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Classically, morphine activates G inhibitory (Gi) protein
coupled to l-opioid receptors (lOR) to inhibit adenylyl
cyclase activity and decrease neuronal cAMP levels (Uhl
et al. 1994). However, recent studies suggest that opioids can
exert stimulatory effects either at doses well below those
producing neuronal inhibition or after chronic exposure. In
cultured dorsal root ganglion neurons, nanomolar concentra-
tions of opioid agonists increase action potential duration,
whereas micromolar concentrations produce the opposite
effect (Chen et al. 1988; Shen and Crain 1989). This dual
action of opioids has been explained on the basis of a
bimodal opioid receptor model. In this model, ultra-low
doses of an agonist activate a Gs-coupled mode of the opioid
receptor to activate adenylyl cyclase and increase neuronal
excitability. In contrast, higher doses of opioids activate a

Gi/Go-coupled mode of the receptor to inhibit adenylyl
cyclase activity and reduce neuronal excitability. This
bimodal model of morphine action has been invoked to
explain paradoxical hyperalgesia after chronic opioid admin-
istration. Accordingly, the predominance of the Gs-coupled
mode of the lOR during chronic treatment opposes the
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Abstract

Although alterations in l-opioid receptor (lOR) signaling

mediate excitatory effects of opiates in opioid tolerance, the

molecular mechanism for the excitatory effect of acute low

dose morphine, as it relates to lOR coupling, is presently

unknown. A pronounced coupling of lOR to the a subunit of G

inhibitory protein emerged in periaqueductal gray (PAG) from

mice systemically administered with morphine at a dose

producing acute thermal hyperalgesia. This coupling was

abolished in presence of the selective lOR antagonist D-Phe–

Cys–Tyr–D-Trp–Orn–Thr–Pen–Thr–NH2 administered at the

PAG site, showing that the low dose morphine effect is trig-

gered by lOR activated G inhibitory protein at supraspinal

level. When Gbc downstream signalling was blocked by intra-

PAG co-administration of 2-(3,4,5-trihydroxy-6-oxoxanthen-

9-yl)cyclohexane-1-carboxylic acid, a compound that inhibits

Gbc dimer-dependent signaling, a complete prevention of low

dose morphine induced acute thermal hyperalgesia was

obtained. Phospholipase C b3, an enzyme necessary to

morphine hyperalgesia, was revealed to be associated with

Gbc in PAG. Although opioid administration induces a shift in

lOR-G protein coupling from Gi to Gs after chronic adminis-

tration, our data support that this condition is not realized in

acute treatment providing evidence that a separate molecular

mechanism underlies morphine induced acute excitatory

effect.

Keywords: l-opioid receptor, G protein, hyperalgesia, M119,

morphine, phospholipase C.
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analgesic response eliciting tolerance associated-hyperalgesia
through adenylyl cyclase activation (Crain and Shen 1990,
1992). Alternatively, different authors showed that excitatory
signaling of opioid receptors in chronic morphine treatment
can also occur by Gbc activation of adenylyl cyclase (Wang
and Gintzler 1997; Gintzler and Chakrabarti 2001). Yet,
extremely low doses of morphine can induce acute excitatory
effects. Peripheral application of a very low dose of
morphine induces a flexor response (Ono et al. 2002). The
stimulation of sensory nerve endings induced by morphine
through peripheral lOR activation and its downstream
mechanisms has been ascribed to activation of phospholipase
C (PLC) through substance P release from polymodal C
fibers (Ono et al. 2002). Extremely low doses of systemic
morphine can elicit acute hyperalgesia in animal model of
pain such as tail flick (Crain and Shen 2001; Esmaeili-
Mahani et al. 2008), Freund’s adjuvant-induced arthritic rats
(Kayser et al. 1987), and hot plate tests (Galeotti et al.
2006). A specific signaling pathway for morphine-induced
acute thermal hyperalgesia has been shown via lOR
activation of PLC/protein kinase C inositol-lipid signalling
pathway (Galeotti et al. 2006). Among the large PLC family,
the b3 isoform of PLC appeared to be implicated in inducing
this excitatory effect whereas adenylyl cyclase levels
remained unmodified in CNS after low dose morphine
exposure (Galeotti et al. 2006; Esmaeili-Mahani et al. 2008).
Although alterations in lOR signaling mediate excitatory
effects of opiates in opioid tolerance and dependence, these
excitatory effects have not been directly examined in an
in vivo acute treatment paradigm with respect to lOR-G
protein coupling. Thus, this work investigates lOR-G protein
coupling as well as coupling between Gbc and PLC at
supraspinal level in low dose morphine-induced acute
hyperalgesia.

