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Introduction

This thesis is about spatiotemporal modeling suited for environmental ap-
plications and in particular for air pollution problems.
Environmental variables have an intrinsic spatial and/or temporal nature,
being realizations of an underlying spatiotemporal process. Indeed, if we
consider air pollutant concentrations, these can be seen as a spatial field
evolving in time. From measurement systems we only know the value of this
field in a discrete set of points in space and on time average: for instance
the network of air pollution monitoring stations measures the concentrations
of several pollutants in a set of locations, with hourly or daily time step.
However, what is crucial to know for environmental and health policies are
the spatial features in the whole domain of interest, checking space and time
trends and correlation structure. Inferring what happens in space and time
over a region of interest starting from the knowledge on a limited set of ob-
servations is thus a significant task for public organizations and authorities
dealing with environmental problems.
This work is done in collaboration with the Environmental Protection Agency-
Tuscany region (ARPAT), that has the role of monitoring and assessing the
quality of the environment, to check and verify the main sources of pollu-
tants, and to estimate the risks for environment and public health. This
collaboration has focused on many issues, from data collection to coopera-
tion with air pollution experts to build a modeling framework suited for the
particular characteristic of the process of interest, that could be useful in
real applications for exposure and health assessment, regulatory activity in
the management and planning of air emissions, policies on preservation and
recovery of the environment.
According to ARPAT we focused on the case of nitrogen oxides. Nitrogen
dioxide is toxic by inhalation and there is evidence that long-term exposure
to NO2 at high concentrations has adverse health effects. NO2 and other
nitrogen oxides are also precursor of ozone and particulate matter, whose
effects on human health are well documented.
We deal with both the spatial bivariate relationship between nitrogen monox-
ide and nitrogen dioxide and the spatiotemporal evolution of nitrogen oxides
as a whole.
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Environmental processes are generally very complex: they include very in-
tricate spatiotemporal processes, occurring on a wide variety of scales and
arising from the interactions of many subprocesses involving physical, bio-
logical and chemical mechanisms. In these applications very large and het-
erogeneous datasets are often involved, from automatic monitoring networks
to satellite data, with a series of a priori informations and knowledge about
the process dynamics. Thus it is important to adopt a modeling strategy
that could account for all these sources of information in a coherent manner
while at the same time keeping computational tractability.
Many efforts have been made in the study of air pollution, both in a deter-
ministic and in statistical framework, but the problem of determining the
concentrations of a pollutant in a given point in space and time is someway
still open.
From a deterministic point of view, the governing equations are theoretically
known: starting from these relationships a lot of different algorithms and
models have been developed with different modeling hypothesis and empir-
ical relationships. Besides the limits given by modeling assumptions, the
needed input informations, emissions, meteorological and boundary condi-
tions etc, are often hard, even if not impossible, to be known with the
required accuracy. Moreover it is also hard to establish how the uncertainty
on input data is reflected on the estimated concentrations. In this kind of
modeling approach measured concentrations are only used as a calibration
tool. Otherwise the statistical approach uses measured concentrations to
make inference about the concentrations in an arbitrary unobserved point
in space and time, by using other informations, emissions, meteorological
conditions etc, as potential covariates.
In statistical modeling of air pollution problems and similar environmental
systems we have to face many different challenges.
First of all the complexity of the problem is such that it is very difficult to
think the model in terms of joint distribution, specifying the appropriate
multivariate spatiotemporal covariance structures. A hierarchical approach
could simplify the specifications of the model by factorizing the joint distri-
butions into a series of conditional models, linked together in a probabilis-
tically valid framework. Thus complicated dependency could be mitigated
by conditioning. Although either a classical or Bayesian perspective can be
adopted for hierarchical models, the Bayesian approach is usually needed for
more complex models. Here we refer to the hierarchical Bayesian context.
Dimensionality is another very important issue when dealing with spatiotem-
poral models. In fact it is often the case that the vectors of data representing
the process are of very high dimension, thus the numerical implementation
is hard and the computational aspects often challenging, and a reduced di-
mensional set up is often needed.
Another very important question is how to account in the model for the
knowledge we have about the process, for example arising from empirical
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relationships and physical laws. In the case of dispersion of pollutants in
air we know the dynamics driving the process and connecting concentration
values to emissions and meteorological conditions. The challenge here is to
find a modeling approach that includes this dynamics in its structure and
that allows for statistical inference and tractability.
Modeling techniques dealing with spatiotemporal processes where the spa-
tial and temporal structures can be modeled separately (separable models)
and/or the spatial temporal structure does not change with location and
time (stationary) are well developed and studied in literature. Environmen-
tal processes are often neither separable nor stationary, and these assump-
tions could turn to be very weak in this field.
Moreover multivariate interactions could add more complexity to this frame-
work and appropriate modeling strategies are needed in this case as well.
Finally monitoring locations are chosen for regulatory and health protection
reasons, thus the most of these are located in the main cities, near heavy
traffic roads, with a very non homogeneous distribution. Measured points
chosen following these criteria are far from an optimal choice for inferential
goals.
Although in relative recent literature many efforts have been made to deal
with these issues we are far from having a clear and complete reference
framework.

In this thesis we proceed as follows. The first chapter is about the theory
of spatial modeling, with a focus on the review of recent developed methods
to deal with nonstationarity and high dimensionality. In the second chap-
ter the multivariate issue is introduced and an application of the described
methods to the bivariate case of nitrogen oxides and nitrogen dioxides in
Tuscany is developed. The third chapter is about spatiotemporal modeling:
here we introduce dynamical systems and reduced dimension spatiotemporal
models. In this chapter the question about the underlying physical process
is discussed and a modeling framework able to include the governing differ-
ential equations and to account for the role of emissions and meteorological
variables is presented. Here we also review a number of statistical models
suited to atmospheric pollution modeling. Finally the last chapter is about
the application of the described spatiotemporal modeling techniques to the
case of nitrogen oxides concentrations in the Tuscany region. We propose
a hierarchical Bayesian dynamical model to estimate concentrations at un-
observed space and time points. The model introduced can account for a
nonstationary and nonseparable structure: it is proposed in a complete and
temporal reduced version, while dimension reduction in space is achieved by
using a kernel convolution approach. Different kernels are evaluated, com-
parison of competitive models is performed within a posterior predictive
approach and predictive ability of the selected model is then checked.
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Chapter 1

Spatial modeling for point
referenced data

We consider a stochastic process Y (s) : s ∈ D, where s varies continuously
over D, a fixed subset of the d-dimensional Euclidean space. This case
is referred as geostatistical, a field that historically has been developed in
relation to geological sciences, different from other spatial processes like areal
data (where the spatial index is finite, with the domain being partitioned in
a finite subset) or point pattern data (where the location itself is the random
variable of interest). A bidimensional (d = 2) domain is commonly assumed
for spatial processes, while the one dimensional setting is used in time series
literature1.

We are dealing with a stochastic process indexed by s and we have to spec-
ify the joint distribution of an uncountable number of random variables: in
practice we define a valid joint distribution between an arbitrary set of finite
variables.
Assuming the process to have a finite mean and its variance to exist for
all s ∈ D, then the process is said to be strictly stationary if, for any set
of n locations (with n > 1) and any vector h ∈ Rd, the distribution of
[Y (s1), . . . , Y (sn)] and that of [Y (s1 + h), . . . , Y (sn + h)] is the same.
If Y (s) has finite second moments, constant mean, and the covariance func-
tion of Y only depends on the distance between the two points, that is
µ(s) = µ and Cov(Y (s), Y (s + h)) = C(h) for all h ∈ Rd, then it is said to
be weakly stationary. If this property holds the covariance function C(h)
describes the covariance properties of the process evaluated at any different

1It is worth noting that the main difference between the two approaches is given by the
fact that, while for time we have a natural ordering, for spatial information this no longer
holds and thus the concept of asymptoticity is different. In fact in time series context
asymptoticity is reached allowing the time to go to infinity, while in spatial context the
domain is kept fixed while the increasing number of observations fills the domain.
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couple of locations.
Another type of stationarity (called intrinsic) assumes that the variance of
the variable defined as the difference between the process at s + h and the
process at s, [V ar(Y (s + h)− Y (s))] depends only on the separation vector
h.
Then we can define the so called variogram as V ar(Y (s+h)−Y (s)) = 2γ(h).
A valid variogram has to be negative definite. This kind of stationarity does
not assume anything about the distribution of [Y (s1, . . . , sn)], focusing only
on the first and second moment of the different variables. It can be proven
the following relationship holds between the (semi)variogram and the co-
variance function:

γ(h) = C(0)− C(h) (1.1)

Some conditions are needed in order to recover C from γ. If the process
is ergodic (that is in this case C(h) goes to zero when |h| → ∞) and it is
weakly stationary we have

γ(h) = C(0)− γ(h) = lim|u|→∞γ(u)− γ(h) (1.2)

Strong stationarity implies weak stationarity but not the converse and in the
same way weak stationarity implies intrinsic stationarity, but the vice-versa
is not true.
If the covariance function depends only on the length of the separation vec-
tor, and not on its direction, then the process is said isotropic.
There is a number of classes of parametric forms for isotropic and intrin-
sically stationarity processes, including exponential, Gaussian and Matern
forms that will be discussed later in detail.
The empirical variogram

γ̂(t) =
1

2|N(t)|
∑

(si,sj)∈N(t)

[Y (si)− Y (sj)]2 (1.3)

where N(t) is the set of pairs of points ||si−sj || = t, with cardinality |N(t)|,
can be used as an explorative tool for appropriately choosing the best para-
metric form.

1.1 Gaussian processes

An important class of processes are the Gaussian, where Y = (Y (s1), . . . , Y (sn))T

for any set of n > 1 sites, has a multivariate normal distribution. This choice
is a convenient one for more reasons than simplicity of derivation of the joint,
marginal and conditional distributions once the mean and covariance func-
tion have been specified. In fact in this case to ensure validity of the joint
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distribution between an arbitrary set of finite variables it is sufficient to en-
sure validity of the correlation function. Moreover for a Gaussian process
weak stationarity assures strong stationarity.

1.1.1 Valid covariance functions

Defining a valid class of covariance functions play a key role for Gaussian
processes, as it assures consistency of the model specification. To be valid
a correlation function has to be positive definite in order to ensure that the
variance of any linear combination of values of the process at various loca-
tions is positive.
A necessary and sufficient condition for a stationary covariance function to
be positive definite is given by the Bochner’s theorem, that states that a
function is continuous and positive definite if and only if it is the character-
istic function of a d-dimensional symmetric random variable.
Every stationary process Y (s) on Rd with mean and finite variance can be
represented in spectral form as

Y (s) =
∫

Rd

eiω
′sV (dω) (1.4)

where V is a random measure with independent increments.The associated
covariance function CY (s1, s2) = CY (h) (where h = s1−s2) of this stationary
process Y can be expressed as

C(h) =
∫

Rd

eiω
′hF (dω) (1.5)

where F is a non-negative symmetric measure on Rd and E[|V (dω)|2] =
F (dω). If F has density with respect to Lebesgue measure then F (dω) =
g(ω)dω and this density is called the spectral density g, which is the Fourier
transform of the covariance function

g(ω) =
1
2π

∫
R2

exp(−iω′h)C(h)dh (1.6)

This property can be used to generate valid correlation functions and makes
possible the estimation of the spatial process in the spectral domain.
Larger class of correlation functions could also be provided by mixing, prod-
uct and convolutions of valid correlation functions.
Stationary and isotropic correlation functions are the most common choice
and there exist several classes of valid isotropic correlation functions. A very
popular covariance function is the exponential one

C(h) = σ2 exp(−φh) h > 0 (1.7)
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where the parameter φ is associated to the effective range, that is the dis-
tance at which the spatial correlation reaches approximatively zero. The
corresponding variogram is of the form

γ(h) = τ2 + σ2(1− exp(−φh)) h > 0 (1.8)

where τ2 represents the nugget effect, that is the limit value of the variogram
when the distance tends to zero, while the asymptotic value of the variogram
(called sill) is the nugget plus the σ2 parameter. Another important class
is represented by the Gaussian covariance function

C(h) = σ2 exp(−φ2h2) h > 0 (1.9)

Both exponential and Gaussian forms are particular cases of the Matern
form. This class of correlation function is one of the most common and
powerful in spatial statistics, due to its flexibility and interpretability of the
parameters. This covariance has the form

C(h) = σ2 1
Γ(ν)2ν−1

Kν

(
2
√
ν
h

ρ

)
ρ > 0, ν > 0; (1.10)

where h is the distance, ρ is the spatial range parameter, and Kν(·) is modi-
fied Bessel function of the second kind of order ν, ν being the differentiability
(or smoothness) parameter.
This kind of function first arose in the study of turbulence from the analysis
by Von Karman and Tatarskii. Whittle [1] introduced spatial covariance
structures based on stochastic partial differential equations, generalizing in
two dimension the exponential family, corresponding to a Markov process
in one dimension.
Starting from a diffusion process for a stationary variable he found a cor-
relation function corresponding to the ν = 1 case of that we now call the
Matern function. This kind of result has been extended to the general classes
of stochastic differential equations (parabolic, elliptic and hyperbolic form)
by Heine [2], who found corresponding form of covariance function of the
process. Matern generalized Whittle’s class to derive families in any dimen-
sion d (for a complete history of this correlation function see [3]).
Handcock and Stein [4] introduced this family as the Matern family, point-
ing out the interpretation of the two parameters, one controlling the range
of correlation and the other one related to the smoothness of the process. In
fact a random field with this covariance have ν−1 times mean square differ-
entiable paths. When ν goes to infinite this function becomes the Gaussian
form, with realizations infinitely differentiable. When ν = 0.5 this form be-
comes the exponential one, that is continuous but not differentiable. While
the smoothness parameter allows for more flexibility, it is often not easily
estimated by the data, but it is possible to define this parameter relating to
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theoretical considerations about the process that is being considered.
A d dimensional spectral distribution function of the Matern class is

f(ω) ∝ (α2 + |ω|2d)−ν−d/2 (1.11)

where α−1 can be thought as the autocorrelation range and ν is related
to the degree of smoothness of the process. The greater is ν, the less the
weights of the higher frequencies of the spectrum.

1.2 The basic model

The basic geostatistical Gaussian model is of the form

Y (s) = µ(s) + w(s) + ε(s) (1.12)

where the process is decomposed in a mean part and two error processes.
The mean can be modeled using covariates µ(s) = xT (s)β, while ε represents
an uncorrelated error term. The new term w(s) is introduced to capture the
residual spatial association and it is assumed to be a realization from a mean
zero Gaussian spatial process. In a parametric approach the main issue in
this case is to choose a valid and appropriate correlation function, typically
considering families of stationary processes.
The (universal) kriging method is a particular case of this basic model. Let
Y be an nx1 data vector Y = (Y (s1), . . . , Y (sn))T and assume for a moment
µ = 0, we can write

Y = W + ε (1.13)

with W ∼ N(0,Σw), and ε ∼ N(0,Σε). The minimum mean square error
spatial prediction can be proven to be the conditional expectation of Y (s0)
given the data, where s0 is the new point. If the parameters are known,
from a multivariate normal theory, the conditional distribution of new the
point is normal with mean and variance:

µ = Σy0,y(Σw + Σε)−1Y (1.14)
Σ = Σy0 − Σy0,y(Σw + Σε)−1Σ′

y0,y (1.15)

where Σy0,y = cov(Y0,Y) and Σy0 = Y. For example for an isotropic
model with Σw = σ2H(φ), where (H(φ))ij = ρ(φ; dij) with ρ a valid cor-
relation function and Σε = τ2I, we have Σy0 = σ2 + τ2 and Σy0,y =
(σ2ρ(φ; d01), . . . , σ2ρ(φ; d0n)).
In a Bayesian setting we have

p(θ|y) ∝ f(y|θ)p(θ) (1.16)
Y|θ ∼ N(0, σ2H(φ) + τ2I) (1.17)
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The required priors on the parameters are often assumed independent

p(θ) = p(β)p(σ2)p(τ2)p(φ) (1.18)

and the conjugate distributions are multivariate normal for β and inverse
gamma for σ2 and τ2, while for φ the choice depends on the class of the
chosen correlation function.
The spatial surface w|y is recovered via composition sampling. The predic-
tive distribution can be obtained as

p(y0|Y, X,x0) =
∫
p(y0, θ|y, X,x0)dθ (1.19)

=
∫
p(y0|y, θ,X,x0)p(θ|Y, X)dθ (1.20)

with p(y0|y, θ,X,x0) normal and a Gibbs sampling can be easily performed.
If we are interested in a joint prediction for m points, we can proceed in the
same way as above.

1.2.1 Hierarchical formulation

The basic geostatistical model can be arranged in a hierarchical setting. The
hierarchical approach is essentially based on the fact that a joint distribu-
tion of a set of random variables can be decomposed in some conditional
models, that is [X,Y, Z] = [Z|Y,X][Y |X][X]. It is often easier to specify
this conditional models than the joint ones. A general framework can be
formulated as ([5])

[data | process, parameters]

[process | parameters]

[parameters]

and we can obtain the distribution of process and parameters given the data,
as

[process,parameters|data] ∝ [data|process,par][process|par][par]

In the geostatistical setup we can write:

Y |W, θ ∝ N(Xβ +W, τ2I) (1.21)
W |θw ∝ N(0,Σ(θw)) (1.22)

β ∝ N(β0,Σβ) (1.23)
[σ2, θw, β0,Σβ] (1.24)
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where τ2 accounts for small scale variability (nugget) andW is the correlated
spatial process. Here the correlation function is assumed to be parameter-
ized by some parameters θw. This model is the analogous of the linear mixed
model in classical modeling, and in the same way it is possible to define a
generalized version for non Gaussian data.
In this setting we can perform Montecarlo sampling using the non marginal-
ized form [θ|y] ∝ [y|θ,W ][W |θ][θ].

