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ABSTRACT 
 

When large whales die and sink to the sea floor provide a huge and concentrated food source to the 
marine ecosystem. Whale falls are mainly known from the deep sea, both in the modern and in the 
fossil record, where they host a rich and specialized community similar to those living at other deep sea 
reducing habitats, like hydrothermal vents and hydrocarbon seeps. On the contrary little is known on 
what happens in shallow waters.  
This study contributes novel data to our knowledge of shallow water whale fall communities (WFC). 
Fossil whale falls from the Neogene of Italy were studied in detail, together with a modern analogue 
ecosystem from the North Sea. A multidisciplinary approach was applied to the study of fossil shelfal 
WFC, based on  a variety of tools, ranging from taphonomy to petrography and isotope analysis, to 
quantitative benthic paleoecology. Results concern different taxonomic groups that took advantage of 
the large quantity of energy stored in whale tissues, from the microbial consortium at the base of the 
food web, to benthic macro-invertebrates, to larger pelagic scavengers. 
The field excavation of a 10 m long baleen-whale from the Pliocene of Tuscany is at the base of the 
study. Taphonomy and the position of macrofaunal whale associates with respect to the still articulated 
bones allowed to reconstruct the main tracts of the ecological succession at the whale fall. Sediment 
bulk samples collected next to whale bones and from the surrounding sediments were quantitatively 
analyzed for their mollusc content. Quantitative species-level data on bivalves, gastropods and 
scaphopods allowed to compare WFC and background communities. A similar approach was applied to 
the study of the mollusc community associated with a 5 m long minke whale sunk at 125 m depth in 
the North Sea. To further widen the field of enquiry other twenty-four, more or less complete fossil 
whales present in Italian museum collections were studied, guided by the experience previously gained 
during our own field work. The data include taphonomy of fossil bones and qualitative and partial 
information on the associated fauna. Petrographic microfacies techniques were applied to the study of 
whale bones. Taphonomy at the microscopic scale was approached through optical and scanning 
microscopy, Raman spectroscopy and stable isotope geochemistry in order to analyze the signature of 
microorganisms participating to whale bone degradation, mainly bacteria and fungi, and understand 
microenvironmental conditions within and around larger bones. Some of the outcrops from which 
museum specimens had been extracted were studied and sampled to reconstruct local environmental 
conditions. Bulk samples were analyzed to gather abundance data that were then compared within a 
larger data set of intertidal to bathyal samples from the literature. As expected, the main factor 
conditioning the distribution of molluscs around WFC and in other normal settings is water-depth. 
Absolute depth estimates  and considerations based on lithology and paleoecology showed that at 
least seven whale falls out of twenty-four were located in open shelf settings and possibly associated 
with high-nutrient conditions. 
The general results are consistent with the hypothesis that shallow water whale falls are different from 
their deep counterparts. On the shelf obligate taxa of families typical of deep sea reducing 
environments are small-sized and rare, possibly occurring only in offshore settings. The organic input 
concentrated in a large whale sunken to the bottom becomes food for generalist taxa commonly living 
on the shelf.  
 
 

 

 
  



RIASSUNTO 
 

Una balena che dopo la morte affonda sul fondale marino costituisce un’ enorme risorsa di materia 
organica per l’ecosistema circostante. Le comunità associate alle carcasse di balena (“whale fall 
communities”, WFC) sono note soprattutto nei mari profondi, sia nel fossile che nell’attuale, dove sono 
caratterizzate da lussureggianti faune altamente specializzate simili a quelle che si trovano in altri 
ambienti estremi, come le sorgenti idrotermali e le fuoriuscite di metano. Al contrario si hanno poche 
conoscenze su cosa accade quando una carcassa affonda  a basse profondità. In questo studio il record 
fossile dei misticeti neogenici italiani è stato analizzato per ricostruire la struttura delle WFC in 
ambiente di piattaforma, oltre ad un analogo attuale situato nel Mare del Nord. E’ stato adottato un 
approccio multidisciplinare, utilizzando mezzi quali la tafonomia, la petrografia, la geochimica degli 
isotopi stabili fino all’analisi quantitativa delle comunità bentoniche. Di conseguenza i risultati ottenuti 
riguardano i diversi gruppi tassonomici che sfruttano l’enorme quantità di energia concentrata in una 
carcassa di balena, dalle comunità microbiche alla base della catena trofica, ai macro-invertebrati 
bentonici fino agli organismi pelagici come gli squali. 
La base di partenza è stato il ritrovamento di un grosso misticete nei depositi marini pliocenici della 
Toscana. Le informazioni raccolte durante lo scavo riguardanti la tafonomia dello scheletro, ancora ben 
articolato, e la macrofauna associata alle ossa, hanno permesso di ricostruire le fasi principali della 
successione ecologica associata alla carcassa. Campioni volumetrici di terrenno raccolti nelle immediate 
vicinanze delle scheletro e nei sedimenti circostanti sono stati analizzati  per il loro contenuto di 
molluschi. I dati ottenuti sulle abbondanze di bivalvi, gasteropodi e scafopodi, hanno permesso di 
confrontare, a livello specifico la comunità associata alla carcassa con le comunità comunemente 
presenti sul fondo. Un approccio simile è stato applicato allo studio della comunità a molluschi 
associata ad una balenottera di 5 metri affondata artificialmente ad una profondità di 125 metri nel 
Mare del Nord. Lo studio è stato successivamente allargato a ventiquattro esemplari di balene fossili, 
più o meno completi, presenti nelle collezioni museali Italiane. I dati raccolti riguardano la tafonomia 
delle ossa e dove possibile informazioni qualitative sulla fauna associata. Le ossa fossili e le concrezioni 
inglobanti sono state studiate tramite un’analisi delle microfacies al microscopio ottico, e i dati 
integrati con l’ausilio di microscopia elettronica, Raman e  e analsi geochimiche degli isotopi stabili del 
carbonio e dell’ossigeno, in modo da ottenere informazioni sul ruolo svolto da microorganismi, quali 
funghi e batteri, nella degradazione delle ossa. Gli affioramenti di provenienza di alcuni degli esemplari 
in esame sono stati studiati in dettaglio e campionati per ricostruire le condizioni paleoambientali in cui 
le balene erano affondate. I campioni di sedimento sono stati analizzati per il loro contenuto a 
molluschi e i dati quantitativi ottenuti confrontati con un dataset più grande  di campioni, desunti dalla 
letteratura, che spaziano da ambienti intertidali a batiali. Come previsto, il maggiore fattore che 
controlla la distribuzione delle comunità a molluschi sia nei campioni provenienti dalle località delle 
balene che negli altri è la paleo-profondità. La stima delle profondità assolute e altre informazioni 
ottenute dalla litologia e paleoecologia delle successioni studiate hanno permesso di osservare come 
almeno sette tra le balene fossili in esame provengono da un ambiente di piattaforma aperta, 
caratterizzato inoltre da un alto contenuto di nutrienti.  
I risultati ottenuti sono concordi con l’ipotesi che le WFC in acque superifciali sono diverse da quelle 
tipiche degli ambienti profondi. Sulla piattaforma continentale i taxa tipici degli ambienti riducenti 
profondi sono rari o di piccole dimensioni, e possibilmente presenti solo nella parte più esterna della 
piattaforma. La grande quantità di materia organica concentrata in una carcassa di balena, sulla 
piattaforma, viene consumata da organismi generalisti che comunemente vivono nei sedimenti 
circostanti. 
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1

CHAPTER 1 — General introduction

Premise

This is a study on modern and fossil marine communities associated with  whale carcasses 
sunken	to	the	sea	floor	in	shallow	water	settings.	Whale	fall	communities	(WFCs)	are	marine	
benthic multispecies assemblies relying on the huge amount of organic matter associated with 
decaying whales, among the largest animals of all times. Present knowledge of WFCs is mainly 
based on deep water examples, studied in the last twenty years both in the modern and in the 
fossil record, but shallow marine examples are wanting. 

Whales	sunk	in	the	deep	sea	create	persistent	and	ecologically	significant	habitats	that	can	
support	a	diverse	and	highly	specialized	community	(Smith	2006).	Shark,	hagfishes	and	other	
scavenging	organisms	remove	 flash	and	soft	 tissues	(“mobile	scavenger	stage”),	polychaetes,	
crustaceans and other opportunistic small-sized animals thrive on whale organic remains 
(“enrichment	opportunist	stage”),	while	a	 long	lasting	and	complex	community	relies	on	the	
hydrogen sulphide and other chemical compounds produced by microbial consumption of the 
lipid-rich	bones	(“sulphophilic	stage”:	Smith	and	Baco	2003).	Whale	 falls	can	create	 thus	an	
unusual chemosynthetic habitat in the deep sea. During the sulphophilic stage chemosynthetic 
bacteria - free living or in symbiosis within vesicomyids clams, bathymodiolin mussels and 
vestimentiferan tube worms – are at the base of a food web where organic matter is primarily 
produced by the oxidation of inorganic compounds, like sulphide, or methane. Chemosynthetic 
organisms living at whale falls have phylogenetic relationships with those occurring at other 
deep sea extreme environments, like hydrothermal vents, hydrocarbon seeps and organic 
wood	falls	(Baco	et	al.	1999,	Distel	et	al.	2000),	and	whale	falls	could	have	played	a	key-role	
in	the	diffusion	of	chemosynthetic	 fauna	among	these	habitats	(“stepping	stone	hypothesis”:	
Smith	et	al.	1989).	As	an	evidence	consistent	with	this	hypothesis	molecular	studies	confirm	
that obligate taxa, specialized to live only at deep water extreme habitats, originated from 
shallow	water	ancestors	living	on	organic	falls	(Distel	et	al.	2000,	Jones	et	al.	2006,	Samadi	et	al.	
2007).	Authors	have	thus	looked	for	whale	falls	at	shallow	waters,	commonly	defined	as	0-200	
m	deep,	 finding	only	 anecdotal	 evidences	on	 the	 course	of	 the	 ecological	 succession	 (Smith	
2006).	The	impact	of	whale	carcasses	in	shallow	water	ecosystems	is	poorly	understood	and	
environmental	conditions	are	extremely	different	respect	with	those	of	the	deep	sea.	The	sea	
floor	is	much	more	naturally	enriched	in	organic	carbon	and	the	organic	input	given	by	a	whale	
carcass	may	represent	an	insignificant	contribution	to	the	nutrient	budgets	of	the	continental	
shelf. However, since whale strandings, and mortality in general, are likely to be concentrated 
in small areas, in that places dead-whale detritus may play unusual roles in marine ecosystems 
(Smith	2006).	Scanty	findings	on	shelfal	whale	falls,	where	obligate	taxa	like	the	bone-eating	
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worm Osedax	(Glover	et	al.	2005)	and	the	bathymodiolin	mussel	Idas simpsoni (Warén	1991)	
have	been	found,	confirm	this	hypothesis,	but	are	in	contradiction	with	what	observed	in	other	
extreme reducing habitats. In fact in sallow water hydrocarbon seeps and hydrothermal vents, 
where ecosystems are fuelled by the same reduced compounds present at whale falls during 
the	sulphophilic	stage,	obligate	taxa	are	absent	(Sahling	et	al.	2003,	Tarasov	et	al.	2005,	Dando	
2010).	Thus,	how	are	whale	fall	communities	shaped	in	shallow	waters?	What	taxa	are	whale-
fall obligate on the shelf and how are these related to the sulphophilic stage, the only one 
comparable	to	other	extreme	reducing	habitats?	Were	more	data	available,	would	we	find	more	
obligate	taxa	in	shallow	marine	whale	falls?	How	are	these	related	to	deep	water	specialists?	
Can	the	fossil	record	contribute	decisive	evidence?

Aim of this study is to reconstruct the community structure of shallow water whale falls 
and to understand which biological and physical factors control their development respect to 
their deep water counterpart. The exceptional record of fossil whales from the Neogene of Italy, 
coming mainly from shallow water sediments, is a good chance to investigate the structure 
of WFCs. A multidisciplinary approach was applied to the analysis of museum specimens and 
recently excavated fossil whales from northern and central Italy, together with the study of an 
artificially	sunken	whale	 in	the	North	Sea.	Part	of	the	study	is	 focused	on	the	analysis	of	the	
mollusc community associated with whale falls. Molluscs are among the ecologically dominant 
groups	 in	whale	 fall	 ecosystems	 (Smith	and	Baco	2003)	and	have	an	excellent	 fossil	 record.	
Chapter 1 introduces the general issue of whale falls and their associated biota to frame current 
knowledge, both in the modern and fossil record, from which the present study is based. In 
Chapter 2 a	species-level	study	of	molluscs	associated	with	a	5	m	long	minke	whale	artificially	
sunk	at	a	depth	of	125	m	in	the	Kosterfjord	(North	Sea,	Sweden)	is	carried	out.	The	WFC	was	
quantitatively compared with the community commonly living in the surrounding soft bottom 
sediments and with taxa from a methane seep area of the North Sea. A similar approach was 
used	in	the	study	of	molluscs	associated	with	a	Pliocene	fossil	whale	from	Central	Italy	(Orciano	
Pisano	whale)	 (Chapter 3).	 The	mollusc	 fauna	 associated	with	 the	 fossil,	 articulated	whale	
fall and the surrounding sediments were bulk sampled to analyse the distribution of species 
abundances. The paleoecology and the trophism of each taxa was considered and the possible 
ecological niches associated with the fossil whale fall investigated. In Chapter 4, data collected 
during the opportunely designed excavation of the Orciano Pisano whale, served as template 
to the taphonomic study of twenty-four museum specimens. Information on the taphonomy of 
the bones, on the associated biota and on the embedding sediments allowed the reconstruction 
of	 the	 biostratinomic	 processes	 dominating	 in	 shallow	water	 environments	 and	 influencing	
the development of whale fall communities. Three fossil whales were selected for high spatial 
resolution microfacies and biosedimentological analyses through optical and scanning electron 
microscopy,	 Raman	 spectroscopy,	 and	 stable	 C	 and	 O	 isotope	 geochemistry	 (Chapter 5).	
Evidence of the microbial ecosystem associated with decaying whale carcasses were provided 
and the taphonomic processes and diagenetic history of the fossil bones have been better 
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understood. Finally in seven cases the original outcrop of provenance of the fossil whales was 
retraced, studied in detail, and bulk sampled for paleodepth and paleoenvironment estimates 
through	statistical	multivariate	analysis	(Chapter 6).		

