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Abstract

This thesis contributes to the broad field of Bayesian variable selection.

Motivated by real problems in the analysis of genomic data we build new

statistical models that answer important questions and help to explain un-

derlying biological processes.

In the first project we propose a novel method that provides insights in

the analysis of genomic data in situations where the target of the analysis

is to find which genes (predictors) are related to a specific phenotype, the

response variable. Our model considers, first, that it has been clearly recog-

nized that genes are biological elements that affect each other and, second,

that recently interest in biology has moved from the analysis of single genes

to the analysis of known groups of genes, called pathways. We build upon

Bayesian variable selection methods for linear/generalized linear models by

adding two novel features into the model: first we are able to incorporate

information on gene networks in our prior formulation, second we develop

stochastic search methods that are able to identify both pathways and path-

way elements involved in particular biological processes. To achieve these

goals we define a new Ising-type prior on the latent indicators of genes in-

cluded into the model. In addition, we define pathway scores that synthesize

the activity of each pathway via partial least square techniques. We construct

a Monte Carlo Markov chain scheme with a double layer of selection indi-

cators, one for genes and one for pathways, that takes into account a set of

constraints for both identifiability of the model and biological interpretation.

The method we put forward represents a consistent framework for testing

whether a pathway is significantly related to a phenotype without using a

2-step procedure whose statistical properties, like the significance level of 2

hypothesis testing performed in sequence, would be difficult to investigate.

We use our method both with simulated data and on an application to gene



expression data with censored survival outcomes. In addition to a better un-

derstanding of the underlying molecular processes, our method also improves

on prediction accuracy.

In the second project we construct a statistical procedure to infer a bio-

logical network of very high dimensionality, where microRNAs, small RNAs,

are supposed to down-regulate mRNAs, also called target genes. The main

goal of the model is to understand which elements are connected and which

ones are not. In addition, specific biological characteristics/constraints need

to be considered. From a statistical point of view, we address this problem by

building a network that represents the biological regulatory system, indicat-

ing which microRNA regulates which gene. In particular, we provide a novel

graphical modeling approach that includes constraints on the regression co-

efficients to take into account the down-regulatory effect of the network. Our

approach is able to select single connections in the network, unlike previous

methods in the Bayesian variable selection literature, which only allow the

selection of covariates (microRNAs) that affect either all the genes or none of

them. The main challenge of this project is represented by the dimensionality

of the data. The network is potentially formed by more than 30,000 connec-

tions and the data are formed by 12 observations. By developing a stochastic

search variable selection type of algorithm we are able to efficiently explore

the space of all possible networks and to find, for each gene, which microR-

NAs have high posterior probability of being down-regulating the gene. To

help the selection, we also propose a new prior formulation which is able to

integrate different sources of data, by exploiting information from previous

sequence and structure analysis. Because we integrate many sources of infor-

mation, our model is also able to determine which information is consistent

with the data via posterior inference on the parameters defined in our data-

integration prior. The proposed method is general and can be easily applied

to other types of network inference by integrating multiple data sources.
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Chapter 1

Introduction

In this Chapter we introduce two topics, graphical models and Bayesian vari-

able selection, which will be extensively used in the following chapters. First,

in Section 1.1, we describe graphical models, both directed and undirected,

focusing on Gaussian graphical models and graphical models for binary vari-

ables. In Section 1.2 we review Bayesian approaches for variable selection in

linear models; we describe different specification for the hierarchical model

and various approaches for posterior inference, including several Monte Carlo

Markov Chain (MCMC) strategies. Finally we briefly describe the projects

that will form the following chapters, by giving a general idea of the problems

addressed and indicating the main features.

1.1 Brief Introduction to Graphical Models

Graphical models, see Whittaker (1990) and Cowell et al. (1999) among

others, are methods and techniques that use Graph Theory to model the

relationships between random variables. A graph is formed by nodes and arcs;

nodes represent random variables and the lack of arcs represent conditional

independence assumptions. Hence they provide a compact representation of

joint probability distributions. A graph is consistent with the conditional
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independence statements expressed in the distribution. However note that

it is not always possible to obtain a perfect map; this means that some

distributions characterized by specific conditional independencies cannot be

represented using a graphical model.

Arcs can be undirected (used for symmetric dependencies) or directed

(used when there is a direction in the dependence). These dependencies

can come from prior knowledge or from data analysis. Undirected graphical

models, also called Markov Random Field (MRF), have a simple definition of

independence: e.g., two sets of nodes A and B are conditionally independent

given a third set, C, if all paths between the nodes in A and B contain at

least one node belonging to C.Figure 1.1 displays an example of graphical

model. In a graph it is possible to describe the conditional independencies

among the variables using three equivalent Markov properties. The Pairwise

Markov property says that two variables that are not neighbors in the graph

are conditional independent given all the other variables. The Local Markov

property says that every variable Xi is independent of the variables not in

cl(Xi) conditional on the set of variables directly connected to Xi (boundary

of Xi), where cl(Xi), the closure of Xi, is the set of nodes formed by Xi and

its boundary. The Global Markov property says that two sets of variables B

and C that are not connected are independent given a third set of variables

S formed by all the variables that separate B and C. Some of the conditional

independencies that we can gather from figure 1.1 are:

• X1⊥⊥X4|(X2, X3, X5) - Pairwise Markov,

• X1⊥⊥(X4, X5)|(X2, X3) - Local Markov,

• (X1, X2)⊥⊥X5|(X3, X4) - Global Markov (B = {X1, X2}, C = {X5},
S = {X3, X4}).

Directed graphical models, also called Bayesian Network (BN), need a spe-

cific ordering of the variables. Since we do not allow for the presence of cycles

we work with directed acyclic graph (DAG). Conditional independencies in
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Figure 1.1: An example of undirected graphical model

a DAG depend on the ordering of the variables. When the joint distribu-

tion is a multivariate normal the model is called Graphical Gaussian model

(GGM). The graph G and the covariance matrix Σ entirely define a GGM

M, M ≡ (G, Σ). Nodes that are directly connected to node j and precede

j in the ordering are called parents of j , pa(j). In a Bayesian Network, Xj

is independent, given its parents, of the set of all the other variables in the

graph, except its parents.

In Chapter 2 a graphical model with binary random variables is used.

This type of model, called Ising model, is widely used in statistics. An Ising

model is a system with 2p states, where p indicates the number of variables

of which corresponding graph is a lattice system. The variables xj, with

j = 1, . . . , p, can assume only two values, xj ∈ {0, 1}, and their probability

distribution is assumed to be:

P (x) =
exp(d′x + x′Gx)

Z
(1.1)

with d = d1p, 1p the unit vector of dimension p and G a symmetric matrix

with elements {gij} usually set to some constant g; if nodes i and j are not

connected in the graph the corresponding gij is equal to zero. Z is usually

called partition function and, except for the 1-D Ising model, where each

8



node has a maximum of two neighbors, it is not possible to calculate its

value in closed form. To understand the role of the parameters d and G it is

helpful to look at the conditional probability distribution

P (xj|xi, i ∈ Nj) =
exp(xj(d +

∑
i∈Nj

gijxi))

1 + exp(d +
∑

i∈Nj
gijxi)

. (1.2)

The larger d the higher the probability assigned to configurations with most

of the xj’s equal to 1. Chapter 2 explains how this parameter is linked

to the concept of sparsity. The hyperparameters gij’s represent the prior

belief on the strength of coupling between the pairs of neighbors (i, j). This

parametrization has been recently used in the contest of variable selection

by Li & Zhang (2009).

A problem faced by Li & Zhang (2009) is the phase transition, that is,

the expected number of variables equal to 1 can increase massively for small

increments of G. This problem can happen because equation (1.2) can only

increase as a function of the number of xj’s equal to 1. In Chapter 2 we adopt

an alternative parametrization that has been used in statistics, at least, since

the work of Besag (1974), see also Besag (1986), and that allows us to avoid

the phase transition problem. Recently this distribution has been used by

Wei & Li (2007) and Wei & Li (2008) in the context of gene expression

analysis for a frequentist multiple hypothesis testing procedure; they refer

to this model as a Markov Random Field (MRF). Here we assume that the

global distribution on x is given by

P (x) ∝ exp(µ n1 − η n01), (1.3)

where n1 is the number of xj’s equal to 1 and n01 is the number of edges

linking variables with different values,

n1 =

p∑
j=1

xj, n01 =
1

2

p∑
i=1

[
p∑

j=1

rij −
∣∣∣∣∣

p∑
j=1

rij(1− xi)−
p∑

j=1

rijxj

∣∣∣∣∣

]
,
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where rij is the generic element of the p × p matrix R that describes edges

of the graphical model, with rij = 1 if xi and xj have a direct link in the

network, and rij = 0 otherwise. The corresponding conditional distribution

is

P (xj|xi, i ∈ Nj) =
exp(xjF (xj))

1 + exp(F (xj))
, (1.4)

where F (xj) = µ + η
∑

i∈Nj
(2xi − 1) and Nj is the set of direct neighbors of

xj in the graph. The parameter µ controls the sparsity of the model, with

higher values of η encouraging neighboring variables to take on the same

xj value. For variables with no neighbors, this distribution reduces to an

independent Bernoulli with parameter p = exp(µ)/[1 + exp(µ)], which is a

logistic transformation of µ.

1.2 Stochastic Search Variable Selection

This Section is a brief introduction to the general theory of the Stochastic

Search Variable Selection (SSVS) method introduced by George & McCul-

loch (1993) in the linear regression framework and subsequently adapted to

other modeling settings by many other authors, see for example Brown et al.

(1998b) and Sha et al. (2004).

This method allows to select the “best” subset of covariates from the 2p

possible models in a linear framework where Y is the dependent variable and

X1, . . . , Xp are the potential predictors. This approach has been developed

to handle situations where the number of variables p is bigger, and often

much bigger, than the number of observations n. In such situations most

of the standard methods can not be used. Note, for example, that the ma-

trix X ′X is not invertible. By imposing a hierarchical Bayes mixture prior

on the regression coefficients, this procedure puts a probability distribution

on the set of all possible regression models and then uses a MCMC algo-

rithm (Gibbs sampler in the original paper and Metropolis-Hastings in most

of the recent papers) to ’run’ through this set. “Best” models are clearly

10



those with high probability. The main property of this procedure is that, in

a high-dimensional framework, the MCMC can be used to obtain a sample

from the posterior distribution quickly and efficiently; this avoids the over-

whelming (and often mathematically or computationally impossible) burden

of calculating the posterior probabilities of all subsets.

The linear regression model is

Y ∼ Nn(Xβ, σ2In)

where Y is a n × 1 vector, X is a n × p matrix and β is a p × 1 vector

of regression coefficients. Selecting a subset of predictors is equivalent to

setting to zero the elements of β corresponding to the excluded predictors.

In the milestone paper of George & McCulloch (1993), the prior on β is

a mixture of two normal distributions, the first one with most of its mass

concentrated about zero and the second one with its mass spread out over

plausible values. Using the latent variable γi = 0, 1, the prior of each element

of β can be expressed as

P (βi|γi) = (1− γi)N(0, τ 2
i ) + γiN(0, c2

i τ
2
i ).

The hyperparameter τi is set small and c2
i is set large so that N(0, τ 2

i ) is

concentrated about zero and N(0, c2
i τ

2
i ) is diffuse. With this prior, if γi = 0

then βi is so small that it could be estimated by 0, whereas if γi = 1 a

nonzero estimate of βi corresponds to an important predictor. In this model

the βi are independent given the vector γ = (γ1, . . . , γp). The prior on γ is

the product of p independent Bernoulli

P (γ) =

p∏
i=1

wγi

i (1− wi)
(1−γi)

with wi = P (γi = 1). This probability can be interpreted as the prior

probability that Xi should be included in the model; the set of parameters

wi regulates the sparsity of the model, defining the a priori expected number
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of included regressors. The prior on σ2 is the conjugate Inverse Gamma

σ2 ∼ InvGa(ν/2, νλ/2)

and priors on β and σ2 are treated as independent distributions.

For posterior inference, the posterior distribution of γ,

P (γ|Y ) ∝ P (Y |γ)P (γ),

allows to identify the “best” models, that is those most supported by the

data and by the prior distribution. The main target of the Gibbs sampler is

to generate the sequence

γ(0), γ(1), γ(2), . . .

which converges in distribution to P (γ|Y ). The algorithm does not need

to explore the entire distribution to find the most probable models, because

many models have small posterior probability and can be ignored. This is

due to the idea of ’sparsity’, that relates to situations where many of the

possible relations (the coefficients in our case) are so small to be practically

zero or represent only noise. In other words, we think here of the ’true’ model

as being sparse.

The above sequence can be obtained by applying the Gibbs sampler to the

complete posterior P (β, σ2, γ|Y ); the output is the full sequence of parameter

values

β(0), σ(0), γ(0), β(1), σ(1), γ(1), . . .

a Markov chain generated by the full conditional distributions P (β|σ2, γ, Y ),

P (σ2|β, γ, Y ) and P (γi|β, σ2, γ−i, Y ), with γ−i = (γ1, γ2, . . . , γi−1, γi+1 . . . , γp).

From Figure 3.2, representing the graphical structure of the model, we see

that the choice of the prior distributions allows to obtain the full conditionals

in closed form leading to the following simplifications:
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Figure 1.2: The graphical model structure of the linear regression model.

P (σ2|β, γ, Y ) = P (σ2|β, Y )

P (γi|β, σ2, γ−i, Y ) = P (γi|β, γ−i),

since the full conditional of any node depends only on the values of its parents,

children and co-parents, where ’co-parents’ are other parents of the children

of the node (see Figure 3.2).

Smith & Kohn (1996) have extended this variable selection procedure to

semiparametric additive models reframing the problem in terms of a linear

model. The main feature of their procedure is the implicit introduction

of a spike and slab prior, explicitly introduced and analyzed by George &

McCulloch (1997), for the regression coefficients

βi|γi, σ
2 ∼ (1− γ1)δ0 + γiN(0, σ2cxii),

where δ0 is a Dirac’s delta concentrated at 0 and xii is the i-th element of

the diagonal of (X ′X)−1. They then specify a g-prior on the vector of the

selected regression coefficients β|γ, σ2 ∼ N(0, σ2c(X ′X)−1), while the non-

selected β’s are excluded from the model. This setting leads to a faster

computing algorithm since we are able to integrate β and σ2 out from the

13



model. The only parameter sampled in the corresponding MCMC is then

γ and, consequently, this algorithm needs to explore only the model space

represented by P (γ|Y ). Smith & Kohn (1996) used a Gibbs sampler where at

each step they sample, for i = 1, . . . , p, from the full conditional distributions

P (γi = 1|γ−i, Y ) =
1

1 + h

where

h =
1− wi

wi

(c + 1)1/2(S(γ1)/S(γ0))n/2

and γ1 = (γ1, . . . , γi−1, γi = 1, γi+1, . . . , γp), γ0 = (γ1, . . . , γi−1, γi = 0, γi+1, . . . , γp),

S(γ) = Y ′Y − c
1+c

Y ′X(X ′X)−1X ′Y .