1.3 Kernel convolution to generate processes

An alternative method to generate Gaussian processes as those we described
in the previous section is by using process convolution. This method has
been used to develop a general class of models for spatial data ([6], [7], for
a review see [8]).
In fact it is possible to build a Gaussian process over a general spatial region
S by convolving a continuous white noise process with a smoothing kernel
k(s).
More formally let

Y (s) =
∫

Rd

k(s, u)V (du), s ∈ D (1.25)

where k(·, ·) is a square integrable kernel function
∫
k2(s, u)du < M < ∞,

and V is a process with independent increments, zero mean and finite vari-
ance proportional to the volume of the increment. In particular by choosing
V as a d dimensional Brownian motion ([9]), the process Y (s) defined above
is Gaussian and an arbitrary collection of Y (si), i = 1, . . . , n has a finite
dimensional multivariate normal distribution (for a proof see for example
[10]).
Due to the independent increments of V (.) the covariance function of the
process Y can be written in terms of kernel functions alone, that is

CY (s1, s2) =
∫

Rd

k(s1, u)k(s2, u)du (1.26)

where E(V (du)2) = du.
The covariance defined above is valid, in fact

k∑
i=1

k∑
j=1

aiajCY (si, sj) =
k∑

i=1

k∑
j=1

aiaj

∫
Rd

k(si, u)k(sj , u)du (1.27)

=
∫

Rd

(
k∑

i=1

aik(si, u))2du ≥ 0 (1.28)
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In the special case of a kernel function in Rd only depending on the distance
between locations

Y (s) =
∫

Rd

k(s− u)V (du), s ∈ D (1.29)

we have a stationary process and we can write the variogram in terms of the
kernel

2γ(h) =
∫

Rd

(k(u)− k(u− h))2du (1.30)

where h = s1 − s2. The covariance function now is

CY (h) =
∫

Rd

k(u)k(u− h)du (1.31)

Moreover in this case, taking the square root of the Fourier transform of
the covariance function and obtaining the inverse Fourier transform gives
a function proportional to the kernel and this relationship is one to one
for isotropic processes. In fact, under regularity conditions that assure the
existence of the Fourier transform, we have

Ĉ(ω) = |K̂(ω)|2 (1.32)

where Ĉ(ω) and K̂(ω) are the Fourier transform (with respect to Lebesgue
measure) of the covariance and kernel function respectively. Thus a kernel
corresponding to a particular covariance function can be obtained as

k(u) = (2π)−d

∫
Rd

expiω′u
√
Ĉ(ω)dω (1.33)

A stationary random process can be defined by a convolution process if and
only if has spectral density. Although in many situations there is not a
closed expression for the covariance kernel, for the (isotropic) Matern class
of covariance (and so also for the Gaussian) we have a direct correspondence.
For example, for Gaussian univariate covariance we have:

C(h) =
1

σ
√

2π
exp−h2/(2σ2) (1.34)

k(u) =
1

α
√

2π
exp−u2/(2α2) (1.35)

where σ2 = 2α2.
Bivariate Gaussian kernel is proportional to that of the univariate case (as
the bivariate Gaussian kernel can be decomposed as k(|s|) ∝ k(|sx|)k(|sy|)
(see [11]).
A closed form for a kernel corresponding to a Matern covariance function
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Figure 1.1: Relationship between kernel and induced covariance functions,
from [11].

can be derived. Using a different parameterization of the Matern form we
have:

C(φ,α,ν)(h) =
πd/2φ

2ν−1Γ(ν + d/2)α2ν
(α|h|)νKν(α|h|) (1.36)

α = 2ν1/2/ρ (1.37)

φ =
Γ(ν + d/2)22ννν

πd/2Γ(ν)ρ2ν
σ2 (1.38)

and the spectral density can be written as

Ĉφ,α,ν(ω) = (2π)dφ(α2 + |ω|2)−ν−d/2 (1.39)

thus the corresponding kernel

k(u) = (2π)−d/2C(φ1/2,α,ν/2−d/4)(u). (1.40)

Figure 1.1 shows correspondence between kernel and covariance functions
in different cases (Gaussian, exponential, spherical covariogram) in the two
dimensional plane ([11]).
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1.3.1 Discretization of convolution processes

The theoretically continuous underlying process in practice can be approxi-
mated by a discretized version without much loss if the discretization is not
too coarse relative to the smoothing kernel. The approximation consists in
restricting the integration over a domain and replacing the integral with a
finite sum ([10]).
Consider a uniform partition of a square domain Dr, with Dr → D, when
r → ∞, and the consider the centroids grid locations ui, i = 1, . . . , p. As-
sume |Arj |, j = 1, . . . , p the area of each subsquare, then∫

R2

k(s− u)V (du) = lim
r→∞

∫
Dr

k(s− u)V (du) (1.41)

≈ lim
r→∞

p∑
j=1

k(s− uj)
∫

Arj

V (du) (1.42)

= lim
r→∞

p∑
j=1

k(s− uj)V (Arj) (1.43)

≈
p∑

j=1

k(s− uj)Vj

√
(|Arj |) (1.44)

where Vj = x(uj) are independent random variables with zero mean and
variance σ2. Thus

Y (s) '
p∑

j=1

k(s, uj)x(uj) (1.45)

where x(uj), j = 1, . . . , p is a collection of p independent normal random
variables with zero mean and σ2 distribution defined on the lattice.
Considering a set of locations (s1, . . . , sn) and being Y = (Y (s1), . . . , Y (sn))
the corresponding vector, the definition above yields Y ∼ N(0, σ2Σ), where

Σii′(θ) =
p∑

j=1

k(si − uj)k(si′ − uj)|Aj | (1.46)

This framework can also be applied with a non uniform partition of the
domain, that can be useful when the sample locations are not uniform in
space.
The question about how close this approximation is to the real process has
to be addresses. Kullback Leibler divergence has for example been used
in [10], concluding that this approximation seems to be robust, with this
robustness increasing as the spatial correlation becomes stronger.
For Gaussian kernels simulation studies showed that the lattice distance has
to be no more than the standard deviation of the chosen kernel ([8]).
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The basic model that can be built with this decomposition is of the type
[12]

Y = µ1n + Kx + ε (1.47)

where x and ε are zero mean normal with variance matrix Σx = σ2Ip, and
Σε = σ2

ε In and Kij = k(si − uj). This model is equivalent to a linear mixed
effects model and can be estimated with standard statistical software.
This modeling framework has several advantages. For example it has been
used to develop nonstationary models, and can also be used in order to
achieve dimension reduction.
Moreover the framework can be extended to allow x(ui) to be dependent
processes ([13], [14]) and to be used in a spatiotemporal context. All these
extensions will be explained in the following sections. For example allowing
x to have a correlation function ρ yields to

Cov(Y (si), Y (sj)) = σ2

∫
R2

∫
R2

k(si − u)k(sj − u′)ρ(u− u′)dudu′ (1.48)

and by using a change of variable it can be proven this covariance is still
stationary, depending only on si − sj .

1.4 Anisotropy

A stationary anisotropic process is a process in which spatial association
depends upon the separation vector between locations, not only for its ab-
solute value but also for its direction. When an anisotropic process can be
reduced to isotropy by a linear transformation of the coordinates we have
geometrical anisotropy, that is

c(s1 − s2) = σ2ρ((s1 − s2)′B(s1 − s2)) (1.49)

where B is a positive definite matrix and ρ is a valid correlation function
in Rd. A constant value of correlation yields to an ellipse (rather than a
circle). More precisely we can have different kinds of anisotropy, that is
nugget anisotropy, range anisotropy and sill anisotropy ([15]). The most
common case is range anisotropy where the range depends upon direction.
The directional range, that is the range of the directional variogram for any
separation angle, corresponding to the ρ = 0.05 contour, is assumed to lie
on an ellipse, with major axis corresponding to the maximum range [16].
The parameters of this ellipse can be estimated by the data.
It can be proven that geometric anisotropy can be addressed by convolution
kernel approach by using a kernel K∗ = K(B1/2h).
Empirical semivariogram contour plots can be an useful tool to assess anisotropy.
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1.5 Nonstationarity

Although the stationarity assumption can be reasonable in many applica-
tions (this assumption is assumed often after conditioning on the mean part),
there are situations for which this hypothesis is not appropriate, for example
if we have large and very heterogeneous domains.

While recently many methods have been developed to deal with nonstation-
arity, modeling non stationarity is still difficult, because a covariance matrix
globally positive definite is needed and at the same time this matrix has to
be specified in terms of local features to achieve non stationarity.

In a geostatistical framework there are many methods recently developed,
most of which are based on the assumption of local stationarity.
For example a test for detect nonstationarity has been developed by Fuentes
[17] for regularly spaced data starting from spectral representation and the
estimation of the periodogram.

The convolution process provides an attractive way of introducing non sta-
tionarity. For example, Higdon ([7]) defined a nonstationary process con-
volving white noise processes with spatially varying kernels. Letting the
kernel vary with spatial location the correlation function

ρ(s1, s2) ∝
∫

R2

ks1(u)ks2(u)du (1.50)

is for construction definite positive and the resulting process can be ex-
pressed as

Y (s) =
∫

R2

ks(u)x(u)du (1.51)

The spatially varying kernel ks(u) (that has to be square integrable for all
points) is function of some parameters that could be evaluated in a hierar-
chical Bayesian framework, using for example a spatial stationary process
in order to let the kernels evolve smoothly over space.
In the case of a bivariate Gaussian kernel, that is

ks(u) = (2π)−1|Σ(s)|−1/2 exp(−u′Σ(s)−1u/2) h ∈ R2 (1.52)

the analytical expression for the covariance function can be obtained, and
it is possible to account for anisotropy. In fact, due to the correspondence
between the bivariate normal distribution and the standard deviation el-
lipse, it is possible to parameterize Σ(s) in terms of the parameters of such
ellipse. Higdon ([7]) modeled the two foci locations as spatial random fields
to assure smooth variation. Alternatively one can use the major and minor
axes and rotation angles, that could account for (range) anisotropy ([18]).
Starting from the analytical function for nonstationary covariance of the Hig-
don model when the kernel is multivariate Gaussian, Paciorek and Shervish
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([19], [20]) defined a general formulation of nonstationary covariance, in-
cluding a nonstationary form of the Matern covariance function.
In fact in the multivariate normal case, the covariance can be expressed as

CNS(xi, xj) = σ2|Σi|
1
4 |Σj |

1
4 |Σi + Σj

2
|−

1
2 exp(−Qij) (1.53)

Qij = (xi − xj)T

(
Σi + Σj

2

)−1

(xi − xj) (1.54)

where Σi = Σ(xi), the covariance matrix of the Gaussian kernel, which is
centered at xi (kernel matrix). The authors demonstrated that if we have
any isotropic correlation function Rs, positive definite on Rp for every p, the
non stationary correlation function

RNS(xi, xj) = Σi|
1
4 |Σj |

1
4 |Σi + Σj

2
|−

1
2Rs(

√
Qij) (1.55)

is positive definite on Rp. For example the resulting nonstationary form of
the Matern covariance function is

CNS(xi, xj) = σ2|Σi|
1
4 |Σj |

1
4 |Σi + Σj

2
|−1/2

(
2
√
νQij

)ν
Kν

(
2
√
νQij

)
(1.56)

This approach provides a way to have a closed form of nonstationary co-
variance function, based on a stationary form and local parameters. We can
define the Σ matrix over the whole domain in many ways, for example par-
titioning the domain in a set of non-overlapping areas Ai, or with a moving
window, or defining a spatial process for the element of Σ, or defining a
spatial process for the eigenvalues/vector processes associated with Σ. It is
also possible to model the covariance matrix as a function of covariates.

Another kernel based method is that from Fuentes [21]. In this method
the process considered is the convolution of a fixed kernel over independent
stationary processes with different covariance parameters, that is

Y (s) =
∫

D
k(s− x)Zθ(x)(s)dx, s ∈ D (1.57)

where k is a stationary kernel function convolving the mean zero stationary
spatial process Zθ(x)(s), that has a covariance function with spatially varying
parameters θ(x). Thus Y (s) is such that

var(Y (s)) =
∫

R2

k2(s− x)C(0; θ(x))dx (1.58)

cov(Y (si), Y (sj)) =
∫

R2

k(si − x)k(sj − x)C(si − sj ; θ(t))dt (1.59)
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In this case the whole covariance function is hard to be evaluated analyti-
cally.
Multiresolution approach to nonstationarity hase been developed in[22] by
means of wavelet basis functions.
Pintore and Holmes ([23]) handle nonstationarity in the spectral domain.
The term spectral is intended in a broad sense, that is in a decomposition
of the covariance function in orthogonal basis. They used in fact both the
Fourier basis from a parametric point of view and the Karhunen Loeve ex-
pansion for a non-parametric equivalent. Their method is based on the
concept of local stationarity, and on the fact that a process can be locally
represented, in the spectral domain, as a superposition of Fourier frequen-
cies with suitable weight functions.
Given a parametric model for the spectral density g(ω; θ) Pintore and Holmes
define a nonstationary spectral density gs

NS(ω) proportional (equal) to g(ω, s; θ(s)),
i.e. of the same form of the spectral density whose parameters vary locally,
demonstrating that, if C(s, t) is a stationary covariance function whose spec-
trum is g(ω), then the function on DxD given by

CNS(s, t) =
∫

Ω
exp(iω(s− t))g(ω, s; θ(s))1/2g(ω, t; θ(t))1/2dω (1.60)

is a valid covariance function if and only if∫
Ω
|g(ω, s, θ(s))|dω <∞ (1.61)

for all s ∈ D.
For example for the Matern correlation function we have:

gs
NS(ω) = h(s)2(α2 + ||ω||2d)−ν(s)−d/2 (1.62)

with corresponding covariance function

CNS(s, t) = hs,t(α‖s− t‖d)νs,tKνs,t(α‖s− t‖d) (1.63)
νs,t = 0.5(ν(s) + ν(t)) (1.64)

hs,t =
h(t)h(s)πd/2

2νs,t−1Γ(νs,t + d/2)α2νs,t
(1.65)

h(t) = normalizing constant (1.66)

Again the spatially varying parameter can be modeled with different strate-
gies (in [23] the authors proposed regression splines). The parameter ν(s)
allows modeling different power of the higher/lower frequencies (i.e. smooth-
ness) at different points in space.
The two complementary approaches of [19] and [23] were generalized by Stein
([24]). He demonstrated the important result that if Σ is a mapping from
Rp to positive definite pxp matrices, µ is a nonnegative measure on [0,∞),
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and for each x ∈ Rp, g(·, x) ∈ L2(µ) and defining Σ(x, y) = 0.5(Σ(x)+Σ(y))
and Q(x, y) = (x− y)′Σ(x, y)−1(x− y), then

R(x, y) =
|Σ(x)|1/4|Σ(y)|1/4

|Σ(x, y)|1/2

∫ ∞

0
e−wQ(x,y)g(w;x)g(w; y)µ(dw) (1.67)

is a valid covariance function. Thus a nonstationary form for the Matern
function with both ν and Σ spatially varying is given by

R(x, y) =
c(x)c(y)
|Σ(x, y)|1/2

M0.5(ν(x)+ν(y))(Q(x, y)1/2) (1.68)

Mν(x) = (x)νKν(x) (1.69)
Q(x, y) = (x− y)T Σ(x, y)−1(x− y) (1.70)
Σ(x, y) = 0.5(Σ(x) + Σ(y)) (1.71)

where Σ is a mapping from Rp to positive definite pxp matrices.

Finally, before concluding this section, it is useful to cite the non-parametric
approach to nonstationarity in [23] using the Karhunen-Loeve expansion.
In the discrete case this expansion is equivalent to a principal component
analysis (PCA) and we have

C = V DV ′ (1.72)

where C is the covariance matrix, D is the diagonal matrix of eigenval-
ues and V ’s columns are the corresponding eigenvectors. So the Y =
(Y (s1), . . . , Y (sn)) process can be represented in terms of these basis func-
tion as

Y = V α+ ε (1.73)

where α ∼ MVN(0, D), and ε ∼ MVN(0, σ2In). Nonstationarity can be
introduced in this context by making the random coefficients α vary with
locations, so that αi = α(si) ∼ MVN(0, Ci).

1.6 Reduced dimension setup for spatial processes

In many applications very large datasets are needed to be handled. Due to
the increasing number of automatic measurement systems the dimension-
ality of the geostatistical model can be computationally infeasible, both in
a frequentist and Bayesian approach. A low dimensional setting and more
efficiency in computation can be reached by using a lower dimensional la-
tent process or by choosing a different representation, as spectral forms. As
demonstrated by Wikle it is possible to set a general reduced rank repre-
sentation able to include many common methodologies like discrete kernel
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convolutions of the previous section, orthogonal polynomials, empirical or-
thogonal functions (EOF), splines and wavelets.
Recasting the hierarchical form of the basic geostatistical model by using a
lower dimensional latent process and assuming for simplicity µ = 0 we have:

Z = Y + ε, ε ∼ N(0,Σε) (1.74)
Y = Kα+ η, η ∼ N(0,Ση) (1.75)
α ∼ N(0,Σα) (1.76)

where α is a p-dimensional random effects vector, such that p << n (where n
is the dimension of the data), so K is an expansion matrix that maps the low
dimensional latent process α to the true process of interest Y . This parame-
terization allows computational advantages in both Bayesian and frequentist
estimation. The power of this structure is increased if some simplified struc-
ture can be used for the correlation matrix: for example a diagonal structure
for Σε is appropriate in many cases. If we know the expansion matrix K
we can obtain the latent spatial process at unobserved locations. Many
choices are possible for this matrix, corresponding to apparently different
approaches in literature.
A distinction can be made between orthogonal and non orthogonal basis
functions. Fourier basis, orthogonal polynomials, eigenvectors from covari-
ance matrix and Karhunen-Loeve expansion are examples of the first group,
while splines, wavelets and kernel functions are from the second one.
The nxp K matrix can be written as

K =


k′1
k′2
...
k′n

 (1.77)

where k′i = (ki(1), . . . , ki(p)) corresponds to the ith spatial location. The
orthogonal basis function satisfy the orthogonality constraint, that is ki ⊥
kj for each i, j. In this case we can define ki for any spatial location si.
In this class the Fourier basis functions have many advantages. For this class
of basis fast computational algorithms exist and it can be proven that, if
the spatial process is weakly stationary, the α coefficients are nearly uncor-
related and Σα can be reasonably assumed as diagonal, and by using a class
of stationary covariance model, these diagonal elements are function only of
the parameters of this class with the variances at a given frequency nearly
an half of the power spectral density at a given frequency (examples are in
[25] and [26]). Another type of orthogonal expansion is the Karhunen-Loeve,
that is an optimal choice in term of minimizing the variance of truncation er-
ror. The need of solving an integral equation and the fact that the basis can
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be evaluated only for locations for which there is an observation (although
one can use some interpolation method), limit the use of this expansion in
practice.
If there are repeated observations (for example in time), a PCA can be per-
formed on the empirical covariance matrix. In spatial statistics the eigenvec-
tors from this PCA decomposition are called empirical orthogonal functions,
and correspond to a discretization of the KL integral for equally spaced data.
By using this basis function there is no need of stationarity assumption, and
the covariance matrix Σα in this case is still diagonal ([27]). The drawback
is the same as for the KL expansion, that is the need of interpolating the
eigenfunctions to obtain these in different locations, and to obtain estimates
of the associated covariance matrix.
An important example of non orthogonal basis function are the kernel basis.
As we saw in section 1.3 a correlated stochastic process can be written in
terms of convolution of a Brownian motion process. The discrete equivalent
of this approach leads to a definition of the K basis functions on some sup-
port points for the α process.
Consider the kernel expansion

Z(s) =
p∑

j=1

k(s, rj ; θs)αj + η(s) (1.78)

where k(s, rj ; θs) corresponds to some kernel function and its value for a
given spatial location s depends on the location j = 1, . . . , p support points
over which the process α is defined, and where the kernel parameters θs

may vary in space. Assuming for simplicity these parameters constant in
space, we can use the kernel to define the mapping matrix K, that is ki(θ) =
(k(si − r1; θ), . . . , k(si − rp; θ)), then

K(θ) =


k′1(θ)
k′2(θ)

...
k′n(θ)

 (1.79)

Assuming α as N(0, σ2
αI), the spatial structure is obtained by smoothing

the white noise process on the p support points. Otherwise, thinking at the
process on these points as a spatial process, a spatial covariance function
can be used for Σα (examples are in [21], [13], [14]).
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Chapter 2

Multivariate modeling

Point referenced spatial data are often multivariate. It is typical in fact to
collect more than one variable in the same site. For example air pollution
monitoring networks measure at the same time a set of pollutants and/or a
set of meteorological variables. The modeling problem is due to the double
dependence between measurements at a specific site and the correlation
between the values of a variable at different locations.
Let Y(s) a mx1 vector of m random variables collected at a specific site
s, and denote with Y = (Y(s1), . . . ,Y(sn)) . The mxm cross covariance
matrix

C(s1, s2) = Cov(Y(s1),Y(s2)) (2.1)

has to model the correlation between a variable measured in two different
sites, the correlation between different variables and the combination of
the two. This cross covariance matrix needs not to be symmetric or definite
positive, but in a limiting sense, as s1 → s2 this cross covariance becomes the
symmetric and positive definite variance covariance matrix of the variables
within a specific site Y(s).
Moreover this matrix has to be chosen in such a way that the nmxnm
covariance matrix for W is symmetric and definite positive for an arbitrary
number of locations.
In the context of the general model introduced earlier for univariate data,
that is

Y(s) = µ(s) + W(s) + ε(s) (2.2)

the vector ε(s) models the measurement error and it is assumed to be mul-
tivariate normal with mxm covariance matrix Ψ, and again the zero mean
W(s) term accounts for spatial association and it is assumed to be a real-
ization from a gaussian spatial process.
Considering the collection of sites (s1, . . . , sn), [W = W (si)]ni=1 is a mnx1
vector and its distribution is a multivariate normal with (parametric) variance-
covariance mnxmn matrix ΣW (θ).
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This matrix can be decomposed inmxm block, i.e.ΣW (θ) = [K(si, sj ; θ)]ni,j=1,
where K(si, sj , θ) = [Cov(Wk(si),Wl(sj))]mk,l=1. Thus K(si, sj) is the cross
covariance matrix function of the locations (si, sj). The dispersion matrix
of Y is ΣW (θ) + In ⊗ Ψ. Σw(θ) and K(s, s; θ) have to be symmetric and
positive definite, and K(si, sj , θ) has to be chosen in an appropriate way.
The easiest way to achieve this property is by using a separable model, that
is

K(si, sj) = ρ(si, sj)T (2.3)

where ρ is a valid correlation function governing the spatial association and
T is a mxm positive definite matrix accounting for dependence between
variables in a specific site.
It can be proven that in this case the covariance matrix for Y is H ⊗ T ,
where (H)ij = ρ(si, sj), is symmetric and positive definitive. This assump-
tion assures tractability, many computational advantages and a good inter-
pretability.
Limitations in this hypothesis are related to a symmetric cross covariance
matrix K(si, sj) and in imposing only one spatial correlation function, so
that every variable has the same spatial behavior.
The hierarchical approach avoids the difficulty of specifying a valid joint
covariance function. As outlined in [28] and [5] is often more natural (and
always valid) to specify a conditional relationship between variables than a
joint covariance. For example in a bivariate spatial process [y1, y2] we have

[y1, y2, θ] = [y1|y2, θ1][y2|θ2][θ1, θ2] (2.4)

The conditional relationship between y1 and y2 can be based on a causal
relationship or just inferred. Royle and Berliner ([28]) applied this model
for the conditional relationship between ozone and temperature, defining

Ozone|temp, B, βoz,Σoz|temp ∼ N(Xozβoz +Btemp,Σoz|temp) (2.5)
temp|βtemp,Σtemp ∼ N(Xtempβtemp,Σtemp) (2.6)

Moreover, letting the elements of B vary over space, the cross covariance
and marginal covariance matrices of ozone are nonstationary. Another ad-
vantage of this approach is given by the possibility of conditioning on latent
processes, that can be useful when the number of variables is high (for ex-
ample see [29]).