1.1 Modern whale fall communities

The	first	WFC	was	discovered	in	1987	at	1240	m	depth	off	California,	in	the	Santa	Catalina	
basin, when a rich high-diversity and high-biomass assemblage associated with a dead whale 
was	 found	 (Smith	 et	 al.	 1989).	Many	 of	 the	 reported	 species,	 as	 vesicomyid	 clams	 and	 the	
extremely abundant mytilid Idas washingtonia, contained sulphur-oxidising chemoautotrophic 
endosymbionts that appeared to feed on sulphide derived from anaerobic decomposition 
of	concentrated	bone	 lipids	 (Smith	et	al.	1989,	Deming	et	al.	1997).	After	 this	discovery	 the	
hypothesis that whale falls could play a role in the dispersal of species dependent on sulphide 
availability	at	the	deep-sea	floor	was	formulated.	In	fact,	whilst	other	chemosyntetic	habitat,	
like hydrothermal vents and hydrocarbon seeps are restricted to appropriate geologic settings 
such as mid-ocean ridges and continental margins, whale-falls may occur anywhere throughout 
the	world’s	oceans	(Smith	et	al.	1989).

WFCs are intensively sampled throughout the oceans, so data about the species adapted 
to live on this peculiar habitat are progressively increasing. Literature published so far concerns 
both	 whale	 bones	 trawled	 by	 fishermen,	 whale	 skeletons	 accidentally	 discovered	 during	
oceanographic	explorations	and	carcasses	experimentally	sunk	at	different	sites	and	depths.	
The	most	studied	area	 is	 the	Pacific	Ocean,	both	on	 the	west	and	on	 the	east	side	(Smith	et	
al.	 1989,	 Bennet	 et	 al.	 1994,	Naganuma	 et	 al.	 1996,	Braby	 et	 al.	 2007,	 Fujiwara	 et	 al.	 2007,	
Lundstend	et	al.	2010).	Two	studied	site	is	in	the	North	Atlantic	(Dahlgren	at	al.	2006,	Glover	et	
al.	2010),	and	one	in	the	Sea	of	Japan	(Pavyluk	et	al	2009).	The	studied	sites	range	from	depth	of	
30 m to 4037 m and are mostly concentrated in the deep sea. Remarkably no studies exist in the 
Mediterranean	sea,	apart	from	accidental	reports	of	some	trawled	bones	(Warén	and	Carrozza	
1990,	Warén	1991,	Bolotin	et	al.	2005).

Time series studies of natural and implanted deep-sea whale falls indicate that bathyal 
carcasses	pass	through	four	stages	of	ecological	succession,	lasting	up	to	several	decades	(Smith	
et	al.	2002).	The	first	 is	the	“mobile-scavenger	stage”,	during	which	soft	tissues	are	removed	
from	the	carcass	by	dense	aggregations	of	large,	active	necrophages,	as	sleeper	sharks,	hagfishes,	
amphipods	and	invertebrate	scavengers.	Then	the	“enrichment	opportunist	stage”	starts,	during	
which organically enriched sediments and exposed bones are colonised by dense assemblages 
of opportunistic polychaetes and crustaceans, with high population densities but low species 
richness. Among polychaetes the siboglinid worms Osedax developed peculiar adaptations to 
exploit whale-bone lipids. Thanks to a specialized root system Osedax species are able to perforate 
whale bones and invade the bone marrow, exploited then by heterotrophic bacteria housed 
within	the	root	tissue	(Rouse	et	al.	2004).The	third	stage	is	the	“sulphophilic	stage”,	in	which	
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the microbial consumption of organic compounds in the lipid-rich bones and in the organically 
enriched sediment, sustains the production of hydrogen sulphide, which is then utilized by a 
chemosynthetic	community	(Smith	and	Baco	2003).	The	most	common	chemosymbiont-bearing	
bivalves are vesicomyid clams and mytilid mussels, subfamily Bathymodioline, but also lucinid, 
thyasirid	and	solemyd	bivalves	have	been	found	in	minor	amount	(Bennet	et	al.	1994,	Smith	and	
Baco	2003,	Fujiwara	et	al.	2007,	Braby	et	al.	2007).	Gastropods	typical	of	the	sulphophilic	stage	
mainly	belong	to	the	family	pyropeltids,	cocclulinids	and	provannids	(Smith	2006).	The	fourth	
stage,	called	“reef	stage”,	occurs	once	all	the	whale	organic	material	is	used	up	and	the	whale	
skeleton	serves	as	hard	substratum	for	suspension	feeders	exploiting	flow	enhancement	(Smith	
et	al.	2002).

The successional stages involve not only species turnover but also changes in faunal 
mobility and trophic structure, with temporal overlaps in the onset of characteristic species 
from	different	stages.	(Smith	and	Baco	2003).	A	whale	carcass	is	a	complex	environment	and	the	
succession	is	not	always	rigid	in	time,	so	that	different	parts	of	a	carcass	might	simultaneously	
go	through	different	succession	stages	(Goffredi	et	al.	2004,	Braby	et	al.	2007).	Comparisons	
of whale-fall diversity patterns with those of hydrothermal vents, cold seeps and other deep 
sea hard substrates show that, in the chemoautotrophic stage, whale assemblages harbour the 
highest local species richness of any hard substrate in the deep sea. Richness levels approach 
those	 of	 deep-sea	 soft-sediments	 and	 exceed	 some	 shallow-water	 hard-substrates	 (Baco	
and	Smith	2003).	This	remarkable	species	richness	may	be	explained	by	an	unusually	large	
number of trophic types found on whale bones, including species with chemoautotrophic 
endosymbionts, bacterial grazers, generalized organic-enrichment respondents, whale bones 
consumers and background hard substrate fauna such as suspension and deposit feeders 
(Baco	and	Smith	2003).

Whale	bones	are	extremely	rich	in	lipids,	more	than	60%	lipids	by	wet	weight	(Higgs	
et	al.	2011	and	references	therein).	As	a	consequence	the	decomposition	of	bone	lipids	can	
provide	sulphide	to	the	whale-fall	chemoautotrophic	community	for	years	to	decades	(Smith	
and	Baco	2003,	Schuller	et	al.	2004).	The	microbial	sulphate	reduction	linked	to	organic	carbon	
degradation	is	the	key	process	that	releases	hydrogen	sulphide	(Allison	et	al.	1991).	As	shown	
in	 figure	1,	once	 that	 the	bones	are	skeletonised,	 sulphate	 from	sea	water	can	diffuse	 into	
them, and sulphate reduction by anaerobic bacteria starts, decomposing lipids in the lipid-
rich	bone	core.	Then	sulphides	diffuse	outward	from	the	bone	core	and	concentrate	both	on	
the external surface of the bones and in the surrounding sediments. Sulphide oxidation and 
organic-matter synthesis, are carried out by sulphur-oxidising bacteria living on the bone 
surface	(like	members	of	the	genus	Beggiatoa)	and	within	the	tissues	of	vesicomyid	clams,	
bathymodiolin	mussels	and	other	invertebrates	(Deming	et	al.	1997,	Smith	and	Baco	2003).	
The sediments beneath and around the carcass are progressively enriched with lipids and 
other	organic	compounds	(Naganuma	et	al.	1996,	Smith	et	al.	1998).	The	organic	enrichment	
causes	anoxic	conditions	in	the	sediments,	due	to	high	microbial	oxygen	consumption	(Allison	
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et	al.	1991),	and	favours	anaerobic	processes	such	as	sulphate	reduction	and	methanogenesis	
(Goffredi	et	al.	2008).	Whale	falls	can	created	thus	a	sedimentary	reducing	habitat	similar	to	
deep-sea cold seeps in terms of sulphide production, but temporally and spatially much more 
restricted than many seeps. Bones, on the other hand, provide sustained, low emissions of 
sulphide	probably	more	similar	to	hydrothermal	vent	systems	(Treude	et	al.	2009).

Figure 1. Schematic cross section of a whale vertebra resting at the sea floor during the sulphophilic stage of succession. 
The predominant decompositional processes occurring within in the bones are illustrated: (1) oxygen consumption by 
aerobic heterotrophic bacteria degrading whale bone lipids; (2) diffusion of sulphate from sea water into the bone; 
(3) sulphate reduction by anaerobic bacteria decomposing lipids in the lipid-rich bone core; (4) diffusion of sulphide 
outward from the bone core; (5) sulphide oxidation, and organic-matter synthesis by sulphur-oxidising bacteria living 
on the bone surface (e.g. Beggaiota spp.) and within the tissues of vesicomyid clams and mytilid mussels. Modified 
from Smith and Baco 2003.

1.2 Fossil whale fall communities

WFCs are preferentially recognized in the fossil record by the presence of molluscs 
associated with the bones, in particular by molluscs that host chemosynthetic bacteria or 
graze on microbial mat at modern chemosynthetic sites. Fossil WFCs described so far belong to 
restricted geographical area, notwithstanding fossil cetaceans are known from many fossiliferous 
localities	worldwide	 (Fordyce	2009).	They	belong	 to	 late	Eocene	and	Oligocene	rocks	of	 the	
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Olympic	Peninsula,	western	Washington	State,	USA	(Squires	et	al.	1991,	Goedert	et	al.	1995,	
Nesbitt	2005,	Kiel	and	Goedert	2006,	Kiel	2008);	from	the	middle	Miocene	of	California,	USA	
(Pyenson	and	Haasl	2007)	and	from	the	middle	Miocene	of	Hokkaido,	Japan	(Amano	and	Little	
2005,	Amano	et	al.	2007).	All	of	these	specimens	come	from	deep	water	settings.

The earliest known fossil WFCs belong to the late Eocene and Oligocene and lack the 
typical	vesicomyid	clams	of	modern	whale	falls	(Goedert	et	al.	1995,	Kiel	and	Goedert	2006,	Kiel	
2008).	They	are	instead	characterized	by	species	typical	of	sulphide-rich	sediments,	as	infaunal	
thyasirids	and	lucinids,	and	bathymodiolin	mussels.	Kiel	and	Goedert	(2006)	hypothesized	thus	
that primitive mysticetes were not large enough or did not contained enough oil to sustain a 
prolonged emission of sulphide during the breakdown of bone lipids. The species associated 
to the early whale-falls were instead taking advance of elevate sulphide levels in the sediments 
underneath and around the whale carcass, linked to the anaerobic degradation of the whale 
organic	matter	material.	Kiel	and	Goedert	(2006)	called	this	stage	of	the	ecological	succession	
“chemosymbiotic	 opportunist”	 stage,	 instead	 of	 the	 “sulphophilic	 stage”	 of	 modern	 whale-
falls. The absence of vesicomyids at the earliest whale-falls sheds doubt on the hypothesis 
that whale-falls were evolutionary stepping stones for taxa now inhabit hydrothermal vents 
and seeps, especially because vesicomyids were present at cold-seeps in the same formations 
(Kiel	 and	 Goedert	 2006).	 Mollusc	 communities	 resembling	modern	whale	 falls	 were	 found	
in	middle	Miocene	 sediments	of	 Japan	and	California,	where	vesicomyid	 clams	of	 the	genus	
Calyptogena and Vesicomyia	occur	(Amano	and	Little	2005,	Amano	et	al.	2007,	Pyenson	and	
Hassl	2007).	In	particular,	the	finding	of	vesycomids	also	on	a	very	small	specimen,	smaller	than	
the adult individuals of any living mysticaete species, partially contradicts the hypothesis of Kiel 
and	Goedert	(2006),	according	to	which	the	origin	of	modern	WFCs	was	associated	with	the	
evolution	of	extremely	large	mysticetes,	which	provided	sufficient	biomass	and	oil	to	sustain	
the	modern	complement	of	whale-fall	invertebrates	(Pyenson	and	Hassl	2007).

Chemosynthetic communities have an evolutionary history that goes further back 
the	 origin	 of	 cetaceans	 (Taylor	 and	Glover	 2000).	Mesozoic	 oceans	were	 inhabited	 by	 large	
marine reptiles, and after the discovery of WFCs scientists have long speculated on the role of 
mosasaurids,	 ichthyosaurids	or	plesiosauirds	as	benthic	 islands	 in	 the	deep	sea	 floor	and	as	
stepping	stones	 in	 the	dispersal	of	 chemosynthetic	 faunas	 (Martill	 et	al.	1991,	1995;	Hogler	
1994).	Kaim	et	al.	(2008)	described	for	the	first	time	a	chemosynthesis−based	association	on	
plesiosaurid	bones,	with	the	finding	of	micro−grazing	provannid	gastropods	and	ataphrid−like	
vetigastropods associated with two plesiosaurid skeletons in the upper Cretaceous deposits 
of	Hokkaido,	northern	Japan.	This	is	the	only	finding	described	so	far,	and	no	chemosymbiotic	
bivalves have been found associated with Mesozoic marine reptile bones.

Most recent studies on fossil WFCs focus on the fossil record left by free-living bacteria 
and	archea	at	base	of	the	food	web,	linked	to	the	anaerobic	decay	of	bone	lipids	(Amano	and	
Little	2005,	Kiel	2008,	Shapiro	and	Splanger	2009).	Microborings,	authigenic	pyrite,	botryoidal	
cements, and micropeloids have been described so far from deep water fossil bones and their 
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enclosing	 Ca-carbonate	 concretions	 (Amano	 and	 Little	 2005,	 Amano	 et	 al.	 2007,	 Kiel	 2008,	
Shapiro	 and	 Splanger	 2009).	 Such	 features,	 similar	 to	 those	 found	 in	 analogous	 reducing	
environment, like fossil hydrocarbon seeps, are interpreted as the product of microbial activity 
(Shapiro	and	Splanger	2009).	However,	the	role	played	by	depositional	and	diagenetic	processes	
in	preserving	the	traces	left	these	microbial	ecosystems	still	remains	to	be	elucidated	(e.g.,	Kiel	
2008,	Shapiro	and	Spangler	2009).	
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CHAPTER 2 — Molluscs from a shallow 
water whale fall in the North Atlantic

2.1 Introduction*

The study of modern whale falls is biased toward the deep sea where whale carcasses 
produce	 organic-rich	 “islands”	 at	 the	 food-poor	 deep-sea	 floor	 for	 extended	 time	 periods,	
supporting highly specialized and diverse assemblage of animals. Some of these animals are 
restricted to whale falls, including the gutless bone-eating worm Osedax, while others are also 
found at vents and seeps, such as vesicomyid clams, bathymodiolin mussels and vestimentiferan 
tube	worms	 (Smith	 2006,	 Dubilier	 et	 al.	 2008).	 Little	 is	 known	with	 regard	 the	 ecosystem	
response	in	shallow	water	(<200	m),	where	the	flux	of	organic	carbon	to	the	sea	floor	in	the	form	
of	whale	detritus	makes	a	much	less	significant	contribution	to	the	nutrient	budgets	and	where	
primary production is almost always dominated by phototrophy in contrast to chemoautotrophy 
(Dubilier	et	al.	2008,	Dando	2010).