After obtaining a sample from the posterior distribution of γ given the

data D, and the associated posterior probabilities P (γ|D), two strategies for

posterior inference are possible. The first approach uses only the model with

the highest posterior probability, while the second approach, proposed by

Madigan & Raftery (1994) and Madigan & York (1995), uses a set of models

with high posterior probability. This set can include all the models visited in

the MCMC; this procedure gives a good approximation of the marginalization

over every possible model and is directly linked to an exploration algorithm of

the model space. Madigan & York (1995) propose a method, in the context of

model selection for discrete graphical models, to perform posterior inference

for a quantity of interest ∆ under model uncertainty. Because the procedure

is not specific to the selection of a regressor in a linear model they do not use

the parameter γ but indicate with Mk one of the possible models belonging

to class of models under consideration M. The model averaging posterior

inference for ∆ under model uncertainty is then performed using:

P (∆|D) =
K∑

k=1

P (∆|Mk, D)P (Mk|D). (1.5)
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This formula averages the posterior distribution under each of the mod-

els weighted by their posterior probabilities. To obtain the probabilities

P (Mk|D), at least for a significant subset of models, Madigan & York (1995)

propose a procedure called Markov Chain Monte Carlo model composition

(MC3). Integrating out all the parameters and defining, implicitly, a flat

prior on the model space, the MC3 consists of a Metropolis-Hasting algo-

rithm to explore the posterior distribution P (M |D), where at each step a

new model, that differs from the model selected at the previous step only for

the inclusion or exclusion of an edge, is proposed.

Brown et al. (1998a) adapted and perfected the MC3 algorithm in the

context of linear regression. Starting from a parametrization similar to Smith

& Kohn (1996), after integrating out the model parameters β and σ2, it

is possible to define an MC3-type procedure for γ. First a value for γ is

randomly chosen and then moves through a sequence of further values of γ are

performed, with each step in the sequence having an element of randomness.

At each point in the sequence a new candidate γ is generated by randomly

modifying the current one. If the new candidate has a higher probability

than the current one, then the chain will move to the new configuration γ′.

If not, then the move is still possible, but now only with a certain probability.

This feature explains why this algorithm is also called random search. Brown

et al. (1998a), specifically, define two types of moves:

1. (Adding or deleting) Choose one of the p covariates at random. If

the variable is currently in the model, delete the variable; if it is not

currently in the model, add it to the model. Thus the new candidate

γ′ differs from the previous γ in one of its entries.

2. (Swapping) Choose at random one of the currently included variables

and at random one of the currently excluded covariates. Exclude the

previously included variable from the candidate model and include the

previously excluded covariate.
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By indicating with g(γ) = P (γ)P (Y |X, γ), the new candidate model γ′

is accepted with probability

min

[
g(γ′)
g(γ)

, 1

]
.

Note that the proposal distribution associated to this MCMC scheme is sym-

metric and does not appear in the acceptance ratio. In every model where

it is possible to integrate out all the parameters but γ, this Metropolis algo-

rithm is preferred to the Gibbs sampler because it allows a faster exploration

of the space of the relevant models.

Several different MCMC schemes have been proposed to achieve a faster

exploration of the posterior distribution P (γ|Y ). Recently Bottolo & Richard-

son (2009) have proposed and evolutionary Monte Carlo scheme combined

with a parallel tempering approach that allows the algorithm to explore the

model space faster by avoiding to remain stuck in local modes. Beside the

different ideas combined in Bottolo & Richardson (2009), an interesting fea-

tures of their algorithm is that they use an efficient Gibbs sampling. In

Bayesian variable selection the Metropolis algorithm of Brown et al. (1998a)

is usually preferred to the Gibbs sampler because, using the latter, at each

iteration the algorithm has to go through all the full conditionals of every

variable indicator, sampling each element of the vector γ. Therefore most

of the non selected variables at the previous step will not be included into

the model because completely unrelated to Y . Bottolo & Richardson (2009)

have built an MCMC scheme that does not need to sample all the indicators

at each step, skipping a lot of heavy computations related to non significative

variables.

Brown et al. (1998b) have generalized the SSVS to multivariate regression

model with q response variables. Defining the SSVS procedure requires the

introduction of matrix variate distributions. Following Dawid (1981), the

notation Y −M ∼ N (Γ, Σ) indicates a n×q normal matrix-variate where M

16



indicates the mean and γiiΣ and σjjΓ indicate the covariance matrices of the

i-th row and j-th column, respectively. The data model, with p covariates, q

response variables and n independent samples can be defined as Y − 1α′ −
XB ∼ N (In, Σ). Using the following priors

α− α0 ∼ N (h, Σ)

B−B0 ∼ N (H, Σ)

Σ ∼ IW(δ,Q)

it is possible to integrate all three parameters out from the model. This fea-

ture, jointly with a QR deletion-addition algorithm for fast updating in the

calculation of the marginal likelihood, leads to a very efficient Gibbs MCMC

scheme for posterior inference. Note that Brown et al. (1998b) specify a la-

tent p × 1 vector indicator for the inclusion of the covariates, with the j-th

element equal to 1 if the j-th covariate is significant for all q response vari-

ables. Consequently, it is not possible to define different sets of significant

covariates for different response variables. Moreover, Brown et al. (1998b)

use the model averaging idea of Madigan & York (1995) for prediction of

new observations Yf . This procedure is based on the predictive distribution

p(Yf |Y, Xf ) and exploits the conjugacy of the model; after integrating α, B

and Σ out it is possible to calculate Yf as weighted mean of the expected val-

ues of p(Yf |Y, Xf ) given different configurations of γ, with the weights being

the posterior probabilities of these configurations. Only the best k configu-

rations, according to the posterior probabilities, are used for prediction.

1.3 Description of the Projects

This thesis is composed by two different projects that share some basic fea-

tures:

1. They are motivated by new challenges in the analysis of genomic data;

2. They relate to Bayesian models for variable selection;
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3. They are built for p much bigger than n problems;

4. They integrate different sources of data.

In Chapter 2, starting from the classical problem of finding genes that relate

to a response variable, we build a model that takes into account both the

dependence structure among the genes and the fact that genes usually work

in groups, called pathways. Gene selection is important for disease diagnosis

and therapeutic target selection. However, gene selection alone may not

be sufficient. For example cancer drugs are increasingly designed to target

specific pathways. The identification of critical genes and pathways in disease

development is one of the most important tasks in the post-genomic era.

Most of the available methods make inference about pathways using a

two step procedure where at the first step the significant genes are selected

and, at the second step, a test statistic for the detection of the significant

pathways is calculated based on the previously selected genes. Because of

the two-steps nature of these procedures, it is not possible to determine the

real significance level of the tests.

We propose a model that incorporates biological knowledge from pathway

databases into the analysis of DNA microarrays to identify both pathways

and genes related to a phenotype. In our model information on pathway

membership and gene networks is used to define pathway summaries, to

specify prior distributions that account for the dependence structure between

genes, and to define the MCMC moves to fit the model. The group behav-

ior of genes in pathways is summarized using the first PLS (Partial Least

Squares) latent component obtained from the genes in each of the pathways

included into the model. PLS allows us to extract, from every pathway, most

of the information that explains the response variable. The gene network

information is modeled using a Ising-type Markov Random Field prior on

the binary selection indicators of the genes.

The employment of the gene network prior and the synthesis of the path-

way information through PLS bring additional information into the model
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that is especially useful in microarray data, where there is low sample size

and large measurement error. We evaluate the performance of the method

using simulated data. We also illustrate the method on a breast cancer gene

expression dataset with survival outcomes. We show that our model can lead

to the selection of significant genes that would have been missed otherwise.

In addition we achieve better prediction results compared to models that

do not treat genes as connected elements that work in groups or pathways.

Chapter 2 is entirely derived from a paper written together with Yian A.

Chen (Moffit Cancer Center), Mahlet G. Tadesse (Georgetown University)

and Marina Vannucci (Rice University); this manuscript is a technical report

(TR2010-01) of the Department of Statistics at Rice University and it has

been submitted to the Annals of Applied Statistics.

In Chapter 3 we describe how to infer a regulatory network where genes

are supposed to be regulated by microRNAs (an abundant class of small,

∼22 nucleotide, RNAs). The motivation of this work comes from one of the

main questions in genomics: What functional relationships exist among genes

and how are they influenced by other biological elements? This question can

be appropriate in many situations. Our first problem is to understand the

regulatory process of microRNAs (miRNAs) on the genes (miRNA targets).

Because of the usual lack of samples we use external information that helps

finding significant connections between genes and miRNAs. Specifically, we

use a directed graphical model (Bayesian Network) with a predetermined or-

dering of the nodes based on biological considerations and use the Bayesian

paradigm for inference. This model is able to answer to the baseline question

of ’which miRNAs regulate which targets ’ and allows us to build a fast compu-

tational procedure required in a high-dimensional framework. The challenge

of the analysis is in building a fast computational procedure which is able

to find sets of most probable models (that is, a model selection problem).

We use a stochastic search variable selection type procedure adapted to a

high-dimensional graphical model with prior distributions reflecting biologi-
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cal information. Chapter 3 is entirely derived from a paper written together

with Yian A. Chen (Moffit Cancer Center), Marina Vannucci (Rice Univer-

sity), Marianne Barrier (Texas A&M University) and Philip E. Mirkes (Texas

A&M University); this manuscript is a technical report (TR2009-01) of the

Department of Statistics at Rice University and has been invited for revision

by Annals of Applied Statistics.

20



Chapter 2

Bayesian Models for Pathway
and Gene selection

The vast amount of biological knowledge accumulated over the years has

allowed researchers to identify various biochemical interactions and define

different families of pathways. There is an increased interest in identifying

pathways and pathway elements involved in particular biological processes.

Drug discovery efforts, for example, are focused on identifying biomarkers as

well as pathways related to a disease. We propose a Bayesian model that

addresses this question by incorporating information on pathways and gene

networks in the analysis of DNA microarray data. These information are used

to define pathway summaries, specify prior distributions, and structure the

MCMC moves to fit the model. We illustrate the method with an application

to gene expression data with censored survival outcomes. In addition to

identifying markers that would have been missed otherwise and improving

prediction accuracy, the integration of existing biological knowledge into the

analysis provides a better understanding of underlying molecular processes.
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2.1 Introduction

DNA microarrays have been used successfully to identify gene expression

signatures characteristic of disease subtypes Golub et al. (1999) or distinct

outcomes to therapy Shipp et al. (2002). Many statistical methods have

been developed to select genes for disease diagnosis, prognosis, and thera-

peutic targets. There is an increased consensus, however, that gene selection

alone may not be sufficient. In cancer pharmacogenomics, for instance, can-

cer drugs are increasingly designed to target specific pathways to account

for the complexity of the oncogenic process and the complex relationships

between genes Downward (2006). A pathway is generally defined as an or-

dered series of chemical reactions in a living cell, and it can be activated or

inhibited at multiple points. For example, if a gene at the top of a signaling

cascade is selected as a target, it is not guaranteed that the reaction will

be successfully inactivated because multiple genes downstream can still be

activated or inhibited. Even if a branch of the pathway is completely blocked

by inhibition or activation of multiple genes, the signal may still be relayed

through an alternative branch or even through a different pathway Bild et al.

(2006), Solit et al. (2006). Downward (2006) pointed out that targeting a

single pathway or a few signaling pathways might not be sufficient. Thus,

the focus is increasingly on identifying both relevant genes and pathways.

We propose a Bayesian model that addresses this question by incorporating

information on pathways and gene networks in the analysis of DNA microar-

ray data. These information are used to define pathway summaries, specify

prior distributions, and structure the MCMC moves to fit the model.

Several public and commercial databases have been developed to struc-

ture and store the vast amount of biological knowledge accumulated over

the years into functionally or biochemically related groups. These databases

focus on describing signaling, metabolic or regulatory pathways. Some ex-

amples include Gene Ontology (GO) The Gene Ontology Consortium (2000),

the Kyoto Encyclopedia of Genes and Genomes (KEGG) Ogata et al. (1999),
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MetaCyc Krieger et al. (2004), PathDB (www.ncgr.org/pathdb), Reactome

KnowledgeBase Joshi-Tope et al. (2005), Invitrogen iPath (www.invitrogen.com),

and Cell Signaling Technology (CST) Pathway (www.cellsignal.com). The

need to integrate gene expression data with the biological knowledge accu-

mulated in these databases is well recognized. Several software packages that

query pathway information and overlay DNA microarray data on pathways

have been developed. Nakao et al. (1999) implemented a visualization tool

that color-codes KEGG pathway diagrams to reflect changes in their gene

expression levels. GenMAPP Dahlquist et al. (2002) is another graphical

tool that allows visualization of microarray data in the context of biological

pathways or any other functional grouping of genes. Doniger et al. (2003)

have made use of GenMAPP to view genes involved in specific GO terms.

Another widely used method that relates pathways to a set of differentially

expressed genes is the gene set enrichment analysis (GSEA) Subramanian

et al. (2005). Given a list of genes ordered according to their correlation

with a phenotype, GSEA computes an enrichment score to reflect the degree

to which a pre-defined pathway is over-represented at the top or bottom of

the ranked list. These procedures are useful starting points to observe gene

expression changes in the context of known biological processes.

Some recent studies have gone a step further and have focused on incorpo-

rating pathway information or gene-gene network information into the analy-

sis of gene expression data. For example, Park et al. (2007) have attempted to

incorporate GO annotation to predict survival time, by first grouping genes

based on their GO membership, calculating the first principal component to

form a super-gene within each cluster then applying a Cox model with L1

penalty to identify super-genes, i.e., GO terms related to the outcome. Wei

& Li (2007) have considered a small set of 33 pre-selected signaling path-

ways and used the implied relationships among genes to infer differentially

expressed genes, and Wei & Li (2008) have extended this work by including

a temporal dimension. Li & Li (2008) and Pan et al. (2009) have proposed
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two different procedures that use the gene-gene network to build penalties in

a regression model framework for gene selection. Bayesian approaches have

also been developed. Li & Zhang (2009) have incorporated the dependence

structure of transcription factors in a regression model with gene expression

outcomes; in their approach a network is defined based on the Hamming dis-

tance between candidate motifs and used to specify a Markov random field

prior for the motif selection indicator. Telesca et al. (2008) have proposed a

model for the identification of differentially expressed genes that takes into

account the dependence structure among genes from available pathways while

allowing for correction in the gene network topology.

