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Introduction 
 
 
The Lisbon European Council in March 2000, agreed to put in place a European strategy 
aiming at making a decisive impact on the eradication of poverty in the European Union 
Countries by the year 2010 (the year of struggle against poverty and social exclusion) 
declaring that the EU should become by 2010 “the most competitive and dynamic 
knowledge-based economy in the world capable of sustainable economic growth with more 
and better jobs and greater social cohesion”. For this purpose, the adoption of common 
indicators to monitor living conditions and to guide the implementation of policies of the EU 
Member States are requested not only at national level but also at regional and at lower 
geographical levels. Construction of indicators depend on what we want measure, 
nevertheless some rules have to been respected. Atkinson et al. (2002) summarize principles 
of indicator construction as follows: 

i. Identify essence of problem and have clear normative interpretation. 
ii. Be robust and statistically validated. 

iii. Responsive to effective policy intervention but not subject to manipulation. 
iv. Measurable in a comparable way across Member States. 
v. Timely. 

vi. Measurement not impose too heavy a burden. 
vii. Balanced across different dimensions. 

viii. Mutually consistent and proportionate weight. 
ix. As transparent and accessible as possible to citizens. 

In recent years, the interest in poverty, not only as monetary phenomenon but in its 
multidimensional nature, took a large importance, in the international scientific community, 
but also in many official statistical agencies and in international institutions. Poverty is a 
complex phenomenon that cannot be reduced solely to monetary dimension but it has to be 
also explained by other variables whose impact on poverty is not captured by income. 

In 2008 the French President Nicolas Sarkozy established a Commission on the 
“Measurement of Economic Performance and Social Progress”, led by Professor J. Stiglitz 
and participated by four other Nobel Laureates and well-known expert from over the world. 
The principal target of the Commission is to identify main causes of the growing divergence 
between current measures of economic performance and people’s perceptions about the 
quality of their life. It aims to provide meaningful measures of social well-being in the short 
and long time and to develop research work to overcome limitations of GDP as an indicator 
of economic performance and social progress. The first distinction is between an assessment 
of current well-being, due to both economic resources and non-economic aspects of people’s 
life and an assessment of sustainability that depend on whether stocks of capital that matter 
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for our lives are passed on to future generations. To reach its targets, the Commission 
followed three main direction of study: 

1. Classical GDP issues. 
2. Quality of life. 
3. Sustainable development and environment. 

The main messages of the report are that “time has come to adopt our system of 
measurement of economic activity to better reflect the structural changes which have 
characterized the evolution of modern economies” and that “time is ripe for our 
measurement system to shift emphasis from measuring economic production to measuring 
people’s well being that should be put in a context of sustainability”. 

First of all, it needs to look at income and consumption rather than production. GDP is 
the most widely-used measure of economic activity, thanks to internationals standards for its 
calculation, but it has often been treated as a measure of economic well-being, even if it is 
mainly a measure of market production. On the other hand, material living standards are 
more closely associated with measures of real income and consumption. These can only be 
gauged in conjunction with information on wealth and better considered at household level.  

In addition to economic production and living standards, the broader concept of quality 
of life, that overcomes the material side of life, can be evaluated. Measures of quality of life 
don’t replace conventional economic indicators but provide an opportunity to enrich the 
view of the condition of a community. Well-being has a multidimensional nature and eight 
dimensions can be taken in account in defining it: 

i. Material living standard (income, consumption and wealth). 
ii. Health. 

iii. Education. 
iv. Personal activities including work. 
v. Political voice and governance. 

vi. Social connections and relationships. 
vii. Environment 

viii. Insecurity, of an economic as well as a physical nature. 

Both objective and subjective measures of well-being, as people’s self-report, perception 
happiness and satisfaction, provide key information about quality of life. Of course, people’s 
assessment about their conditions has no obvious objective counterpart, but a rich literature 
supports that they help to understand people’s behaviour. For this reason, questions about 
various aspects of subjective well-being have to be included in standard survey and the links 
between the most salient features of quality of life across everyone have to be assessed. 
Finally, the plurality of indicators of quality of life have to been aggregated in a single scalar 
measure. 

The third concern of the Commission is measuring and assessing sustainability. This 
poses the “challenge of determining if at least the current level of well-being can be 
maintained for future generations”. This issue is more complex than the other two because it 
involve the future and many assumptions and normative choices. Moreover, there are 
interactions between the socio-economic and environmental models followed by the 
different nations. A well-identified set of indicators is required for sustainability assessment 
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and the components of this set are interpretable as variations of some underlying stocks. 
These indicators describe the sign of the change in the quantities of the different factors that 
matter for future well-being. The approach proposed by the Commission is focusing the 
monetary aggregation on items for which reasonable valuation technique exist, such as 
physical capital, human capital and certain natural resources. On the other hand, the 
environmental aspects of sustainability, because of the difficulty to capture them in monetary 
terms, deserve a separate follow-up based on a set of physical indicators. 

This thesis is part of a European Project inside the Seventh Framework Programme: 
Small Area Methods for Poverty and Living Condition Estimates (S.A.M.P.L.E.), born by the 
purpose to create a European strategy aimed at eradicating poverty in European Country as 
established by the Lisbon European Council. The aim of this project is to identify and 
develop new indicators and models that will help the understanding of inequality and poverty 
with special attention to social exclusion and deprivation. Furthermore, to develop models 
and implement procedures for estimating these indicators and their corresponding accuracy 
measures at the level of small area (NUTS3 and NUTS4 level). This project, coordinated by 
University of Pisa, involves the participation of different European University and Local 
Administrations. It is structured in six parts, divided in a group of tasks, corresponding to six 
main areas of research or development. In particular, the activity of CRIDIRE (Siena 
University) unit, in which this work takes one’s place, concerns the Work package 1, i.e. to 
analysis of the mechanisms and the determinants of poverty and inequality and the 
consequent translation into effective indicators.  

According to these remarks, the main objectives of this work are two. First of all, 
introducing new multidimensional measures of poverty and then, applying the proposed 
monetary and non-monetary indicators at local level. In our approach, deprivation is treated 
as a fuzzy state, i.e. as a vague predicate that manifests itself in different shades and degrees. 
This definition overcomes any limitation of the unidimensional traditional approach 
characterized by a simple dichotomization of the population into poor and non poor defined 
in relation to some chosen poverty line that represents a percentage of the media or the 
median of the equivalent income distribution. The introduction of fuzzy measures implies to 
additional aspect respect to traditional approach: 

i. The choice of membership functions, i.e. quantitative specification of individuals’ or 
households’ degrees of poverty and deprivation; 

ii. The choice of rules for the manipulation of the resulting fuzzy sets, as complements, 
intersections, union and aggregation. 

Concerning the first point, we introduce a new approach to the analysis of poverty and 
deprivation, the so called Integrated Fuzzy and Relative (IFR) approach. This measure, 
proposed by Betti et al. (2006), combines the TFR approach of Cheli and Lemmi (1995) and 
the approach of Betti and Verma (1999). In order to describe the multidimensional nature of 
deprivation, we choose a set of non-monetary indicators and identify different dimensions of 
deprivation they represent. We include a majority of the so-called ‘objective’ indicators on 
non-monetary deprivation, such as the possession of material goods and facilities and 
physical conditions of life, at the expense of what may be called ‘subjective’ indicators such 
as self-assessment or satisfaction of general life conditions. This choice is due to the lacked 
or mistaken use of subjective variables at European survey level. Moreover, subjective 
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indicators tend to be more culture-specific and hence less comparable across countries and 
regions. Seven dimensions are identified using factor analysis, as described in Whelan et al. 
(2001). Then, for each dimension, quantitative measures of deprivation are constructed. 
Weights for the aggregation of individual items included in the dimension are determined 
within each dimension separately and the set of weights are taken to be item-specific. They 
take into account dispersion of each item and correlation of this with each other. Moreover, 
as membership function indicating the individuals’ degrees of deprivation in different 
dimensions we choose exactly the same as that used in the case of income poverty. In order 
to define a methodology of fuzzy set aggregation over dimensions of deprivation, we choose  
a ‘composite’ fuzzy set operator which takes into account whether the sets being aggregated 
are of a ‘similar’ or a ‘dissimilar’ type. Using this composite set operator we can define 
‘latent’ and ‘manifest’ deprivation as, respectively, the union and intersection of deprivation 
in multiple dimensions. Empirical results of fuzzy measures of monetary poverty and non-
monetary deprivation and their combination are obtained using data of the EU Member 
States from EU-SILC survey. 

Concerning the second objective of this work, we propose two methods: the first one 
deals with pooling of data or estimates, whereas the other one involves small area estimation 
techniques. Pooling of data means statistical analysis using multiple data sources relating to 
multiple populations. It encompasses averaging, comparisons and common interpretations of 
the information. Different scenarios and issues also arise depending on whether the data 
sources and populations involved are same/similar or different. Examples of each scenarios 
are provided, nevertheless we focus primarily on cumulation over space and time from 
repeated multicountry surveys, taking illustrations from European social surveys. Simple 
model are developed to illustrate the effect on variance of pooling over correlated samples, 
such as over waves in a rotational panel design. 

On the other hand, we propose a methodology for obtaining empirical best predictors of 
general, non-linear, domain parameters using unit level linear regression models. It is based 
on a modified version of Empirical Best (EB) prediction proposed by Molina and Rao 
(2009), and it can resolve computational problems for big populations or more complex 
poverty measures, as fuzzy indicators. Head count ratio (HCR), fuzzy monetary indicator 
(FM) and fuzzy supplementary index (FS) are used as non-linear domain parameters. The 
method is applied to the estimation of these poverty measures in Tuscany provinces. 

This work is organized in five chapters. Chapter 1, after a brief review of traditional 
approach to poverty, introduces several multidimensional approaches proposed in literature 
focusing on the proposed fuzzy method. Chapter 2 presents some numerical results at 
national level for illustration of the methodology described in the previous chapter. Chapter 
3 deals with the problem of pooled estimates of indicators, describing different scenarios 
with some examples. Chapter 4 introduces the basic theory of small area estimation, in 
particular of mixed effects models and M-quantile models. Finally, Chapter 5 describe the 
proposed small area estimation procedure of poverty indicators and gives some numerical 
results for both traditional and fuzzy measures at local level. 
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Chapter 1 

Multidimensional poverty indicators in 
fuzzy and non fuzzy approach  

 
 

1.1. Traditional Poverty Approach 
 

The traditional poverty approach is characterized by a simple dichotomization of the 
population into poor and non poor defined in relation to some chosen poverty line that 
represents a percentage (generally 50%, 60% or 70%) of the media or the median of the 
equivalent income1 distribution. 

This approach is unidimensional, that is, it refers to only one proxy of poverty, namely 
low income or consumption expenditure. 

The traditional poverty method takes place in two different and successive stages: the first 
aims to identify who is poor and who is not according to whether a person’s income is below 
a critical threshold, the poverty line; the second stage consists of summarising the amount of 
poverty in aggregate indices that are defined in relation to the income of the poor and the 
poverty line. 

We can distinguish between poverty measures and inequality measures as discussed 
below. 

 
 

1.1.1. Poverty measures 

 
Poverty measures are used first and foremost for monitoring social and economic conditions 
and for providing benchmarks of progress or failure. They are indicators by which policy 
results are judged and by which the impact of events can be weighed, then they need to be 
trusted and require rigorous underpinning. They depend on the average level of consumption 
or income in a country and the distribution of income or consumption, then they focus on the 
situation of those individuals or households at the bottom of the distribution. 

                                                
1 The equivalent income of a household is obtained by dividing its total disposable income by the household’s 
equivalised size computed by using an equivalent scale which takes into account the actual size and composition 
of the household. 
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The measures will function well as long as everyone agrees that when poverty numbers rise, 
conditions have indeed worsened and conversely, when poverty measures fall, that progress 
has been made. 
Poverty measures must satisfy a given set of axioms or must have certain characteristics: 

o Scale invariance: poverty measures should be unchanged if, for example, a 
population doubles in size while everything else is maintained in the same 
proportions; 

o Focus axiom: changes among better-off people below the poverty line do not affect 
measured poverty; 

o Monotonicity axiom: holding all else constant, when a poor person’s consumption or 
income falls, poverty measures must rise or at least should not fall; 

o Transfer axiom (Pigou-Dalton principle): holding all else constant, taking money 
from a poor person and giving it to a less poor person must increase the poverty 
measure and conversely, poverty falls when the very poor gain through a transfer 
from those less poor; 

o Transfer – Sensitivity axiom: the reduction of poverty in the case in which a very 
poor person is made better off in relation to her neighbour should be greater than the 
reduction in the case in which the recipient is less poor; 

o Decomposability axiom: poverty measures should be decomposed by sub-
population. 

The most widely used measure is the headcount index, which simply measures the 
proportion of the population that is counted as poor. Formally: 

n

q
H =          (1.1.1) 

where n is the total population and q is the total number of poor. 
The headcount index is simple to construct and easy to understand, but it presents some 

weaknesses also. For example, it violates the transfer principle of Pigou-Dalton that states 
that transfers from a richer to a poorer person should improve the measure of welfare. The 
headcount index does not indicate how poor the poor are, and hence, does not change if 
people below the poverty line become poorer. Moreover, it calculates the percentage of 
individuals and not households, as the poverty estimates should be calculated, making a not 
always true assumption that all household members enjoy the same level of well-being.  

A moderately popular measures of poverty is the poverty gap index, which adds up the 
extent to which individuals fall below the poverty line and expresses it as a percentage of the 
poverty line. Formally: 

∑
=








 −
=

q

i

i

z

yz

n
I

1

1
       (1.1.2) 

where z is the poverty line and iy  the actual expenditure/income for poor people. 

The poverty gap is defined as the difference between z and iy  for poor people and zero 
for everyone else. 
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Equation (1.1.2) is the mean proportionate poverty gap in the population and shows how 
much would have to be transferred to the poor bring their incomes or expenditures up to the 
poverty line. This measure has the virtue that it does not imply that there is a discontinuity at 
the poverty line but its serious shortcoming is that it may not convincingly capture 
differences in the severity of poverty among the poor. 

The poverty gap index is, then, the average over all people, of the gaps between poor 
people’s standard of living and the poverty line expresses as a ratio to the poverty line. The 
aggregate poverty gaps shows the cost of eliminating poverty by making perfectly targeted 
transfer to the poor, in the absence of transactions costs and disincentive affects. 

Another poverty measure is the squared poverty gap index or severity poverty index used 
to solve the problem of inequality among the poor but not easily interpretable. This is simply 
a weighted sum of poverty gaps where the weights are the proportionate poverty gaps 
themselves giving more weight on observations that fall well below the poverty line. 
Formally: 

2

1
2

1
∑

=








 −
=

q

i

i

z

yz

n
P        (1.1.3) 

It belongs to a family of measures proposed by Foster, Greer and Thorbecke (1984), which 
may be written as: 

α

∑
=








 −
=

q

i

i

z

yz

n
FGT

1

1        (1.1.4) 

where α  is a measure of the sensitivity of the index to poverty. For 0=α , FGT(0) coincides 
with the headcount index, when 1=α  FGT(1) is the poverty gap index and for 2=α , FGT(2) 
is the poverty severity index. For 0>α  this measure is strictly decreasing in the living 
standard of the poor. Furthermore, for 1>α  it is strictly convex in income, that is, the 
increase in measured poverty due to a fall in one’s standard of living will be deemed grater 
the poorer one is. 

FGT class of poverty can be disaggregated for population sub-groups and the contribution 
of each sub-group to national poverty can be calculated. 

Sen (1976) proposed an index that sought to combine the effects of the number of poor, 
the depth of their poverty and the distribution of poverty within the group. Formally: 

( )( )∑
=

−+−
+

=
q

i

i iqyz
nzq

S
1

1
)1(

2
      (1.1.5) 

This measure can also be written as the average of the headcount and poverty gap indices 
weighted by the Gini coefficient of the poor ( PG ) that ranges from 0 (perfect equality) to 1 
(perfect inequality), that is: 

( )pGIIHS )1( −+=        (1.1.6) 
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The Sen index has the virtue of taking into account the income distribution among poor but it 
lacks intuitive appeal and cannot be decomposed satisfactorily into this constituent 
components. For these shortcomings it is rarely used in practice. 

 
 

1.1.2. Inequality measures 

 
Inequality measures are most general than poverty ones because they are defined over the 
entire population, not only for the population below a certain poverty line. They are 
concerned with the distribution and a virtue of these is the mean independence, that is, most 
inequality measures do not depend on the mean of the distribution. 

Inequality indicators can be harder to develop than consumption/income poverty 
indicators because they essentially summarize one dimension of a two-dimensional variable, 
but they can be calculated for any distribution not just for monetary variables. 

The commonest way to measures inequality is by dividing the population into fifths 
(quintiles) from poorest to richest and reporting the levels or proportions of income or 
expenditure that accrue to each level. 

The Gini (1912) coefficient is the most widely used measure of inequality. It is based on 
the Lorenz (1905) curve, a cumulative frequency curve that compares the distribution of a 
specific variable with the uniform distribution that represent equality. The Gini coefficient is 
constructed by plotting the cumulative percentage of households, from poor to rich, on the 
horizontal axis and the cumulative percentage of expenditure or income on the vertical axis. 
It range between 0 (perfect equality) and 1 (complete inequality). Formally: 

( )∑
=

−==
n

i

i yy
yn

GGini
1

2

2
      (1.1.7) 

where the iy  are ordered from the lowest to the highest. 
The Gini coefficient satisfies mean independence, population size independence, 

symmetry and Pigou-Dalton transfer sensitivity axioms, but decomposability and statistical 
testability properties don’t hold for this index. 

Otherwise, the Theil (1967) indices and the mean log deviation measure, that belong to 
family of generalized entropy inequality measures, satisfy all six criteria cited above. The 
general formula is given by: 













−








−
= ∑

=

1
11

)(
1

2

α

αα
α

n

i

i

y

y

n
GE      (1.1.8) 

where y  is the mean expenditure/income. The values of GE measures vary between 0, equal 
distribution, and ∞, high inequality. The parameter α  in the GE class represents the weight 
given to distances between incomes at different parts of the income distribution, and can take 
any real value. For lower values of α , GE is more sensitive to changes in the lower tail of 
the distribution, and for higher values GE is more sensitive to changes that affect the upper 
tail. The commonest values of α  used are 0,1 and 2. 
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GE(0), also known as Theil’s L, is called mean log deviation measure because it gives the 
standard deviation of log(y): 

∑
=









−=

n

i

i

y

y

n
GE

1

log
1

)0(        (1.1.9) 

GE(1) is Theil’s T index, which may be written as: 

∑
=

















=

n

i
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y

y

y

y

n
GE

1

log
1

)1(       (1.1.10) 

Atkinson (1970) proposed another class of inequality measures with theoretical properties 
similar to those of the extended Gini index. Formally: 

)1/(11

1

1
1

εε −
−

= 



















−= ∑

n

i

i

y

y

n
A       (1.1.11) 

Finally, another inequality measure, called L-measure, was proposed by Kakwani (1980). 
This measure bases on Lorenz curve and formally may be defined as follows: 

22

2

−

−
=

l
L         (1.1.12) 

where l is the length of Lorenz curve.  

The values of the Lorenz curve length vary from 2 , equal distribution, to 2, the highest 
inequality. The L-measure takes values in [0,1]. 

After some transformations the L-measure may be written as: 

( )
( )












−+

−
= ∫

∞

2
1

22

1

0

22
dyyfyL µ

µ
    (1.1.13) 

where µ is the mean income. 
The L-measure satisfies all axioms which Gini coefficient satisfies and additionally 

additive decomposability axiom. It is also more sensitive to changes in the lower tail of 
income distribution, as opposed to Gini coefficient, than to changes in the upper tail. 

 
 

1.2. Multidimensional Approach 

 
The traditional poverty approach presents two limitations: i) it is unidimensional, i.e. it refers 
to only one proxy of poverty, namely low income or consumption expenditure; ii) it needs to 
dichotomise the population into the poor and the non-poor by means of the so called poverty 
line. 

Nowadays there is a widespread agreement about the multidimensional nature of poverty: 
poverty is a complex phenomenon that cannot be reduced solely to monetary dimension but 



 14 

it has to be also explained by other variables whose impact on poverty is not captured by 
income. This leads to the need for a multidimensional approach that consists in extending the 
analysis to a variety of non-monetary indicators of living conditions and at the same time 
adopts mathematical tools that can represent the complexity of the phenomenon. 

Eight different approaches are described in the following sections: social welfare 
approach, counting approach, Sen’s capability approach, distance function approach, 
information theory approach, axiomatic approach, supervaluationist approach and fuzzy set 
approach. 

 
 

1.2.1. Social Welfare Approach 

 
The social welfare approach, relating to income inequality measures, assumes a social 
evaluation function for a vector of incomes from which an inequality index is derived. This 
function ranks different distributions of attributes among a set of individuals. 

Dalton (1920) was the first to argue that economist were interested in the effects of 
inequality on economic welfare and that inequality in a distribution should be measured by 
the loss in welfare that it causes.  

Social welfare is measured by a function S which represents society’s notion of how fair 
or desirable a particular distribution is. S may be a function of individual welfare, the part of 
individual welfare due to income alone or the incomes that individuals receive and it 
increases as income increases. One the most common forms of the social welfare function is 
the additive one, in which the social welfare is the sum of individuals welfares, assuming 
that the welfare of an individual is independent of the welfare of other individuals. 

This approach is based on dominance conditions that allow us to state that 
“multidimensional deprivation in country A is lower than in country B” for all deprivation 
measures satisfying certain general properties.  

Suppose that x and y are the arguments in a social welfare function representing the 
position of an individual. In the case of two dimensions, deprivation is represented in the 
graph 1.2.1. where xπ  and yπ  are the deprivation thresholds respectively in dimension x 

and y. If F(x, y) denotes the cumulative distribution, ),( yxf  is the density function, F(x) and 

F(y) are the marginal distributions and )( xF π  and )( yF π  are respectively the proportions 

of deprived people on the dimensions x and y, the union is given by 
),()()( yxyx FFF ππππ −+  where ),( yxF ππ  is the proportion of individuals deprived on 

both dimensions. 
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Figure 1.2.1. Deprivation in two dimensions 

 
Let D be a class of deprivation measures formed by integrating over the distribution a 
function p(x, y), where this is zero when x and y are both above the poverty thresholds: 

∫ ∫=
x y

dydxyxfyxpD

π π

0 0

),(),(       (1.2.1) 

Following the social welfare approach this quantity has to be minimised. As show by 
Bourguignon and Chakravarty (2003), a deprivation measures is increased or remain the 
same, as a result of a correlation increasing perturbation if the cross-derivate of p with 
respect to x and y is positive, that is the attributes are substitutes. Conversely, when the 
derivate is negative, they are complements. 

The first-degree dominance conditions allow us to rank two distributions: for poverty 
measures that are substitutes F(x, y) must be lower in country A than in country B given x 
and y, conversely, for poverty measures that are complements [F(x) + F(y) - F(x, y)] must be 
lower in country A than in country B given x and y. 

Bourguignon and Chakravarty (2003), for example, defined a deprivation index as: 

[ ] βαββ /
),( yx bggyxp +=        (1.2.2) 

where [ ])/1(,0max xx xg π−=  and [ ])/1(,0max yy yg π−=  are the relative shortfalls. In the 

expression (1.2.2) the parameter α  is a measure of concavity of the function – p(x, y), β  
governs the shape of the contours in (x, y) space and b represents the weight of single 
attributes. 
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The cross-derivate of p is positive where βα > , then x and y are substitutes, whereas for 

1>β  they are complements. 
 
 

1.2.2. Counting Approach 

 
The counting approach consists on counting the number of dimensions in which people 
suffer deprivation, not distinguishing the extent of the shortfalls. Given a set of key 
dimensions and a poverty line, the number of dimensions in which a person is poor is 
counted and becomes the poverty score. Formally: 

1);( =zxiρ  if ∃  jij zxmj <∈ :},...,2,1{      (1.2.3) 

0);( =zxiρ  otherwise       (1.2.4) 

where i = 1, 2, …, n are individuals, j = 1, 2, …, m are attributes and z represents the poverty 
threshold for each attribute. 

The number of poor in the dimensional framework is given by: 

∑
=

=
n

i

ip zxXn
1

);()( ρ        (1.2.5) 

Alternatively, one can count a person poor if she is poor in any dimension or only if she is 
poor in all dimensions. Atkinson (2003) showed as this approach can be related to the 
welfare social approach described in the previous section. 

 
 

1.2.3. Sen’s Capability Approach 

 
Sen’s capability approach, on the contrary to other multidimensional approaches of poverty, 
is not simply a way to enlarge the evaluative well-being to variables other than income, but it 
gives a different meaning of well-being.  

The main characteristic of this theory is the interpretation of well-being: it is not only 
associated to affluence but to each one’s abilities. Moreover, Sen emphasises the importance 
of the freedom to choose. Himself affirms: “Acting freely and being able to choose are, in 
this view, directly conducive to well-being” (Sen, 1992).  

This approach characterizes individual well-being in terms of what a person is actually 
able to do or to be. Its main components are the commodities or resources, the functionings 
and the capabilities.  

 
Figure 1.2.2. A diagrammatic representation of the capability approach 

 

 
 

MEANS TO ACHIEVE 
(commodities and resources) 

FREEDOM TO ACHIEVE 
(capability set) 

 

ACHIEVEMENT 
(functioning set) 
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The commodities are all goods and services, not just merchandise. They make possible the 
functionings that represent achievements of people and reflects life-style; “the various things 
a person may value doing or being” (Sen, 1992). Capabilities are various combinations of 
functionings that the person can achieve. “Capabilities is, thus, a set of vectors of 
functioning, reflecting the person’s freedom to lead one type of life or another (…) to choose 
from possible livings” (Sen, 1992).  

Capability and functionings are influenced by the intrinsic characteristics of the people, 
like age and gender, as well as by environmental circumstances.  

Formally, (Sen, 1985; Kuklys, 2005), the individual capability set iQ , i.e. the space of 
potential functionings, can be expressed as: 

( ) { }),(|)(| iiiiiiii xfXQ ehbb ==      (1.2.6) 

for some ii Ff ∈⋅)(  and some ii Xx ∈ . b  is a vector of functionings, 
if  is a conversion 

function, and ih  and ie  are respectively vectors of personal factors and environmental 

factors which influence the rate of conversion of individual resources )( ix  to a given 

functioning )( ib . 
Capability approach, as every multidimensional method of poverty analysis, is 

characterized by threes different stages: the description of human poverty and individual 
well-being in all its multifaceted and gradual aspects; the aggregation of indicators and 
dimensions into an overall measure of individual well-being; the inference to derive logical 
conclusions from premises that are know or from factual knowledge or evidence. These 
phases can be resolved using fuzzy set theory and fuzzy logic that have been proved to be 
powerful tools. 

 
 

1.2.4. Distance Function Approach 
 

The distance function approach was first applied to the analysis of households behaviour by 
Lovell et al. (1994). 

The input distance function ),( yxDin involves the scaling of the input vector and is 
defined as: 

{ })()/(:),( yLxMaxyxDin ∈= ρρ      (1.2.7) 

where 

L(y) = {x: x can produce y}      (1.2.8) 

is the input set of all input vectors x which can produce the output vector y. 
It holds (Coelli et al., 1998) that: 

i. The input distance function is increasing in x and decreasing in y; 
ii. It is linearly homogeneous in x; 

iii. If x belongs to L(y) then 1),( ≥yxDin ; 

iv. 1),( =yxDin  if x belong to the frontier of the input set (isoquant of y). 
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Graph 1.2.2 shows the concept of distance function. Here q and q’ are respectively the input 
vectors corresponding to OA and OB. ρ  is equal to the ratio OB/OA. 0p  is the vector of the 
prices of the inputs. Nothing guaranties that the input contraction defined by the distance 
function ρ  will yield the cheapest cost, at input prices 0p , of producing the output level 0y  
defined by the isoquant BC. There exists however at least one vector price p for which this 
distance function OAOB /=ρ  will yield the cheapest cost of producing this output level 0y . 
Then, there is a link between the cost function that seeks out the optimal input quantities 
given 0y  and 0p  and the distance function that finds the prices that will lead the consumer 

to reach the output level 0y  by acquiring a vector of quantities proportional to q. 
The concept of distance function can be applied to measures poverty and life conditions. 

 

Figure 1.2.3. The concept of distance function 

 
 
 

1.2.5. Information Theory Approach 

 
The informational theory approach, originally developed in the field of communication, was 
first utilized in economics by Theil (1967). It is based on the concept of the logarithm of a 
probability. 

Let E be an experience whose result is ix  with i = 1 to n. Let ( )ii xxp == Pr , 10 ≤≤ ip , 

be the probability that the result of the experience will be ix . The information that a given 

event ix  occurred is not very important if the a priori probability that such an event would 
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occur was high. Conversely, it becomes significant if the a priori probability that an event ix  
will occur is very low, knowing that this event did indeed occur.  

We can define this information as a function of the probability a priori p that a result will 
occur. One the most common forms is: 

)log()/1log()( ppph −==       (1.2.9) 

From this, we can derive the expected information, called also entropy: 

∑
=

=
n

i

ii phppH
1

)()(        (1.2.10) 

Combining (1.2.9) and (1.2.10) we obtained the Shannon entropy that can be interpreted as 
the uncertainty, the disorder or the volatility associated with a given distribution: 

∑
=

−=
n

i

ii pppH
1

)log()(        (1.2.11) 

Shannon entropy is minimal and equal to 0 when a given result ix  is known to occur with 
certainty and then the information is not important. Conversely, it is maximal when all 
events have the same probability ( npi /1= ) and we have no idea a priori as to which event 
will occur. 

Maasoumi (1986) applied the information theory to measures of inequality proceeding in 
two steps: 1) definition of a procedure to aggregate the various indicators of welfare; 2) 
selection of an inequality index to estimate the degree of multidimensional inequality.  

Let ijx  be the value taken by indicator j for individual i, with i = 1 to n and j = 1 to m. 

Maasoumi proposed to replace the m pieces of information on the value of the different 
indicators for the various individuals by a composite index cx  which will be a vector of n 

components, one for each individual. Then, the vector imi xx ,...,1  corresponding to individual 

i will be replace by the scalar cix  that represents the utility that individual i derives from the 
various indicators or an estimate of the welfare of such a individual. As composite indicator 

cx  Maasoumi chose a weighted average of the different indicators. 

Miceli (1997) proposed to use the distribution of the composite index cx  suggested by 
Maasoumi to derive multidimensional poverty measures, applying to each indicators a 
weight proportional to its mean (the more diffused the durable good is the higher its weight 
is) or an equal weight (1/m) to all the indicators. To identify the poor Miceli adopted a 
relative approach defining the poverty line as some percentage of the median value of the 
composite indicator cx . 

 
1.2.6. Axiomatic Approach 

 
The axiomatic approach has been developed by Tsui (1995, 2002) and Chakravarty et al. 
(1998). It is based on the idea that a multidimensional index of poverty is an aggregation of 
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shortfalls of all the individuals where the shortfall with respect to a given need reflects the 
fact that the individual does not have even the minimum level of the basic need. 

Already, Sen (1976) suggested two basic postulates for an income poverty index: i) the 
monotonicity axiom, i.e. poverty should increase if the income of a poor person decreases; ii) 
the transfer axiom, i.e. poverty should increase if there is a transfer of income from a poor 
person to anyone who is richer. Later on, several other axioms have been suggested in 
literature.  
Let ),...,( 1 kzzz =  be the k-vector of the minimum levels of the k basic needs and 

),...,( 1 ikii xxx =  the vector of the k basic needs of the i-th person. Let X be the matrix of the 

quantities ijx  which denote the amount of the j-th attribute accruing to individual i. 

A multidimensional poverty measure has to satisfy several properties (Chakravarty et al., 
1998): 

i. Symmetry: This property assumes that the multidimensional poverty index depends 
only on the various attributes j that the individuals have and not on their identity. 

ii. Focus: If for any individual i an attribute j is such that jij zx > , P(X; z) does not 

change if there is an increase in ijx . 

iii. Monotonicity: If for any individual i an attribute j is such that jij zx ≤ , P(X; z) does 

not increase if there is an increase in ijx . 

iv. Principle of Population: An m-fold replication of X will not affect the value of the 
poverty index. 

v. Continuity: An index of multidimensional poverty M(X) should be a continuous 
function, that is, it should be only marginally affected by small variations in ijx . 

vi. Non-Poverty Growth: If the matrix Y is obtained by adding a rich person to the 
population defined by X, then P(Y; z) ≤  P(X; z). 

vii. Non-decreasingness in Subsistence Levels of Basic Needs: If jz  increases for any j, 

P(X; z) does not decrease. 
viii. Scale Invariance: This implies that the ranking of any two matrices of attributes is 

preserved if the attributes are rescaled according to their respective ratio scales. 
ix. Normalization: P(X; z) = 1 whenever 0=ijx  for all i and j.  

x. Subgroup Decomposability: Assume in  is the population size of subgroup i (i = 1 to 

m) with ∑
=

=
m

i

inn
1

representing the total size of the population. Then the poverty 

index for the whole population (where the data on each subpopulation is represented 
by a matrix iX ) may be expressed as: 
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xi. Factor Decomposability:  

);();(
1

jj

k

j

j zxPazXP ∑
=

=       (1.2.13) 

where jx ; is the j-th column of X, ja  is the weight attached to attribute j such that 1
1

=∑
=

k

j

ja . 

xii. Transfer Axiom: Let pX  be the submatrix of X corresponding to the poor. If Y is 

derived from X by multiplying pX  by a bistochastic matrix (not a permutation 

matrix), then P(Y; z) ≤ P(X; z) given that the bundles of attributes of the rich remain 
unaltered. 

xiii. Nondecreasing Poverty under Correlation Increasing Arrangement: This property 
refers to switches of some attributes between individuals that increase the correlation 
of the attributes. 

Chakravarty et al. (1998) derive the following two propositions. 
Proposition 1: The only non constant focused poverty index that satisfies the properties of 
subgroup decomposability, factor decomposability, scale invariance, monotonicity, transfer 
axiom, continuity and normalization is defined as: 
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=       (1.2.14) 

where f is continuous, non-increasing and convex with f(0) = 1 and f(t) = c for all t ≥ 1 and 

1<c c is a constant. The parameters ja  are positive and constant with 1
1

=∑
=

k

j

ja . 

Proposition 2: The poverty measure )/(
1
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jij
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j Zxga
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zXP ∑∑
= =

=  satisfies the properties 

of Symmetry, Population Replication, Non-Poverty Growth and Non-Decreasingness in 
Subsistence Levels of Basic Needs. If g (g(t) = (f(t) - c)/(1 - c)) is twice differentiable on 

)1,0(  P, the poverty index, satisfies also the property of Nondecreasing Poverty under 
Correlation Increasing Arrangement.  

