm(0.00000E+00,1.00000E-08)
tauUs ~ dgamma(1.00000E-08,1.00000E-08)
tauEps ~ dgamma(1l.00000E-08,1.00000E-08)
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Graphics

Figure A.15: Graphical summary of the MCMC output for region mean estima-
tors for the Albania model. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function,
kernel estimates posterior density and basic numerical summaries. The vertical
dashed lines in the density plots correspond to the true values of the parameters

according to the simulation set-up.
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Figure A.15: CONTINUE - Graphical summary of the MCMC output for region
mean estimators for the Albania model. The columns are: parameter, trace plot
of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates posterior density and basic numerical summaries. The
vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.
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Figure A.15: CONTINUE - Graphical summary of the MCMC output for region
mean estimators for the Albania model. The columns are: parameter, trace plot
of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates posterior density and basic numerical summaries. The
vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.
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Figure A.15: CONTINUE - Graphical summary of the MCMC output for region
mean estimators for the Albania model. The columns are: parameter, trace plot
of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates posterior density and basic numerical summaries. The
vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.
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