These methods use the gene-pathway relationships or gene network infor-

mation to identify either the important pathways or the genes. Our goal is to

develop a more comprehensive method that selects both pathways and genes

using a model that incorporates pathway-gene relationships and gene depen-

dence structures. In order to identify relevant genes and pathways, latent

binary vectors are introduced and updated using a two-stage Metropolis-

Hastings sampling scheme. The gene networks are used to define a Markov

random field prior on the gene selection indicators and to structure the

Markov chain Monte Carlo (MCMC) moves. In addition, the pathway infor-

mation is used to derive pathway expression measures that summarize the

group behavior of genes within pathways using the first latent components

obtained by applying partial least squares (PLS) regressions on the selected

genes from each pathway. We apply the model to simulated and real data

using the pathway structure from the KEGG database. The integration of

the pathway information allows the identification of relevant predictors that

would have been missed otherwise and also improves the prediction accuracy.

The paper is organized as follows. In Section 2, we discuss the model

formulation and prior specification. Section 3 describes the MCMC procedure

to fit the model and strategies for posterior inference. In Section 4, we

evaluate the performance of the method using simulated data and illustrate
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Figure 2.1: Directed acyclic graph for model – observables are represented
with squares and parameters with circles

an application of the method to gene expression data with survival outcomes.

We conclude with a brief discussion in Section 5.

2.2 Model Specification

In this Section, we describe how we incorporate pathway and gene network

information into a Bayesian modeling framework for gene and pathway selec-

tion. Figure 3.2 shows a graphical representation of the a priori dependence

structure among variables and parameters in the proposed model.
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2.2.1 Regression on Latent Measures of Pathway Ac-
tivity

Our goal is to build a model for identifying pathways related to a particular

phenotype while simultaneously locating genes from these selected pathways

that are involved in the biological process of interest. The data we have

available for analysis consist of:

1. Y , an n× 1 vector of outcomes.

2. X, an n×p matrix of gene expression levels. Without loss of generality,

X is centered so that its columns sum to 0.

3. S, a K × p matrix indicating membership of genes in pathways, with

elements skj = 1 if gene j belongs to pathway k, and skj = 0 otherwise.

4. R, a p×p matrix describing relationships between genes, with elements

rij = 1 if genes i and j have a direct link in the gene network, and

rij = 0 otherwise.

The matrices S and R are constructed using information retrieved from path-

way databases, see the application in Section 2.4.2 for details.

Since the goal of the analysis is to study the association between the re-

sponse variable and the pathways, we need to derive a score as a measure

of “pathway expression”, which summarizes the group behavior of included

genes within pathways. We do this by using the latent components from a

PLS regression of Y on selected subsets of genes from each pathway. A num-

ber of recent studies have, in fact, applied dimension reduction techniques to

capture the group behavior of multiple genes. Pittman et al. (2004), for in-

stance, first apply k-means clustering to identify subsets of potentially related

genes, then use as regressors the first principal components obtained from

applying principal component analysis (PCA) to each cluster. Bair et al.

(2006) start by removing genes that have low univariate correlation with the

outcome variable then apply PCA on the remaining genes to form clusters
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or conceptual pathways, which are used as regressors. Similarly, Carvalho

et al. (2008) use a factor model and interpret the factors as pathways. In

our method, instead of attempting to infer conceptual pathways, we use the

existing pathway information. We compute a pathway activity measure by

applying PLS regression of Y on a subset of selected genes from the path-

way. PLS has the advantage of taking into account the correlation between

covariates and the response variable Y , whereas PCA focuses solely on the

variability in the covariate data. The selection of a subset of gene expressions

to form the PLS components is similar in spirit to the sparse PCA method

proposed by Zou et al. (2006), which selects variables to be used to form the

principal components.

One approach for locating genes and pathways to be included in the

model consists of first deriving all possible first PLS components for pathway

k using each of the (2pk − 1) subsets of genes that can be formed from

the pk =
∑p

j=1 skj genes belonging to the pathway (the empty set is not

considered). Let Tk be the corresponding n× (2pk − 1) matrix of first latent

components. In order to identify the genes that contribute to the summary

measure of pathway k, a multinomial latent vector λk of size (2pk − 1) is

introduced with λkl = 1 if column l of Tk is used as score for pathway k,

and λkl = 0 otherwise. In addition, a latent binary vector θθθ is introduced

for pathway selection. The linear regression model that relates the response

variable to the selected pathways and genes is then written as

Y = 111α +

Kθ∑
r=1

TTT r(λr)Br(λr) + εεε, εεε ∼ N (0, σ2III), (2.1)

where Kθ =
∑K

k=1 θk is the number of selected pathways and where the

subscript (λr) identifies the first PLS latent component that corresponds to

the non-zero element of the multinomial vector λr and that is used as score

of pathway r, among the (2pr − 1) columns of TTT r; Br is the (2pr − 1)-vector

of regression coefficients associated with the matrix TTT r and Br(λr) is the non-
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zero element corresponding to the selected column TTT r(λr).

We introduce a simpler parametrization that is equivalent to model (2.1)

to ease the prior specification and the MCMC implementation. Instead of

defining K multinomial vectors of length (2pk − 1) to locate genes relevant

from each pathway, we use a single p×1 binary gene selection vector γ, where

γj = 1 if gene j is selected, and γj = 0 otherwise. The linear regression model

can then be defined as

Y = 111α +

Kθ∑
r=1

Tr(γ)βr(γ) + εεε, εεε ∼ N (0, σ2III), (2.2)

where Tr(γ) corresponds to the first latent PLS component generated based

on the expression levels of selected genes belonging to pathway r, that is

using the Xj’s corresponding to srj = 1 and γj = 1. Note that, since in (2.1)

we only allow the selection of one column of TTT k as the score of pathway k,

the use of λk in (2.1) is equivalent to using γ coupled with the matrix S in

(2.2).

As we explain in Sections 2.2.3 and 2.2.4, the alternative parametrization

in (2.2) makes it easier to incorporate the gene network in the prior distribu-

tion for gene selection. In addition, the use of a p× 1 binary vector, instead

of K multinomial vectors of size (2pk − 1), simplifies the implementation of

an MCMC algorithm that explores the space of gene subsets and facilitates

the posterior inference for gene selection.

2.2.2 Models for Categorical or Censored Outcomes

In the construction above, we have assumed a continuous response. How-

ever, our model formulation can easily be extended to handle categorical or

censored outcome variables.

When Y is a categorical variable taking one of G possible values, 0, . . . , G−
1, a probit model can be used Albert & Chib (1993), Sha et al. (2004),

Kwon et al. (2007). Briefly, each outcome Yi is associated with a vector
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(pi,0, . . . , pi,G−1), where pig = P (Yi = g) is the probability that subject i

falls in the g-th category. The probabilities pig can be related to the linear

predictors using a data augmentation approach. Let Zi be latent data corre-

sponding to the unobserved propensities of subject i to belong to one of the

classes. When the observed outcomes Yi correspond to nominal values, the

relationship between Yi and Zi = (zi,1, . . . , zi,G−1) is defined as

Yi =

{
0 if max1≤l≤G−1{zi,l} ≤ 0

g if max1≤l≤G−1{zi,l} > 0 and zi,l = max1≤r≤G−1{zi,l}
. (2.3)

A multivariate normal model can then be used to associate Zi to the predic-

tors

Zi = α111T +

Kθ∑
r=1

Ti,r(γ)βββr(γ) + εi, εi ∼ N (0, Σ), i = 1, . . . , n. (2.4)

If the observed outcomes Yi correspond, instead, to ordinal categories,

the latent variable Zi is defined such that

Yi = g if δg < Zi ≤ δg+1, g = 0, . . . , G− 1, (2.5)

where the boundaries δg are unknown and −∞ = δ0 < δ1 < . . . < δG−1 <

δG = ∞. The latent variable Zi is then associated with the predictors through

the linear model

Zi = α +

Kθ∑
r=1

Ti,r(γ)βr(γ) + εi, εi ∼ N (0, σ2), i = 1, . . . , n. (2.6)

For censored survival outcomes, an accelerated failure time (AFT) model

can be used, Wei (1992), Sha et al. (2006). In this case, the observed data

are Yi = min(Ti, Ci) and δi = I{Yi ≤ Ci}, where Ti is the survival time for

subject i, Ci is the censoring time, and δi is a censoring indicator. A data

augmentation approach can be used and variables Zi can be introduced such
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that {
Zi = log(Yi) if δi = 1

Zi > log(Yi) if δi = 0
. (2.7)

The AFT model can then be written in terms of the latent Zi,

Zi = α +

Kθ∑
r=1

Ti,r(γ)βr(γ) + εi, (2.8)

where the εi’s are independent and identically distributed random variables

that may take one of several parametric forms. Sha et al. (2006) consider

cases where εi follows a normal or a t-distribution.

2.2.3 Prior for Regression Parameters

The regression coefficient βk in (2.2) measures the effect of the PLS latent

component summarizing the effect of pathway k on the response variable.

However, not all pathways are related to the phenotype and the goal is to

identify the predictive ones. Bayesian methods that use mixture priors for

variable selection have been thoroughly investigated in the literature, in par-

ticular for linear models, see George & McCulloch (1993, 1997) for multiple

regression, Brown et al. (1998b) for extensions to multivariate responses and

Sha et al. (2004) for probit models. A comprehensive review on special fea-

tures of the selection priors and on computational aspects of the method can

be found in Chipman et al. (2001). Similarly, here, we use the latent vector

θθθ to specify a scale mixture of a normal density and a point mass at zero for

the prior on each βk in model (2.2):

βk|θk, σ
2 ∼ θk · N (β0, hσ2) + (1− θk) · δ0(βk), k = 1, . . . , K. (2.9)
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where δ0(βk) is a Dirac Delta function. For model (2.1), the prior specification

for the regression coefficients BBBk requires conditioning on θk as well as λk,

Bkj|θk, λk, σ
2 ∼ θk · [λkj · N (B0j, hσ2) + (1− λkj) · δ0(Bkj)]

+(1− θk) · δ0(Bkj)
(2.10)

for k = 1, . . . , K and j = 1, . . . , (2pk − 1). When conditioning on γ, the

posterior distributions of the selected regression coefficients induced by prior

(2.9) for model (2.2) and by prior (2.10) for model (2.1) are equivalent. It

is, however, easier to specify a prior that incorporates the gene dependence

structure for the p-vector γγγ than it is for the K multinomial vectors λλλk,

see Section 2.2.4 below. The hyperparameter h in (2.9) regulates, together

with the hyperparameters of p(θθθ, γγγ|η), the amount of shrinkage in the model.

We follow the guidelines provided by Sha et al. (2004) and specify h in the

range of variability of the data so as to control the ratio of prior to posterior

precision.

For the intercept term, α, and the variance, σ2, we take conjugate priors

α|σ2 ∼ N (α0, h0σ
2) (2.11)

σ2 ∼ Inv-Gamma(ν0/2, ν0σ
2
0/2),

where α0, β0, h0, h, ν0 and σ2
0 are to be elicited.

2.2.4 Priors for Pathway and Gene Selection Indica-
tors

In this Section we define the prior distributions for the pathway selection

indicator, θθθ, and gene selection indicator, γγγ. These priors are first defined

marginally then jointly, taking into account some necessary constraints.

Each element of the latent K-vector θθθ is defined as

θk =

{
1 if pathway k is represented in the model

0 otherwise
(2.12)
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for k = 1, . . . , K. We assume independent Bernoulli priors for the θk’s,

p(θθθ|ϕk) =
K∏

k=1

ϕθk
k (1− ϕk)

1−θk , (2.13)

where ϕk determines the proportion of pathways expected a priori in the

model. A mixture prior can be further specified for ϕk to achieve a better

discrimination in terms of posterior probabilities between significant and non-

significant pathways by inflating p(θk = 0) toward 1 for the non-relevant

pathways, as suggested by Carvalho et al. (2008),

p(ϕk) = ρδ0(ϕk) + (1− ρ)B(ϕk|a0, b0), (2.14)

where B(ϕk|a0, b0) is a Beta density function with parameters a0 an b0. Since

inference on ϕk is not of interest, it can be integrated out to simplify the

MCMC implementation. This leads to the following marginal prior for θ

p(θθθ) =
∏

k

[
ρ · (1− θk) + (1− ρ) · B(a0 + θk, b0 + 1− θk)

B(a0, b0)

]
, (2.15)

where B(·, ·) is the Beta function. Prior (2.15) corresponds to a product of

Bernoulli distributions with parameter ϕ∗k = a0(1−ρ)
a0+b0

.

For the latent p-vector γγγ, we specify a prior distribution that is able to

take into account not only the pathway membership of each gene but also

the biological relationships between genes within and across pathways, which

are captured by the matrix R. Following Wei & Li (2007), we model these

relations using a Markov random field (MRF), where genes are represented by

nodes and relations between genes by edges. A MRF is a graphical model in

which the distribution of a set of random variables follow Markov properties

that can be described by an undirected graph. In particular, a pair of genes

that are not connected are considered conditionally independent given all

other genes Besag (1974). Relations on the MRF are represented by the
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following probabilities

P (γj|η, γi, i ∈ Nj) =
exp(γjF (γj))

1 + exp(F (γj))
, (2.16)

where F (γj) = µ + η
∑

i∈Nj
(2γi − 1) and Nj is the set of direct neighbors

of gene j in the MRF using only pathways represented in the model, i.e.,

pathways with θk = 1. The parameter µ controls the sparsity of the model,

with higher values of η encouraging neighboring genes to take on the same

γj value. If a gene does not have any neighbor, its prior distribution reduces

to an independent Bernoulli with parameter p = exp(µ)/[1 + exp(µ)], which

is a logistic transformation of µ. The corresponding global distribution on

the MRF is given by

P (γγγ|θ, µ, η) ∝ exp(µ n1 − η n01), (2.17)

where n1 is the number of selected genes and n01 is the number of edges

linking genes with different values of γj (i.e., edges linking included and

non-included genes among all pathways),

n1 =

p∑
j=1

γj, n01 =
1

2

p∑
i=1

[
p∑

j=1

rij −
∣∣∣∣∣

p∑
j=1

rij(1− γi)−
p∑

j=1

rijγj

∣∣∣∣∣

]
.

In addition, we specify a Gamma hyperprior for η,

η ∼ Gamma(c0, d0). (2.18)

Constraints need to be imposed to ensure both interpretability and iden-

tifiability of the model. We essentially want to avoid the following scenarios:

1. creation of empty pathways, i.e., selecting a pathway but none of its

member genes;

2. creation of orphan genes, i.e., selecting a gene but none of the pathways

that contain it;
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3. selection of identical subsets of genes by different pathways, a situation

that generates identical values Tk(γ) and Tk′(γ) to be included in the

model.

These constraints imply that some combinations of θ and γ values are not

allowed. The joint prior probability for (θθθ, γγγ) taking into account these con-

straints is given by

π(θθθ, γγγ|η) ∝
{ ∏K

k=1 ϕ∗θk
k (1− ϕ∗k)

1−θk exp(µn1 − ηn01) for valid comb.,

0 for invalid comb.