The following multidimensional poverty index may be considered 
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where js  is the set of poor people with respect to attribute j. 
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1.2.7. Supervaluationist approach 

 
This approach implies the concept of vagueness in measuring poverty because “poor” is a 
vague predicate, i.e. it allows for borderline cases where it is not clear whether the predicate 
applies or not, there is not sharp borderline between cases where the predicate does and does 
not apply and it is susceptible to a Sorites paradox. 

Supervaluationism proposed by Fine (1975) suppose that the truth of vague predicates 
depends on how they are made more precise. A vague statement is called “super-true” if it is 
true on all plausible ways of making it more precise or, equivalently, in all admissible 
“precisifications”. Fine’s account involves, for any vague predicate, a number of admissible 
ways of making statements involving the predicate more precise. Fine “maps” the various 
ways of making statements involving a vague predicate more precise in terms of a 
“specification space” that includes “base points” where the statement is initially specified. 
These points are extended by making the statement more precise until a partial or complete 
specification. 

Qizilbash (2006) follows the Fine’s theory in allowing for a set of admissible 
specification of ‘poor’ that can be vague. Each admissible specification involves a set of 
dimensions of poverty and a range of critical levels relating to each dimensions. Any 
dimension of poverty which appears on all admissible specifications is called a core 
dimension. In each dimension, someone who falls at or below the lowest admissible critical 
level is judged to be definitely poor in that dimension. If this person is definitely poor on a 
core dimension, she is core poor, that is in Fine’s terms, it is super true that she is poor. 
Analogously, someone who falls at or above the highest critical level is definitely not poor in 
that dimension and if he is definitely not poor on all admissible dimensions is non-poor. 
Those who are neither poor or non-poor fall at the margins of poverty.  

In this framework, fuzzy poverty measures can be interpreted as measures of vulnerability 
in each dimension where there will be some who falls between the highest and lowest critical 
levels, and so are neither definitely poor nor definitely not poor in that dimension. These 
people can be seen as vulnerable in as much as they are poor in terms of some admissible 
critical level in the relevant dimension, and would be defined as poor if that critical level was 
used. Fuzzy poverty measures capture how close these individuals come to being definitely 
poor in the relevant dimension.  

In Qizilbash’s account the notion of vulnerability which underlies the interpretation of 
fuzzy poverty measures is different. Fuzzy measures are conceived as measures on the 
specification space in a particular dimension and they are so relate to the range of 
precisifications of poor on which someone is judged to be poor in a particular dimension: as 
that range increases that person is more vulnerable. Then, anyone who is defined as poor on 
all but one critical level in some dimension might classify as “extremely vulnerable”. 

Qizilbash adds to vagueness about the critical level at or below which a person classifies 
as poor (vertical vagueness), already used in the literature on fuzzy poverty measures, 
vagueness about the dimensions of poverty (horizontal vagueness). 

This framework can be extended to allow for the vagueness of predicates such as 
“extreme” and “chronic”. One of the characteristics of the supervaluationist approach is that 
if someone is doing sufficiently badly in some core dimension of poverty, he is core poor, 
without checking the level of achievement on all dimensions of poverty. 



 23 

1.2.8. Shapley Decomposition 
 
Deutch and Silber (2006) proposed to use Shapley Decomposition to study the most 
significant determinants of multidimensional poverty. 

Let an index I be a function of n variables and let TOTI  be the value of I when all the n 

variables are used to compute I. Moreover, Let )(/ iI
k
k  be the value of the index I when k 

variables have been dropped so that there are only (n-k) explanatory variables and k is also 
the rank of variable i among the n possible ranks that variable i may have in the n! sequences 
corresponding to the n! possible ways of ordering n numbers. Thus: 

o )(1/ iI
k
k−  gives the value of the index I when only (k-1) variables have been dropped 

and k is the rank of the variable i; 

o )(1
1/ iI  gives the value of the index I when this variable is the first one to be dropped; 

o )(1
0/ iI  gives the value of the index I when the variable i has the first rank and no 

variable have been dropped (all the variable are included in the computation of I); 

o )(2
2/ iI  corresponds to the (n-1)! cases where the variable i is the second one to be 

dropped and two variables as a whole have been dropped; 

o )(2
1/ iI  gives the value of the index I when only one variable has been dropped and 

the variable i has the second rank; 

o )(1/ iI
n
n−  corresponds to the (n-1)! cases where the variable i is dropped last and is the 

only one to be take into account; 

o )(/ iI
n
n  gives the value of the index I when variable i has rank n and n variable have 

been dropped (it is 0 by definition). 

Deutch and Silber define the contribution )(iC j  of variable i to the index I, assuming this 

variable I is dropped when it has rank j, in the following way: 
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where h refers to one of the (n-1)! cases where the variable i has rank j. 
The overall contribution of variable i to the index I may then be defined as: 
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From this, we derive that: 
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1.2.9. Foster-Greer-Thorbecke index of multidimensional poverty 

 
As pointed out in section 1.2, the multidimensional approach to poverty measurement is 
characterised by the obvious advantages over unidimensional: it can capture various aspects 
of deprivation that are not restricted to monetary measure. Moreover, applying the fuzzy sets 
theory allows overcoming most of limitations of the single poverty line splitting the sample 
into the poor and the non-poor. On the other hand, multidimensional poverty indices cannot 
hold all axioms passed by some unidimensional formulas, especially Foster-Greer-
Thorbecke index holding large variety of properties. Sub-group decomposability is 
especially desirable when spatial distribution of poverty and deprivation is the object of 
interest. 

Recently Alkire and Foster (2008) have developed a framework for measuring poverty in 
the multidimensional environment that is analogous to the FGT family of indices. The 
resulting formula is characterised by the following properties: 

i. can be applied prior to any additive aggregation technique that aggregates first 
across persons, 

ii. satisfies certain basic axiomatic properties for uni- and multi-dimensional poverty 
measures, 

iii. can accommodate ordinal as well as cardinal data, although some properties are 
available only with ordinal data, 

iv. can apply equal weights or general weights (assuming that all dimensions are 
equally important is not necessary therefore). 

Moreover this index is intuitively attractive, hence it may be used in evaluations and 
discussions on the social policy. The index employs two types of cut-offs: first, within each 
dimension to identify the deprived in that dimension, and second, across dimensions to count 
the number of dimensions in which the individual is deprived.  

Multidimensional FGT index satisfies the following axioms (see section 1.2.6): 

xiv. Symmetry, 
xv. Poverty and deprivation Focus, 

xvi. Monotonicity, 
xvii. Principle of Population, 

xviii. Non-Poverty Growth, 
xix. Non-decreasingness in Subsistence Levels of Basic Needs, 
xx. Scale Invariance, 

xxi. Normalization, 
xxii. Subgroup Decomposability, 

xxiii. Factor Decomposability, 
xxiv. Transfer Axiom, 
xxv. Nondecreasing Poverty under Correlation Increasing Arrangement. 

Some axioms are passed only for particular ranks of FGT index (α  values in formula 1.1.4), 
moreover it does not satisfies the continuity axiom. However using fuzzy approach could 
overcome the latter disadvantage. 
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1.2.10. Fuzzy Set Approach 

 
The fuzzy set approach, first proposed by Cerioli and Zani (1990), was born by the necessity 
of overcome the simple dichotomization of the population into poor and non poor defined in 
relation to some chosen poverty line. Poverty is not an attribute that characterises an 
individual in terms of presence or absence, but is rather a vague predicate that manifests 
itself in different shades and degrees. This approach will be largely explained in the next 
paragraph. 
 
 
1.3. The Fuzzy approach 

 
As explained above, fuzzy approach considers poverty as a matter of degree rather than an 
attribute that is simply present or absent for individuals in the population. In this case, two 
additional aspects have to be introduced: 

iii. The choice of membership functions, i.e. quantitative specification of individuals’ or 
households’ degrees of poverty and deprivation; 

iv. The choice of rules for the manipulation of the resulting fuzzy sets, as complements, 
intersections, union and aggregation. 

Given a set X of elements Xx ∈ , any fuzzy subset A of X will be defined as: 

{ })(, xxA Aµ=  Xx ∈∀       (1.3.1) 

where [ ]1,0:)( →XxAµ  is called the membership function (m.f.) in the fuzzy subset A and 

its value indicates the degree of membership of x in A. Then 0)( =xAµ  means that x does 

not belong to A, whereas 1)( =xAµ  means that x belongs to A completely. When 

1)(0 << xAµ  then x partially belongs to A and its degree of membership of A increases in 

proportion to the proximity of )(xAµ  to 1. 
 
 

1.3.1. Fuzzy monetary 

 
In the conventional approach, the m.f. may be seen as 1)( =iyµ  if zyi < , 0)( =iyµ  if 

zyi ≥  where iy  is the equivalised income of individual i and z is the poverty line. 
Cerioli and Zani (1990) have been the first authors to incorporate the concept of poverty 

as a matter of degree at the methodological level following the theory of Fuzzy Sets 
proposed by Zadeh (1965). 

Let y be the known total income. The membership function to poor set can be defined by 
fixing a value 1z  up to which an individual is definitely poor and a value 2z  above which an 

individual is definitely not poor. For incomes between 1z  and 2z  the membership function 
takes value in [0, 1] and declines linearly. Formally: 
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The traditional approach is a particular case of the fuzzy approach with zzz == 21 . 
Cheli and Lemmi (1995) in their Totally Fuzzy and Relative approach attempted to 

overcome the limits of Cerioli and Zani membership function, that is, the arbitrary choice of 
the two threshold value and the linear form of the function within such values. They defined 
the m.f. as the distribution function )( iyF  of income, normalized (linearly transformed) so 
as to equal 1 for the poorest and 0 for the richest person in the population. Formally: 

)1( ),( iMi F−=µ         (1.3.3) 

where iF  is the income distribution function. By definition, the mean of this m.f. is always 

0.5. In order to make this mean equal to some specified value (such as 0.1) so as to facilitate 
comparison with the conventional poverty rate, Cheli (1995) takes the m.f. as normalized 
distribution function, raised to some power 1≥α . Formally: 
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where iy  is the equivalised income of the i-th individual, iMF ),(  is the value of the income 

distribution function )( iyF  for the i-th individual, )1( ),( iMF−  is the proportion of 

individuals less poor than the person concerned with mean ½ by definition, γw  is the sample 

weight of individual of rank γ  ( n,...,1=γ ) in the ascending income distribution and α  is a 
parameter. 

The value of α  is arbitrary, but Cheli and Betti (1999) have chosen the parameter α  so 
that the mean of the m.f. is equal to the head count ratio computed for the official poverty 
line. Increasing the value of this exponent implies giving more weight to the poorer end of 
the income distribution. 

Betti and Verma (1999) have used a somewhat refined version of the expression (1.3.4) in 
order to define what they called Fuzzy Monetary indicator (FM): 
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where γy  is the equivalised income and iML ),(  represent the value of the Lorenz curve of 

income for individual i; then iML ),(1−  represents the share of the total equivalised income 

received by all individuals who are less poor than the person concerned. It varies from 1 for 

the poorest to 0 for the richest individual. The mean of iML ),(1−  values equals (1+G)/2, 

where G is the Gini coefficient of the distribution. 
 

 
1.3.2. Fuzzy supplementary 

 
In addition to the level of monetary income, the standard of living of households and 
individuals can be described by a host of indicators, such as housing conditions, possession 
of durable goods, perception of hardship, expectations, norms and values. 

To quantify and put together diverse indicators of deprivation several steps are necessary. 
Specially, decisions are required to assigning numerical values to the ordered categories, 
weighting the score to construct composite indicators, choosing their appropriate 
distributional form and scaling the resulting measures in a meaningful way. 

Choice and grouping of indicators 

Firstly, from the large set which may be available, a selection has to be made of indicators 
which are substantively meaningful and useful for a given analysis. Secondly, it is useful to 
identify the underlying dimensions and to group the indicators accordingly (Whelan et al. 
2001). 

One possibility would be to construct a summary index of deprivation employing all 
items chosen for the analysis. However, Nolan and Whelan (1996) claim that this might well 
be unsatisfactory because, aggregating the items into a single index ignores the fact that 
different items may reflect different dimensions of deprivation, and adding them together 
may lose valuable information. Whelan et al. 2001 suggest, as the first stage in an analysis of 
life-style deprivation, examine systematically the range of deprivation items to see whether 
the items cluster into distinct groups. Factor analysis can be used to identify such clusters of 
interrelated variables. The procedure consists in an exploratory factor analysis to see how 
many factors are the optimal solution. It is possible then proceed to make use of 
confirmatory factor analysis to compare goodness of fit for different number of factor 
solution. 

Following Kelloway (1998) we can consider the measures of absolute, relative and 
parsimonious fit as follows: 

o The Root Mean Squared Error of Approximation (RMSEA) is based on the analysis 
of residuals with smaller values indicating a good fit. Values below 0.1, 0.05 and 
0.01 indicate a good, very good and outstanding fit respectively. 

o The Adjusted Goodness of Fit Index (AGFI) is based on the ratio of the sum of the 
squared discrepancies to the observed variances, but adjusts for degrees of freedom. 
The AGFI ranges from 0 to 1 with values above 0.9 indicating a good fit. 

o The Normal Fit Index (NFI) indicates the percentage improvement in fit over the 
baseline independence model. 
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o The Comparative Fit Index (CFI) is based on the non-central X2, and is given by 1- 
[(X2 model –df model)/(X2 independence –df independence)]. The CFI ranges 
between 0 and 1, with values exceeding 0.90 indicating a good fit. 

o The Parsimonious Goodness of Fit Index (PGFI) adjusts GFI for the number of 
estimated parameters in the model and the number of data points. The values of the 
PGFI range from 0 to 1 but it is unlikely to reach the 0.09 cut-off used for other 
indices and is best used to compare two competing models. 

Deprivation indices can be constructed after the selection of indicators and dimensions 
following three different possible methods: 

i. A straightforward additive procedure where the number of items on which the 
individual/household is deprived is simply summed (ESRI); 

ii. An additive measure that considers factor scores from the homonym analysis (Lelli, 
2001); 

iii. A mean of the deprivation scores for each individual and dimension, weighting each 
item by the extent to which deprivation of that kind is experienced in the population 
in question. This last is of course a fuzzy measure. 

Assigning numerical value to ordered categories 

Moreover, it is necessary to assign numerical values to the ordered categories and to weight 
and scale measures. Individual items indicating non-monetary deprivation often take the 
form of simple “yes/no” dichotomies or sometimes ordered polytomies. The simplest scheme 
for assigning numerical values to categories is by assigning that the ranking of the categories 
represents an equally-spaced metric variable. Cerioli and Zani (1990) defined the 
membership function of an individual as follows.  

If a vector of k categorical variables kXX ,...,1  is observed on the n individuals of the 
population, the membership function of the fuzzy set of the poor can be defined as: 
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where 1)( =ijxg  if the corresponding ijx  denotes deprivation and 0)( =ijxg  otherwise. jw  

denotes the weight of the variable jX  (j = 1, …, k). 

If variable jX  is of ordinal scale, it is possible to identify a modality '
jx  of jX  denoting 

lack of resources and a modality ''
jx  that excludes poverty. These modality are put in 

decreasing order beginning with the one that denotes the greatest deprivation. If '
jψ , ''

jψ , ijψ  

represent the score of categories '
jx , ''

jx , ijx  respectively, then: 
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For the weights 
jw , Cerioli and Zani proposed the following specifications: 

j

j
p

w
1

ln=         (1.3.8) 

where jp  is the proportion of individuals with deprivation in variable jX . Substituting 

(1.3.8) in (1.3.6) we obtain: 
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A collective index of poverty is simply obtained by Cerioli and Zani using the relative 

cardinality (Dubois and Prade, 1980) of the fuzzy set of the poor: ∑
=

=
n

i

A iA
1

)(|| µ . Such an 

index, included between 0 and 1, represents the proportion of individuals that belong to the 
fuzzy subset of the poor and it is given by: 

n

A
P

||
=          (1.3.10) 

Cheli and Lemmi (1995) proposed an improvement by replacing the simple ranking of the 
categories with their distribution function in the population. Formally: 

)()( jij xHxg =         (1.3.11) 

where )( jxH  is the sampling distribution function of the variable jX . The normalised form 

is given by: 
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where )()1( ,..., m
jj xx  represent the categories of the variable jX  arranged in increasing order 

with respect to the risk poverty and )( )(k
jxH  is the distribution function of the variable jX  

once its categories have been arranged as described above.  
In this way, a 0 m.f. value is always associated with the modality corresponding to the 

lowest risk of poverty, whereas value 1 is associated with the modality corresponding to the 
highest risk. Cheli and Lemmi proposed the following weights: 

))(/1ln( jj xgw =        (1.3.13) 

where ∑
=

=
n

i

ijj xg
n

xg
1

)(
1

)(  represents the fuzzy proportion of the poor with respect to jX  

and if jX  is dichotomic it coincides with the crisp proportion jp . 

Weighting for constructing composite measures 

An early attempt to choose an appropriate weighting system of several indicators at macro 
level data was made by Ram (1982), using principal components analysis, which was also 
adopted by Maasoumi and Nickelsburg (1988). For the construction of fuzzy measures, 
however, it is necessary to weight and aggregate items at the micro level. At the micro level, 
Nolan and Whelan (1996) adopted factor analysis. In order also to give more weight to more 
widespread items, Cerioli and Zani (1990) specified the weights of any item as a function of 
the proportion deprived of the item. Betti and Verma (1999) proposed to determinate the 
weights to be given to items in the aggregation within each dimension separately. Also, the 
set of weights are taken to be item-specific; for a given item they are common to all 
individuals in the population. Such weights comprise two factor: The first factor is 
determined by the variable’s dispersion and it may be taken as proportional to the coefficient 

of variation of deprivation score for the variable concerned k
a
k cvw ∝ . This means that when 

an item of deprivation affects only a small proportion, the weight given to it varies inversely 
to the square-root of the proportion. Thus deprivations which affect only a small proportion 
of the population, and hence are likely to be considered more critical, get larger weights at 
the micro level; while those affecting large proportions, hence likely to be regarded as less 
critical, get smaller weights. However, the contribution of the deprived individuals to the 
average value of deprivation in the population resulting from the item concerned turns out to 
be directly proportional to the square-root of d. In other words, deprivation affecting a small 
proportion of the population is treated as more intense at the individual person’s level but, of 
course, its contribution to the average level of deprivation in the population as a whole is 
correspondingly smaller. The second factor is determined in order to control redundancy. To 
do this, it is necessary to limit the influence of characteristics that are highly correlated with 
others included in the analysis. Even for the overall index, it is reasonable to consider this 
correlation separately within each of the five dimensions of deprivation identified earlier, i.e. 
to take the weight of item k in deprivation dimension h as the inverse of an average measure 
of its correlation with items in that dimension. Thus the results are not affected by arbitrary 
inclusion or exclusion of items highly correlated with other items in the dimension. An 
average measure of the correlation can be computed as: 
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where ',kk
ρ  is the correlation between the two indicators corresponding to items k and '

k . In 

the first factor of the equation, the sum is taken over all indicators whose correlation with 
variable k is less than a certain threshold Hρ  (determined, for instance, by the point of 
largest gap between the ordered set of correlation values encountered). The motivation for 

this model is that (i) b
kw  is not affected by the introduction of variables entirely uncorrelated 

with k; (ii) it is only marginally affected by small correlations; but (iii) is reduced 
proportionately to the number of highly correlated variables present. To surmise, the weight 
given to an item is directly proportional to the variability of the item in the population and 
inversely proportional to its average correlation with items in the deprivation dimension to 
which it belongs. The final weight is taken as proportional to the product of the two 

factors: b
k

a
kk wwW ⋅∝ . The scaling of the weights can be arbitrary, although scaling them to 

sum to 1.0 within each dimension is convenient. 

Functional form of the distribution 

As in the Fuzzy Monetary approach, the individual’s degree of non-monetary deprivation 

hiFS  for each dimension ),...,1:( mh  can be defined in two alternative manners: 
i. The proportion of individuals who are less deprived than i: 

αµ )1( ),( hiShii FFS −==       (1.3.15) 

where hiSF ),(  is the distribution function of S evaluated for individual i dimension h. 

ii. The share of the total non-deprivation S assigned to all individuals less deprived than 
i: 

α
µ )1( ),( hiShii LFS −==       (1.3.16) 

where hiSL ),(  is the value of the Lorenz curve of s for individual i in dimension h, calculated 

according to the form as follows: 
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The parameter α  is determined so as to make the overall non-monetary deprivation rate 
numerically identical to the monetary poverty rate H. 
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1.3.3. Combination across dimensions of deprivation 
 

In the previous sections, we have defined fuzzy measures of poverty and deprivation in 
multiple dimensions: monetary poverty on the one hand, and non-monetary deprivation in 
different aspects of life, on the other. The next step of interest in multidimensional analysis is 
to identify the extent to which deprivation in different dimensions tends to overlap for 
individual units, households or persons.  

It is often also useful to construct measures of deprivation averaged over different 
dimensions in someway. The common objective of these procedures is to summarise the 
diverse dimensions of deprivation in terms of fewer indicators—ultimately perhaps in terms 
of a single indicator of the ‘overall’ level of deprivation, permitting an unambiguous ranking 
of individuals in the population. 

For this purpose some aggregation operations on the fuzzy sets have to be defined. 
Let hi,µ  be the degree of deprivation in dimension h for individual i. We seek measures 

of the type: 

,...),,( 321. iiii f µµµµ =        (1.3.18) 

which summarise in an appropriate and useful way some common aspects of deprivation in 
different dimensions to which an individual is subject. 

Three types of aggregation operations are useful for this aim: 
Intersection. This is relevant when the interest is in the simultaneous presence of deprivation 
in different dimensions. Mathematically (1.3.18) takes the form of set intersections. The 
resulting measure .iµ  reflects the extent to which the different forms of deprivation overlap 
for the individual i concerned. Large overlaps may be seen as implying that the different 
forms do not really reflect distinct dimensions, or alternatively, that the resulting deprivation 
is more intense for being present in multiple dimensions simultaneously. 
Union. This is relevant when the interest is in the presence of deprivation, irrespective of its 
particular form or dimension. Here (1.3.18) takes the form of union of sets. 
Averages. Averaging of the individual’s degrees of deprivation in different dimensions can 
be meaningful when all forms of deprivation are important and, in that sense, are 
compensatory among themselves. Their combined effect can therefore be summarised by 
averaging in some appropriate form. Deprivation in some dimensions may be considered 
more important or intense than in other dimensions. In this case a weighted average may be 
more appropriate, with the weight determined to reflect relative importance of the 
dimensions. Apart from ordinary mean (or median), one may use a generalised weighted 
mean, say the form: 
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where 0≠β  is a parameter chosen to obtain means of different types. ( 0=β corresponds to 
arithmetic mean). 

In order to illustrate the set intersection and union operators, let us consider only two 
dimensions of deprivation, monetary poverty m, and non-monetary deprivation s. In the 
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conventional, ‘crisp’ formulation, individuals are categorised as deprived and non-deprived 
in each of the two dimensions. We can view any individual as belonging to one and only one 
of the four subpopulations defined by the intersections sm ∩  (m, s = 0,1). 

Fuzzy set operations are a generalisation of the corresponding ‘crisp’ set operations in the 
sense that the former reduce to (exactly reproduce) the latter when the fuzzy membership 
functions, being in the whole range [0,1], are reduced to a 0,1 dichotomy. 

There are, however, more than one ways in which the fuzzy set operations can be 
formulated, each representing an equally valid generalisation of the corresponding crisp set 
operations. The choice among alternative formulations has to be made primarily on 
substantive grounds: some options are more appropriate (meaningful, convenient) than 
others, depending on the context and objectives of the application. While the rules of fuzzy 
set operations cannot be discussed fully in this chapter, we need to clarify their application 
specifically for the study of poverty and deprivation. 

Since fuzzy sets are completely specified by their membership functions, any operation 
with them is defined in terms of the membership functions of the original fuzzy sets 
involved. For simplicity, let be (a, b) the membership functions of two sets for individual i, 
where iFMa =  and iFSb = , ),min(1 bas = , ),max(2 bas =  and aa −= 1 , ba ∩ , ba ∪  
the basic set operations of complementation, intersection and union. 

Table 1.3.1 displays the most common ways to specify fuzzy intersection and union that 
satisfy a set of essential requirements such as ‘reduction to the crisp set operation’, 
‘boundary condition’, ‘monotonicity’, ‘cummutativity’, etc. (for details see Klir and Yuan, 
1995). 

 
Table 1.3.1. Basic forms of fuzzy set intersections and unions 

 Intersection ba ∩  Union ba ∪  
Standard i(a, b) = min(a, b) = maxi  u(a, b) = max(a, b) = minu  

Algebraic i(a, b) = a*b u(a, b) = a + b − a*b 
Bounded i(a, b) = max(0, a + b − 1) u(a, b) = min(1, a + b) 

 
The Standard fuzzy operations provide the largest intersection and by contrast the smallest 
union among all the permitted forms. They are appropriate for intersection and union of 
similar fuzzy sets, i.e. sets for which the membership functions are expected to have a 
substantial positive correlation, but not uniformly throughout in the application to poverty 
analysis because their sum would exceed 1 and the marginal constraints would not be 
satisfied. An obvious example is a pair of sets, one defining the degree of income poverty, 
and the other deprivation of a certain type such as ‘basic non monetary deprivation’. The 
Standard fuzzy intersection and union are the only ones which satisfy the desirable condition 
of “idempotency”, i.e. intersection(a, a) = union(a, a) = a. 

The Bounded operator is appropriate for the aggregation of dissimilar sets for which the 
membership functions are expected to have a substantial negative correlation. This, for 
example, will be the case with one set defining the degree of presence of poverty, and the 
other defining the degree of absence of deprivation in a certain dimension. 
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The Algebraic operator is appropriate for the aggregation of sets in the absence of such 
correlations. It is the only one that satisfies the marginal constraints but it could give non 
acceptable results.  
Betti and Verma (2004) proposed to use in the analysis of fuzzy sets defining deprivation in 
different dimensions the so called ‘Composite’ set operator: 

1. For sets representing similar states – such as the presence or absence of both types of 
deprivation – the Standard operations (which provide larger intersections than 
Algebraic operations) are used. 

2. For sets representing dissimilar states- such as the presence of one type but the 
absence of the other type of deprivation – the Bounded operations (which provide 
smaller intersections than Algebraic operations) are used. 

A possible, more flexible, but of course more demanding on data and substantive judgement 
alternative would be to consider a weighted combination the Composite and Algebraic set 
operators, for instance in the following form, which also meets the consistency requirement: 

1. For sets representing similar states →  (1-w)(Standard) + w(Algebraic) 
2. For sets representing dissimilar states →  (1-w)(Bounded) + w(Algebraic) 

Parameter w can be thought of as a measure of the degree to which different types of states 
can be distinguished. When w = 0 we have the Composite scheme defined above, with its 
sharp distinction between similar and dissimilar states. With w = 1, we have the Algebraic 
scheme, applicable when the different states are ‘neutral’ with respect to each other. With 

10 << w 0, one may represent intermediate types of situations. 
Table 1.3.2 shows the application of this Composite set operations and Graph. 1.3.1 

illustrates them graphically. 
 
Table 1.3.2. Joint measures of deprivation according to the Betti and Verma Composite 

operation 

                                         Non-monetary deprivation 
 non-poor (0) poor (1) Total  

non-
poor ),max(1

)1,1min(

ii

ii

FSFM

FSFM

−

=−−
 ),0max( ii FMFS −  iFM−1  Monetary 

deprivation 

poor ),0max( ii FSFM −  ),min( ii FSFM  iFM  

 Total  iFS−1  
iFS  1 

 
In the Graph 1.3.1, the ‘universal set’ X (i.e. membership = 1 for any element of the 
population of interest) is represented by a rectangle of unit length, and within it are placed 
the units’ membership functions (0 ≤ a ≤ 1, 0 ≤ b ≤ 1) on the two subsets. Different 
placements correspond to different types of fuzzy set operations. It can be seen that the 
Standard intersection and union are obtained by placing the two sets (a, b) on the same base, 
so that the smaller (say b) lies completely within the larger (say a). Consequently, their 
intersection is maximised, so as to equal the smaller of the sets. By the same token, their 
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union is minimised, so as to equal the larger of the sets. It is for this reason that the Standard 
operator is appropriate for the aggregation of similar fuzzy sets. By this we mean sets 
representing similar states, such as the presence of deprivation in different dimensions, the 
membership of which can be expected to be positively correlated, often quite strongly. 

Similarly, we can see that the Bounded form is obtained by placing the two sets at the 
opposite ends of X, thus minimising their intersection and maximising their union. The 
intersection is reduced to (a + b – 1), which is non-zero only if a + b > 1; the union is 
increased to (a + b), or to 1 if a + b > 1. The Bounded operators are appropriate for the 
aggregation of dissimilar sets, such as one representing the presence of deprivation in a 
certain dimension while the other representing the absence of deprivation in another 
dimension. Membership of such dissimilar sets can be expected to be negatively correlated.  

The Algebraic form is obtained by placing one set (say b) symmetrically over the other 
(a), such that it overlaps (a) and (1 - a) proportionally: the overlaps being b·a and b·(1 - a), 
respectively. This can be seen to imply a lack of correlation between a unit’s membership in 
the two sets. 

Obviously, by placing one of the two sets on the base of X, and shifting the placement of 
the other (within X), a continuum of different types of fuzzy set operators can be generated. 

 

Figure. 1.3.1. Graphical representation of the fuzzy set operations 
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The propensity to income poverty, iFM , and the overall non-monetary deprivation 

propensity, iFS , may be combined to construct composite measures which indicate the 
extent to which the two aspects of income poverty and non-monetary deprivation overlap for 
the individual concerned. These measures, at the individual level i, are: 

i. Manifest deprivation ( iMAN ), representing the propensity to both income poverty 
and non-monetary deprivation simultaneously: 

ii. Latent deprivation ( iLAT ), representing the individual being subject to at least one 
of the two, income poverty and/or non-monetary deprivation. 

The corresponding combined measures are obtained using the Composite set operations. The 
Manifest deprivation propensity of individual i is the intersection (the smaller) of the two 
(similar) measures iFM  and iFS : 

),min( iii FSFMMAN =        (1.3.20) 

Similarly, the Latent deprivation propensity of individual i is the complement of the 
intersection indicating the absence of both types of deprivation, i.e. the union (the larger) of 
the two (similar) measures iFM  and iFS : 

),max(),min(1 iiiii FSFMFSFMLAT =−=     (1.3.21) 

From empirical experience (Betti and Verma 2002; Betti et al. 2005), it appears that the 
degree of overlap between income poverty and non-monetary deprivation at the level of 
individual persons tend to be higher in poorer areas and lower in richer areas. A useful 
indicator in this context is the Manifest deprivation index defined as a percentage of Latent 
deprivation index and included between 0 and 1. When there is no overlap (i.e., when the 
subpopulation subject to income poverty is entirely different from the subpopulation subject 
to non-monetary deprivation), Manifest deprivation rate and hence the above mentioned ratio 
equals 0. When there is complete overlap, i.e., when each individual is subject to exactly the 
same degree of income poverty and of non-monetary deprivation, the Manifest and Latent 
deprivation rates are the same and hence the above mentioned ratio equals 1. 
 
 
1.4. The proposed approach: Integrated Fuzzy and Relative (IFR) 

 
In this section we introduce a new approach to the analysis of poverty and deprivation that 
may be called Integrated Fuzzy and Relative (IFR) approach.  

This measure, proposed by Betti et al. (2006), combines the TFR approach of Cheli and 
Lemmi (1995) and the approach of Betti and Verma (1999), seen in the previous paragraphs. 

The new fuzzy poverty measure described in the next paragraphs also has an economic 
meaning, in that it is expressible in terms of the generalised Gini measures. 
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1.4.1. Income poverty 

 
In this approach both the share of individuals less poor than the person concerned (as in 
Cheli and Lemmi, 1995) and the share of the total equivalised income received by all 
individuals less poor than the person concerned (as in Betti and Verma, 1999) are take into 
account. Specifically, the measure is defined as: 
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where, as in section 1.3, γy  is the equivalised income, iMF ),(  is the income distribution 

function, γw  is the sample weight of individual of rank γ  ( n,...,1=γ ) in the ascending 

income distribution, iML ),(  represent the value of the Lorenz curve of income for individual 

i. 
The parameter α , as in the previous approaches, is chosen so that the mean of the m.f. is 

equal to the head count ratio H: 
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α α        (1.4.2) 

The Fuzzy Monetary measure as defined above is expressible in terms of the generalised 
Gini measure αG . This family of measures is a generalisation of the standard Gini 

coefficient with 1=α  and it is defined (in the continuous case) as: 

{ }dFFLFFG ∫ −−−= −

1

0

1 ))(()1()1( α
α αα      (1.4.3) 

This measure weights the distance ))(( LFF −  between the line of perfect equality and the 
Lorenz curve by a function of the individual’s position in the income distribution, giving 
more weight to its poorer end. 
 
 
1.4.2. Non–monetary deprivation 

 
Betti et al. (2006) proposed to treat the non-monetary scores in a way entirely analogous to 
that for monetary poverty measures, described above. On the basis of the Integrated Fuzzy 

and Relative approach, the function corresponding to equation (1.4.1) would be: 
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          (1.4.4) 

where iSF ),(  represents the distribution function of the overall supplementary deprivation (S) 

evaluated for individual i, and iSL ),(  the value of the Lorenz curve of S for individual i. The 

parameter α  is determined so as to take the overall non-monetary deprivation rate 
numerically identical to the monetary poverty rate H. 
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Chapter 2 

Data Analysis at national level 
 
 
2.1. EU-SILC survey 

 
In the present analysis we used data from the European Survey on Income and Living 
Conditions (EU-SILC), the major new source of comparative statistics on income and living 
conditions in Member States of the European Union and some neighbouring countries. EU-
SILC is the successor of the ECHP (European Community Household Panel) a data 
collection used over the 1994-2001 period. It has been developed to overcome, or at least 
ameliorate the main shortcomings of the previous one, like the problem of sample attrition, 
loss of representativeness, lack of flexibility in the design and content of the survey, lack of 
timeliness in the production of the data, lack of sustainability of the survey, etc… 

Flexibility is an essential feature of EU-SILC. This means that EU-SILC dataset may 
comprise different types and combinations of data sources, with different designs.  

In fact, it has been developed as a flexible yet comparable instrument for the follow-up 
and monitoring of poverty and social exclusion at the EU and national levels. It covers data 
and data sources of various types: cross-sectional and longitudinal; household-level and 
person-level; economic and social; from registers and interview surveys; from new and 
existing national sources.  

It envisages the creation of one or more micro-data bases in each country, to be used for 
the follow-up and monitoring of poverty and social exclusion at the EU and national levels. 

Depending on the country, micro-data could come from:  

i. one existing national source (survey or register);  
ii. two or more existing national sources (surveys and/or registers) directly linkable at 

micro-level;  
iii. one or more existing national sources combined with a new survey — all of them 

directly linkable at micro-level;  
iv. a new harmonised survey (or survey system) to meet all EU-SILC requirements.  