Natural whale-falls appear to be rarely encountered on the shelf, possibly due to 
resurfacing	after	decomposition	 (Allison	1991)	or	because	 they	are	easily	decomposed	by	
biological activities at relatively higher water temperatures or they are quickly buried in 
sediments	transported	from	shore	(Fujiwara	et	al.	2007).	Artificial	sinking	of	whale	carcasses	
on the shelf and the subsequent monitoring of ecological succession can thus be a useful tool to 
analyze the changes through time in community structure and to understand the relationships 
with other shallow and deep-water reducing environments. Time-series studies carried out 
so far on modern shallow-water whale falls show the presence of some obligate taxa even on 
the shelf, like the siboglinid worm Osedax mucofloris and several new species of dorvilleid 
polychaetes	 (Glover	 et	 al.	 2005,	Dahlgren	 et	 al.	 2006,	Wiklund	 et	 al.	 2009).	 Low	diversity	
assemblage	of	nematodes	have	been	also	found	(Pavlyuk	et	al.	2009),	but	no	quantitative	data	
are	available	so	far	concerning	molluscs.	Artificial	whale	falls	sunken	just	below	the	threshold	
of	200	m	depth	(219–254	m:	Fujiwara	et	al.	2007)	show	a	general	composition	similar	to	that	
of deep-water reducing habitats, with a chemosynthesis-based fauna mainly represented by 
bathymodiolin mussels.

Here we present a species-level study of molluscs associated with a 5 m long minke 
whale	 (Balaenoptera acutorostrata)	 experimentally	 implanted	 at	 a	 depth	 of	 125	 m	 in	
the	 Kosterfjord	 (Skagerrak,	 Sweden).	 Our	 sampling	 was	 carried	 out	 five	 years	 after	 the	
implantation of the carcass. Time series studies carried out previously at the same site have 

* This study is in collaboration with Thomas Dahlgren (Department of Zoology, Göteborg University, Göteborg, Sweden; 
current address: Uni Environment, Bergen, Norway) and Adrian Glover (Zoology Department, The Natural History 
Museum, London, United Kingdom).
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shown	that	within	five	weeks	of	implantation	the	Atlantic	hagfish	(Myxine glutinosa),	sharks	
and	other	scavenging	organisms	consumed	the	flesh	and	exposed	the	bones,	and	the	carcass	
was	completely	skeletonised	after	six	months	on	the	sea	floor	(Dahlgren	et	al.	2006).	Nine	
months after sinking the bones were colonized by Osedax mucofloris,	 the	 first	 species	 of	
Osedax	known	from	a	shelf-depth	whale-fall,	and	the	first	from	the	Atlantic	Ocean	(Glover	et	
al.	2005,	Dahlgren	et	al.	2006).	In	this	study	we	also	compare	the	collected	samples	from	the	
whale fall and the surrounding sediments with quantitative data measured by Dando et al. 
(1994)	from	a	methane	seep	area	in	the	Skagerrak.

Our	primary	objective	was	to	analyze	the	community	structure	of	the	sediment	dwelling	
mollusc fauna associated with a shallow-water whale-fall. Secondly our aim was to evaluate the 
differences	in	taxonomic	composition	and	community	structure	of	the	whale	fall	community	
with the surrounding background community and with the macrofaunal community related 
to	a	different	ephemeral,	sulphide-rich	habitat	in	the	same	area.

2.2 Study area

The	Kosterfjord	is	situated	in	the	north	eastern	part	of	the	Skagerrak,	the	major	gateway	
between the north Atlantic and the Baltic Sea. It is a 250 meter deep, 62 km long, submarine 
trench parallel to the coastline of Sweden to the east and sheltered by the Koster islands to the 
west	(Figure	1).	The	trench	is	a	fault	fissure	connected	with	the	north-west	to	the	Norwegian	
Trough which in turn is connected to the deep North Atlantic. As a consequence of its connection 

Figure 1. Map of the North Sea, showing the methane seep in the Skagerrak, and the location of the experimental 
Kosterfjord whale-fall site, next to the Sven Lovén Centre for Marine Sciences. Modified from Dahlgren et al. 2006.
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with	 the	North	Atlantic	 the	Kosterfjord	 is	 not	 a	 fjord	 in	 its	 proper	meaning,	 because	 of	 the	
prevailing	of	marine	conditions,	i.e.	high	salinity	(Palm	et	al.	2004).

The Skagerrak sedimentary environment is characterized by muddy bottoms and a 
high	 content	of	 organic	material	 (about	2%	of	 organic	 carbon),	with	 sedimentation	 rates	 in	
the	Northern	 sector	 of	 0.20	 cm/year	 (Josefson	 1985,	 Van	Weering	 et	 al.	 1987).	 The	 overall	
oceanographic regime is driven by a counter clockwise circulation pattern, where dense, saline 
(30–35	psu)	and	oxygenated	oceanic	water	underflows	the	more	brackish	(8–30	psu)	surface	
water	outflow	of	 the	Baltic	Sea.	The	main	surface	currents	entering	 the	area	are	 the	 Jutland	
Current	from	the	North	Sea	(south-west)	and	the	Baltic	Current	from	south-east.	The	mixing	
between these two currents forms the Norwegian Coastal Current, with a predominating northern 
heading,	which	flows	out	of	the	Skagerrak	on	the	Norwegian	side.	This	surface	circulation	is	
compensated by a deep counter current that brings the saline Atlantic water through the 700 
m	deep	Norwegian	Trench	into	the	Skagerrak	(Whissak	2005).	However,	the	temperature	and	
salinity	of	the	surface	waters	are	subject	to	strong	seasonal	fluctuations;	in	deeper	waters	the	
fluctuation	 is	present	with	 lower	amplitude.	Measurements	of	bottom	water	 temperature	at	
125	m	depth	in	the	Kosterfjord	indicate	only	small	variations	during	the	year	of	4.8–7.5	°C,	with	
salinity 34.3–34.7 psu.

2.3 Materials and methods

For	the	present	study	four	sediment	samples	(W1,	B1,	B2,	B3)	were	collected	and	analyzed	
for their mollusc composition. Sample W1 was taken in May 2008 from the minke whale skeleton 
(125	m	depth),	samples	B1,	B2	and	B3	(background	samples)	were	collected	in	January	2009	
at the same depth but at a distance from whale bones, respectively 18 m South, 13 and 55 m 
North	from	the	whale.	Sampling	at	the	whale	fall	was	conducted	with	a	ROV	(Remotely	Operated	
Vehicle)	equipped	with	a	forward-mounted	sampling	scoop	(16	cm	long,	diameter	of	8,4	cm).	
We used the latter to collect soft sediments close to the bones and we stored them in a sample 
basket	(size	of	the	sample	basket:	34X26.5X25	cm,	volume	of	collected	sediment:	4420	cm3).	
Background	sediments	were	collected	using	a	Van	Veen	grab,	able	to	sample	0.1	m2 of sediments 

Table 1. Basic data for the studied samples.
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(volume	1.5	 litres),	 and	 that	would	have	penetrated	 the	bottom	sediments	on	average	5	 cm	
(Table	1).	The	ROV	was	equipped	with	digital	video	and	with	digital	still	cameras.

The sediment samples were wet sieved through a 0.5 mm screen and preserved in a 
solution	with	ethanol	 (≈80%)	before	 identification.	The	 residue	was	washed	with	hydrogen	
peroxide and sorted under a binocular microscope for all recognizable hard shelled biogenic 
components. The latter includes molluscs, serpulids, echinoids, bryozoans, decapods, ostracods, 
brachiopods,	fishes	and	whale	bone	fragments.	Molluscs	were	determined	at	the	species	level	
and used for quantitative comparisons. Both live and dead specimens have been included. Bivalve 
number was counted as the highest number of right or left valves and half of the remaining, the 
latter roughly corresponding to the number of unmatchable valves. Gastropods were equated to 
the	number	of	apices.	Used	nomenclature	follows	Hansson	(1998).

The	 Kosterfjord	 dataset,	 including	 1.575	 specimens	 belonging	 to	 45	 mollusc	 species	
forms the basis for sample diversity study and trophic structure analysis. Diversity indices 
were	calculated	 for	each	 sample.	Each	diversity	 index	provides	different	 information	on	 the	
community	 structure.	 The	 Simpson	 index	 is	 affected	by	 the	2-3	most	 abundant	 species	 and	
represents the probability that 2 individuals chosen at random from a sample belong to the 
same	species	(Hayek	and	Buzas	1997).	Shannon’s	index	(H)	provides	a	measure	of	uncertainty	
in	the	identity	of	an	individual	pulled	randomly	from	a	sample	(Hayek	and	Buzas	1997),	with	
low	H	indicating	a	fairly	high	certainty	of	outcome	(i.e.	low	diversity).	H	is	thus	insensitive	to	
rare	(especially	singleton)	species.	Fisher’s	α	is	a	number	close	to	that	of	species	expected	to	
represented	by	only	a	single	(i.e.	rare)	individual	(Hayek	and	Buzas	1997).

The	 four	 samples	 (n=1575)	 were	 used	 for	 trophic	 analysis.	 Seven	 trophic	 categories	
are	 distinguished	 consistently	 following	 the	 Molluscan	 Life	 Habits	 Databases	 (Todd	 2000),	
using abbreviations appropriate for the present study: chemosymbiotic deposit feeders 
(DC),	suspension	feeders	(SU),	subsurface	deposit	 feeders	(DU),	surface	deposit	 feeder	(DS),	
herbivores,	including	herbivores	on	fine-grained	substrates,	herbivores	on	rock,	rubble	or	coral	
substrates	and	herbivores	on	plant	or	algal	substrates	(HE)	and	predatory	carnivores,	including	
scavengers	 (CP).	 Comparisons	were	 expressed	 through	percent	 of	 number	 of	 specimens	 (n,	
abundance)	and	number	of	species	(S,	richness)	for	each	category.

Two	quantitative	samples	from	the	literature	were	added	to	the	Kosterfjord	dataset	for	
multivariate analysis. They were collected in the Skagerrak area at 330 m depth by Dando et al. 
(1994).	One	is	from	a	methane	seep	(called	here	“SEEP”	sample)	and	the	other	is	from	the	seep	
background	sediments	(called	here	“NON-SEEP”	sample)	(Dando	et	al.	1994).	The	combined	
dataset,	which	includes	the	Kosterfjord	and	the	Skagerrak	seep-non	seep	samples,	consists	of	
3.744	specimens	and	47	taxa	(Table	2).	From	this	dataset	species	occurring	in	only	one	sample	
were	 removed	 and	 abundances	 square-root	 transformed	 to	 de-emphasize	 the	 influence	 of	
the	most	abundant	 taxa.	Percentage	data	were	used	 for	statistical	analysis	because	differing	
volumes of sediment were sampled and the absolute numbers of individuals are not comparable 
between	samples	(Clarke	and	Warwick,	1994).	A	matrix	of	similarity	was	calculated	with	the	
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Table 2. Quantitative species composition of the studied samples and trophism category of each species. For trophic categories 
abbreviations see text (material and methods section). The SEEP and NON-SEEP samples are from Dando et al. 1994.
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Bray–Curtis	coefficient,	commonly	used	in	ecological	studies	(Clarke	and	Warwick	1994).	Non-
metric	multidimensional	scaling	(NMDS;	Clarke	and	Warwick	1994),	one	of	the	best	ordination	
techniques	available	in	ecological	analyses	(Kenkel	and	Orlóci	1986,	Clarke	and	Warwick,	1994),	
was used to analyzed the dataset, and a map of the samples was produced wherein points that 
plot close together represent samples that are very similar in taxonomic composition. Diversity 
indices	and	NMDS	analysis	were	performed	with	the	software	PAST	(Hammer	et	al.	2001).

2.4 Results

2.4.1 Whale fall – background community comparison

During	the	ROV	survey	at	the	whale	fall	site,	five	years	after	implantation,	the	skull,	one	
mandible	and	some	ribs	were	still	visible	on	the	sea	floor.	No	macro-invertebrates	were	seen	
lying directly over or around the bones, which were found to be densely covered in a coat of 
blackish	sulphides	and/or	muddy	sediments	(Figure	2A).	Algal	debris	were	trapped	within	the	
bones	(e.g. Fucus serratus)	and	the	decapod Hyas araneus was frequently observed close to the 
skeleton	(Figure	2B).	Bones	were	highly	bioeroded	and	specimens	of	 the	bone	eating	worm	
Osedax mucofloris were recorded living on collected bone samples.

The	sieving	residue	includes	molluscs,	regular	and	irregular	echinoids	(Brissopsis lyrifera 
and Spatangus purpureus),	 brachiopods	 (Crania sp.	 and	 terebratulids),	 benthic	 foraminifers,	
ostracods,	serpulids,	bryozoans,	decapods,	fish	fragments	and	teeth,	and	myxinid	dental	plates.