(2.19)

We note that specifying a prior of type (2.17) on the array λλλ = (λ1, . . . , λK)

from model (2.1) would in practice amount to reparameterizing the K multi-

nomial vectors into a p-binary vector, therefore bringing us back to model

(2.2). In addition, it is more straightforward to impose the constraints on

the p-binary vector γγγ than it is on the K multinomial vectors λk.

2.3 Model Fitting

We now describe the MCMC procedure to fit the model and discuss strategies

for posterior inference.

2.3.1 Marginal Posterior Probabilities

The model parameters consist of (α, β, σ2, γγγ, θθθ, η). The MCMC procedure

can be made more efficient by integrating out some of the parameters. Here,

we integrate out the regression parameters, α, β and σ2. This leads to a

multivariate t-distribution

f(Y |TTT , θθθ, γγγ) ∼ Tν0(α01n +TTT (θ,γ)β0, σ
2
0(In +h01n1

′
n +TTT (θ,γ)Σ0TTT

′
(θ,γ))), (2.20)

with ν0 degrees of freedom and 1n an n-vector of ones, and where Σ0 = hIKθ
,

with In the n× n identity matrix, and T(θ,γ) the n×Kθ matrix derived from
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the first PLS latent components for selected pathways using selected genes.

In the notation (2.20) the two arguments of the t-distribution represent the

mean and the scale parameter of the distribution, respectively. The posterior

probability distribution of the pathway and gene selection indicators is then

given by

f(θθθ, γγγ, η|TTT , Y ) ∝ f(Y |TTT , θθθ, γγγ) · π(θθθ, γγγ|η) · π(η). (2.21)

2.3.2 MCMC Sampling

The MCMC steps to fit the model consist of: (I) sampling the pathway

and gene selection indicators from p(θθθ, γγγ|rest); (II) sampling the MRF pa-

rameter from p(η|rest); (III) sampling additional parameters that would be

introduced when fitting a probit model for categorical outcomes or an AFT

model for survival outcomes.

(I) The parameters (θθθ, γγγ) are updated using a Metropolis-Hastings algo-

rithm in a two-stage sampling scheme. The pathway-gene relationships

are used to structure the moves and account for the constraints speci-

fied in Section 2.2.4. Figure 2.2 summarizes the transition moves in a

flow chart. Details of the MCMC moves for updating (θθθ, γγγ) are pro-

vided in the Appendix A. Briefly, they consist of randomly choosing

one of the following three move types:

1. change the inclusion status of gene and pathway by randomly

choosing between adding the score of a pathway and a gene (move

1.i in Figure 2.2) or removing them both (move 1.ii);

2. change the inclusion status of gene but not pathway by randomly

choosing between adding a gene (2.i) or removing a gene (2.ii);

3. change the inclusion status of pathway but not gene by randomly

choosing between adding a pathway (3.i) or removing a pathway

(3.ii).
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Figure 2.2: Proposed move types: (1.i) add a pathway and a gene (+,+);
(1.ii) remove a pathway and a gene (-,-); (2.i) add a gene in an existing
pathway (n,+); (2.ii) remove a gene from an existing pathway (n,-); (3.i) add
a pathway without touching genes (+,n); (3.ii) remove a pathway without
touching genes (-,n).
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(II) The MRF parameter η is sampled using a Metropolis-Hastings algo-

rithm, in which a candidate ηnew is generated from a truncated normal

distribution, with mean ηold and truncation at 0, which we denote by

q(ηold; ηnew). The variance of this distribution represents a tuning pa-

rameter chosen to allow a wide exploration of the parameter space and

to give a good acceptance rate. Alternatively, a Gamma density could

be used as proposal distribution. The acceptance probability is

min

{
f(γ|ηnew, θ)f(ηnew)q(ηold; ηnew)

f(γ|ηold, θ)f(ηold)q(ηnew; ηold)
, 1

}
. (2.22)

(III) In the case of classification or survival outcomes, the augmented data

Z need to be updated from their full conditionals using Gibbs sampling

(see Sha et al. (2004, 2006), Kwon et al. (2007) for details on this step).

2.3.3 Posterior Inference

The MCMC procedure results in a list of visited models with included path-

ways indexed by θθθ and selected genes indexed by γγγ, and their correspond-

ing relative posterior probabilities. Pathway selection can be based on the

marginal posterior probabilities p(θk|TTT , Y ), estimated by the relative fre-

quency of inclusion of pathway k in the models visited by the MCMC sampler.

Relevant pathways can be identified as those with largest marginal posterior

probabilities. Then relevant genes from these pathways can be identified

based on their marginal posterior probabilities conditional on the inclusion

of a pathway of interest, p(γj|TTT , Y, I{θkskj = 1}). An alternative inference

for gene selection is to focus on a subset of pathways, P , and consider the

marginal posterior probability conditional on at least one pathway the gene

belongs to being represented in the model, p(γj|TTT , Y, I{∑k∈P θkskj > 0}).
Inference for a new set of observations, (XXXf , Yf ) can be done via least

squares prediction,

Ŷf = 111nα̃ + TTT f(θ,γ)β̃ββ(θ,γ), (2.23)
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where TTT f(θ,γ) is the first principal component based on selected genes from

relevant pathways and

α̃ = Ȳ , β̃ββ(θ,γ) = (TTT ′
(θ,γ)TTT (θ,γ) + h−1IIIKθ

)−1TTT ′
(θ,γ)Y,

with Y the response variable in the training and TTT (θ,γ) the scores obtained

from the training data using selected pathways and genes included in the

model. Note that for prediction purposes, since we do not know the future

Yf , a PLS regression cannot be fit. Therefore, we generate Tf(θ,γ) by consid-

ering the first latent component obtained by applying PCA to each selected

pathway using the included genes.

In the case of categorical or censored survival outcomes, the sampled

latent variables Z would be used to estimate Ẑf then the correspondence

between Z and the observed outcome outlined in Section 2.2.2 can be invoked

to predict Yf (Sha et al. (2004, 2006), Kwon et al. (2007)).

2.4 Application

We assess the performance of the model on simulated data then illustrate an

application to a breast cancer data using the KEGG pathway database to

define the MRF.

2.4.1 Simulation Studies

We investigated the performance of the model using simulated data based

on the gene-pathway relations, S, and gene network, R, of 70 pathways and

1098 genes from the KEGG database. The relevant pathways were defined

by selecting 4 pathways at random. For each of the 4 selected pathways,

one gene was picked at random and its direct neighbors that belong to the

selected pathways were chosen. This resulted in the selection of 4 pathways

and 15 genes: 7 out of 30 from the first pathway, 3 out of 35 from the second,

3 out of 105 from the third, and 2 out of 47 from the fourth pathway. Gene
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expressions for n = 100 samples were simulated for these 15 genes using an

approach similar to Li & Li (2008). This was accomplished by first creating

an ordering among the 15 selected genes by changing the undirected edges

in the gene networks into directed edges. The first node on the ordering,

which we denote by XF1 , was selected from each pathway and drawn from a

standard normal distribution; note that this node has no parents. Then all

child nodes directly connected only to XF1 and denoted by XF2 were drawn

from

XF2 ∼ N (XF1ρ, 1).

Subsequent child nodes at generation j, XFj
, were drawn using all parents

from

XFj
∼ N (ρXpa(Fj)111|pa(Fj)|, 1)

where Xpa(Fj) is a matrix containing the expressions of all the |pa(Fj)| parents

for node j. The expression levels of the remaining 1073 genes deemed irrele-

vant were simulated from a standard normal density. The response variables

for the n = 100 samples were generated from

Yi =
15∑

j=1

Xijβ + εi, εi ∼ N (0, 1), i = 1, . . . , 100.

For the first dataset we set β = ±0.5, using the same sign for genes that

belong to the same pathway. For the second and third data sets we used

β = ±1 and β = ±1.5, respectively. Note that the generating process is

different from the model (2.2) being fit.

We report the results obtained by choosing, when possible, hyperparam-

eters that lead to weakly informative prior distributions. A vague prior is

assigned to the intercept parameter α by setting h0 to a large value tending

to ∞. For σ2, the shape parameter can be set to ν0/2 = 3, the smallest inte-

ger such that the variance of the inverse-gamma distribution is defined, and

the scale parameter ν0σ
2
0/2 can be chosen to yield a weakly informative prior.

For the vector of regression coefficients, βk, we set the prior mean to β0 = 0
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Figure 2.3: Marginal posterior probabilities for pathway selection, p(θk|TTT , Y ),
for the three simulated data sets. The open circles indicate the four relevant
pathways.
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and h, as described in Section 2.2.3, is chosen in the range of variability of

the covariates. Specifically, we set h0 = 106, α0 = β0 = 0, ν0σ0/2 = 0.5, and

h = 0.02. For the pathway selection indicators, θk, we set ϕ∗k = 0.01. As

for the prior at the gene level, we set µ = −3, which corresponds to setting

the proportion of genes expected a priori in the model to around 5%, and

for the Gamma hyperprior on η we set c0 = 3.5 and d0 = 0.2 to obtain a

prior distribution with most of the mass between 0.1 and 2. This controls

the prior probability of selecting a gene based on how many of its neighbors

are selected, as defined in (2.16).

The MCMC sampler was run for 300,000 iterations with the first 50,000

used as burn-in. We computed the marginal posterior probabilities for path-

way selection, p(θk = 1|Y, TTT ), and the conditional posterior probabilities for

gene selection given a subset of selected pathways previously determined,

p(γj|Y, TTT , I{∑k∈P θkskj > 0}). Table 2.1 gives these posterior probabilities

for the relevant pathways and genes used in simulating the response. Figure

2.3 displays the marginal posterior probabilities of inclusion for all 70 path-

ways and Figure 2.4 displays the conditional posterior probabilities of inclu-

sion for all 1098 genes. The procedure successfully identified all significant

pathways and genes. All four relevant pathways were selected with marginal

posterior probabilities greater than 0.8. Reducing the selection threshold to

a marginal posterior probability of 0.5 pulls in two false positive pathways,

for all the three simulated scenarios considered. One of these is the pathway

indexed 17 in Figure 2.3, which contains more than 100 genes.

A closer investigation of the MCMC output reveals that different sub-

sets of its member genes are selected whenever it is included in the model,

resulting in a high marginal posterior of inclusion for the pathway but low

marginal posterior probabilities for all its member genes. The second false

positive pathway appears to be selected often because it contains two or three

of the relevant genes that were used to simulate the response variable and

were also included in the model with high marginal posterior probabilities; all
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Figure 2.4: Conditional posterior probabilities,
p(γj|TTT , Y, I{∑k∈P θkskj > 0}), for gene selection for the three simu-
lated data sets. The open circles indicate the genes used to generate the
outcome variable.
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Path/Gene β = ±0.5 β = ±1 β = ±1.5 Path/Gene β = ±0.5 β = ±1 β = ±1.5
Path1 0.967 0.992 0.983 Gene1.7 0.701 1.000 0.996
Path2 0.883 1.000 0.996 Gene2.1 0.981 1.000 0.976
Path3 0.996 1.000 1.000 Gene2.2 0.084 0.133 0.205
Path4 0.885 0.911 0.913 Gene2.3 0.156 0.246 0.380
Gene1.1 0.867 0.856 0.896 Gene3.1 0.688 0.771 0.765
Gene1.2 0.228 0.228 0.186 Gene3.2 0.340 0.373 0.190
Gene1.3 0.222 0.300 0.228 Gene3.3 0.831 0.967 0.996
Gene1.4 0.251 0.159 0.163 Gene4.1 0.463 0.675 0.682
Gene1.5 0.453 0.257 0.296 Gene4.2 0.990 0.993 0.974
Gene1.6 1.000 1.000 1.000

Table 2.1: Conditional and marginal posterior probabilities for pathway and
gene selections, p(γj = 1|TTT , Y, I{∑k∈P θkskj > 0}) and p(θk = 1|Y, TTT ).

its other member genes have very low probabilities of selection. As expected,

the identification of the relevant genes is easier when the signal-to-noise ratio

is higher. For the scenario with β = ±0.5, a marginal posterior probability

cut-off of 0.5 leads to the selection of 7 relevant genes and no false positive.

In order to select all 15 relevant genes, marginal posterior probabilities as

low as 0.084 need to be considered and this results in the inclusion of 14

false positives. For the simulated data with β = ±1, on the other hand, a

marginal posterior probability cut-off of 0.5 leads to the selection of 8 rele-

vant genes with no false positive, and reducing the cut-off to 0.132 results in

the inclusion of all 15 relevant genes with a single false positive.

2.4.2 Application to Microarray Data

We consider the van’t Veer et al. (2002) breast cancer microarray data,

available at www.rii.com/publications/2002/vantveer.htm. Gene expression

measures were collected on each patient using DNA microarray with 24,481

probes. Missing expression values were imputed using a k-nearest neighbor

algorithm with k = 10. The procedure consists of identifying the k closest

genes to the one with missing expression in array j using the other n− 1 ar-

rays, then imputing the missing value by the average expression level of the
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k neighbors, Troyanskaya et al. (2001). We focus on the 76 sporadic lymph-

node-negative patients, 33 of whom developed distant metastasis within 5

years and the remaining 43 did not; the latter are viewed as censored cases.

We randomly split the patients into a training set of 38 samples and a test

set of the same size. The goal is to identify a subset of pathways and genes

that can predict time to distant metastasis for breast cancer patients.

The gene network and pathway information were obtained from the KEGG

database. This was accomplished by mapping probes to pathways using

the links between pathway node identifiers and LocusLink ID provided at

ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/hsa gene map.tab and

ftp://ftp.genome.ad.jp/pub/kegg/pathways/map title.tab.

Using the R package KEGGgraph Zhang & Wiemann (2009), we first

downloaded the gene network for each pathway then merged all the networks

into a single one with all the genes. A total of 196 pathways and 3,592

corresponding probes were included in the analysis. There is a many-to-

many correspondence between pathways and genes – each pathway contains

multiple genes and most genes are associated with several pathways.

We ran two MCMC chains with different starting numbers of included

variables, 50 and 80, respectively. We used 600,000 iterations with a burn-

in of 100,000 iterations. We incorporated the first latent vector of the PLS

for each pathway into the analysis as described in Section 2.2.1 and set the

number of pathways expected a priori in the model to 22. For the gene

selection, we set the hyperparameter of the Markov random field µ = −3.5;

this parameter regulates the sparsity of the model and indicates that a priori

at least 3% of genes are expected to be selected. As for η, the parameter

that regulates the smoothness of the distribution of γ over the graph and

influences the selection of neighboring genes, we set c0 = 3.5 and d0 = 0.2.

Sensitivity analysis with different choices of these hyperparameters showed

that the posterior inference is not affected for values of c0 between 2 and

4, and values of d0 between 0.15 and 2. For the prior of the regression
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Figure 2.5: Trace plot of the number of included pathways.
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Figure 2.6: Trace plot of the number of included genes.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ch
ain

 2

Chain 1
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Figure 2.8: Microarray data: Marginal posterior probabilities for pathway
selection, p(θk|TTT , Y ). The 11 pathways with largest probabilities are marked
with symbols.

parameters, we set α0 = β0 = 0, h0 = 106 and h = 0.1. A vague prior was

specified for σ2 by choosing ν0/2 = 3 and ν0σ
2
0/2 = 0.5.