The standard integrated design involves a rotational panel in which a new sample of 
households and persons is introduced each year to replace a part (normally one quarter) of 
the existing sample. Persons enumerated in each new sample are followed-up in the survey 
for four (or more) years. A common rotational sample of this type yields each year a cross-
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sectional sample as well as longitudinal samples of various durations. In most situations, 
these sample data have to be weighted to make them more representative of the target 
population of the survey. The complex structure of the sample means that the corresponding 
weighting procedures can also be quite complex. 

Households form the basic units of sampling, data collection and data analysis. To ensure 
comparability of key indicators a rigorous and harmonised definition of the household is 
necessary for all countries. In the standard EU-SILC definition, a private household means a 
person living alone or a group of people who live together in the same private dwelling and 
share expenditures, including the joint provision of the essentials of living.  

Four types of data are involved: (i) variables measured at the household level; (ii) 
information on household size and composition and basic characteristics of household 
members; (iii) income and other more complex variables measured at the personal level, but 
aggregated to construct household-level variables (which may then be ascribe to each 
member for analysis); and (iv) more complex non-income or ‘social’ variables collected and 
analysed at the personal level.  

For set (i)-(iii) variables, a sample of households including all household members is 
required. Among these, sets (i) and (ii) are normally collected from a single, appropriately 
designated respondent in each sample household. Alternatively, some or all of these data 
may be compiled from registers or other administrative sources.  

Set (iii) variables - concerning mainly, but not exclusively, the detailed collection of 
household and personal income - must be collected directly at the personal level, covering all 
persons in each sample household. In many countries, these income and related variables are 
collected through personal interviews with all adults aged 16+ in each sample household. 
This collection is normally combined with that for set (iv) variables, since the latter must 
also be collected directly at the personal level. These are the so-called survey countries. By 
contrast, in some countries, set (iii) variables are compiled from registers and other 
administrative sources, thus avoiding the need to interview all members (adults aged 16+) in 
each sample household. These are the so-called register countries.  

Set (iv) variables, for their complex and personal nature, are normally collected through 
direct personal interview in all countries. For the survey countries, this collection is normally 
combined with that for set (iii) variables as noted above, covering all persons in each sample 
household even if it is not essential since these variables need not to be aggregated to the 
household level. Register countries take in account a representative sample of persons, since 
for these countries interviewing all household members for set (iii) is not involved.  

Then, different types of units of analysis are involved in EU-SILC for which sample 
weights have to be defined: (i) private households; (ii) all persons residing in sample 
households; (iii) all household members aged 16+; and optionally (iv) one selected adult per 
sample household. One may also be interested in special groups, such as children2. 

Both cross-sectional and longitudinal data are required in EU-SILC. The cross-sectional 
component covers information pertaining to the current and a recent period such as the 
preceding calendar year. It aims at providing estimates of cross-sectional levels and of net 

                                                
2 Following the EU-SILC terminology, we will refer to these different types of units and to the associated data 
files as follows: H (‘household’), R (‘register’ covering all members), P (‘personal’ covering all adults aged 16+), 
S (‘selected respondent’), and Q (children or other special groups) 
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changes from one period (year) to another. The longitudinal component covers information 
compiled or collected through repeated enumeration of individual units, and then linked over 
time at the micro-level. It aims at measuring gross (micro-level) change and elucidating the 
dynamic processes of social exclusion and poverty. Both cross-sectional and longitudinal 
micro-data sets are updated on an annual basis. However, the first and clear priority is given 
to the production of comparable, timely and high quality cross-sectional data. Longitudinal 
data are limited in content and possibly also in sample size. Furthermore, for any given set of 
individuals, micro-level change is followed up only for a limited duration. In EU-SILC a 
period of four years is taken as the minimum duration for longitudinal follow-up at micro 
level.  

Combining the various types of units and the time dimension, the new data sets 
disseminated each year consist of the following: cross-sectional data pertaining to the most 
recent reference year for households and persons; data pertaining to three different 
longitudinal periods, covering 2, 3 and 4 years preceding the survey, only for persons. 

Another important aspect of EU-SILC is the choice of sample that depend on substantive 
requirements, cost constraints and practical considerations more than a number of additional 
factors due to comparative and multi-country nature of the survey (for details see Verma, 
2001, Verma and Betti, 2006). A minimum effective sample size is fixed for both 
longitudinal and cross-sectional components. In particular, sample size is fixed according to 
a minimum level of reliability for the national estimate of the risk of poverty rate. 

At this moment, data are available at cross-sectional level for years 2004, 2005, 2006 and 
2007. In round 2004 only EU 15 countries are present; in rounds 2005, 2006, 26 countries 
are present and in rounds 2007 27 countries. Table 2.1.1, in the next page, shows the number 
of households interviewed for each country.  
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Table 2.1.1. EU-SILC household sample sizes (2004-2007) 

Country 2004 2005 2006 2007 

AT 4,521 5,148 6,028 6,806 
BE 5,275 5,137 5,860 6,348 
CY  3,746 3,621 3,505 
CZ  4,351 7,483 9,675 
DE  13,106 13,799 14,153 
DK 6,866 5,957 5,711 5,783 
EE 3,993 4,169 5,631 5,146 
ES 15,355 12,996 12,205 12,329 
FI 11,200 11,229 10,868 10,624 
FR 10,273 9,754 10,036 10,498 
GR 6,252 5,568 5,700 5,643 
HU  6,927 7,722 8,737 
IE 5,477 6,085 5,836 5,608 
IS 2,907 2,928 2,845 2,872 
IT 24,270 22,032 21,499 20,982 
LT  4,441 4,660 4,975 
LU 3,571 3,622 3,836 3,885 
LV  3,843 4,315 4,471 
MT    3,477 
NL  9,356 8,986 10,219 
NO 6,046 5,991 5,768 6,013 
PL  16,263 14,914 14,286 
PT 4,989 4,615 4,367 4,310 
SE 5,748 6,133 6,803 7,183 
SI  8,287 9,478 8,707 
SK  5,147 5,105 4,941 
UK  10,826 9,902 9,275 
TOT 116,743 197,657 202,978 210,451 

 
 

2.2. Imputation of data 

 
Missing data problems can arise from diverse sources in a number of forms. We focused on 
the problem of imputation for item non-response but similar problems can arise when the 
information is available on some but not all the members of a household.  

Imputing missing data aims to minimise the mean squared error of survey estimates, in 
particular the non-response bias component that arises when the pattern of missing data is 
not random and, more practically, to reach consistency between the results from different 
analyses and the convenience of not having to deal with the missing data problem at the 
analysis stage. 

Missing values of variables using in this analysis are been imputed trough IVEware 
(Imputation and Variance Estimation Software) and in particular IMPUTE module. This is a 
multivariate imputation procedure that can handle relatively complex data structures 
(hundreds of variables, some continuous, others counts, many dichotomous or polytomous, 
and semi-continuous or limited dependent variables) when the data are missing at random. 

IMPUTE module produces imputed values for each individual in the data set conditional 
on all the values observed for that individual. The imputations are obtained by fitting a 
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sequence of regression models, depend on the type of variable being imputed, and drawing 
values from the corresponding predictive distributions specified by the regression model 
with a flat or non-informative prior distribution for the parameters in the regression model. 
Covariates include all other variables observed or imputed for that individual. The sequence 
of imputing missing values can be continued in a cyclical manner, each time overwriting 
previously drawn values, building interdependence among imputed values and exploiting the 
correlational structure among covariates. To generate multiple imputations, the same 
procedure can be applied with different random starting seeds or taking every p-th imputed 
set of values in the cycles mentioned above.  

Five types of variables are assumed: (1) continuous; (2) binary; (3) categorical 
(polytomous with more than two categories); (4) counts; and (5) mixed (a continuous 
variable with a non-zero probability mass at zero). The types of regression models used are 
linear, logistic, Poisson, generalized logit or mixed logistic/linear, depending on the type of 
variable being imputed. IMPUTE take also into account two common features of survey data 
that add to the complexity of the modelling process: the restriction of imputations to 
subpopulations, and the bounding of imputed values. For details see Raghunathan et al. 
(2001).  

 
 

2.3. Fuzzy Monetary Indicators 

 
In order to calculate the Fuzzy Monetary Indicator (FM) we consider the distribution of 
household equivalised disposal income assigned to each individual. The distribution of the 
equivalised disposal income is trimmed taking as low bound the 15% of the median of the 
same distribution. Such indicator for the i-th individual is calculated using formula 1.4.1: 

)1()1( ),(
1

),( iMiMi LFFM −−= −α       (2.3.1) 

 
2.4. Fuzzy Supplementary Indicators 

 
Fuzzy Supplementary indicator has been calculated following these steps: 

1. Identification of items; 
2. Transformation of the items into the [0, 1] interval; 
3. Exploratory and confirmatory factor analysis; 
4. Calculation of weights within each dimension (each group); 
5. Calculation of scores for each dimension; 
6. Calculation of an overall score and the parameter α ; 
7. Construction of the fuzzy deprivation measure in each dimension (and overall). 
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2.4.1. Calculation of the deprivation score for each dimension and the overall score 

 
Aggregation over a group of items in a particular dimension h (h = 1, 2, …, m) is given by a 

weighted mean taken over j items: ∑ ⋅= hjihjhjhi wsws ,  where hjw  is the weight of the j-th 

deprivation variable in the h-th dimension (see section 2.4.7). An overall score for the i-th 
individual is calculated as the unweighted mean: 
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2.4.2. Calculation of the parameter α 

 
We calculate the FS indicator for the i-th individual over all dimensions using formula 1.4.4: 
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      (2.4.2) 

As for FM indicator, the parameter α  is determined so as to make the overall non-monetary 

deprivation rate numerically identical to the head count ratio computed for the official 
poverty line (60% of the median). 

The parameter α estimated is used to calculate the FS indicator for every single 

dimension. 
 
 

2.4.3. Construction of the fuzzy deprivation measure in each dimension 

 
The FS indicator for the h-th deprivation dimension for the i-th individual is defined as 
combination of the )1( ),( hiSF−  indicator and  the )1( ),( hiSL−  indicator . 
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The )1( ),( hiSF−  indicator for the i-th individual is the proportion of individuals who are less 

deprived, in the h-th dimension, than the individual concerned. hiSF ),(  is the value of the 

score distribution function evaluated for individual i in dimension h and γhw  is the sample 
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weight of the i-th individual of rank γ  in the ascending score distribution in the h-th 
dimension. 

The )1( ),( hiSL−  indicator is the share of the total lack of deprivation score assigned to all 

individuals less deprived than the person concerned. hiSL ),(  is the value of the Lorenz curve 

of score in the h-th dimension for the i-th individual. The parameter α  is calculated only 

once as shown in section 2.4.2. 
 
 

2.4.4. Identification of items 

 
Firstly, from the large set of EU-SILC variables, a selection has been made of indicators 
which are substantively meaningful and useful for the construction of Fuzzy Supplementary 
Indicators.  

For our purpose, we have identified a set of items which could serve as indicators of 
concept of life-style deprivation. All these items are considered at household level, even if 
some of them are taken from the individual dataset and then they have been aggregated at 
household level. 

The first set of items regards the lack of possession of a widely-desired item. These are: 

• A telephone including mobile phone; 
• A colour TV; 
• A computer; 
• A washing machine; 
• A car. 

In all these cases we consider a household to be deprived only if the lack of the item is 
enforced, because the household cannot afford the item. 

A second set of items relates to the lack of ability to afford items that are considered as 
basic: 

• Keeping home adequately warm; 
• Paying for one week annual holiday away from home; 
• Eating a mean with meat, chicken, fish (or vegetarian equivalent) every second day; 
• Facing unexpected financial expenses. 

A third set relates to absence of housing facilities so basic one can presume all household 
would wish to have them: 

• A bath or shower in dwelling; 
• An indoor flushing toilet for sole use of household. 

The fourth set of items relate to problems with accommodation and the environment, with 
the implicit assumption that the households wish to avoid such difficulties: 

• Leaking roof, damp walls/floors/foundation, or rot in window frames or floor; 
• Too dark, not enough light in dwelling; 
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• Noise from neighbours or from the street; 
• Pollution, grime or other environmental problems; 
• Crime violence or vandalism in the area. 

The fifth set relates the arrears that the household has experienced in the last 12 months; 

• Arrears on mortgage or rent payments; 
• Arrears on utility bills; 
• Arrears on hire purchase instalments or other loan payments. 

The sixth set is just an item related to the capacity of the household to make ends meet. 
The seventh set relates to the health condition of the household. These items are from 

individual variables that have been aggregated at household level. We consider this 
dimension because we think that, in dealing with life-style deprivation, also the lack of 
health should be important. The items considered are: 

• General health; 
• Suffer from any chronic (long-standing) illness or condition; 
• Limitation in activities because of health problems; 
• Unmet need for medical examination or treatment; 
• Unmet need for dental examination or treatment. 

This dimension is not comparable for register countries, for which the unit of analysis is just 
the selected respondent. 

The eighth set relates to the education. For this set we have constructed two composed 
indicators: 

• Households with early school livers not in education or training; 
Households with at least one person aged 18-24 who have only lower secondary 
education (PE040: ISCED level currently attended: value 2 or less) and are not in 
education or training leading to a qualification at least to upper secondary (PE010: 
current education activity: value 2) 

• Households with persons with low educational attainment. 
Households with at least one person aged 25-64 who have only lower secondary 
education or less (PE040). 

The least dimension concerns the labour market. Also for this set we have constructed two 
composed indicators: 

• Jobless households;  
This indicator identifies the worklessness of the household, using variable PL030. 
For details about the construction see next section.  

• Intensity or duration of unemployment at household level. 
This indicator is constructed using variables PL070, PL072, PL080, PL085, PL087, 
PL090. For details about the construction see next section.  

The variables used are listed in the Annex. 
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2.4.5. Transformation of the items into the [0, 1] interval  

 

When the item is constituted by a fix number of categories, then it is transformed using the 
following procedure. For each item we determine a deprivation score as follows: 
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where ijc ,  is the value of the category of the j-th item for the i-th individual and )( ,ijcF  is 

the value of the j-th item cumulation function for the i-th individual. 
We transform the deprivation score in a positive score as: 
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In the particular, but common case, where the variable is a dichotomy, the deprivation index 
d is 1 for deprivation and 0 otherwise, while the positive score s is 0 for deprivation and 1 
otherwise. For polychotomous items we assign to each household instead of the real value of 
the category, a value corresponding to the percentage of households that are “better off” then 
it. In the few cases in which the indicator is a composite one the score s represents the 
percentage of people in the household that experienced it. 

In particular the indicator concerning the worklessness of the household is constructed as 
follows. First we exclude the households consist of only persons aged 18-24 in full-time 
education or older then a country specific retirement age. In order to choose an appropriate 
retirement age we have proceeded as follows. Among the people that have ever worked, we 
consider the distribution of the ones that are retired (PL030=5) by age and gender. Looking 
at the ratio of people that at a particular age are retired among all the people in that age, we 
have been searching for a sudden jump in the distribution. Once this point has been found we 
have confirmed it looking at the legal age of retirement for a specific country. 

Among the remaining households we classify the people as employed or not using 
variable PL030. We have identified the degree of worklessness of an household constructing 
a ratio where at the numerator there are all the people in the household for which variable 
PL030 takes value 1, 2 or 7. The denominator is the sum of the people of the household for 
which PL030 takes value 1, 2, 3, 6, 7, 9 and 5 and 8 only if the age of the person is less then 
the retirement age chosen above. So at household level we consider the household 
worklessness constructing an indicator that ranges from 0 to 1, where 0 identify that all the 
household is ‘jobless’; that is the percentage of jobless people. 

To construct the indicator concerning the duration of unemployment, we calculate at 
household level the ratio: 
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The variable for general health, PH010, is aggregated as follows. To the categories 1-2-3 is 
assigned value 1 and to categories 4-5 value 0. Then this variable is aggregated at household 
level so that an household is considered deprived for that indicator if at least one person in 
the household is deprived for the item. So the score s assumes value 1 if no one in the 
household is deprived concerning that item, and it assumes value 0 is at least one person is 
deprived.  

The same kind of household aggregation is done for all the personal variables concerning 
the health and the educational status. 

 
 

2.4.6. Exploratory and confirmatory factor analysis 

 
Exploratory and confirmatory factor analysis allow us to identify the dimension of 
deprivation as explained in section 1.3.2. The former gives a preliminary framework of the 
dimensions. Following exploratory factor analysis nine dimensions are the optimal solution. 
We then proceeded to rearrange some factors in the dimensions found in order to create more 
meaningful groups. Finally, we did a confirmatory factor analysis to test the goodness of the 
model hypothesised. In summary the seven final dimensions are: 

1 Basic life-style – these concern the lack of ability to afford most basic requirements: 
• Keeping the home (household’s principal accommodation) adequately warm. 
• Paying for a week’s annual holiday away from home. 
• Eating meat chicken or fish every second day, if the household wanted to. 
• Ability to make ends meet 

2 Consumer durables - these concern enforced lack of widely desired possessions 
("enforced" means that the lack of possession is because of lack of resources) 

• A car or van. 
• A colour TV. 
• A pc 
• A washing machine. 
• A telephone. 

3 Housing amenities – these concern the absence of basic housing facilities (so basic 
that one can presume all households would wish to have them): 

• A bath or shower.  
• An indoor flushing toilet. 
• Leaking roof and lamp 
• Rooms to dark 

4 Financial situation – these concern the lack of ability to pay in time due to financial 
difficulties: 

• Inability to cope with unexpected expenses. 
• Arrears on mortgage or rent payments. 
• Arrears on utility bills. 
• Arrears on hire purchase instalments. 
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5 Environmental problems – these concern problems with the neighbourhood and the 
environment: 

• Pollution. 
• Crime, violence, vandalism. 
• Noise. 

6 Work and education – these concern the absence of education and job 
• Households with early school livers not in education or training. 
• Households with persons with low educational attainment. 
• Jobless households. 
• Intensity or duration of unemployment at household level. 

7 Health related – these concern problems with personal health: 
• General health. 
• Chronic illness. 
• Mobility restriction. 
• Unmet need for medical examination or treatment. 
• Unmet need for dental examination or treatment. 

 
All the indicators of goodness of the model are significant. Below, we report measures of 
absolute, relative and parsimonious fit as follows: 

• The Goodness of Fit Index (GFI) is 0.94. It is based on the ratio of the sum of 
squared discrepancies to the observed variances; it ranges from 0 to 1 with values 
above 0.9 indicating a good fit. 

• The Adjusted Goodness of Fit Index (AGFI) is 0.93. It is the GFI adjusted for 
degrees of freedom of the model, that is the number of the fixed parameters. It can 
be interpreted in the same manner. 

• The Parsimonious GFI is 0.86. It adjusts GFI for the number of estimated 
parameters in the model and the number of data points. 

• The Root Mean Square Residual (RMR) is 0.06. The fit is considered really good if 
RMR is equal or below 0.06. The Root Mean Squared Error of Approximation 
(RMSEA) is 0.0475. It is based on the analysis of residuals, with small values 
indicating a good fit. Values below 0.1, 0.05 and 0.01 indicate a good, very good 
and outstanding fit respectively 

 
 

2.4.7. Calculations of weights within each dimension 

 

The weights to be given to items are determined within each dimension separately and the 
set of weights are taken to be item-specific as explained in section 1.3.2. The second factor is 
given by formula 1.3.14, whereas, since our analysis is carried on using the deprivation 

scores s, instead of the deprivation index d, a
hjw  should be modified as follows: 

hj

hja
hj

mean

std
w

−
∝

1
        (2.4.7) 
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2.5. Empirical results 

 
Fuzzy measures of monetary poverty and non-monetary deprivation have been constructed, 
step by step as described in the previous sections, based on EU-SILC survey data. A cross-
sectional analysis have been conducted from 2004 to 2007 waves. Figure 2.5.1 shows 
cartograms of fuzzy monetary indicators (equal to HCR and to the overall non-monetary 
index) in European Countries. Differences among these years are not so very significant. 
 
Figure 2.5.1. Cartograms of fuzzy monetary indicators in European Countries (2004-2007) 

2004      2005  

 
2006      2007  
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In this section, we described in details only results of year 2007 , but similar conclusions can 
be done for the other years whose results are reported in appendix A. 

Table 2.5.1 shows values of fuzzy monetary indicator and fuzzy supplementary 
indicator, as overall deprivation index and in term of different dimensions of deprivation for 
26 European Countries. 

Denmark, Finland, Island, Norway, Sweden, Slovenia and Netherland are register 
Countries, then as explained in section 2.4.4, they miss health dimension (FS7).  

The first column, FS0, is the overall deprivation rate. It is in fact the conventional poverty 
rate (HCR) for each country. The values of the FM (fuzzy monetary) and FS (fuzzy 
supplementary) deprivation indices are simply scaled for each country to numerically equal 
the conventional HCR. Those overall poverty or deprivation rates show large differences 
among EU countries, from the low value of 9.5% in CZ to the high of 21.2% in LV. In six 
countries the rate is below 11% (CZ, IS, NL, SK, SE, SI), it exceeds 19% in seven (LV, GR, 
IT, ES, EE, LT, UK). The average over countries is close to 15%. 
We note that there is fairly strong correlation between the ranking of countries according to 
the overall and dimension-specific indices of deprivation. However, quite large differences 
in the rankings according to different dimensions are also present. Numerically, deprivation 
rates for individual dimensions are not scaled in the methodology described above to equal – 
individually or even in the average over dimensions – the overall poverty or deprivation rate 
FS0. In fact, over countries, in these data the average of rates for individual dimensions (at 
11%) is lower than the average of overall rates (15%). 

In certain dimensions, the average over countries is 12-14%, which is quite close to that 
for the overall index (15%). This group includes: 

FS1 – basic life-style 
FS5 – environment 
FS6 – work and education 
FS7 – health related 

For the remaining dimensions, the average values obtained are much lower (7-9%). These 
dimensions are: 

FS2 – consumer durables 
FS3 – housing amenities 
FS4 – financial situation 
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Table 2.5.1. Fuzzy measures at Country level (2007) 

 Rate of deprivation by dimension of deprivation  mean 

Country FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

CZ 0.095 0.092 0.061 0.055 0.045 0.106 0.087 0.085 0.076 

IS 0.100 0.087 0.021 0.041 0.084 0.071 0.083  0.065 

NL 0.102 0.080 0.040 0.051 0.051 0.097 0.087  0.068 

SK 0.105 0.087 0.063 0.059 0.055 0.103 0.094 0.095 0.079 

SE 0.107 0.085 0.040 0.058 0.065 0.085 0.089  0.070 

SI 0.109 0.094 0.052 0.066 0.075 0.100 0.093  0.080 

DK 0.117 0.099 0.057 0.064 0.062 0.100 0.093  0.079 

AT 0.120 0.098 0.058 0.070 0.047 0.102 0.105 0.088 0.081 

NO 0.123 0.082 0.044 0.058 0.085 0.084 0.100  0.076 

HU 0.124 0.127 0.085 0.096 0.083 0.112 0.106 0.140 0.107 

FI 0.130 0.097 0.067 0.063 0.075 0.112 0.110  0.087 

FR 0.131 0.101 0.058 0.078 0.078 0.126 0.111 0.107 0.094 

LU 0.135 0.092 0.028 0.071 0.055 0.119 0.110 0.106 0.083 

BE 0.151 0.131 0.071 0.087 0.081 0.141 0.127 0.102 0.105 

DE 0.152 0.124 0.058 0.079 0.063 0.145 0.119 0.130 0.103 

CY 0.155 0.140 0.058 0.075 0.117 0.146 0.128 0.143 0.115 

PL 0.173 0.200 0.105 0.113 0.094 0.135 0.146 0.167 0.137 

IE 0.175 0.128 0.083 0.095 0.086 0.133 0.143 0.124 0.113 

PT 0.181 0.130 0.115 0.119 0.097 0.158 0.151 0.154 0.132 

UK 0.191 0.143 0.060 0.103 0.105 0.162 0.146 0.137 0.122 

LT 0.191 0.167 0.124 0.158 0.082 0.143 0.152 0.176 0.143 

EE 0.194 0.126 0.114 0.149 0.090 0.183 0.155 0.181 0.143 

ES 0.197 0.145 0.073 0.103 0.095 0.172 0.163 0.143 0.128 

IT 0.198 0.164 0.064 0.100 0.117 0.192 0.155 0.169 0.137 

GR 0.203 0.165 0.109 0.113 0.152 0.169 0.160 0.165 0.148 

LV 0.212 0.219 0.136 0.171 0.081 0.224 0.169 0.246 0.178 
average 0.149 0.123 0.071 0.088 0.081 0.132 0.122 0.140 0.108 

          
NOTES FS0 stands for "HCR = FM = FS" 

FS1 – FS7 refer to the seven dimensions of deprivation defined in section 2.4.6. 
 

We believe that the indices for individual dimensions represent a mixture of relative and 
absolute levels of deprivation, even if the relative aspect predominates. However, values 
observed for dimensions 2-4 imply that, compared to overall deprivation and to other 
dimensions, deprivation in these dimensions may be less severe in the absolute sense in EU 
countries on the average. 

Table 2.5.2 examines the pattern of variation across countries and dimensions more 
closely, bringing out the relationship in scores across different dimensions in relative terms. 
The figures shown are ‘normalised’, meaning that we have rescaled them to remove the 
effect of variations among countries in the overall deprivation (or poverty) rates FS0, and 
also to remove the effect of differing average values for the various dimensions.  
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The last column shows the average over the dimensions (FS1-FS7) of the ‘normalised’ 
values. This average, by definition, is 1.0 over all countries. 
 

Table 2.5.2. “Normalised” Fuzzy measures at Country level (2007) 

 ‘Normalised rates’     mean 

Country FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

CZ 1.00 1.17 1.34 0.97 0.86 1.26 1.11 0.95 1.093 

IS 1.00 1.05 0.45 0.70 1.53 0.81 1.02  0.927 

NL 1.00 0.95 0.82 0.84 0.92 1.08 1.04  0.943 

SK 1.00 1.01 1.26 0.96 0.96 1.11 1.09 0.96 1.050 

SE 1.00 0.96 0.79 0.92 1.10 0.90 1.01  0.946 

SI 1.00 1.04 1.00 1.02 1.26 1.04 1.04  1.068 

DK 1.00 1.03 1.02 0.93 0.97 0.97 0.97  0.980 

AT 1.00 0.98 1.01 0.98 0.72 0.96 1.06 0.78 0.929 

NO 1.00 0.80 0.75 0.80 1.27 0.78 0.99  0.900 

HU 1.00 1.24 1.44 1.31 1.22 1.03 1.04 1.20 1.212 

FI 1.00 0.90 1.08 0.83 1.05 0.98 1.03  0.979 

FR 1.00 0.93 0.94 1.00 1.08 1.09 1.02 0.87 0.988 

LU 1.00 0.82 0.43 0.89 0.74 1.00 0.99 0.84 0.816 

BE 1.00 1.04 0.98 0.97 0.98 1.05 1.02 0.72 0.966 

DE 1.00 0.99 0.81 0.88 0.76 1.08 0.95 0.92 0.912 

CY 1.00 1.09 0.79 0.81 1.37 1.06 1.00 0.98 1.014 

PL 1.00 1.39 1.27 1.10 0.99 0.88 1.03 1.03 1.097 

IE 1.00 0.89 1.00 0.92 0.90 0.86 0.99 0.76 0.902 

PT 1.00 0.86 1.33 1.10 0.97 0.99 1.01 0.90 1.024 

UK 1.00 0.91 0.66 0.91 1.00 0.96 0.93 0.76 0.875 

LT 1.00 1.05 1.36 1.39 0.78 0.84 0.97 0.98 1.054 

EE 1.00 0.79 1.23 1.30 0.85 1.07 0.97 1.00 1.030 

ES 1.00 0.89 0.78 0.88 0.88 0.99 1.00 0.77 0.884 

IT 1.00 1.00 0.68 0.85 1.08 1.10 0.95 0.91 0.937 

GR 1.00 0.99 1.13 0.94 1.37 0.94 0.96 0.87 1.028 

LV 1.00 1.25 1.35 1.37 0.70 1.20 0.97 1.24 1.154 

average 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
          

NOTES ‘Normalised rates’ ijN : all values scaled such that: 

 (1) for each dimension (j), average over countries rescaled to = 1.0; and 

 (2) for each country (i), jFS values scaled to correspond to FS0 = 1.0. 

  
 
         

          
 

The overall non-monetary dimension and each of the seven non-monetary dimensions have 
been combined with the monetary dimension in order to obtain measures of manifest and 
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latent deprivation which correspond respectively to intersection and union of the fuzzy sets. 
Table 2.5.3 reports values of latent and manifest deprivation for aggregated measures of 
overall deprivation and the combination of the monetary dimension with each of the seven 
non-monetary dimensions. The M0/L0 ratio is in general lower in areas with lower levels of 
deprivation (for example IS and NL), and higher in areas with higher levels (LV and GR). 
High values of this ratio imply that different types of deprivation overlap and this means that 
deprivation in the income and non-monetary domains is more likely to afflict the same 
individuals in the population. On the other hand, low values imply the absence of such 
overlap at the micro level. Analogously, for each dimension, the overlap between monetary 
and non-monetary deprivation increases for Countries with higher levels of poverty and 
deprivation, even if the ranking is not so sharp and there are some exceptions like CK in the 
second and sixth dimensions and LV in the forth dimension. 
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Table 2.5.3. Latent and Manifest deprivation at aggregated level and for each dimension of deprivation (2007) 

Country FS L0 M0 M0/L0 L1 M1 M1/L1 L2 M2 M2/L2 L3 M3 M3/L3 L4 M4 M4/L4 L5 M5 M5/L5 L6 M6 M6/L6 L7 M7 M7/L7 

CZ 0.095 0.154 0.037 0.238 0.153 0.034 0.224 0.126 0.029 0.233 0.133 0.017 0.128 0.124 0.016 0.132 0.183 0.018 0.100 0.145 0.037 0.254 0.166 0.014 0.084 

IS 0.100 0.171 0.028 0.162 0.162 0.024 0.151 0.114 0.007 0.058 0.131 0.010 0.075 0.163 0.021 0.127 0.157 0.014 0.090 0.168 0.015 0.092    

NL 0.102 0.174 0.030 0.171 0.150 0.031 0.209 0.124 0.017 0.140 0.141 0.012 0.085 0.134 0.020 0.146 0.181 0.018 0.099 0.162 0.027 0.169    

SK 0.105 0.170 0.039 0.231 0.156 0.036 0.232 0.140 0.027 0.195 0.147 0.017 0.118 0.141 0.019 0.136 0.190 0.018 0.094 0.160 0.039 0.241 0.177 0.022 0.127 

SE 0.107 0.180 0.034 0.188 0.160 0.032 0.200 0.131 0.016 0.122 0.153 0.013 0.084 0.148 0.024 0.162 0.176 0.017 0.095 0.172 0.024 0.139    

SI 0.109 0.178 0.039 0.216 0.167 0.035 0.212 0.137 0.023 0.170 0.153 0.022 0.142 0.161 0.023 0.143 0.191 0.018 0.094 0.164 0.037 0.225    

DK 0.117 0.192 0.041 0.213 0.180 0.036 0.198 0.150 0.024 0.157 0.165 0.016 0.097 0.153 0.025 0.164 0.191 0.025 0.133 0.185 0.026 0.139    

AT 0.120 0.196 0.044 0.227 0.175 0.043 0.246 0.153 0.025 0.165 0.169 0.021 0.123 0.148 0.019 0.130 0.200 0.023 0.113 0.186 0.039 0.212 0.186 0.023 0.122 

NO 0.123 0.204 0.042 0.204 0.172 0.033 0.189 0.146 0.021 0.140 0.165 0.016 0.096 0.179 0.029 0.162 0.188 0.019 0.102 0.193 0.031 0.160    

HU 0.124 0.196 0.051 0.262 0.205 0.046 0.223 0.174 0.035 0.202 0.185 0.034 0.184 0.174 0.032 0.183 0.211 0.025 0.118 0.180 0.049 0.272 0.233 0.030 0.131 

FI 0.130 0.212 0.048 0.226 0.182 0.045 0.246 0.162 0.034 0.211 0.177 0.017 0.095 0.173 0.032 0.184 0.215 0.027 0.123 0.202 0.038 0.186    

FR 0.131 0.209 0.054 0.259 0.186 0.046 0.246 0.165 0.024 0.148 0.184 0.025 0.134 0.178 0.031 0.172 0.226 0.031 0.139 0.194 0.048 0.246 0.205 0.033 0.163 

LU 0.135 0.218 0.053 0.243 0.173 0.054 0.315 0.145 0.018 0.125 0.183 0.024 0.131 0.157 0.033 0.211 0.225 0.030 0.132 0.198 0.048 0.243 0.212 0.029 0.139 

BE 0.151 0.232 0.071 0.306 0.215 0.067 0.309 0.182 0.040 0.221 0.208 0.030 0.145 0.188 0.044 0.232 0.253 0.039 0.152 0.220 0.058 0.262 0.210 0.042 0.202 

DE 0.152 0.239 0.064 0.270 0.215 0.061 0.284 0.183 0.027 0.146 0.203 0.027 0.134 0.189 0.026 0.138 0.256 0.041 0.158 0.219 0.052 0.238 0.239 0.043 0.178 

CY 0.155 0.246 0.065 0.262 0.229 0.066 0.289 0.189 0.025 0.134 0.203 0.028 0.136 0.232 0.040 0.174 0.268 0.033 0.122 0.232 0.052 0.224 0.249 0.049 0.196 

PL 0.173 0.266 0.081 0.304 0.289 0.084 0.292 0.227 0.051 0.225 0.238 0.048 0.202 0.226 0.041 0.182 0.276 0.032 0.117 0.254 0.066 0.259 0.288 0.052 0.181 

IE 0.175 0.272 0.078 0.288 0.238 0.065 0.275 0.213 0.045 0.213 0.236 0.034 0.144 0.216 0.045 0.210 0.269 0.040 0.147 0.250 0.068 0.273 0.253 0.046 0.184 

PT 0.181 0.279 0.084 0.299 0.241 0.070 0.292 0.236 0.060 0.255 0.250 0.050 0.202 0.232 0.046 0.198 0.296 0.043 0.147 0.272 0.061 0.223 0.273 0.062 0.227 

UK 0.191 0.300 0.082 0.274 0.261 0.074 0.282 0.220 0.031 0.143 0.256 0.037 0.146 0.242 0.054 0.222 0.303 0.049 0.163 0.267 0.070 0.261 0.279 0.049 0.174 

LT 0.191 0.288 0.095 0.328 0.273 0.085 0.309 0.245 0.071 0.289 0.277 0.072 0.260 0.235 0.039 0.166 0.299 0.035 0.117 0.269 0.074 0.275 0.307 0.060 0.197 

EE 0.194 0.296 0.091 0.308 0.245 0.075 0.306 0.244 0.063 0.259 0.276 0.067 0.244 0.232 0.052 0.224 0.326 0.051 0.156 0.283 0.065 0.231 0.304 0.071 0.232 

ES 0.197 0.314 0.081 0.258 0.268 0.074 0.277 0.237 0.034 0.144 0.262 0.039 0.149 0.246 0.046 0.186 0.319 0.051 0.160 0.288 0.072 0.249 0.284 0.056 0.198 

IT 0.198 0.304 0.093 0.306 0.276 0.086 0.313 0.228 0.034 0.151 0.257 0.041 0.161 0.254 0.062 0.243 0.335 0.055 0.163 0.273 0.081 0.296 0.301 0.066 0.221 

GR 0.203 0.301 0.104 0.347 0.272 0.096 0.353 0.259 0.053 0.203 0.269 0.047 0.175 0.273 0.081 0.299 0.329 0.042 0.128 0.285 0.078 0.273 0.298 0.070 0.235 

LV 0.212 0.314 0.110 0.350 0.319 0.112 0.351 0.265 0.083 0.314 0.308 0.075 0.245 0.263 0.030 0.116 0.377 0.059 0.157 0.299 0.082 0.274 0.364 0.094 0.257 
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Chapter 3 

Pooled estimates of indicators 
 
 
The problem of sample size requires a more sophisticated statistical approach than simply 
using direct estimates for single rounds of sample surveys of moderate size that can be lead 
to inaccurate estimates. 