2.1 The coregionalization approach

The coregionalization model is a constructive way to build valid covariance
functions in the joint model, and an equivalence can be established between
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this approach and the hierarchical one.
This method consists in building a rich class of valid covariance functions
by linearly transforming a simple covariance structure ([30]).
In the following we describe the coregionalization model in gaussian spatial
models as [31],[32] and [33].
Considering a diagonal cross correlation function K̃(si, sj ; θ) = diag[ρi(si, sj , θi))]mi=1,
with ρl(·, ·; θl) a correlation function of Wl(s), we have independent spatial
processes (Cov(W̃l(si), W̃k(sj)) = 0 if l 6= k). For each process ρ the corre-
lation function controls the spatial association and can be parameterized by
some parameter θ, for example we can use the Matern family.
Linearly transforming this independent spatial term allows to build a richer
covariance function that is still valid, i.e. W (s) = A(s)W̃ (s). If we con-
sider a spatially varying matrix A the covariance associated with the spa-
tial effect is nonstationary. In this setting the cross covariance matrix is
K(si, sj ; θ) = A(s)K̃(si, sj)AT (s′) and, because K̃(s, s; θ) = Im, we have
A(s) = K1/2(s, s; θ). Finally the covariance matrix ΣW = [K(si, sj ; θ)]ni,j=1

is

[A(si)K̃(si, sj ; θ)AT (sj)]ni,j=1 = [⊕k
i=1A(si)][⊕m

k=1ρk(si, sj ; θk)]ni,j=1[⊕k
i=1A

T (si)]
(2.7)

where ⊕ is the direct sum operator. This cross covariance is positive definite
because K̃(si, sj ; θ) is a valid cross covariance function.
If A(s) = A, the stationary case, we have

Σw = [In ⊗A][⊕m
k=1ρk(si, sj ; θk)]ni,j=1[In ⊗AT ] (2.8)

The separable case is obtained using a single correlation function for each
component of W̃ (s), that is K̃(si, sj) = ρ(si − sj ; θ)Im. In this case the
covariance matrix for the process w becomes

Σw = R(θ)⊗K(0, θ) (2.9)

where R(θ) = [ρ(si, sj ; θ)]ni,j=1 is the spatial term, while K accounts for the
within site correlation.

An equivalence can be established between the joint and the conditional for-
mulation. For example in a bivariate case v = Aw(s), with A lower triangu-
lar, then v1(s) = a11w1(s), a11 > 0 and v2(s)|v1(s) ∼ N(a21

a11
v1(s), a2

22). Vice-
versa, let v1(s) = σ1w1(s) with σ1 > 0 and w1(s) a mean zero spatial process
with variance 1 and correlation function ρ1, and v2(s) = αv1(s) + σ2w2(s)
with σ2 > 0 and w2(s) a mean zero spatial process with variance 1 and cor-
relation function ρ2. This is equivalent to the joint formulation v = Aw(s)
if a11 = σ1, a21 = ασ1, a22 = σ2. A link between the two methods can be
established for the specification of the priors as well.

21



2.2 Kernel convolution and convolution of covari-
ance

Kernel convolution approach and convolution of covariance functions are
other approaches useful to build multivariate models ([34], [35], [18]). The
former is the multivariate version of the model of section 1.3. Let w(s) a
mean zero variance 1 gaussian process, with correlation function ρ, and let
kh(·), h = 1, . . . ,m, a set of square integrable kernel functions on R2.
Defining

Yh(s) = σh

∫
R2

kh(s− u)x(u)du l = 1, . . . , p (2.10)

for the hth component of Y(s) a valid cross covariance function is obtained
with component

Ch,h′(si, sj) = σhσ
′
h

∫
R2

∫
R2

kh(si − u)kh′(sj − u′)ρ(u− u′)dudu′ (2.11)

that is valid by construction. By transformation of variables we can see how
this covariance depends only on si − sj , that it is a stationary covariance
function. Moreover this covariance is isotropic if ρ is isotropic and the
kernel functions depend only on the absolute value of the difference between
locations.
However considering the discretized version of this model, with p the number
of reference points, we have

Ch,h′(si, sj) = σhσ
′
h

p∑
l=1

p∑
l′=1

kh(si − ul)kh′(sj − ul′)ρ(ul − ul′) (2.12)

that is no longer stationary.
The latter approach is stationary and consists on directly convolving the
covariance function (and not the process). Instead of introducing a set (m)
of kernel functions a set of m covariance functions can be used. In fact
suppose C1, . . . , Cm are real valid covariance functions defined on Rd. It
can be proven that, under weak condition (Ci squared integrable stationary
covariance function), the collection of

Cij(s) =
∫

Rd

Ci(s− u)Cj(u)du i 6= j (2.13)

Cii(s) =
∫

Rd

Ci(s− u)Ci(u)du (2.14)

are valid covariance functions for themmultivariate process, with Cov(Yi(s), Yj(s′)) =
Cij(s− s′). This model is more parsimonious than the coregionalization ap-
proach. An application to daily average of three correlated pollutants with
fully Bayesian estimation can be found in [36].
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2.3 Bivariate modeling of NO − NO2 in the Tus-
cany region

Spatial prediction of pollutant concentrations is central in the most of envi-
ronmental policies. We applied the coregionalization model to the bivariate
spatial modeling of nitrogen oxide and nitrogen dioxide. Environmental Pro-
tection Agency of Tuscany (ARPAT) is interested in this kind of analysis
due to the fact that while Italian law sets limit values on nitrogen dioxide
concentrations, due to its toxicity, authorization procedures are based on
nitrogen oxide emissions.

2.3.1 NO and NO2

Nitrogen dioxide is toxic by inhalation and there is evidence from toxico-
logical studies that long-term exposure to NO2 at high concentrations has
adverse effects. NO2 and other nitrogen oxides are also precursor of ozone
and particulate matter, whose effects on human health are well documented.
Existing Italian law sets limit values for NO2, that is for the annual mean
40 µg/m3 (D.M. 2.04.2002 N.60, 1999/30/CE).
There is a strong relationship between NO and NO2 due to the chemical
mechanism of formation on one side and to the measurement technique on
the other. Major sources of NO in air are combustion emissions, mainly
from vehicles, while ambient air NO2 is in large part derived from the ox-
idation of NO. During daylight NO and NO2 are in equilibrium with the
ratio NO/NO2 determined by the intensity of sunshine (which converts NO2

to NO) and ozone (which reacts with NO to give back NO2) in a complex
photochemical reaction. Moreover this reaction takes some time and air
can travel some distance before secondary pollutants are generated, so the
spatial distribution of the ratio of NO/NO2 is difficult to establish. Thus
correlation between NO and NO2 is not negligible a priori in the modeling
strategy.

The network of air pollution monitoring stations of the Tuscany region (see
Fig. 2.1) measures the concentrations of several pollutants in a set of loca-
tions spread across the region. The most of monitoring stations are located
in the north of the region and near the major cities, mainly for regulatory
reasons. We have annual means of NO and NO2 (µg/m3) in 61 monitoring
sites for the year 2003, 2004 and 2005, collected by ARPAT. Following the
European regulation (2001/752/CE) we have different kind of stations with
respect to the monitored zone and to monitoring type. The total concentra-
tion of NO plus NO2 (NOx) are measured on hourly time step simultaneously
by the chemiluminescence technique. It is worth noting that, not only the
processes of formation, but the measurement errors of NO and NO2 are
correlated as well. In fact first NO is measured, inducing a reaction with
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Figure 2.1: The regional monitoring network of Tuscany.

ozone to form light whose intensity is proportional to the concentration of
the analyte. After that NO2 in the sample is reduced to NO by a converter.
The new NO concentration can again be measured by chemiluminescence:
the difference of the concentrations gives the concentration of NO2.
First we have done an explorative analysis of annual means of NO and NO2

over the 61 stations to understand the structure of the data and to adopt
proper modeling strategies. We considered in the analysis only such moni-
toring stations that have at least 70% of valid data over the year to perform
the analysis. For the data we have, the log scale seems to be more attractive
in term of normality with respect to both the original and square root scale.

The variables station type and location type supplied in the dataset are
used as regression variables. The first variable accounts for different mean
levels of the near source (that is traffic) stations with respect to the back-
ground sites, while the second variable is from administrative classification
and distinguishes rural from urban areas. The traffic and background sta-
tions resulted to be strongly significant in a regression linear model both for
NO and NO2, while the indication for urban characterization seems to be
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weaker in particular for NO2. We then examinate the spatial variation us-
ing an empirical variogram of the residuals of these models. The estimated
values of these empirical variogram will be used as priors for the model we
are going to estimate.

2.3.2 Modeling

We concentrate on a model template suitable to estimate spatial association
and correlation between the two pollutants and to evaluate different hypoth-
esis on the correlation structure. We used the coregionalization approach
(as described in section 2.1) and the general template we refer to is from
[37], making use of the R package spBayes ([38]).
This package allows the Bayesian estimation for a stationary multivariate
gaussian model of coregionalization, with different correlation hypothesis,
both separable and nonseparable.
The model is of the form

Y (s) = XT (s)β +W (s) + ε(s) (2.15)

where X(s) is a mxp matrix of regressors and the vector ε(s) models the
measurement error and it is assumed to be multivariate normal with mxm
covariance matrix Ψ. Considering the collection of sites [s1, . . . , sn], we have
a mnx1 vector distributed as multivariate normal with variance-covariance
matrix ΣW , composed by mxm cross covariance matrix functions of the
locations (si, sj), K(si, sj). The resulting dispersion matrix of Y is ΣW (θ)+
In ⊗ Ψ. A process with diagonal cross covariance function W̃ (s), that is
with an independent spatial process for each response variable, is linearly
transformed by a matrix A, W (s) = A(s)W̃ (s). In the stationary case
A(s) = A.
The Matern family with parameter θ = (φ, ν) is used to control the spatial
association and the smoothness of each spatial process in W̃ .

A Bayesian approach is taken and a Gibbs sampler, with Metropolis-Hastings
step whenever required, is used to get estimates. MCMC model fitting is
performed on the marginalized scale to reduce the number of parameters,
that is after integrating out the W̃ process

Y ∼ MVN(Xβ, (In ⊗A)ΣW̃ (In ⊗A)T + In ⊗Ψ) (2.16)

The model is completed by setting the priors distributions on the collection
of the parameters Θ = (β,A,θ,Ψ).
The posterior distribution of the spatial effect W̃ is then recovered using

p(W̃ |data) ∝
∫
p(W̃ |Θ,data)p(Θ|data)dΘ (2.17)
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Once posterior samples for Θ from p(Θ|data) are drawn by the sampling
algorithm, we can sample from the gaussian distribution p(W̃ |Θ, data) to
obtain posterior samples from p(W̃ |data). The posterior predictive distribu-
tion in a collection of new points s0i, p(W̃ ∗|data) is again obtained through
composition sampling using

p(W̃ |data) ∝
∫
p(W̃ ∗|W̃ ,Θ,data)p(W̃ |Θ,data)p(Θ|data)dΘdW̃ (2.18)

where the first term is again multivariate normal. Predictions on Y can be
done for those locations in which the X matrix of covariates is known sam-
pling from the conditional expectation E(Y ∗|data) = X∗βl + (In ⊗Al)W̃ ∗l,
for l = 1, . . . , L or alternatively by drawing from the marginal distribution

p(Y ∗|data) =
∫
p(Y ∗|Θ,data)p(Θ|data)dΘ (2.19)

where again the first term is multivariate normal (see [38] for details).

To complete the model we have to assign prior distributions on the param-
eters. We choose a flat prior with Gibbs updating for each β parameter.
Since we used an exponential correlation function we have to estimate only
the range parameter for which we assign an informative uniform prior with
support greater than zero and related to the maximum distance of the points
in the domain. For Ψ matrix we choose either an inverse Wishart for the
full matrix, or, in the case with independent non spatial error an inverse
gamma for each of the diagonal elements. The same strategy is used for the
cross covariance matrix K. To define the hyperparameters of the priors we
used the values suggested by the fit of the empirical variograms.

2.3.3 Model selection, results and validation

We use station type and zone type as a regressors for both NO and NO2 in
all the evaluated models. We compare six stationary models with different
complexity, with hypothesis specified as follows.

The first model is the richer one. We assume a full K = AAT matrix that al-
lows to estimate the spatial covariances among the response variables within
a location, a full Ψ measurement error accounting for measurement corre-
lation, and specific spatial decay φ for each response variable. The second
model is the separable version of the first one, setting a common spatial de-
cay for each response variable. The third model is again nonseparable but
with a diagonal K = diag(σ2

i ) matrix, i.e. assumes independently varying
spatial processes. The fourth model is the separable equivalent of the third.
Finally in model 5 and 6 we check the independence of the measurement
error setting Ψ = diag(τ2

i ), both in a separable or nonseparable version.
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2003 parameters DIC03 DIC04 DIC05
M1 φm, A,Ψ -356.27 -368.64 -373.73
M2 φ,A,Ψ -343.19 -391.89 -398.92
M3 φm, σ

2
m,Ψ -354.99 -378 -384.92

M4 φ, σ2
m,Ψ -354.16 -430.35 -415.61

M5 φm, A, τm -350.78 -348.58 -343.01
M6 φ,A, τm -336.18 -344.24 -326.62

Table 2.1: DIC for the six models (calculated on unmarginalized likelihood).
For each model the associated parameters are reported.

Spatial Variance Non-Spatial Variance. Spatial Behavior

M1 not indep. not indep. non separable
M2 not indep. not indep. separable
M3 indep. not indep. non separable
M4 indep. not indep. separable
M5 not indep. indep. non separable
M6 not indep. indep. separable

For each of these models two MCMC chains were run until convergence and
we saved the last 25000 iterations.
For models comparison we used DIC criterion1 ([39]), that has nice prop-
erties for gaussian likelihood. DIC is defined as the sum of a measure of
modeling fit (the deviance, minus twice of the log-likelihood of the model)
and a penalty for model complexity, pD.

DIC = D(Θ) + pD (2.20)
pD = D(Θ)−D(Θ) (2.21)

So the model with lowest DIC score has to be preferred. DIC scores for
different modeling hypothesis are reported in table 2.1.

Following the DIC criterion model 5 and 6, that is ignoring the correlation
related to non spatial term, result to have the lowest fit, and this is reason-
able due to the correlation between the measurement errors of NO and NO2.
Other model assumptions give more similar DIC scores, although for 2004
and 2005 model 4 has the lowest DIC and the lowest number of effective
parameters, followed by model 2 scores. For 2003 model 1 is the best for
DIC and pD criterion, and interpolated spatial effect estimates of this model
are reported in Fig. 2.2.
For validation purposes we used the leave-one-out principle for each station
and evaluated the quantile of the values predicted by the different models.
In terms of numbers of correct interval prediction model 1 and 2 are the

1DIC criterion will be discussed in more detail in section 4.4
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Psi correlation M1 K correlation M1 Psi correlation M4
2003 0,51 (-0,52;0,7) 0,64 (0,05;0,74) 0,73 (0,68;0,76)
2004 0,76 (0,13;0,83) 0,69 (-0,51;0,85) 0,83 (0,82;0,87)
2005 0,78 (-0,36;0,83) 0,57 (-1,47;0,78) 0,82 (0,81;0,84)

Table 2.2: Estimated correlation parameters.
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Figure 2.2: Interpolated surfaces of the recovered spatial effects on measure-
ment sites from Model 1 for 2003 year.

best (correlation into the spatial and non spatial term), while model 4 is
the preferred model in terms of RMSE for 2004 and 2005. The analysis of
correlation estimated by the models supports again the non evidence of cor-
relation in spatial term for 2004 and 2005. Instead for 2003 the correlation
seems to be related to the spatial component (see Table 2.3.3 ). While the
different behavior of 2003 can be explained by the particular meteorological
conditions that we observed in 2003 in Italy and over the entire Europe,
for 2004 and 2005 years correlation between NO and NO2 associated to the
spatial term seems to be not clearly supported by the data. This behavior
can be related to nonstationarity in the spatial process.

The posterior distribution of each parameter of the regressors is consistent
with the expected values from the exploratory analysis.

The modeling framework presented here shows good prediction performances
on average, with the observed high amplitude of confidence interval probably
due to the small number of measurement sites, especially in the south of the
region. The model has also the ability of capturing the correlation structure
between the two pollutants, either in the spatial and measurement error
term, resulting in an overall good fitting and prediction ability.
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Figure 2.3: Interpolated surfaces of the recovered spatial effects, M4-2005.
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Chapter 3

Spatiotemporal modeling

Air pollution data, like many other environmental data, have spatial and
temporal nature. While the dispersion mechanism of a pollutant is deter-
ministic in principle, in practice we rarely know all we need in order to
make predictions and also in the case of ideal conditions a lot of simplified
assumptions have to be done to solve the governing equations. Moreover un-
certainty in measuring and manipulating the data and errors due to discrete
sampling of a continuous system have to be considered. For spatiotemporal
statistical models to be able to account for this uncertainty, the challenge
is to capture variability in space and time and the interaction of the two,
often arising from complicated dynamical physical processes.
Formally a spatiotemporal process could be viewed as a spatial process in
the three dimensional space, but the different nature of time with respect
to the spatial component makes this approach incorrect.
As in the spatial case both the joint and the conditional approach can be
used: the two approaches will be described in the following.

3.1 Joint formulation

Consider the spatiotemporal observations Y (s, t) defined on s ∈ D at time
t. The basic model can be formulated as

Y (s, t) = µ(s, t) + w(s, t) + ε(s, t) (3.1)

where µ(s, t) denotes the mean structure, ε represents the residual and
w(s, t) is a zero mean spatiotemporal process. The mean term can be ex-
pressed as µ(s, t) = x(s, t)Tβ(s, t), where β can be spatially, temporally or
both varying.
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The spatiotemporal component can be simplified in an additive form com-
posed by a pure spatial effect and a pure temporal term, that can be modeled
with a valid covariance function in two and one dimension if the time is con-
tinuous, or with an autoregressive form if the time is discrete. Independent
time series at each location or a collection of independent (in time) spatial
processes are other two possible approaches. All of this methods avoid in-
teraction between space and time, and are unsatisfactory in many practical
cases.
If time is considered as continuous (that is t ∈ R+), as in the spatial case,
assuming a gaussian process what is needed is a valid correlation function
Cov(Y (s, t), Y (s′, t′)), that is for any set of locations and any set of points
in time the covariance matrix of the associated random variable has to be
positive definite. Notion of stationarity (and isotropy) is the same as in
the spatial case and implies Cov(Y (s, t), Y (s′, t′)) = c(s − s′, t − t′). In
a similar way, a continuous both space time stationary spatiotemporal co-
variance function, can be written in terms of the spectral density g of the
spatiotemporal process. In fact following Bochner’s theorem a continuous
and symmetric function C on RdxR is a covariance function if and only if it
can be written as

C(h, u) =
∫ ∫

expi(h′ω+uτ) dF (ω, τ) (3.2)

where F is a finite nonnegative symmetric measure on RdxR. The class
of stationary space time covariance functions on RdxR is identical to the
class of Fourier transforms of finite nonnegative and symmetric measures on
this domain. If C is integrable, we can write the covariance in terms of the
spectral density g(ω, τ)

C(h, u) =
∫ ∫

expih′ω+iuτ g(ω, τ)dωdτ (3.3)

where h = s− s′ and u = t− t′, with

g(ω, τ) = (2π)−d−1

∫ ∫
exp−ih′ω C(h;u)dhdu (3.4)

= (2π)−1

∫
exp−iuτ h(ω;u)du (3.5)

where

h(ω, u) = (2π)−d

∫
exp−ih′ω C(h, u)dh =

∫
expiuτ g(ω, τ)dτ (3.6)

A separable form, as in the multivariate case, takes the form

Cov(Y (s, t), Y (s′, t′)) = Cs(s, s′)CT (t, t′) (3.7)
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where the covariance is splitted into a (valid) spatial two-dimensional co-
variance function multiplied for a (valid) time one-dimensional covariance
function. This structure is valid and assures many computational advan-
tages.
In fact if we have a collection of n locations and T time points, the covariance
matrix of the nT vector (Y (s1, t1), . . . , Y (sn, t1), . . . , Y (s1, tT ), . . . , Y (sn, tT ))
can be expressed as the kronecker product of a TxT temporal covariance ma-
trix times a nxn spatial covariance matrix, and thus the calculation of the
inverse is greatly simplified.
The spectral representation in this case can be written as Eqn. 3.3-3.6 with

h(ω, u) = h1(u)h2(ω) (3.8)

with functions h1 and h2 such that g is a spectral density, that is h1(ω, .) is
a continuous autocorrelation function for each ω ∈ Rd, and h2(ω) > 0 and∫
h2(ω)dω <∞.