Figures 2.5 and 2.6 show the trace plots for the number of included path-

ways and the number of selected genes for one of the MCMC chains. The

MCMC samplers mostly visited models with 20-45 pathways and 50-90 genes.

To assess the agreement of the results between the two chains, we looked at

the correlation between the marginal posterior probabilities for pathway se-

lection, p(θk|TTT , Y ), and found good concordance between the two MCMC

chains with a correlation coefficient of 0.9996 (Figure 2.7).

The model also shows good predictive performance. Sha et al. (2006)
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already analyzed these data using an AFT model with 3,839 probes as pre-

dictors and selected 11 probe sets with highest marginal probabilities. They

obtained a predictive MSE(Zf , Ẑf ) of 1.9317 in the log scale. We applied

the method of Sha et al. to the 3,592 probe sets considered for analysis in

this paper. Using 4 chains with 600,000 iterations and 100,000 burn-in, we

selected a marginal model with 12 genes which resulted in a MSE(Zf , Ẑf ) of

2.6735. Our model incorporating pathway information achieved a predictive

MSE(Zf , Ẑf ) of 1.3955 using 11 selected pathways and 102 probe sets with

highest posterior probabilities. The selected pathways and genes are indi-

cated in the marginal posterior probability plots displayed in Figures 2.8 and

2.9. If we increase the marginal probability thresholds to select a comparable

number of probe sets as the method of Sha et al. (2006) and consider a model

with 7 selected pathways and 12 genes, we obtain a MSE(Zf , Ẑf ) of 1.5742.

The genes corresponding to the 102 selected probe sets are listed in Table

2.2 divided by islands, which correspond to sets of connected genes in the

Markov random field. The islands help with the biological interpretation by

locating relevant branches of pathways. A subset of the selected pathways

along with the islands and included genes that fall into them are displayed in

Figure 2.10. Several of the identified pathways are known to be involved in

tumor formation and progression. For instance, the mitogen-activated pro-

tein kinase (MAPK) signaling pathway, which is involved in various cellular

functions, including cell proliferation, differentiation and migration, has been

implicated in breast cancer metastasis Lee et al. (2007), Keyse (2008). The

KEGG pathway in cancers was also selected with high posterior probability.

Other interesting pathways are the insulin signaling pathway, which has been

linked to the development , progression, and outcome of breast cancer, and

purine metabolism which is involved in nucleotide biosynthesis and affects cell

cycle activity of tumor cells. In addition, several genes with known associa-

tion to breast cancer were also selected. For example, several dual specificity

phosphatase (DUSP) genes were selected from the MAPK signaling pathway,
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Figure 2.10: Microarray data: Graphical representation of a subset of se-
lected pathways and genes with their corresponding islands. The genes in
the islands are listed in Table 2.2.
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including DUSP3 found to map in a region that contains the BRCA1 locus

which confers susceptibility to breast and ovarian cancer Kamb et al. (1994).

Fibroblast growth factor 1 (FGF1) and protein kinase C alpha (PKCalpha),

which belong both to the MAPK pathway and the KEGG pathways in can-

cer, were also selected by the algorithm. The FGF family members have

broad mitogenic and cell survival activities, and are involved in a variety of

biological processes, including cell growth, tissue repair, tumor growth and

invasion, and in particular proliferation of breast cancer cells. PKCalpha

has been shown to be overexpressed in some antiestrogen resistant breast

cancer cell lines and to be involved in the growth of tamoxifen resistant hu-

man breast cancer cells Frankel et al. (2007). Other known genes that were

selected include Interleukin 8 (IL8) from the KEGG pathways in cancer, a

useful prognostic factor in metastatic breast cancer patients Ahmed et al.

(2006); ribosomal protein S6 kinase, 70kDa, polypeptide 1 (RPS6KB1) from

the insulin signaling pathway, which is overexpressed in some breast cancer

cell lines Kim et al. (2009); and DNA polymerase epsilon (POLE) from the

purine metabolism pathway, which is involved in DNA repair and has been

shown to be associated with breast cancer Zhou et al. (2008).

2.5 Discussion

We have proposed a model that incorporates biological knowledge from path-

way databases into the analysis of DNA microarrays to identify pathways and

genes related to a phenotype. Information on pathway membership and gene

networks are used to define pathway summaries, specify prior distributions

that account for the dependence structure between genes, and define the

MCMC moves to fit the model. The gene network prior and the synthesis of

the pathway information through PLS bring in additional information that

is especially useful in microarray data, where there is low sample size and

large measurement error. The performance of the method was evaluated us-
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Singleton genes (no direct neighbor selected)
ACACB(10), AGTR2(4), ARPC1B(9), BIRC5(11), C4A(8), CACNB4(2),
CCL13(3), CCNB2(5), CD22(7), CD28(7), CDC2(5), CFB(8), CFB(8), CR2(8),
CTNNA1(11), CXCL9(3), DIAPH3(9), DOCK1(9), EPHA8(6), EPHB1(6),
FBP1(10), FGF1(2, 9, 11), GMPS(1), GYS1(10), GYS2(10), IFNA7(3), IL8(3,
11), ITGA7(9), MAP4K2(2), ORC2L(5), P2RX7(4), PCK1(10), PCK2(10),
PCNA(5), PFKL(10), PFKM(10), PFKP(10), PFN1(9), POLD2(1), POLD3(1),
POLD4(1), POLE(1), PPARGC1A(10), PRKAR1A(10), RALBP1(11),
SELP(7), SHC1(10), SHC1(10), SHC2(10), SLC2A1(11), SORBS1(10),
TGFA(11), TMSB4Y(9)
Island 1
ACVR1B(2, 3, 11), ACVR1B(2, 3, 11), TGFB3(2, 3, 5, 11)
Island 2
BUB1(5), MAD2L1(5)
Island 3
C8B(8)8, C9(8)
Island 4
CALM3(10), NOS1(11)
Island 5
CD4(7), HLA-DMA(7), HLA-DMB(7), HLA-DOA(7), HLA-DOB(7), HLA-
DPA1(7), HLA-DPB1(7), HLA-DQB1(7), HLA-DRA(7), HLA-DRB1(7), HLA-
DRB3(7), HLA-DRB4(7), HLA-DRB5(7)
Island 6
CD8A(7), HLA-A(7), HLA-B(7), HLA-B(7), HLA-E(7)
HLA-F(7), HLA-G(7)
Island 7
CLDN11(7), OCLN(7)
Island 8
DUSP3(2), DUSP4(2), MAPK10(2, 10, 11)
Island 9
DVL3(11), FZD9(11), WNT1(11), WNT2B(11)
Island 10
PDPK1(10), PRKCI(10), RPS6KB1(10)
Island 11
F11R(7), GNAI1(6), PLA2G4A(2), PRKCA(2, 11), PRKX(2, 10), PRKY(2,
10), PRKY(2, 10), PTGS2(11)

Table 2.2: Selected 102 genes divided by islands with associated path-
way indices (in parenthesis). The pathway indices correspond to: 1-Purine
metabolism, 2-MAPK signaling pathway, 3-Cytokine-cytokine receptor inter-
action, 4-Neuroactive ligand-receptor interaction, 5-Cell cycle, 6-Axon guid-
ance, 7-Cell adhesion molecules (CAMs), 8-Complement and coagulation
cascades, 9-Regulation of actin cytoskeleton, 10-Insulin signaling pathway,
11-Pathways in cancer. The threshold for pathway inclusion was set to a
marginal posterior probability of 0.45.
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ing simulated data, and a breast cancer gene expression data with survival

outcomes was used to illustrate its application. The model can lead to the

selection of significant genes that would have been missed otherwise, and, as

shown in Section 2.4.2, it can achieve better prediction results compared to

models that do not treat genes as connected elements that work in groups or

pathways.

Several MRF priors for gene selection indicators have been proposed in

the literature. It is interesting to compare the parametrization of the MRF

used in this paper and in Wei & Li (2007) to the parametrization used in Li

& Zhang (2009), where the prior on γγγ is defined as

P (γγγ) ∝ exp(ddd′γγγ + γγγ′GGGγγγ) (2.24)

with ddd = d111p, 111p the unit vector of dimension p and GGG a matrix with elements

{gij} usually set to some constants. While d plays the same role as µ in (2.17),

the parametrization using GGG has a different effect from η on the probability

of selection of a gene. This is evident from the conditional probability

P (γj|γi, i ∈ Nj) =
exp(γj(d + g

∑
i∈Nj

γi))

1 + exp(d + g
∑

i∈Nj
γi)

, (2.25)

which can only increase as a function of the number of selected neighbor

genes. In contrast, with the parametrization in (2.17), the prior probability

of selection for a gene can decrease if none of the neighbors are selected.

Although the parametrization is somewhat arbitrary, some care is needed in

deciding whether to put a prior distribution on GGG. Allowing GGG to vary can

lead to a phase transition problem, that is, the dimension of the selected

model can increase massively. To avoid such problem, the parametrization

used in Li & Zhang (2009) requires fixing the hyperparameter GGG, which

could lead to the specification of a prior distribution that overwhelms the

likelihood function. In the parametrization (2.17), however, η is sampled

from its posterior distribution, and thus the influence of the gene network
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prior will be mitigated.

Pathway databases are incomplete and the gene network information is

often unavailable for many genes. Thus, there may be situations where the

dependence structure and the MRF prior specification on the gene selection

indicator, γ, cannot be used for all genes. When the only information avail-

able is the pathway membership of genes, the prior on γ could be elicited so

as to capture other interesting characteristics. For example, we may want

a gene to have a priori higher probability of being selected when several

pathways that contain it are included in the model. We may also want to

avoid favoring the selection of a large pathway just because of its size. In

such cases, conditional on θθθ, independent Bernoulli priors can be specified

for γj by relating the probability of selection to the proportion of included

pathways that contain gene j and adjusting for the pathway sizes, pk, that

is,

γj|θθθ ∼ Bernoulli

(
c ·

∑K
k=1 θkskj/pk∑K
k=1 skj/pk

)
, (2.26)

where the scalar c is a hyperparameter to be elicited. Notice that in this

case it may be be difficult to specify an equivalent prior for the multinomial

vectors λk in model (2.1) because of the overlapping genes among pathways.
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Chapter 3

Bayesian Network for Genomic
Data Integration

It has been estimated that about 30% of the genes in the human genome are

regulated by microRNAs (miRNAs). These are small RNAs that can down-

regulate the levels of mRNAs or proteins in animals and plants. Genes regu-

lated by miRNAs are called targets. Typically, methods for target prediction

are based solely on sequence data and on the structure information. In this

paper, we propose a Bayesian graphical modeling approach that infers the

miRNA regulatory network by integrating expression levels of miRNAs with

their potential mRNA targets and, via the prior probability model, with their

sequence/structure information. We use a directed graphical model with a

particular structure adapted to our data based on biological considerations.

We then achieve network inference using stochastic search methods for vari-

able selection that allow us to explore the huge model space via MCMC.

A time-dependent coefficients model is also implemented. We consider ex-

perimental data from a study on a very well known developmental toxicant

causing neural tube defects, hyperthermia. Some of the pairs of target gene

and miRNA we identify seem very plausible and warrant future investigation.

Our proposed method is general and can be easily applied to other types of

network inference by integrating multiple data sources.
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3.1 Introduction

One of the major tasks and challenges in the post-genomics era is to de-

cipher how genes and their products (proteins) are regulated. Regulation

can happen at transcriptional, post-transcriptional, translational and post-

translational level. Transcription is the process of synthesizing a stretch of

ribonucleic acids (RNA) based on a specific DNA sequence. Transcriptional

regulation can affect whether or not a specific RNA is transcribed as well as

the amount of RNA produced. RNA can be regulated post-transcriptionally

through degradation or modification of the RNA strand, which can affect its

function. A segment of RNA can interact with other genes or proteins or can

encode a protein. Translation, the process of forming a protein based on an

RNA sequence, can also be positively or negatively regulated. Proteins often

undergo post-translational modifications, which can affect their function. An

abundant class of small (∼22 nucleotide) RNAs, known as microRNAs (miR-

NAs), plays crucial regulatory roles in animals and plants, Farh et al. (2005).

It has been estimated that at least 30% of the genes in human genomes are

regulated by miRNAs, Rajewsky (2006). Genes regulated by miRNAs are

generally called ’targets’. The actual mechanism of miRNA regulation is still

an active area of research and the complete picture of the regulatory mech-

anism is still to be understood, Thermann & Hentze (2007). Currently, it is

believed that miRNAs regulate their targets either by degrading mRNA post-

transcriptionally, Bagga et al. (2005), or by suppressing initiation of protein

synthesis, Pillai et al. (2005), and/or by inhibiting translation elongation

after initiation of protein synthesis, Petersen et al. (2006).

Many algorithms have been developed to predict potential target se-

quences for miRNAs based on their specific sequence and structure char-

acteristics. These algorithms mainly use sequence information, hybridiza-

tion energy for structure prediction, and cross-species comparisons, Rajew-

sky (2006). Some of the more widely used algorithms include: TargetScanS

of Lewis et al. (2005), PicTar of Krek et al. (2005), MIRANDA of John et al.
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(2004) and DIANA-microT of Kiriakidou et al. (2004). A comprehensive

review of these and other methods can be found in Yoon Yoon & Micheli

(2006). Typically a large amount (e.g., hundreds to thousands) of poten-

tial targets are predicted by these algorithms, and it can be overwhelming

for researchers to search through the candidate targets for those which play

critical regulatory roles under particular experimental or clinical conditions.

Our goal is to develop a statistical approach to identify a small set of

potential targets with high confidence, making future experimental valida-

tion feasible. Since miRNAs down-regulate the expression of their targets,

expression profile of miRNAs and their potential targets can be used to in-

fer their regulatory relationships. We propose a Bayesian graphical modeling

approach that infers the miRNA regulatory network by integrating these two

types of expression levels. We use a directed graphical model with a partic-

ular structure adapted to our data based on biological considerations. The

model also integrates the sequence/structure information, as generated by

the two widely used target prediction algorithms, via the prior probability

model. We then achieve network inference using stochastic search methods

for variable selection.

We consider experimental data from a study on a very well known de-

velopmental toxicant causing neural tube defects, hyperthermia. We have

available 23 mouse miRNAs and a total of 1,573 potential targets. We in-

fer their regulatory network under two different treatment conditions and

also investigate time-dependent regulatory associations. Some of the pairs of

target gene and miRNA we identify seem very plausible and warrant future

investigation.