For this purpose three solutions are possible: 

1. making the best use of available sample survey data such as by cumulating and 
consolidating the data to construct more robust measures which can permit a greater 
degree of spatial disaggregation; 

2. using more sources in combination so as to produce more precise estimates for small 
domains; using small area estimation (SAE) techniques; 

3. exploiting to the maximum “meso” data - such as the highly disaggregated 
tabulations of New-Cronos - for the purpose of constructing regional indicators  

The first aspect is examined in the next sections, whereas chapter 4 deal with the second one. 
 

 

3.1. Introduction 
 
 

3.1.1. Pooling and its fundamental objectives 
 

By pooling we mean statistical analysis or the production of estimates on the basis of 
multiple data sources. The first distinction to be made when we speak about “pooling” is 
between: (a) the pooling of data, i.e. aggregation of micro-level data from the same or 
different populations, surveys and times, on the one hand, and (b) the pooling of estimates, 
i.e. the production of a common estimate as a function (such as a weighted mean) of 
estimates produced from individual data sources. 

There are three fundamental objectives of pooling of statistical data or estimates.  
(1) The first one is cumulation or aggregation in order to obtain more precise estimates, 

albeit normally with some loss of detail. For instance, cumulation and consolidation of data 
could be one solution which makes the best use of available sample survey data for 
constructing more robust measures which permit a greater degree of spatial disaggregation. 
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(2) The second fundamental objective of pooling is to permit comparisons, for instance 
between different populations, between different  geographical parts of the given population, 
or for the “same” population at different times. Comparisons often take the form of estimates 
of trends or differences in levels across populations or times. 
(3) The third fundamental objective is more general and broader. It concerns common 

interpretation of statistical information from different sources and/or for different 
populations in relation to each other, and possibly also against some common standards. 

 
 

3.1.2. Prerequisite for pooling: comparability 
 

How different the data sources are from each other is actually a matter of degree: there is no 
simple dichotomy “same” versus “different”. For meaningful pooling whether of micro data 
or of estimates, it is necessary that the different data sources are “comparable”, which is also 
a matter of degree. The concept of comparability implies the requirement that “data or 
estimates can be legitimately, i.e. in a statistically valid way, put together (aggregated, 
pooled), compared (differenced), and interpreted (given meaning) in relation to each other 
and against some common standard”. 

It must be emphasises that comparability is absolutely central to the problems and 
procedures of pooling of data and estimates. In fact, a “sufficient” degree of comparability is 
a precondition for such pooling to be meaningful (Verma, 2002). 

 
 

3.1.3. Diverse scenarios 

 
As noted above, different possibilities arise depending on whether the population and the 

sample involved in the pooling are different or are the same for the different element. At the 
one extreme, we have the situation where both the population and the sample (or other types 
of data sources) involved are different: the data or estimates are being pooled across different 
population, using different sources of data in each. At the other extreme, we have the 
situation where both the population and the sample are the same or similar. 

On this basis, we may distinguish four main types of situations or scenarios. Within each 
scenario further divisions or subcategories may be identified. Furthermore, as noted above, 
methodologically we must distinguish between pooling of data and pooling of estimates. The 
detailed pattern can also differ depending on whether we are dealing with the pooling of 
microdata or of aggregated estimates. The important point to keep in mind is that the 
following distinctions are not necessarily sharp or absolute: being the “same” or “different” 
is a matter of degree. 

 
Table 3.1.1. Different types of situations involved in pooling 

 Data source 

Population Same/Similar (s) Different /Dissimilar (d) 
Same/Similar (S) S.s S.d 
Different /Dissimilar (D) D.s D.d 
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Scenarios D.s and S.s are the ones most widely encountered in practice, whereas the other 
two scenarios present more complex technical problems. An example of scenario (D.d) is the 
Luxembourg Income Study (LIS), which uses different sources in different countries for 
constructing a data source for comparative research on income distribution. Scenario (S.d) 
means using different sources to obtain a more complete picture for a given population, such 
as from income and expenditure surveys. More often, we are dealing with pooling of data 
from similar sources. Typically scenario (D.s) involves pooling over space (e.g. over 
countries in a multinational survey), and scenario (S.s) involves pooling over time (e.g. in a 
periodic survey).  
 
 
3.2. Scenario D.d. Different population, different data sources 

 
Both the population and data sources differ. This extreme is generally the most challenging 

in terms of the requirements of comparability, as it has already been noted above. Examples 
of these kind of pooling can be found in Betti et al. (2001) and Betti (1998). 

 
 

3.3. Scenario D.s. Different population, similar or same data source 

 

Data and estimates from similar sources, pooled over different populations. The most 
common example of such a situation is provided by highly standardised and comparable 
multi-country surveys, such as the EU-LFS, ECHP and EU-SILC in the European Union. 

In practice, it is useful to distinguish between two sub-types within this scenario. This 
depends on whether the process primarily involves (a) aggregation of different data sets or 
estimates starting from individual components, or (b) disaggregation or division of a 
common data set into individual components.  

The former typically involves pooling across standardised national sources. The latter 
presents a much more common – even universal – situation involving partition, for example 
of a national data set for providing separate estimates for regions, population groups or other 
sub-national reporting domains. The weighting and estimation procedures involved in 
“pooling” in the two situations can be quite different. 

 
 

3.3.1. Examples of category D.s (a): aggregation of data or estimates 

 
3.3.1.1. Pooling of national estimates 

 
Let us consider estimate iφ  for a certain statistic for country i in EU. In comparisons among 

countries, obviously, each iφ  receives the same weight. However, for estimates aggregated 
over countries, of the form  

iiP φφ .Σ=         (3.3.1) 

a choice has to be made of the weights Pi. The most common practice by far is to take the 
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Pi’s in proportion to the countries’ population size, thus producing statistics for the ‘average 
EU citizen’. However, given the large differences in country sizes, this means that the results 
are determined mainly by the large countries, and the samples from the smallest ones are 
mostly wasted. By contrast, it can also be argued that in much policy debate (and in voting 
for decision making), it is the situation in the ‘average EU country’ that is of interest. This 
amounts to taking the Pi’s as equal. But it can also be argued that both these are rather 
extreme positions. Countries as well as individual citizens are relevant as units, so that larger 
countries could be given more weight, but less than proportionate to their population size 
(Verma, 1999). 

Whatever the choice of Pi, (3.3.1) takes the form of pooling macro (country) level 
estimates. One of the strengths of an inter-country survey such as ECHP is that it provides 
standardised data sets for all countries. Hence it is possible to take the convenient approach 
of pooling the national data at the micro level for analysis as a single set. This is achieved by 
appropriately scaling the case weights wij (for household or person j in country i) as 

( )
ijiijij wPww Σ=′ .        (3.3.2) 

For ratios and relationships at the country level, estimates of iφ  are not affected by the 
scaling of the weights, and (3.3.2) gives the same results as obtained using the original 
weights wij. For aggregation over countries, (3.3.2) gives results identical to (3.3.1) when iφ  
is a linear function of unit values vij. Be more specific, it is necessary to distinguish between 
different types of estimators involved. 

There are four types of estimates to be considered. The first two are: 

(1) Aggregates, proportions and means, generally of the form ijijiji wvw ΣΣ= .φ ; 

(2) Ratios and relationships, commonly of the form ijijijiji uwvw .. ΣΣ=φ ; 

The two forms (3.3.1) and (3.3.2) give identical results as except for the following. The 
difference between (3.3.2) and (3.3.1) is that between “combined” and “separate” ratio or 
regression estimates. Normally form (3.3.2), which corresponds to a combined estimate, is 
preferred because of its smaller potential bias and mean square error.  

In the above forms, the contribution of any unit j to the estimate does not depend on the 
values of other units (k) in the sample. It does for some other statistics, e.g. of the type 
involved in the study of income distribution inequality and poverty from the ECHP or EU-
SILC: the median income, measures of income disparity such as Gini coefficient, poverty 
rates, etc. Here the useful distinction is whether the dependence is on units only within the 
country, or on all units in the pooled populations. 

(3) Distributional measures defined within countries; 

Most commonly, measures of income distribution, disparity, poverty etc. are defined in 
relative terms, i.e. within each subpopulation (country) separately – for example ‘the poor’ 
maybe be defined as persons with income below a certain proportion of the national median 
income. Obviously, such measures can only be computed separately by country, and then 
pooled using (3.3.1). 

(4) Measures in terms of the common EU-level distribution. 
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There is also a policy interest in the EU concerning measures of income disparity and 
poverty which are obtained with reference to the pooled EU-level income distribution, e.g. 
‘the poor’ defined as persons with income below a certain proportion of the EU median 
income. Such measures are less ‘relativistic’ in that they depend not only in the income 
distribution within each country, but also on disparities in the among the countries average 
income level. Obviously, such measures can be computed only using the combined data 
using (3.3.2). Of course, once the pooled measure (such as the common EU poverty line) is 
defined, it may be possible and meaningful to use it to derive and compare other types of 
statistics by country (such as the ‘proportion in poverty’). 

 
3.3.1.2. Meta-analysis 

 
Insights gained from meta-analysis can be useful to resolve several issues faced in 
combining surveys, as survey heterogeneity, planning data collection, and pooling data 
across surveys (Morton, 1999). Laird and Mosteller (1990) define meta-analysis as “the 
practice of using statistical methods to combine the outcomes of a series of different 
experiments or investigations”. It implies four steps: identifying all relevant studies; 
assessing study quality; dealing with study heterogeneity; and summarizing the results. 

Kish (1998b), in the context of constructing an average birth rate for a continent using 
separate country birth rates, proposes three options for pooling multinational samples that are 
directly comparable to the three main meta-analytic models for combining study effect sizes: 
fixed effects (equal weight to each country’s estimate); equal effects (all subjects are 
independent and of equal importance); and random effects (weighed averages of the study 
proportions). 

 
3.3.1.3. Combining separate sites 

 
When similar data are collected in several sites (cities, provinces or districts of one country) 
of a combined population, but not in all of the sites, alternative treatments of them are 
possible (Kish, 1999a). In combining separate sites three decisions must be made: the 
allocation of sample sizes, whether the samples should be combined and what weighting to 
use. These are expressed as follows by Kish. 

i. Only separate survey estimates ty  may be presented; 

ii. Comparisons between the separate sites require harmonization to render the 
differences )( tt yy −  meaningful; 

iii. Simple cumulations ∑∑= ttt nyy /  of all sample cases amount to assuming that 

the populations tN  of the sites can be considered parts of the same population of 

∑ tN  elements; 

iv. Equal combination kyt /∑  of k sites weight each of the sites equally, disregarding 

both the sample sizes tn  and the population sizes tN ; 
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v. Weighted combinations ∑∑= tttw WyWy /  weight the sites with some measure 

of their relative importance; 
vi. Post-stratification weights imply the construction of pseudo-strata composed of 

similar sites. 

Multinational combinations may be viewed as special cases of multi-site combinations. 
 

3.3.1.4. Multinational designs 
 

Multinational designs arise “not only because of the development of new methods and 
techniques, but especially because of availability of funds needed for these large enterprises, 
emerging effective demand for valid international comparisons, and also the improved 
national statistical and research institutions that are able to implement this complex of 
coordinated research” (Kish, 1999a). 

From a theoretical perspective, combining the provinces of a country is similar to 
combining the nations of a continent, but from a practical view multinational combinations 
differ from multi-domain designs for five main reasons (Kish, 1999a): (i) in the former, the 
centres of decisions reside in separate national offices, and within any nation the agencies for 
policy setting and for resource allocation may be separate; (ii) technical resources are 
national and the separate offices may have very different technical development, 
organizational structures and social connections; (iii) survey variables (education, income, 
health etc.) depend heavily on national boundaries that vary by culture, religions, economic 
and educational levels, etc.; (iv) translations of concepts and of questionnaires are daunting 
challenges that need ingenuity, knowledge and devoted effort; (v) separate samples must be 
designed and operated to meet distinct national conditions. 

Combination of national statistics can occur in six distinct ways and weights (Kish, 
1999a): (1) do not combine but publish only separate national statistics; (2) do not combine 
populations but “harmonize” designs for multinational comparisons in survey measurement 
methods (Kish, 1994); (3) use equal weights (1/H) for every country; (4) weight with sample 
size )( hn  when elements are drawn essentially from the same population or when per-

element variance is the only component of variation; (5) use population weights hW ; (6) use 
post-stratification weights. 

 
 

3.3.2 Examples of category D.s (b): disaggregation for separate reporting by domain 

 
3.3.2.1. Multi-domain designs  

 

Statistics and data from national samples commonly provide the basis for separate reporting 
by sub-national domains. 

Kish (1994) defines domains as partitions (non–overlapping, mutually exclusive) of the 
population, and subclasses as their representation in the sample. He distinguishes design 

domains that designate subpopulations for which separate samples can be planned and 
selected like regions, provinces and states, from cross-classes, meaning domains and 



 62 

subclasses that cut across sample designs, across strata and across sampling unit (classes of 
age, gender, occupation, income, health, education, etc. Kish,1987). 

The diversity of domains may be recognized within national sample designs like 
provinces that in most countries can number from 5 to 20. In samples of smaller populations 
like cities or institutions, similar partitions into major domains are typical, but for smaller 
and more numerous domains deliberate sample designs are not feasible for most samples of 
limited size; in this situation methods of small area estimation have been developed. 

 
 

3.4. Scenario S.d. Same population, different data sources 
 

Estimates for a given population, from different data sources. Here as well, it is useful to 
distinguish two important subtypes. (a) One refers to the situation when the same variables 
or statistics are being estimated by pooling together multiple sources, such as two sample 
surveys on the same topic, two different types of surveys but with a common subset of 
variables (such as household income in income surveys versus income in budget/expenditure 
surveys), or two sources of different types but providing information on a common set of 
variables (for example, income from interviews versus from administrative sources). In such 
situations, the pooling essentially involves aggregation by giving weights to different sources 
in proportion to their expected degrees of reliability. An example of this category can be 
found in Di Marco (2006). 

(b) The second type of situation involves pooling of substantively different types of data 
or indicators so as to construct more complex, composite indicators. The different type of 
data may come from different sources, or from different parts of the same source - they may 
even refer to the same individual units at the micro level. Typically, the pooling involves the 
construction of new variables or estimates for a given sample, rather than of the same 
measures over different samples. A good example is provided by the construction of 
indicators of multi-dimensional deprivation from indicators of monetary and non-monetary 
aspects of poverty (see Betti et al., 2006). 

 

 
3.5. Scenario S.s. Same population, similar data sources 

 
This is the most important scenario in the present context. A number of possible designs and 
applications are noted in this section. Illustrations from EU surveys and technical aspects of 
pooling under a rotational design are discussed in more details in the following sections. 

A good example of pooling of similar sources for a given population is provided by a 
periodic survey, repeated frequently at regular intervals using the same methodology and 
covering essentially the same population. (Of course, the population is not the “same” in the 
literal sense because it changes over time; but in many practical situations, such as in the 
context of repeated national surveys, the target population can be considered “essentially” 
the same). 

A number of examples will be given below based on multiple waves of a panel survey 
such as ECHP or EU-SILC. For instance, poverty rates may be computed for each wave, and 
then appropriately averaged over time to give more stable measures covering a numbers of 
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years. Poverty rates defined using different thresholds in terms of the mean or median 
income (e.g. 50%, 60% or 70% of the median) may be averaged for the same purpose. 
Similarly, poverty analysis may be carried out at different levels of aggregation (e.g. at the 
level of EU, country, NUTS1, NUTS2,…) and the results pooled in some appropriable 
manner. Note also that the concept of “pooling” also incorporates putting together of 
information for the purpose of comparisons such as in the study of time trends or regional 
differentials. 

Another example of this scenario is provided by the “rolling sample” concept promoted 
by Kish (1990). As described below, here the emphasis is on cumulation of data from 
independent samples over time in order to improve sampling precision and permit more 
detailed geographical disaggregation. 

 
 

3.5.1. Periodic Surveys 

 
Periodic surveys, i.e. repeated surveys over time, have been designed and used mainly for 
measuring periodic changes, exploiting the advantages of partial overlaps. 

They have some common fundamental aspects with combining data from spatial units, 
but they show also some practical differences (Kish, 1999a): (i) they are designed for the 
“same” population, which tends to retain some stability between periods; (ii) similar methods 
and designs are feasible, simpler, and usual over different periods than over different 
geographical domains; (iii) these stabilities encourage designs with “overlapping” selection 
of units, in order to reduce unit costs and the variances (from positive correlations); (iv) 
many periodic surveys employ widely known and used, quite standard, methods. 

Kish noted that there now exist several cumulated representative samples of national 
populations. In order to reduce field costs, they are often restricted within fixed selections of 
primary samplings units. The Health Household Interview Surveys of the USA consist 
separate weekly samples of about 1,000 households, cumulated yearly to 52,000 households 
(National Centre for Health Statistics, 1958). These samples are selected by the US Census 
Bureau within their large sample of PSUs. The Australian Population Monitors have 
quarterly non-overlapping samples that are cumulated to yearly samples and these are also 
confined within fixed primary sampling units (Australian Bureau of Statistics, 1993). The 
new Labour Force Surveys of the United Kingdom publishes each month the cumulation of 
three separate non-overlapping monthly samples (Caplan, Haworth and Steele, 1999). 

Periodic surveys are the common form of repeated surveys and of longitudinal studies. 
The periods can be annual, quarterly, monthly or short like daily or less. We can distinguish 
collection periods from reference periods and from reporting periods, and distinguish panels 
of individual elements from overlapping sampling units and from non-overlapping or 
independent selections. 

Most periodic surveys use partially overlapping samples with some kind of rotation 
design in order to reduce variances per sample element and to measure changes between 
periods and make current estimates. 

On the other hand, separate new samples are preferred for cumulations in order to avoid 
positive correlations. 
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Panels denote samples in which the same elements (persons, families, households) are 
measured on two or more occasions for the purpose of obtaining individual changes. From 
the mean of these individual changes the net population change can be estimated. However, 
from the net changes of means we cannot estimate (directly) the gross change of individuals. 
Only panels can reveal the gross changes behind the net changes generally. (Exceptions can 
be found with strong models; Kish, 1987).  

 
 

3.5.2. Split panel designs 

 

Another variation, called the Split Panel Design, replaces the overlaps of rotating designs 
and provides the useful correlations for measuring net changes. Moreover, it serves to 
measure individual changes. Split Panel Designs (Kish 1981, 1987, 1990, 1998a, 1999a) 
displace partial overlaps with two samples: a panel p added to the independent rolling 
samples (a-b-c-d-…).  Thus the periodic samples will consist of pa-pb-pc-pd etc. It has two 
critical advantages over the classical partial overlaps: first, it provides true panels of 
elements (e.g., persons or households), which are missing for the moving elements in designs 
of mere overlaps; second, in Split Panel Designs the correlations are present for all periods, 
not only for the pairs arbitrarily designed in the classical symmetrical rotation designs. 

 

 
3.5.3. Symmetrical rotations 

 

In many surveys, the pattern of rotation is "symmetrical", that is, new sets of units are 
introduced into the sample at regular intervals, and once introduced, each set is retained or 
dropped from the sample following the same pattern (Verma, 1991).  

Many surveys use a straightforward pattern of rotation. The sample consists of "n" sub-
samples; at the beginning of each survey period, one new sub-sample is introduced; and each 
sub-samples remains in the survey for n consecutive periods (rounds). The overlap between 
rounds decreases linearly as the interval separating them increases. For two samples 
introduced i interval apart the overlap is (n-i)/n, up to i=(n-1); after which (i≥n) the overlap 
becomes zero. 

More complicated rotation patterns can be used to vary the degree of sample overlap and 
how it changes with time. 

In many situations, the sample is rotated slowly (or not at all) at higher stage units, and 
more rapidly as we move to lower stage units. This is done to reduce the cost and 
inconvenience of changing the primary sampling units and other higher stage units. 

 
 

3.5.4. Asymmetrical Cumulations 
 

Asymmetrical cumulations are associated with cumulated sample. They denote a strategy of 
combining several periods for small domains, but reporting large domains frequently, for 
example, annual reports for small domains, but monthly national reports (Kish, 1997). 
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Their usefulness is due to three main reasons: (i) the principal divisions of most countries 
tend to vary greatly in size; (ii) statistics are also wanted for subdivisions of principal 
divisions; (iii) cumulations are often needed for rare items. However, asymmetrical 
cumulations can present practical problems of inconsistencies (Kish, 1998a). 

 
 

3.5.5. Rolling samples and censuses 

 
The ‘rolling samples and censuses’ methods may be considered as special types of sample 
cumulations, but they are designed for different and specific functions. 

Kish (1998a) define rolling samples as a combined (joint) design of k separate (non-
overlapping) periodic samples, each a probability sample with selection fraction f = 1/F of 
the entire population, designed such that the cumulation of k periods yields a detailed sample 
of the whole population with f = k/F. For example, if we imagine a weekly national sample 
each designed with same selection rates of f = 1/520, the cumulations of 52 such weekly 
samples would yield an annual sample of 52/520 = 10 percent and then, ten of these annual 
samples would yield a census of 520/520 (Kish, 1999a). 

Rolling samples have been proposed for combining data from periodic surveys into 
annual data. Data are often collected weekly, or monthly, or quarterly in many countries to 
provide periodic comparisons, but these same data can also be combined for annual statistics. 
For efficient cumulation the best designs would be without the overlaps that benefit 
comparisons, but good compromises are feasible that are nearly optimal for both aims. For 
both comparisons and for cumulations all survey aspects (variables and populations) must be 
standardized (Kish, 1999b). 

The American Community Survey (ACS) is the largest and best actual national design for 
rolling samples. Its aim is to bridge the gap in timeliness for the full range of estimates that 
have traditionally come from the census (in countries such as the USA, from the census 
“long form”). Starting from 2003 the ACS questionnaire has been mailed to 250,000 
addresses each month, spread evenly across the country. A rolling sample is used without 
overlaps, so that the annual sample is 3 million different addresses and the 5-year cumulated 
sample is 15 million addresses, compared to about 17 million for the 1990 census long form 
sample (Alexander, 1999). It is expected that in the next US census, only the short form on a 
full coverage basis will be used; the traditional long form will be entirely replaced by the 
rolling ACS sample.  

 

 
3.5.6. More robust poverty measures 

 

Finally, we consider cumulation specifically for constructing more reliable or stable poverty 
measures. 

 
3.5.6.1. Poverty rates cumulated over time 

 
Where the information comes from sample surveys of limited size, a trade-off is required 
between temporal detail and geographical breakdown. In order to achieve greater 
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geographical disaggregation (e.g. by region), the emphasis has to be shifted away from the 
study of trends over time and longitudinal measures to essentially cross-sectional measures 
aggregated over suitable time periods, so as to illuminate the more stable aspects of the 
patterns of variation across geographical areas. Simple average of wave-specific poverty 
rates over waves provides an indicator reflecting the overall situation over the period 
covered. Such measures constructed from averaging over waves tend to be more robust than 
results based only on one wave. They increase precision, that is the effective sample size, 
help to smooth out short-term fluctuations and bring out more clearly the underlying patterns 
and relationships. 

 
3.5.6.2. Poverty rates at different thresholds 

 
In the standard analysis, poverty line is defined as a certain percentage (x%) of the median 
income of the national population; by poverty line threshold we mean the choice of different 
values of x. The three more commonly chosen thresholds are 50%, 60% and 70% of the 
median. 

Irregularities in the empirical income distribution can arise especially in smaller samples. 
Computing poverty rates using different thresholds and then taking their weighted average 
using some appropriate pre-specified weights can reduce such irregularities and increase 
sampling precision. 

Lower thresholds isolate the more severely poor and tend to be more sensitive in 
distinguishing countries or other population groups being compared in terms of the extent of 
extreme poverty. This sensitivity tends to fall as the threshold is raised.  

 
3.5.6.3. Poverty rates with poverty lines at different levels 

The level of a poverty line refers to the population level at which the income distribution is 
pooled for the purpose of defining the poverty line. Commonly used poverty-related 
indicators, such as in the Laeken list, are based on country poverty lines; that is, the poverty 
line used in these indicators is always determined on the basis of the national income 
distribution. The common procedure is to consider the income distribution separately at the 
level of each country, and pool the numbers poor over countries to obtain the overall EU 
poverty rate, but a rate still defined in terms of national poverty lines. Similarly, the numbers 
poor defined according to the national poverty line in each country can be disaggregated by 
region, obtaining regional poverty rates, but still in terms of national poverty lines.  

It is necessary to consider other levels of the poverty line, especially for the construction 
of poverty rates at the regional level. Some examples are: EU poverty line determined on the 
basis of pooled income distribution for all EU countries; country-level poverty lines 
determined on the basis of pooled income distribution separately within each country; 
NUTS1 level poverty lines determined on the basis of pooled income distribution separately 
within each NUTS1 region, and NUTS2 level poverty lines determined on the basis of 
pooled income distribution separately within each NUTS2 region in each country and so on. 

Hence, for deeper analysis it is useful to consider poverty lines defined at different levels, 
such as using a common EU-level poverty line for identifying the poor in each EU country. 
Different levels for the poverty line can also imply a different mix of relative measures 
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(those concerning purely the distribution of income) and absolute measures (those involving 
the mean income levels as well). We can mix any level of analysis of aggregation, 
concerning the units for which the measures are computed, with any poverty line level that 
refers to the population of which the income distribution has been considered in defining the 
poverty line. The poverty line level chosen can make a major difference to the resulting 
poverty rates, in particular when that level (e.g. national) is higher than the level of analysis 
or aggregation (e.g. regional). 

It is important to note that while consolidation over waves and poverty line thresholds 
(discussed in 3.5.6.1 and 3.5.6.2 above) increases sampling precision of the estimates, such 
consolidation or averaging is not meaningful over poverty line levels because different 
poverty line levels capture different aspects of the situation – varying from absolute to purely 
relative aspects - and help to separate out within and between regional variation. It is best, 
therefore, to keep them separate, each regarded as defining a different indicator of poverty 
(Verma et al., 2005). 

 
 

3.6. Example of cumulation in European surveys 
 

In this section we provide two detailed examples of scenario (S.s) from European social 
surveys: namely from the continuous or annual Household Budget Surveys, and the 
rotational design of EU-SILC. 

 

 
3.6.1. Cumulation of data and measures in a continuous Household Budget Survey 

 
Some individual Member States of the EU, have gradually moved towards annual household 
budget surveys, in place of surveys conducted once every few years. There are many 
advantages of continuous surveys. However, often it is not feasible to have large enough 
sample sizes for reporting the results by single years, even if in principle this can be done 
with a continuous survey. For instance, in Denmark (following from Norwegian experience) 
a new model of the Danish HBS was introduced a number of years ago. The idea consists of 
a survey of modest size conducted on a continuous basis, data from which can be cumulated 
over years to achieve more adequate sample sizes.  

How can data and measures be cumulated and averaged over time to construct more 

reliable measures? The following methodology, based on Verma (2001c) attempts to 
provide a response of this question. 

Suppose that in place of conducting one survey of, say, 5,000 households every five 
years, the survey is conducted on a continuous basis with a representative sample of 1,000 
households every year. During the year the workload is also distributed more or less 
uniformly, e.g. enumerating around 80-100 households per month. The work can be 
conducted by a small team of interviewers (e.g. 8 or so) deployed permanently for the task. 
With a continuous flow of data from the field, data preparation and processing also becomes 
an ongoing operation. The sample is designed such that the information can be efficiently 
cumulated over time to achieve sufficient sample sizes, and the results are reported on a 
regular (annual) basis in the form of ‘moving averages’ over a number of most recent years. 
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Two main advantages of the model may be emphasized. 

a. The relatively moderate but regular workload; 
b. The regular updating of the results in a more timely manner. 

Lack of flexibility can be a possible disadvantage of a continuous survey. Major redesigns 
are more easily accommodated in ad hoc surveys separated by long intervals. By contrast, in 
a continuous survey it is necessary to carefully regulate and control changes in content, 
design and procedures.  
To cumulate the survey results over time it is necessary that the following hold. 

i. The sample be representative simultaneously over space and time. This means that 
for annual surveys, for instance, the sample for each year separately should be 
representative of the whole country. Actually, it is desirable to divide the year into 
shorter (such as half-monthly, monthly, or at least quarterly) periods, each with a 
separately representative sample of the country; 

ii. The annual samples should be independently selected, so as to avoid positive 
covariance and permit efficient cumulation over years. If a multi-stage sampling 
design is used, the samples for different periods should ideally use different, 
independently selected primary sampling units; 

iii. The sample sizes should be equal or at least fairly similar from one period (year) to 
the next, even if some variation in the achieved sample sizes from year to year 
cannot be avoided in practice. 

On the basis of these considerations, a good estimation procedure appears to be as follows. 
Weight each annual sample to be representative of the mid-year population of the year 
concerned (taking into account selection probabilities, response rates, external control totals 
etc.), and then put together the annual sample estimates with weights in proportion to their 
corresponding mid-year populations to produce cumulative results. In so far as the 
population does not change much over a few years, the above implies giving equal weights 
to the annual estimates in putting together the results. 

For the following illustration of the details, we will assume that data are collected with 
the sample uniformly distributed over Y years and, for a particular set of items, with a 
moving reference period of X years preceding the survey interview. For instance, for major 
expenditures (such as purchase of motor vehicles) the reference period may be X = 1 year 
preceding the survey; for items such as clothing, we may have a reference period of six 
months (X = 0.5 years); while for items recorded on a continuous basis in a diary, we have 
effectively X = 0; and so on depending on the survey questionnaire. For a single-year survey 
we have Y = 1, while with data cumulated over three years in a continuous survey we have Y 
= 3. For the sample as a whole, cumulated over collection period Y with data collected with 
a moving reference period of X years, the resulting data would pertain to the time period  

P = X + Y        (3.6.1) 

years preceding the last interview. The quantum (volume) of the information collected is 
distributed symmetrically, centred at the point  

P
O 

= (X +Y)/2 – 1        (3.6.2) 
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years before the beginning of the most recent survey year, or  

P
M 

= (X + Y)/2 - 0.5        (3.6.3) 

before the mid-point of the most recent survey year. 
It can be seen that with different values of the reference period for different types of 

items, the situation with cumulation over a number of years (Y > 1) is similar in form to that 
with a conventional survey conducted over a single year (Y = 1). Actually, with increasing 
Y, the period covered becomes less sensitive to differences in the reference periods for 
different types of items in the same survey. This greater uniformity of the time-periods 
covered for different types of items is in fact an advantage of increasing Y (the period of 
cumulation).  

For a fixed reference period such as the preceding calendar year, the situation is similar 
but simpler. For a conventional one-year survey, the period covered is centred at the middle 
of the reference calendar year. We have for Y = 1:  

P
M 

= 1; P
O 

= 1/2        (3.6.4) 

More generally, with cumulation over Y > 1 years we have:  

P
M 

= (P + 1)/2; P
O 

= P/2,       (3.6.5) 

giving, for instance,  
P

M 
= mid-point of the second reference year when cumulated over Y = 3, and  

P
M 

= end of the second reference year when cumulated over Y = 4 years.  

In any HBS, prices (whether actual or imputed) for all items of consumption or 
expenditure need to be adjusted in accordance with the periods they refer to. At the 
individual level, the relevant price is the one prevailing at the mid-point of the reference 
period for the item concerned.  

Exactly the same procedure as that for a single-year survey applies to any continuous 
survey involving cumulation over a number of years.  

In adjusting prices, it is important to note that a single, common adjustment factor - 
reflecting the overall consumer price index for private households - applies to all types of 
items and all categories of households. (Using different adjustment factors for different 
categories will fail to reflect changes in the structure of consumption in terms of values.) 
This fact considerably simplifies the adjustment process. On the other hand, if certain items 
of consumption such as imputed rent are obtained from an external source and refer to a 
different period than the reference period of the survey, price adjustments to bring them in 
line with the survey period have to be made using appropriate quantity, price and quality 
indicators specific to the item concerned (Verma, 2001c).  

 
 

3.6.2. Cumulation of cross-sectional and longitudinal data from EU-SILC 
 

The following describes the EU-SILC rotational panel design, procedures for cumulating 
longitudinal data, and how the relative sample sizes of the cross-sectional and longitudinal 
components may be modified to affect this cumulation. 
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Full details of the following procedures are available in Verma (2001a, 2001b); see also 
Verma and Betti (2006). 

EU-SILC rotational panel design 

Consider two successive years with partially overlapping samples. For the cross-sectional 
sample for each year to be separately representative requires each of the following three 
parts to be a representative sample: (i) the dropped part to be representative of the population 
at year 1; (ii) the added part to be representative of the population at year 2; and (iii) the 
overlapping part to be representative of the population at both times.  

Normally, the above is achieved in practice by selecting the total sample in the form of a 
number of replications. The scheme is illustrated in Figure 3.6.1. Each replication is in itself 
a representative sample, typically with the same design (structure, stratification, allocation, 
etc.) as the full sample, differing from the latter only in sample size. From one year to the 
next, some of the replications are retained, while others are dropped and replaced by new 
replications depending on the extent of the overlap desired.  

 
Figure 3.6.1. 

 
 

Figure 3.6.2 illustrates a simple rotational design (once the system is fully established). The 
sample for any one year consists of 4 replications, which have been in the survey for 1-4 
years (as shown for ‘Time=T’ in the figure). Any particular replication remains in the survey 
for 4 years; each year one of the 4 replications from the previous year is dropped and a new 
one added, giving a 75% overlap from one year to the next. For surveys two years part, the 
overlap is 50%; it is reduced to 25% for surveys three years apart, and to zero for longer 
intervals. With n replications, each kept in the survey for n rounds, the overlap between 
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rounds declines linearly as the interval separating them increases. For two surveys i intervals 
apart the overlap is (n - i)/n, up to the time i = (n - 1), after which (i ≥ n) the overlap becomes 
zero.  
 