A test of separability based on this spectral representation has been pro-
posed by Fuentes [40].
It is not always the case this separation between space and time behavior is
correct and as demonstrated in [41] nonseparability is often a consequence
of the governing physical laws. A notion related to separability is full sym-
metry, that is

cov(Y (s1, t1), Y (s2, t2)) = cov(Y (s1, t2), Y (s2, t1)) (3.9)

for all (s1, t1) and (s2, t2) ∈ RdxR. However, in transport processes, whether
subject to air or water flows, a lack of full symmetry is usually observed.
Separability is a special case of full symmetry.

Nonseparable spatiotemporal covariance functions have been studied as well.
In literature a method based on spectral representations is proposed by
Cressie and Huang ([42]). Considering the spectral density as in Eqn. 3.3-
3.6, thus

g(ω, τ) = (2π)−1

∫
exp−iuτ h(ω, u)du (3.10)

h(ω, u) =
∫

expiuτ g(ω, τ)dτ (3.11)

Specifying appropriate models for h(ω, u) yields to a class of valid nonsepa-
rable models. Let

h(ω, u) = h1(ω, u)h2(u) (3.12)

where as above h1(ω, ·) is a continuous autocorrelation function for each
ω ∈ Rd, and h2(ω) > 0 and

∫
h2(ω)dω <∞. It can be proven that a Fourier
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inversion of the spectral density built as above gives a valid continuous
spatiotemporal stationary covariance function

C(h, u) =
∫

expih′ω ρ(ω;u)k(ω)dω (3.13)

This method requires that the Fourier inversion for the covariance function
can be obtained in a closed form, that is not often the case.
Gneiting ([43]) overcomes this limitation through a covariance function de-
fined as:

C(h, k) =
σ2

φ(|u|2)d/2
ψ

(
‖ h ‖2

φ(|u|2)

)
(3.14)

where ψ(t),t ≥ 0 is a completely monotone function and φ(t), t ≥ 0 is a
positive function with a completely monotone derivative, h ∈ Rd represents
the spatial vector and u ∈ R is a time component. Different specifications
of the functions ψ and φ yield different valid covariance functions. This
covariance function is fully symmetric.
Stein ([44]) pointed out a lack of differentiability in most of space time
nonseparable covariance functions, that is models that away from the origin
are not smoother than they are at the origin have a kind of discontinuity
along certain axes that it is preferable to avoid.
Thus the author introduced a class of spectral densities, corresponding to
the nonseparable covariance function

g(ω, τ) ∝ [c1(α2
1 + ||ω||2)α1 + c2(α2 + τ2)α2 ]−τ (3.15)

for c1 and c2 positive, α2
1+α

2
2 > 0, α1 and α2 positive integers and d1/(α1ν)+

d2/(α2ν) < 2. A particular case of this covariance is that of Jones and Zhang
([45]) (d1=2, α2 = ν = d2 = 1). The covariance functions associated with
this class cannot again be expressed explicitly, and fast Fourier transform
can be used to obtain a numerical computation.
Another spectral density is proposed in [46],

g(ω, τ) = γ(α2β2 + β2|ω|2 + α2τ2 + ε|ω|2τ2)−ν (3.16)

where γ, α, β are positive, ν ≥ (d + 1)/2 and ε ∈ [0, 1]; α−1 and β−1 are
respectively the spatial and temporal range, explaining the rate of decay
of spatial/temporal correlation; ν is the parameter governing the smooth-
ness of the process while ε governs the interaction between the spatial and
temporal component, with ε = 1 for the separable case. But it is again
necessary to carry out a Fourier transformation, although if ε ∈ (0, 1) a one
dimensional transformation is enough.

Stationary space time covariance functions that are not fully symmetric can
be constructed using a Lagrangian reference frame starting from a stationary
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covariance spatial function Cs as

C(h, u) = E(Cs(h− V u)) (h, u) ∈ RdxR (3.17)

where V is the random velocity for the entire field and the expectation is
taken with respect to V . This velocity can be updated dynamically lead-
ing to a nonstationary covariance structure (see [47]). This kind of covari-
ance function can be also constructed on the basis of diffusion equations
or stochastical partial differential equations as first argued by Heine ([2]).
Examples are in [45], [44], [41]. Finally a powerful way to achieve nonsepa-
rability is by blurring, or IDE models, as discussed later (section 3.5.1).

3.2 Hierarchical formulation

Hierarchical spatiotemporal models represent a powerful tool for modeling
spatiotemporal variability. A very general framework has been proposed
in [48]. The three stages presented in section 1.2.1, corresponding to data,
process and parameters are valid in this context as well, although a richer
five stage structure is proposed for spatiotemporal models.
Let Z(s, t) be the observations at location s and time t, where (s, t) ∈ M, M
being a grid or a lattice and Y (s, t) the value of the process of interest. At
a first stage a measurement equation is specified, defining the conditional
distribution of Y given Z. Typically Z are assumed independent given Y ,
with a pure gaussian measurement error, but it is possible in this stage
to account for misalignments between Z and Y or spatial and temporal
averaging.
The second stage models the process Y conditional on three other processes,
accounting for site specific mean, large scale temporal variations, and a short
time dynamical process, that is

Y (s, t) = µ(s; θµ,t) + γ(t; θγ,s) + α(s, t; θα,s,t) + ε(s, t) (3.18)

where µ(s; θµ,t) is a spatial trend surface with parameters that could be time
varying, γ(t; θγ,s) is a temporal mean with parameters that could be space
varying. The key spatiotemporal process is represented by α, accounting for
nonseparable space time interactions often with dynamical behavior. This
is a general framework and the terms needed for a specific application can
be a subset of those above and a prior knowledge of the structure of the
problem is needed for identifiability reasons. The role of the third stage in
fact is that of building the structure of those single terms, while the two last
stages are dedicated to the specification of the priors and hyperpriors.
The dynamic term α plays a crucial role and will be described in more details
in the next sections.

35



3.3 Dynamic spatiotemporal models

In a dynamical process the current value of a variable depends on the values
assumed at previous times. Physical processes often show this behavior and
many spatiotemporal models are able to include a dynamical term. In the
following we refer to discrete time processes.
Dynamical evolution is often included in a state space representation, with
the dynamics modeled at a latent stage. A basic setting is to use two equa-
tions: the first one is a measurement equation that links the observations
with the latent process, while the second one, the transition equation governs
the dynamical evolution. A general dynamic space time statistical model
can be written as in the following.
First consider the data model for the observations Z(s, t):

Z(·, t) = fd[Y (·, t); θd(t)] (3.19)

where fd is a stochastic functional that depends on the true process Y (·, t)
and the parameters θd(t). The process model is:

Y (·, t) = fp[Y (·, t− 1), . . . , Y (·, 1); θp(t)] (3.20)

where fp is a stochastic functional of past values of the true process and
of the parameters θp(t). This equation describes the space-time dynamics
of the process. This general framework makes no distributional or linearity
assumption.
A first order dependency, that is a Markovian assumption, is often sufficient
to describe the evolution of the process, and linearity and gaussian assump-
tions complete the hypothesis.
With a pure temporal process we can write

Z(t) = FtY (t) + εt, εt ∼ N(0, σε
t) (3.21)

Y (t) = HtY (t− 1) + ηt, ηt ∼ N(0,Ση
t ) (3.22)

where Z(t) is an mx1 vector of observables and Y (t) is a px1 state vector,
Ft and Gt are mxp and pxp system matrices, often assumed to be known
(Ft is a sort of design matrix). The resulting covariance structure can
be computed explicitly Cov(θt, θt−1) = HtV ar(θt−1) and Cov(Yt, Yt−1) =
FtHtV ar(θt−1)F T

t . Given the parameters, the unobserved state process can
be estimated with a Kalman filter or smoother. Different approaches to
extend this framework at the spatiotemporal context has been proposed in
literature, and we review some of these approaches in the following sections.

3.3.1 Space time Kalman filter

The so called space time Kalman filter was developed throughout the 90s
by several authors. Considering the vector of Z at the m spatial locations
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results in a multivariate model like the one in previous section, that could
be very high dimensional.
Mardia ([49]) first suggested the idea of a reduced dimension space time
Kalman filter, with the state process expressed in some set of basis func-
tion, that had been applied by the same author as kriged Kalman filter. This
framework allows for a spatially nonstationary and spatiotemporal nonsep-
arable structure.
Wikle and Cressie ([50], [51]) developed the space time Kalman filter propos-
ing the following model

z(s, t) = y(s, t) + ε(s, t) (3.23)
y(s, t) = µ(s, t) + ν(s, t) (3.24)

µ(s, t) =
∫
ωs(u)µ(u, t− 1)du+ η(s, t) (3.25)

where ε is a white noise representing measurement errors, ν represents a
spatial structure independent in time (this component has been assumed
equal to zero in kriged Kalman filter, resulting in an over-smoothing of the
process) and η is gaussian temporally white but spatially colored.
Assume that µ can be decomposed as

µ(s, t) =
K∑

j=1

aj(t)φj(s) (3.26)

where φj are deterministic basis functions (complete and orthonormal) and
aj(t) are zero mean time series. We can expand the weight functions

ωs(u) =
∞∑
l=1

bl(s)φl(u) (3.27)

Truncating the infinite series above and using the orthonormality of the
basis functions we can write

φ(s)′a(t) = b(s)′a(t− 1) + η(s, t) (3.28)

where φ(s) = [φ1(s), . . . , φK(s)], a(t) = [a1(t), . . . , aK(t)] and b(s) = [b1(s),
. . . , bK(s)] For the locations (s1, . . . , sn) we have:

z(s, t) = y(s, t) + ε(s, t) (3.29)

y(s, t) =
K∑

j=1

aj(t)φj(s) + ν(s, t) (3.30)

a(t) = Ha(t− 1) + Jη(t) (3.31)

where η(t) = [η(s1, t), . . . , η(sn, t)]′, H = JB,J = (Φ′Φ)−1Φ′ with Φ =
[φ(s1), . . . , φ(sn)]′ and B = [b(s1), . . . ,b(sn)]′. A physical dynamics can be
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introduced in this setting by using the structure of matrices H and J .
The optimal predictor under squared error loss for the value in a new point
Y (s0, t0) is the mean of the posterior distribution E[Y (s0, t0)|Z, θ]. Un-
der gaussian assumptions this expectation is linear in the data and can be
obtained through recursive equation of Kalman filter and smoother. Esti-
mation can be made in a fully Bayesian setting or with an empirical Bayes
approach, that is by using an estimate of θ. This estimate can be obtained
using the EM algorithm (with restrictions on the parameter matrices, [52]).

3.3.2 Modeling spatiotemporal processes by means of space
time dynamic coefficients

When the dynamic behavior is transferred on the coefficients of the mean
part we have another class of dynamical spatial models.
This kind of models are used for example in [53], where a spatial process is
expressed as a locally weighted mixture of linear regressions, and a random
walk evolution is assumed for each coefficient of the regressions. Another
example is in [54], modeling the spatiotemporal variability of the ozone in
Mexico city. In this model random walk dynamics is assumed for the coef-
ficients of sinusoidal components and of the coupled spatiotemporal process
of temperature. A spatial correlation is superimposed both on the residual
part of the process and on the coefficients of the sinusoidal component.

Gelfand et al. ([55]) developed a general framework for univariate and mul-
tivariate data, allowing general mean structures and also non stationary
association structures, by adopting a spatiotemporally varying form of the
coefficients and coregionalization.
The data are viewed as arising from a time series of a spatial process, the
space is viewed as continuous but time is taken to be discrete. The response,
Y (s, t) is modeled through a measurement equation, while the transition
equation involves the regression parameters of the covariates x(s, t). The
slope vector is decomposed into a purely temporal component βt and a spa-
tiotemporal component β(s, t). The univariate case is given by:
Measurement equation:

Y (s, t) = µ(s, t) + ε(s, t); ε ∼ N(0, σ2
ε ) (3.32)

µ(s, t) = xT (s, t)β̃(s, t) (3.33)
β̃(s, t) = βt + β(s, t) (3.34)

Transition equation:

βt = βt−1 + ηt, ηt ∼ Np(0,Ση) (3.35)
β(s, t) = β(s, t− 1) + w(s, t) (3.36)
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where w(s, t) = Av(s, t), A is pxpmatrix and v(s, t) = (v1(s, t), . . . , vp(s, t))T

with vl(s, t) serially independent replications of a gaussian process with unit
variance and correlation function ρ(·, φl) (if φl = φ the model is separa-
ble). The inference is taken in a Bayesian hierarchical framework, that is
completed by prior specifications.

3.4 Process convolution in the spatiotemporal con-
text

Process convolution can be used to build spatiotemporal models. If time is
continuous this can be done easily by convolving a three dimensional white
noise process ([56]). Otherwise a more flexible structure is introduced by
convolving dynamic processes. This approach is used in [57], [18] and [14].
The key is to convolve dependent (in time) processes. Generally we can
write

Y (s, t) =
n∑

i=0

k(s− ui)xui(t) (3.37)

xui(t) = f(xu1(t− 1), . . . , xum(t− 1), β) + νui(t) (3.38)

where f(·;β) is a parametric function of the values of the latent processes.
Sansò et al. [14], explores different model specifications of spatiotemporal
processes, combining process convolution and autoregressive processes. One
can either consider a time series evolving in space, letting

y(s, t) =
∫

R
k(u− t; Φ)x(u, s)du (3.39)

where x(·, ·) is a gaussian spatial process, or, to be more physically based,
consider a spatial field evolving in time, that is

y(t, s) =
∫

R2

k(v − s; θ)x(t, v)dv ∀t ∈ T (3.40)

where x(·, ·) in this case is a time series process. The spectral density of y
in this case is

gy(s, t) = |H(ω)|2gx(τ, ω) (3.41)

H(ω) =
∫

R
exp−iω′s k(s)ds (3.42)

where gx is the spectral density of x. This model is similar to that introduced
in [58] by setting

gx(τ, ω) = (2π)−1

∫
h1(ω, u)du (3.43)

h2(ω) = |H(ω)|2 (3.44)
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This framework can include both separable and nonseparable structures.
Discretization yields

Yt = Kxt t = 1, . . . , T (3.45)

Assuming x autoregressive with correlation ρ(t− t′, θρ) the covariance of the
process is:

kijkij′ρ(t− t′, θρ), (3.46)

that is a separable correlation function. If the kernels are time varying we
then have a nonstationary and nonseparable structure.
The complete model structure includes also dynamic coefficients (see section
3.3.2), and takes K lower triangular

Zt = F ′tβt +Ktxt (3.47)
βt = Gβt−1 + ηt ηt ∼ N(0,Ση) (3.48)

xt =
p∑

i=1

φixt−1 + εt εt ∼ N(0, σ2In) (3.49)

where Ft is the matrix of covariates, and the latent process x is AR(p).

A bivariate case is considered in [18] to model PM2.5 and PM10 concentra-
tions, through the specification of two independent latent processes. Spatial
anisotropy is introduced by allowing the kernel covariance of the processes
to depend on wind direction and speed. The model is of the form(

y2.5
t

y10
t

)
=
(
µ2.5

t

µ10
t

)
=

(
Kfine2.5

t 0
Kfine10

t Kcoarse10
t

)(
xfine

t

xcoarse
t

)
+ εt (3.50)

(
xfine

t

xcoarse
t

)
=
(

xfine
t−1

xcoarse
t−1

)
+ νt (3.51)

where y2.5
t and y10

t are the measured concentrations of the two kind of par-
ticulate matter and the underlying processes xfine

t and xcoarse
t are defined

over two different lattices.

3.5 Physical modeling

In all dynamical models a central issue is represented by the structure of
the transition equation. Here we focus on this problem by considering first
order spatiotemporal dynamic models.
Let Yt be a vector of length n of the variables at the n spatial locations at
time t, we have

Yt = HYt−1 + ηt (3.52)
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where H is a nxn transition matrix and η is assumed to be a spatially colored
noise process with variance Ση. The matrix H describes how the process
at t− 1 affects the process at next time (in particular the i−th row of this
matrix links the i−th location at time t with every points at time t − 1),
that is

Y (si, t) =
n∑

k=1

h(i, k)Y (sk; t− 1) + η(si, t) (3.53)

Typically this matrix can be parameterized in many ways.
The simplest one is a random walk behavior, that is, H = I ([53], [54]), but
such assumption is not often realistic. A diagonal matrix allows nonsepa-
rability if the diagonal terms are assumed different in space, but it is not
able to describe propagating phenomena. A tridiagonal matrix represents
a nearest neighbor structure when the value of the variable in the nearest
neighbor at previous time affects the value at location s.
For physical and biological processes it is often the case that the underlying
partial differential equations drive the process. It is possible to use this in-
formation to develop a coherent prior on H and Ση. Examples are in [59],
[60], [61] [62] and [63].
Wikle ([62]) used a diffusion PDE to motivate the spread of an ecological
process. Let α be a spatiotemporal process on a grid driven by a diffusion
partial differential equation with linear (Malthusian) growth, that is

∂α

∂t
=

∂

∂x

(
δ(x, y)

∂α

∂x

)
+
(
δ(x, y)

∂α

∂y

)
+ βα (3.54)

where δ(x, y) are spatially varying diffusion coefficients and β the growth
coefficient, which distribution would be specified at the next level of the
hierarchy. Discretizing this equation (with forward difference in time and
centered in space) and rearranging the terms we have

αt = H(δ,∆t,∆x,∆y)αt−∆t + HB(δ,∆t,∆x,∆y)αB
t−∆t

+ ηt (3.55)

where α is a vectorization of the gridded process and δ is the corresponding
vector of diffusion coefficients. The spatially correlated η error accounts for
uncertainties due to the discretization and other modeling errors. The tran-
sition matrix H is tridiagonal in this case with parameters depending on
diffusion coefficients and the discretization interval in time and space. The
notation above outlined the need of accounting for boundary conditions with
a different sparse transition matrix HB representing the transition matrix
for the boundary elements of the process, that could be again modeled as
a random process at a different stage ([64]). Allowing the diffusion coeffi-
cients to vary in space nonstationarity is introduced in a sensible way. Then
a spatial random field can be used to model the diffusion parameters, other
than the covariates that affect the rate of the diffusion mechanism.
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3.5.1 Integrodifferential models

Integro differential equations offer another dynamical mechanism that could
be more realistic in some applications and that can be also included in
hierarchical Bayesian modeling. A general integrodifferential equation for a
discrete time and space continuous process y is given by

yt+1(s) =
∫ ∞

−∞
ks(r)g(yt(r))dr (3.56)

where yt(s) is a spatiotemporal process at spatial location s and time t, g(·) is
a function of the y-process (the growth at r between t and t+1), and ks(r) is
the redistribution kernel, that links the process at previous time at location
r with the process at location s at the next time. This framework allows
modeling complicated dynamical processes, including long range dependence
and wave fronts with shape and speed depending on the kernel behavior.
Wikle ([65], [66]) demonstrated that it can be used to model extra diffusive
propagation using a translation of the kernel, and has been used in order to
model the complicated dynamical behavior of a precipitation front.
Considering a one dimensional gaussian kernel, we have

ks(r, θ1, θ2) =
1

θ2
√

2π
exp (−0.5(r − θ1 − s)2/θ2) (3.57)

where θ1 is a translation parameter (the kernel is centered at θ1 − s), and
θ2 is a dilation parameter. Allowing these parameters to vary in space, a
complicated dynamics can be modeled. Assuming g = γyt(r) we have

yt+1(s) = γ

∫
ks(r; θs)yt(r)dr + η̃t+1(s) (3.58)

where η is a spatially colored noise process and γ is a parameter that controls
explosive growth. This model is nonseparable and, by using spatially varying
kernel is also nonstationary.
A stationary version of this model has been previously developed in [67], [68].
The authors explicitated the covariance of the model and analitycally solved
the one dimensional case. Moreover the authors showed the time continuous
equivalent of their model in terms of stochastic differential equations, and
interpreted the parameters of the model in terms of physical variables in a
diffusion process. The model is of the same type as above, with

Y (s, t) = θ∆h∆ ? Y (s, t−∆) + Z∆(s, t) (3.59)

where

h∆ ? Y (s, t−∆) =
∫

Rd

h∆(u)Y (s− u, t−∆)du+ Z∆(s, t) (3.60)
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where h∆ is the kernel, while θ is a scaling constant, which, to be indepen-
dent from the choice of ∆, takes the form θδ = exp(−λ∆). Z is a noise
term, spatially colored but white in time.
The blurring function h must be non negative and integrate to 1: the sim-
plest choice is a gaussian kernel g(µ,Σ). Brown et al. demonstrates that
for a gaussian kernel function and a small time step δ the model can be
rewritten as a stochastic differential equation

dY (s, t) = −0.5(AY (·, t))(s)dt+ dB(s, t) (3.61)

where the function A

(AX(·))(s) = 2
∂

∂sT
X(s)µ− tr(

∂2

∂s∂sT
X(s))Σ + 2λX(s) (3.62)

is of Ornstein Uhlenbeck form, with the noise term dB(s, t) being a spatially
correlated Brownian motion with covariance cB(.)dt. If cB(h) = g(h; 0,Φ)
with g the gaussian density, the covariance of Y is

cY (h, k) =
∫ ∞

−∞
exp{−λ(2v + |k|)}g(h, kµ, (2v + |k|)Σ + Φ)dv (3.63)

This equation is analytically solved when d = 1, resulting in

cY (h, k) =
1

2γσ
exp(

γ2φ2

2σ2
)exp(a)G(

σµk − γb2 − σh

σb
) + exp(−a)G(

σh− γb2 − σµk

σb
)

(3.64)
where G denotes the standard gaussian cumulative probability.