Huang et al. (2007, 2008) have proposed a Bayesian model for the regu-

latory process of targets and miRNAs which is similar to the one we propose

here. However, in their model formulation the authors consider regression

coefficients that are constant with respect to the mRNAs, while our formu-

lation allows a more efficient way of selecting gene-miRNA pairs. Also, in
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order to achieve posterior inference, we implement a full MCMC procedure

while Huang et al. (2007) adopt a variational method that only approximates

the posterior distribution. More important, Huang et al. (2007) restrict their

search algorithm to a preselected subset of possible gene-miRNA relations,

which they select based on the available sequence information, therefore ex-

cluding a priori a large number of associations that could instead occur in

specific experimental conditions, such as hyperthermia.

The paper is organized as follows. Section 3.2 introduces the experimental

study and describes the available data, i.e., the expression data of miRNAs

and their potential mRNA targets, and the corresponding association scores.

Section 3.3 illustrates the proposed modeling approach via a Bayesian graph-

ical model and describes the prior model and the variable selection scheme.

Section 3.4 describes how to perform posterior inference and Section 3.5 pro-

vides a detailed analysis of the miRNA regulatory network reconstruction

based on the available data. Section 3.6 concludes the paper.

3.2 Neural Tube Defects

Neural Tube defects (NTDs) are some of the most common congenital defects

with approximately 12 per day in the United States, Finnell et al. (2000).

NTDs are generally related to failure of embryonic neural folds to fuse prop-

erly along the neuroaxis during development. Studies in both humans and

animals suggest a complex genetic component to NTDs, likely involving mul-

tiple loci, together with environmental factors. MicroRNAs are believed to

play important regulatory roles in mouse development and human disease,

see for example Conrad et al. (2006), although detailed regulatory mecha-

nisms are still unknown.

In this paper we consider experimental data from a study on a very well

known developmental toxicant causing neural tube defects, hyperthermia. In

the study mice are used as the animal model to study NTDs. Time-mated
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female C57Bl/6 mice were exposed in vivo to a 10 minute hyperthermia or

control treatment on gestational day 8.5, when the neural folds are fusing

to form the neural tube. Four litters were collected for each treatment at

5, 10, and 24 hours after exposure. Each litter was treated as a single bio-

logical sample. MiRNAs and mRNAs were extracted from each sample for

expression analysis.

3.2.1 miRNA Expression Levels

As the regulatory network can be very complex, we focus on a small sets of

mRNA targets with high confidence. With limited budget available, a pilot

study was performed to screen the expression profiles of most of the known

(∼ 240) mouse microRNAs based on one set of samples, for both heat shock

and control at 4 different time points, and using TaqMan miRNA RTPCR

assays available at the time (Applied Biosystems, Foster City, CA; provided

in collaboration with Ambion, Austin, TX). Of the 240 miRNA evaluated,

50 had none or very low expression at all time points, while 86 had a 2-

fold or greater change in expression in response to hyperthermia exposure at

one or more time point. From this set of 86 miRNA, we chose a subset of

23 miRNA whose patterns of expression were interesting enough for further

analysis and obtained replicate sample sets. The complete experiment was

therefore carried out using only this set of 23 miRNAs.

MicroRNA was extracted from each sample at each time point under

each experimental condition. Two technical replicates were prepared for

RTPCR quantification to confirm the technical reproducibility. In RTPCR

experiments, fluorescence techniques are used to detect the amplification of

miRNAs to assess their abundance. A fluorescence threshold is determined

for an experiment, and the cycle number, which reaches the predetermined

threshold level of log2-based fluorescence, is defined as the Ct number. An

inverse linear relationship exists between Ct number and the logarithm of

input quantity of the gene when the amplification efficiency is perfect, Pfaffl
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(2001). The Ct numbers of the miRNA technical replicates were averaged

across the two technical replicates.

3.2.2 Target Prediction via Sequence and Structure
Information

The sequence and structure information for target prediction was retrieved

from the public domain by using the widely used algorithm PicTar of Krek

et al. (2005)1. A zero or absent PicTar score indicates that the raw score did

not exceed a pre-specified threshold, that is, the algorithm suggests no indi-

cation of a regulatory association. A matlab script was written to retrieve

the RefSeq Ids of all potential targets for the 23 mouse miRNAs of interest.

In addition, the current release (September 2009) of 1,209,841 predicted mi-

croRNA target sites in 26,697 mouse gene isoforms for 491 mouse miRNAs,

generated by the Miranda algorithm of John et al. (2004) was downloaded

from microRNA.org, see Betel et al. (2008). A matlab script was written

to retrieve the scores between the 23 miRNAs in our study and putative

target genes for the analysis.

3.2.3 Target mRNA Expression Levels

RNA was extracted from each sample at each time point and hybridized

to GE Codelink Mouse Whole Genome Microarrays(GE Healthcare Life Sci-

ences, Piscataway, NJ). The slides were scanned and mRNA expression levels

were quantified. One biological sample was not prepared properly at hour 10

in the control group, and therefore discarded.

The RefSeq Ids of the probes spotted on the Codelink microarrays were

linked to the retrieved potential targets of the 23 miRNAs previously iden-

tified. The mRNAs were included in the analysis only if they were among

the potential targets predicted by the PicTar and Miranda algorithms. Genes

1available at http://pictar.bio.nyu.edu/cgi-bin/new PicTar mouse.cgi
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with missing or negative values were excluded from the analysis. The expres-

sion levels of the remaining mRNAs were then log2 transformed so that both

miRNA and mRNA expression were on the log2 scale. A total of 1,573 poten-

tial targets was included in the final analysis. The transformed expressions

across the 3 time points were centered by subtracting their means.

3.3 Model

We have available expression levels on a set of miRNAs and their potential

targets. For each target we are interested in identifying a small number of

regulatory associations with high confidence. We have also available sequence

information for target prediction in the form of scores of regulatory associ-

ations. We propose a Bayesian graphical modeling approach that infers the

miRNA regulatory network by integrating the expression data and, via the

prior probability model, the sequence/structure information. An important

aspect of our methodology is the concept of sparsity, that is, we believe that

most genes are regulated by a small number of miRNAs.

3.3.1 A Bayesian Network for Gene & miRNA Expres-
sion

We use a directed graphical model (Bayesian Network) with a particular

structure adapted to our data that uses a predetermined ordering of the

nodes based on biological considerations. This model is able to answer to

the baseline question of ’which miRNAs regulate which targets ’ and, in ad-

dition, allows us to build a fast computational procedure required in such a

high-dimensional framework. A graphical representation of the full miRNA

network is given in Figure 3.1. Our task is to find a significant subset of

edges.

Graphical models are graphs in which nodes represent random variables

and the lack of arcs represents conditional independence assumptions, see
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Figure 3.1: Graphical representation of the miRNA regulatory network.

for example Cowell et al. (1999). Graphical models provide a compact rep-

resentation of joint probability distributions. Here we work with a multi-

variate normal distribution, and therefore with a Graphical Gaussian model

(GGM). A graph G and the covariance matrix Ω entirely define a GGM M,

M≡ (G, Ω). Arcs can be undirected, indicating symmetric dependencies, or

directed, when there is a direction of the dependence. These dependencies

can come from prior knowledge or from data analysis. Undirected graphical

models have a simple definition of independence, e.g., two nodes A and B are

conditionally independent given a third set, C, if all paths between the nodes

in A and B are separated by a node in C. Directed graphical models need a

specific ordering of the variables. Graphs that do not allow the presence of

cycles are called directed acyclic graph (DAG). Conditional independencies

in a DAG depend on the ordering of the variables.

We work with a DAG and impose an ordering of the variables such that

each target can be affected only by the miRNAs and that the miRNAs can

affect only the targets. Let Z = (Y1,Y2, . . . ,YG,X1, . . . ,XM) with Y =

(Y1, . . . ,YG) the matrix representing the targets and X = (X1, . . . ,XM)

the miRNAs . Specifically, yng indicates the normalized averaged log2 gene

expression of gene g = 1, . . . , G in sample n = 1, . . . , N . These expression
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values are biological replicates obtained by averaging two technical replicates.

Similarly, xnm indicates the expression of the m-th miRNA in sample n,

with m = 1, . . . , M . We have G = 1, 573 and M = 23. In addition, we

have N = 11 i.i.d. observations under the control status and N = 12 i.i.d.

observations under hyperthermia. We infer the miRNA regulatory network

separately under the two conditions.

Our assumptions are that Z is a matrix-variate normal variable with zero

mean and a variance matrix Ω for its generic row, that is, following Dawid

(1981) notation,

Z− 0 ∼ N (IN , Ω).

In addition, we assume that the target genes are independent conditionally

upon the miRNAs, that is, Yi⊥⊥Yj|X1, . . . ,XM and, without loss of gen-

erality, that the miRNAs are independent, that is, Xi⊥⊥Xj. Note that the

marginal distribution of (X1, . . . ,XM) does not affect the regulatory network.

In a Bayesian Network framework these assumptions imply an ordering of

the nodes and, consequently, a likelihood factorization of the type:

f(Z) =
G∏

g=1

f(Yg|X)
M∏

m=1

f(Xm), (3.1)

where f(Yg|X) ∼ N(Xβg, σgIN) and f(Xm) ∼ N(0, σmIN), with βg =

Ω−1
XXΩXYg and σg = ωgg − ΩT

XYg
Ω−1

XXΩXYg . Here ωgg indicates the g-th

diagonal element of Ω and ΩXX, ΩXY are the blocks of the covariance matrix

according to the following partition

Ω =

(
ΩYY ΩYX

ΩXY ΩXX

)
.

For m = 1, . . . , M we have σm = ωmm.

According to current knowledge, miRNAs down-regulate gene exppres-

sion. It therefore seems appropriate to include this information into our
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Figure 3.2: Structure of the graphical model

statistical model. This is achieved by specifying negative regression coeffi-

cients, i.e. by imposing the constraints βg > 0, for g = 1, . . . , G, via the prior

model. First, we note that our model is equivalent to the following system

of equations: 



Y1 = −Xβ1 + εσ1 ,
...

YG = −XβG + εσG
,

(3.2)

where εσg is distributed as a multivariate normal with zero mean and covari-

ance matrix σgIN . Then, we complete the model specification by specifying

prior distributions on the regressions coefficients and error variances. We

impose our biological constraints by using Gamma distribution priors for the

positive regressions coefficients, (βgm|σg) ∼ Ga(1, c σg), and Inverse-Gamma

distributions for error variances, σ−1
g ∼ Ga((δ+M)/2, c/2). Figure 3.2 shows

a graphical representation of our model. Circles indicate parameters and

squares observed random variables. The parameters R and τ are involved in

the variable selection and are introduced in the Section below.
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3.3.2 Prior Model for Variable Selection

The goal of the analysis is to find, for each target, a small subset of miRNAs

that regulate that target with high probability. This can be framed into a

variable selection problem. Specifically, we can introduce a (G×M) matrix

R with elements rgm = 1 if the mth miRNA is included in the regression of

the gth target and rgm = 0 otherwise. Conditioned upon R expression (3.2)

is equivalent to a system of linear equations where the included regressors

are only those miRNAs corresponding to rgm = 1. To emphasize the variable

selection nature of our model we write it as follows:

Yg = −X(R)βg(R) + εσg , (3.3)

where βg(R) is the vector that is formed by taking only the non-zero elements

of βg and X(R) is the matrix that is formed by taking only the corresponding

columns of X. The goal of our modeling is to infer which elements of the

vectors βg’s are non-zero, indicating a relationship between the corresponding

genes and miRNAs. This underlying regulatory network is encoded by the

association matrix R = {rgm}. The elements of the vectors βg’s are then

stochastically independent, given the regulatory network R, and have the

following mixture prior distribution:

π(βgm|σg, rgm) = rgmN(0, c−1σg) + (1− rgm)I[βgm=0]. (3.4)

In addition, taking into account the regulatory network, we obtain that

σ−1
g |R ∼ Ga((δ+kg)/2, c/2), where kg is the number of significative miRNAs

in the regression of the g-th target.

Mixture priors have been used extensively for variable selection in linear

regression settings, see George & McCulloch (1993) for univariate regression

and Brown et al. (1998b) and Sha et al. (2004) for multivariate models.

According to prior (3.4), when rgm = 0 then βgm is estimated by 0 and

the corresponding column of X is excluded from the gth equation in model
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(3.2). Notice that the dimensions of the matrix X are such that there are

many more columns than rows. In the domain of classical regression, this

results in insufficient degrees of freedom to fit the model unless constraints are

placed on the regression coefficients βg’s. Conversely, this problem is readily

addressed in the Bayesian paradigm and is known as the “small n, large p”

framework. The variable selection formulation we adopt here overcomes the

somehow rigid structure of the model in Brown et al. (1998b), which does not

allow to select different predictors for different responses. See also Monni &

Tadesse (2009) for an approach based on partition models.

3.3.3 Using Association Scores in the Prior Model

Scores of possible associations between gene-miRNA pairs obtained from

sequence/structure information were used to estimate prior probabilities of

miRNAs binding to their target genes. Let sgm denote a generic score for

gene g and miRNA m, obtained for example by the PicTar algorithm. As

previously described, sgm is either positive or, in the case of a regulatory

association that is believed to be absent, equal to zero. Also, the PicTar

algorithm shrinks small values to zero, setting sgm = 0 if sgm < ε where ε is

a pre-specified threshold used by the algorithm. In our model, the Bernoulli

random variable rgm indicates whether there is a relationship between gene

g and miRNA m. We choose to model the success probability of rgm as a

function of the sgm score as follows:

P (rgm = 1|τ) =
exp[η + τsgm]

1 + exp[η + τsgm]
, (3.5)

where τ is an unknown parameter. We then assume that the elements of

R are stochastically independent given τ . Notice that for sgm = 0, we have

that P (rgm = 1) = exp[η]/(1 + exp[η]). Thus, the inverse logit transforma-

tion of η can be interpreted as the false negative rate associated with the

PicTar thresholding scheme. For a score sgm > 0 we have P (rgm = 1) > η,
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with higher scores yield higher prior probabilities of association. We further

specify a hyperprior on τ as a gamma distribution τ ∼ Ga(aτ , bτ ), ensuring

the positivity of the parameter.

Since we have available multiple prior sources of information, from dif-

ferent sequence/structure algorithms, it makes sense to combine them all by

incorporating all scores into the prior distribution using additional τ param-

eters. For example, in the application of Section 5 we combine PicTar and

Miranda scores as

P (rgm = 1|τ1, τ2) =
exp[η + τ1sgm + τ2qgm]

1 + exp[η + τ1sgm + τ2qgm]
, (3.6)

where the qgm’s denote the Miranda scores.

3.3.4 Time-dependent Coefficients Model

The previous model implies that the relation between gene g and miRNA m

is constant over time. In the experimental study for which we developed our

model there is no dependence between the measurements at different time

points, since these observations come from independent units. However, one

may still wish to incorporate into the model the fact that relations may

possibly change with time. This can be done by allowing different regression

coefficients at different time points, as follows:





Y1 = −Xβ1 −X∗
2β

′
1 −X∗

3β
′′
1 + εσ1 ,

...