Figure 3.6.2. 

 
 

Figure 3.6.3 illustrates how a rotation pattern may be started from year 1. To obtain the full 
sample with 4 replications for the first year, it is necessary to begin with all the 4 
replications. These replications are treated differently over time. One of these is dropped 
immediately after the first year, the second is retained for only 2 years, the third for 3 years, 
and only the fourth is retained for the full 4 years. The pattern becomes 'normal' from year 2 
onwards: each year one new replication is introduced and retained for 4 years.  
 
Figure 3.6.3. 
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Cumulation of longitudinal data 

The main limitation of longitudinal sample is the smallness of the sample size available for 
studying special subgroups in the population: cumulation of data over time may be one 
simple method of increasing the available sample sizes.  

First consider year-to-year transitions in the design of Figures 3.6.2-3.6.3, with r 
subsamples for instance.  

Each year starting with year 2, (r - 1) subsamples provide observations of year-to-year 
transitions. These can be cumulated over time to obtain (r - 1)*(y - 1) subsamples proving 
observations of year-to-year transitions over the years 1 to y. The resulting analysis provides 
an average picture of such transitions over the y years.  

Figure 3.6.4 (based on Figure 3.6.3) provides an illustration with r = 4 which is by far the 
most common design used in EU-SILC. Each year starting with year 3, (r - 2) subsamples 
provide a set of longitudinal observations, each covering a three year period. These can be 
cumulated over time up to survey year y to obtain (r - 2)*(y - 2) subsamples proving 
observations, each covering 3 years. The resulting analysis provides an average picture of 
such observations over the y years.  
 

Figure 3.6.4. 
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As for sets of longitudinal observations each covering a 4-year period, each year starting 
with year 4 provides (r - 3) subsamples for the purpose. These can be cumulated over time 
up to survey year y to obtain (r - 3)*(y - 4) subsamples proving observations each covering 4 
years.  

Adjusting the relative sample sizes of the two components 

The relative size of the panel component can be increased (reduced) only by increasing 
(reducing) its duration (r), but that duration is not a parameter which can be chosen merely 
on the basis of sampling considerations. More flexibility can be achieve by supplementing 
the basic structure by the split panel, i.e. the addition to the basic structure of a panel 
component of unlimited duration; by contrast, the size of the cross-sectional component can 
be increased by adding to the basic structure a fully rotational cross-sectional booster. 

While this option has not be so far used in EU-SILC national survey, it remains 
potentially useful and interesting for regional and other special EU-SILC surveys. 

For example, consider a rotational design with r replications or subsamples, each of size 
s. In the basic model, each subsample is retained in the survey for r years.  
In any round: 

i. the cross-sectional sample is of size n
1
=r*s;  

ii. the longitudinal sample linked over two years is of size n
2 = (r - 1)*s (since all but 

the newly introduced panel provide such linkage with the previous year); 
iii. the longitudinal sample linked over three years is of size n

3 = (r - 2)*s (since all but 

the two most recently introduced panels provide such linkage with year y - 2); 
iv. that linked over four years is of size n

4 = (r - 3)*s; and so on. 

With the addition of a split panel of size p, each of the above is essentially increased by p, so 
that the longitudinal to cross-sectional sample size ratio, such as n

i+1
/n

1 
is increased from 

r

ir

n

ni −
=+

1

1  to 
)/(

)/(

1

1

spr

spir

n

ni

+

+−
=+ . 

With the addition of a cross-sectional booster of size x, the available cross-sectional sample 
is increased by x without affecting the longitudinal components. The longitudinal to cross-

sectional sample size ratio is therefore reduced from 
r

ir

n

ni −
=+

1

1  to 
)/(1

1

sxr

ir

n

ni

+

−
=+ . 

 
 
3.7. Effects of pooling on variance 
 
We use EU-SILC standard sample structure to illustrate the effect of aggregation on resulting 
variance. In this design, each cross-section consists of four panels or subsamples, introduced 
one by one over the preceding years. 
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3.7.1. Reduction in variance by pooling data for subsamples 

 
In aggregating over subsamples, variance decreases in inverse proportion to sample size, 
provided that the subsamples making up the total sample are independent. This is the case 
with EU-SILC samples where each subsample is based on a different set of clusters. There 
are also a number of designs in which different subsamples involve different households but 
all from a common set of clusters. Here the design effects tends to increase as the 
subsamples are pooled, so that the gain in precision is smaller than proportionate to sample 
size. 
 
 
3.7.2. Reduction of variance from averaging different poverty thresholds 

 
As noted, some gain in sampling precision can be obtained by computing poverty rates using 
different thresholds, and then taking their weighted average using some appropriate pre-
specified (i.e., constant or external) weights. A quantitative indication of the magnitude of 
this gain may be obtained on the following lines. Consider three poverty line thresholds, with 

poverty rates 321, ppppi << , and that with fixed weights ∑ = 1, ii WW , a consolidated 

rate is computed as ∑= ii pWp . For simplicity, take the sample as SRS and approximate 

the complex statistic ‘poverty rate’ as an ordinary proportion. In case, since the design 
effects due to departures from SRS are likely to be very similar for the various statistics 
being considers, neglecting them should not substantially affect the conclusions. Under the 
above assumptions, variance of the consolidate poverty rate p is given by: 

( ) ( ) ( )jijiijiii ppWWpWp ,cov2varvar 2
<Σ+Σ=     (3.7.1) 

By considering the poverty indicator variables { }1,0, =kip  for individuals j in the 

population, it can be easily seen that the above equation becomes:  

( ) ( ) ( )ijjiijiiii ppWWppWp −Σ+−Σ= < 121var 2    (3.7.2) 

Compared to variance of a rate (say, 2p ) computed using a single poverty line such as 60% 

of the median, with ( ) ( )222 1var ppp −= , the ratio ( ) ( )( ) 2
1

2varvar ppgV =  gives the 
required factor by which the standard error is reduced.  
The ‘constant’ weights may come from poverty rates estimated at the country level, and then 
the same weights applied to each region. An appropriate choice is (Verma et al. 2005): 









⋅==








⋅=
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2
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1
,

3

1
,

3

1

p

p
WW

p

p
W     (3.7.3) 

where subscripts 1, 2 and 3 refer to the rates computed at the national level with poverty line 
thresholds, respectively, as 50, 60 and 70% of the national median equivalised income. 
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3.7.3. Reduction due to aggregation over waves for a given panel (subsample) 

 
Of course, we cannot merely add up the sample seizes over waves in a panel survey since 
there is a high positive correlation between waves which reduces the gain from cumulation. 
Consider two adjacent waves, with proportion poor as p and p', respectively, with the 
following individual-level overlaps between the two waves: 

 
 Wave w+1 

Wave w Poor (p'i=1) Non-poor (p'i=0) total 
Poor (pi=1) a b p=a+b 
Non-poor (pi=0) c d 1-p=c+d 
total p'=a+c 1-p'=b+d 1=a+b+c+d 

 

Indicating by jp  and '
jp  the {1,0} indicators of poverty of individual j over the two waves, 

we have, with the sum over all (g) individuals: 

( ) ( ) ( ) 1
2 1var vppgppp jj =−=−Σ=

( ) ( )( ) 1,cov cppagpppppp jjjj =′−=′−′−Σ=′    (3.7.4) 

For data averaged over two adjacent years (and ignoring the difference between p and '
p ), 

variance is given by: ( ) 







+=++=

1

11
1112 1

2
2

4

1

v

cv
cvvv . The correlation ( ) 111 Rvc =  

between two periods is expected to decline as the two become more widely separated. Let 
( ) ii Rvc =1  be the correlation between two points i waves apart. A simple and reasonable 

model of the attenuation with increasing i is: ( ) ( )i

i vcvc 111 = . Now in a set of Q periods 
(waves) there are (Q - i) pairs exactly i periods apart, i = 1 to (Q - 1). It follows from the 
above that variance Qv  of an average over Q periods relates to variance 1v  of the estimate 

from a single wave as: 
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 (3.7.5) 

where a is the overall rate of persistent poverty between pairs of adjacent waves (averaged 
over Q-1 pairs), and p is the (cross-sectional) poverty rate averaged over Q waves. 

Averaging over Q waves increases the effective sample size by ( )21 cf .  
 
 

3.7.4. Reduction from averaging over rounds in a rotational design 

 
Consider a rotational sample in which each unit stays in the sample for n consecutive 
periods, with the required estimate being the average over Q consecutive periods, such as 
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4=Q quarters for annual averages. The case n = 1 corresponds simply to independent 
samples each quarter and, under the simplifying assumptions of uniform variances, variance 
of the estimate of average over Q period is: 

Q

V
Va

2
2 =         (3.7.6) 

In the general case, the total sample involved in the estimation consists of (n + Q - 1) 
independent subsamples. These correspond to the rows in the figures below. Each subsample 
is ‘observed’ over a certain number of consecutive periods within the interval (Q) of interest. 
In principle, for a given subsample the sample cases involved in these ‘observations’ are 
fully overlapping. The distribution of the (n + Q - 1) subsamples according to the number of 
observation (m) provided is: 
 

N° of observations (m) → 
provided by n° (x) of  
subsamples 

Total n° of ‘observations’ 
provided by all subsamples 

)1(,...,2,1 1 −= mm  2=x  for each value of m 
11

)1(

1

)1(2
1

mmi

m

i

⋅−=∑
−

=

 

1mm =  )1( 12 −−= mmx  1121 )1( mmmm ⋅−−⋅  

Total n° of subsamples equal to 

11

)1()1(2

12

121

−+=−+=

=−−+−⋅

Qnmm

mmm

 

n° of observations equal to 
Qnmm ⋅=⋅ 21  

 
Here ),min(1 Qnm =  and ),max(2 Qnm = . 

Note that the total number of ‘observations’ provided by all subsamples over interval Q is 
Qnmm ⋅=⋅ 21 . This is consistent with the fact that, obviously, there are n subsamples 

observed at each of the Q periods in the interval being considered (see diagrams below). 
 

Q=4 

n=3 (‘observations’ provided=3*4=12)  n=5 (‘observations’ provided=5*4=20) 
 

� �

�

�

� �   

� � � �

� � �

� �

�

�

� �

� � �

� � � �  

Note: The numbers on the left side of the figures represent the number of subsamples (n+Q-1). 
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For illustration, consider 41 == mQ , 62 == mn . There are 2 contributing subsamples for 

each number 1, 2 and 3)1( 1 =−m  of observations; and in addition there are subsamples 

2)1( 12 =−− mm , each contributing 41 =m  observations. 

Similarly, for 3,4 12 ==== mnmQ , we have 2 contributing subsamples for each 

number 1 and 2)1( 1 =−m  of observations, and in addition 2)1( 12 =−− mm  subsamples 

each contributing 31 =m  observations. 
In the EU-SILC survey in most countries, n is always equal to 4 (each survey rounds is 

made of 4 subsamples), and at the present stage Q could be equal to 2 (years 2003-2004), 3 
(years 2003-2004-2005) and 4 (years 2003-2004-2005-2006). 
So the previous figure could be adapted as follow: 
 

Q= 2 Q= 3 Q= 4

n= 4 n= 4 n= 4

� � � � � � � � �

� � � � � �

� � � �

� � �

� � � � � �

� � � � �

� � �  
 
In order to provide a simplified formulation of the effect of correlation arising from sample 
overlaps, we assume the following model. If R is the average correlation between estimates 
from overlapping samples in adjacent periods, then between points one period apart (e.g. 
between the 1st and 3rd quarters), the average correlations is reduced to R2, the correlation 
between points two periods apart (e.g. the 1st and the 4th quarters) is reduced to R3, and so on. 

Consider a subsample contributing m observations during the interval (Q) of interest with 
full sample overlap. Considering all the pairs of observations involved and the correlations 
between them under the method assumed above, variance of the average over the m 
observations is given by 

( ))(1
2

2 mf
m

V
Vm +⋅=        (3.7.7) 

where 

{ }12 ...)2()1(
2

)( −++⋅−+⋅−⋅= m
RRmRm

m
mf     (3.7.8) 

The term )(1
2

2
mf

m

V
Vm +=










 reflects the loss in efficiency in cumulation or averaging 

over overlapping samples. The following illustrates its values for various values of m: 
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m f(m) 

2 R 

3 )2(
3

2 2
RR +  

4 )23(
4

2 32
RRR ++  

5 )234(
5

2 32
RRRR +++  

 

Repeated observations over the same sample are less efficient in the presence of positive 
correlations (R). The loss depends on the number of repetitions m and is summarised by the 
factor ))(1( mf+ . 

In estimating the average using the whole available sample of )( Qn ⋅  subsample 
observations3, we may simply give each observation the same weight. Taking into account 
the number of observations and the variances involved, the resulting variance of the average 
becomes: 
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         (3.7.9) 

The first factor is the variance to be expected from )( Qn ⋅  independent observations (with 
no sample overlaps or correlation), each observation with variance V2. The other terms are 
the effect of correlation with sample overlaps. Thus effect, F(R) disappears when 0)( =if  
for all i = 1 to m, as can be verified in the above expression. 

An alternative is to take a weighted average of the observations, with weights inversely 
proportional to their variance, i.e. to the corresponding factor ))(1( mf+ . The effect on the 
resulting variance, though may appear algebraically cumbersome, can be easily worked out, 
for any given rotation pattern and value of average correlation R. 

It has the form 

∑ ⋅= 222
iia VWV , with 1=∑ iW      (3.7.10) 

where Wi are the relative weights given to observations in a set involving i repetitions during 
the interval of interest. 

 

 

                                                
3 Obviously , we have n subsamples observed during each of Q periods in the rotational design assumed.  
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3.8. Concluding remark 
 

The objectives of pooling include searching for measures which convey essentially the same 
information but in a more robust manner, reducing random variability or noise. A related 
objective of pooling is trading dimensions – gaining in some more needed directions by 
losing something less needed for particular purposes – such as permitting more detailed 
geographical breakdown but with less temporal detail. A third objective is to summarise over 
different dimensions, providing more consolidated and fewer indicators.  

As noted above, reducing the variability is one of the objectives of pooling. However, if 
after pooling the variance is still high, small area estimates can be applied as possible 
solution. This method will be illustrated in details in the next chapter. 
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Chapter 4 

Small area estimation 
 
 
4.1. Introduction 

 
In recent years, small area estimation methods have token a large importance due to the 
growing demand in public and private sectors of reliable statistics for small areas that cannot 
be satisfied by census, sample surveys or administrative data separately. For these reasons, 
sophisticated small area estimation methods are developed. They link the different sources of 
information in order to obtain more accurate estimators for small geographic areas or small 
domains of interest. 

But what “small area” means? In literature several definitions can be found (Purcell and 
Kish, 1980; Brackstone, 1987; Rao, 1994); in what follows a domain is regarded as “small” 
if the domain-specific sample is not large enough to support direct estimates of adequate 
precision; they are likely to yield large standard errors due to the unduly small size of the 
sample in the area.  

The methods used for SAE can be classified by the type of inference: 
1) Design based: they make use of survey weights and the associated inferences are based 

on the probability distribution induced by the sampling design with the population values 
held fixed. The Horvitz - Thompson estimator is the most used in this category. 

2) Model assisted: they make use of working models and are also design based, aiming at 
making the inferences “robust” to possible model misspecification. The role of the model is 
to describe the finite population point scatter, even if the assumption is never made that the 
population was really generated by the model. The basic property and the conclusion about 
finite population parameters are therefore independent of model assumptions. These 
procedures are thus model assisted, but they are not model dependent. The generalized 
regression estimator (GREG), synthetic and composite estimators are model assisted. 

3) Model based: in literature it is called predictive approach. The parameter of interest, or 
its functions, is considered to be a realization of a random variable. The method starts from a 
specification of a super-population model that accounts for between area variation. The 
model permits empirical best linear unbiased prediction at small area level. Inferences from 
model based estimators refer to the distribution implied by the assumed model. Small area 
models, that make use of explicit linking models based on random area-specific effects, 
(Area Level Random Effects Model (Fay and Herriot, 1979), Nested Error Unit Level 
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Regression Model (Battese et al., 1988)) and poverty mapping models, that link census data 
with survey data and auxiliary information, belong to this category. 
In the next sections we will focus on this last category. 

 
 
4.2. Mixed effects model 

 
Methods based on models are largely used in small area estimation; they imply the 
introduction of probabilistic models that include area specific random effects to account for 
between area variation beyond that explained by the auxiliary information. 

Small area models can be classified into two broad types: (a) area level random effect 
models, which are used when auxiliary information is available only at area level. They 
relate small area direct estimators to area-specific covariate; (b) nested error unit level 
regression models relate the unit values of a study variable to unit-specific covariates. 

 
 

4.2.1. Area level random effects model 

 
Area level random effects model implies a vector of p auxiliary variables 

( )Tipiii xxx ,...,, 21=x  and of parameters of interest iθ  linked by a certain relationship as: 

miuz ii
T
ii 1,...,      , =+= βxθ       (4.2.1) 

where the iz ’s are known positive constants, β  is the 1×p  vector of regression coefficient 

and iu ’s are area-specific random effects assumed to be independent and identically 

distributed (i.i.d.) with mean 0 and variance 2
uσ . Normality of the random effect iu  is often 

used, but it is possible to make “robust” inferences by relaxing the normality assumption. 
For make inferences about the small area means iθ  under model (4.2.1) we assume that 

the direct estimators iθ̂  exists and that the following model holds: 

mieiii 1,...,      ,ˆ =+= θθ        (4.2.2) 

where the sampling errors ie  are independent with ( ) 0| =iieE θ  and ( ) iiie ψθ =|var  often 
assumed known. Normality of the estimator  is also often assumed, but this may not be as 
restrictive as the normality of the random effects. 

Combining (4.2.1) and (4.2.2) we obtain the linear mixed model of Fay and Herriot 
(1979) that takes in account both area random effects iu  and sample errors ie  assuming their 

independence: 

mieuz iii
T
ii 1,...,      ,ˆ =++= βxθ      (4.2.3) 
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4.2.2. Unit level random effects model 

 

The unit level random effects model assumes that a vector of p auxiliary variables 

( )Tijpijijij xxx ,...,, 21=x  is known for each population unit j in each small area i. The variable 

of interest ijy  is assumed to be related to T

ijx  through a one-fold nested error linear 

regression model:  

mi,...,Njuy iiji
T
ijij ,...1  ,1      , ==++= εβx     (4.2.4) 

where iu  and ijε  are random effects mutually independent with media 0 and variance 
2
uσ and 2

εσ  respectively and are often assumed normally distributed.  

We assume that a sample is  of size in  is taken from the iN  units in the i-th area and that 
selection bias is absent (assumption satisfied under simple random sampling). 

The model (4.2.4) can be written in matrix form distinguishing between sampled (s) and 
non sampled (r) units as following: 












+












+












=












=

ir

is

ir

is

i

ir

is

ir

isP
i u

ε

ε

1

1
β

X

X

y

y
y      (4.2.5) 

If we write the mean of small are iY  as: 

iriisii YfyfY )1( −+=        (4.2.6) 

with iii Nnf =  and isy  (mean of sample units) and irY  (mean of non-sampled unit), the 

estimation of small area mean iY  is equivalent to predict irY  given isy  and isX . 
 
 

4.2.3. Generalized Linear Mixed Model 

 

In small area estimation, many variables are not normally distributed, then linear mixed 
model cannot be applied. It is so necessary to use generalized linear mixed model, as logistic 
model for binary response or exponential model for count values. 

In this model the vector y of values of the interest variable, is assumed to depend on a 
vector η  related to covariates and random components as:  

ZuXβη +=         (4.2.7) 

Considering the partition sampled and non-sampled (as in the previous section) units the 
parameter of interest can be written as: 

rrss yayaθ +=         (4.2.8) 
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and the predictor of θ  is given substituting ry  with the predict values (Saei and Chambers, 
2003): 

( )uZβXayayayaθ ˆˆˆ
rrrssrrss f ++=+=     (4.2.9) 

 
 
4.2.4. Empirical Best Linear Unbiased Predictor (EBLUP) 

 

Most small area models can be regarded as special cases of a general linear mixed models 
involving fixed effects, that determine the mean value of response variable y, and random 
effects that govern the variance-covariance structure (Mc Culloch and Searle, 2001). 
Moreover, small area parameters, as means or total, can be expressed as linear combinations 
of fixed and random effects. Following a classical approach, we can obtain best linear 
unbiased predictor (BLUP) estimators that minimize the mean square error among the class 
of linear unbiased estimators and that do not depend on normality of the random effects. 
However, BLUP estimators depend on the variance and covariance of random effects which 
can be estimated by moments method or, assuming normality, by maximum likelihood (ML) 
or restricted maximum likelihood (REML) methods. Using these estimated components in 
the BLUP estimator we obtain a two-stage estimator: the empirical BLUP or EBLUP 
estimator (Harville, 1991) 4. 

In the next sub-sections EBLUP theory is applied to the basic area level and the basic unit 
level models and essential results are showed (for details see Rao 2003). 

 
4.2.4.1 Basic area level model 

 
The basic area level model is given by: 

,...,mieub iii
T
ii 1      ˆ =++= βxθ       (4.2.10) 

where ix  is a 1×p  vector of area level covariates, )(0, i.i.d. 2
uiu σ  and independent of 

sampling error )(0, i.i.d. iie ψ  with known variance iψ , iθ̂  is a direct estimator of i-th area 

                                                
4 The general linear mixed model can be defined as: eΖuXβy ++=  where y is the n x 1 vector of sample 
observations, X and Z are known n x p and n x h matrices of full rank, and u and e are independently distributed 
with means 0 and covariance matrices G and R depending on some variance parameters δ . 

RZGZVy
T +==)(V . The BLUP estimator of a linear combination umβ1yδ,

TT +== )(τµ  is given by 

)βX(yVGZmβ1umβ1yδ,
1TTTTT ˆˆˆˆ)(ˆˆ −+=+== −τµ  with β̂  the best linear unbiased estimator (BLUE) of β  

and )βX(yVGZ(δuu
1T ˆ)ˆˆ −== − . Replacing δ  by the estimator (y)δδ ˆˆ =  we obtain the EBLUP estimator: 

)βX(yVZGmβ1y,δ
1TTT ˆˆˆˆ)ˆ(ˆ −+= −τ  with [ ] )()()()ˆ(ˆ 321 δδδy,δ gggMSE ++≈τ . The MSE components are 

expressed as follows: ZG)mVGZ(Gmδ
1TT −−=)(1g , dX)V(Xdδ

11TT −−=)(2g  with Xb1d TT −=  and 

1TTT
VGZmb

−= , ( ) ( ) 





∂∂∂∂= )ˆ(//)(3 δVbVbδ

TTTtrg δδ  where )ˆ(δV  is asymptotic covariance matrix of δ̂ . 
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parameter iθ  and ib  is a known positive constant. Model (4.2.10) is a special case of the 

general linear mixed model with block diagonal covariance structure and: ii θ̂=y , T
ii xX = , 

ii b=Z , ii v=v  ii e=e , T

p ),...,( 1 ββ=β , 2
ui σ=G , ii ψ=R , 22

iuii bσψ +=V . Moreover, 

ii
T
iii ub+== βzθµ  so that ii z1 =  and ii b=m . Then, substituting the above values in the 

general for the BLUP estimator of iµ  (see note 1), we can obtain the BLUP estimator of iθ  

as a weighted average of the direct estimator iθ̂  and the regression-synthetic estimator βx ˆT
i : 

( ) ( ) βxβxβx ˆ1ˆˆˆˆ)ˆ,(ˆ 2 T
iiii

T
iii

T
iiui γθγθγθστ −+=−+=    (4.2.11) 
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)ˆ,(ˆ 2
iui θστ  estimator is valid for general sampling designs and it is design-consistent because 

iγ  tends to 1 as the sampling variance iψ  tends to 0. 

The MSE of the BLUP estimator )ˆ,(ˆ 2
iui θστ  is easily obtained from the general formula: 
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Replacing 2
uσ  by an estimator 2ˆ

uσ  we obtain an EBLUP estimator of )ˆ,(ˆ 2
iui θστ : 

( ) βx ˆˆ1ˆˆ)ˆ,ˆ(ˆ 2 T
iiiiiui γθγθστ −+=       (4.2.15) 

where iγ̂  and β̂  are the value of iγ  and β  when 2
uσ  is preplaced by 2ˆ

uσ . 
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Under regularity conditions and normality of the errors iu  and ie , the MSE of )ˆ,ˆ(ˆ 2
iui θστ  

can be approximated as: 

)()()(]ˆ,ˆ(ˆ[ 2
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2
2

2
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2
uiuiuiiui gggMSE σσσθστ ++=     (4.2.16) 

where )( 2
1 uig σ  and )( 2

2 uig σ  are given by (4.2.13) and (4.2.14) and 

)ˆ()()( 2322422
3 uuuiiiui Vbbg σσψψσ −+=      (4.2.17) 

 
4.2.4.2. Basic unit level model 

 
In this section the basic unit level model and the correspondent EBLUP estimator are 
illustrated briefly. Noting that the i-th small area mean can be represented as 

)1(  , ,...,miuY ii
T
ii =++= εβX , and utilising for sample unit the model: 

,...,miu ini

T

ii i
1      , =++= ε1βXy      (4.2.18) 

we can obtain the EPLUP estimator of iir u+βX  where irX  is the mean of non sample units. 

Substituting irY  in (4.2.6) with the predictor, and assuming 2
uσ  and 2

εσ  known and 

iii Nnf /=  negligible, the BLUP estimator of iY  is given by: 

( ) ( ) βXβxX ˆ1]ˆ[),(ˆ 22 T
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iwiiwiui y γγσστ ε −+−+=    (4.2.19) 

where β̂  is the BLUE estimator of β̂  and 
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iwy  and iwx  weighted mean with weights ijw  (Prasad and Rao, 1990). 

The BLUP estimator (4.2.19), then, is a weighted average of the “survey regression” 

estimator ( ) βxX ˆT

iwiiwy −+  and the regression synthetic estimator βX ˆT
i .  

Replacing 2
uσ  and 2

εσ  by estimators 2ˆ
uσ  and 2ˆεσ  we obtain an EBLUP estimator: 
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iwiiwiui y γγσστ ε −+−+=    (4.2.20) 

where iγ̂  and β̂  are the value of iγ  and β  when ),( 22
εσσ u  is preplaced by )ˆ,ˆ( 22

εσσ u . 

The MSE approximation of )ˆ,ˆ(ˆ 22
εσστ ui , under regularity conditions and normality of the 

error iu  and ijε  is given by: 
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where 
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 where )ˆ( 2
uV σ  

and )ˆ( 2
εσV  are the asymptotic variances of 2ˆ

uσ  and 2ˆεσ , )ˆ,ˆ( 22
εσσ uCOV  is the asymptotic 

covariance of )ˆ,ˆ( 22
εσσ u . 

 
 
4.3. M-quantile models 

 
The main limitations of small area models are summarized in the follows: 

1. these models depend on parametric and distributional assumptions; 
2. random effects are assumed to be normally distributed; 
3. the unit levels models don’t take in account  of  sampling design; 
4. the estimation process of parameters of the model doesn’t consider the possible 

presence of outliers;  
5. the domains are defined when the model is estimated. 

To overcome the problems associated with the distributional assumptions of random effects, 
Chambers and Tzavidis (2006) proposed a new approach to small area estimation based on 
modelling quantile-like parameters of the conditional distribution of the target variable given 
the covariates. This new approach allows that inter–domain differences are characterized by 
the variation of area-specific M-quantile coefficients, instead of random area effects as on 
mixed models. The Chambers and Tzavidis proposal has some practical advantages, as no 
distributional assumptions and specification of random effects, easy non-parametric 
specification, straightforward outlier robust inference and incorporation of survey weights, 
estimation of other small area quantities (medians, percentiles, etc.). However, M-quantile 
modelling presents some drawbacks in asymptotic theory, when variables are nominal and it 
is never as efficient as mixed models when the assumptions of the latter approach are true. 

 
 

4.3.1. Quantile regression 

 
As seen in the previous sections, a linear mixed effects model can be expressed as: 

n,...,...,m   jiy iji
T
ij

T
ijij ,11       , ==++= εuzβx     (4.3.1) 

After the estimation of fixed and random effects by Maximum Likelihood or Restricted 
Maximum Likelihood and using the available auxiliary information, domain specific 
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estimates can be calculated. For example, if we know the population size iN  of the small 

area i we can obtain the EBLUP estimator of the mean iy  as: 
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
++= ∑ ∑
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−

i isj rj
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ijijii yNy uzβx ˆˆˆ 1      (4.3.2) 

This regression model, tracing the behaviour of the mean of y for each x, gives an incomplete 
picture of a distribution. Then, it is to be hoped that a so called quantile regression is used, 
that is to fit a family of regression models, each one summarising the behaviour of a different 
percentage point of y at each point in the set of x’s. 

In particular, in the linear case, quantile regression leads a family of planes indexed by 
the value of the corresponding percentile coefficient )1,0(∈q . For each value of q the 

corresponding model shows how )(xQq , the th
q  quantile of the conditional distribution of y 

given x, varies with x: 

q
T

qQ βxx =)(         (4.3.3) 

where qβ  is estimated by minimising ( ) ( ) ( ){ }001
1

>−+≤−−−∑
=

bxbxbx
T
jj

T
jj

n

j

T
jj yqyIqy  

with respect to b. Quantile regression can be viewed as a generalisation of median 
regression. 

 
 

4.3.2. M-Quantile regression 

 
Quantile regression models can be fitted using linear programming methods that not 
necessarily guarantee convergence and a unique solution. For this reason, it is preferable 
using M-quantile regression whose iteratively reweighted least squares (IRLS) algorithm is 
guaranteed to converge to a unique solution when a continuous monotone influence function 
is used. 

M-quantile regression provides a “quantile-like” generalisation of regression based on 
influence functions (M-regression). Influence functions determine the effect that residuals 
have on the estimation procedure. 
In particular, the M-quantile of order q for the conditional density of y given x is defined as 

the solution ),( ψQq x  of the estimating equation 0)|()( =−∫ dyyfQyψq x , where ψ  

denotes the influence function associated with the M-quantile, often the Huber Proposal 2 
influence function, ( ) ( )ctItcctctItψ >+≤≤−= )sgn()(  where c is a cut-off constant. 

A linear M-quantile regression model is given by: 

)(),( qψQ
T

q ψβxx =        (4.3.4) 
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For specified q and ψ , estimates of these regression parameters can be obtained by solving 
the estimating equation: 

( )[ ] 0 )(ˆ
1

1 =−∑
=

−
j

n

j

T
jjq qyψ xβx ψν       (4.3.5) 

where { })0()1()0()(2)( ≤−+>= tIqtqItψtψq  and ν  is a suitable robust estimate of scale. 

 
 
4.3.3. M-Quantile regression in small area estimation 

 
Suppose to characterise conditional variability across the population of interest by the M-
quantile coefficient of the population units, that is, for unit j with value jy  and jx , the value 

jq  such that jjq yQ
j

=),( ψx . By definition; 
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  (4.3.6) 

when the conditional M-quantiles follow a linear model, with ∑
∈

−=
ij

jii qNq
1  the average 

value of the M-quantile coefficients of the units in area i and is , ir  respectively the sampled 

and non-sampled units in area i. A predictor of iy  is given by: 
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jjii qyNy )ˆ(ˆˆ 1

ψβx       (4.3.7) 

that is equivalent to using )(ˆ
i

T
j qψβx  to predict the unobserved value jy  for population unit 

irj ∈ . For fixed q, the estimator of the M-quantile regression coefficient )(qψβ  is 

( ) ss
T
sss

T
s qqq yWXXWXβ )()()(ˆ 1−

=ψ  with sX  the n x p matrix of sample covariates, sy  the 

n-vector of sample y values and )(qsW  the diagonal matrix of final weights produced by 

IRLS algorithm used to compute )(ˆ qψβ . 

Moreover, in order to calculated (4.3.7) we need the estimated M-quantile coefficient for 

area i, i.e. iq̂ , that depends on the sample M-quantile coefficients, { }sjq js ∈;  which 

characterise the variation in the conditional distribution of y given x in the sample as the jq  

characterise this distribution in the population. The jsq  values are obtain by linear 
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interpolation over a fine grid defined on the (0,1) interval and using the sample data to fit M-
quantile regression lines at each value q on this grid. 

Provided the sampling method is non-informative given x, iq̂  can be calculated as the 

mean or other quantities (e.g. median) of the jsq  values in area i. 

 

 
4.3.4. Mean squared error 

 

An approximation of the prediction variance of (4.3.7) is given by: 
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where ( ) risis
T
ssisiji qqu tXWXXWu

11)ˆ()ˆ()(
−−==  with rit  the sum of the non-sample 

covariates in area i. If we take this variance to be unconditional, i.e. not specific to the area 
from which jy  is drawn, the estimator of the prediction variance of (4.3.7) becomes: 
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Otherwise, if we consider )( jyVar  conditionally, i.e. specific to the area k from which jy  is 

drawn, we have: 
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In both formulas (4.3.9) and (4.3.10) ( ))1/())((22 −−∈+= −
iiiijiij nnNijIuNθ . 

It follows that the estimator of the mean square error of (4.2.7) is given by: 
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where si1  is the n-vector with i-th component equal to one whenever the corresponding 
sample unit is in area i and is zero otherwise. 
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4.4. General framework for robust bias adjusted small area predictors 
 

Chambers and Tzavidis (2006) observed that M-quantile predictors of small area means are 
biased. In 2008 they proposed a bias adjustment based on representing this predictor as a 
functional of a corresponding predictor of the small area empirical distributional function 
using the Chambers and Dunstan (1986) smearing type predictor or the Rao-Kovar-Mantel 
(1990) predictor of the distributional function. 

The area empirical distribution function of y for area i can be expressed by: 













≤+≤= ∑∑
∈∈

−

ii rj

j

sj

jii tyItyINtF )()()( 1      (4.4.1) 

Then the problem of predicting )(tFi  reduces to predicting the values jy  for the non-

sampled units in small area i replacing them by their predicted value jŷ  under an 

appropriate model. The predictor of 4.4.1 is given by: 
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Consequently, the predictor of the mean is expressed as: 
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We can note that the EBLUP is the mean functional defined by (4.4.2) when 

i
T
j

T
jj uzxy ˆˆˆ += β , while the M-quantile predictor is a mean functional with )ˆ(ˆˆ

i
T
jj qxy ψβ= . 

In general, a predictor pim̂  of the th
p  quantile of the distribution of y in area i is defined 

as the solution to the estimating equation: 

ptFd
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i =∫
∞−

)(ˆ
ˆ

        (4.4.4) 

given a suitable predictor )(ˆ tFi  of the area i distribution of y. 
As said above, Chambers and Tzavidis (2006) observed that M-quantile predictors of 

small area means can be biased. By combining a smearing argument (Duan, 1983) with a 
model for finite population distribution of y, Chambers and Dunstan developed a model-
consistent predictor for a finite population distribution function. Assuming that the residuals 

jjj y µε −=  are homoskedastic within the small area of interest, formula (4.4.2) becomes: 
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and the mean functional defined by 4.4.4 takes the value: 
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where iii Nnf /=  is the sampling fraction in area i. We obtain a bias-adjusted alternative to 

the EBLUP when we substitute i
T
j

T
jj uzx ˆˆˆ += βµ  in 4.4.6, while we obtain a bias-adjusted 

M-quantile predictor when we substitute )ˆ(ˆˆ
i

T
jj qx ψβµ = . 