Methods and materials

Animals
Pathogen free sexually mature male albino Swiss Webster mice

(Charles River, Wilmington, MA, USA) weighing 23–30 g were

used. Five-six mice were housed per cage. The animals were fed a

standard laboratory diet and water ad libitum and kept at 23 ± 1�C
with a 12-h light/dark cycle. All experiments were carried out in

accordance with the European Community Council Directive of

November 24, 1986 for experimental animal care. All efforts were

made to minimize the number of animals used and their suffering. All

the animals were previously habituated to the laboratory according to

Abbott et al. (1986).

Drug treatment
The following drugs were used: D-Phe–Cys–Tyr–D-Trp–Orn–Thr–

Pen–Thr–NH2 (CTOP), morphine HCl (Sigma Chemicals, St Louis,

MO, USA); 2-(3,4,5-trihydroxy-6-oxoxanthen-9-yl)cyclohexane-1-

carboxylic acid (M119). Drugs were administered in a volume of

0.2 lL per mouse by intracranial infusion, and 10 mL/kg by

intraperitoneal (i.p.) injection. Morphine and CTOP were dissolved

in isotonic (NaCl 0.9%) saline solution immediately before use.

M119 was initially solubilized in dimethylsulfoxide and subse-

quently diluted in distilled water. Morphine was administered i.p.;

CTOP and M119 were administered into the periaqueductal gray

(PAG) immediately before morphine administration; saline was

administered i.p. and dimethylsulfoxide vehicle intra-PAG.

Different groups of mice received: i.p. control saline or intra-PAG

vehicle; 1 lg/kg morphine in presence or absence of CTOP (80 ng/

mouse) administered intra-PAG immediately before morphine; 1 lg/
kg morphine or saline in the presence or absence of intra-PAG M119

(5–40 ng/mouse). CTOP and M119 were also administered alone.

Other different groups received i.p. injection of saline, morphine

(7 mg/kg) or twice daily morphine (10 mg/kg) for 7 days.

Surgery and microinjection
Cannula implantation was performed as previously described

(Carvalho-Netto et al. 2007). Briefly, mice were implanted with

stainless steel guide cannula (32-gauge) under anesthesia. Stereo-

taxic coordinates (Paxinos and Franklin 2001) for the PAG were,

respectively, 4.2 mm posterior to bregma, 1.3 mm lateral to the

midline, and 2.2 mm ventral to the skull surface, with the guide

cannula angled 26� to the vertical. A dummy cannula was inserted

into each guide-cannula immediately after each surgery to reduce

the incidence of occlusion. Five to seven days after surgical

recovery, solutions were injected into the PAG by microinjection

unit which extended 1.0 mm beyond the tips of the guide cannula.

Each microinjection unit was attached to a 5-lL Hamilton

microsyringe via polyethylene tubing and administration was

controlled by an infusion pump programmed to deliver a volume

at rate of 0.1 lL over a period of 30 s. At the conclusion of the

experiments 1% Evans blue dye was administered to mice according

to the microinjection procedure described above for intra-PAG

administration. A post-mortem histological control of the injection

site was performed on cryostat sections of unfixed brains previously

frozen. The data of any mice were excluded from statistical analysis

if the cannula tip was outside the PAG or if the region had sustained

extensive damage. The brains from mice which were further

submitted to western blot were extracted leaving the cannula

implanted in the brain. The location of cannula inside PAG was

observed under stereomicroscope (Leica MZ12.5, Leica, Solms,

Germany). Only specimens from mice with cannula path inside the

PAG were used for western blot experiments.