YG = −XβG −X∗
2β

′
G −X∗

3β
′′
G + εσG

,

(3.7)

where the Yg’s are N × 1 vectors and
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X =




X1

X2

X3


 , X∗

2 =




0

X2

0


 , X∗

3 =




0

0

X3


 ,

are the N × M matrices of the observed values, with X1, X2 and X3 the

miRNA expressions collected at the first, the second and the third time point,

respectively. The element βgm ∈ βg represents the relation between gene g

and miRNA m at the first time point, βgm + β′gm, with β′gm ∈ β′g, represents

the relation at the second time point and βgm + β′′gm, with β′′gm ∈ β′′g , at the

third time point.

In order to do variable selection on the elements of β′g and β′′g we intro-

duce two additional binary matrices R′ and R′′, with a similar role to R

in the time-invariant model (3.3). We consider the elements of R′ and R′′

independently distributed and following a Bernoulli distribution with param-

eter P (r′gm = 1) = ηb = P (r′′gm = 1). Because of the way we implement the

MCMC, see Section 3.4, we do not need to impose the sequence information

on the prior on R′ and R′′.

As for the elements of the βg’s vectors, we assume that the elements of

the β′g’s and β′′g ’s vectors are stochastically independent given the regulatory

networks R′ and R′′, respectively, and that they have the following prior

distributions:

π(β′gm|σg, r
′
gm) = r′gmN(0, c−1σgζ) + (1− r′gm)I[β′gm=0],

π(β′′gm|σg, r
′′
gm) = r′′gmN(0, c−1σgζ) + (1− r′′gm)I[β′′gm=0],

where the hyperparameter ζ, usually ≤ 1, reflects the prior information on

the magnitude of the β′g’s and β′′g ’s.

We can reframe the time-dependent coefficients model in the same way
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we have framed model (3.3), that is:

Yg = −X(R)βg(R) −X∗
2(R′)β

′
g(R′) −X∗

3(R′′)β
′′
g(R′′) + εσg ,

where the columns of X∗
2 are selected if the corresponding elements of R′ are

equal to 1 and the columns of X∗
3 are selected if the corresponding elements

of R′′ are equal to 1, for each equation.

3.4 Posterior Inference

For posterior inference the primary interest is in estimating the association

matrix R. Here we show that R can be estimated by designing a simple

extension of the stochastic search procedures used for variable selection, see

George & McCulloch (1993) and Sha et al. (2004), among many others.

We use a Metropolis-Hastings within Gibbs to explore the huge model

space and find the most influential predictors. Our model has 23 regressors

for each of 1,573 equations, that is a total of 36, 179 regression coefficients

for the time invariant model (3.3) and 108, 537 for the time dependent model

(3.7). Clearly, exploring such a huge posterior space is challenging. Here we

exploit the sparsity of our model, i.e., the belief that most of the genes are

well predicted by a small number of regressors, and resort to a Stochastic

Search Variable Selection (SSVS) method. A stochastic search allows us

to explore the posterior space in an effective way, quickly finding the most

probable configurations, i.e., those corresponding to the coefficients that have

high marginal probability of rgm = 1, while spending less time in regions with

low posterior probability.

In order to design this MCMC search we need to calculate the marginal

posterior distribution of R by integrating out βg from the posterior:

f(Yg|X(R), σg,R) ∝ 1

(2π)(N−kg)/2σ
N/2
g ckg

|Ug|1/2

exp[ 1
2σg

qg]Φkg(0;−UgCg, σgUg),
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where Ug = (XT
(R)X(R))

−1, Cg = YT
g XT

(R) − (σ
1/2
g /c)1kg and qg = YT

g Yg −
CgUgC

T
g and with kg the number of selected regressors. Φkg(0;−UgCg, σgUg)

indicates the cdf of a multivariate normal, with mean −UgCg and covariance

matrix σgUg, calculated at the zero vector.

Our algorithm consists of three steps. The first step is based on the

marginal posterior distribution conditioned upon τ1, τ2, σg and consists of

either the addition or the deletion of one arrows in our graphical model or

the swapping of two arrows. The second step generates new values of τ1

and τ2 from their posterior distribution. In the last step values of all the

error variances σg are updated. The un-normalized full conditionals needed

for the Gibbs sampler can be derived from the conditional independencies of

our model, as given in Figure 3.2. We now describe the three steps of the

algorithm:

1. We use one of two types of moves to update R:

• with probability φ, we add or delete an element by choosing at

random one component in the current R and changing its value;

• with probability 1−φ, we swap two elements by choosing indepen-

dently at random one 0 and one 1 in the current R and changing

the value of both of them.

The proposed Rnew is then accepted with a probability that is the

ratio of the relative posterior probabilities of the new versus the current

model:

min

[
f(Y|X(Rnew),R

new, σg)π(Rnew|τ)

f(Y|X(Rold), R
old, σg)π(Rold|τ)

, 1

]
. (3.8)

Because these moves are symmetric, the proposal distribution does not

appear in the previous ratio.

2. In order to update τ1 and τ2 we employ another two Metropolis steps.

The proposal is made via a truncated normal random walk kernel. The
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proposed τnew
1 is then accepted with probability:

min

[
π(R|τnew

1 )π(τnew
1 )q(τ old

1 ; τnew
1 )

π(R|τ old
1 )π(τ old

1 )q(τnew
1 ; τ old

1 )
, 1

]
, (3.9)

where q(τ old
1 ; τnew

1 ) is a truncated normal with mean τnew
1 and trunca-

tion at 0, given the constraint of positivity on τ1. The variance of this

distribution represents the tuning parameter and has to be set in such

a way to explore the parameter space and have a good acceptance rate,

see also Section 3.5. An analogous step is performed for τ2.

3. For g = 1, . . . , G we update the error variance σg using a Metropolis

step where the proposal distribution q(σold
g ; σnew

g ) is a Gamma distri-

bution with parameters aσ and bσ. The proposed new value is then

accepted with probability:

min

[
f(Y|X(R),R, σnew

g )π(σnew
g )q(σold

g ; σnew
g )

f(Y|X(R),R, σold
g )π(σold

g )q(σnew
g ; σold

g )
, 1

]
. (3.10)

To obtain an efficient exploration of the parameter space with set aσ =

σold
g /bσ and bσ = e/σold

g , where e represents the variance of the proposal

distribution and can be set to obtain wished acceptance ratio.

Posterior inference can then be performed based on the MCMC output

using the marginal probabilities of the singles rgm’s.

The MCMC algorithm for the time-dependent coefficient model (3.7) is

pretty similar to the procedure described above, the main difference being

that at the first step we update either R, R′ or R′′. We then derive the

marginal posterior distribution f(Yg|X(R), R) for the time dependent model

obtaining:
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f(Yg|X(R),X
∗
2(R′),X

∗
3(R′′),R, R′,R′′, σg) = (2π)−

n−kg
2 σ

−n
2

g c−kg− k2g+k3g
2

ζ−
k2g+k3g

2 |Ag|− 1
2 |Cg|− 1

2

|Eg|− 1
2 exp[ 1

2σg
qg]

Φkg(0;−E−1
g Fg, σgE

−1
g ),

with

qg = YT
g Yg −YT

2gX2(R′)A
−1
g XT

2(R′)Y2g −YT
3gX3(R′′)C

−1
g XT

3(R′′)Y3g

−F T
g E−1

g Fg,

Fg = −XT
(R)Yg + XT

3(R)X3(R′′)C
−1
g XT

3(R′′)Y3g + XT
2(R)X2(R′)A

−1
g XT

2(R′)Y2g

−σ
1/2
g c−11kg ,

Eg = XXT −XT
2(R)X2(R′)A

−1
g XT

2(R′)X2(R) −XT
3(R)X3(R′′)C

−1
g XT

3(R′′)X3(R),

Ag = (XT
2(R′)X2(R′) + (cζ)−1Ik2g)

Cg = (XT
3(R′′)X3(R′′) + (cζ)−1Ik3g)

and YT
g = (YT

1g,Y
T
2g,Y

T
3g); k2g and k3g are the number of selected β′gm and

β′′gm. We can now write the first step of the MCMC as:

1′. We first select which of the three matrices to update. We choose R

with probability λ and R′ (or R′′) with probability (1 − λ)/2. We

then use the same add/delete or swap scheme described above and we

accept the proposed Rnew (or R′new or R′′new). For R the acceptance

probability is:

min

[
f(Y|X(Rnew),X

∗
2(R′old),X

∗
3(R′′old),R

new,R′old,R′′old)π(Rnew|τ)

f(Y|X(Rold),X
∗
2(R′old),X

∗
3(R′′old),R

old,R′old,R′′old)π(Rold|τ)
, 1

]

and similarly if R′ or R′′ is selected. Note that to perform this step

we need to use only the prior distribution of the selected matrix.

This algorithm can be run either without any constraint on the moves rel-

ative to R, R′ and R′′ or with the constraint that the elements of R′ (or R′′)
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can be selected only when the corresponding element of R is already selected

and that the elements of R can be eliminated only when the corresponding

element of R′ and R′′ are not selected. For our application we adopted the

constrain strategy. To implement this we do not need to add the ratio of

the proposal distributions into (3.8), since we use symmetric moves. This

choice, jointly with some empirical results (not reported here), led us to not

use the PicTar-Miranda information for the prior distribution of R′ and R′′,

because the selecting constraints imply that the prior probability of select-

ing the generic element r′gm (or r′′gm) already depends on the PicTar-Miranda

information through the prior probability on the corresponding element rgm.

This also implies a faster computational procedure in comparison with the

option of including the PicTar-Miranda information into the prior of R′ and

R′′.

3.5 Neural Tube Defects Application

We now apply our model to analyze the data described in Section 3.2, com-

bining miRNA and mRNA expression levels with sequence information. Our

model allows us to identify significant miRNAs for each target, possibly along

the time.

3.5.1 Parameter Settings

We first need to set the values of the hyperparameters of the model. A

normal distribution with variance σ2 corresponds to a normal truncated at

zero with variance ≈ 0.7σ2. The parameter c of the prior distribution of

the regression coefficients βgm can be interpreted as a correction factor. We

therefore decided to set c = 0.7. To complete the specification of the prior

distribution on σg we set δ = 3, obtaining a distribution centered on half

the sample variance of Yg, expecting our model to be able to explain around

50% of the variability of the data.
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In our variable selection framework, the parameter η of the Bernoulli

distribution (3.6) reflects the prior belief about the percentage of significant

coefficients in the model. In this application, having 23 regressors for each

of the 1,573 equations, we set η = −2.5 to obtain a prior expected number

of regressors between 1 and 2. For the more computational expensive time

dependent model we set η = −2.5 and ηb = 0.05, to avoid memory prob-

lems. We also set the hyperparameters aτ = 1.5 and bτ = 0.2 to obtain

a Gamma distribution that gives high probability to a broad set of values

of τ1 and τ2, taking into account the scale of values that come from PicTar

and Miranda algorithms. However the posterior distributions we obtained,

in all the different chains we ran, showed that this parameter setting is not

strongly informative. When running MCMC’s we have set the variance of the

truncated normal proposal distribution of τ1 and τ2 equal to 0.01 to obtain

a acceptance rate close to 25%.

We ran two different chains for each of the four possible combinations,

the time invariant model for the control and the hyperthermia group and

the time dependent model for the control and hyperthermia group. We used

either adding/deleting or swapping moves with equal probability at each step

of the chain; we assigned a probability of λ = 0.5 to the move that updates

R and then probability 0.25 to each of the moves that update R′ and R′′.

In all cases, after the initial burn-in, both chains mostly explored the same

region of the parameter space corresponding to configuration of R with high

posterior probability. In general, we found good agreement between the two

chains, which were run from different starting points. To be more precise,

correlations between the posterior probabilities of the two chains ranged from

0.84 to 0.88.

Figure 3.3 gives the summary trace plots for the number of selected coeffi-

cients βgm and corresponding log-posterior probabilities for the time invariant

model on the control group. In this case the chain was run for one million

iterations, from a starting randomly chosen set of 1,000 arrows, and mostly
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Figure 3.3: Trace plot for number of selected arrows and for the log-posterior
probability for the time invariant model

visited models with roughly 1,500 edges, i.e., on average almost 1 edge per

gene, a number not too far from the prior specification.

3.5.2 Results

The huge number of potential coefficients in the model implies that the weight

of a single coefficient toward the posterior probability of the entire model can

be potentially very small. Also, due to sparsity there may be many models

with almost the same (small) posterior probability. Because of this, it is

good practice to perform posterior inference based on the marginal posterior

probability of the single coefficients, rather than on their joint distribution.

These posterior probabilities of the presence of single interactions, that is,

P (rgm = 1|Y ,X) can be estimated directly from the MCMC samples by

taking the proportion of MCMC iterations for which rgm = 1.

The small sample size of our experimental groups does not allow us to
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create a validation set, and therefore all the samples are used to fit the model.

Selected models are then evaluated based on the R2 statistic, calculated using

the posterior mean of regression coefficients.

As expected, when more covariates are included into the model, based

on their posterior probabilities, the statistics R2 increases, indicating that

the ordering created by the posterior probabilities correctly indicates the

significative variables. For the time invariant model a threshold of 0.15,

corresponding to 1,720 included edges, gave an R2 of 0.31, for the control

group, and of 0.32 for the hyperthermia group, with 1,864 included edges.

An identical behavior was observed for the additional coefficients of the time

dependent model, i.e., when the number of included β′’s and β′′’s increases

then the quality of the fitting improves; with a threshold of 0.15 for β’s and

a threshold of 0.5 for β′’s and β′′’s we obtain a R2 = 0.32 for the control

group, including 1,919 β’s, 164 β′’s and 165 β′′’s, and a R2 = 0.37 for the

hyperthermia group, including 2,053 β’s, 210 β′’s and 210 β′′’s.

In an effort to assess whether our model correctly selects miRNAs that

under-regulate targets gene, we also calculated the ordinary least square es-

timates of the regression coefficients and checked how many of them were

negative, see Appendix B for the calculation of the OLS estimates. Notice

that this approach does not impose the negative constraint on β’s. By in-

cluding all coefficients with posterior probability greater than .2 we obtain

that, 96.0% and 96.3% of the coefficients, for the control and hyperthermia

group, respectively, were correctly negative.

By exploring the regulatory network as a function of the posterior proba-

bility of the arrows we found that, for the time invariant model on the control

group, a posterior probability cut-off of 0.8 selected 43 arrows between 41

target genes and 11 miRNAs. These correspond to an expected rate of false

detection (Bayesian FDR) of 10.5%, that we calculated, following Newton

et al. (2004), as

FDR = C(κ)/|Jκ|
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where C(κ) =
∑

g,m ψgmI[ψgm≤κ] and ψgm = 1− P (rgm = 1|Y , X), with |Jκ|
the size of the list (|Jκ| =

∑
g,m I[ψgm≤κ]). We set κ = 1 − k with k the

chosen threshold (i.e., 0.8). For the hyperthermia-treated group, the same

cut-off led to 59 selected arrows, between 59 target genes and 6 miRNAs,

corresponding to a a Bayesian FDR of 8.9%. Increasing the cut-off value to

0.9 identified 20 target genes and 7 miRNAs (corresponding to 22 arrows,

with a Bayesian FDR of 5.3%) in the control group and 31 target genes and

4 miRNAs (corresponding to 31 arrows, with a Bayesian FDR of 3.8%) in

the hyperthermia group.