A predictor that is both design-consistent and model-consistent has been proposed by 
Rao-Kovar-Mantel. Under simple random sampling, for the finite population distribution 
function, it is expressed as: 
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  (4.4.7) 

 
 

4.5. Spatial models 
 
 

4.5.1. The Spatial EBLUP estimator 

 
As noted in the previous sections, model-based methods of small area estimation are often 
based on assuming a linear mixed models, with area-specific random effects to account for 
between area variation beyond that explained by auxiliary variables included in the fixed part 
of the model. Independence of these random effects is assumed in most cases, but it is often 
reasonable to suppose that the effects of neighbouring area are correlated, with the 
correlation decaying to zero as the distance between these areas increases.  

As illustration of models with spatial dependence, only area level random effect model 
will be take into consideration. 

Let θ  be the m × 1 vector of the parameter of interest  and assume that the m × 1 vector 

of the direct estimator θ̂  is available and design unbiased, that is eθθ +=ˆ  with e the vector 
of independent sampling errors with mean 0 and known diagonal variance matrix ψ. The 
spatial dependence among small areas is introduced by specifying a linear mixed model with 
spatially correlated random effects for the θ  parameter: 

ZvXβθ +=         (4.5.1) 

where X is the m × p matrix of the area specific auxiliary covariates, β is the regression 
parameters vector p × 1, Z is a m × m matrix of known positive constants, v is the m ×1 
vector of the second order variation. Basically there are two approaches to describe the 
spatial second order variation: Simultaneously Autoregressive Models (SAR) and 
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Conditional Autoregressive Models (CAR). In the follows, the deviations from the fixed part 
of the model Xβ are the result of a simultaneously autoregressive process with parameter ρ, 
spatial autoregressive coefficient and m × m proximity matrix W (Cressie, 1993; Anselin, 
1992): 

uWIvuWvv
1)( −−=⇒+= ρρ      (4.5.2) 

where u is a m × 1 vector of independent error terms with zero mean and constant variance 
2
uσ  and I is the m × m identity matrix. Combining (4.5.1) and (4.5.2), with e independent of 

v, we obtain the model with spatially correlated random area effects: 

euWIZXβθ +−+= −1)(ˆ ρ       (4.5.3) 

The error terms v and e have, respectively, mm ×  covariance matrices, 

[ ] 12 ))((
−

−−= T
u WIWIG ρρσ , that is the SAR dispersion matrix, and )( idiag ψ== ψR . 

Then, the covariance matrix of θ̂  is given by: 
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T 12 ))(()(
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−−+=+= ρρσψ   (4.5.4) 

The W matrix describes the neighbourhood structure of the small areas whereas ρ defines the 
strength of the spatial relationship among the random effects associated with neighbouring 
areas. The spatial weight matrix represents the potential interaction between locations. A 
general spatial weight matrix can be defined by a symmetric binary contiguity matrix which 
can be generated from topological information provided by the geographical information 
system (GIS) based on adjacency criteria: the element of the spatial weight matrix }{ ijw  is 

one if location i is adjacent to location j , and zero otherwise. Generally, for ease of 
interpretation, the general spatial weight matrix is defined in row standardized form, in 
which the row elements sum to one. In this ρ is called a spatial autocorrelation parameter. 

The Spatial Best Linear Unbiased Predictor (Spatial BLUP) estimator of iθ  is defined as: 
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where θVXXVXβ ˆ)(ˆ 111 −−−= TT  and T

ib  i is 1 × m vector (0, 0, . . . 0, 1, 0, . . . 0) with 1 in 

the i-th position. The Spatial BLUP is equal to the traditional BLUP under the random area 
specific effects model when ρ = 0 (Pratesi and Salvati 2005). 

The estimator ),(
~ 2 ρσθ u

S
i  depends on the unknown variance components 2

uσ  and ρ. 

Replacing the parameters with estimators 2ˆ
uσ , ρ̂ , a two stage estimator )ˆ,ˆ(

~ 2 ρσθ u
S

i  is 
obtained and is called Spatial EBLUP: 
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Assuming normality of the random effects, 2
uσ  and ρ can be estimated both by maximum 

likelihood (ML) and restricted maximum likelihood (REML) procedures. The ML 

estimators, 2ˆ
uσ  and ρ̂ , can be obtained iteratively using the “Nelder-Mead” algorithm 

(Nelder and Mead, 1965) and the “scoring” algorithm in sequence. This is necessary because 
the log-likelihood function has multiple local maxima. 

For the Spatial EBLUP, given normality of random effects, the )]ˆ,ˆ(
~

[ 2 ρσθ u
S

iMSE  is given 
by: 
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where ),( 2
1 ρσ uig  is due to the estimation of random effects, ),( 2

2 ρσ uig  depends on the 

estimation of β  and ),( 2
3 ρσ uig  is due to the estimation of variance components (for details 

see Pratesi and Salvati, 2008). 
 
 
4.5.2. M-Quantile geographically weighted regression 

 
M-quantile models in small area estimation also implicitly assume independence of random 
area effects. As we saw in the previous section, SAR models allow for spatial correlation in 
the error structure. An alternative approach to incorporating the spatial information in the 
regression model is by assuming that the regression coefficients vary spatially across the 
geography of interest. Geographically Weighted Regression (GWR) (Brunsdon et al., 1999; 
Fotheringham et al., 1997; Yu and Wu, 2004) extends the traditional regression model by 
allowing local rather than global parameters to be estimated. 
A GWR model for the conditional expectation of y given x at location u is given by5: 

jlljljl uxy εβ += )(        (4.5.8) 

with n observations at a set of L locations };,...,1;{ nLLlul ≤=  and ln  data values 

},...,1;,{ ljljl njxy =  observed at location lu . )(uβ  at arbitrary location u is estimated using 

weighted least squares as: 
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where ),( uuw l  is a spatial weighting function whose value depends on the distance from 

sample location lu  to u in the sense that sample observations with locations close to u have 
more weight than those further away. Usually, Euclidean distance is used. 

Generalizing, the M-quantile GRW model is given by: 

                                                
5 The subscript i is dropped because M-quantile models do not depend on how areas are specified. 
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),(),,( quxuxQ
T

q ψβψ =        (4.5.10) 

where ),( quψβ  varies with u and q and it can be estimated by solving: 
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ψβψ     (4.5.11) 

with )(tqψ  influence function, usually Huber proposal 2 function. The estimate ),(ˆ quψβ  is 

obtained using an iteratively re-weighted least squares algorithm that combines the 
iteratively re-weighted least squares algorithm used to fit ‘spatially stationary’ M-quantile 
model and the weighted least squares algorithm used to fit a GWR model. 

An alternative spatial M-quantile model with a smaller number of parameters is one that 
combines local intercepts with global slopes as: 

),()(),,( quqxuxQ
T

q ψψ δβψ +=       (4.5.12) 

where ),( quψδ  is a real valued spatial process with zero mean function over the space 

defined by locations of interest. This model is fitted in two steps: first of all, we ignore the 
spatial structure in the data and estimate )(qψβ  directly via the iterative re-weighted least 

squares algorithm used to fit the standard linear M-quantile regression model, then we 
estimate ),( quψδ  using geographic weighting. 

The results just obtained of the spatial extensions of the M-quantile model can be applied 
on small area estimation. Assuming only one population value per location (index l dropped) 
and that the geographical coordinates of every unit in the population are known, the bias-
adjusted M-quantile GWR predictor of the mean y  in small area i is: 
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(4.5.13) 

where iθ̂  is the average value of the sample M-quantile GWR coefficient in area i. 
An estimator of a first order approximation to the mean square error of (4.5.13) under the 

model (4.5.10) has been proposed by Salvati et al. (2008). 
 
 

4.6. Temporal models 
 
Most of the research on small estimation has focused on cross-sectional data at a given point 
in time. However, often data are available for many small areas simultaneously, then, it is 
useful to borrow information both cross-sectionally and over time. Rao and Yu (1994) 
proposed a combined cross-sectional and time-series model involving auto-correlated 
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random effects and sampling errors with an arbitrary covariance matrix over time. This 
extension of the basic Fay Herriot is given by: 

,...,T,...I,   tieuvxy ititiitit 11       , ==+++= β     (4.6.1) 

where ity  is a direct estimator of the indicator of interest for area i and time instant t, and itx  

is a vector containing the aggregated values of p auxiliary variables. They assume that the 

random small area effects iv  are i.i.d. normal with variance 2
vσ , the random vectors itu ’s 

follow autoregressive processes of order 1 (i.i.d. AR(1)) with variance and auto-correlation 

parameters 2
uσ  and ρ  respectively, the sampling errors ite ’s are normally distributed with 

zero mean and block diagonal covariance matrix Σ  with arbitrary but known blocks iΣ  

where iΣ  is a T x T matrix, and the iv ’s, the itu ’s and the ite ’s are independent. 

If 2
uσ , 2

vσ  and ρ  are known, the BLUP estimator of the mean iTiiTiT uv ++= βxθ
'  is: 

)ˆ()()(ˆ~ 122'22'
βXyJΓΣγ1βxθ iiTviTTviTiT −++++= −σσσσ   (4.6.2) 

where β̂  is the generalized least-squares estimator of β , Γ  is a T x T matrix with elements 

)1/( 2|| ρρ −− ji , Tγ  is the T-th row of Γ  and '
TTT 11J = . (4.6.2) can also be written as a 

weighted sum of the direct estimator iTy , the synthetic estimator βx ˆ'
iT  and the residuals 

βx ˆT
ijijy − , j=1,…,T-1: 
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=

    (4.6.3) 

where 1'22**
1 )(),...,( −+= iTTviTi ww Vγ1 σσ  with Tvii JΓΣV

22 σσ ++= . 

A two-stage estimator (EBLUP) )(ˆ ρθ iT  of iTθ , supposing ρ  known, is obtained from 

(4.6.2) by substituting the consistent estimators )(ˆ 2 ρσ  and )(ˆ 2 ρσ v  for 2σ  and 2
vσ  

respectively. The variance components estimators are obtained by Rao and Yu (1994) 
extending the method of Pantula and Pollock (1985) to the model with both auto-correlated 
errors itu  and sampling errors ite . 

Moreover, a second order approximation to the )](ˆ[ ρθ iTMSE  under normality of the 

errors iv , itu  and ite  is given by: 

),,(),,(),,()](ˆ[ 22
3

22
2

22
1 ρσσρσσρσσρθ viTviTviTiT gggMSE ++≈  (4.6.4) 

where  
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2

2
222

1 TTviTTvvviTg γ1Vγ1 σσσσ
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σ
σρσσ ++−

−
+= −  (4.6.5) 
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{ } { })()()(),,( 221'11''221'22
2 TTviiiTTTviiiTviTg γ1VXxXVXγ1VXx σσσσρσσ +−+−= −−−−

          (4.6.6) 

and  

)(),,( *'22
3 Σ= V∆∆trg viT ρσσ       (4.6.7) 

where *Σ  is the 2 x 2 covariance matrix of unbiased estimators of )(2 ρσ  and )(2 ρσ v , and 

)/,/( 22
vσσ ∂∂∂∂= bb∆  with 1'22' )( −+= iTTv Vγ1b σσ . 

A second-order approximation to estimator of )](ˆ[ ρθ iTMSE  for a small or moderate 
number of time points and a relatively large number of small area is given from (4.6.7) 

substituting the consistent estimators )(ˆ 2 ρσ  and )(ˆ 2 ρσ v  for 2σ  and 2
vσ  respectively. 

The results obtained above assume known ρ . However, in practice, ρ  is often unknown. 

In this case, Rao and Yu (1994) proposed three different methods to estimate iTθ . In the first 

one a two-stage estimator )ˆ(ˆ ρθ iT  based on a prior guess 0ρ  is used. In method 2, the 

sampling errors ite is ignored and a naive estimator of ρ  is obtained as: 
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where XyXXx
1'' )(ˆ −−= ititit ya  is the it-th ordinary least-squares residual. Even if this 

estimator is inconsistent and typically underestimates ρ , the resulting two-stage estimator 

)ˆ(ˆ
NiT ρθ  remains unbiased. Finally, in method 3 a consistent moment estimator of ρ  is 

obtained by taking into account the sampling errors in the follows way: 
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where )()(
, it
i
tt eVar=σ , ),( 1,

)(
1, ++ = tiit

i
tt eeCovσ  and ),( 2,

)(
2, ++ = tiit

i
tt eeCovσ . This last method 

runs into difficulties since ρ̂  often takes values outside the admissible range (-1, 1) 

especially for small T or small 2σ .For each of the three methods, the MSE of the two-stage 

estimator )ˆ(ˆ ρθ iT  is obtained by substituting the estimate of ρ  in (4.6.4). 
Morales et al. (2009), proposed a model related to the model (4.6.1) that considers only 

itu  to take into account the area by time variability through specific random effects. The 
model is: 



 97 

iitititit ,...,m,...I,   tieuxy 11      , ==++= β     (4.6.10) 

where ity  is a direct estimator of the indicator of interest for area i and time instant t, and itx  
is a vector containing the aggregated values of p auxiliary variables. They assume that the 
random vectors itu ’s follow i.i.d. AR(1) processes with variance and auto-correlation 

parameters 2
uσ  and ρ  respectively, the sampling errors itje ’s are normally distributed with 

zero mean and known variance 2
itσ  and the itu ’s are independent of the ite ’s. 

They proposed also a simplification of model (4.6.11) assuming 0=ρ  that is useful for 
those cases where survey data is only available for a reduced number of time instants. 

 
 

4.7. Non-parametric M-quantile regression 
 

In the previous sections we described basic and M-quantile regression on small area 
estimation assuming that the quantities of interest are linear combinations of the covariates. 
This method can lead to biased estimators of the small area parameters when the functional 
form of the relationship between the quantity of interest and the covariates is not linear. In 
this case, using nonparametric smoothing of this functional form can gives better results. In 
the following we focus on two different approaches: first of all Opsomer et al. (2008) 
employed penalized splines (p-splines) for small area estimation based on mixed effects 
models; on the other hand Pratesi et al. (2006a, 2006b) proposed a nonparametric M-quantile 
regression based on p-splines, applied it to the context of small area estimation. The choice 
of p-splines, that rely on a set of basis functions to handle nonlinear structures in the data, is 
due to their simplicity of implementation (Ruppert et al. 2003).  

In general, the spline-based non-parametric model is given by: 

iii xmy ε+= )(0         (4.7.1) 

where the iε  are independent random variables with mean 0 and variance 2
εσ  and the 

function (.)0m  is unknown but it can be approximated via p-splines by: 

p
k

K

k

k
p

p xxxxm +

=

−++++= ∑ )(...),,(
1

10 κγβββγβ    (4.7.2) 

Here, pp
tt =+)(  if t > 0 and 0 otherwise, p is the degree of the spline, kκ  for k = 1, …, K is a 

set of knots, '
0 ),...,( pββ=β  and '

1 ),...,( Kγγ=γ  are the coefficient vectors of the 

parametric and the spline part of the model respectively. To avoid the problem of over-
parameterization a penalty on the magnitude of the spline parameters γ is put. 

Opsomer et al. assume that in small area estimation the data follow the model: 

εγβ +++= DuZXY        (4.7.3) 
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where '
1 ),...,( nddD =  with ijd  the indicator taking value 1 if observation j is in small area i 

and 0 otherwise, ),...,,1( p
jjj xx=x  and ))(,...,)(( 1

p
Kj

p
jj xx ++ −−= κκz . 

Model (4.7.3) includes the spline function as a non-parametric mean function 
specification, and the small area random effects Du. γZ  is a random-effect term. If the 
variances of the random components are known, BLUP estimators of parameters are 
obtained, otherwise variance components are estimated via restricted maximum likelihood 

minimization or related methods and EBLUP estimators are given. 
For a given small area i, usually the quantity of interest is the mean: 

iiii uy ++= γβ zx        (4.7.4) 

where ix  and iz  are the means of jx  and of the spline basis functions over the small area 

and they are assumed to be known, and iu  is the small area effect. A predictor of iy  is given 
by: 

uezx ˆˆˆˆ
iiiiy ++= γβ        (4.7.5) 

where ie  is a vector with 1 in the i-th position and 0 otherwise. 
Opsomer et al. (2008) also discuss the prediction mean-squared error (PMSE) of the 

small area estimates and an estimator for that quantity and likelihood ratio testing for the 
significance of the spline term and the small area random effect. Finally, they propose a 
simple bootstrap method for both PMSE estimation and testing. 

On the other hand, following the approach of Pratesi et al. (2006a), a p-spline model for 
the q-th conditional quantile of y given a single covariate x is given by: 
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pq xqxqxqqxQ +
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+ −++++= ∑ )()()(...)()(),(
1

)(10 κγβββψ ψψψψ  (4.7.6) 

where ψ  is a specified influence function, pp
tt =+)(  if t > 0 and 0 otherwise, p is the degree 

of the spline and kκ  for k = 1, …, K is a set of knots, usually uniformly spread quantiles of 
the unique values of x (see Ruppert et al., 2003, for details).  

The vector '
0 ))(),...,(()( qqq pψψψ ββ=β  is the coefficient vector of the parametric part of 

the model and '
1 ))(),...,(()( qqq Kψψψ γγ=γ  is the coefficient vector for the spline one. The 

number of knots K is chosen to be large and the influence of the knots is limited by putting a 
constraint on the size of the spline coefficients. Regression parameters of the nonparametric 
M-quantile regression model can be estimated solving through iteratively reweighted 

penalized least squares (IRPLS) the equations: 
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where ]}0)[()1(]0)[()){((2)( 1 ≤−+>= −
tIqtqItstq ψψ  is the first derivate of the function 

ρ  that gives the contribution of each residual to the objective function, ψ  is the Huber 

Proposal 2 influence function and ))(,...,)(,,...,,1( 1
p

Kj
p

j
p
jjj xxxx ++ −−= κκx . The value of 

the smoothing parameter λ is chosen as a nested step within the IRPLS procedure through 
optimization of a Generalized Cross Validation criterion.  

Then, the mean estimator for small area i is given by: 
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          (4.7.8) 

where )(ˆ
, tF iCD  is the estimated cumulative distribution function for each small area and iq̂  

is the average value of the sample M-quantile coefficients of all the units in area i.  
The generalisation to more than one covariate can be easily obtained by suitably changing 

the parametric and the spline part of the model. Moreover, other continuous or categorical 
variables can be inserted parametrically in the model (semi-parametric M-quantile 
regression, Pratesi et al. 2008). 
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Chapter 5 

EB method for estimation of small domain 
traditional and fuzzy poverty measures 

 
 

5.1 Introduction 
 
The aim of this chapter is to compare the results of analyses based on different small area 
estimation methods, including a new methodology for obtaining empirical best predictors of 
general (linear or non-linear) domain parameters using unit level linear regression models 
and that can resolve computational problems due to big populations or more complex 
poverty measures. The target is the estimation of the head count ratio (HCR), fuzzy 
monetary indicator (FM) and fuzzy supplementary index (FS) as non-linear parameters. 

The proposed approach is based on a modified version of Empirical Best (EB) prediction 
proposed by Molina and Rao (2009) and it is applied to the estimation of HCR, FM and FS 
indexes in Tuscany provinces. 

 
 

5.2 Fuzzy monetary and supplementary indicators for small areas 
 
Let { }NEEU ,...,1=  a population of size N, iE  a welfare variable (equivalised income) for 

individual i, iMF ),( the distribution function of iE  and iML ),(  the value of the Lorenz curve of 

iE . We define the so called Fuzzy Monetary Index ( iFM ) for individual i following the IFR 
approach (Integrated Fuzzy and Relative Approach, Betti et al. 2006) as combination of the 

)1( ),( iMF−  indicator proposed by Cheli e Lemmi (1995) and of the )1( ),( iML−  indicator 

proposed by Betti and Verma (1999). Formally: 



 101 

( ) ( ) { }
{ }
























>













>
−

=−−=

∑

∑
∑

=

=

−

=

−

N

j

j

N

j

ijj
N

j

ijiMiMi

E

EEE

EE
N

LFFM

1

1

1

1
),(

1
),(

I

I
1

1
11

α

α  

          (5.2.1) 

where { } 1I => xE j  if xE j > , 0 otherwise, )1( ),( iMF−  is the proportion of individuals less 

poor than the person concerned and )1( ),( iML−  is the share of the total equivalised income 

received by all individuals less poor than the person concerned. 
For the whole population the poverty index defined above is given by: 
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For each domain d (d = 1, …,D) we define the fuzzy monetary index as: 

∑
=

=
dN

i

i

d

d FM
N

FM
1

1
       (5.2.3) 

Given a random sample of size Nn <  drown from that population, { }nEEsUs ,...,, 1=⊆ , 

the direct estimator of iFM  is expressed as: 
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         (5.2.4) 

where jw  is the sample weight for individual j. The overall index for the sample population 

is given by: 
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Analogously, for a domain d we can define: 
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Given the recognized multidimensionality of poverty, indicators of the standard of living of 
households and individuals can be considered. Steps to quantify and put together these 
indicators are described in chapter 2. 

Given a population { }NssU ,...,1= , the so called Fuzzy Supplementary Index, according 
to the IFR approach, can be defined as: 
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where { } 1I => xs j  if xs j > , 0 otherwise. )1( ),( iSF−  is the proportion of individuals who 

are less deprived than the individual concerned, iSF ),(  is the value of the score distribution 

function evaluated for individual i, )1( ),( iSL−  is the share of the total lack of deprivation 

score assigned to all individuals less deprived than the person concerned and iSL ),(  is the 

value of the Lorenz curve of score for the individual i. 
For a whole population the supplementary index defined above is given by: 
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For each domain d (d = 1, …,D) we define the fuzzy monetary index as: 
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Given a random sample of size Nn <  drown from that population, { }nsssUs ,...,, 1=⊆ , the 

direct estimator of iFS  is expressed as: 
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where jw  is the sample weight for individual j. For the whole sample population we have: 
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Analogously, for a domain d we define: 
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In all formulas, the parameter α  is estimated so that the FM  and FS  indicators are equal to 
the head count ratio computed for the official poverty line (60% of the median). 

 
 

5.3 Empirical Best Prediction 
 
 
5.3.1 EB prediction under a finite population 

 
Consider a random vector y  containing the values of a random variable in the units of a 

finite population such that ),( ''
rs yyy =  where sy  is the sub-vector of sample elements and 

ry  the sub-vector of non-sample elements. The target is to predict the value of a real 

measurable function )(yh=δ  of the random vector y  using the sample data sy . The best 

predictor (BP) of δ  is the function of sy  that minimizes the mean square error of the 

predictor δ̂ . Formally: 

)|(ˆ 0
sy

B

r
E yδδδ ==        (5.3.1) 

where the expectation is taken with respect to the conditional distribution of ry  and the 

result is a function of sample data sy . 

Generally, Bδ̂  depends on an unknown parameter vector θ  that can be replaced by a 
suitable estimator, obtaining an empirical BP of δ . 

Note that, when y  follows a Normal distribution with mean vector Xβµ =  for a known 
matrix X  and positive covariance matrix V , and the quantity to predict, δ , is a linear 
function of y , then the BP of δ  is equal to the BLUP of δ . 
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5.3.2 EB prediction of fuzzy monetary indicators 

Consider the fuzzy monetary FM indicator in formula (5.2.3). The BP of dFM  is defined as: 

)|(ˆ
sd

B
d FMEMF

r
yy=        (5.3.2) 

In order to obtain the BP of dFM , we need to express dFM  in terms of a domain vector 

dy , for which the conditional distribution of the non-sampled vector dry  given the sample 

data 
dsy  is known. The distribution of the welfare variable diE  is seldom Normal, however, 

many times it is possible to find a transformation of the diE ’s whose distribution is 

approximately Normal. Suppose that there exists a one-to-one transformation )( didi ETY =  

of the welfare variable diE , which follows a Normal distribution, )(~ Vµ,y N . Let 
''' ),( drdsd yyy =  be the values of the transformed variables diY  for the sample and non-

sample units within domain d. Then we can define diFM  as: 
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Then, ∑
=

=
dN

i

di

d

d FM
N

FM
1

1
 is a non-linear function of y . 

Using the decomposition of dFM  in terms of sample and non-sample elements we have: 
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     (5.3.4) 

Then, the BP of dFM  becomes: 
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where B
diMF ˆ  is the BP of )( didi YhFM α=  given by: 

d

R

sYsdi
B
di ridyyfyhYhEMF

dir
∈== ∫ ,)|()()|)((ˆ yyy αα    (5.3.6) 
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where )|( sY yf
di

y  is the conditional distribution of diY  given sy . Due to the complexity of 

the function )(yhα , we cannot have an explicit expression of the expectation (5.3.6). 

However, since ),( ''
rs yyy =  is Normally distributed with mean vector 








=

r

s

µ

µ
µ  and 

covariance matrix 







=

rrs

srs

VV

VV
V , the distribution of sr yy |  is given by: 

),(~| || srsrsr N Vµyy        (5.3.7) 

where )(1
| sssrsrsr µyVVµµ −−= −  and rssrsrsr VVVVV

1
|

−−= . 

Then, we can approximate expectation (5.3.6) by Monte Carlo simulations. We generate a 

large number L of vectors ry  from (5.3.7) and we attach the vector )(l
ry  generated in the l-th 

replication to the sample vector sy  to obtain the population vector '')(')( ))(,( l
rs

l
yyy = . 

Using the elements of )(l
y  for the d-th area, we calculate the small area parameter of interest 

)( )()( l
d

l
d h y=δ . A Monte Carlo approximation to the BP of diY  is given by: 

d
l

di

L

l

B
di riYh

L
MF ∈≈ ∑

=

),(
1ˆ )(

1
α       (5.3.8) 

Generally, )|( sY yf
di

y  depends on an unknown vector of parameters previously estimated 

using maximum likelihood (ML) or restricted ML estimator and then we obtain the EBP. 
 
 
5.3.3 EB method under a nested error model 
 
A possible model for the elements of the population vector y  that can be used to evaluate 
the EBP is the nested error regression model (Battese, Harter, Fuller, 1988) that relates 
linearly, for all areas, the transformed population variables diY  to vectors dix  of p 

explanatory variables and includes a random area-specific effect du  and residual errors die . 
Formally: 

),0( ~),,0( ~

,,...1,,...,1,
22

'

ediud

ddiddidi

NiideNiidu

DdNjeuβY

σσ

==++= x
   (5.3.9) 

The vectors )(col
1

di
Ni

d Y
d≤≤

=y  are independent with )(~ ddd N V,µy , where βXµ dd =  and 

NeNNud dd
I11V

2'2 σσ += . Then, by formula (5.3.7) we can derive the distribution of dsdr yy |  

and the respective mean sdr|µ and variance sdr|V . To avoid computationally problems due to 

complexity of the process, instead of model (5.3.9) we can utilize the following model, 
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noting that the conditional covariance matrix sdr|V  corresponds to the covariance matrix of 

the vector dry  given by: 

),(~)),1(,0(~, 22
| dddddd nNnNdrduddrnNdsdrdr NNvv −−− −++= I0εε1µy εσγσ

          (5.3.10) 

where 1222 )/( −+= deuud nσσσγ  and dn  sample size in domain d. 
 
 
5.3.4 The proposed method 

 
Due to the greater complexity of fuzzy measures instead of traditional poverty index and 
then consider some computational problems we decided to modify the EB method described 
in the previous sections, as follows: from the original sample we draw a sample with the 
same size of the latter and probability proportional to sample weights. Then, this sample is 
representative of the whole population. At this point, we generate the diy  values as in 
formula (5.3.10): 

),(~)),1(,0(~, 22
| dddddd nNnNdiduddinNdsdidi NNvv −−− −++= I0εε1µy εσγσ

          (5.3.11) 

replacing the parameters with their estimates. Following the steps described in section 5.3.2, 
we obtain a new “direct” estimator which is representative of the whole population. As 
showed in the next section, a model-based simulation study has been carried out to study the 
performance of the proposed method of small domain traditional (HCR) and fuzzy monetary 
(FM) index. Due to the same computational problems, for HCR we report results of 
simulation in which we compare direct estimators, original EB estimators and new EB 
estimators, whereas for FM index we restrict to direct estimators and new EB estimators. As 
we can see by the results, the new method keeps similar properties of the standard EB, but it 
allows to overcome computational problems due to big populations or to more complex 
poverty measures, like FM index. 

 
 

5.3.5 Parametric bootstrap for MSE estimation 

 

The MSE of the EB estimator EB
dMF ˆ  with respect to the model is given by: 

[ ]2)ˆ()ˆ()ˆ()ˆ( d
EB
dd

EB
dd

EB
d

EB
d FMMFEFMMFVFMMFEMFMSE −+−=−=  

          (5.3.12) 

Because of the difficulty to calculate this expression for poverty measures analytically, we 
obtain a parametric bootstrap MSE estimator as described in Molina and Rao (2009). This 
method implies the following steps: 
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1. Fit model 5.3.9 to sample data ),( ss Xy  and obtain estimators β̂ , 2ˆ
uσ  and 2ˆ

eσ  of 

β , 2
uσ  and 2

eσ  respectively, using a suitable method (for example REML method). 

2. Generate DdNu ud ,...,1),ˆ,0(iid~ 2* =σ , and independently, generate 

dedi NiNe ,...,1),ˆ,0(iid~ 2* =σ . 

3. Construct the bootstrap super-population model using *
du , *

die , dix  and β : 

**'*
diddidi euβY ++= x       (5.3.13) 

4. Under the bootstrap super-population model 5.3.13, generate a large number B of 

independent and identically distributed bootstrap populations )*(b
diY  and calculate 

bootstrap population parameters )*(b

dFM , b = 1,…,B. 
5. From each bootstrap population b generated in step 4, take the sample with the same 

indices as the initial sample and calculate the bootstrap EBPs, )*(ˆ bEB

dMF  as 

described in section 5.3.2 and using bootstrap sample data *
sy  and the known 

population values dix . 

6. A Monte Carlo approximation to the theoretical bootstrap MSE estimator of EB
dMF ˆ  

is given by: 

∑
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−=
B

b

b

d

bEB

d
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d MFMF

B
MFmse

1

2)*()*(
* )ˆˆ(

1
)ˆ(     (5.3.14) 

 
 
5.4. Model-based simulation experiment 
 
To study the performance of the proposed new EB estimators, we simulated populations of 
size N = 20000, composed of D = 80 areas with 250=dN  elements in each area d = 1, .., D. 

The response variables for the population units djY  were generated from the model (5.3.9) 

taking as auxiliary variables two dummies { }1,01 ∈X  and { }1,02 ∈X  plus an intercept. The 
values of these two dummies for the population units were generated from Bernoulli 
distributions with success probabilities increasing with the area index for 1X  and constant 

for 2X . Formally we have respectively: 

Ddpdp dd ,...,1,2,80/5.03.0 21 ==+=     (5.4.1) 

The welfare variables are the exponential of the model responses, then we consider a log 
transformation. A set of sample indices ds  with 50=dn  was drawn independently in each 
area d using simple random sampling without replacement. The values of the auxiliary 
variables for the population units and the sample indices were kept fixed over all Monte 
Carlo simulations. The intercept and the regression coefficients associated with the two 
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auxiliary variables to generate population were ( )'04.0,03.0,3 −=β . The random area effects 

variance was taken as ( )22 15.0=uσ  and the error variance as ( )22 5.0=eσ . The poverty line z 
was fixed as z = 12, which is equal to 0.6 times the median of the welfare variables for a 
given generated population. We considered I = 1000 Monte Carlo simulations. Then, I 

population vectors )(i
y  were generated from the true model and for each population i, we 

carried out the following steps: 

i. The true area poverty incidence ( )

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)()( 1
 were obtain for each population. 

ii. Direct estimators of these poverty measures were calculated using the sample part of 

the i-th population vector )(i
sy . 

iii. The nested-error model given in (5.3.9) was fitted to sample data ( )s
i

s Xy ,)(  and 
parameters were substituted by their estimates. 

iv. L = 50 non-sampled vectors Ll
il

r ,...,1,)( =y  were generated from the conditional 

distribution (5.3.7) using (5.3.10) and the population vector )(il
y  was formed 

attaching the sample data )(i
sy  to the generated non-sample data )(il

ry . Then the 
Monte Carlo approximations to the EBPs of poverty measures were calculated. 

v. From the original sample, a sample with the same size of the closer and probability 
proportional to sample weights was drawn. L = 50 diy  values were generated from 
(5.3.11) and the Monte Carlo approximations to the new EBPs poverty measures 
were calculated. 

vi. Means over Monte Carlo populations of the true values of the poverty measures, 
biases and MSEs over Monte Carlo populations i = 1, …, I of the three estimators 
were computed. 

vii. ELL estimators (Elbers et al., 2003) of the poverty measures were also calculated. 

Firstly, model (5.3.9) was fitted to sample data sy  and then A = 50 censuses were 

generated using parametric bootstrap algorithm (for details see Molina and Rao, 
2009). For each population, the poverty measures were calculated and the results 
were averaged over the A populations. 

As explained above, due to computational problems, steps iv and vii weren’t computed for 
FM index. 

Figures 5.4.1, 5.4.2 and 5.4.3 show respectively the trends, the biases and the MSEs of 
the estimators for the HCR. The true values and the four estimators have the same absolute 
values. We can see that performances of the standard EB estimators and of the new EB 
estimators are very similar, then the new method doesn’t make loss of efficiency. Moreover, 
biases are not significant different in absolutes values among estimators (figure 5.4.2), but 
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figure 5.4.3 shows, for EB estimators and new EB estimators, big improvements in mean 
squared error over direct estimators and estimators obtained by simulated censuses (ELL). 
 

Figure 5.4.1. Trend over simulated populations of true values, EB, direct, ELL and new EB 

estimators of HCR for each area d 

 

Figure 5.4.2. Bias ( 100× ) over simulated populations of EB, direct, ELL and new EB 

estimators of HCR for each area d 
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Figure 5.4.3. MSE ( 1000× ) over simulated populations of EB, direct, ELL and new EB 

estimators of HCR for each area d 

 

Analogously, figures 5.4.4, 5.4.5 and 5.4.6 show respectively the trends, the biases and the 
MSEs of the direct estimators and the new EB estimators for the FM index. 

As for HCR, the true values and the two estimators have the same absolute values. 
Moreover, biases are not significant different in absolutes values among estimators (figure 
5.4.5), but figure 5.4.6 shows for the new EB estimators, improvements in mean squared 
error over direct estimators. 
 