Hot plate test
Mice were placed inside a stainless steel container, which was set

thermostatically at 52.5 ± 0.1�C in a precision water-bath. Here we

have used lower temperature in hot plate test (52�C instead of 54�C)
to reveal possible subtle alterations that may occur in basal

nociception. The licking latency was measured immediately prior

i.p. morphine injection. Hot plate test started 15 min after morphine

administration and licking latencies were measured at 15-min

intervals for 60 min after starting time. A 30 s cut-off to prevent

tissue damage was used. The endpoint for the licking response was

the first paw lick of the front paw. Increased nociception was seen as

shorter latencies to the responses evaluated. The test was performed

in a blind fashion. Mice pre-treated with drugs administered as

previously described, were evaluated for licking latency basal value.
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Rota-rod and hole-board test
For both tests, animals were pre-treated with saline (i.p.), intra-PAG

vehicle or M119 (40 ng/mouse), 1 lg/kg morphine (i.p.) in presence

or absence of M119 and submitted to rota-rod and hole-board

(Ghelardini et al. 2008). Twelve mice per group were tested. The

rota-rod test apparatus consists of a base platform and a rotating rod

(3 · 30 cm) placed at a height of 15 cm from the base and divided

into five equal sections by six disks. Up to five mice were tested

simultaneously on the apparatus, with a rod-rotation speed of

16 rpm. The integrity of motor coordination was assessed on the

basis of the number of falls from the rod in 30 s, according to

Vaught et al. (1985). Performance time was measured before and

15, 30 and 45 min after the administration of the investigated

compounds. The hole board test consisted of a 40 cm square plane

with 16 flush-mounted cylindrical holes (3 cm diameter) distributed

four by four in an equidistant, grid-like manner. Mice were placed

on the center of the board one by one and allowed to move about

freely for a period of 10 min each. Two electric eyes, crossing the

plane from midpoint to midpoint of opposite sides, thus dividing the

plane into four equal quadrants, automatically signaled the move-

ment of the animal (counts in 5 min) on the surface of the plane

(spontaneous motility). Miniature photoelectric cells, in each of the

16 holes, recorded (counts in 5 min) the exploration of the holes

(inspection activity) by the mice. Mice pre-treated with 1 lg/kg
morphine (i.p.) in presence or absence of intra-PAG CTOP (80 ng/

mouse) were previously submitted to both tests (Ghelardini et al.
2008).

lOR-G protein coupling assay
Mice used for these experiments were killed 15 min after 1 lg/kg or
7 mg/kg morphine administration at which time maximum thermal

hyperalgesic/analgesic effect is obtained (Galeotti et al. 2006) or

7 days after repeated morphine administration at the doses previ-

ously described. lOR-G protein coupling assay data after acute and

chronic high-dose morphine administration are largely known

(Sánchez-Blázquez et al. 2001; Wang et al. 2005; Askari et al.
2008) but were used to support the method utilized in this study. The

animals were anesthetized with CO2, cervically dislocated, decap-

itated and the brain dissected, put immediately in liquid nitrogen and

then stored at )80�C. PAG brain area from control and treated mice

was dissected on a cold plate. Enriched synaptic membranes were

prepared from PAG of mice from each treatment group as described

by Gray and Whittaker (1962). Protein concentration was deter-

mined according to Lowry et al. (1951). The association of G

protein coupled receptors with G proteins was investigated using co-

immunoprecipitation procedure as previously described (Wang et al.
2005). Briefly, PAG membranes were incubated with Krebs–Ringer

and then solubilized in immunoprecipitation buffer (25 mM

HEPES, pH 7.5, 200 mM NaCl, 2 mM MgCl2, 1 mM EDTA,

0.2% 2-mercaptoethanol, 50 lg/mL leupeptin, 25 lg/mL pepstatin

A, 0.01 U/mL soybean trypsin inhibitor, 0.04 mM phenylmethyl-

sulfonyl fluoride) containing 0.5% digitonin, 0.2% sodium cholate

and 0.5% NP-40 (Sigma Chemicals, St Louis, MO, USA)

emulsifying agent with end-over-end rotation for 60 min at 4�C
and further centrifugated at 50 000 g. The supernatant was divided

for separate passage through immunoaffinity columns containing

immobilized antibodies to Gas, Gai, Gao, Ga11, Gaq or Gb
proteins. Anti-G protein antibodies (Santa Cruz Biotechnology,