Finally we may notice that this model, in the simplified case with µ = 0 and
Σ = I, is related to the framework of Whittle ([69]).

We can derive an equivalence between this equation and the deterministic
advection diffusion equation governing the transport and spread of a pollu-
tant:

∂c

∂t
+u

∂c

∂x
+v

∂c

∂y
+w

∂c

∂z
=

∂

∂x

(
Kxx

∂c

∂x

)
+
∂

∂y

(
Kyy

∂c

∂y

)
+
∂

∂z

(
Kzz

∂c

∂z

)
+E

(3.65)

where c is the concentration of a pollutant, (u, v, w) are respectively the
(x, y, z) wind components and the Ks are the diffusion coefficients in three
dimensions. Equations 3.61-3.62 are equivalent to equation 3.65, if µ is
formed by wind components (u, v, w) and Σ is a diagonal matrix with
(Kxx,Kyy) as diagonal terms, that is the diffusivity coefficients. The term
with λ could be the rate of decay (or production) of the pollutant.
It is possible to deal with this model in a reduced dimension form, recog-
nizing the similarity between the IDE model and the reduced Kalman filter
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([50]).
Considering the spectral expansion of the kernel and of the process we obtain

ks(r; θs) =
∑

i

bi(s, θs)φi(r) (3.66)

yt(s) =
∑

j

αj(t)φj(s) (3.67)

where the basis functions φ are complete and orthonormal and bi(s, θs) and
αj(t) are the random spectral coefficients for the kernel and the process.
Truncating the sum at I we have

yt+1(s) = γb′(s, θs)α
(1)
t + η̃t+1(s) (3.68)

where b(s; θs) = [b1(s; θs), ..., bI(s; θs)]′ and α
(1)
t = [α1(t), ..., αI(t)]′. For

locations (s1, . . . , sn) we then have:

yt+1(s) = γB′
θα

(1)
t + η̃t+1(s) (3.69)

where yt+1 = [yt+1(s1), . . . , yt+1(sn)], and Bθ = [b(s1; θs1), . . . ,b(sn; θsn)].
Thus:

α
(1)
t+1 = Φ′

(1)B
′
θα

(1)
t + η

(1)
t+1 (3.70)

α
(2)
t+1 = Φ′

(2)B
′
θα

(1)
t + η

(2)
t+1 (3.71)

where α(2)
t = [αI+1(t), . . . , αn(t)], Φ(1) = [φ1, . . . , φI ], Φ(1) = [φI+1, . . . , φn].

η is normally distributed with covariance function C(j)
η = Φ′

(j)Cη̃Φ.
Assuming a gaussian kernel with parameters θ1(s) and θ2(s) and Fourier
basis functions, then the Fourier transform of the gaussian kernel is its char-
acteristic function:

bj(s; θ1(s), θ2(s)) = exp[iωj(θ1(s) + s)− 0.5ω2
j θ2(s)] (3.72)

where ωj is the spatial frequency. In [70] the kernel parameters are modeled
as a stationary spatial field.

3.6 Reduced dimension spatiotemporal processes

As we saw above the dimensionality of many spatiotemporal problems is
often problematic or prohibitive. The spectral representation can be useful
to address this problem by using fast computation algorithms or to produce
a simpler structure in the dynamical evolution. In fact let Yt = Kαt, where
Y is a vectorization of the process at n spatial locations on a regular lattice,
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K is a nxnmatrix of spectral basis functions (Fourier, wavelet, empirical). It
is often the case that the transformed spectral process evolves dynamically,
i.e. αt = H̃αt−1 + η̃, with a simpler structure in the transition matrix H̃ or
in the error term η̃. For example for Fourier basis functions when weakly
stationarity is assumed, the α terms are nearly uncorrelated, resulting in a
diagonal covariance matrix. Moreover the transformation allows dimension
reduction, due to the fact that often only a few coefficients could describe
adequately the dynamics of the process.
The low rank general representation (see section 1.6) can be introduced also
in the context of dynamical models, for example the reduced Kalman filter
falls into this general framework.
Consider the decomposition Yt = Kαt + γt, where γt could be a spatially
correlated noise, and αt a p reduced dimension latent process. The state
space representation becomes,

Zt = Kαt + γt + εt (3.73)
αt = H̃αt−1 + η̃t (3.74)

where ε is a pure gaussian noise, γt ∼ N(0,Σγ) accounts for spatial depen-
dence, and the η̃t ∼ N(0,Ση). As in spatial modeling many basis functions
can be chosen to form the K matrix. Examples in literature are [18], [49],
[53], [50], [61], [59], [52].

Empirical orthogonal functions (EOF) and kernel basis functions are two
important classes of basis functions, one orthogonal and the other not, that
we will use in the application in Chapter 4.
In the following we describe in detail empirical orthogonal basis functions
that will be used in the model introduced in section 4.6. For what concerns
kernel basis functions, see section 1.3.1.

3.6.1 Empirical orthogonal functions

As we saw in section 1.6 empirical orthogonal functions derive from a dis-
cretization of the KL expansion. This technique, popular in meteorological
applications since its introduction by Lorenz in the 50s, is designed to find
orthogonal basis function driven by the data. This is the analogous of PCA
analysis but in the context of spatiotemporal data, working with time series
and spatial patterns. Let Y be a spatiotemporal process observed at loca-
tions (s1, . . . , sn) for T time steps. Arranging the values of that process in a
Txn matrix, say F, with the i-th row corresponding to a map of the process
at time i and the jth column corresponding to a time serie at location j.
The rationale is to find an orthonormal basis Ψ such that the variance of the
transformation FΨ is maximized, that is ψk = (ψk(s1), . . . , ψk(sn))′ is such
that var(ak(t)) = var(ψ′kft), where ft is the row t of F , is maximized with
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ψk orthonormal. This can be viewed as an eigenvalue problem. After remov-
ing the mean from each time series (that is, columns) consider the covariance
matrix C = F TF/(T − 1). Solving the eigenvalue problem CΨ = ΨΛ, we
find the eigenvalues λi of the covariance matrix (on the diagonal of the di-
agonal matrix Λ) and the corresponding (orthonormal) eigenvectors on the
respective column of the matrix Ψ. These eigenvectors are the basis we
are looking for, and called in this context empirical orthogonal functions.
Normally the eigenvectors are ordered according to the magnitude of the
corresponding eigenvalue, so the first EOF corresponds to the biggest eigen-
value. Each eigenvector can be viewed as a map, and time evolution of each
eigenvector can be obtained as

ai = Fψi (3.75)

where ψi is the ith EOF and ai the corresponding time series, called expan-
sion coefficients.
The original data is obtained as F =

∑n
i=1 aiψi. Typically EOF are used

to reduce dimension by truncating the reconstruction of the original data
at some j << n, assuming that the first j eigenvectors are able to capture
the most relevant features of the system. The symmetric matrix C can be
written in terms of EOFs as

C = λ1ψ1ψ
T
1 + . . .+ λnψnψ

T
n (3.76)

with the jth eigenvalue explaining λj/
∑

i λi percent of the total variance.
This decomposition corresponds to a KL discretization if equal areas of
influence are assumed for each observation.
The EOFs technique can be viewed as a particular case of Singular Value
Decomposition (SVD), that is a general decomposition of the Txn matrix
F in the product of two orthonormal matrices and one diagonal

F = UΓV t (3.77)

where U is a TxT orthonormal matrix, V is a nxn orthonormal matrix and
Γ a diagonal Txn diagonal matrix with r = rank(F ) ≤ min(T, n) diagonal
elements, called singular values of the matrix, while the column vectors of
U and V are called singular vectors. By using this decomposition we can
view the spatiotemporal process as the product of a spatial and a temporal
process, by thinking ul = (ul(s1), . . . , ut(sn))′ and vl = (vl(1), . . . , vl(T ))′,
F =

∑T
l=1 γlulv′l.

When the number of singular values is less than T and n, some of the
singular vectors are redundant and one can write F with a reduced matrix
F = UrΓrV

t
r . It can be proven the equivalence with EOFs method, that is

C = ΨΛΨ′ = V Γ′ΓV ′, so Ψ = V and the eigenvalues are equal to the square
of the corresponding diagonal term of Γ.
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3.7 Spatiotemporal models for atmospheric pollu-
tion

There is an extensive literature on the application of the statistical methods
we outlined so far to the analysis and prediction of atmospheric pollution.
We have already described some of these models in the previous sections.
Here we review a partial selection of other examples of applications to the
problem of atmospheric pollution.

A relative simple, non dynamical model but with a nonseparable structure is
introduced in [71], modeling PM2.5 daily concentrations over 124 irregularly
spaced monitoring stations in US Midwest, where two separate spatiotem-
poral processes are introduced for urban and rural area. Let Z(si, t) be
the square root of PM concentrations, the authors defined this hierarchical
structure

Z(si, t) = Y (si, t) + ε(si, t) i = 1, . . . , n, t = 1, . . . , T (3.78)
Y (si, t) = µ(si, t) + w(si, t) + p(si)v(si, t) (3.79)

(3.80)

where the mean µ is modeled in terms of population density of an urbanity
indicator and of a seasonality indicator. w(si, t) and v(si, t) are independent
zero mean spatiotemporal processes: weighting v(si, t) by population density
a urban spatiotemporal behavior is added to a background spatiotemporal
process. While a separable structure is used for both the processes, the com-
bination of the two yields a nonseparable structure. A Bayesian approach
is adopted for inference.
Shaddick and Wakefield ([72]) modeled a multivariate series of four pollu-
tants on eight monitoring stations for a 4 year period using a hierarchical
Bayesian dynamic linear model. The residual spatiotemporal behavior of
this multivariate process is splitted into a pure stationary spatial process
and a multivariate autoregressive temporal process.
A hierarchical space time modeling for PM10 pollution has been developed
in [73], using site specific and meteorological variables from a meteorological
model with an additive form for the spatial and temporal residual terms.
Isotropic stationary covariance for the spatial effect and a random walk dy-
namics for the temporal term has been used in this case: identification of
the sources of variability demonstrated that the latter is the most relevant
process. Sahu et al. ([74]) explained space time behavior of ozone in Ohio
using increments in meteorological variables. They account for spatial vari-
ability using a stationary exponential family and a autoregressive term for
the residual temporal dynamics.
A model with dynamic coefficients is used also in [54] to model the ozone
levels in Mexico city with a coupled spatiotemporal process of temperature.
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Let Yit be the square root of ozone measures on the ith station at time t,
the model is of the type

Yit = βy
t + S′t(a)αit + Zitγit + εyit (3.81)

where βy
t is a spatial trend, S is a vector representing two periodical com-

ponents corresponding to 12 and 24 hours period and Z is the temperature
which is modeled at the next step of the hierarchy. Both the βs and γs
coefficients are modeled as a random walk; an autoregressive dynamics with
unit coefficient is used also for the αs but a stationary spatially correlated
error term is added. The use of conditional distribution of the ozone given
the temperature is analogous to that developed in [28], where only a pure
spatial context is considered.
Space time dynamic coefficients are used in [75] to model ozone dynamics,
using a nonstationary and nonseparable covariance function developed by
Fuentes ([46]). Nonstationarity is achieved by using a spectral representa-
tion, yielding a weighted sum of locally stationary (but eventually nonsep-
arable) gaussian processes, with a fixed kernel used as weighting function.
Space time dynamics coefficients are used also in [76] to model the different
chemical components (sulfate, nitrate ecc) of fine particulate matter as a
multivariate process for which a linear model of coregionalization is intro-
duced. The authors also deal with the problem of linking two sources of the
same information, that is the total mass of PM measured by a monitoring
network and the sum of the partial components measured by another net-
work. In the context of Kalman filter we cite, among others, [47], [77], and
[78]. Huang and Hsu introduced transport effects in ozone modeling, using
a nonseparable spatiotemporal covariance function that depends on wind
speed and wind direction and thus is nonstationary in time and space. The
proposed state space model is

Z(s, t) = S(s, t) + ε(s, t) (3.82)
S(s, t) = µ(s, t) + Y (s, t) + ν(s, t) (3.83)

where µ is a deterministic mean process, ν(s, t) is a spatially stationary
process and Y (s, t) is the zero mean spatiotemporal process. This last term
is then modeled as an IDE model

Y (s, t) =
∫

D
w(s, u, x(s, t−1))Y (u, t−1)du+η(s, t) s ∈ D, t ∈ N (3.84)

where η is a spatial error and w is a weight function depending on the wind
field x. The model is then rearranged in a reduced form by using empirical
orthogonal functions and Kalman filtering has been used for parameter es-
timation.
A state space representation (a kriged Kalman model) has been used also by
Sahu and Mardia ([77]) to model the PM2.5 concentrations. At the process
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level a spatial isotropic correlation is added to a time component, assumed
to evolve as a stochastic time varying linear combination of some optimal
functions. A fully Bayesian estimation is then performed. On the contrary
Fassó and Cameletti used EM algorithm to estimate a state space model for
PM10.
A reduced rank state space model, using kernel basis, with fully Bayesian
estimation, is that in [57], describing the space time evolution of a set of
five correlated pollutants, in [18] applied to the correlated evolution of PM10

and PM2.5. As we saw in section 3.4 a discrete process convolution approach
with gaussian stationary kernel is embedded in a state space dynamic model,
and the bivariate behavior is modeled following the basic idea of building
processes that share part of a common latent process.

Another kind of question is that of the statistical models built to compare
the results of deterministic models with measurements. Fuentes et al. de-
veloped a statistical framework to evaluate the performance of air quality
numerical models, also addressing the problem of misalignments and change
of support between measures and predicted values ([79], [80], [81]). In a
hierarchical setting both the observations and the predicted values are mod-
eled as (stochastic) function of a hidden true process, that is then modeled
using a nonstationary covariance function. The same approach is used in
[82], with a hierarchical Bayesian model applied to evaluate the performance
of CAMx model (see EPA) in ozone prediction.
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Chapter 4

Application

In section 2.3.1 we described the main characteristics of nitrogen dioxide and
nitrogen oxide, their toxicity, the relationship between these two pollutants
and how we can model them in a bivariate spatial setting. Now we consider
the spatiotemporal behavior but in a univariate setting, that is considering
the total concentration of NO plus NO2, together referred to as nitrogen
oxides (NOx).
The aim here is to build a spatiotemporal model suitable to describe the
spatiotemporal dynamics of this pollutant over the Tuscany region, by us-
ing the methods described in the previous sections to allow the model to
include nonseparability and nonstationarity in time and space. Basically we
use the kernel convolution approach in a dynamical and hierarchical frame-
work.
This section is organized as follows. First we briefly describe in more detail
the characteristics of NOx making clear the importance of modeling this pol-
lutant. Then, after an illustration of the available data set, we proceed to an
explorative data analysis, useful for a proper choice of the modeling strat-
egy. After that we concentrate on the modeling approach, comparing the
different models proposed and evaluating the results. Finally we introduce
a completely different approach as a future research field.

4.1 Why nitrogen oxides?

Adverse health effects, in particular for respiratory apparatus, are related to
both long-term exposure to high concentrations and short term exposure to
very high concentrations of nitrogen dioxide. Thus limit values are needed
to prevent population from high exposure and health risks.
World Health Organization sets guideline values for NO2, that are an 1-hour
level of 200 µg/m3 and an annual average of 40 µg/m3. Existing italian law
follows this guideline (D.M. 2.04.2002 N.60, 1999/30/CE).
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Figure 4.1: Sketch of relationship between nitrogen oxides and oxidants and
particulate matter.

NO2 and other nitrogen oxides are precursors for a number of harmful sec-
ondary air pollutants such as ozone and particulate matter, and play a role in
the formation of acid rain. In fact NO2 is subject to extensive further atmo-
spheric transformations that lead to the formation of ozone and other strong
oxidants that participate in the conversion of NO2 to nitric acid and sulfur
dioxide to sulphuric acid and to subsequent conversions to their ammonium
neutralization salts. Thus, through the photochemical reaction sequence
initiated by solar-radiation-induced activation of NO2, the newly generated
pollutants are an important source of nitrate, sulphate and organic aerosols
that can contribute significantly to total PM10 or PM2.5 mass (see figure
4.1). NOx contributes to acid deposition and eutrophication which in turn
can lead to potential changes occurring in soil and water quality, while the
subsequent impacts of acid deposition can be significant.

Combustion of fossil fuels is by far the dominant source of NOx emissions.
High temperatures and oxidation-rich conditions generally favor NOx for-
mation in combustion, with formation rate being primarily a function of
temperature and of the residence time of nitrogen at that temperature.
Nitrogen oxides emissions have decreased by 31% between 1990 and 2005 in
European union. Despite the decreasing trend of the emissions of NOx in
Europe, this is lower than that of other pollutants (see figure 4.2).
Over the past 50 years vehicular traffic has largely replaced other sources

(e.g., domestic heating, local industry) as the major outdoor source of NOx

from fossil fuel combustion, and hence of NO2, over the entire Europe, in
particular in urban environment (see figure 4.3).
In the period 1996-2005, 21-47% of urban population was potentially ex-

posed to ambient air nitrogen dioxide concentrations above the EU limit
value of 40 µg/m3 as annual mean, even if there was a slight downwards
trend over the period (see figure 4.4).
The exposure of individuals to NO2 from outdoor sources depends largely

on their proximity to vehicular traffic in space and time, given that mobile
sources are the chief contributors to ambient NO2 in European cities.
Ambient NO2 concentrations measured at fixed urban sites may not ac-
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Figure 4.2: Trend in the reduction of emissions in Europe (EEA database).