Figure 5.4.4. Trend over simulated populations of true values, new EB and direct estimators 

of FM for each area d 
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Figure 5.4.5. Bias ( 100× ) over simulated populations of new E and direct estimators of FM  

for each area d 

 
Figure 5.4.6. MSE ( 1000× ) over simulated populations of new EB and  direct estimators of 

FM for each area d 
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5.5 Application to Tuscany data 
 
The modified EB method described in the previous section was applied to estimate head 
count ratio (HCR), fuzzy monetary (FM) and supplementary (FS) indicators in Tuscany 
provinces. Data from 2004 EU-SILC survey was used.  

The regional sample in Tuscany is based on a stratified two stage sample design: in each 
province the municipalities are the primary sampling units (PSUs) divided into strata 
according to their dimension in terms of population size from which the households (SSUs) 
are selected by means of systematic sampling. Some provinces, generally the smaller ones, 
may have very few sampled municipalities and many municipalities are not even included in 
the sample at all. For example in 2004 survey only 53 municipalities out of 287 are present. 
Then, small area estimation techniques can be required given large errors of direct estimators 
at province level or the impossibility to compute them at municipalities level. 

In our analysis the small areas of interest are the 10 Tuscany provinces, with sample sizes 
ranging from 155 (Province of Grosseto) to 1403 (Province of Firenze). The regional sample 
size is of 4426 individuals. 

The welfare variable for the individuals is the equivalised annual net income. In order to 
overcome the problem of negative values of this variable, we followed the recommendation 
by Eurostat concerning this topic: a bottom coding strategy to the lowest values of the 
distribution have been applied. In particular, all values below 15% of the median household 
income have been set equal to the 15% of the median. This strategy has not effects on the 
poverty line and then on the direct estimators (Eurostat, 2006; Ciampalini et al., 2009; Neri 
et al., 2009). The equivalised annual net income has been transformed by taking logarithm to 
obtain a distribution approximately normal. This transformed variable acts as the response in 
the nested-error regression model (5.3.9). As auxiliary variables we have considered the 
indicators of 5 quinquennial groupings of variable age, the indicator of having Italian 
nationality, the indicators of 3 levels of the variable education level and 3 categories of the 
variable employment. 

The poverty line for the calculation of HCR is computed as the 60% of the weighted 
median of the individual equivalent income at Regional level and is equal to 9,372.24 Euros. 

Direct estimators and new EB estimators were calculated for HCR, FM and FS indicators. 
In the present analysis, we fixed the parameter alpha equal to 2, then we avoid any numerical 
link to the traditional approach. This is because the primary objective of this analysis is to 
develop methodologies for estimating fuzzy measures in small domains, rather than 
numerical comparisons with the conventional approach. 

Values of direct estimators, new EB estimators of HCR and their associated coefficients 
of variation (CV) are shown in table 5.5.1 for each Tuscany provinces. The average over 
provinces is 16.4%. The poorer provinces concentrate mainly in the north-west of Tuscany. 
Province of Massa has the highest percentage of poor individuals (22.4%) followed by Lucca 
(18.2%) and Pisa (17.8%). On the other hand, Province of Arezzo (13.0%) and Province of 
Firenze (14.4) are the most rich. The MSEs of new EB estimators of HCR are calculated 
using the parametric bootstrap estimator 5.3.14 with B = 500. The coefficient of variation is 

given by }ˆ)ˆ(mse{)ˆ(cv 2/1 newEB

d

newEB

d

newEB

d RCHRCHRCH = . Results in table 5.5.1 show that 
the CVs of new EB estimators are much smaller than those of direct estimators and the 
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reduction in CV tends to be greater for domains with smaller sample size. The only 
exception is Province of Firenze with a large sample size, for which the CVs of new EB 
estimators are much bigger than those of direct estimators. Due to computational problems, 
we couldn’t calculate MSEs of new EB estimators of fuzzy poverty measures. 

 

Table 5.5.1. Population size, sample size, direct and new EB estimators of HCR, CVs of 

direct and new EB estimators (x100) for Tuscany Provinces 

Provinces 
Population  

size 
Sample 

size 
DIR

dRCH ˆ  newEB

d
RCH ˆ  cv DIR

d
RCH ˆ  cv newEB

d
RCH ˆ  

Arezzo 304121 416 0.087 0.130 19.09 12.42 

Firenze 1119377 1403 0.133 0.144 8.32 10.89 

Grosseto 149082 155 0.124 0.147 26.10 11.10 

Livorno 290122 339 0.131 0.149 15.61 10.30 

Siena 278495 338 0.110 0.156 19.31 10.80 

Prato 319320 416 0.170 0.159 14.06 10.77 

Pistoia 267076 344 0.174 0.169 13.75 9.87 

Pisa 335777 399 0.168 0.178 15.54 8.88 

Lucca 265293 315 0.215 0.182 13.30 8.88 

Massa Carrara 251471 301 0.260 0.224 13.09 7.30 

average   0.157 0.164   

 
Table 5.5.2 shows respectively direct and new EB estimators of FM and FS indicators and 
the combination of two. 
The new EB estimators of FM index give the same indication about the monetary poverty in 
the small areas of HCR and also the difference between provinces is similar according to 
either approach. The values of FM are bigger than those ones of HCR since there is a certain 
concentration in each province of individuals with equivalised income just above the poverty 
line. Province of Arezzo (36.5%) and Firenze (38.0%) remain the most rich, whereas on the 
other hand, Province of Massa has the highest percentage of poor individuals (47.5%) 
followed by Lucca (42.6%) and Pisa (42.3%). 

Moreover, the overall fuzzy supplementary index has been calculated for Tuscany 
provinces. In this case the welfare variable is the overall score (constructed as explained in 
chapter 2) and as the response in the nested-error regression model we took the clog-log 
transformation. We used the same auxiliary variables employed for the calculation of HCR 
and FM indexes.  

Concerning non-monetary deprivation, the ranking of some provinces is completely 
opposite respect to monetary poverty (table 5.5.2). For example, Province of Massa have 
high values of FM and low values of FS, whereas the opposite holds for Firenze and Livorno 
Provinces. 

Non-monetary dimension is combined with the monetary dimension in order to obtain 
measures of manifest (MAN) and latent (LAT) deprivation which correspond respectively to 
intersection and union of the fuzzy sets. We can note some differences between provinces 
(table 5.5.2). The overlapping takes the lowest value of 27.6% for Grosseto and the biggest 
one of 39.4% for Pistoia. In general, the MAN/LAT ratio is lower in areas with lower levels 
of deprivation, and higher in areas with higher levels. High values of this ratio imply that 
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different types of deprivation overlap and this means that in areas where levels of relative 
deprivation are already high, deprivation in the income and non-monetary domains is more 
likely to afflict the same individuals in the population. On the other hand, low values imply 
the absence of such overlap at micro level.  

 
Table 5.5.2 .Sample size, direct and new EB estimators of FM and FS indicators, latent 

(LAT) and manifest (MAN) deprivation, ratio MAN/LAT for  Tuscany Provinces 

Provinces 
Sample 

size 
DIR

d
MF

αˆ  newEB
d

MF
αˆ  DIR

d
SF

αˆ  newEB
dSF
αˆ  LAT MAN MAN/LAT 

Arezzo 416 0.354 0.365 0.262 0.297 0.494 0.167 0.338 

Firenze 1403 0.376 0.380 0.371 0.368 0.542 0.206 0.380 

Grosseto 155 0.390 0.383 0.158 0.203 0.460 0.127 0.276 

Livorno 339 0.379 0.392 0.370 0.372 0.552 0.212 0.384 

Siena 338 0.381 0.396 0.306 0.321 0.526 0.191 0.363 

Prato 416 0.402 0.404 0.332 0.347 0.545 0.206 0.377 

Pistoia 344 0.424 0.414 0.411 0.380 0.570 0.225 0.394 

Pisa 399 0.433 0.423 0.353 0.348 0.558 0.212 0.381 

Lucca 315 0.424 0.426 0.398 0.360 0.566 0.220 0.388 

Massa Carrara 301 0.496 0.475 0.330 0.316 0.578 0.213 0.368 

average  0.406 0.406 0.329 0.331    
 

Figure 5.1 shows respectively the cartograms of the estimated head count ratio, fuzzy 
monetary indicators, fuzzy supplementary indicators and manifest/latent ratio in Tuscany 
provinces constructed using the new EB estimators. 
 
 
5.6. Further Researches 
 
Application of EB method to Tuscany data showed some limitations of this method where 
some assumptions are not respected. For example, we noted that not perfect normality of 
distribution causes a bias in the EB estimator. So the EB method deserves further research 
when the underlying distribution is not normal and we don’t find a transformation to make it 
normal. Moreover, mean square errors of new EB estimators of fuzzy poverty measures have 
to be calculated. 

Concerning fuzzy measures, as explained before, in our analysis the parameter alpha has 
been fixed equal to 2 don’t making possible any comparison with the traditional approach. 
The idea is to determine alpha in order to make FM and FS indicators numerically identical 
to the head count ratio. Moreover, further research is requested to obtain a transformation of 
each score in order to calculate FS indicators for each dimension. 
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Figure 5.1. Cartograms of estimated percent Head count Ratio, Fuzzy Monetary indicators, 

Supplementary indicators and Manifest/Latent deprivation ratio in Tuscany Provinces. 
 

Head Count Ratio (HCR)   Fuzzy Monetary Indicator (FM) 

 
Fuzzy Supplementary Indicator (FS)  Manifest/Latent deprivation ratio 
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Conclusions 
 
 
This work takes place in a European Project inside the Seventh Framework Programme 
(S.A.M.P.L.E.) aimed at making a decisive impact on the eradication of poverty in European 
Countries by the year 2010, as established in Lisbon European Council (2000). 

As well as treating poverty as a fuzzy state instead as a simple dichotomy poor non-poor, 
i.e. an attribute that characterizes an individual in terms of presence or absence, it highlights 
the complexity of this phenomenon and then, the demand of constructing indicators that take 
in account not only the income factor but also the multidimensional nature of poverty.  

For this purpose, chapter 1, after a brief review of traditional poverty measures and its 
limitations, presents eight different multidimensional approaches focusing on the fuzzy set 
one, first proposed by Cerioli and Zani (1990). 

In these last years, the multidimensional nature of poverty took a large importance at 
international level. One of the most recent examples is the Report by the Commission on the 
Measurement of Economic Performance and Social Progress (Commission Stiglitz-Sen-
Fitoussi), demanded by French President Nicolas Sarkozy in 2008 in order to identify main 
causes of the growing divergence between current measures of economic performance and 
people’s perceptions about the quality of their life. The Nobel Laureates highlight the 
importance to provide new measures of social well-being rather than the only GDP that is 
mainly a measure of market production and not of economic well-being. Conventional 
economic indicators have to be enriched by measures of quality of life, both objective and 
subjective, that, for their multidimensional nature, can be grouped in eight different 
dimensions: material living standard, health, education, personal activities including work, 
political voice and governance, social connections and relationships, environment and 
finally, insecurity. The third target of the Commission is measuring and assessing 
sustainability, i.e. “determining if at least the current level of well-being can be maintained 
for future generations”, emphasizing the environmental aspects of sustainability.  

In this work, we proposed the Integrated Fuzzy and Relative (IFR) approach, that 
combines the TFR approach of Cheli and Lemmi (1995) and the approach of Betti and 
Verma (1999). Following this approach, the fuzzy monetary indicator (FM) has been defined 
as the product of the share of individuals less poor than the person concerned and the share 
of the total equivalised income received by all individuals less poor than the person 
concerned. Fuzzy supplementary indicator has been determined, step by step, using the same 
membership function as that used for income poverty. Seven dimensions of deprivation have 
been constructed using a factor analysis and quantitative measures have been determined for 
each of them. Remark that, these dimensions, basic life-style, consumer durables, housing 
amenities, financial situation, environmental problems, work-education and health, are 
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comparable with the groups of indicators defined in the Report of the Commission Stiglitz-
Sen-Fitoussi. 

Fuzzy monetary and non-monetary indicators and their overlapping degree have been 
calculated in a cross-sectional analysis from year 2004 to year 2007 in the European 
Members States using EU-SILC data. Results showed large differences among Countries, 
but a certain stability over years. 

Subsequently, we applied the proposed monetary and non-monetary indicators at local 
level following two different approaches. The first one deals with pooling of data or 
estimates in order to obtain measures which convey essentially the same information as the 
“original” un-pooled measures, but reducing variability or noise. Moreover, pooling aims to 
trade dimensions such as permitting more detailed geographical breakdown but with less 
temporal details and to summarize over different dimensions, providing more consolidated 
and fewer indicators. Four different scenarios have been determined depending on whether 
the data sources and populations involved are same/similar or different. Due to the lack of all 
data required, in this work we didn’t report any empirical results, but only methodological 
aspects, using examples of different scenarios that can arise. Simple model have been 
developed to illustrate the effect on variance of pooling over correlated samples, such as over 
waves in a rotational panel design. 

The second method concerns small area estimation techniques following the approach of 
Molina and Rao (2009). The proposed new Empirical Best predictors allow to estimate 
poverty measures, as non-linear domain parameters, for small areas overcoming 
computational problems due to big populations or more complex poverty measures, as fuzzy 
indicators. Simulations results show good performance of new EB estimators in comparison 
with direct and ELL estimators. Results of traditional and fuzzy poverty measures have been 
obtained for Tuscany provinces in 2004. The poorer provinces concentrate mainly in the 
north-west of Tuscany. Province of Massa has the highest percentage of poor individuals 
followed by Lucca and Pisa. On the other hand, Province of Arezzo and Province of Firenze 
are the most rich. 

A parametric bootstrap method has been used for mean square error estimation of HCR: it 
confirms a big improvement of new EB estimators in comparison with direct estimators. Due 
to computational problems, in this work we didn’t calculate MSEs of new EB estimators of 
fuzzy measures, then further researches are required to overcome them. We noted that new 
EB is a model-based method that relies on the validity of the model. Model selection 
procedures and model diagnostics are essential in the practical application of this model and 
further researches are required when the underlying distribution is not normal or we don’t 
find a transformation to make it normal. Moreover, some improvements are required in the 
calculation of parameter alpha in order to make FM and FS indicators numerically identical 
to head count ratio and in the determination of FS index for each dimensions of deprivation. 
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Annex 
 
List of EU-SILC variables used to construct Fuzzy Supplementary Indicators. 
 
HH040: LEAKING ROOF, DAMP WALLS/FLOORS/FOUNDATION, OR ROT IN WINDOW FRAMES 

OR FLOOR 
HH050: ABILITY TO KEEP HOME ADEQUATELY WARM 
HH080: BATH OR SHOWER IN DWELLING 
HH090: INDOOR FLUSHING TOILET FOR SOLE USE OF HOUSEHOLD 
HS010: ARREARS ON MORTGAGE OR RENT PAYMENTS 
HS020: ARREARS ON UTILITY BILLS 
HS030: ARREARS ON HIRE PURCHASE INSTALMENTS OR OTHER LOAN PAYMENTS 
HS040: CAPACITY TO AFFORD PAYING FOR ONE WEEK ANNUAL HOLIDAY AWAY FROM 

HOME 
HS050: CAPACITY TO AFFORD A MEAL WITH MEAT, CHICKEN, FISH (OR VEGETARIAN 

EQUIVALENT) EVERY SECOND DAY 
HS060: CAPACITY TO FACE UNEXPECTED FINANCIAL EXPENSES 
HS070: DO YOU HAVE A TELEPHONE (INCLUDING MOBILE PHONE)?  
HS080: DO YOU HAVE A COLOUR TV?  
HS090: DO YOU HAVE A COMPUTER?  
HS100: DO YOU HAVE A WASHING MACHINE?  
HS110: DO YOU HAVE A CAR?  
HS120: ABILITY TO MAKE ENDS MEET 
HS160: PROBLEMS WITH THE DWELLING: TOO DARK, NOT ENOUGH LIGHT 
HS170: NOISE FROM NEIGHBOURS OR FROM THE STREET 
HS180: POLLUTION, GRIME OR OTHER ENVIRONMENTAL PROBLEMS 
HS190: CRIME VIOLENCE OR VANDALISM IN THE AREA 
PE010: CURRENT EDUCATION ACTIVITY 
PE040: HIGHEST ISCED LEVEL ATTAINED 
PH010: GENERAL HEALTH 
PH020: SUFFER FROM ANY A CHRONIC (LONG-STANDING) ILLNESS OR CONDITION 
PH030: LIMITATION IN ACTIVITIES BECAUSE OF HEALTH PROBLEMS 
PH040: UNMET NEED FOR MEDICAL EXAMINATION OR TREATMENT 
PH060: UNMET NEED FOR DENTAL EXAMINATION OR TREATMENT 
PL030: SELF-DEFINED CURRENT ECONOMIC STATUS 
PL070: NUMBER OF MONTHS SPENT AT FULL-TIME WORK 
PL072: NUMBER OF MONTHS SPENT AT PART-TIME WORK 
PL080: NUMBER OF MONTHS SPENT IN UNEMPLOYMENT 
PL085: NUMBER OF MONTHS SPENT IN RETIREMENT 
PL087: NUMBER OF MONTHS SPENT STUDYING 
PL090: NUMBER OF MONTHS SPENT IN INACTIVITY 



 119 

The following tables show fuzzy measures of monetary poverty, non-monetary deprivation 
results and their combination respectively for 2006, 2005 and 2004 waves in European 
Countries. 
 

Table 1. Fuzzy measures at Country level (2006) 

 Rate of deprivation by dimension of deprivation  mean 

Country  FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

IS 0.096 0.083 0.030 0.042 0.078 0.064 0.080  0.063 

CZ 0.098 0.100 0.064 0.053 0.058 0.115 0.089 0.089 0.081 

NL 0.098 0.081 0.041 0.059 0.050 0.098 0.085  0.069 

NO 0.108 0.080 0.044 0.052 0.078 0.077 0.088  0.070 

SK 0.116 0.109 0.068 0.064 0.069 0.111 0.103 0.112 0.091 

DK 0.116 0.095 0.059 0.061 0.059 0.097 0.094  0.078 

SI 0.117 0.096 0.054 0.071 0.074 0.104 0.101  0.083 

SE 0.122 0.095 0.042 0.061 0.084 0.093 0.100  0.079 

FI 0.125 0.095 0.067 0.062 0.078 0.109 0.106  0.086 

AT 0.126 0.101 0.055 0.073 0.049 0.104 0.110 0.090 0.083 

DE 0.126 0.108 0.059 0.069 0.060 0.128 0.107 0.118 0.093 

FR 0.131 0.101 0.064 0.076 0.080 0.122 0.110 0.105 0.094 

LU 0.141 0.094 0.026 0.074 0.060 0.136 0.113 0.108 0.087 

BE 0.147 0.130 0.070 0.087 0.083 0.137 0.124 0.094 0.104 

CY 0.158 0.134 0.062 0.071 0.120 0.139 0.130 0.138 0.113 

HU 0.159 0.162 0.106 0.104 0.088 0.130 0.134 0.167 0.127 

EE 0.183 0.121 0.114 0.143 0.089 0.157 0.149 0.171 0.135 

PT 0.185 0.137 0.117 0.120 0.094 0.162 0.154 0.158 0.135 

IE 0.185 0.135 0.094 0.090 0.093 0.139 0.148 0.127 0.118 

PL 0.191 0.231 0.114 0.123 0.107 0.144 0.158 0.189 0.152 

UK 0.192 0.145 0.066 0.101 0.105 0.166 0.147 0.143 0.125 

IT 0.196 0.159 0.068 0.099 0.118 0.185 0.158 0.170 0.137 

ES 0.198 0.151 0.081 0.105 0.090 0.181 0.164 0.163 0.134 

LT 0.199 0.186 0.137 0.164 0.087 0.141 0.160 0.195 0.153 

GR 0.205 0.163 0.109 0.114 0.150 0.159 0.162 0.170 0.147 

LV 0.231 0.247 0.149 0.195 0.101 0.217 0.181 0.268 0.194 

average 0.152 0.128 0.075 0.090 0.085 0.131 0.125 0.146 0.109 

          

NOTES FS0 stands for "HCR = FM = FS" 

 FS1 - FS7 refer to the seven dimensions of deprivation defined in section 2.4.6. 
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Table 2. “Normalised” Fuzzy measures at Country level (2006) 

 'Normalised rates'      mean 

Country  FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

IS 1.00 1.03 0.62 0.74 1.45 0.77 1.02  0.937 

CZ 1.00 1.21 1.32 0.91 1.06 1.36 1.10 0.94 1.130 

NL 1.00 0.97 0.84 1.01 0.91 1.15 1.05  0.988 

NO 1.00 0.87 0.82 0.81 1.29 0.83 0.99  0.934 

SK 1.00 1.11 1.17 0.94 1.06 1.10 1.07 1.00 1.065 

DK 1.00 0.97 1.03 0.89 0.92 0.97 0.98  0.958 

SI 1.00 0.97 0.93 1.03 1.13 1.03 1.05  1.025 

SE 1.00 0.92 0.69 0.84 1.23 0.88 1.00  0.925 

FI 1.00 0.90 1.08 0.84 1.12 1.01 1.03  0.996 

AT 1.00 0.95 0.88 0.98 0.70 0.96 1.06 0.75 0.897 

DE 1.00 1.01 0.94 0.93 0.85 1.18 1.03 0.97 0.987 

FR 1.00 0.92 0.98 0.99 1.10 1.08 1.02 0.84 0.988 

LU 1.00 0.79 0.38 0.89 0.77 1.11 0.98 0.80 0.816 

BE 1.00 1.05 0.96 1.00 1.02 1.08 1.02 0.67 0.971 

CY 1.00 1.00 0.80 0.76 1.36 1.02 1.00 0.91 0.979 

HU 1.00 1.20 1.34 1.11 0.99 0.95 1.02 1.09 1.098 

EE 1.00 0.78 1.25 1.32 0.87 0.99 0.99 0.97 1.024 

PT 1.00 0.88 1.27 1.10 0.92 1.01 1.01 0.89 1.013 

IE 1.00 0.86 1.03 0.83 0.91 0.87 0.97 0.71 0.883 

PL 1.00 1.43 1.21 1.09 1.01 0.87 1.00 1.03 1.092 

UK 1.00 0.89 0.69 0.89 0.99 1.00 0.93 0.78 0.881 

IT 1.00 0.96 0.70 0.85 1.08 1.09 0.98 0.90 0.937 

ES 1.00 0.90 0.82 0.90 0.81 1.05 1.00 0.85 0.906 

LT 1.00 1.11 1.39 1.40 0.79 0.82 0.97 1.02 1.071 

GR 1.00 0.94 1.07 0.94 1.31 0.90 0.96 0.86 0.998 

LV 1.00 1.26 1.30 1.43 0.78 1.09 0.95 1.21 1.146 

average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 

          

NOTES 'Normalised rates' ijN : all values scaled such that: 

 (1) for each dimension (j), average over countries rescaled to = 1.0; and 

 (2) for each country (i), jFS  values scaled to correspond to FS0 = 1.0. 
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Table 3. Latent and Manifest deprivation at aggregated level and for each dimension of deprivation (2006) 

Country FS0 L0 M0 M0/L0 L1 M1 M1/L1 L2 M2 M2/L2 L3 M3 M3/L3 L4 M4 M4/L4 L5 M5 M5/L5 L6 M6 M6/L6 L7 M7 M7/L7 

IS 0.096 0.165 0.027 0.167 0.159 0.021 0.130 0.117 0.009 0.073 0.128 0.011 0.084 0.153 0.020 0.133 0.147 0.013 0.088 0.161 0.016 0.098    

CZ 0.098 0.157 0.039 0.250 0.163 0.035 0.217 0.132 0.030 0.229 0.133 0.017 0.130 0.133 0.024 0.178 0.191 0.022 0.117 0.151 0.036 0.235 0.170 0.017 0.100 

NL 0.098 0.166 0.031 0.187 0.148 0.032 0.215 0.123 0.016 0.134 0.144 0.013 0.093 0.131 0.017 0.127 0.177 0.019 0.105 0.155 0.028 0.178    

NO 0.108 0.181 0.036 0.198 0.159 0.030 0.187 0.135 0.018 0.131 0.147 0.013 0.091 0.163 0.023 0.142 0.170 0.016 0.094 0.170 0.026 0.154    

SK 0.116 0.193 0.039 0.203 0.189 0.036 0.191 0.157 0.027 0.173 0.161 0.019 0.120 0.163 0.022 0.135 0.207 0.019 0.093 0.179 0.039 0.219 0.204 0.024 0.118 

DK 0.116 0.192 0.040 0.209 0.176 0.035 0.201 0.148 0.028 0.186 0.163 0.015 0.090 0.152 0.024 0.157 0.192 0.021 0.112 0.185 0.025 0.134    

SI 0.117 0.193 0.040 0.206 0.174 0.038 0.221 0.147 0.024 0.164 0.166 0.022 0.132 0.169 0.022 0.128 0.202 0.018 0.091 0.180 0.038 0.212    

SE 0.122 0.203 0.042 0.204 0.180 0.037 0.207 0.146 0.018 0.123 0.168 0.015 0.091 0.175 0.031 0.180 0.195 0.021 0.107 0.194 0.028 0.146    

FI 0.125 0.205 0.045 0.219 0.177 0.043 0.243 0.157 0.035 0.220 0.171 0.016 0.093 0.173 0.030 0.171 0.210 0.024 0.113 0.195 0.036 0.183    

AT 0.126 0.206 0.045 0.219 0.185 0.041 0.221 0.158 0.023 0.143 0.177 0.021 0.119 0.153 0.022 0.144 0.208 0.021 0.101 0.195 0.040 0.206 0.192 0.024 0.122 

DE 0.126 0.207 0.045 0.218 0.190 0.044 0.233 0.161 0.024 0.149 0.177 0.019 0.107 0.167 0.019 0.113 0.225 0.029 0.131 0.195 0.039 0.198 0.212 0.032 0.151 

FR 0.131 0.208 0.054 0.258 0.187 0.045 0.240 0.166 0.028 0.169 0.183 0.024 0.130 0.180 0.031 0.174 0.222 0.031 0.138 0.197 0.044 0.222 0.202 0.034 0.170 

LU 0.141 0.223 0.058 0.259 0.181 0.054 0.298 0.152 0.015 0.099 0.191 0.023 0.121 0.164 0.037 0.225 0.240 0.036 0.152 0.205 0.049 0.240 0.214 0.034 0.158 

BE 0.147 0.228 0.066 0.290 0.215 0.062 0.288 0.179 0.038 0.210 0.203 0.031 0.153 0.189 0.041 0.215 0.248 0.036 0.146 0.215 0.055 0.257 0.200 0.041 0.204 

CY 0.158 0.249 0.066 0.264 0.231 0.060 0.258 0.192 0.027 0.143 0.201 0.028 0.138 0.237 0.040 0.170 0.264 0.033 0.125 0.236 0.052 0.219 0.245 0.050 0.202 

HU 0.159 0.244 0.074 0.305 0.255 0.066 0.260 0.211 0.054 0.259 0.217 0.047 0.217 0.209 0.038 0.181 0.258 0.031 0.121 0.221 0.072 0.325 0.278 0.048 0.171 

EE 0.183 0.279 0.087 0.310 0.233 0.071 0.306 0.237 0.060 0.251 0.264 0.062 0.233 0.224 0.048 0.213 0.294 0.046 0.158 0.265 0.066 0.250 0.289 0.064 0.222 

PT 0.185 0.289 0.080 0.277 0.248 0.073 0.296 0.241 0.061 0.251 0.254 0.051 0.202 0.236 0.043 0.182 0.307 0.039 0.127 0.281 0.058 0.207 0.281 0.062 0.219 

IE 0.185 0.284 0.085 0.299 0.241 0.079 0.326 0.225 0.053 0.237 0.243 0.032 0.131 0.229 0.049 0.214 0.281 0.043 0.153 0.260 0.073 0.279 0.262 0.049 0.187 

PL 0.191 0.287 0.095 0.332 0.320 0.102 0.317 0.246 0.059 0.240 0.259 0.056 0.215 0.249 0.049 0.197 0.298 0.036 0.122 0.267 0.082 0.306 0.317 0.063 0.198 

UK 0.192 0.299 0.085 0.282 0.261 0.075 0.289 0.225 0.033 0.146 0.258 0.035 0.137 0.244 0.053 0.218 0.305 0.052 0.172 0.268 0.071 0.266 0.284 0.051 0.178 

IT 0.196 0.301 0.092 0.306 0.272 0.084 0.309 0.226 0.038 0.166 0.252 0.043 0.169 0.254 0.061 0.240 0.329 0.053 0.160 0.275 0.079 0.289 0.299 0.067 0.225 

ES 0.198 0.314 0.083 0.264 0.273 0.076 0.280 0.240 0.039 0.161 0.264 0.040 0.151 0.244 0.045 0.183 0.328 0.051 0.155 0.288 0.074 0.258 0.302 0.059 0.195 

LT 0.199 0.294 0.104 0.352 0.292 0.093 0.320 0.252 0.084 0.334 0.284 0.079 0.280 0.247 0.040 0.160 0.302 0.039 0.128 0.277 0.082 0.294 0.324 0.069 0.213 

GR 0.205 0.310 0.100 0.321 0.279 0.089 0.318 0.261 0.053 0.203 0.267 0.052 0.195 0.280 0.075 0.269 0.325 0.039 0.120 0.291 0.076 0.262 0.308 0.067 0.219 

LV 0.231 0.336 0.126 0.376 0.356 0.122 0.344 0.286 0.095 0.333 0.331 0.095 0.287 0.288 0.043 0.151 0.383 0.065 0.170 0.313 0.099 0.316 0.393 0.106 0.270 
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Table 4. Fuzzy measures at Country level (2005) 

 Rate of deprivation by dimension of deprivation  mean 

Country FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

SE 0.092 0.072 0.043 0.045 0.073 0.073 0.078  0.068 

IS 0.096 0.083 0.039 0.035 0.088 0.067 0.082  0.070 

CZ 0.104 0.105 0.066 0.064 0.070 0.112 0.093 0.097 0.089 

NL 0.109 0.087 0.045 0.064 0.056 0.107 0.092  0.080 

NO 0.115 0.085 0.055 0.056 0.089 0.082 0.095  0.083 

FI 0.118 0.091 0.070 0.060 0.078 0.108 0.101  0.089 

DK 0.118 0.095 0.059 0.060 0.067 0.093 0.099  0.084 

SI 0.122 0.096 0.059 0.075 0.083 0.116 0.103  0.094 

DE 0.123 0.103 0.067 0.065 0.064 0.113 0.103 0.120 0.095 

AT 0.123 0.098 0.052 0.072 0.048 0.107 0.105 0.089 0.087 

FR 0.130 0.101 0.067 0.076 0.081 0.128 0.109 0.107 0.100 

SK 0.133 0.127 0.076 0.072 0.073 0.123 0.117 0.133 0.107 

HU 0.134 0.147 0.088 0.106 0.078 0.127 0.113 0.165 0.120 

LU 0.137 0.097 0.040 0.073 0.064 0.140 0.111 0.110 0.097 

BE 0.148 0.128 0.074 0.089 0.086 0.138 0.123 0.099 0.111 

CY 0.162 0.132 0.070 0.069 0.122 0.132 0.133 0.141 0.120 

EE 0.183 0.121 0.123 0.145 0.094 0.164 0.150 0.168 0.144 

IT 0.188 0.158 0.070 0.097 0.116 0.175 0.151 0.163 0.140 

UK 0.191 0.149 0.071 0.104 0.105 0.166 0.145 0.146 0.135 

LV 0.192 0.248 0.137 0.185 0.119 0.185 0.157 0.261 0.185 

PT 0.194 0.148 0.115 0.124 0.102 0.175 0.161 0.166 0.148 

GR 0.196 0.161 0.108 0.109 0.151 0.157 0.156 0.161 0.150 

IE 0.197 0.146 0.103 0.091 0.118 0.135 0.159 0.134 0.135 

ES 0.197 0.145 0.088 0.104 0.085 0.180 0.164 0.161 0.140 

LT 0.205 0.202 0.149 0.175 0.097 0.150 0.165 0.184 0.166 

PL 0.206 0.267 0.128 0.132 0.119 0.157 0.166 0.200 0.172 

average 0.151 0.130 0.079 0.090 0.089 0.131 0.124 0.148 0.118 

          

NOTES FS0 stands for "HCR = FM = FS" 

 FS1 - FS7 refer to the seven dimensions of deprivation defined in section 2.4.6. 
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Table 5. “Normalised” Fuzzy measures at Country level (2005) 

 'Normalised rates'      Mean 

Country  FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

SE 1.00 0.90 0.88 0.80 1.34 0.90 1.03  0.976 

IS 1.00 0.99 0.76 0.60 1.54 0.80 1.03  0.953 

CZ 1.00 1.17 1.22 1.03 1.13 1.25 1.08 0.95 1.119 

NL 1.00 0.93 0.78 0.99 0.86 1.13 1.02  0.951 

NO 1.00 0.85 0.91 0.81 1.30 0.82 1.00  0.950 

FI 1.00 0.89 1.12 0.84 1.11 1.05 1.04  1.009 

DK 1.00 0.93 0.94 0.85 0.96 0.90 1.01  0.931 

SI 1.00 0.91 0.92 1.03 1.15 1.09 1.02  1.021 

DE 1.00 0.97 1.03 0.88 0.87 1.06 1.02 1.00 0.977 

AT 1.00 0.92 0.80 0.98 0.65 1.00 1.03 0.74 0.875 

FR 1.00 0.89 0.98 0.98 1.05 1.13 1.02 0.84 0.984 

SK 1.00 1.10 1.08 0.90 0.92 1.06 1.06 1.01 1.020 

HU 1.00 1.27 1.24 1.31 0.98 1.09 1.03 1.25 1.168 

LU 1.00 0.81 0.56 0.89 0.79 1.17 0.98 0.81 0.859 

BE 1.00 1.00 0.95 1.00 0.98 1.07 1.00 0.68 0.953 

CY 1.00 0.94 0.83 0.71 1.27 0.94 0.99 0.89 0.938 

EE 1.00 0.76 1.27 1.32 0.86 1.03 0.99 0.94 1.025 

IT 1.00 0.97 0.71 0.86 1.03 1.07 0.97 0.89 0.928 

UK 1.00 0.90 0.71 0.91 0.92 1.00 0.92 0.78 0.878 

LV 1.00 1.49 1.36 1.61 1.04 1.10 0.99 1.39 1.283 

PT 1.00 0.88 1.13 1.07 0.88 1.04 1.00 0.87 0.982 

GR 1.00 0.94 1.04 0.92 1.30 0.92 0.96 0.84 0.990 

IE 1.00 0.85 0.99 0.77 1.01 0.79 0.98 0.70 0.870 

ES 1.00 0.85 0.85 0.88 0.72 1.05 1.01 0.83 0.883 

LT 1.00 1.13 1.38 1.42 0.79 0.84 0.97 0.91 1.064 

PL 1.00 1.50 1.18 1.07 0.98 0.87 0.98 0.99 1.081 

average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 

          