Sample W1 is dominated by the bivalve Thyasira sarsi	(51%	of	the	total),	followed	by	Abra nitida 
(16.2%),	Tellymia ferruginosa	(8%),	Mytilus edulis	(4.9%)	and	the	nuculanid	Ennucula tenuis	(4.7%)	
(Figure	3).	Among	the	gastropods	the	most	abundant	are	Pusillina sarsii (3.7%),	Cylichna cylindracea 
(2.5%)	and	Alvania punctura (2%).	Specimens	of	Thyasira sarsi	(Figure	4A),	Abra nitida	(Figure	4B)	and	
Mytilus edulis were observed alive during sieving operations, for the others no certain information are 
available.	Juveniles	of	Mytilus edulis were directly attached by byssus to bone fragments. Thyasira equalis 
is the most abundant species in B1, B2 and B3, accounting respectively for the 43.1%, 22.9% and 27.8% 
of	the	total	(Figure	3).	Thyasira sarsi is absent from the background samples, whereas T. equalis was 
not found in the sediments associated with the whale fall. Besides T. equalis, the background samples 
contain many protobranchiate bivalves, such as Ennucula tenuis, Yoldiella philippiana, Nucula sulcata, 
Nuculana minuta and N. pernula	 (Figure	3).	The	semelid	Abra nitida and the cardiid Parvicardium 
minimum	are	represented	in	significant	quantities	in	the	background	sediments.

The Simpson index of Dominance and the Shannon-Wiener index indicate that W1 has the 
highest dominance and the lowest diversity. B2 and B3 instead have the highest evenness, as also 
shown	by	the	Fisher’s	α	index.	B2	and	B3	have	the	highest	values	of	Fisher’s	α,	they	have	in	fact	a	
higher	number	of	rare	species	(singletons	and	doubletons)	in	respect	to	the	other	two	samples.	
B1,	the	sample	with	the	lower	number	of	individuals,	has	intermediate	values	(Table	3).
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Figure 2. Remotely operated vehicle (ROV) video stills showing the minke whale skeleton 5 years after implantation. 
A. Minke whale skull covered by muddy sediment and sulphides. B. Minke whale ribs partially covered by sediments 
and sulphides, showing signs of intense bioerosion. The decapod Hyas araneus in the upper part of the figure, algal 
debris (Fucus serratus on the right) trapped within whale bones.
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Figure 3. Abundances (%) of the quantitatively important species (>2%) in each of the four samples (W1, B1, B2, B3).

Figure 4. Living specimens of Thyasira sarsi (A) and Abra nitida (B) from the whale fall sample (W1).

Table 3. Species abundance, number of individuals and diversity indices of the studied samples.
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2.4.2 Trophism

The two predominant thyasirids, T. sarsi	(W1)	and	T. equalis	(B1,	B2,	and	B3),	are	infaunal	
chemosymbiotic deposit feeders, containing symbiotic sulphur-oxidizing bacteria in their 
gill	 tissue	 (Southward	 1986).	 Studies	 on	 the	 nutritional	 dependence	 of	 the	 two	 bivalves	 on	
chemoautotrophic symbiotic bacteria show that T. equalis has fewer symbiotic bacteria in its gills 
compared to T. sarsi,	indicating	that	the	nutritional	importance	of	carbon	fixed	by	the	bacteria	is	
less in T. equalis	(Dando	and	Spiro	1993,	Dufour	2005).	Chemosymbiotic	taxa,	as	a	trophic	group,	
have	the	higher	abundance	in	all	the	four	samples,	but	the	lower	species	richness	(Figure	5).	
Like chemosymbiotic deposit feeders, surface deposit feeders have a high overall abundance but 
a low species richness, being represented by only one species, the semelid Abra nitida, which is 
more	abundant	in	W1	than	in	the	background	community.	Subsurface	deposit	feeders	(nuculids,	
nuculanids,	yoldiids	and	dentaliids)	are	abundant	and	diverse	in	B1,	B2	and	B3	(38%,	46%	and	
47.9%	 respectively),	 whereas	
in W1 occur the same species 
but with a lower abundance 
(8.4%).	 Suspension	 feeders	
have a high species richness, 
both in the whale fall and 
in the background fauna. 
The	 mytilids	 (Mytilus edulis 
and Musculus discors)	 and	
the montacutid Tellymia 
ferugginosa, occur in W1, 
whereas pectinids, anomiids 
and cardiids are typical of B1, 
B2 and B3. Herbivores are 
diverse but rare in all samples. 
Those associated with the 
whale fall, as the rissoids Rissoa 
violacea, Alvania punctura, 
and Pusillina sarsii, are typical 
of shallower settings where 
they are associated to algae 
(Laminaria)	 and	 seagrass	
(Zostera)	 (Warén	 1996).	

Figure 5. Trophic analysis expressed through percent of number of individuals (abundance) and number of species 
(richness). Trophic categories: chemosymbiotic deposit feeders, suspension feeders, subsurface deposit feeders, sur-
face deposit feeder, herbivores and predatory carnivores, including scavengers.
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Carnivores are the least represented among trophic categories, the only carnivore in the whale 
fall sample being the burrowing Cylichna cylindracea.

2.4.3 Whale fall – methane seep comparison

The	 two	 samples	 included	 for	 multivariate	 analysis,	 one	 from	 a	 methane	 seep	 (SEEP	
sample)	 in	the	Skagerrak	and	the	other	 from	its	surrounding	sediments	(NON-SEEP	samples),	
are	characterized	by	low	diversity	and	high	dominance	(Table	2,	3).	The	SEEP	sample	contains	
four species: Abra nitida	(55%),	Thyasira equalis	(29%),	T. sarsi	(12.9%)	and	Nucula sp.	(3.2%).	
The NON-SEEP sample contains three species: T. equalis	(66%),	Abra nitida	(26.7%)	and	Axinulus 
eumiaria (7.3%)	(Table	3).	In	the	plot	resulting	from	NMDS	analysis	the	six	samples	of	the	combined	

dataset	form	an	irregular	quadrilateral	(Figure	6).	B1,	
B2 and B3 group together and are on the same side of 
the	diagram	 than	NON-SEEP	sample;	W1	rests	 in	 the	
lower part of the diagram, at the same distance from B1, 
B2, B3 and the SEEP sample. A depth gradient follows 
the direction of the horizontal axis of the diagram, with 
shallower sites on the left side, represented by the 
whale fall and the background samples, and the deeper 
seep sites on the right. The vertical axis, on the other 
hand, corresponds to an oxygenation gradient, with 
samples from reducing soft bottoms in the lower part 
of the diagram and normal bottoms at the top.

Figure 6. Multidimensional scaling ordination of samples belonging to the whale fall (W1), the whale-fall background 

sediments (B1, B2 and B3), the Skagerrak seep site (SEEP) and the seep background sediments (NON-SEEP).

2.5 discussion

The	quantitative	analysis	of	the	Kosterfjord	samples	shows	that	the	presence	of	the	minke	
whale	 carcass	 on	 the	 sea	 floor	 still	 influences	 the	 community	 structure	 five	 years	 after	 its	
implantation. Although many species are shared between the whale fall and the background 
community, with changes in their relative abundance, the whale fall community clearly shows 
a lower diversity in its species composition, with the dominance of the chemosymbiotic bivalve 
Thyasira sarsi. The high abundance of T. sarsi in the sediments associated with the skeleton 
suggests	 that	 the	 Kosterfjord	 whale	 fall	 has	 reached	 a	 sulphophilic	 stage	 of	 the	 ecological	
succession	 (Smith	 et	 al.	 2002).	 Specialized	whale-fall	 forms,	 such	 as	bathymodiolin	mussels	
and vesicomyids clams, were not recovered during the survey, although the presence of the 
bathymodiolin Idas simpsoni has been previously reported in the North Sea even at shallow 
depth	(Warén	1991).
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The species T. sarsi is generally found in association with organic rich sediments with 
high	 total	 sulphide	 concentrations	 and	 is	widely	 distributed	 in	 the	NE	Atlantic	 (Dando	 and	
Southward	1986).	In	the	North	Sea	and	in	the	Skagerrak	T. sarsi is found at sewage-polluted 
fjords	and	active	methane	seeps	(Dando	et	al.	1991,	Dando	and	Spiro	1993,	Dando	et.	al.	1994),	
with	a	depth	range	of	50-340	m	(Dufour	2005).	On	the	other	hand,	 the	dominant	species	 in	
the background sediments, T. equalis, is the most common thyasirid on the North European 
continental shelf, and is able to survive in less organic-rich sediments than T. sarsi (Dando	and	
Southward	1986).

The opportunist species Abra nitida, common along the Northern part of the Swedish 
west	coast,	is	a	density	dependent	species	normally	occurring	in	turbid	environments	(Josefson	
1982).	 Its	 high	 abundance	 at	 the	whale	 fall	 site	 can	be	 linked	 to	 the	high	 organic	 sediment	
content,	 as	 observed	 in	 fish	 farm	 areas	with	 increased	 food	 supply	 (Kutti	 et	 al.	 2008). The 
abundance of Tellymia ferugginosa in the whale fall sample, a small bivalve that typically lives 
symbiotically in the burrow of the echinoid Echinocardium cordatum	 (Gillan	 and	De	Ridder	
1997),	is	an	indirect	evidence	of	the	presence	of	the	echinoid	itself,	not	found	during	this	study.	
Echinocardium cordatum, burrowing below or at the level of the oxidized-reduced interface and 
ingesting both surface and deep reduced sediments, hosts ectosymbiotic sulphide-oxydizing 
bacteria, Thyothrix like, in its intestinal caecum. This symbiosis opens an access for E. cordatum 
to	sulphide	rich	habitats	(Temara	et	al.	1993,	Brigmon	and	De	Ridder	1998)	and	adds	further	
evidence to the presence of a chemosynthetic ecological niche at this shallow water whale fall 
site	(Bromely	et	al.	1995).

Both the whale fall and the surrounding sediment communities record the presence of 
species typical of shallower water settings, probably transported down-slope by bottom currents, 
as the mytilids Mytilus edulis and Musculus cf. discors and littorinid gastropods. However it is 
worth	noting	that	juvenile	specimens	of	Mytilus edulis were found directly attached to the bones 
by byssus. Rissoids, which are known to live commonly on sea weeds, are much more abundant 
at the whale fall than in the background samples. They could have been transported together 
with drifting algae and concentrated around the bones, which acted as obstacle for near bottom 
currents.	However,	rissoids	are	occasionally	found	at	deep	water	wood-falls	(Warén,	personal	
communication),	and	at	relatively	shallow	vents	(~550m)	in	the	North	Atlantic	(Schander	et	
al.	2010).	The	species	associated	with	the	Kosterfjord	whale	fall	could	have	fed	directly	on	the	
bacterial mat covering the bones, as hypothesized for those found associated with Beggiatoa-
like	bacteria	at	hydrothermal	vents	(Schander	et	al.	2010).

Judging	from	our	limited	data	set,	a	methane	seep	area	of	the	Skagerrak	is	dominated	by	
the	same	species	as	the	Kosterfjord	whale	fall	community:	the	seepage	zone	with	high	dissolved	
sulphide hosts the bivalve T. sarsi, whereas the surrounding sediments, with a lower sulphide 
concentration, host the congeneric T. equalis. Despite the species overlap between taxa hosting 
chemoautotrophic	endosymbionts,	the	whale	fall	and	the	seep	samples	differ	by	their	species	
richness, the methane seep community being characterized by a very low number of mollusc 
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species. The higher species richness at the whale fall site can be related both to the higher 
habitat	complexity	encountered	around	whale	falls	(Smith	and	Baco	2003)	and	to	the	presence	
of drifted taxa from shallower areas.

Our analysis of patterns of chemosynthesis and habitat specialization in the molluscs of 
the	Kosterfjord	whale	fall	is	in	agreement	with	data	available	from	the	fossil	record.	In	a	Pliocene	
whale fall from an outer shelf setting, the sulphophilic stage was characterized by lucinids, 
which are generalist chemosymbiotic molluscs that occupy a broad range of reducing habitats 
from	deep-	 to	 shallow-water	 settings	 (Taylor	 and	Glover	2006)	 and	by	 rare	bathymodiolins	
(Dominici	et	al.	2009,	Danise	et	al.	2010:	CHAPTER	3).	Similarly,	in	the	Kosterfjord,	no	obligate	
molluscs	were	found	in	sediments	associated	with	whale	bones.	The	Pliocene	and	the	Kosterfjord	
examples	 suggest	 thus	 that	 shallow-water	 whale	 fall	 communities	 differ	 from	 those	 of	 the	
deep sea for the absence of trophic specialization among infaunal molluscs, as observed for 
hydrothermal	vent	and	seep	shallow	water	macrofaunal	assemblages	(Levin	et	al.	2000,	Sahling	
et	al.	2003,	Tarasov	2005).

2.6 Conclusions

According	to	the	Kosterfjord	study,	in	which	we	report	for	the	first	time	the	mollusc	composition	
of a whale-fall community on a modern shelf, we can conclude that the organic rich sediments 
around	whale	 bones	 are	 not	 a	 different	 habitat	 in	 respect	 to	 other	 shallow	water	 reducing	
environments. This is in contrast with the observations of a specialized fauna found on the 
whale	bones	raising	on	the	sea	 floor,	 including	the	bone	eating	worm	Osedax mucofloris and 
dorvilleid polychaetes.
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CHAPTER 3 — Mollusc species at a Pliocene 
shelf	whale	fall	(Orciano	Pisano,	Tuscany)

3.1 Introduction*

Since	 their	 first	 discovery	 in	 the	deep	 sea,	whale	 falls	 have	 attracted	 scientists	 for	 the	
exceptional fauna they host, largely based on chemoautotrophic pathways fuelled by lipid-
rich	whale	 skeletons	 (Smith	et	 al.	 1989,	Bennett	 et	 al.	 1994).	Time	series	 studies	of	natural	
and implanted deep-sea whale falls indicate that bathyal carcasses pass through four stages of 
ecological succession: a mobile-scavenger, an enrichment-opportunist, a sulphophilic and lastly 
a	reef	stage	(Smith	et	al.	2002).	Experimental	studies	have	once	yielded	evidence	of	the	fourth	
stage	 (Fujiwara	 et	 al.	 2007),	whereas	 the	 third,	 sulphophilic	 stage	has	been	 found	going	on	
also	on	very	old	carcasses	(Smith	and	Baco	2003).	Successional	stages	involve	species	turnover	
and changes in faunal mobility and trophic structure, with temporal overlaps in the onset of 
characteristic	species	from	different	stages.	For	these	reasons,	diversity	in	whale-bone	faunal	
communities varies with successional stages, the sulphophilic stage harboring the greatest 
number	of	species	(Smith	and	Baco	2003).	