Santa Cruz, CA, USA) were covalently cross-linked to protein-G-

conjugated resin in Seize-X protein G immunoprecipitation kit

(Pierce-ENDOGEN, Rockford, IL, USA) according to the manu-

facturer instructions. G protein complexes in solubilized brain

lysates were isolated by immunoprecipitation in which 200 lg
solubilized brain membrane extracts were incubated with immobi-

lized anti-G-protein G-resin at 4�C overnight. After centrifugation

and three washes with phosphate-buffered saline (pH 7.2) at 4�C,
the G protein complexes were eluted with 190 lL of antigen elution

buffer (pH 2.8) and immediately neutralized by adding 20 lL of

1.5 M Tris buffer (pH 8.8). The neutralized G complexes were

combined with 180 lL of 2· polyacrylamide gel electrophoresis

sample preparation buffer (62.5 mM Tris–HCl, pH 6.8; 20%

glycerol, 4% sodium dodecyl sulfate; 10% 2-mercaptoethanol,

0.1% Bromophenol Blue), boiled for 5 min and then submitted to

western blotting using a specific antibody directed against the

amino-terminal region of the lOR for Ga and PLCb1-4 for Gb
(Santa Cruz Biotechnology). 18% and 4–15% or 4–20% Tris–HCl

gels were used respectively for G-protein-lOR complex and

specificity assay of antibodies or Gb-PLCb1-4 co-immunoprecipita-

tion experiments. The specificity of the anti-Ga, anti-Gb and

PLCb1-4 antibodies was determined by western blotting using

100 lL of mouse whole brain homogenate with or without antigen

peptide (25 lg) pre-absorption for 30 min. The specificity of

anti-lOR antibody was assayed on brain tissue from knockout

brain mouse (GR21)/); a generous gift of Dr Brigitte Kieffer,

Institut de Génétique et de Biologie Moléculaire et Cellulaire,

Département Neurobiologie et génétique, Illkirch, France). A highly

acidic (pH 2.8) or neutral elution buffer was used to elute antigens

from the Ga immuno-complexes in order to establish if the

experimental procedure yielded lOR with an approximate

molecular weight of respectively 53 and 67 kDa (Chen et al.
1995; Wang et al. 2005).

Western blot analysis
Western blot was performed as previously described in detail (Pan

et al. 1995). In summary, immunoprecipitates (from 1 lg/lL
protein lysate) of Gai, Gao, Gaq, Ga11, Gas and Gb protein from

PAG of morphine, CTOP, M119, saline and vehicle pre-treated mice

were solubilized in sodium dodecyl sulfate buffer and separated on

polyacrylamide gels (1.5 mm). Proteins were transferred to nitro-

cellulose (1.5 h at 190 mA) and the membranes were blocked in

phosphate-buffered saline containing 3% bovine serum albumin for

1 h before addition of anti-lOR or anti-Gb antibody at 1 : 500

dilution. The blots were stripped and reprobed with antibodies

against various G proteins using the antisera against Gai, Gao, Gaq,
Ga11, Gas and Gb protein as probes at 1 : 1000 dilution. The

blotting was visualized using a chemiluminescence detection system

(Super Signal West Fento, Pierce Biotechnology Inc.) and quantified

with the Versa Doc 1000 Imaging System (Bio-Rad Laboratories,

Hercules, CA, USA). Three independent experiments were done at

the same protein concentration for each experimental condition.

Specific bands were quantitated by densitometric scanning.

Immune complex PLC activity measurement
Phospholipase C enzyme activity in anti-Gb immunoprecipitates

was measured as described in Allan et al. (1997). Immune

complexes for Gb (30 lL) were assayed for 15 min at 37�C in
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the presence of 35 mM sodium phosphate, pH 6.8, 70 mM KCl,

0.8 mM EGTA, 0.8 mM CaCl2, 0.20 mM [3H]phosphatidylinositol

4,5-bisphosphate (8Ci/nmol, Perkin-Elmer, Waltham, MA, USA),

and 2.86 mM (0.18%, v/v) Triton X-100 in a final volume of 50 lL.
Enzyme activity was quantitated as the release of [3H] Ins(1,4,5)P3
measured by liquid scintillation spectroscopy. Isozyme-specific

activity was calculated by subtracting background [3H] Ins(1,4,5)P3
(release present in no antibody control samples) from the activity

measured in immune complexes. Data were calculated as nanomoles

Ins(1,4,5)P3 product formed per minute per milligram protein

present in the fraction from which the enzyme was immunoprecip-

itated. All conditions were run in triplicate.

Statistical analysis
All experimental results are given as mean ± SEM. Analysis of

variance followed by Fisher protected least significant difference

procedure for post hoc comparisons was used to verify significance

between two means for data obtained from co-immunoprecipitation

of lOR-G protein or Gbc-PLCb complexes after hyperalgesic/

analgesic dose and chronic morphine administration. Unpaired

repeated measures ANOVA followed by Scheffè test paired post hoc
was applied to hot plate and rota-rod test results. Data were analysed

with the Statview Software for the Macintosh (1992, Apple,

Cupertino, CA, USA).