NOTES 'Normalised rates' ijN : all values scaled such that: 

 (1) for each dimension (j), average over countries rescaled to = 1.0; and 

 (2) for each country (i), jFS  values scaled to correspond to FS0 = 1.0. 
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Table 6. Latent and Manifest deprivation at aggregated level and for each dimension of deprivation (2005) 

Country FS0 L0 M0 M0/L0 L1 M1 M1/L1 L2 M2 M2/L2 L3 M3 M3/L3 L4 M4 M4/L4 L5 M5 M5/L5 L6 M6 M6/L6 L7 M7 M7/L7 

SE 0.092 0.157 0.028 0.177 0.139 0.025 0.181 0.121 0.015 0.121 0.129 0.008 0.061 0.143 0.023 0.163 0.152 0.013 0.088 0.151 0.019 0.127    

IS 0.096 0.166 0.027 0.162 0.155 0.024 0.155 0.124 0.011 0.088 0.123 0.008 0.063 0.162 0.022 0.138 0.152 0.012 0.077 0.163 0.016 0.096    

CZ 0.104 0.164 0.043 0.261 0.171 0.038 0.224 0.139 0.031 0.226 0.146 0.022 0.149 0.148 0.025 0.166 0.194 0.022 0.113 0.157 0.039 0.246 0.180 0.021 0.115 

NL 0.109 0.185 0.033 0.178 0.161 0.036 0.221 0.137 0.016 0.121 0.158 0.015 0.092 0.144 0.021 0.146 0.195 0.020 0.105 0.171 0.030 0.176    

NO 0.115 0.191 0.040 0.207 0.165 0.035 0.212 0.146 0.025 0.168 0.156 0.015 0.099 0.177 0.027 0.154 0.180 0.017 0.095 0.182 0.028 0.154    

FI 0.118 0.196 0.040 0.207 0.171 0.038 0.223 0.154 0.033 0.215 0.162 0.016 0.096 0.171 0.025 0.149 0.205 0.022 0.106 0.186 0.033 0.178    

DK 0.118 0.195 0.042 0.215 0.178 0.035 0.199 0.151 0.026 0.170 0.164 0.015 0.091 0.160 0.026 0.162 0.188 0.023 0.121 0.189 0.028 0.147    

SI 0.122 0.201 0.043 0.214 0.180 0.039 0.214 0.153 0.028 0.186 0.173 0.024 0.141 0.180 0.025 0.141 0.217 0.021 0.098 0.185 0.039 0.212    

DE 0.123 0.197 0.048 0.245 0.181 0.045 0.247 0.158 0.032 0.200 0.168 0.019 0.113 0.161 0.025 0.156 0.209 0.027 0.127 0.188 0.037 0.199 0.208 0.035 0.167 

AT 0.123 0.207 0.039 0.191 0.184 0.037 0.202 0.154 0.021 0.136 0.174 0.021 0.123 0.150 0.021 0.140 0.210 0.020 0.094 0.191 0.037 0.195 0.190 0.021 0.111 

FR 0.130 0.207 0.053 0.257 0.186 0.044 0.239 0.166 0.031 0.185 0.181 0.025 0.137 0.179 0.032 0.182 0.226 0.031 0.138 0.196 0.043 0.220 0.203 0.033 0.165 

SK 0.133 0.222 0.044 0.200 0.223 0.038 0.170 0.180 0.029 0.163 0.184 0.021 0.115 0.185 0.021 0.116 0.231 0.025 0.109 0.207 0.043 0.208 0.233 0.033 0.139 

HU 0.134 0.211 0.057 0.272 0.228 0.054 0.236 0.182 0.040 0.222 0.197 0.043 0.218 0.183 0.030 0.163 0.236 0.025 0.106 0.195 0.053 0.272 0.259 0.040 0.156 

LU 0.137 0.220 0.055 0.249 0.178 0.056 0.316 0.154 0.024 0.158 0.186 0.025 0.133 0.166 0.035 0.213 0.243 0.034 0.140 0.201 0.047 0.236 0.216 0.031 0.142 

BE 0.148 0.228 0.069 0.301 0.216 0.061 0.281 0.184 0.039 0.212 0.204 0.033 0.164 0.191 0.044 0.228 0.248 0.038 0.154 0.215 0.056 0.261 0.206 0.041 0.198 

CY 0.162 0.257 0.067 0.260 0.232 0.062 0.269 0.200 0.032 0.161 0.205 0.026 0.126 0.245 0.039 0.159 0.261 0.033 0.125 0.240 0.054 0.224 0.252 0.050 0.200 

EE 0.183 0.280 0.086 0.307 0.237 0.068 0.286 0.239 0.067 0.280 0.265 0.062 0.235 0.235 0.042 0.181 0.302 0.045 0.147 0.265 0.068 0.258 0.289 0.062 0.215 

IT 0.188 0.288 0.089 0.308 0.263 0.083 0.315 0.222 0.037 0.165 0.246 0.040 0.163 0.244 0.060 0.246 0.314 0.049 0.157 0.266 0.074 0.279 0.290 0.061 0.211 

UK 0.191 0.297 0.085 0.287 0.265 0.074 0.280 0.227 0.035 0.154 0.258 0.037 0.145 0.244 0.051 0.209 0.306 0.052 0.169 0.264 0.071 0.271 0.283 0.054 0.191 

LV 0.192 0.289 0.094 0.326 0.338 0.101 0.299 0.251 0.078 0.312 0.295 0.082 0.276 0.271 0.040 0.147 0.333 0.043 0.129 0.272 0.076 0.279 0.370 0.083 0.224 

PT 0.194 0.303 0.086 0.283 0.261 0.081 0.312 0.248 0.061 0.247 0.264 0.054 0.206 0.248 0.048 0.193 0.327 0.043 0.131 0.292 0.063 0.215 0.296 0.065 0.219 

GR 0.196 0.302 0.091 0.300 0.273 0.084 0.307 0.253 0.052 0.204 0.257 0.048 0.185 0.285 0.063 0.219 0.317 0.037 0.115 0.281 0.072 0.255 0.292 0.066 0.225 

IE 0.197 0.299 0.095 0.319 0.256 0.086 0.338 0.242 0.058 0.237 0.252 0.036 0.142 0.253 0.063 0.248 0.289 0.043 0.150 0.275 0.081 0.294 0.279 0.053 0.189 

ES 0.197 0.314 0.081 0.256 0.270 0.072 0.266 0.243 0.043 0.176 0.243 0.043 0.176 0.243 0.043 0.176 0.327 0.050 0.153 0.290 0.071 0.245 0.298 0.060 0.200 

LT 0.205 0.302 0.108 0.358 0.307 0.100 0.325 0.263 0.092 0.349 0.298 0.083 0.279 0.260 0.042 0.163 0.318 0.037 0.118 0.285 0.086 0.302 0.324 0.066 0.202 

PL 0.206 0.309 0.102 0.330 0.359 0.114 0.318 0.269 0.065 0.240 0.278 0.059 0.214 0.270 0.055 0.205 0.319 0.044 0.137 0.282 0.090 0.319 0.335 0.071 0.211 
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Table 7. Fuzzy measures at Country level (2004) 

 Rate of deprivation by dimension of deprivation  Mean 

Country FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

IS 0.101 0.087 0.039 0.033 0.097 0.072 0.086  0.074 

DK 0.107 0.089 0.057 0.057 0.062 0.086 0.089  0.078 

NO 0.108 0.083 0.051 0.056 0.084 0.081 0.088  0.079 

FI 0.109 0.088 0.069 0.053 0.082 0.103 0.093  0.085 

SE 0.111 0.087 0.053 0.052 0.085 0.083 0.092  0.080 

LU 0.127 0.093 0.036 0.071 0.070 0.123 0.103 0.104 0.091 

AT 0.128 0.103 0.064 0.075 0.058 0.109 0.108 0.093 0.092 

FR 0.135 0.115 0.071 0.081 0.093 0.137 0.112 0.112 0.107 

BE 0.143 0.117 0.079 0.087 0.075 0.138 0.119 0.104 0.108 

IT 0.191 0.163 0.074 0.102 0.118 0.179 0.154 0.168 0.144 

ES 0.199 0.144 0.094 0.108 0.087 0.173 0.162 0.168 0.142 

GR 0.199 0.180 0.109 0.113 0.160 0.145 0.158 0.157 0.153 

EE 0.202 0.145 0.133 0.155 0.111 0.237 0.161 0.178 0.165 

PT 0.205 0.156 0.127 0.133 0.109 0.176 0.168 0.171 0.156 

IE 0.209 0.153 0.107 0.098 0.121 0.146 0.166 0.144 0.143 

average 0.152 0.120 0.078 0.085 0.094 0.133 0.124 0.140 0.116 

          

NOTES FS0 stands for "HCR = FM = FS" 

 FS1 - FS7 refer to the seven dimensions of deprivation defined in section 2.4.6. 

 

Table 8. “Normalised” Fuzzy measures at Country level (2004) 

 'Normalised rates'      Mean 

Country FS0 FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS1-FS7 

IS 1.00 1.09 0.74 0.58 1.55 0.81 1.04  0.973 

DK 1.00 1.04 1.03 0.96 0.93 0.92 1.01  0.983 

NO 1.00 0.97 0.93 0.92 1.26 0.86 1.00  0.992 

FI 1.00 1.01 1.24 0.87 1.21 1.07 1.04  1.063 

SE 1.00 0.98 0.93 0.83 1.23 0.86 1.02  0.977 

LU 1.00 0.92 0.56 1.00 0.88 1.11 0.99 0.88 0.917 

AT 1.00 1.02 0.98 1.04 0.73 0.97 1.04 0.79 0.944 

FR 1.00 1.08 1.03 1.07 1.12 1.17 1.02 0.90 1.048 

BE 1.00 1.03 1.07 1.09 0.85 1.10 1.02 0.78 0.993 

IT 1.00 1.07 0.76 0.95 0.99 1.07 0.98 0.95 0.973 

ES 1.00 0.92 0.93 0.97 0.70 0.99 1.00 0.92 0.928 

GR 1.00 1.14 1.08 1.02 1.30 0.84 0.97 0.86 1.024 

EE 1.00 0.91 1.29 1.37 0.88 1.34 0.98 0.95 1.091 

PT 1.00 0.96 1.21 1.16 0.86 0.99 1.00 0.91 1.011 

IE 1.00 0.92 1.00 0.84 0.93 0.80 0.97 0.75 0.901 

average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 

          

NOTES 'Normalised rates' ijN : all values scaled such that: 

 (1) for each dimension (j), average over countries rescaled to = 1.0; and 

 (2) for each country (i), jFS  values scaled to correspond to FS0 = 1.0. 
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Table 9. Latent and Manifest deprivation at aggregated level and for each dimension of deprivation (2004) 

Country FS0 L0 M0 M0/L0 L1 M1 M1/L1 L2 M2 M2/L2 L3 M3 M3/L3 L4 M4 M4/L4 L5 M5 M5/L5 L6 M6 M6/L6 L7 M7 M7/L7 

IS 0.101 0.172 0.030 0.175 0.165 0.024 0.144 0.129 0.011 0.084 0.125 0.009 0.074 0.173 0.025 0.147 0.157 0.016 0.104 0.168 0.019 0.114    

DK 0.107 0.181 0.034 0.187 0.168 0.028 0.169 0.141 0.024 0.167 0.152 0.013 0.086 0.147 0.022 0.151 0.174 0.019 0.112 0.175 0.021 0.121    

NO 0.108 0.182 0.033 0.183 0.160 0.030 0.189 0.137 0.022 0.162 0.150 0.013 0.089 0.170 0.021 0.125 0.173 0.016 0.092 0.170 0.026 0.152    

FI 0.109 0.184 0.035 0.192 0.166 0.032 0.191 0.149 0.030 0.199 0.151 0.011 0.076 0.166 0.026 0.156 0.192 0.020 0.104 0.176 0.026 0.150    

SE 0.111 0.183 0.039 0.212 0.165 0.033 0.201 0.143 0.021 0.149 0.150 0.013 0.086 0.166 0.029 0.177 0.176 0.019 0.107 0.178 0.026 0.147    

LU 0.127 0.206 0.049 0.240 0.169 0.051 0.298 0.143 0.020 0.143 0.178 0.021 0.115 0.163 0.034 0.212 0.222 0.029 0.129 0.186 0.045 0.239 0.204 0.027 0.131 

AT 0.128 0.212 0.044 0.206 0.19 0.041 0.216 0.166 0.026 0.157 0.181 0.022 0.121 0.163 0.023 0.141 0.213 0.023 0.109 0.2 0.036 0.179 0.196 0.025 0.130 

FR 0.135 0.213 0.056 0.265 0.196 0.054 0.274 0.174 0.032 0.181 0.189 0.026 0.138 0.192 0.036 0.189 0.238 0.034 0.141 0.200 0.047 0.235 0.211 0.035 0.168 

BE 0.143 0.228 0.059 0.257 0.21 0.051 0.242 0.183 0.039 0.213 0.203 0.028 0.136 0.185 0.034 0.182 0.247 0.034 0.137 0.212 0.051 0.238 0.211 0.036 0.168 

IT 0.191 0.293 0.090 0.306 0.271 0.083 0.306 0.227 0.039 0.171 0.249 0.044 0.177 0.249 0.060 0.243 0.318 0.052 0.163 0.270 0.075 0.277 0.297 0.062 0.210 

ES 0.199 0.314 0.083 0.264 0.270 0.073 0.272 0.247 0.046 0.186 0.264 0.042 0.159 0.242 0.043 0.177 0.324 0.048 0.148 0.288 0.072 0.250 0.302 0.064 0.213 

GR 0.199 0.302 0.096 0.316 0.289 0.090 0.311 0.255 0.053 0.209 0.263 0.049 0.188 0.293 0.066 0.226 0.309 0.035 0.113 0.285 0.071 0.250 0.291 0.065 0.222 

EE 0.202 0.309 0.096 0.309 0.270 0.077 0.285 0.262 0.074 0.283 0.291 0.067 0.230 0.259 0.054 0.209 0.371 0.068 0.184 0.287 0.076 0.265 0.312 0.068 0.219 

PT 0.205 0.313 0.096 0.306 0.275 0.086 0.312 0.262 0.069 0.264 0.277 0.060 0.215 0.260 0.054 0.206 0.334 0.047 0.140 0.306 0.066 0.216 0.307 0.069 0.225 

IE 0.209 0.318 0.100 0.315 0.275 0.087 0.317 0.256 0.060 0.233 0.266 0.041 0.153 0.265 0.065 0.246 0.309 0.047 0.152 0.292 0.083 0.283 0.292 0.061 0.210 

 



 127 

 
 

References 
 
 
Alexander C.H. (1999). A rolling sample survey for yearly and decennial uses. Proceedings of the International 

Statistical Institute, Helsinki, Contributed papers, Book 1, pp. 29–30.  

Alkire S., Foster J. (2008). Counting and Multidimensional Poverty Measurement. 30th General Conference of 
the International Association for Research in Income and Wealth, Portoroz, Slovenia, August 24-30, 2008. 

Anselin L. (1992). Spatial econometrics: method and models. Kluwer, Boston. 

Atkinson A.B. (1970). On the measurement of Inequality. Journal of Economic Theory, 2, pp. 244-263.  

Atkinson A.B., Cantillon B., Marlier E., Nolan B. (2002). Social Indicators: The EU and Social Inclusion, Oxford 
University Press, Oxford. 

Atkinson A.B. (2003). Multidimensional deprivation: contrasting social welfare and counting approaches. Journal 
of Economic Inequality, 1, pp. 51–65.  

Australian Bureau of Statistics (1993). The Australian Population Monitor, Canberra, ABS.  

Battese G.E., Harter R.M., Fuller W.A. (1988). An Error-Components Model for Prediction of County Crop 
Areas Using Survey and Satellite Data. Journal of the American Statistical Association, 83, 401, pp. 28–36. 

Berenger V., Verdier-Chouchane A. (2007). Multidimensional Measures of Well-Being: Standard of Living and 
Quality of Life Across Countries. World Development, 35, pp. 1259–1276.  

Betti G. (1998). Intertemporal equivalence scales and cost of children using BHPS. ERSC Research Centre on 
Micro-social Change Working Papers, Paper 11/98, Colchester University of Essex.  

Betti G., Cheli B., Lemmi A., Verma V. (2005). On the construction of fuzzy measures for the analysis of povertà 
and social exclusion. International Conference to Honour Two Eminent Scientists C GINI and MO LORENZ, 
University of Siena, May 23-26, 2005.  

Betti G., Cheli B., Lemmi A., Verma V. (2006). On the construction of fuzzy measures for the analysis of poverty 
and social exclusion, Statistica & Applicazioni, 4(1), pp. 77-97 

Betti G., Dourmashkin N., Rossi M.C., Verma V., Yin Y.P. (2001). Study of the Problem of Consumer 
Indebtedness: Statistical Aspects. Report to the Commission of the European Communities, Directorate-
General for Health and Consumer Protection, Commission of the European Communities, Brussels.  

Betti G., Verma V. (1999). Measuring the degree of poverty in a dynamic and comparative context: a multi-
dimensional approach using fuzzy set theory. Proceedings, ICCS-VI, 11, pp. 289-301, Lahore, Pakistan, 
August 27-31, 1999.  

Betti G., Verma V. (2002). Non-monetary or Lifestyle Deprivation. In. Eurostat, European Social statistics: 
Income, Poverty and Social Exclusion: 2nd Report, Luxembourg: Office for Official Publications of the 
European Communities, pp. 76-92.  

Betti G., Verma V. (2004). A methodology for the study of multi-dimensional and longitudinal aspects of poverty 
and deprivation. Working Paper 49, Department of Quantitative Methods, University of Siena. 



 128 

Betti G., Verma V. (2008). Fuzzy measures of the incidence of relative poverty and deprivation: a multi-
dimensional perspective. Statistical Methods and Applications, 12(2), pp. 225-250.  

Bourguignon F., Chakravarty S.R. (2003). The measurement of multidimensional poverty. Journal of Economic 
Inequality, 1, pp. 25–49. 

Brackstone G.J. (1987). Small Area Data: Policy Issues and Technical Challenges. In Platek R., Rao J.N.K., 
Sardnal C.E. and Singh M.P. (eds.), Small Area Statistics, Wiley, New York, pp. 3–20. 

Breckling J., Chambers R. (1988). M-quantiles. Biometrika, 75, pp. 761-71. 

Brunsdon C., Fotheringham A.S., Charlton M. (1999). Some notes on parametric significance tests for 
geographically weighted regression. Journal of Regional Science, 39, pp. 497-524. 

Caplan D., Haworth M., Steel D. (1999). UK labour market statistics: Combining continuous survey data into 
monthly reports. Proceedings of the 52nd Session of the International Statistical Institute, Helsinki.  

Cerioli A., Zani S. (1990). A fuzzy approach to the measurement of poverty. In: Dagum C., Zenga M. (eds.) 
Income and wealth distribution, inequality and poverty, Springer Verlag, Berlin, pp. 272-284.  

Chakravarty S. R., Mukherjee D., Ranade R.R. (1998). On the Family of Subgroup and Factor Decomposable 
Measures of Multidimensional Poverty. In D. J. Slottje (eds.), Research on Economic Inequality, 8, JAI Press, 
Stamford, CT and London.  

Chambers R., Dunstan R. (1986). Estimating distribution functions from survey data. Biometrika, 73, pp. 597-
604. 

Chambers R., Tzavidis N. (2006). M-quantile models for small area estimation. Biometrika, 93, pp. 225-268. 

Chambers R., Tzavidis N. (2008). Robust prediction of small area means and distributions. CCSR Working Paper 
2007-08. 

Cheli B. (1995). Totally Fuzzy and Relative Measures of Poverty in Dynamics Context. Metron, 53(1), pp.183-
205.  

Cheli B., Lemmi A. (1995). A Totally Fuzzy and Relative Approach to the Multidimensional Analysis of 
Poverty. Economic Notes, 24, pp. 115-134.  

Cheli B., Betti G. (1999). Totally Fuzzy and Relative Measures of Poverty Dynamics in an Italian Pseudo Panel, 
1985-1994, Metron, 57(1-2), pp. 83-104. 

Chiappero Martinetti E. (2006). Capability Approach and Fuzzy Set Theory: Description, Aggregation and 
Inference Issue. In A. Lemmi and G. Betti (eds.) Fuzzy Set Approach to Multidimensional Poverty 
Measurement, pp. 93–114, Springer, New York.  

Ciampalini G., Betti G., Verma V. (2009). Comparability in self-employment income, Working Paper 82/09, 
Department of Quantitative Methods, University of Siena. 

Coelli T., Prasada Rao D.S., Battese G.E. (1998). An Introduction to Efficiency and Productivity Analysis. 
Kluwer Academic Publishers, Boston.  

Cressie N (1993) Statistics for spatial data. Wiley, New York. 

Dagum C., Zenga M. (1989). Income and wealth distribution, inequality and poverty. Springer Verlag, Berlin.  

Dalton H. (1920). The measurement of the inequality of income. The Economic Journal, 30, pp. 348-361.  

Deutsch J., Silber J. (2006). The Fuzzy Sets Approach to Multidimensional Poverty Analysis: Using the Shapley 
Decomposition to Analyze the Determinants of Poverty in Israel. In A. Lemmi and G. Betti (eds.) Fuzzy Set 
Approach to Multidimensional Poverty Measurement, pp. 155–174, Springer, New York.  

Di Marco M. (2006). Self Employment Incomes in The Italian EU-SILC: Measurement and International 
Comparability. Proceedings of the EU-SILC Conference on Comparative EU Statistics on Income and Living 
Conditions, Issues and Challenges.  



 129 

Duan N. (1983). Smearing estimate: A nonparametric retransformation method. Journal of the American 
Statistical Association, 78, pp. 605-610. 

Dubois D., Prade H. (1980). Fuzzy Sets and Systems. Academic Press, Boston, New York, London.  

Elbers C., Lanjouw J.O., Lanjouw P. (2003). Micro-level estimation of poverty and inequality. Econometrica, 71, 
pp. 455-364. 

Eurostat (2006). Treatment of negative income: empirical assessment of the impact of methods used. Report N. 
ISR I.04, Project EU-SILC (Community statistics on income and living conditions) 2005/S 116-114302 – Lot 
1 (Methodological studies to estimate the impact on comparability of the national methods used). 

Fay R.E., Herriot R.A. (1979). Estimates of income for small places: an application of James-Stein procedures to 
census data. Journal of the American Statistical Association, 74, pp. 269–277. 

Fine K. (1975). Vagueness, truth and logic. Syntheses, 30, pp. 265–300, reprinted in Rosanna Keefe and Peter 
Smith (eds) (1996) Vagueness: A Reader, Cambridge, MA. and London: MIT Press.  

Foster J., Greer J., Thorbecke E. (1984). A Class of Decomposable Poverty Measures. Econometrica, 52, pp. 761-
766.  

Fotheringham A.S., Brunsdon C., Charlton, M. (1997). Two techniques for exploring non-stationarity in 
geographical data. Geographical Systems, 4, pp. 59-82. 

Gini C. (1912). Variabilità e Mutabilità. Bologna, Tipografia di Paolo Cuppini.  

Giorgi L., Verma V. (2002). European social statistics: income, poverty and social exclusion, 2nd report. Office 
for Official Publications of the European Communities, Luxembourg.  

Giusti C., Pratesi M., Salvati N. (2009). Estimation of poverty indicators: a comparison of small area methods at 
LAU1-2 level in Tuscany. Presentation at NTSS Conference. Brussels 18-20 Febraury 2009. 

Harville D.A. (1991). Comment. Statistical Science, 6, pp. 35-39. 

Kakwani N.C. (1980). Income Inequality and Poverty. Methods of Estimation and Policy Applications, Oxford 
UP, New York, Oxford, London. 

Kelloway E.K. (1998). Using LISREL for structural equation modelling. Sage, London. 

Kish L. (1987). Statistical Research Design. New York, John Wiley & Sons.  

Kish L. (1990). Rolling samples and censuses. Survey Methodology, 16(1), pp. 63-71.  

Kish L. (1994). Multi-population survey designs: five types with seven shared aspects. International Statistical 
Review, 62, pp. 167-186.  

Kish L. (1997). Designs and Uses for Multipopulation Samples. Proceedings of the 51nd Session of the 
International Statistical Institute, Istanbul.  

Kish L. (1998a). Space/Time variations and rolling samples. Journal of Official Statistics, 14, pp. 31-46.  

Kish L. (1998b). Combining multipopulation statistics. Journal of Statistical Planning and Inference, 102, pp. 
109-118.  

Kish L. (1999a). Cumulating/ Combining Population Surveys. Survey Methodology, 25(2), pp. 129-138.  

Kish L. (1999b). Combining Surveys: A Framework. Proceedings of the 52nd Session of the International 
Statistical Institute, Helsinki.  

Klir G.J., Yuan B. (1995). Fuzzy sets and fuzzy logic, theory and applications. Prentice Hall PTR, Upper Saddle 
River, New Jersey.  

Koenker R., Bassett G. (1978). Regression quantiles. Econometrica, 46, pp. 33-50. 



 130 

Koenker R., Hallock K.F. (2001). Quantile Regression: An introduction, Journal of Economic Perspectives, 51, 
pp. 143-53. 

Kuklys W. (2005). Amartya Sen’s Capability Approach: Theoretical Insights and Empirical Applications. Berlin, 
Springer-Verlag.  

Laird N.M., Mosteller F. (1990). Some Statistical Methods for Combining Experimental Results. International 
Journal of Technology Assessment, 6, pp. 5-30.  

Lelli S. (2001). Factor Analysis vs. Fuzzy Sets Theory: Assessing the Influence of Different Techniques on Sen’s 
Functioning Approach. Discussion Paper Series DPS 01.21, Centre for Economic Studies, Catholic 
University of Leuven, Belgium.  

Lemmi A., Betti G. (2006). Fuzzy Set Approach to Multidimensional Poverty Measurement. Springer, New 
York.  

Lorenz M.O. (1905). Methods for measuring concentration of wealth. Journal of the American Statistical 
Association, 9, pp. 209-219.  

Lovell C.A.K., Richardson S., Travers P., Wood P. (1994). Resources and Functionings: A New View of 
Inequality in Australia. In W. Eichhorn (eds.), Models and Measurement of Welfare and Inequality, 
Springer-Verlag, Heidelberg.  

Maasoumi E. (1986). The measurement and decomposition of multi-dimensional inequality. Econometrica, 54(4), 
pp. 991-997.  

Maasoumi E., Nickelsurg G. (1988). Multivariate Measures of Well-Being and an Analysis of Inequality in the 
Michigan Data. Journal of Business and Economic Statistics, 6, pp. 327-334.  

Mc Culloch C.E., Searle S.R. (2001). Generalized, Linear, And Mixed Models. Wiley, New York. 

Miceli D. (1997). Mesure de la pauvreté. Théorie et Application à la Suisse. Thèse de doctorat ès sciences 
économiques et sociale, Université de Genève.  

Molina I., Rao J.N.K. (2009). Estimation of poverty measures in small area. Working Paper 09-15, Statistics and 
Econometrics Series 05. Departamento de Estadística, Universidad Carlos III de Madrid. 

Molina I., Saei A., Lombarda M.J. (2007). Small area estimates of labour force partecipation under a multinomial 
logit mixed model. Journal of the Royal Statistical society A, 170, pp. 975-1000. 

Morales D., Esteban M.D., Perez A., Santamarıa L. (2009). Small area estimation of poverty indicators under 
area-level time models. Paper presented at the Conference, on Small Area Estimation, 29 June - 1 July 2009, 
Elche, Spain. 

Morton S.C. (1999). Combining Surveys from a Meta-analysis Perspective. Proceedings of the 52nd 
 

Session of 
the International Statistical Institute, Helsinki.  

National Center for Health Statistics (1958). Statistical designs of the Health Household Interview Surveys. 
Public Health Series, pp. 584-A2.  

Nelder JA, Mead R (1965). A simplex method for function minimization. The Computer Journal, 7, pp. 308–313. 

Neri L., Gagliardi F., Ciampalini G., Verma V., Betti G. (2009). Outliers at upper end of income distribution, 
Working Paper 86/09, Department of Quantitative Methods, University of Siena. 

Newey W.K., Powell J.L. (1987). Asymmetric least squares estimation and testing. Econometrica, 55, pp. 819-47. 

Nolan B., Whelan C.T. (1996). Resources, deprivation and poverty. Clarendon Press, Oxford.  

Opsomer J.D., Claeskens G., Ranalli M.G., Kauermann G., Breidt F.J. (2008). Nonparametric Small Area 
Estimation Using Penalized Spline Regression. Journal of the Royal Statistical Society, B, 70(1), pp. 265-
286. 



 131 

Pantula S.G., Pollock K.H. (1985). Nested analysis of variance with autocorrelated errors. Biometrics, 41, pp. 
909-920 

Prasad N. G. N., Rao J.N.K. (1990). The estimation of the mean squared error of small-area estimators. Journal of 
the American Statistical Association, 85, pp. 163-171. 

Pratesi M., Salvati N. (2005). Small area estimation: the EBLUP estimator with autoregressive random area 
effects. Report no 261, Department of Statistics and Mathematics, University of Pisa. 

Pratesi M., Salvati N. (2008). Small Area Estimation: the EBLUP estimator based on spatially correlated random 
area effects. Statistical Methods & Applications, 17(1), pp. 113-141. 

Pratesi M., Ranalli M.G., Salvati N. (2006a). Nonparametric M-quantile regression via penalized splines. In ASA 
Proceedings on Survey Research Methods, Alexandria, VA, pp. 3596-3603. 

Pratesi M., Ranalli M.G., Salvati, N. (2006b). P-splines M-quantile small area estimation: assessing the 
ecological conditions of lakes in the Northeastern US. Proceedings of the Conference on Spatial Data 
Methods for Environmental and Ecological Processes, Foggia, September 2006. 

Purcell N.J., Kish L. (1980). Postcensal Estimates For Local Areas (Or Domains). International Statistical 
Review, 48, pp. 3-18. 

Qizilbash M. (2006). Philosophical Accounts of Vagueness, Fuzzy Poverty Measures and Multidimensionality. In 
A. Lemmi and G. Betti (eds.) Fuzzy Set Approach to Multidimensional Poverty Measurement, pp. 9–28, 
Springer, New York.  

Raghunathan T.E., Lepkowski J.M., Van Hoewyk J.V., Solenberger P. (2001). A Multivariate Technique for 
Multiply Imputing Missing Values Using a Sequence of Regression Models. Survey Methodology, 27, 1, pp. 
85-95. 

Ram R. (1982). Composite indices of physical quality of life, basics needs fulfilment and income. A principal 
component representation. Journal of Development Economics, 11, pp. 227-248.  

Rao, J.N.K. (1994). Estimation of totals and distributing functions using auxiliary information at the estimation 
stage. Journal of Official Statistics, 10, pp. 153-165. 

Rao J.N.K. (2003). Small Area Estimation. John Wiley. 

Rao J.N.K., Kovar J.G., Mantel H.J. (1990). On estimating distribution functions and quantiles from survey data 
using auxiliary information. Biometrika, 77, pp. 365-75. 

Rao J.N.K., Yu M. (1994). Small area estimation by combining time series and cross sectional data. Canadian 
Journal of Statistics, 22, pp. 511-528. 

Ruppert D., Wand M.P., Carroll R. (2003). Semiparametric Regression. Cambridge University Press. 

Salvati N., Tzavidis N., Pratesi M., Chambers R. (2008). Small Area Estimation via M-quantile Geographically 
Weighted Regression. Submitted for publication to Computational Statistics and Data Analysis. 

Sen A.K. (1976). Poverty: an Ordinal Approach to Measurement. Econometrica, 44, pp. 219-231.  

Sen A.K. (1985). Commodities and capabilities. Amsterdam, North Holland.  

Sen A.K. (1992). Inequality rexamined. Clarendon Press, Oxford.  

Shannon C. E. (1948). The Mathematical Theory of Communication. Bell System Tech Journal, 27, pp. 379–423 
and 623–56.  

Stiglitz J.E., Sen A., Fitoussi JP. (2009). Report by the Commission on the Measurement of Economic 
Performance and Social Progress. 

Theil H. (1967). Economics and Information Theory. North Holland, Amsterdam.  



 132 

Tsui K. Y. (1995). Multidimensional Generalizations of the Relative and Absolute Inequality Indices: The 
Atkinson-Kolm-Sen Approach. Journal of Economic Theory, 67, pp. 251-265.  

Tsui K. Y. (2002). Multidimensional poverty indices. Social Choice and Welfare, 19(1), pp. 69-93.  

Tzavidis N., Salvati N., Pratesi M., Chambers R. (2008). M-quantile Models with Application to Small Area 
Estimation and Poverty Mapping, Statistical Methods and Applications, 17(3), pp. 393-411. 

Verma V. (1991). Sampling Methods: Training Handbook. Tokyo, Statistical Institute for Asia and the Pacific 
(SIAP).  

Verma V. (1999). Combining national surveys for the European Union. Proceedings of the 52nd Session of the 
International Statistical Institute, Helsinki.  

Verma V. (2001a). EU-SILC Sampling Guidelines. Report prepared for Eurostat.  

Verma V. (2001b). EU-SILC: Proposals for a survey structure for those countries beginning a new survey. 
Proceedings, WG conference Rolling Samples and Sampling in Time - Problems of Data Accumulation and 
Data Quality, Trier, Germany.  

Verma V. (2001c). The case for a Continuous Household Budget Survey. Proceedings, WG conference Rolling 
Samples and Sampling in Time - Problems of Data Accumulation and Data Quality, Trier, Germany.  

Verma, V. (2002). Comparability in Multi-country Survey Programmes. Journal of Statistical Planning and 
Inference, 102(1), pp. 189-210.  

Verma V. (2005). Indicators to reflect social exclusion and poverty Report prepared for Employment and Social 
Affairs DG - with contribution of Gianni Betti, Achille Lemmi, Anna Mulas, Michela Natilli, Laura Neri and 
Nicola Salvati.  

Verma V., Clemenceau A. (1993). Methodology of the European Community Household Panel. Statistics in 
Transition, 2(7), pp. 1023-1062. 

Verma V., Betti G. (2006). EU Statistics on Income and Living Conditions (EU-SILC): Choosing the survey 
structure and sample design. Statistics in Transition, 7(5), pp. 935-970.  

Verma V., Gagliardi F., Ciampalini G. (2009). Methodology of labour force surveys: (3) Sample rotation 
patterns, Working Paper 80/09, Department of Quantitative Methods, University of Siena. 

Whelan C.T., Layte R., Maitre B., Nolan B. (2001). Income, deprivation and economic strain: an analysis of the 
European Community Household Panel. European Sociological Review, 17, pp. 357-372.  

Yu D.L., Wu C. (2004). Understanding population segregation from Landsat ETM+ imagery: a geographically 
weighted regression approach. GISience and Remote Sensing, 41, pp. 145-164. 

Zadeh L.A. (1965). Fuzzy sets. Information and Control, 8, pp. 338-353.  