While research programs concentrate on the deep sea, remarkably little is known about 
ecosystem	response	 to	whale	 falls	at	shallow	depth,	where	 the	 flux	of	organic	carbon	to	 the	
bottom	is	already	high	and	constant,	and	different	degree,	if	not	type,	of	resource	exploitation	is	
expected.	Natural	shelf	occurrences	are	probably	rare,	due	to	re-floating	of	carcasses	by	decay	
gas	(Allison	et	al.	1991,	Smith	2006),	however	artificially	sunken	carcasses	show	the	presence	
of	obligate	whale	fall	taxa	even	at	shallow	depth	(Dahlgren	et	al.	2006).

Paleontological reports of fossil whale fall communities, ranging from the Palaeogene 
(Goedert	 et	 al.	 1995,	Kiel	 and	Goedert	2006,	Nesbitt	2005,	Kiel	2008)	 to	 the	early	Neogene	
(Amano	and	Little,	2005,	Pyenson	and	Haasl	2007),	are	similarly	unbalanced	towards	deep	sea	
paleosettings.

Fossil whales are not rare in the Mediterranean Pliocene, and their taphonomy was 
approached	in	the	early	days	of	palaeontology	(e.g.,	Cortesi	1819).	However,	no	quantitative	study	
of	the	associated	biota	has	been	undertaken	until	the	recent	finding	of	a	whole	and	articulated	
skeleton of a large mysticaete in the Pliocene of Tuscany, with a mollusc fauna testifying to the 
sulphophilic	stage	(Dominici	et	al.	2009).	This	 is	particularly	 interesting	since	 it	enables	 the	
study of a whale fall community at shelf depth.

In the present study the distribution of mollusc abundances and the trophic structure 
of the Orciano fossil community are discussed at the species level, with a comparison with 

* This chapter consists of a paper by S. Danise, S. Dominici and U. Betocchi, “Mollusk species at a Pliocene shelf whale 
fall (Orciano Pisano, Tuscany)” published in volume 25 of Palaios (2010), except for Figure 4 which is unpublished.
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the background fauna. Species-level comparisons allow us to interpret the paleoecology at a 
finer	resolution	on	uniformitarian	grounds,	many	Pliocene	species	still	being	alive.	Moreover,	
new	 samples	were	 analyzed	with	 respect	 to	 the	previous	 family-level	 study	 (Dominici	 et	 al.	
2009),	allowing	the	discovery	of	new	chemosymbiotic	forms.	Mollusc	species	from	sediments	
in contact with whale bones have been compared with assemblages from the sediments below 
and around the whale fall, in order to reconstruct the paleoenvironmental conditions before 
and	during	the	permanence	of	the	carcass	on	the	sea	floor.	The	results	will	be	discussed	in	terms	
of faunal adaptations to exploit whale carcasses at shelf depths, where competition is keen. 

3.2 General setting

The fossil whale was found at Orciano Pisano, in Southern Tuscany, a locality known for 
its	rich	marine	vertebrate	fauna	including	fishes,	cetaceans,	pinnipeds	and	chelonids	(Bianucci	
and	Landini	2005).	Orciano	is	located	in	the	Fine	Basin	(Figure	1),	on	the	Tyrrhenian	side	of	
the	northern	Apennines,	a	structure	filled	by	1000	m	of	Tortonian-Pleistocene,	mostly	marine	
deposits. The depositional environment rapidly shifts from deltaic to bathyal depths at the start 
of	the	Pliocene	(Carnevale	et	al.	2008	and	references	therein),	at	the	onset	of	deposition	of	grey–
blue marls. The skeleton was found in the middle part of the regressive deposits overlaying 
the	 grey-blue	 marls,	 within	 silty	 fine-grained	 sandstones	 marking	 the	 regression	 to	 shelf	
depths. Planktonic foraminifers and fossil nanoplankton indicate that the age of the whale fall 
ranges	from	the	upper	Piacenzian	to	the	lower	Gelasian	(3.19-2.82	Ma	interval)	(Dominici	et	al.	
2009).

Figure 1. Location of the study area at Orciano Pisano, Italy and schematic geological map (modified after Carnevale 
et al. 2008).
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3.3 Materials and methods

3.3.1 Stratigraphy

The local succession is formed by the following 
units,	from	bottom	to	top	(Figure	2):	(1)	bioturbated	
grey-colored	siltstones	(thickness	50	cm)	with	sparse	
macrofauna;	 (2)	 a	 4-5	 cm	 thick,	 densely-packed	
Archimediella spirata	shell	pavement	(Turritella	bed	
in	 the	 sense	 of	Allmon	1988)	 regularly	 continuous	
in	 all	 the	 area;	 bivalves	 are	 typically	 articulated,	
Archimediella	 shells	 are	 empty	 or	 partially	 filled	
with	 clay;	 fragments	 of	 fossil	 wood	 are	 abundant	
and	up	to	15	cm	long;	remains	of	marine	vertebrates	
are	 abundant	 (sharks,	 teleosts,	 marine	 mammals,	
chelonids);	(3)	massive	silty	fine-grained	sandstones,	
more than 1 m thick, with sparse to loosely-packed 
macrofauna;	 adults	 of	 the	 highly	 mobile	 epifaunal	
Amusium cristatum	and	other	bivalves	(e.g., Anadara 
diluvii, Corbula gibba, Tellina planata)	 are	 in	 life	
position. Archimediella spirata, Aporrhais uttingeriana 
uttingeriana, spatangoid echinoderms, trace fossils 
(Ophiomorpha,	 Thalassinoides)	 and	 vegetal	 debris	
are abundant throughout the outcrop. The whale was 
lying in unit 3 about 20 cm above the Archimediella 
bed and parallel to it.

3.3. 2 Sampling and analytical methods

A total of 17 bulk samples can be subdivided in 4 groups depending on their relative position 
with	respect	to	the	whale	bones;	these	a	priori	groups	are	used	in	between-samples	comparisons.	
The	first	group	(whale	fall	community:	wfc)	is	represented	by	the	seven	samples	representative	
of	the	whale	fall	fauna	(OP1-OP7)	collected	above	the	bones	and	positioned	on	a	grid	of	1	m-sized	

Figure 2. Studied Pliocene section subdivided into three 
stratigraphic units (unit1, unit 2, unit 3). Sample locations are 
marked by OP.
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squares	(Figure	3).	Ten	additional	samples	were	collected	from	background	sediments:	 four	
from	unit	1	(below-wfc:	OP8-OP11)	three	from	the	Archimediella	bed	(Archimediella bed: OP12-
OP14)	and	three	from	unit	3	at	1-2	m	from	the	closest	bone	(lateral-wfc:	OP15-OP17)	(Figure	
2,	Table	1).	The	data	set	includes	17	samples.	All	samples,	ranging	0.5-1	litres,	were	wet	sieved	
through a 1 mm screen and the residue sorted under a binocular microscope for all recognizable 
biogenic	components.	The	latter	includes	molluscs,	polychaetes,	echinoids,	decapods	and	fishes.	
Molluscs were determined at the species level and used for quantitative comparisons. Bivalve 
number was counted as 
the highest number of 
right or left valves and 
half of the remaining, 
the latter roughly 
corresponding to the 
number of unmatchable 
valves. Gastropods were 
equated to the number 
of apices. Each unit was 
scoured for large-sized 
species, which are likely 
to be underrepresented 
in bulk samples, and a 
species was added as 
present to the data matrix 
where appropriate.

Stratigraphic unit
Group of 
samples

Sample 
number

Volume         
(liter)

Number of 
individuals

Number of 
species

OP1 1 l 257 37
OP2 1 l 228 41
OP3 0.5 l 241 41
OP4 0.5 l 116 27
OP5 0.5 l 150 34
OP6 0.5 l 204 29
OP7 0.5 l 72 25

OP8 0.5 l 56 22
OP9 0.5 l 61 20

OP10 0.5 l 92 24
OP11 0.5 l 61 18

OP12 0.5 l 282 43
OP13 0.5 l 172 27
OP14 0.5 l 188 30

OP15 0.5 l 54 22
OP16 0.5 l 75 22
OP17 1 l 140 28

All samples 12 l 2449 97

Unit 3 lateral-wfc

Unit 3  wfc

Unit 1 below-wfc

Unit 2
Archimediella 
bed

Figure 3. Plane view of the Orciano Pisano whale skeleton on a grid of 1 m squares. Triangles indicate the position of 
whale-fall samples (OP1–OP7).

Table 1. Basic data for the studied samples.



Mollusc	species	at	a	Pliocene	shelf	whale	fall	(Orciano	Pisano,	Tuscany)

31

The	data	set,	including	2449	specimens	belonging	to	97	mollusc	species	(Appendix),	formed	
the basis for a multivariate comparison and for trophic structure analysis. For multivariate 
elaboration, species occurring in only one sample were removed, resulting in a data set with 62 
species	and	2409	specimens	(98,4%	of	the	original	specimens).	Abundances	were	standardized	
and	square-root	transformed	to	de-emphasize	the	influence	of	most	abundant	taxa.

A	similarity	percentage	analysis	(SIMPER,	see	Clarke	and	Warwick	1994)	was	performed	
to determine which species were responsible for similarity within groups of sample. Those 
species for which the ratio of mean similarity to standard deviation of similarity is >1 typify 
the sample group and were listed in the comparison. Then a matrix of square-root transformed 
data	was	obtained	based	on	the	Bray-Curtis	similarity	coefficient,	one	of	the	most	widely	used	
in	ecological	studies	(Bray	and	Curtis	1957,	Clarke	and	Warwick	1994).	Analysis	of	similarity	
(ANOSIM)	was	carried	out	to	test	the	degree	of	differences	between	a	priori	groups	of	samples	
considering stratigraphic and taphonomic information. The important message of the pair-
wise	tests	of	the	ANOSIM	analysis	is	the	pair-wise	R-values;	the	latter	give	an	absolute	measure	
of	how	separated	the	groups	are,	on	a	scale	of	zero	(indistinguishable)	to	one	(all	similarities	
within	groups	are	less	than	any	similarity	between	groups).	With	R-values	>0.75,	groups	are	
well	separated;	with	R-values	>0.5,	groups	are	overlapping	but	clearly	different;	with	R-values	
>0.25,	groups	strongly	overlap;	and	with	R-values	<0.25,	groups	are	barely	separable.

Non-metric	multidimensional	scaling	(nMDS)	was	performed	(Clarke	and	Warwick	1994),	
producing a map of the samples where points that plot close together represent samples very 
similar in taxonomic composition. All statistical analyses were performed with the software 
PRIMER	(Clarke	and	Warwick	1994)	except	for	ANOSIM	that	was	performed	with	PAST	(Hammer	
et	al.	2001).

The	whole	data	set	(n=2449),	subdivided	into	the	a	priori	groups,	was	used	for	trophic	
analysis by considering trophism of modern molluscs genera or families. Seven trophic categories 
are	 distinguished	 following	 the	 Molluscan	 Life	 Habits	 Databases	 (Todd	 2000):	 suspension	
feeders	(SU),	deposit	feeders	(DE),	predatory	carnivores,	including	scavengers	(CP),	browsing	
carnivores	(CB),	herbivores	(HE),	parasites	(PA)	and	chemosymbiotic	forms	(CH).	Comparisons	
were	expressed	through	percent	of	number	of	specimens	(n,	abundance)	and	number	of	species	
(S,	richness)	for	each	category.

3.4 Results

3.4.1 Paleocommunity structure

The	full	dataset	includes	42	species	of	gastropods,	50	bivalves,	5	scaphopods,	bony	fishes,	
sharks	 and	 rays	 (Carcharhinus sp., Hexanchus griseus, Raja cf. clavata)	 (Figure	 4),	 decapods,	
barnacles,	regular	and	irregular	echinoids,	serpulids	(Ditrupa cornea	and	others)	and	foraminifers.	
The quantitatively important species of the mollusc dataset, contributing at least 1% to the total 



CHAPTER 3

32

assemblage, are all represented in the 
four groups of samples, with minor 
exceptions. Species rank changes 
between	the	a	priori	groups	(Figure	5).	
The most abundant species is the bivalve 
Corbula gibba, dominant in wfc, below-
wfc and lateral-wfc samples, with a 
mean abundance ranging 39-41%. The 
turritellid Archimediella spirata largely 
predominates in the Archimediella bed 
group	(average	31%),	being	rare	in	wfc	
and	 lateral-wfc	 groups	 (average	 1%)	
(Figure	5).	SIMPER	analysis	shows	that	
Archimediella bed samples have the 
highest similarity, with an average value 
of	 70%,	 followed	 by	 wfc	 (67%)	 and	
below-wfc	 samples	 (62%).	 The	 most	
heterogeneous group is the lateral-
wfc, with an average similarity of 57% 
(Table	2).	Characteristic	species	within	
each group of samples are mainly 
shared between all groups, with the 
exception of Natica sp. and Hiatella 

rugosa, characteristic respectively of Archimediella bed and lateral-wfc groups, and the mytilid 
Modiolula phaseolina and the lucinid Megaxinus incrassatus, only typical of the whale fall. M. 

Figure 4. Chondricthye and fish teeth associated with the studied 
samples. A. Hexanchus griseus. B. Carcharhinus sp. C. and D. Raja 
cf. clavata. E. Teleosteus fish.

Figure 5. Percentage abundances in each of the four a priori groups of the quantitatively important species (>1%) in the total 
data set. Mean percentage abundances shown with the upper limit of 95% confidence intervals; wfc = whale-fall community.
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incrassatus is found exclusively in whale 
fall samples, whereas Modiolula phaseolina 
abundance	 is	 statistically	 significant	 here	
with	 respect	 to	 the	 other	 settings	 (Kruskl-
Wallis	test:	p=0,006).

ANOSIM points out that the largest 
difference	 is	 observed	 between	 whale	 fall	
and Archimediella bed samples, the two 
groups	 being	 well-separated	 (R=0.81)	 and	
the	difference	 statistically	highly	 significant	
(p=0.0078).	Whale	 fall	 samples	 overlap	but	
are still distinguishable from below-wfc 
samples	 (R=0.66;	 p=0.0033).	 Whale	 fall	
samples	record	the	smallest	difference	when	
compared with samples from surrounding 
sediments	 of	 the	 same	 unit,	 a	 difference	
that	 is	 clear	 (R=0.56),	 but	 statistically	 less	
significant	(p=0.0402),	due	to	the	small	size	
of	lateral-wfc	samples	(Table	1).	Even	lower	
is	the	statistical	significance	while	comparing	
lateral-wfc with all other groups. Finally, 
a strong overlap is encountered between 
below-wfc and Archimediella bed samples 
(Table	3).