Figure 4.3: Contribute of total nitrogen oxides emissions in Europe by
sources (2007) (EEA database).
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Figure 4.4: Estimated percentage of population exposed to a concentration
of NO2 above the limit value of 40 µg/m3 in Europe cities (EEA).

curately reflect personal exposure to NO2 from outdoor sources, because
ambient NO2 concentrations vary widely due to traffic patterns, the char-
acteristics of built environment and meteorological conditions. Fixed mon-
itoring stations are not necessarily sited with the intent of reflecting the
population average exposure, therefore the accuracy with which their mea-
surements reflect population exposure may vary.
In our case different kind of stations, that is traffic of background, are useful
to capture both maximum values near major roads and medium and large
scale dynamics of transport and diffusion.

4.2 Data set

4.2.1 The monitoring network of NOx

As we saw in section 2.3.1 the network of air pollution monitoring stations
of the Tuscany region measures the concentrations of several pollutants in
a set of locations spread across the region.
There are 97 monitoring stations spread over the Tuscany region and the
most are set in the context of main cities. Measured pollutants are PM10,
SO2, CO, NOx, O3 and H2S. Moreover, benzene and benzoapyrene are mea-
sured in a few special stations. Each station has been working since different
date, starting from 1992 until now. Following the italian regulation we have
different kind of stations with respect to monitored zone (rural, urban and
suburban) and to monitoring type (background, traffic or industrial), see
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Figure 4.5: ARPAT monitoring network map, traffic stations (circles) and
background stations (triangles).

figure 4.5.
We have meteorogical data for the 2005 year and we are interested in the
number of NOx monitoring stations that were working in that period, that
is 55 monitoring stations.
Other available data are pollutant emissions and meteorological conditions,
and informations on population density and other geographical issues as
morphological features and land use (see figure 4.6).

4.2.2 Emissions

Regional archives of emissions are available for the Tuscany region (IRSE).
The estimated emissions of SOx, NOx, VOC, CO, PM10, NH3 and others are
present in this database. The spatial resolution is that of the administrative
level of municipality, but is possible to have emission values on a 1x1 km
grid as well. Emissions are disaggregated by source type, i.e. point emis-
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Figure 4.6: (left) Point, linear and diffused emissions at municipality and
grid level. (right) Land cover (according to CORINE classification) for the
region.

sions (industrial stacks), linear emissions (highways, boats etc) and diffused
emissions (all the other small sources). In Fig. 4.6 the available data are
shown.

4.2.3 Meteorological variables

The Regional Atmospheric Modeling System - RAMS - was run by the Uni-
versity of Florence (Dept. of Civil Eng.) for the 2005 year, from march to
November. This is a limited area atmospheric model with complete physics
and non-hydrostatic equations, developed at the Colorado State University.
RAMS solves a set of equations that describe dynamics and thermodynamics
of the atmosphere, mass and energy conservation and hydrometeors micro-
physics. The initial and boundary conditions used are that of the ECMWF
(European Center for Medium Range Weather Forecasts) model, with the
model run in diagnostic mode and data assimilation performed from satellite
data. A validation activity for these data is now in progress.
The data are characterized by having a horizontal resolution of 4 X 4 km
(47 X 52 grid points for the entire Tuscany region) and 14 vertical levels,
from 48 to 3732 m above ground level (AGL).
Simulated variables are, among others: wind speed, temperature, pres-

sure, relative humidity, precipitation rate, long and short radiations, for
all the vertical layers (some of these are also evaluated at 2m AGL). The
model also provides a set of variables to directly or indirectly obtain micro-
meteorological variables according to the Monin Obukhov similarity theory.
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Figure 4.7: Simulation grid of the meteorological model, with a grid resolu-
tion of 4x4 km.
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Figure 4.8: Box-plot of measured concentrations for the 55 stations (original
scale), both for background stations (left) and traffic (right).

A similarity theory is an empirical method of finding universal relationships
between variables that are made dimensionless using appropriate scaling
factors. Similarity methods have proved very useful in the atmospheric
boundary layer, where the complexity of turbulent processes precludes di-
rect solution of the exact governing equations.
The Monin Obhukov theory is formed by a set of relationships describing
the vertical behavior of nondimensionalized mean flow and turbulence prop-
erties within the atmospheric surface layer (the lowest 10% or so of the
atmospheric boundary layer) as a function of some key parameters. These
key parameters are the height z above the surface, the buoyancy parameter
ratio between inertia and buoyancy forces, the kinematic surface stress, and
the surface flux of virtual temperature.
The key parameters can be used to define a set of four dimensional scales for
the surface layer: a velocity scale (friction velocity), a surface-layer temper-
ature scale, a length scale (Obukhov length) and the height above ground
scale. These key scales can then be used in dimensional analysis to express
all surface-layer flow properties as dimensionless universal functions of them.
As all these variables play a key role in describing the turbulence status of
the atmosphere, they also play an important role in the dispersion mecha-
nism for a pollutant and thus in the measured concentration level.

4.3 Data Analysis

We have hourly time series of NOx (µg/m3) concentrations over 55 moni-
toring stations, for the period ranging from the first of march to the 30 of
November 2005, corresponding to 6600 hours. All the stations show some
missing data, due to failure of the monitoring instruments. Considering the
whole data set there is a total of 48870 missing data with respect to a full
series of 363000 data, corresponding to about 15%. This percentage is vari-
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Figure 4.9: Locations of a set of monitoring stations: circles are propor-
tional to 0.025,0.5 and 0.975 quantiles of nitrogen oxides concentrations in
each stations. Different colors indicate traffic (inner circle in red) versus
background stations (inner circle in black).
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Figure 4.10: Temporal evolution of NOx (log-scale) as measured in two
different monitoring stations, background (blue) and traffic (red), for the
entire period (March-November 2005, 6600 hours) (top) and for a sub period
(bottom).
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Figure 4.11: Percentage of missing data at different stations (left) and at
different hours (right)
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Figure 4.12: Concentrations versus emissions (Mg per year) falling into a
radius of 1 km from the monitoring station in background (left) and traffic
(red) stations (IRSE).
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Figure 4.13: Concentrations versus resident population in a 5 km radius
area, for background (left) and traffic (red) stations.
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Figure 4.14: Monthly average concentrations versus monthly average tem-
perature. Different colors indicate different stations

able from station to station with a minimum of near zero percent (0.6) and
a maximum value close to 90. Moreover the most of missing data appear in
the early morning (3, 4 and 5 am), corresponding to hours of low concen-
trations and low exposure risk, and thus chosen for calibration procedures.
Monitoring stations are classified as background or traffic with respect to
distance from emission sources. While traffic stations are located very close
to roads, background stations are located in sites as far as possible from
emissions sources, trying to measure the value of the pollutant over a large
representative area. Of course traffic monitoring stations measure higher
concentrations values (see Fig. 4.8 and 4.9), with a daily cycle reflecting
daily traffic pattern. The log value of time series for two sample stations are
shown in Fig. 4.10.
We have meteorological variables for the whole period, without missing data,
over a 4x4km grid . The domain does not cover the entire Tuscany region,
but all the monitoring stations fall into the coverage area. Variables corre-
sponding to the nearest grid point are assigned to each station. The data
set includes, among others, temperature, wind speed and some variables of
the similarity theory, like friction velocity u∗, the velocity scale, or sensible
heat flux. Figure 4.14 shows monthly average of temperature with respect to
monthly average of NOx concentrations for a subset of monitoring stations.
For what concerns yearly emissions we obtain a value for each station by
adding all the emissions (linear, point and diffuse, expressed in Mg per year)
falling into a radius of 1 km from the monitoring station. This approach
has some drawbacks (for example the emissions could be not smooth enough
due to the rough inclusion of point emissions), but it is the simplest way
to proceed. Figure 4.12 shows concentration values with respect to emis-
sion values for each station, and indicates a positive dependence, although
less strong than expected, probably due to the estimation procedure in the
database of emissions. The strong relationship between emissions and popu-
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lation density yields to a very similar behavior of these variables with respect
to concentrations (see Fig.4.12 and 4.13).

In the following we report a short summary of the preliminary work on
the data we have done to provide as the tools for a proper choice of model
variables and structure. A series of nested regression equations (with least
square estimations) make us able to test some hypothesis regarding the
main variables involved and the spatiotemporal behavior and correlation
structure.
The first step we made is to link concentration values to emissions and
temperature covariates, considering the regression

Yit = µi + βT
i Tit + βEEi + εait (4.1)

where Yit is (log) concentration of NOx at site i at time t, µi is a spatial
varying mean, Tit is temperature at the RAMS point nearest to station i
at time t, and Ei is the total NOx yearly emission value within a distance
less than 1km from the station, and βT

i and βE the corresponding regression
coefficients. We found both emissions and temperature to be significative.
We performed a spectral analysis of the residuals that showed a periodicity
of period 24 hours and 7 days, corresponding to daily and weekly cycles.
We can thus model these residuals with the corresponding sinusoidal com-
ponents

εait = α1
i cos(2πt/24)+β1

i sin(2πt/24)+α7
i cos(2πt/168)+β7

i sin(2πt/168)+εbit
(4.2)

with a different coefficient for each station i. Once estimated all these co-
efficients can be viewed as a spatial process, and so we checked the spatial
structure with both visual inspection and variogram.

The autoregressive structure of the residuals is supported by the estimation
of

εbit = Φiεi,t−1 + ηi,t (4.3)

Now we introduce a (gaussian and univariate) kernel in order to reduce the
dimensionality of the spatial process, by writing

εbt = Kat + νt (4.4)

where εt is the vector of n = 55 dimensions and νt ∼ N(0, σ2
νInxn).

The element of the nxp kernel matrix, where p is an arbitrary number of
reference points, is kij(θ, si − rj), with i = 1, . . . , n and j = 1, . . . , p, and
the kernel depending on the θ parameter and the distance between mea-
surements locations and reference points. The θ parameter can be spatially
varying but we assume now a constant (and known) value.
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Figure 4.15: Estimated variograms for (left) estimated mean (µi in equation
4.1) and (right) temperature coefficients (βT

i in equation 4.1).
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Figure 4.16: Estimated variograms for (left) phase of the 24 hour periodicity
and (right) amplitude of 7 days periodicity (see equation 4.2)
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Figure 4.17: Temporal evolution of amplitude (top) and phase (bottom) of
24 hours (left) and 7 days (right) cycles as estimated by moving average
estimation for a sample station (Lucca-Capannori).

Once at has been estimated (as MSE) for each time t, we fit an autore-
gressive model similar to that of equation 4.3 but in a reduced dimension
setting

at = Mat−1 + γt, γt ∼ N(0, Q) (4.5)

The temporal evolution of the coefficients associated to 24 hours and 7 days
cycles has also been checked, by a moving average estimation of α1

i , β
1
i , α7

i ,
β7

i of equation 4.2, with a temporal window of three days with one overlap-
ping day for coefficients of 24hour cycle, and a temporal window of three
weeks, with one overlapping, for the 7 days cycle.
This analysis outlines the temporal evolution for these coefficients (see fig-
ure 4.17), that will be included in our modeling strategy.

4.4 Tools for model choice

As we are dealing with a complex model, where a lot of different choices
can be made with regard to both modeling strategies (kind and parameters
of the kernel, number and locations of reference points ecc) and to prior
assumptions, it is important to have appropriated tools for model validation
and selection. Here we focus on a Bayesian framework and on the methods
developed in this context.
Although, or maybe for, the crucial role of model selection, different ap-
proaches can be found in literature. Before describing a short selection of
these methods, it is worth noting that none of them are free of drawbacks
and that there not exists general agreement in literature about which would
turn to be the right approach.
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Given a model selection problem in which we have to choose between two
models, M1 with priors on parameters π(θ1) and M2, with priors on param-
eters π(θ2), and data vector Y , the Bayes factor is given by the ratio of the
observed marginal densities for the two models

p(y|Mi) =
∫
f(y|θi,Mi)πi(θi)dθi, i = 1, 2 (4.6)

This ratio becomes a likelihood ratio test when the two models share the
same parameterization and the hypothesis are both simple. However when
the priors are improper, Bayes factor is not well defined, while numerical
instabilities also arise when the priors are proper but diffuse.
Likelihood ratio test statistics is the base for the AIC and BIC criterions
(Akaike and Bayesian information criterion respectively). Both these meth-
ods account for the number of parameters, including a term that acts as a
penalty for complexity.
A generalization of the AIC is the so called deviance information criterion
(DIC, [39]), that has become very popular in recent years. A term account-
ing for the goodness of fit is added to a model complexity indicator. The
key quantity is the deviance,

D(θ) = −2 log f(y|θ) + 2 log h(y) (4.7)

where h(y) is a normalizing function of data alone, and f(y|θ) is the likeli-
hood. The effective number of parameters is defined as

pD = D(θ)−D(θ̄) (4.8)

where D(θ) = Eθ[−2 log f(y|θ)|y]+2 log h(y) is the posterior mean deviance
that can be regarded as a measure of fit, and θ̄ is an estimate of θ, for
example the posterior mean or mode or median of θ. Thus DIC is defined
as

DIC = D(θ) + pD (4.9)

with the smallest value of DIC indicating a better fit, and only differences
in DIC values being significant for model comparison.
The DIC criterion, well suitable for gaussian models, can be computed easily
within a MCMC computation, but there are some limitations and criticism
about this method. DIC is not invariant to parameterization, and it is de-
pendent on which part of the model is considered as part of the likelihood.
This focus issue can be problematic in some cases.
In missing data models different focus yields to different definition of DIC,
depending on the choice of the likelihood function ([83]). Given the ob-
served data Z and a latent stage Y , one can consider the observed likeli-
hood f(Z|θ), the complete likelihood f(Y, Z|θ) or the conditional likelihood
f(Z|Y, θ). Celeux et al.([83]) explored this field defining eight variation of
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DIC.
Recently Plummer ([84]) suggests some limitations on DIC fields of appli-
cation and provides improved asymptotic approximations. Moreover the
asymptotic justification of DIC seems to be inappropriate for models with
more than two hierarchical levels.

Another approach to Bayesian model choice is based on hypothetical repli-
cates from the same process that generated the data, the so called posterior
predictive approach. In this context replicate data sets are simulated from
the posterior distribution of model parameters and a distance between these
replications and the original data is evaluated. A model choice criterion be-
longing to this framework is the posterior predictive loss.
In [85] the authors used the standard utility idea, and, replacing experiments
with models, minimize the loss over the models. Denoting L(yrep, a|yobs) the
loss for guessing the action a when a replicate of the data yrep has been ob-
tained and yobs was observed, then the minimization of the expected value
of this loss is performed over a, where the expectation is taken with respect
to the posterior predictive distribution for yrep under model m.
Focusing on one of the component of yobs, say the lth, the corresponding
replication yl,rep is assumed to have the same distribution as yl,obs.
For squared error loss the resulting criterion is

Dk =
k

k + 1
G+ P (4.10)

G =
n∑

l=1

(µl − yl,obs)2 (4.11)

P =
n∑

l=1

σ2
l (4.12)

where µl = E[Yl,rep|y] and σ2
l = V ar[Yl,rep|y], that is the mean and variance

of the predictive distribution of Yl,rep given the observed data. This criterion
accounts for closeness both to the observed data and to the replication,
considering both the fit and the smoothness of the estimation, corresponding
to the G and P term respectively. This last term tends to increase when the
variance is inflated by over-fitting.
For what concerns k, it indicates the relative regret for departure from the
observation compared with departure from the replications, but in practice
model ranking is often insensitive to the choice of k.
The posterior distribution can be written as

p(yl,rep) =
∫
p(yl,rep|θ)p(θ|y)dθ (4.13)

In a MCMC algorithm it is possible to obtain yl,rep by drawing from p(yl,rep|θ =
θm), where θm is the mth posterior realization of θ. Thus, with this extra
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level of simulation, one can obtain µl and σl as the mean and variance of
the drawn samples.

In the case of spatiotemporal data, the posterior predictive loss criterion
becomes

G =
n∑

i=1

T∑
i=1

(µt(si)− yt,obs(si))2 (4.14)

P =
n∑

i=1

T∑
i=1

σ2
t (si) (4.15)

where µt(si) and σ2
t (si) are the mean and the variance of the posterior

predictive distribution at location si and time t.

4.5 The model

To describe the spatiotemporal behavior of NOx over the Tuscany region
we propose a dynamical hierarchical spatiotemporal model. A reduced di-
mension framework is needed due to the high dimensionality of the process,
and this issue is achieved by using a discretized version of convolution kernel
method. Bayesian approach is adopted to estimation purposes. The hierar-
chical Bayesian structure is very useful in presence of complicated processes
as in our case and in the most of environmental problems: the presence of a
not negligible number of missing data is another issue that makes this choice
the more appropriate.
To take into account all the features envisaged in the data set we have to
consider the role of the emissions and temperature, the time periodicity and
the residual dynamics. Spatial structure, also non stationary, and dimen-
sion reduction is addressed by using kernel convolution processes, while the
dynamical behavior of the coefficients and of the residual term is introduced
with an additional level of hierarchy.
In detail we developed the model described below. Normality is approached
using the log transformation of the data.

The first stage of the model is designed to account for measurement errors
and missing data.
Let Zt be a vector of variable length of measurements at time t over the mt

not missing stations at time t, and let Yt be the true process at time t over
all the n stations. We can define

Zt = MtYt + εzt εzt ∼ N(0, σ2
zImtXmt) (4.16)

where Mt is a mtxn mapping matrix whose ith row is the ith row of the
identity matrix of size n if and only if the ith station is not missing.
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The εzt term is a mean zero gaussian error, representing the measurement
error. We assume a diagonal structure for the covariance matrix of this
error (it is reasonable that the measurement error is independent between
stations) and with a common variance, Σz = σ2

zImtXmt .
At the second stage we model the latent process as

Yt = Kmm + βEE + TtKTbT +Ka1a1t cos(2πt/24) +Kb1b1t sin(2πt/24) +
+Ka7a7t cos(2πt/168) +Kb7b7t sin(2πt/168) +Kat + εt

εt ∼ N(0, σ2
ε InXn) (4.17)

where Yt is a nx1 vector representing the process at time t over the n sta-
tions, E is a nx1 vector with emissions, Tt = diag(Tempt) is a nxn matrix
obtained from diagonalization of the vector of temperatures in the n lo-
cations at time t. The first term represents a spatially correlated mean
process expressed by a discrete equivalent of a convolution of the process
m, a vector of dimension pm defined over a reduced dimension grid. The
m process is assumed to be a mean zero process distributed as multivariate
normal with variance covariance matrix Σm. This matrix can be assumed
diagonal or not, that is the reduced process can be assumed spatially inde-
pendent or dependent. The element of the nxpm kernel matrix is defined
as kij(θ, si− rj), using one of the valid kernel functions described in section
1.3, for example gaussian or Matern form, and it is assumed to be known.
The second term gives the contribution of the emissions to the concentra-
tions: as we have only one value for each station we assume the coefficient
βE constant in space and time.
The third term models the temperature effect. Again we use the process con-
volution approach with the process bT ∼ N(0,ΣT ) defined over pT points
and a corresponding nxpT kernel matrix.
Then we have the periodical terms, each defined on a reduced dimension
grid with appropriate kernel matrix, but now we assume a temporal corre-
lation for each of the processes a1t, b1t, a7t, b7t, with an autoregressive
structure defined at next stage:

a1t = a1t−1 + ηa1, ηa1 ∼ N(0,Σa1) (4.18)
b1t = b1t−1 + ηb1, ηb1 ∼ N(0,Σb1) (4.19)
a7t = a7t−1 + ηa7, ηa7 ∼ N(0,Σa7) (4.20)
b7t = b7t−1 + ηb1, ηb7 ∼ N(0,Σb7) (4.21)

(4.22)

This approach is similar to the dynamical approach described in section 3.3.
A term accounting for spatiotemporal dynamics is then added: a reduced
dimension process at is assumed to evolve with a transitional equation, like

at = Hat−1 + ηa, ηa ∼ N(0, Q) (4.23)
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where the H matrix governs the spatiotemporal evolution of the process. No
assumption about the structure of this matrix (that is diagonal or tridiagonal
ecc) can be made here because the structure of this model is not easily
comparable with a physical dynamics.
Finally we add a residual error assumed to be zero mean gaussian with
diagonal and homogeneous variance matrix, and constant in time, εt = ε
∼ N(0, σ2

ε InXn).
Thus we have the following priors over the parameters:

m ∼ N(0,Σm) (4.24)
βE ∼ N(0, σ2

βE
) (4.25)

bT ∼ N(0,ΣT ) (4.26)

We define the remaining priors using conjugate distributions:

Σa1 ∼ IW ((νa1Ca1), Ca1) (4.27)
Σb1 ∼ IW ((νb1Cb1), Cb1) (4.28)
Σa7 ∼ IW ((νa7Ca7), Ca7) (4.29)
Σb7 ∼ IW ((νb7Cb7), Cb7) (4.30)
Q ∼ IW ((νqCq), Cq) (4.31)

h = vec(H) ∼ N(µh,Σh) (4.32)
σ2

ε ∼ IG(qε, rε) (4.33)
σ2

z ∼ IG(qz, rz) (4.34)
(4.35)

We also need to specify the initial value of time varying coefficients

b10 ∼ N(0, σ2
b10

) (4.36)

a10 ∼ N(0, σ2
a1
0
) (4.37)

b70 ∼ N(0, σ2
b70

) (4.38)

a70 ∼ N(0, σ2
a7
0
) (4.39)

a0 ∼ N(0, σ2
a0) (4.40)

We sample the parameters m, βE ,bT , Yt,a1t,b1t,a7t,b7t, for t = 0, 1, . . . , T ,
σ2

ε , σ
2
z ,H,Q,Σa1,Σb1,Σa7,Σb7 with Gibbs sampler, with full conditional spec-

ified in Appendix.
The required hyperparameters are Σm, σ2

betaE
, ΣT , qε, rε, σ2

b10
, σ2

a1
0
, σ2

b70
, σ2

a7
0
,

σ2
a0, µh,Σh, νa1, Ca1, νb1, Cb1, νa7, Ca7, νb7, Cb7. All these hyperparameters

and the initial values required have been set from data analysis and simula-
tion steps.
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4.5.1 Kernel choice

As first temptative we choose an univariate gaussian kernel, that is

Kij(θ) =
1√
2πθj

exp
(
− 1

2θj
|si − rj |2

)
(4.41)

The locations of reference points chosen are shown in Fig.4.18 The refer-
ence points are chosen following an ideal main grid with spacing of 60 km
and a nested smaller grid (30 km) in the north of the region. This fact is
motivated by the non homogeneity of the number of monitoring stations
across the region, in order to increase accuracy where we have more detailed
information.
We checked model sensitivity to the value chosen for the variance of the
kernel, finding a reasonable behavior in the range from 2500 to 10000. As it
is reccomended that grid spacing is no more than the standard deviation of
the kernel (for example see [8]), the minimum acceptable value in our case
is a variance of 4000. Thus the corresponding spatial process have a range
parameter from about 90 to 140 km.
In the following we want to compare different choices of kernel variance and
shape, and thus we need to choose a tool that make us able to do that in a
sensible way.