Results

Co-immunoprecipitation of lOR-G protein complexes after
hyperalgesic or analgesic dose and chronic morphine
administration
Under non-denaturing conditions that keep lOR-G protein
complexes intact, specific G proteins (Gi, Go, Gq, G11 and
Gs) together with their coupled receptors were immunopre-
cipitated with selective anti-Ga antibodies from solubilized
synaptic membranes obtained from PAG of the different
treatment groups under both basal and morphine-stimulated
conditions. lOR coupling to each of the G protein subtypes
in the different treatment groups is shown in western blots of
the Ga immunoprecipitates probed with the anti-lOR-
specific antibody (Fig. 1a). In PAG, lOR coupled exclu-
sively to Go in saline and CTOP treated mice, and to both Go
and Gi in low dose morphine-treated mice. In PAG of mice
treated with morphine in presence of CTOP, coupling to Gi
was markedly decreased from that in the morphine-treated
animals (Fig. 1a). Morphine i.p. administration at analgesic
dose dramatically increased lOR-Gi coupling (Fig. 1a). Go
and Gs coupling by lOR weakly increased with respect to
control; however these were not statistically significant
(Fig. 1a). Chronic morphine decreased Gi coupling by
lOR. A pronounced coupling to Gs appeared in PAG from
mice submitted to chronic morphine treatment (Fig. 1a).
Densitometric scanning of immunoprecipitated Ga proteins
was used as loading control. The relative amount of each of
these proteins was not significantly different with respect to
saline in all experimental conditions (Fig. 1a). Pre-absorption

with 25 lg of their respective antigen peptides drastically
abolished the detection of targeted G proteins by western
blotting in mouse brain homogenate (Fig. 1b). No immuno-
reactive band was observable in brain extracts from lOR)/)

mice in presence of anti-lOR antibody (Fig. 1b). Elution
with the highly acetic antigen elution buffer yielded lOR
with an apparent molecular weight of 53 kDa (Fig. 1b).
Elution with a neutral pH predominantly yielded lOR with
an apparent molecular weight of 67 kDa (Fig. 1b).

Effect of M119 compound in morphine induced
hyperalgesia
Morphine hyperalgesia induced by i.p. 1 lg/kg dose in the
mouse hot plate test was completely prevented by intra-PAG
pre-treatment with M119 at 5–40 ng/mouse (Fig. 2a). This
effect appeared to be dose dependent. The M119 compound,
when administered alone at the same doses, did not induce
any significant change in licking latency (Fig. 2b).

Rota-rod test and spontaneous activity meter
The spontaneous motility as well as inspection activity of mice
were unmodified by pre-treatment with drugs in comparison
with control group (Fig. 3a). The number of falls from the
rotating rod evaluated before and 15, 30 and 45 min after the
beginning of the rota-rod test showed the lack of any
impairment in motor coordination of mice submitted to
the above treatments in comparison with control group
(Fig. 3b).

Gbc co-immunoprecipitation with PLCb
In order to test the hypothesis that Gbc associates with PLCb
inmouse PAG, anti-Gb immune complexes were isolated from
PAG of mice 15 min following 1 lg/kg morphine adminis-
tration and probed for PLCb1-4 immunoreactivity. We found
that Gb immunoprecipitates with PLCb3 whereas immunore-
activity associated with anti-PLCb1, b2 and b4 was not
different from the saline background (Fig. 4a). Pre-absorption
with 25 lg of their respective antigen peptides drastically
abolished the detection of PLCb1-4 and Gb bywestern blotting
in mouse brain homogenate (Fig. 4b). Anti-Gb immune
complexes were isolated from PAG of mice 15 min following
low dose morphine administration and assayed for associated
PLC activity. These results demonstrate that Gb associated
with PLCb3 in low dose morphine administration and this was
catalytically active (Fig. 5). PLC activity could not be detected
in anti-Gb immune complexes isolated from PAG of mice
previously administered with low morphine dose in presence
of M119 or CTOP at the higher effective doses (Fig. 5).