Non-metric multidimensional scaling 
allows us to visualize compositional 
differences	between	samples	and	their	a	priori	
groups. This underlines no overlap between 
groups and a slightly larger distance of wfc 
samples from below-wfc and Archimediella 
bed	samples	(Figure	6).	The	three	lateral-wfc	
samples appear scattered, consistently with 
their small size and unreliable character for 
comparisons. On the other hand, wfc samples 
and Archimediella bed samples form tight 
clusters, depending on their inner similarities 

and	sufficiently	 large	size	 for	comparisons.	As	a	matter	of	 fact,	 samples	with	 fewer	 than	80	
specimens tend to be more scattered, whereas samples with 100 specimens or more tend to 
plot closer. Multivariate analysis overall show that mollusc assemblages living by the whale 

Species Av.Abund.  Av.Sim. Sim/SD  Contrib.% 

"wfc" samples
Average similarity: 67.30
Corbula gibba                           39.95 13.20 9.19 19.62
Yoldia nitida                           8.03 5.58 6.49 8.29
Nuculana fragilis                       5.41 4.74 10.73 7.04
Ringicula auriculata                     5.10 3.92 5.47 5.83
Modiolula phaseolina 1.58 2.54 6.27 3.78
Anadara diluvii                          1.95 2.54 6.02 3.77
Nassarius semistriatus                   1.75 2.48 4.20 3.68
Nuculanidae indet. 3.14 2.34 1.41 3.48
Megaxinus incrassatus 1.71 2.19 3.73 3.26
Archimediella spirata                     1.77 2.18 2.66 3.23
Epitonium frondiculoides                 2.74 2.09 1.42 3.11
Amusium cristatum                       1.18 2.03 9.27 3.02
Nucula sulcata                           1.68 1.95 1.47 2.90
Chlamys varia                            1.82 1.88 1.48 2.79
Dentalium inaequale                      1.23 1.58 1.52 2.35
Limea strigilata               1.14 1.54 1.37 2.29
Anomia ephippium         0.78 1.28 1.51 1.90
Aporrhais uttingeriana uttingeriana     1.25 1.24 1.25 1.84

"below-wfc" samples
Average similarity: 61.97
Corbula gibba               43.04 16.81 19.15 27.13
Nuculanidae indet. 5.93 6.02 41.60 9.72
Archimediella spirata          5.88 5.71 7.85 9.22
Ringicula auriculata          5.42 4.96 3.32 8.00
Abra longicallus              2.58 3.75 7.21 6.05
Nuculana fragilis            2.93 3.73 5.43 6.01

"Archimediella  bed" samples
Average similarity: 70.45
Archimediella spirata                    32.35 12.41 37.34 17.62
Corbula gibba                           19.48 9.29 14.94 13.18
Nassarius semistriatus                   5.81 5.10 22.00 7.24
Yoldia nitida                            4.83 3.93 7.63 5.58
Ringicula auriculata                     3.18 3.62 6.94 5.15
Nuculana fragilis                        2.40 3.44 23.57 4.88
Nucula sulcata                           3.13 3.41 3.76 4.83
Anadara diluvii                          2.26 3.06 69.92 4.34
Nuculanidae indet 1.86 2.73 4.56 3.88
Abra longicallus                        1.49 2.58 7.63 3.66
Chlamys varia                     1.36 2.40 21.43 3.41
Chlamys pesfelis        1.11 2.38 28.32 3.38
Natica sp. 1.35 2.14 6.28 3.04
Chlamys glabra cf. flexuosa           1.77 2.10 7.75 2.99
Aporrhais uttingeriana uttingeriana    1.22 2.08 3.91 2.96
Dentalium sexangulum                     0.87 1.72 2.88 2.45
Dentalium inaequale   0.62 1.69 22.39 2.41

"lateral-wfc samples"
Average similarity: 56.68
Corbula gibba                41.08 14.79 9.41 26.10
Yoldia nitida                 5.55 4.17 3.19 7.35
Nuculanidae indet 4.11 4.10 3.45 7.23
Nassarius semistriatus        4.17 3.61 10.01 6.37
Nuculana fragilis             4.17 3.46 3.66 6.10
Limea strigilata 2.64 3.34 4.32 5.90
Amusium cristatum             2.01 3.11 8.33 5.49
Epitonium frondiculoides      1.80 3.04 13.01 5.36
Nucula sulcata               2.19 2.90 33.85 5.11
Hiatella rugosa 2.40 2.78 2.20 4.90

Table 2. Characteristic species of each group of samples, 
calculated for standardized data set and square-root 
transformed abundances using similarity percentage 
analysis (SIMPER, Clarke and Warwick 1994). Underlined 
species are characteristic taxa not shared among the four 
groups.
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carcass	are	different	from	those	that	lived	on	the	same	bottom	before	the	fall	of	the	carcass.	Even	
samples	collected	at	a	distance	from	the	bones,	but	within	the	same	unit,	appear	different.

group of samples R description (based on R-values) p
statistical 
decision

total 0.5569 groups overlapping but clearly different < 0.0001 s
wfc v below-wfc 0.6614 groups overlapping but clearly different 0.0033 s
wfc v Archimediella  bed 0.8135 groups well separated 0.0078 s
wfc v lateral-wfc 0.5556 groups overlapping but clearly different 0.0402 s
below-wfc v Archimediella  bed 0.3333 groups strongly overlap 0.0857 s
below-wfc v lateral-wfc 0.2593 groups strongly overlap 0.117 ns
Archimediella  bed v lateral-wfc 0.6667 groups overlapping but clearly different 0.1015 ns

Figure 6. Multidimensional scaling ordi-
nation of samples belonging to the four 
identified a priori groups; wfc = whale-fall 
community.

Table 3. Results of ANOSIM (analysis of similarity) among the four identified groups of samples. Statistical decisions are 
based on R-values, which give an absolute measure of the separation of the groups; s = significant, ns = not significant.

3.4.2 Trophic analysis

Trophic structure was analyzed after cumulating individual samples into the four a priori 
groups	(Figure	7).	Suspension	feeders	dominate	in	both	richness	(40-50%)	and	abundance	(56-
66%)	in	all	groups.	In	below-wfc,	lateral-wfc	and	wfc	groups	Corbula gibba is the most important 
suspension feeder, whereas the Archimediella	bed	is	dominated	by	the	turritelids	(Archimediella 
spirata, Turritella tricarinata).	Other	common	suspension	feeders	shared	between	all	samples	
are the pectinids Chlamys varia and Amusium cristaum and the arcid Anadara diluvii. The whale 
fall	assemblage	shows	a	significant	higher	abundance	of	the	mussel	Modiolula phaseolina. The 
second	most	important	group	is	the	deposit	feeders	(S=20,0-25,5%,	n=17,0-24,3%),	particularly	
nuculids	and	nuculanids	(Yoldia nitida, Nuculana fragilis, Nucula sulcata	and	Nuculanidae	indet.)	
followed	 by	 the	 tellinoidea	 (Abra longicallus, Tellina planata)	 and	 scaphopods.	 Concerning	
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carnivores and scavengers, abundance data show comparable percentages, while whale fall 
samples	 show	a	higher	 species	 richness.	Ringiculids	 (Ringicula auriculata and R. ventricosa)	
and	nassarids	(Nassarius semistriatus)	are	the	most	common,	the	first	feeding	mainly	of	small	
copepods	(Fretter	1960),	 the	 latter	being	secondarily	an	active	predator	on	polychaetes	and	
small	 crustaceans	 (Britton	 and	Morton	1994).	Naticids	 (Euspira helicina and Natica sp.) are 
quite	 common,	 feeding	 mainly	 on	 bivalves	 and	 crustaceans	 (Taylor	 1980).	 Parasites	 are	
represented mainly by the ectoparasite pyramidellids in all assemblages, with a higher diversity 
in whale fall samples. The browsing carnivores, i.e., predators which feed on sedentary and 
typically clonal animals without killing them, are poorly represented overall. This category 
include	 the	 epitonids	 (Epitonium frondiculoides, E. turtoni)	 and	 the	 trochids	 (Calliostoma 
granulatum).	Chemosymbiotic	bivalves	occur	just	in	wfc	and	Archimediella bed samples, with 

Figure 7. Trophic analysis expressed through percent of number of individuals (abundance) and number of species 
(richness). Trophic categories: suspension feeders (SU), deposit feeders (DE), predatory carnivores, including scaven-
gers (CP), parasites (PA), browsing carnivores (CB), chemosymbiotic forms (CH) and herbivores (HE). Data shown with 
95% confidence intervals; wfc = whale-fall community.
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a	low	overall	diversity.	They	are	significantly	more	abundant	in	wfc	samples,	represented	by	
the lucinid Megaxinus incrassatus, followed 
by the lucinid Myrtea spinifera and by two 
specimens of the previously unreported, 
bathymodiolin mytilid Idas sp.	(Figure	8).	All	
the M. incrassatus specimens found associated 
with whale bones are 3,5 to 5,5 cm wide, 
juveniles	being	absent.	 In	 the	Archimediella 
bed samples chemosymbiotic bivalves are 
represented exclusively by Myrtea spinifera. 
Herbivores are rare in all the samples and 
less represented in the whale fall.

Figure 8. Chemosynthetic bivalves from the Pliocene 
whale fall at Orciano Pisano. A) Megaxinus incrassatus. 
B) Myrtea spinifera. C) Idas sp.

3.5 discussion

3.5.1 General paleoenvironment

Studied mollusc species are generally indicative of a marine outer shelf setting, as previously 
demonstrated	by	a	family-level	study	(Dominici	et	al.	2009).	The	predominance	of	suspension	
feeders is consistent with the general composition of benthic communities at shelf depths, 
whereas the high diversity and abundance of deposit feeders is typical of the deeper parts of the 
shelf	(Rhoads	1974).	The	high	frequency	of	Corbula gibba, a small infaunal species inhabiting 
soft bottoms, is indicative of stressed conditions, either through high turbidity or low oxygen 
values	(references	in	Hrs-Brenko	2006).	The	dominance	of	turritellids	in	the	Archimediella bed 
is consistent with high content of particulate organic matter, usually associated with coastal 
upwelling	(Allmon	1988).	The	abundance	of	fossil	wood	suggests	instead	that	nutrients	were	
of	fluvial	origin.	The	hypothesis	of	meso-	or	eutrophic	conditions	in	the	Fine	Basin	during	the	
Pliocene is in accordance with modern conditions in the Ligurian Sea, facing the study region. 
Here	high	nutrient	contents	are	met	with	both	in	coastal	areas	and	offshore.	Modern	coastal	
upwelling and high productivity in the Ligurian Sea sustain an abundant and diverse cetacean 
fauna	(Notarbartolo	Di	Sciara	et	al.	2008),	conditions	that	would	explain	the	general	abundance	
and diversity of marine vertebrates at Orciano Pisano.

3.5.2 Whale fall ecological succession

Due to time averaging, fossil assemblages generally do not allow the positive subdivision 
of	stages	within	an	ecological	succession	(Miller	1986).	The	following	discussion	is	to	be	taken	
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therefore as a hint to possible ecological pathways within a shallow water whale fall, relying on 
both observed fossil data and known modern examples.

Chondricthyes that might have scavenged the carcass include, in addition to Prionace 
glauca and Carcharodon carcharias	collected	during	field	excavation,	the	sharks	Carcharhinus 
sp., Hexanchus griseus	and	rays	(Raja cf.).	Higher	richness	of	predatory	gastropods	in	whale	fall	
samples with respect to the others suggests a general high quantity of prey species and trophic 
niches that could interest more than one ecological stage. These, together with decapods and 
echinoids not considered in the quantitative analysis, give a clue to the later parts of the scavenger 
stage	 (e.g.	 amphipods	 and	 copepods	 ultimate	 flesh	 consumption:	 Smith	 2006).	 However,	
carnivore molluscs could also have been preying on species of the enrichment opportunistic 
stage,	 one	 chiefly	 characterized	by	 the	polychaetes	 (Smith	 et	 al.	 2002,	Dahlgren	et	 al.	 2004,	
Goffredi	et	al.	2004).	Whether	or	not	whale	fall	polychaetes	can	be	a	food	item	for	species	such	
as Natica tigrina, Ringicula auriculata or Nassarius semistriatus is presently unknown. High 
diversity of parasites, dominated by pyramidellids, could also pertain to the opportunistic stage 
through	 their	 possible	 hosts,	 such	 as	 polychaetes,	 gastropods	 and	 bivalves	 (Robertson	 and	
Mau-Lastovicka	1979).	Smith	and	Baco	(2003)	report	a	great	abundance	of	the	pyramidellid	
Eulimella lomana from a recent California whale fall community during the sulphophilic stage, 
which also suggests that pyramidellids belong to the third successional stage.

The sulphophilic stage, fuelled by the anaerobic breakdown of bone lipids, is well 
represented by the lucinid Megaxinus incrassatus and by the occurrence of the mytilid Idas sp. 

Finally, even though suspension feeders are not more abundant in whale fall samples with 
respect	to	the	background	fauna,	field	data	evidence	the	presence	of	many	suspension	feeders	in	
life position directly in contact with the bones, as the pectinid Amusium cristatum and the arcid 
Anadara diluvium. They could testify to the occurrence of the reef stage, commonly recognized 
at shelf depths.

Smith	 and	 co-workers	 (2002)	 hypothesized	 that	 the	 ecological	 succession	 at	 lower	
latitudes	and	shallower	depths	runs	faster	than	in	deep	water	whale	fall.	In	Japan,	whale	fall	
successional stages at shallow depths suggest that higher water temperature enhances bacterial 
activity	at	the	carcass,	shortening	the	duration	of	the	sulphophilic	stage	(Fujiwara	et	al.	2007).	
In	accordance	with	this	hypothesis,	the	absence	of	juveniles	among	the	paleopopulation	of	M. 
Incrassatus suggests the presence of a single cohort.