4.5.2 Model selection

We choose an univariate kernel with variance 10000 over the whole domain
as a first choice. In this way we observe a different behavior for different
kind of stations (that is traffic or background) where an underestimation for
the former coexists with an overestimation for the latter, and so we decided
to take into account the hypothesis of using different kernel variances for the
two different situations. As traffic stations tend to reflect local situations it
seems natural to consider a narrower range for these stations with respect
to background stations that are representative of a larger scale dynamics.
We choose a value of 4000 for traffic stations and 9000 for background.
Now we proceed with an analysis of the residuals of this model.

We observe an overall good performance of the model particularly for high
concentrations, while for very low concentrations the model tends to an
overestimation (see figures 4.21, 4.20). Residuals do not show spatial trend
(see figure 4.23). For what concerns meteorological variables we checked the
distribution of the residuals with respect to temperature, finding no more
trend as expected (see figure 4.24). To test if it is possible to improve model
performances by introducing other variables, we checked the influence of
wind speed. A rough inspection of the correlation between residuals and
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Figure 4.18: Lattice locations for kernel convolution latent processes.
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Figure 4.19: (left) Quantiles of the residuals [.025 .25 .50 .75 .975] for the
model with costant kernel for traffic (red) and background (blue) stations.
(right) Quantiles of the residuals [.025 .25 .50 .75 .975] for the model with
different kernel for traffic (red) and background stations (blue).
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Figure 4.20: Estimated values vs. measured values for each of the nine
months of simulation, March-November 2005, Firenze, Gramsci traffic sta-
tion.
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Figure 4.21: Estimated values vs. measured values for each of the nine
months of simulation, March-November 2005, Prato, via Roma background
station.

wind speed does not support this hypothesis. To check a possible influence
of wind speed and direction in shape and variance of the kernel, we divided
the data in eight classes (the four quadrants for wind direction and two
classes of wind speed, below or above 3.5 m/s) and calculated empirical
semivariogram contour plots for each class. This can be an useful tool to
assess anisotropy. The method uses the separation distance between each
axis. Rectangular bins are then formed and the empirical semivariogram
in each bin is calculated. The value of each semivariogram is assigned to
the center of the bins. Contour plot of this map can show departure from
isotropy as long as the isolines are far from circular contours. We found
very similar contour plots for different wind classes, but these plots are not
circular, showing a shorter range in the direction NE-SW with respect to
the opposite direction (NW-SE). For this reason we choose a bivariate kernel
with the major axis of the corresponding ellipse oriented in direction NW-
SE. This behavior can be motivated by the specific morphological shape of
Tuscany (see figure 4.25), where both the mountains and the coastline are
oriented along this direction.

We compared the three models described above, stationary univariate kernel
(case 1), nonstationary univariate kernel (case 2), nonstationary bivariate
and asymmetric kernel (case 3) by posterior predictive loss. In table 4.26 we
report the D (with k=1), G and P terms described in chapter 4.4 for the three
cases for the complete model (model 1) and time reduced model (model 2,
that we will describe in the next chapter). We see that the preferred model
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Figure 4.22: Posterior mean (red), posterior mean plus/minus one posterior
standard deviation (blue), measured concentration (black) for a background
station (top), Prato, via Roma, 1000-1300 hours, (bottom), and for the
traffic station Firenze-via Gramsci 6500-6600 hours (bottom).
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Figure 4.23: Spatial distribution of the residuals. Circles are proportional
to the absolute value of the mean of the residual for each station (red for
traffic and blue for background).

76



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
45

50

55

60

65

70

75

80

85

average residuals

av
er

ag
e 

te
m

pe
ra

tu
re

Temperature VS residuals, monthly average, march−nov 2005

−3 −2 −1 0 1
0

2

4

6

8

10

12

−1 0 1 2
0

2

4

6

8

10

12

−1 0 1 2
0

2

4

6

8

10

12

−2 −1 0 1 2
0

2

4

6

8

10

12

Figure 4.24: (left) Monthly average temperature with respect to monthly
average of the concentrations for four different stations (different colors).
(right) Hourly wind speed with respect to hourly concentrations for four
stations in May.

Figure 4.25: Morphology of the Tuscany region.
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Figure 4.26: Posterior predictive loss comparisons between different models.
Stationary univariate kernel (case 1), nonstationary univariate kernel (case
2), nonstationary bivariate and asymmetric kernel (case 3) for complete
model (Model 1) and time reduced model (Model 2), see section 4.6.
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Figure 4.27: Posterior predictive loss (Model 1, case 2) for different stations.

is the nonstationary univariate kernel case, although the case with bivariate
kernel is very similar for model 1.
If we consider the single component in space or time that is summed up in
equation (4.15), we can obtain information about the model performance
at each time or site. In figure 4.27 the D term for each station is reported:
the peak in this graph corresponds to a background station near Florence.
Looking closely we find out that emission database provides for this station
a very high emission value. Presumably this is not a fair value, because this
station is located far from main roads and other industrial emissions.

Before checking the model predictive ability in next section we introduce a
time-reduced model by using the EOF approach.
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4.6 Time reduced version of the model: an EOF
approach

The empirical orthogonal functions technique that we described in section
3.6.1 is designed to find spatial structure (maps) explaining most of the
variance, and the time series evolution of the principal components.
The same technique can be used to find the principal components of the
temporal structure and the spatial behavior of these, by simply arranging
the matrix in a nxT fashion, that is with rows corresponding to time series
and columns representing a map for each time. So let F ∗ = F ′, with F the
matrix defined as in section 3.6.11, and the corresponding TxT covariance
matrix C∗ = F ′∗F ∗/(n − 1). Solving the associated eigenvalue problem
C∗ = ΨΛΨ′ we find in the columns of Ψ the eigenvectors (∈ RT space), and
for each eigenvector the corresponding projected map ai = F ∗ψi.
In our case the number of spatial locations (n = 55) is much smaller than the
time period of observations (T = 6600), with the corresponding covariance
matrix having high dimension, 6600x6600. Since the rank of F ∗ is at most n,
the rank of C∗ is at most n = 55, and the number of zero eigenvalues of C∗

is at least T − n. Thus it is possible to use a more efficient strategy to find
eigenvectors (Von Storch method). Let L∗ = F ∗F ′∗, with size nxn, it can be
proven that the eigenvalue problem C∗Ψ = ΨΛ is equivalent to L∗B∗ = B∗Λ,
where B∗ = F ∗Ψ. Equivalence means that both the equations yield to the
same eigenvalues, while the eigenvectors are not the same. Just projecting
F ′∗ on the vectors from B∗ we obtain vectors proportional to the original
EOFs, with a proportionality factor of 1/

√
λi. Thus, once calculated, the

Txn matrix D∗ = F ′∗B∗, ψi = di/
√
λi, where di are the column vectors of

D∗, gives the EOFs we are looking for. The advantage of this procedure
is that we have to manage only matrices of dimensions nxn instead of the
huge matrices as before.
We apply this decomposition to our data (after fitting the missing values
with splines), both with the original data and the residuals after regression
with temperature and emissions. As we found that the first 20 eigenvalues
explain the 80% of the variability, we envisage in this method a way to
achieve reduction of time dimension.
In the following we propose a model based on the EOF technique in order
to reduce dimension.
Arranging the spatiotemporal process (after removing the mean) in a nxT
matrix (called F ∗), where each row corresponds to the time series of each
location, we have the (TxT ) covariance matrix C∗ = F ′∗F ∗/(n − 1). The
solution of the eigenvalue problem gives the desired matrix of eigenvectors,
of which only n corresponding to non null eigenvalues (because the rank of

1F is the Txn matrix with the i-th row corresponding to a map of the process at time
i and the jth column corresponding to a time series at location j.
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F ∗ is at most n). We can gain a grater reduction in the dimensionality of the
problem choosing only the first p∗ eigenvectors (from data analysis we saw
that with p∗ = 20 we can explain most of the variance). We call Φ the Txp∗

matrix formed by the eigenvectors corresponding to the first p∗ eigenvalues
and use this matrix to project the nxT data matrix in a nxp∗ spatiotemporal
process. Moreover we have p∗ time independent components, each of these
can be viewed again as a spatial process, and thus projected to a p space
trough the kernel matrix. In the end we obtain p∗ processes over p points,
independent in time and space. According to this we can model the process
in matrix form as:

Y = Kmm∗ones(1, T )+βEE∗ones(1, T )+TtKTbT ∗ones(1, T )+(K∆)Φ′+ε
(4.42)

where Y is the nxT matrix of the spatiotemporal process and ones represents
a matrix of ones of the specified dimension, Φ is the Txp∗ EOFs matrix, and
K is the nxp kernel matrix. So ∆ is the pxp∗ matrix of the reduced dimension
process. Rewriting the whole model, we have:

Zt = MtYt + εzt εzt ∼ N(0, σ2
zImtXmt) (4.43)

Yt = Kmm + βEE + TtKTbT +K∆Φ′
.t + εt εt ∼ N(0, σ2

ε InXn)(4.44)

where Φ.t is the tth column of the Φ matrix. If we want to use different
kernels for each of the p∗ processes we can arrange the last term of the
equation above as K̃∆̃Φ′

.t. ∆̃ is defined as a (pp∗)xp∗ matrix

∆̃ =


δ1

δ2
. . .

δp∗

 (4.45)

with each δi being a p-dimensional vector, while K̃ is a nXpxp∗ matrix
formed by the p∗ kernel K̃ = [K1, . . . ,Kp∗], each Ki with dimension nxp.
At the lower stage we define

m ∼ N(0,Σm) (4.46)
βE ∼ N(0, σ2

βE
) (4.47)

bT ∼ N(0,ΣT ) (4.48)

and the remaining hyperpriors, with δ = vec(∆)

δ ∼ N(0,Σδ) (4.49)
σ2

ε ∼ IG(qε, rε) (4.50)
σ2

z ∼ IG(qz, rz) (4.51)
(4.52)
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This formulation reduces computational efforts (the time required is less
than half the time required for model 1) without losing much in terms of
posterior predictive loss (see table 4.26). In the next section the predictive
ability of the model both in complete and time reduced version will be
checked.

4.7 Predictive analysis

To check the predictive ability of the models described above we left out two
randomly chosen stations (one classified as traffic and the other one classified
as background station, see fig 4.28) and calculated the posterior predictive
distribution for each time in that point in space. We chofse univariate and
nonstationary (different for traffic and background stations) gaussian kernel
for both the models. Figures 4.29 - 4.33 compare the posterior predictive
distribution for each time with respect to measured concentrations: the
posterior predictive 0.025 and 0.975 quantiles are represented in green, the
median is represented as a yellow star, while measured concentrations are in
blue. For both model 1 and model 2 time series predictions are quite good,
with a good behavior for the median, although the uncertainty bounds are
pretty high.
To better evaluate the predictive behavior of the models we try to construct
a synthetic measure of the prediction ability. We proceeded as follows. Let
yt a random variable that follows the posterior distribution at time t for a
given station and let y∗t the measured concentration at time t in that station
and consider the probability that yt is less then y∗t , pt = P (yt < y∗t ). By
doing this we obtain 6600 values (one for each time) of the variable p =
[p1, . . . , pT ]: the histogram of this variable gives an overall representation
of the predictive ability as long as it is peaked around the value of 0.5.
These histograms are shown in figures 4.34 in four cases. The first case (top
left) is the result for background station by using model 1: the peak is on
0.5, although there is a skewness with a higher tail on the left side. This
is the indication of an overestimation for certain time points: these time
points correspond to the case of low concentrations during nighttime when
the model does not decrease as much as the measured values. This fact
is made clear if we notice that the histogram calculated considering only
daytime hours (figure 4.34, bottom left) displays the desired symmetry, and
can thus be motivated by the high number of missing data registered during
nighttime hours. The histogram referred to model 2 seems to indicate a
lower predictive performance, as expected: the histogram is again centered
on 0.5 but is is less peaked (figure 4.34, top right). Finally (bottom right)
the histogram for the traffic station regarding model 1 is reported: for this
station the histogram is more peaked than for the corresponding case for
the background station, but the skewness is still present.
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Figure 4.28: Test stations: background, Prato, via Roma (left) and traffic,
Arezzo, via fiorentina (right).
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Figure 4.29: Model 1: Posterior predictive distribution versus measured
concentrations for the background station (Prato, via Roma) for hours from
1000-1200 of considered period (0.025- 0.975 quantiles in green, median as
a yellow star, measured concentrations in blue).
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Figure 4.30: Model 1: Posterior predictive distribution versus measured
concentrations for the background station (Prato, via Roma) for hours from
1000-2000 of considered period (0.025- 0.975 quantiles in green, median as
a yellow star, measured concentrations in blue).
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Figure 4.31: Comparison between model 1 and model 2: Posterior predic-
tive distribution versus measured concentrations for the background station
(Prato, via Roma) for hours from 1000-1200 of considered period (symbols
as in previous figures).
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Figure 4.32: Model 1: Posterior predictive distribution versus measured
concentrations for the traffic station (Arezzo, via fiorentina) for hours from
6000-6600 of considered period (symbols as in previous figures).
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Figure 4.33: Model 1: Posterior predictive distribution versus measured
concentrations for the traffic station (Arezzo, via fiorentina) for hours from
200-400 of considered period (symbols as in previous figures).

Figure 4.34: Synthetic measure of predictive behavior of the proposed mod-
els, see text for details.
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In summary the model shows good prediction ability and makes possible
to estimate the concentrations in unobserved spatial locations with a good
prediction ability, requiring only emissions, temperature and distance from
road (traffic/background). The model introduced has a very flexible struc-
ture: many choices of the kernel functions accounting for different correlation
structures are possible. Moreover the kernel can be space and time varying
allowing for nonstationarity in space and time and each subprocess could be
modeled with a different kernel function or set of reference points. We also
obtained estimations of missing data in a straight manner inside the model,
and no additional requirement or methods (as imputation) is needed. More-
over, anomalous behavior of monitoring stations and outliers in the dataset
could be easily detected analyzing model results.

Although the dimension reduction strategy adopted made the MCMC esti-
mation feasible, this is still computationally demanding. The tradeoff be-
tween the prediction ability of the model and computational tractability
is apparent when comparing the complete model (model 1) with the EOF
model (model 2). Another drawback of this model is the quite high vari-
ability in predictions that could be the subject of a further improvement.
Finally, as in the proposed models the estimated parameters cannot be di-
rectly related to physical dynamics, in the following chapter we introduce a
new model that could overcome this limit.

4.8 Future developments

In this final subsection we propose a model suitable for future developments.
Here we use the concept of dimension reduction via kernel convolution ap-
proach, but now we try to link the dynamics of the process with the physical
mechanism of the advection diffusion process.
As we saw in section 3.5.1 the time continuous advection diffusion equation
can be viewed in discrete time as an integro-differential equation of the form

yt+1(s) = γ

∫
ks(r; θs)yt(r)dr + η̃t+1(s) (4.53)

where η is a spatially colored noise process and γ is a parameter that con-
trols explosive growth. This model is nonseparable and, by using spatially
varying kernel, also nonstationary.
In this context the advection term is represented by the mean of the kernel
(i.e. the translation) and the diffusion term is related to the variance covari-
ance matrix of the kernel. In this way it is possible to mimic the physical
behavior of the process we would like to model.
We saw in section 3.5.1 that this model can be written in spectral represen-
tation by using Fourier transform. This method is well suited for a regular
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grid of points, but unfortunately this is not our case.
However it is possible to envisage a feasible modeling strategy by using the
spatial dimension reduction we used in previous sections and the framework
of integro-differential models. We can imagine a model like this (assuming
as a first guess a unitary growth/depletion term, γ = 1)

Zt = MtYt + βEE + εzt (4.54)
Yt = KspΦαt (4.55)
αt = Φ′B′

θαt−1 + ηt (4.56)
(4.57)

where Zt and Yt are defined as in the previous models, and Bθ = [b(s1; θs1),
. . . ,b(sn; θsn)] is defined as in section 3.5, that is, in the gaussian case

bj(s; θ1(s), θ2(s)) = exp[iωj(θ1(s) + s)− 0.5ω2
j θ2(s)] (4.58)

where ωj is the spatial frequency. θ1(s) and θ2(s) are respectively the trans-
lation and scale parameters and can be directly linked to the transport effect
and the diffusion process, that is with the meteorological fields of wind and
diffusivity. This dynamics is applied now to a regular grid, defined by using
a (purely spatial) kernel Ksp analogous to that used in previous models, and
assumed known. The key issues now are the choice of lattice spacing, that
needs to be chosen in a coherent manner with respect to the spatial scale of
dynamics, and properly accounting for modeling errors due to discretization
in time and space.
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Conclusions

In this thesis we have dealt with spatiotemporal modeling for environmen-
tal applications. Throughout the text we discussed many challenging issues
involved in statistical modeling of environmental systems, for what concerns
both their theoretical and applied aspects.
In particular, in the present work we focused on the application of spatiotem-
poral modeling to the study of nitrogen oxides concentrations in Tuscany.
Nitrogen dioxides are toxic by inhalation and a not negligible percentage
of the urban population in last years was potentially exposed to ambient
air nitrogen dioxide concentrations above the health protection limit value.
Moreover NO2 and other nitrogen oxides are precursors for a number of
harmful secondary air pollutants like ozone and particulate matter.
Due to the collaboration with Environmental Protection Agency - Tuscany
region -, that has the role of air quality monitoring and assessment, we de-
veloped models suited for application, with particular concern on the ability
of describing and predicting the spatiotemporal behavior of these pollutants
over the area of interest by using the minimal set of available informations.
To achieve this goal we developed a hierarchical Bayesian spatiotemporal
reduced rank model in a complete and temporal reduced version able to
predict NOx concentrations, with a good average behavior and a quite high,
but known, uncertainty, in any arbitrary unobserved locations in our region,
as long as emissions, temperature and distance from main streets are known
for that point. The ability to achieve this knowledge about spatiotempo-
ral distribution of pollutant concentrations is of outmost importance for
Environmental Protection Agency for many reasons ranging from risk and
exposure assessment to authorization procedures for air emissions, environ-
mental preservation, recovery and planning.
Actual needs in regulatory activity made us also concentrate on some spe-
cific questions as the multivariate aspect or a physically based modeling
approach, that are now methodologically relevant issues for environmental
problems. For example the correlation between nitrogen dioxide and ni-
trogen oxide over the area of interest is crucial to evaluate authorization
procedures for new emission plants, as they are based on nitrogen oxides
emissions, while only nitrogen dioxide is limited by law. We investigated

i



the bivariate relationship between nitrogen oxides and nitrogen dioxides and
their spatial and nonspatial correlation structure by using the coregional-
ization approach.