Figure 3.4, produced using GraphExplore of Wang et al. (2004), displays

the selected network for the control group using a threshold of 0.8 on the

posterior probability under the time invariant model. A close look at the

pairs of target genes and miRNAs with high posterior probabilities reveals

that some of the regulatory relationships seem plausible and warrant future

investigation. Using a posterior probability cut-off of 0.9 for both time-

dependent and independent analysis of control-treatment data, 7 miRNAs

(miR-32, 181d, 213, 223, 299-5p, 367, 375) had at least one target gene for

a total of 70 gene targets. The same cut-off for both time-dependent and

independent analyses of hyperthermia data produced four miRNAs (miR-

142-3p, 299-5p, 367, 423) with at least one target gene for a total of 45 genes.

Overall there were 9 miRNAs and 86 gene targets identified with posterior

probability of at least 0.9. Of the 107 miRNA-gene target associations with

a posterior probability of at least 0.9, 10 were predicted by Miranda only, 2

by PicTar only, and 7 by both Miranda and PicTar. 70 of the gene targets

identified were associated with miR-367, a pluripotency-specific marker in

human and mouse ES cells, Li et al. (2009). MiR-367 expression steadily

decreased over time in control and hyperthermia-treated embryos, which is

consistent for a marker of pluripotency in a differentiating embryo. Also, 20

of the gene targets were associated with miR-299-5p, which has been shown

to regulate de novo expression of osteopontin, a protein that plays a role in
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Figure 3.4: Selected network for the control group using a threshold of 0.8
on the posterior probability
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enhancing proliferation and tumorigenicity, Shevde et al. (2009). The gene-

miRNA associations identified by our methods are potentially interesting for

follow-up NTD studies.

It is also interesting to look at the inference on the regression coefficients.

Figure 3.5 shows the estimates of the significant βgm’s for the time invariant

model under hyperthermia condition. Each bar in the plot represents the

1,573 regression coefficients for one of the 23 miRNAs. Non-zero values

correspond to the posterior mean estimates of the best βgm’s with posterior

inclusion probability above 0.15 (all other β’s are estimated by zero). Notice,

for example, how miRNAs miR-423, corresponding to the 22nd bar, and miR-

375, corresponding to the 16th bar, play an important role into the down-

regulatory mechanism.

Let us finally comment on the posterior inference on τ1 and τ2. These

parameters measure the influence of the prior information on the posterior

inference. Posterior inference on these parameters depends on the value given

to η. When selecting edges the hyperparameter η represents the weight as-

signed to the data and, consequently, τ1 and τ2 play the role of the weight

of the prior sequence information derived from the PicTar and Miranda al-

gorithms, respectively. The bigger the value of η the more the posterior

distribution of τj will be concentrated around small values. Besides this gen-

eral rule, inference on the τj’s generally depends on the concordance between

data and prior information, the number of observations and the number of

parameters in the model. According to our results, information extracted

from PicTar plays a much bigger role than the one from Miranda. With

η = −2.5, the posterior distribution of τ , for the control group, is concen-

trated around values that imply a 12% increase on the prior probability of

rgm = 1 for edges with corresponding high PicTar scores. For the hyper-

thermia group the corresponding percentage is 14%; when using the time

dependent model the prior probability of rgm = 1 increase by 13% and 15%,

respectively for the control and hyperthermia group. The behaviour of the
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Figure 3.5: Estimation of the significant βgm for the time invariant model
under hyperthermia condition
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Figure 3.6: Density Kernel estimate using the not time dependent model for
the control group

posterior distribution of τ1, setting different values of η, is summarized in

Figure 3.6. The scale of the estimates compensates the very large values we

observe for some of the PicTar scores. We can clearly see how the posterior

distribution concentrates to bigger values when η decreases. With η = −3.5

the prior probability of rgm = 1 increase by 48% and, setting η = −4.5, the

probability of selecting edges with corresponding high PicTar scores is more

than 2 times bigger of the corresponding prior probability for edges with

sgm = 0.

3.6 Conclusions

We have proposed a Bayesian graphical modeling approach that infers the

miRNA regulatory network by integrating expression levels of miRNAs with

their potential mRNA targets and, via the prior probability model, with their

sequence/structure information. Our model is able to incorporate multiple

data sources directly into the prior distribution avoiding arbitrary prior data
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synthesis. We have used stochastic search variable selection methods to infer

the miRNA regulatory network. We have considered experimental data from

a study on a very well known developmental toxicant causing neural tube

defects, hyperthermia. The analysis has involved 23 mouse miRNAs and

a total of 1,573 potential targets. Our goal was to identify a small set of

potential targets with high confidence. Some of the pairs of target gene

and miRNA selected by our model seem promising candidates for future

investigation. In addition, the time-dependent model has achieved significant

improvement in the percentage of explained variance, only slightly increasing

the size of the selected model. Our proposed modeling strategy is general

and can easily be applied to other types of network inference by integrating

multiple data sources.

An interesting feature of our inference is the somehow poor concordance

of the prior information, i.e., PicTar and Miranda scores, with the data.

This phenomenon has been observed by other authors in models for data

integration. Wei & Li (2008), for example, attribute this to the fact that

our knowledge of biological processes is not complete and can potentially

include errors and therefore induce misspecified edges on the networks. They

also suggest to first check the consistency of the prior information with the

available data. In our case, if the correlation between a miRNA and a target

gene is very small we may want to remove the edge from the network. On the

other hand, given the limited number of observations typical of experimental

studies in genomics, it would seem important to retain as much, possibly

accurate, prior information as possible. This important aspect of models for

data integration certainly deserves future investigation.

Extensions and generalizations of our model are possible. One future av-

enue we intent to pursue is trying to relax the assumption on the conditional

independence of the targets given the miRNAs. This assumption is necessary

in order to integrate out the covariance matrix, as in Brown et al. (1998b),

and still allow the selection of individual relations between a gene and a
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miRNA. Looking at this as a computational issue, it may be possible to still

sample the values of this huge covariance matrix in the MCMC, perhaps by

reducing the number of non-zero elements via the prior information on the

gene network.
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Appendix A

MCMC scheme for sampling (θ, γ)

We now describe the MCMC steps for (θ, γ) in more detail. For interpretabil-

ity, as previously described, no empty pathways or orphan genes are proposed

during sampling and, for identifiability, selecting the same set of genes for

different pathways is not allowed. At each iteration, only one pathway and/or

a gene are proposed to be added or removed.

(1) Change inclusion status of both gene and pathway – randomly choose

between addition (move 1.i in Figure 2.2) or removal(1.ii).

(1.i) Add a pathway and a gene:

First select a pathway that is not included in the model and has

none of its member genes in the model (θold
k = 0 and pold

kγ = 0).

Randomly choose one gene from the pathway (γold
j = 0) and pro-

pose including both the pathway and the gene, i.e., set θnew
k =

1, γnew
j = 1. The move is accepted with probability

min

{
1,

f(θθθnew
,γγγnew|TTT ,Y )

f(θθθold
,γγγold|TTT ,Y )

· pk·
∑K

r=1 I{θold
r =0,pold

rγ =0}∑K
r=1 I{θnew

r =1,pnew
rγ =1,cond1,condId1}

}
, (11)

where cond1 and condId1 are explained in move type (1.ii) below.

(1.ii) Remove a pathway and a gene:

This move is the reverse of (1.i) described above. We first select

a pathway that is included in the model and has only one of its
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member genes in the model (θold
k = 1 and pold

kγ = 1). In addition,

this included gene (γold
j = 1) may not be the sole representative for

other included pathways, to ensure that no empty pathway is cre-

ated. Furthermore, identical sets of genes from different selected

pathways cannot be created. These constraints corresponds, re-

spectively, to cond1 and condId1 in the proposal ratios (11) and

(12). We attempt to remove both the pathway and the gene, i.e.,

set θnew
k = 0, γnew

j = 0 and accept the move with probability

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θold

r = 1, pold
rγ = 1, cond1, condId1}

pk ·
∑K

r=1 I{θnew
r = 0, pnew

rγ = 0}

}
,

(12)

(2) Change the inclusion status of gene but not pathway – randomly choose

between addition (2.i) or removal(2.ii).

(2.i) Add a gene in an already included pathway:

First select a pathway already included in the model and that has

some member genes that could potentially be added (θold
k = 1 and

pk > pold
kγ ). Let G be the set of pathways that satisfy these con-

ditions. Choose one of the non-included genes from this pathway

(γold
j = 0) and attempt to add it, i.e, set θnew

k = θold
k = 1, γnew = 1.

The proposal is accepted with probability

min
{

1,
f(θθθnew, γγγnew|TTT , Y )
f(θθθold, γγγold|TTT , Y )

·
∑K

r=1 I{θold
r = 1, pr > pold

rγ } ·
∑

r∈G
1

p
new(cond2γ,condId2γ)
rγ∑K

r=1 I{θnew
r = 1, pnew

rγ > 1, cond2θ, condId2θ} ·
∑

r∈G
1

pr−pold
rγ



 ,

(13)
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where ’cond2θ’, ’cond2γ’, ’condId2θ’ and ’condId2γ’ are explained

in move type (2.ii) below.

(2.ii) Remove a gene from an already included pathway:

This move is the reverse of (2.i) described above. We first select

a pathway already included in the model and that has more than

one of its member genes included in the model (θold
k = 1, pold

kγ > 1).

In addition, at least one of the included genes from this pathway

may not be the sole representative for other included pathways

and its removal would not create an identifiability problem – this

corresponds to constraints ’cond2θ’ and ’condId2θ’in the proposal

ratios of (13) and (14). Once the pathway is selected, choose a

gene among the eligible candidates, that is, an included mem-

ber gene (γold
j = 1) which is not the sole representative for other

included pathways and whose removal does not create an iden-

tifiability problem – this corresponds to constraints ’cond2γ’ and

’condId2γ’. Constraints ’cond2θ’ for pathways, and ’cond2γ’ for

genes, will ensure that no empty pathways are created after the

proposed move. Leave the pathway status unchanged and attempt

to remove the selected gene, i.e., set θnew
k = θold

k = 1, γnew
j = 0.

The proposed move is accepted with probability

min
{

1,
f(θθθnew, γγγnew|TTT , Y )
f(θθθold, γγγold|TTT , Y )

·
∑K

r=1 I{θold
r = 1, pold

rγ > 1, cond2θ, condId2θ} ·
∑

r∈G
1

pr−pnew
rγ∑K

r=1 I{θnew
r = 1, pr > pnew

rγ } ·∑r∈G
1

p
old(cond2γ,condId2γ )
rγ



 .

(14)

(3) Change inclusion status of pathway but not gene – randomly choose

between addition (3.i) or removal(3.ii).
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(3.i) Add a pathway but leave genes’ status unchanged:

First select a pathway that is not included in the model but has

some of its member genes included in the model through other

pathways (θold
k = 0 and pold

kγ ≥ 1). Attempt to add the pathway but

leave the status of its member genes unchanged, i.e., set θnew
k = 1.

The proposed move is accepted with probability

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·
∑K

r=1 I{θold
r = 0, pold

rγ ≥ 1, condId3}∑K
r=1 I{θnew

r = 1, pnew
rγ ≥ 1, cond3}

}
,

where condId3 means that it is not possible to select a pathway

whose selected genes form the entire set of selected genes for an-

other selected pathway, and cond3 is explained in move type (3.ii)

below.

(3.ii) Remove a pathway but leave genes’ status unchanged:

This move is the reverse of (3.i) described above. First select a

pathway included in the model that has all of its pold
kγ included

member genes associated with other included pathways (θold
k = 1

and ’cond3’). This will ensure that no orphan gene is created.

Attempt to remove the pathway but leave the status of the genes

unchanged, i.e., set θnew
k = 0 and accept the move with probability

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θold

r = 1, pold
rγ ≥ 1, cond3}∑K

r=1 I{θnew
r = 0, pnew

rγ ≥ 1, condId3}

}
.
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Appendix B

Posterior Inference on Regression Coefficients

If inference on regression coefficients is desirable, these can estimate either

via the posterior distributions or the least squares estimates. For model (3.1)

we have the following posterior distribution:

π(βg|Y,X(R), ω
2) ∼ HN+(UgCg, σgUg) (15)

where HN+ indicates a kg-variate half-normal distribution that gives positive

probability only to vectors formed by elements bigger than zero.

For the more general time-dependent model we have the following poste-

rior distributions:

{
π(βg|Y,X(R), ω

2) ∼ HN+(E−1
g Fg, σgE

−1
g )

π(β′′g |Y,X(R), ω
2) ∼ N(J−1

g Hg, σgJ
−1
g ),

(16)

with

Jg = XT
3(R′′)X3(R′′) −XT

3(R′′)X3(R)L
−1
g XT

3(R)X3(R′′) + (ζc)−1Ik3g ,

Hg = YT
3gX3(R′′) + (YT

g X(R) −YT
2gX2(R′)D

−1
g XT

2(R′)X2(R) + σ
1/2
g c−11kg)

L−1
g XT

3(R)X3(R′′),

Dg = XT
2(R′)X2(R′) + (ζc)−1Ik2g ,

Lg = XT
(R)X(R) −XT

2(R)X2(R′)D
−1
g XT

2(R′)X2(R).
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The posterior distribution of β′ has the same form as the posterior distribu-

tion of β′′. Using the least squares approach, instead, we obtain the following

equations for β, β′ and β′′:





β̂gLS = (XT
(R)X(R))

−1XT
(R)(Yg −X∗

2(R′)β
′
g + X∗

3(R′′)β
′′
g ),

β̂′gLS = (XT
2(R′)X2(R′))

−1XT
2(R′)(Y2g −X2(R)βg),

β̂′′gLS = (XT
3(R′′)X3(R′′))

−1XT
3(R′′)(Y3g −X3(R)βg),

and then

β̂gLS = K−1
g [β̂gOLS − (XT

(R)X(R))
−1XT

(R)(X
∗
2(R′)(X

T
2(R′)X2(R′))

−1XT
2(R′)Y2g

+X∗
3(R′′)(X

T
3(R′′)X3(R′′))

−1XT
3(R′′)Y3g)],

with

Kg = Ikg − (XT
(R)X(R))

−1XT
(R)(X

∗
2(R′)(X

T
2(R′)X2(R′))

−1XT
2(R′)X2(R)

+X∗
3(R′′)(X

T
3(R′′)X3(R′′))

−1XT
3(R′′)X3(R)).
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