3.5.3 Shallow water whale falls

Paleoecology	 and	 trophic	 analysis	 allow	 us	 to	 understand	 the	 effect	 of	 an	 episodic	
introduction of a large organic particle in the form of a whale carcass on the biota commonly 
inhabiting this area. The bulk of mollusc species found on the whale fall were already present 
at	 the	 site	 before	 the	 sinking	 of	 the	 carcass.	 The	 only	 meaningful	 difference	 concerns	 the	
introduction of two chemosymbitic species, Megaxinus incrassatus and Idas sp., directly related 
to the whale carcass, the second with negligible abundance. These species allow us to recognize 
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the	final	stages	of	ecological	succession	typical	of	whale	falls,	but	with	a	completely	different	
overall composition compared to deep-water analogues. Mollusc species at outer shelf depths 
were thus tolerant of high organic and presumably low oxygen content around the carcass, and 
the	study	area	may	have	experienced	a	generally	high	nutrient	flux	and	eutrophic	conditions.	As	
a consequence, the studied outer shelf species largely out-competed whale fall specialists of the 
sulphophilic stage, notwithstanding the fact that the Orciano whale fall could still be reached by 
the larvae of deep water chemosymbiotic bivalves.

The paleoenvironmental distribution of the diagnostic, but extinct, bivalve Megaxinus 
incrassatus	 is	 not	 sufficiently	 known	 to	 understand	 its	 specificity	 to	 geologically	 ephemeral	
reducing habitats. It should also be considered that lucinids are more generalist than deep 
water vesicomyids and bathymodilinids, and occupy a broad range of reducing habitats from 
deep	to	shallow	water	settings	(Taylor	and	Glover	2006	and	reference	therein).

In the Mediterranean Neogene, Idas has been previously found only at a deep water 
woodfall	(Bertolaso	and	Palazzi	1993).	Modern	distributions	of	the	genus	include	species	Idas 
simpsoni, I. ghisotti and I. dalmasi found associated with sunken-wood and whale carcasses at 
depths	of	170-430	m	in	the	western	Mediterranean	(Bolotin	et	al.	2005,	Warén	and	Carrozza	
1990,	Warén	1991).	The	species	Idas modiolaeformis instead appears to be relatively ubiquitous 
in	cold	seep	communities	of	the	deep	eastern	Mediterranean	Sea	(Olu-Le	Roy	et	al.	2004).	Recent	
molecular studies single out genus Idas as a distinct clade in Bathymodiolininae mussels, with 
putative origins in shallow water, and emphasise that Idas species have the ability to live on 
various	organic	substrates	(Jones	et	al.	2006,	Lorion	et	al.	2009).	This	supports	the	stepping	
stone hypothesis which assumes that carcasses of whales, and Mesozoic marine reptiles before 
them, facilitated the dispersal of chemosynthetic-based communities down to the continental 
slope	and	into	deep-sea	vent	and	seep	habitats	(Smith	et	al.	1989,	Distel	et	al.	2000,	Kaim	et	al.	
2008).	In	this	scenario,	outer	shelf	settings,	such	as	Orciano	Pisano,	would	have	an	intermediate	
character	between	deep	and	shallow	bottoms,	and	a	sufficiently	developed	island	character,	so	
as to reduce competition for space and resources to a minimum and favour speciation within 
small populations of coastal-dwelling species like the mussels. Outer shelf conditions are the 
most	common	place	 for	the	development	of	shallow	water	species	peripheral	 isolates	(Mayr	
1963,	 Frey	 1993),	 such	 as	 the	 suspension	 feeding	 ancestors	 of	 bathymodiolins	 (Jones	 et	 al.	
2006).	These	populations,	therefore,	experienced	sufficiently	high	competition	as	to	suffer	high	
pressure selection.

3.6 Conclusions

The	 species-level	 comparison	 of	 the	 mollusc	 assemblages	 sampled	 from	 fine-grained	
sediments at Orciano Pisano, some of which represent the community that had lived by the 
carcass of a large whale, suggests that the localized reducing habitat had an intermediate 
character with respect to similar environments found at shallow and deep settings. In coastal 
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bottoms the sulphophilic stage has never been encountered, whereas in bathyal bottoms it is 
always one of the end stages of the ecological succession.

The Orciano Pisano whale fall community is recognizable thanks to the presence of the two 
chemosymbiotic bivalves Megaxinus incrassatus and Idas sp.	The	first	is	abundant,	the	second	
very rare, but both their occurrences are suggestive for the sulphophilic stage of the ecological 
succession.	This	is	the	first	case	of	a	fully	developed	whale	fall	community	at	shelf	depths,	and	
the	first	overall	in	the	Mediterranean	Sea.	Other	aspects	of	the	whale	fall	mollusc	community,	
however, make it impossible to statistically recognize this from the fauna commonly living at 
the same depth in more normal conditions. High organic content at the whale fall is largely 
exploited by shelf species already tolerant of dysoxic conditions.

Neogene whale skeletons sunken at shelf depths, not unusual in the Mediterranean 
record, can serve as important sites to test the hypothesis according to which very large organic 
particles, like whales which have sunk on the bottom, served as evolutionary stepping stones. 
Outer shelf settings would preferably show an island character, as at the Orciano study site, best 
suited for speciation within small population of species commonly inhabiting coastal areas.
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CHAPTER 4 — Taphonomy of Neogene 
Mediterranean fossil whales

4.1 Introduction*

Since great whales are the largest animals living, and possibly that have ever lived, it is no 
wonder that in the course of becoming part of the fossil record many things can occur. Large size 
conditions the causes of death of large whales, which can easily escape predation and naturally 
die in most cases of disease. Given poor nutritional conditions upon death, most dead whales 
are	 negatively	 buoyant	 and	 sink	 to	 the	 sea	 floor	 (Smith	 2006	 and	 references	 therein).	 The	
following destiny of the carcass depends then in large part on water depth. Actualistic studies 
indicate that if a carcass sinks to relatively deep bottoms, hydrostatic pressure will limit the 
generation of buoyant decompositional gases through reduction of gas volume and increased 
gas	solubility	(Allison	et	al.	1991).	At	depths	greater	than	1.000	m	the	soft	tissue	of	a	carcass	
will be removed by scavengers or consumed by microbial decomposers long before positive 
buoyancy	can	be	generated.	The	carcass	will	thus	remain	on	the	sea	floor	(Allison	et	al.	1991).	
At	shallower	depths,	gas	generation	will	refloat	whale	carcasses	(Schäfer	1972),	depending	on	
the rate of decomposition by microbes. High levels of scavenging may prevent high rates of 
decomposition,	so	that	not	all	shallow	water	carcasses	will	refloat	(Allison	et	al.	1991).	A	floating	
carcass will continue to decay, removal of supportive soft tissues promoting disarticulation of 
skeletal	elements	(Schäfer	1972).

In the shelf taphonomic pathways are complex and natural whale falls extremely rare 
(Smith	2006),	partly	justifying	why	most	time	series	studies	on	natural	or	artificially	implanted	
carcasses	have	focused	on	the	deep	sea	(Allison	et	al.	1991,	Smith	and	Baco	2003,	Goffredi	et	a.	
2004,	2008,	Lundsten	et	al.	2010),	only	some	dealing	also	with	whale	falls	close	to	the	shelf	edge	
(Braby	et	al.	2007,	Fujiwara	et	al.	2007).	In	the	deep	sea	carcasses	are	more	unlikely	to	refloat	
and	naturally	 rest	on	 the	sea	 floor	 for	several	decades	 (Allison	et	al.	1991).	Deep	sea	whale	
falls have been known to pass through four main stages of ecological succession: the mobile 
scavenger stage, the enrichment opportunist stage, the sulphophilic stage and the reef stage, 
during which all the whale organic matter is gradually consumed by a highly specialized fauna 
(Smith	et	al.	2002).	Specialization	occurs	at	more	than	one	level,	depending	on	the	clade.	For	
example, whale fall bivalves belong to chemosymbiotic families exclusive of extreme reducing 
environments such as cold seeps and hydrothermal vents, whereas polychaetes genera show 
more pronounced specialization to life on whale bones, as is the case with the bone-eater 

* Part of this chapter consists of a paper by Dominici S., Cioppi E., Danise S., Betocchi U., Gallai G., Tangocci F., Valleri 
G. and Monechi S., “Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats” published in 
volume 37 of Geology (2009). The rest is unpublished.
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Osedax	(Rouse	et	al.	2004).	Biological	and	physical	processes	at	whale	carcass	on	the	shelf	are	
little	known.	Apart	from	anecdotal	knowledge	from	the	rare	natural	occurrences	(Smith	2006),	
modern	data	are	available	only	from	the	three	artificial	experiments	performed	so	far	in	cold	
temperate	seas	(Dahlgren	et	al.	2006,	Pavyluck	et	al.	2009,	Glover	et	al.	2010).	These	suggest	
the	development	of	successional	stages,	with	some	differences	with	respect	to	the	deep	sea.	In	
general, the carcasses are consumed by generalist mobile scavengers commonly living in the 
same	area,	and	rate	of	decomposition	expressed	in	terms	of	time	taken	to	remove	all	the	flesh	
is	significantly	slower	compared	to	deep-water	analogs	(Glover	et	al.	2010).	Obligate	whale-
fall species thrive also on the shelf, like the siboglinid eating-bone Osedax (Glover	et	al.	2005,	
Dahlgren	et	al.	2006).	Chemosymbiotic	bivalves	in	modern	shallow	water	settings	are	known	
only	from	rare	reports	not	focusing	on	whale	fall	ecosystems	(Marshall	1900,	Wàren	1991)	and	
from	one	instance	reported	here	(Chapter	2).

If modern whale fall literature is skewed towards the deep sea, paleontological research has 
done so far the same. One reason for this is the interest that paleontologists have for whale fall hard-
shelled invertebrates, with a relatively good fossil record, such as the chemosymbiotic bivalves. 
Since	these	live	in	practice	only	below	the	shelf	break	(Dando	2010),	all	published	paleontological	
papers	deal	with	deep	water	whale	fall	molluscs	(Squires	et	al.	1991,	Goedert	et	al.	1995,	Amano	
and Little 2005, Nesbitt et al. 2005, Kiel and Goedert 2006, Amano et al. 2007, Pyenson and Haasl 
2007).	Quite	the	opposite	approach	was	made	available	from	the	recovery	in	2007	of	the	first	
natural	shallow	water	whale	fall	ever	studied,	both	modern	or	fossil	(Dominici	et	al.	2009;	Danise	
et	al.	2010:	Chapter	3).	Paleontologists	working	with	large	marine	vertebrates	are	accustomed	at	
understanding	the	serial	stages	which	have	preceded	the	final	burial	(biostratinomic	processes:	
Kauffman	1981,	Martill	1985,	1987,	Lancaster	1986)	and	have	easily	switched	their	attention	after	
the news coming from marine biologists, taking modern whale falls as viable analogs for the fossil 
record	of	Mesozoic	reptiles	(Hogler	1994,	Martill	et	al.	1995).	The	feedback	between	paleontology	
and marine biology has narrowed the focus to whale carcasses with the 2007 recovery of an 
articulated	10	m	mysticete	 (Dominici	 et	 al.	 2009),	when	 it	 became	 clear	 that	 the	 taphonomic	
analysis of the fossil marine vertebrate and its associated fauna could bring new insights to the 
understanding of physical and biological processes at whale falls on a time scale not available in 
modern	time	series	studies.	That	finding	also	meant	a	reconsideration	of	a	rich	record	of	Italian	
fossil whales, in search for missed hints at extreme and often complex interactions between large 
carcasses and specialized marine invertebrates.

Fossil cetaceans are abundant in marine Neogene shallow marine sediments of Italy, 
particularly in the central and northern regions of Piedmont, Emilia Romagna and Tuscany 
(Bianucci	and	Landini	2005,	Bisconti	2009).	Many	discoveries	of	 fossil	mysticetes,	 including	
almost complete skeletons, date back to the early 19th	 century,	 when	 the	 first	 excavations	
were	 reported	within	 taxonomic	monographs	by	 Italian	paleontologists.	The	 first	 important	
monograph	on	Italian	fossil	mysticetes	was	written	by	Giuseppe	Cortesi	(Cortesi	1819).	In	his	
book Cortesi described three fossil mysticetes, and he focused not only on the morphology of 
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the	 specimens,	 but	 also	 on	 the	 taphonomic	 context	 and	 the	 geological	 setting.	 Its	 first,	 true	
taphonomic work on marine vertebrate remains, inspired other important paleontologists, like 
Giovanni Capellini, Pellegrino Strobel, and Alessandro Portis that wrote large monographs on 
Italian	fossil	whales	(Capellini	1865,	Strobel	1881,	Portis	1885).	In	the	20th	century	and	in	the	
first	decade	of	the	21th	further	excavations	were	carried	out	(Caretto	1970,	Sarti	and	Gasparri	
1996,	Chicchi	and	Scacchetti	2001)	increasing	museum	collections.

In the present work, data obtained from the case study on the 10 m long baleen whale 
from	the	Pliocene	of	Tuscany	(Dominici	et	al.	2009)	served	as	a	 template	 for	 the	analysis	of	
twenty-four analogs hosted in northern and central Italy museum collections. Not all the 
taphonomical data that can be gathered following a modern approach in the excavation and 
study of a large fossil vertebrate are available when studying a museum specimen, but some 
are. Among the latter, the degree of bone articulation, the completeness of the skeleton, and the 
litology of the embedding sediments can give information on water depth, current intensity and 
rate	of	burial	of	the	bones	(Martill	1985,	1987,	Lancaster	1986,	Allison	et	al.	1991).	Shark	teeth	
in	close	association	with	the	bones,	which	past	researchers	seem	to	have	not	missed	(Bianucci	
et	al.	2002),	and	hard	shelled	invertebrates	with	a	necrophagous	diet,	occasionally	reported	in	
records of past excavations, testify scavenging. Fossil bone bioerosion, cementation, and hard 
shelled organisms in the proximity of the remains can inform on past biological activity around 
the	bones	at	the	micro-	and	mesoscale	(Martill	1987,	Allison	et	al.	1991).