Histology
Histology confirmed that 95% mice used in the experiments
had cannula placement within the PAG. Only data from mice
in which the cannula was correctly placed within the PAG
were considered.
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Discussion

lOR-G protein coupling after morphine administration to
mice
Although changes in lOR signaling have been previously
demonstrated in the excitatory effects of opiates throughout

opioid tolerance and dependence, alterations in lOR signal-
ing that mediate excitatory effects in an in vivo treatment
acute paradigm have not been yet studied. To determine
whether alterations in lOR-G protein coupling occur at
lOR-expressing CNS tissue after morphine low dose
systemic administration, we isolated the PAG from mice

(a)

(b)

Fig. 1 (a) G protein-lOR coupling in PAG from mice treated with

morphine – A representative western blots of the presence of lOR

protein in immunoprecipitates of i, o, q, 11, and s subunits of Ga

protein in PAG from mice submitted to acute or chronic morphine

treatments in presence or absence of CTOP is shown at the bottom of

the figure. The blots stripped and reprobed with antibodies against the

above G proteins, are shown for the different treatments. Band optical

density for Ga protein subunits after different treatments is repre-

sented at the middle of the figure. Each bar represents the mean

density of each Ga subunit obtained from three independent experi-

ments and expressed as percent of corresponding saline. Statistics

were applied to the raw data prior to transformation to percent. Mean

value of lOR density detected in immunoprecipitates of considered

Ga subunits is represented at the top of the figure. Single values were

normalized to surrounding background and expressed as arbitrary

units. **a < 0.01 significant difference in comparison with corre-

sponding saline value. Vertical lines represent SEM. (b) Specificity

assay of anti-G protein and anti-lOR antibodies – Homogenates from

whole mouse brain were submitted to western blotting after incubation

with the proper antibody in presence or absence of respective

immunogen sequence in excess as shown in the figure. Western

blotting was performed on extracts of brain tissue from normal (+/+)

and lOR knockout ()/)) mice with anti-lOR antibody. Molecular

weight of lOR immunoprecipitated by the anti-lOR antibody after

elution with an acidic (lane 1) versus a neutral (lane 2) buffer is re-

ported in the last column. ___, not pre-absorbed; - - -, pre-absorbed.
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receiving systemic morphine at a dose which produces acute
thermal hyperalgesia (Crain and Shen 2001; Galeotti et al.
2006; Esmaeili-Mahani et al. 2008). PAG is an important site
of opioid analgesia (Yaksh et al. 1976) and tolerance to the
antinociceptive effects of both systemic and locally applied
morphine (Siuciak and Advokat 1987; Lane et al. 2004). In
mouse PAG, lOR activation hyperpolarizes most neurons via
activation of G-protein-gated inwardly rectifying potassium
channels (Vaughan et al. 2003), and also inhibits GABA
release from nerve terminals (Hack et al. 2003), consistent
with the disinhibitory mechanisms proposed to be responsi-
ble for PAG-mediated opioid analgesia. Otherwise, opioid
effect may extend beyond inhibition in the PAG. In brain
slices, the excitatory action of NMDA on PAG neurons is
potentiated by a lOR agonist at low nanomolar concentration
(Kow et al. 2002). Exposure of PAG neurons to selective
lOR antagonist CTOP completely reversed the morphine
low dose induced acute hyperalgesic response showing that
lOR activation in PAG is necessary to the excitatory
response (Ghelardini et al. 2008). Under non-denaturing
conditions that keep lOR-G protein complexes intact,

specific Ga proteins together with their coupled receptors
were immunoprecipitated with selective anti-Ga antibodies
from solubilized synaptic membranes obtained from the PAG
under both basal and morphine-stimulated conditions. In our
experiments, lOR coupled exclusively to Go in PAG from
control mice. When mice were administered with systemic
low morphine dose, a pronounced coupling of lOR to a
subunit of Gi protein emerged in PAG area; this coupling was
markedly decreased from that in the morphine-treated
animals in presence of selective lOR antagonist CTOP
administered at the PAG site showing that low dose
morphine effect is triggered by lOR activated Gi protein at
supraspinal level. Morphine administration to mice at
analgesic dose induced a dramatic increase in lOR coupling
to a subunit of Gi and a small, non-significant increase in
lOR coupling to Go and Gs with respect to control, in
agreement with previous results (Sánchez-Blázquez et al.
2001; Askari et al. 2008). When mice were submitted to
chronic morphine administration, the coupling of lOR to Gs
protein emerged in PAG whereas Gi protein-lOR coupling

(a)

(b)

Fig. 3 (a) Morphine and M119 administration do not induce any sig-

nificant difference with respect to saline or vehicle on inspection

activity and spontaneous mobility evaluated in the mouse hole board

test. (b) Lack of effect of morphine and M119 administration on motor

co-ordination evaluated in the mouse rota rod test. Vertical lines rep-

resent SEM.