Very complex spatiotemporal processes, occurring on a wide variety of scales
and arising from the interactions of many subprocesses involving physical
and chemical mechanisms, take part in determining the value of concentra-
tion of a pollutant (NOx in this case) in a given point in space and time.
Statistical methods able to deal with this complexity and suited for spatial
and spatiotemporal processes have been reviewed in the thesis.
A hierarchical Bayesian framework has been introduced to deal with the
complexity of the underlying spatiotemporal process. This framework made
us able to solve the problem of missing data and to use the different stages
of the structure to address different terms involved in the process. Time
evolution of the process has been modeled through a space time dynamical
setting: a nonseparable spatiotemporal dynamic process being added to the
dynamical evolution of covariates coefficients.
Environmental and physical processes are often neither separable nor sta-
tionary: recently developed methods to overcome these assumptions have
been reviewed and examined in order to find the proper way to account for
these issues in our application.
Due to the high dimensionality of the involved variables, reduced rank meth-
ods were required to make computation manageable. Thus a modeling
framework and methods to achieve dimension reduction in spatial and spa-
tiotemporal contexts have been provided in the text, and these proved of
valuable help in the application of our case study. In fact we developed and
applied a reduced rank hierarchical Bayesian dynamical model, potentially
nonstationary and nonseparable, to estimate concentrations at unobserved
space and time points of nitrogen oxides concentrations over the Tuscany
region. Kernel convolution in space and empirical orthogonal functions in a
temporal reduced setting made the MCMC estimation feasible, even if still
computationally demanding.
Comparison between different modeling strategies has been performed by
using posterior predictive loss. The selected model showed good prediction
ability and made possible to estimate the concentrations (with the associ-
ated uncertainty) in unobserved spatial locations, requiring only emissions,
temperature and distance from road (traffic/background). The model in-
troduced has a very flexible structure: many choices of the kernel functions
accounting for different correlation structures are possible. Moreover kernel
can be space and time varying allowing for nonstationarity in space and time
and each subprocess could be modeled with a different kernel function or set
of reference points. We obtained estimations of missing data in a straight
manner inside the model, with no additional requirement or methods be-
ing needed and anomalous behavior of monitoring stations and outliers in

ii



the dataset have been detected analyzing model results. The model showed
good prediction ability but a quite high associated variability.
An important characteristic of environmental processes is represented by
the a priori knowledge we could have from many different sources, like ex-
perts opinion and physical or empirical relationships between the variables
involved. In the case of atmospheric pollution the underlying dynamics driv-
ing the advection and diffusion of a pollutant in air is known. The concern of
including this dynamics inside the statistical model has been addressed and
a theoretical framework suited to account for the advection diffusion equa-
tion directly into the statistical model introduced. Thanks to this model we
are able to relate in a physically based structure emissions, meteorological
variables and concentrations. The limits in the application of this model,
due to the non regularly spaced data set we are dealing with, could be over-
come by a modeling strategy sketched out at the end of this thesis, that
uses a combination of two projection bases allowing for the proper dimen-
sion reduction. The introduction of this modeling framework is a promising
way to take advantages of both statistical and deterministic approaches in
spatiotemporal modeling of pollutant concentrations.
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Appendix

A.1 Full-conditionals

A.1.1 Model 1

Zt = MtYt + εzt εzt ∼ N(0, σ2
zImtXmt)

Yt = Kmm + βEE + TtKTbT +Ka1a1t cos(2πt/24) +Kb1b1t sin(2πt/24)
+Ka7a7t cos(2πt/168) +Kb7b7t sin(2πt/168) +Kat + εt

εt ∼ N(0, σ2
ε InXn)

a1t = a1t−1 + ηa1, ηa1 ∼ N(0,Σa1)
b1t = b1t−1 + ηb1, ηb1 ∼ N(0,Σb1)
a7t = a7t−1 + ηa7, ηa7 ∼ N(0,Σa7)
b7t = b7t−1 + ηb1, ηb7 ∼ N(0,Σb7)
at = Hat−1 + ηa, ηa ∼ N(0, Q)

m ∼ N(0,Σm)
βE ∼ N(0, σ2

βE
)

bT ∼ N(0,ΣT )
Σa1 ∼ IW ((νa1Ca1), Ca1)
Σb1 ∼ IW ((νb1Cb1), Cb1)
Σa7 ∼ IW ((νa7Ca7), Ca7)
Σb7 ∼ IW ((νb7Cb7), Cb7)
Q ∼ IW ((νqCq), Cq)

h = vec(H) ∼ N(µh,Σh)
σ2

ε ∼ IG(qε, rε)
σ2

z ∼ IG(qz, rz)
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The Gibbs sampler for this model proceeds sampling from the following full
conditional distributions. We omit bold text to denote vector to simplify
notation. Let

θ = Kmm+ βEE + TtKT b
T +Ka1a1t cos(2πt/24) +Kb1b1t sin(2πt/24)

+Ka7a7t cos(2πt/168) +Kb7b7t sin(2πt/168) +Kat

where Tt = diagTt and θ−x denotes the equation for θ when x is subtracted.

• [Yt|.] ∝ [Yt|θ, σε][Zt|σ2
z ,Mt, Yt] ∝ N(Ab,A)

A =
[
I

σ2
ε

+
M ′

tMt

σ2
z

]−1

b =
[
θt

σ2
ε

+
Z ′tMt

σ2
z

]′
• [σ2

z |.] ∝ [σ2
z ]
∏T

t=1[Zt|σ2
z ,Mt, Yt] ∝ IG(q∗z , r

∗
z)

q∗z = qz +
T∑

t=1

mt/2

r∗z = rz + 0.5
T∑

t=1

(Zt −MtYt)′(Yt −MtYt)

• [m|.] ∝ [m]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [Σ−1
m +

1
σ2

ε

T∑
t=1

K ′
mKm]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−Kmm)′Km]′

• [βE |.] ∝ [βE ]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [
1
σ2

βE

+
1
σ2

ε

T∑
t=1

E′E]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−βEE)′E]′

• [bT |.] ∝ [bT ]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [Σ−1
T +

1
σ2

ε

T∑
t=1

K ′
TT

′
tTtKT ]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−TtKT bT )′TtKT ]′
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• [b1t|.] ∝ [b1t|b1t−1,Σb1][b1t+1|b1t,Σb1][Yt|θ, σε] ∝ N(Ab,A)

A = [2Σ−1
b1 +

1
σ2

ε

K ′
b1Kb1sin

2(2πt/24)]−1

b = [b1′t−1Σ
−1
b1 + b1′t+1Σ

−1
b1 +

1
σ2

ε

(Yt − θt
−Kb1b1sin())

′Kb1sin(2πt/24)]′

• [a1t|.] ∝ [a1t|a1t−1,Σa1][a1t+1|a1t,Σa1][Yt|θ, σε] ∝ N(Ab,A)

A = [2Σ−1
a1 +

1
σ2

ε

K ′
a1Ka1cos

2(2πt/24)]−1

b = [a1′t−1Σ
−1
a1 + a1′t+1Σ

−1
a1 +

1
σ2

ε

(Yt − θt
−Ka1a1cos())

′Ka1cos(2πt/24)]′

• [b7t|.] ∝ [b7t|b7t−1,Σb7][b7t+1|b7t,Σb7][Yt|θ, σε] ∝ N(Ab,A)

A = [2Σ−1
b7 +

1
σ2

ε

K ′
b7Kb7sin

2(2πt/24)]−1

b = [b7′t−1Σ
−1
b7 + b7′t+1Σ

−1
b7 +

1
σ2

ε

(Yt − θt
−Kb7b7sin())

′Kb7sin(2πt/24)]′

• [a7t|.] ∝ [a7t|a7t−1,Σa7][a7t+1|a7t,Σa7][Yt|θ, σε] ∝ N(Ab,A)

A = [2Σ−1
a7 +

1
σ2

ε

K ′
a7Ka7cos

2(2πt/24)]−1

b = [a7′t−1Σ
−1
a7 + a7′t+1Σ

−1
a7 +

1
σ2

ε

(Yt − θt
−Ka7a7cos())

′Ka7cos(2πt/24)]′

• [at|.] ∝ [at|at−1,H,Q][at+1|at,H,Q][Yt|θ, σε] ∝ N(Ab,A)

A = [Q−1 +H ′Q−1H +
1
σ2

ε

K ′K]−1

b = [(Hat−1)′Q−1 + a′t+1Q
−1H +

1
σ2

ε

(Yt − θt
−Kat

)′K]′

• [σ2
ε |.] ∝ [σ2

ε ]
∏T

t=1[Yt|θ, σε] ∝ IG(q∗ε , r
∗
ε )

q∗ε = qε + nT/2

r∗ε = rε + 0.5
T∑

t=1

(Yt − θt)′(Yt − θt)

• h = vec(H), [h|.] ∝ [h][at|at−1,H,Q] ∝ N(Ab,A).
Let AT = [a1, . . . , aT ] and AT−1 = [a0, . . . , aT−1], both nxT matrices
and Q̃ = It ⊗Q

A = [Σ−1
h + (A′T−1 ⊗ In)′Q̃−1(A′T−1 ⊗ In)]−1

b = (A′T−1 ⊗ In)′Q̃−1vec(AT ) + Σ−1
h µh
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Unfortunately this full conditional distribution involves matrices of
huge dimensions. However, after some calculation we obtain an equiv-
alent and manageable form:

A = [Σ−1
h +

T∑
t=1

(A′T−1Q̃
−1AT−1]

−1

b = [
T∑

t=1

a′tQ̃
−1AT−1 + µ′hΣ−1

h ]′

• [Q|.] ∝ [Q]
∏T

t=1[at|at−1,H,Q], [Q−1|.] ∝W (C∗, ν∗)

C∗ = [
T∑

t=1

(at −Hat−1)(at −Hat−1)′ + νqCq]−1

ν∗ = νq + T

• [Σb1|.] ∝ [Σb1]
∏T

t=1[b1t|b1t−1,Σb1], [Σ−1
b1 |.] ∝W (C∗, ν∗)

C∗ = [
T∑

t=1

(b1t − b1t−1)(b1t − b1t−1)′ + νb1Cb1]−1

ν∗ = νb1 + T

• [Σa1|.] ∝ [Σa1]
∏T

t=1[a1t|a1t−1,Σa1], [Σ−1
a1 |.] ∝W (C∗, ν∗)

C∗ = [
T∑

t=1

(a1t − a1t−1)(a1t − a1t−1)′ + νa1Ca1]−1

ν∗ = νa1 + T

• [Σb7|.] ∝ [Σb7]
∏T

t=1[b7t|b7t−1,Σb7], [Σ−1
b7 |.] ∝W (C∗, ν∗)

C∗ = [
T∑

t=1

(b7t − b7t−1)(b7t − b7t−1)′ + νb7Cb7]−1

ν∗ = νb7 + T

• [Σa7|.] ∝ [Σa7]
∏T

t=1[a7t|a7t−1,Σa7], [Σ−1
a7 |.] ∝W (C∗, ν∗)

C∗ = [
T∑

t=1

(a7t − a7t−1)(a7t − a7t−1)′ + νa7Ca7]−1

ν∗ = νa7 + T

A-4



• [b10|.] ∝ [b10][b11|b10,Σb1] ∝ N(Ab,A)

A = [
I

σ2
b10

+ Σ−1
b1 ]−1

b = [b1′1Σ
−1
b1 ]′

• [a10|.] ∝ [a10][a11|a10,Σa1] ∝ N(Ab,A)

A = [
I

σ2
a10

+ Σ−1
a1 ]−1

b = [a1′1Σ
−1
a1 ]′

• [b70|.] ∝ [b70][b71|b70,Σb7] ∝ N(Ab,A)

A = [
1
σ2

b70

+ Σ−1
b7 ]−1

b = [b7′IΣ
−1
b7 ]′

• [a70|.] ∝ [a70][a71|a70,Σa7] ∝ N(Ab,A)

A = [
I

σ2
a70

+ Σ−1
a7 ]−1

b = [a7′1Σ
−1
a7 ]′

• [a0|.] ∝ [a0][a1|a0,H,Q] ∝ N(Ab,A)

A = [
I

σ2
a0

+H ′Q−1H]−1

b = [a′1Q
−1H]′

• [b1T |.] ∝ [b1T |b1T−1,Σb1][yT |θ, σε] ∝ N(Ab,A)

A = [Σ−1
b1 +

1
σ2

ε

K ′
b1Kb1sin

2(2πT/24)]−1

b = [b1′T−1Σ
−1
b1 +

1
σ2

ε

(yT − θT
−Kb1b1sin)′Kb1sin(2πT/24)]′

• [a1T |.] ∝ [a1T |a1T−1,Σa1][yT |θ, σε] ∝ N(Ab,A)

A = [Σ−1
a1 +

1
σ2

ε

K ′
a1Ka1sin

2(2πT/24)]−1

b = [a1′T−1Σ
−1
a1 +

1
σ2

ε

(yT − θT
−Ka1a1sin)′Ka1sin(2πT/24)]′

A-5



• [b7T |.] ∝ [b7T |b7T−1,Σb7][yT |θ, σε] ∝ N(Ab,A)

A = [Σ−1
b7 +

1
σ2

ε

K ′
b7Kb7sin

2(2πT/24)]−1

b = [b7′T−1Σ
−1
b7 +

1
σ2

ε

(yT − θT
−Kb7b7sin(.))

′Kb7sin(2πT/24)]′

• [a7T |.] ∝ [a7T |a7T−1,Σa7][yT |θ, σε] ∝ N(Ab,A)

A = [Σ−1
a7 +

1
σ2

ε

K ′
a7Ka7sin

2(2πT/24)]−1

b = [a7′T−1Σ
−1
a7 +

1
σ2

ε

(yT − θT
−Ka7a7sin(.))

′Ka7sin(2πT/24)]′

• [aT |.] ∝ [aT |aT−1,H,Q][yT |θ, σε] ∝ N(Ab,A)

A = [Q−1 +
K ′K

σ2
ε

]−1

b = [(HaT−1)′Q−1 +
1
σ2

ε

(yT − θT
−KaT

)′K]′
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A.1.2 Model 2

Zt = MtYt + εzt εzt ∼ N(0, σ2
zImtXmt)

Yt = Kmm + βEE + TtKTbT + K̃∆̃Φ′
.t + εt εt ∼ N(0, σ2

ε InXn)

∆̃ =


δ1

δ2
. . .

δp∗


with each δi being a p-dimensional vector, while K̃ is a nxpp∗ matrix formed
by the p∗ kernel K̃ = [K1, . . . ,Kp∗], each Ki with dimension nxp.

m ∼ N(0,Σm)
βE ∼ N(0, σ2

βE
)

bT ∼ N(0,ΣT )
δ ∼ N(0,Σδ)
σ2

ε ∼ IG(qε, rε)
σ2

z ∼ IG(qz, rz)

where δ = vec(∆).
The Gibbs sampler for this model proceeds sampling from the following full
conditional distributions. We omit bold text to denote vector to simplify
notation. Let

θ = Kmm+ βEE + TtKT b
T +Ka1a1t cos(2πt/24) +Kb1b1t sin(2πt/24)

+Ka7a7t cos(2πt/168) +Kb7b7t sin(2πt/168) +Kat

where Tt = diagTt and θ−x denotes the equation for θ when x is subtracted.

The Gibbs sampler for this model proceeds sampling from the following full
conditional distributions. We omit the bold text to denote vector to simplify
notation. Let

θt = Kmm+ βEE + TtKT b
T + K̃∆̃Φ′

.t

where Tt = diagTt and θ−x denotes the equation for θ when x is subtracted.

• [Yt|.] ∝ [Yt|θ, σε][Zt|σ2
z ,Mt, Yt] ∝ N(Ab,A)

A =
[
I

σ2
ε

+
M ′

tMt

σ2
z

]−1

b =
[
θ′t
σ2

ε

+
Z ′tMt

σ2
z

]′
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• [σ2
z |.] ∝ [σ2

z ]
∏T

t=1[Zt|σ2
z ,Mt, Yt] ∝ IG(q∗z , r

∗
z)

q∗z = qz +
T∑

t=1

mt/2

r∗z = rz + 0.5
T∑

t=1

(Zt −MtYt)′(Yt −MtYt)

• [m|.] ∝ [m]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [Σ−1
m +

1
σ2

ε

T∑
t=1

K ′
mKm]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−Kmm)′Km]′

• [βE |.] ∝ [βE ]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [
1
σ2

βE

+
1
σ2

ε

T∑
t=1

E′E]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−βEE)′E]′

• [bT |.] ∝ [bT ]
∏T

t=1[Yt|θ, σε] ∝ N(Ab,A)

A = [Σ−1
T +

1
σ2

ε

T∑
t=1

K ′
TT

′
tTtKT ]−1

b = [
1
σ2

ε

T∑
t=1

(Yt − θt
−TtKT bT )′TtKT ]′

• [σ2
ε |.] ∝ [σ2

ε ]
∏T

t=1[Yt|θ, σε] ∝ IG(q∗ε , r
∗
ε )

q∗ε = qε + nT/2

r∗ε = rε + 0.5
T∑

t=1

(Yt − θt)′(Yt − θt)

• for δ = vec(∆) we write the model in matrix form

Y = Λ + K̃∆̃Φ′ + U

Λ = Kmm · ones(1, T ) + βEE · ones(1, T ) + diag(KT b
T )T
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where Y is the nxT matrix of the process Y with the different sta-
tions in rows and different hours in columns, T the corresponding nxT
matrix of temperatures, Φ is a Txp∗ matrix of the first p∗ eigenvec-
tors and U = [ε1, . . . , εT ]. The variance associated to this last term is
Σ̃ε = var(vec(U)) = ITxT ⊗ Σε = ITxT ⊗ σεInxn. Thus we have

vec(Y ) = (Φ⊗ K̃)vec(∆̃) + vec(Λ) + vec(U)

Let G a matrix formed by zero and one such that vec(∆̃) = Gvec(∆),
thus

vec(Y ) = (Φ⊗ K̃)Gδ + vec(Λ) + vec(U)

It is possible now to write the full conditional distribution for δ.

[δ|.] ∝ [δ][Y |∆, G,Λ, σε,Φ, K̃] ∝ N(Ab,A)

A = [[(Φ⊗ K̃)G]′Σ̃ε[(Φ⊗ K̃)G] + Σ−1
δ ]−1

b = [[vec(Y )− vec(Λ)]′Σ̃ε[(Φ⊗ K̃)G] + µ′δΣ
−1
δ ]′

Unfortunately this full conditional involves matrices of huge dimen-
sions (for example (Φ⊗ K̃) is a (Tn)xp∗p∗p=363000x4800). Thus we
rewrite model in vector form and obtain

A = [
T∑

t=1

[Φdt(Ip∗xp∗ ⊗ K̃)G]′Σ−1
ε [Φdt(Ip∗xp∗ ⊗ K̃)G] + Σ−1

δ ]−1

b = [
T∑

t=1

(Yt − λt)′Σ−1
ε Φdt(Ip∗xp∗ ⊗ K̃)G]′

where Φdt = Φ′
t ⊗ Inxn
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