(a)

(b)

Fig. 2 Effect of M119 co-administration on morphine induced hyper-

algesic response-Licking latencies were measured before and after

(15, 30, 45 and 60 min) i.p. morphine administration (1 lg/kg) in

presence or absence of M119 intra-PAG co-administration at different

doses (a). Licking latencies measured after M119 intra-PAG admin-

istration to mice are represented in (b). Each value represents the

mean ± SEM of licking latencies. Vertical bars represent SEM;

**a < 0.01 significant difference in comparison with corresponding

basal value. MF, morphine. The number of animals used for each

experimental condition is reported at the top of control bars.
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dramatically decreased as previously obtained by different
authors (Crain and Shen 1998; Wang et al. 2005). In the
classic G protein signaling cascade, Gbc subunits are
released as a complex from the a subunit after activation
of an associated receptor at the cell surface (Smrcka 2008).
Bonacci et al. identified a compound, M119, that bound to
Gbc subunit and selectively inhibited Gbc downstream
signaling from the Gbc subunit (Bonacci et al. 2006;
Mathews et al. 2008). In our experiments, we used a hot
plate test for evaluating thermal nociception in mice. Intra-
PAG co-administration of M119 at the higher dose caused
complete prevention of low dose morphine-induced acute

thermal hyperalgesia demonstrating that thermal hyper-
algesia is dependent on Gbc at the supraspinal level.

Gbc-PLCb interaction in low dose morphine induced
hyperalgesia
Opioids are known to generate different neurochemical
adaptations as inhibition of adenylyl cyclase (Childers 1991),
activation of inwardly rectifying K+ channels (North et al.
1987), and inhibition of voltage-activated calcium channels
(Schroeder et al. 1991). Additionally, there is growing
evidence that modulation of phosphoinositide-specific PLC,
and consequently altered formation of inositol 1,4,5trisphos-
phate/diacylglycerol/Ca2+ signaling, plays a key role in
mediating excitatory opioid effects (Smith et al. 1999). PLC
is one of only two signaling effector enzymes, the other
being adenylyl cyclase, whose activity is directly modulated
by opioids and several physiological studies have implicated
PLC-linked pathways in a diverse range of opioid-modulated
events as in vivo pain regulation (Bonacci et al. 2006;
Galeotti et al. 2006; Esmaeili-Mahani et al. 2008; Mathews
et al. 2008) and opioid tolerance (Smith et al. 1999). Among
the large PLC family, the PLCb3 isoform was localized in
regions of the brain important for nociceptive transmission,
including PAG, and was activated in this region after
morphine administration to mice at a hyperalgesic dose
(Bianchi et al. 2009). Galeotti et al. (2006) recently demon-
strated that low dose morphine induced hyperalgesic effect is
mediated by the activation of PLCb3. Studies in vitro showed
that G protein mediation, pertussis toxin-insensitive (via the

Fig. 5 Phospholipase C activity present in anti-Gb immunoprecipi-

tates from PAG of mice previously administered with morphine (1 lg/

kg) in presence or absence of CTOP (80 ng) or M119 (40 ng). Each

bar represents PLC activity obtained from three independent experi-

ments under different treatment conditions. Immune complex PLC

activity was measured and expressed as pmol Ins(1,4,5)P3 product

formed/min/mg protein. Vertical lines represent SEM;**a < 0.01.

(a)

(b)

Fig. 4 (a) Representative blot of co-immunoprecipitation of Gb pro-

teins with PLCb1-4 in PAG from low dose morphine administered mice

is shown in figure. The blots stripped and reprobed with Gb antibody

are shown at the bottom of the figure. Band optical density for Gb

protein subunits after saline or morphine is represented in the middle

of the figure. Each bar represents the mean density of Gb subunit

obtained from three independent experiments and expressed as per-

cent of corresponding saline. Statistics was applied to the raw data

prior to transformation to percent. Mean value of PLCb subunit density

detected in immunoprecipitates of Gb is represented at the top of the

figure. Single values were normalized to surrounding background and

expressed as arbitrary units. **a < 0.01 significant difference in com-

parison with corresponding saline value. Vertical lines represent SEM.

(b) Specificity assay of anti-PLCb1-4 and anti-Gb protein antibodies –

western blot of whole mouse brain tissue pre-incubated with the proper

antibody in presence or absence of respective immunogen sequence

in excess are shown in figure.
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a subunit of Gq) or sensitive (via the Gbc subunit of Gi/Go)
is a prerequisite for receptor activation of PLCb isoforms
(Wu et al. 1992; Smrcka and Sternweis 1993). In order to
test the hypothesis that Gbc associates with PLCb subfamily
in PAG after low morphine dose administration, anti Gb-
immune-complex were isolated from PAG area and probed
for anti-PLCb immunoreactivity after saline or low dose
morphine administration. Our results show that, at 15 min
after morphine administration which corresponds at the time
of the maximum hyperalgesic effect, PLCb3 was associated
with Gb and appeared catalytically active; this effect was
reversed by supraspinal administration of the Gbc blocker,
M119. When lOR was blocked at supraspinal site by CTOP,
phospholipase C activity remained unmodified showing that
Gbc-dependent PLC activation is dependent on lOR.

Conclusion

Collectively, our data support that hyperalgesic doses of
morphine exposure induces a Gbc-dependent stimulation of
PLCb3 triggered from Gi through its coupling to lOR at
supraspinal level. Previous findings demonstrated that the a
subunit of the Gi triggered the analgesic effect at higher
morphine doses (Sánchez-Blázquez et al. 2001), suggesting
a bimodal opioid receptor induced activation of the same
protein. A similar pattern was previously proved in smooth
muscle where the bc subunit of the Gi protein has been
showed to activate PLC signaling whereas the a subunit
inhibits adenylyl cyclase activity (Murthy and Makhlouf
1996). The b3 isoform of PLC appears to be implicated also
in analgesic morphine effects. When an acute analgesic
morphine dose is administered to PLCb3 knockout or down-
regulated mice, a potentiation in the analgesic effect was
obtained by different authors (Xie et al.1999; Bonacci et al.
2006; Galeotti et al. 2006). Gbc blocker M119 co-adminis-
tration resulted in a dramatic increase in acute thermal
analgesic potency of morphine (Mathews et al. 2008). This
led to the proposal that lOR activation by morphine might
trigger separate stimulatory and inhibitory effects linked to
different effector systems. Assuming that the overall phar-
macological effect of morphine is equal to the sum of these
two processes, the high dose morphine inhibitory analgesic
system would not be opposed by the excitatory nociceptive
component when the PLCb3-dependent stimulatory pathway
is switched off. It has been reported that systemic injection of
morphine produces a rebound hyperalgesia after the antin-
ociceptive effect was terminated (Ossipov et al. 2005). The
residual low concentration of morphine that remains after
cessation of its administration might elicit the stimulatory
withdrawal hyperalgesia which was shown both after single
or chronic morphine administration when nociceptive facil-
itatory systems are not overwhelmed by the opponent
antinociceptive inhibitory systems. The blockage of with-
drawal hyperalgesia by naloxone confirmed the involvement

of opioid receptors in the phenomena supporting that
withdrawal hyperalgesia is a direct effect of a residual, low
concentration of morphine. A large dose of intra-operative
opioids before the onset of noxious stimuli, that is pre-
emptive analgesia, could lead to the development of
abnormal pain sensitivity post-operatively (Guignard et al.
2000). The patients treated intra-operatively with opioids
reported more post-operative pain than the matched non-
opioid control subjects (Guignard et al. 2000). Prolonged
hyperalgesia following short term morphine exposure, when
the opiate concentration is expected to be as low as after low
dose administration, may explain why the results of clinical
studies of pre-emptive analgesia as a means of reducing
post-surgical pain have been sometimes disappointing.
Increasing the opioid dose to restore the analgesic effect
may not always be the answer to morphine decreased
efficacy. Knowledge of the molecular mechanism of possible
excitatory action of opiates may allow the development of
new chemical approaches that can prevent these effects as
well as change the way in which these drugs are used
clinically. Selectively inhibiting excitatory signaling repre-
sents a novel approach to target opioid-induced abnormal
pain sensitivity confirming the potential use of M119 in
clinical management of pain.
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