4.2 General setting

The	fossil	skeletons	here	under	study	are	twenty-five	fossil	mysticetes,	numbered	from	
W1	to	W25.	Twenty-four	are	 from	the	Pliocene,	one	 from	the	middle	Miocene	(Serravallian)	
(Appendix).

The	 studied	 specimens	 are	 from	 two	 different	 paleogeographic	 domains	 of	 the	 Italian	
peninsula, the paleo-Adriatic and the paleo-Tyrrhenian domain, both related to the tectonic 
evolution of the northern Apennines. The northern Apennine fold-thrust belt was formed by 
collision	 between	 the	 European	 plate	 (Corsica-Sardinia	 block)	 and	 the	 Adriatic	 microplate	
(related	 to	 the	 African	 plate).	 The	 thrust	 imbrication	 includes	 the	 formation	 of	 an	 Upper	
Cretaceous–Cenozoic polyphase accretionary wedge characterized by the migration of the 
foredeep depocenters towards the foreland, actually located in the Adriatic Sea. Successively, 
during the Neogene, the Apennine thrust belt was interested by a NNE-migrating pattern, with 
a	compressional	regime	in	the	front	of	the	chain	(paleo-Adriatic	domain)	and	extension	in	the	
hinterland	area	(paleo-Tyrrhenian	domain)	(Carmignani	et	al.	2001).

Specimens W2-W4 belong to the Pliocene Asti Basin, the North-Western extension of 
the	paleo-Adriatic	 sea	 (Figure	1).	The	basin	 is	 filled	by	a	 regressive	 sedimentary	 succession	
of circalitoral mudstones of Zanclean age at the base, followed by Piacentian shallow-marine 
sandstones	(Ferrero	and	Pavia	1996,	Polino	and	Clari	2003).	Specimens	W5-W16	come	from	the	
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Pliocene portion of late Eocene to early Pleistocene satellite basins cropping out in the northern 
Apennines.	 These	 satellite,	 piggy-back	 basins	 are	mostly	 filled	 by	 terrigenous,	 diachronuos	
deposits,	originated	during	the	NE	migration	of	the	Apennine	thrust	belt	(Ricci	Lucchi	1987).	
In particular, specimens W5-W13 come from the Castell’Arquato basin, whereas specimens 
W14-W16 are from the Pliocene Intra-Apenninic Basins of the Bologna and Modena Apennines. 
Specimens W1, W17-W24 belong to the Pliocene portion of Neogene hinterland basins located 
on the Tyrrhenian side of the northern Apennines. They are part of the paleo-Tyrrhenian 
domain and originated in the internal portion of the chain, when important extensional tectonic 
events	were	superposed	upon	existing	compressional	structures	(Carmignani	et	al.	2001).	The	
sedimentary	fill	of	Tyrrhenian	basins	typically	consists	of	Tortonian	continental	deposits	at	the	
base, covered by brackish, evaporitic, and marine sediments of Messinian to Pleistocene age 
(Bossio	et	al.	1992).	The	older	Miocene	whale	 (W25)	comes	 from	the	earlier	 filling	of	piggy	
–back basins of the Northern Apennines, belonging to the Epiligurid succession. It comes from 
the	Monte	Vallassa	Formation,	which	ranges	in	age	from	the	Serravallian	to	the	Tortonian,	and	
is an approximately 400 m thick sequence forming a marine transgressive cycle going from 
coastal	settings	to	inner	and	outer	shelf	deposits	(Bellinzona	et	al.	1971).

Figure 1. Location map of the localities of recovery of the studied fossil whales and schematic geological map. Modified 
from Vai (2001).
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4.3 Materials and methods

During the excavation and the museum preparation of the Orciano Pisano fossil whale 
(W1)	information	on	the	taphonomy	of	the	bones	and	the	position	of	the	associated	macrofauna	
respect to the whale skeleton were recorded. To evaluate the level of generality of the Orciano 
Pisano	finding,	Italian	Neogene	collections	were	surveyed	for	large	more	or	less	complete	whale	
skeletons	that	could	have	hosted	a	whale	fall	community	(n=20,	including	W1).	We	have	included	
large	skulls	in	the	absence	of	postcranial	bones	(n=2)	and	articulated	vertebral	columns	in	the	
absence	of	the	skull	(n=3).	We	have	not	considered	isolated	bones,	which	were	however	abundant	
in some collections. A total of twenty four museum specimens were tested for the taphonomic 
variables	recognized	in	W1	(Appendix).	For	each	specimen	information	on	the	taphonomy	of	
the	fossil	bones	and	on	the	associated	biota	were	gathered	(Table	1).	Taphonomic	data	on	the	
bones	concerns	(a)	the	articulation,	(b)	the	completeness	of	the	skeleton,	the	preservation	of	
(c)	 cortical	 bones	 and	 (d)	 vertebral	 processes	 and	 (e)	 the	 cementation.	 Information	 on	 the	
associated	 biota	 include	 presence/absence	 of	 (f)	 shark	 teeth,	 (g)	 chemosynthetic	 bivalves,	
(h)	encrusting	epibionts	or	(i)	other	invertebates	associated	with	the	bones,	identified	at	the	
highest	taxonomic	level	possible.	Bone	articulation	is	“high”	when	all	the	bones	lie	in	positions,	
showing	 true	 bone-to-bone	 relationships	with	 adjacent	 elements	 of	 the	 skeleton;	 “medium”	
when the bones are slightly displaced from their original position and the original skeleton 
outline	 is	still	 recognizable;	“low”	when	the	skeletons	are	completely	disarticulated.	Skeletal	
completes	is	“high”	when	all	the	main	constituent	of	the	skeleton	were	recovered	(skull,	jaws,	
arms,	 ribs,	 vertebrae);	 “low”	 when	 one	 or	 more	 skeletal	 element	 is	 missing.	 Cortical	 bone	
preservation	can	be	“high”,	“medium”	or	“low”	if	the	outer	cortical	bone	is	still	in	place,	or	if	it	is	
partially	removed	or	absent,	respectively.	Vertebral	process	preservation	is	“high”	when	spinous	
processes	are	well	preserved;	“medium”	when	they	are	partially	preserved;	“low”	when	they	
are	absent.	Cementation	was	considered	“high”	when	large	part	of	the	skeleton	are	enclosed	in	
a	carbonate	concretion	(e.g.,	the	whole	thoracic	region);	“medium”	if	cements	occur	in	localized	
areas,	otherwise	“absent”.	Encrusting	epibionts	were	recorded	when	observed	directly	on	the	
bone surface. Data on the presence/absence of shark teeth were considered reliable, since these 
fossils	 particularly	 attracted	 palaeontologists	 (e.g.,	 Bianucci	 et	 al.	 2002)	 during	 excavations	
and have possibly never escaped recovery. On the other hand the absence of chemosymbiotic 
bivalves and other invertebrates from museum collections was interpreted as a missing datum 
(“n.d.”).

All	these	variables	were	recorded	from	different	sources,	including	the	direct	observation	
of museum specimens, literature data on the excavations, oral interviews to people who 
have	participated	to	excavations,	and	in	rare	occurrences	from	samples	collected	in	the	field.	
Additional data gathered from the literature concerned the age and taxonomy of each fossil 
whale	 and	 the	 litology	 of	 the	 embedding	 sediments.	 In	 seven	 cases	 (W1,	W14-W16,	W21-
W23)	the	original	outcrop	of	provenance	was	retraced,	studied	in	detail,	and	bulk	sampled	for	
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paleoenvironmental	estimates	(see	Chapter	6).	All	the	collected	information	are	summarized	in	
the Appendix, and the results displayed and compared in synthetic histograms.

The analyzed fossil whales are hosted in the following museums are: MGPT: Museo di 
Geologia	 e	 Paleontologia,	 Torino	 (TO);	 MPSC:	Museo	 Paleontologico	 San	 Pietro	 in	 Consavia	
(AT);	CMSNV:	Civico	Museo	di	Scienze	Naturali	di	Voghera	(PV),	MPP:	Museo	Paleontologico	
Parmense	 (PR);	 MGC:	 Museo	 Geologico,	 Castell’Arquato	 (PC);	 MGCB:	 Museo	 “G.	 Capellini”,	
Bologna	(BO);	MCRE:	Musei	Civici	di	Reggio	Emilia	(RE);	MSNT:	Museo	di	Storia	Naturale	e	del	
Territorio,	Università	di	Pisa,	Calci	(PI);	MSNF:	Museo	di	Storia	Naturale,	Firenze	(FI);	MCPG:	
Museo	Civico	di	Palazzo	Guicciardini,	Montopoli	in	Valdarno	(PI);	CVB:	Castello	di	Villa	Banfi	
(SI);	MCGA:	Museo	dei	cicli	geologici,	Allerona	(TR).

4.4 Results

4.4.1. Taphonomy of the Orciano Pisano whale

													W1	was	found	lying	on	its	ventral	side	in	a	massive	silty	fine	grained	sandstone,	about	20	cm	
above a shell bed dominated by the gastropod Archimediella spirata. Spatangoid echinoderms, 
large	decapods,	and	most	bivalves	(Figure	2A–E)	occur	in	life	position,	all	of	which	are	consistent	
with a low-energy setting below storm-weather wave base. W1 bones maintain their original 
relative	position	and	are	only	slightly	displaced	(Figure	2H-H′),	but	they	are	not	pristine.	Possibly	
all caudal vertebrae are present, but they lack dorsal processes and are frequently cemented 
one to the other in the lowermost part. Their cortical bone layer is corroded, exposing a fragile 
“spongy”	bone	tissue,	increasingly	so	as	the	chest	region	is	approached.	Thoracic	vertebrae	are	
lacking, and cervical bones are cemented. Costae, symmetrical around the vertebral column, 


  

  

  

  

  


  

  

  

  

Table 1. List of the main taphonomic and paleoecologic variables considered in this study.
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preserve	a	large	part	of	their	cortical	layer.	One	tympanic	bulla	bears	bite	marks	(Figure	2G).	
The skull is heavily worn. Macrofossils directly associated with W1 include remains of pelagic 
(white	and	blue	sharks;	Figure	2F)	and	benthic	predators	and	scavengers	(gastropods,	decapods)	
and	many	other	heterotrophs	(Figure	3).	Articulated	specimens	of	the	chemosymbiotic	lucinid	
Megaxinus incrassatus	(for	adaptations	in	lucinids,	see	Williams	et	al.,	2004)	and	large	specimens	
of the bivalve Glossus humanus	were	recovered	in	life	position	by	the	chest	and	the	skull	(Figure	
2A,	E).

Figure 2. Taphonomy and paleoecology of Orciano Pisano fossil whale (W1; IGF 9299V). A. Glossus humanus (IGF 
14635E) in life position below neurocranium (dashed line outlines scapula). B. Megaxinus incrassatus (IGF 14634E) 
in vertical position near left humerus. C. M. incrassatus in horizontal position below a costa (arrow). D. Tip of skull, 
with Amusium cristatum (long arrows) and M. incrassatus (short arrow). E. Articulated M. incrassatus below heavily 
damaged large bones. F. Large tooth of Carcharodon carcharias (IGF 9314V). G: Tympanic bulla with deeply cut marks. 
H: Field view of W1 showing articulated, but damaged caudal vertebrae and lacking dorsal vertebrae. H′. Orthogonal 
sketch of W1 with position of M. incrassatus (circles), G. humanus (stars), and teeth of white shark (Carcharodon 
carcharias—open triangles) and blue shark (Prionace glauca—black triangle). Scale bars are in cm in A, C, and E–G, 
inches in B, and m in H; D is 90 cm wide.
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Figure 3. Macrofauna associated with the Orciano Pisano 
whale (W1). A. The gastropod Aporrhais uttingeriana 
uttingeriana. B. Ostrea sp. attached to a caudal vertebra. 
C. The carnivore gastropod Fusinus longiroster next to 
caudal vertebrae.

4.4.2 Other Italian fossil whales

The	 twenty	 five	 analyzed	 specimens	 of	 the	 full	 dataset	 (n=25)	 are	 evenly	 distributed	
between	sandy	sediments	(52%)	and	mudstones	(48%).	28%	are	fully	articulated	skeletons,	
24% have the bones slightly displaced from their original position, 36% are disarticulated, for 
the	rest	(12%)	no	data	are	available	(Figure	4A,	7).	Most	of	the	disarticulated	skeletons	were	
embedded	in	sandstones	(67%),	the	rest	in	mudstones,	whereas	well	articulated	specimens	come	
from	sandstones	in	the	43%	of	the	cases	(Figure	5A).	W22,	an	highly	disarticulated	specimen,	
shows	a	bivariate	orientation	of	the	bones	(Figure	7D).	It	was	recovered	from	silty	sandstones	
associated	with	a	shell	bed	made	by	disarticulated	and	nestling	bivalves,	clues	of	reworking	(see	
Chapter	6).	Half	of	the	fossil	skeletons	are	complete	(Figure	4A).	Among	incomplete	skeletons	four	
are	acephalous,	and	two	conserve	only	the	skull	(Appendix).	67%	of	low	articulated	specimens	
are	also	incomplete,	whereas	most	of	the	well	articulated	skeletons	(86%)	have	a	high	degree	
of	completeness	(Figure	5B).	More	 than	half	of	 the	specimens	preserve	 the	external	cortical	
bone	tissue	(60%),	which	is	partially	preserved	or	absent	in	the	36%.	Vertebral	processes	are	
pristine in the 32% of the fossil whales, partially damaged in the 24%, totally absent in the 
20%,	no	available	data	in	the	24%	(Figure	4A,	8A-C).	The	20%	of	the	fossil	whales	are	highly	
cemented	(Figure	4A).	The	thoracic	region,	which	includes	cervical	and	thoracic	vertebrae	and	
the	ribs,	is	the	most	interested	by	cementation	(Figure	8D).	Highly	cemented	specimens	have	
in	most	of	the	cases	a	good	degree	of	cortical	bone	preservation	(80%)	and	most	of	them	come	
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from	muddy	sediments	(Figure	6A-B).	A	medium	degree	of	cementation	was	observed	in	the	
36% of the specimens, e.g. Figure 8E, where isolated ribs are cemented. The rest shows no 
cementation	or	there	are	no	available	data	(Figure	4A).

Shark teeth associated with fossil bones are documented for almost half of the fossil whales 
(40%)	 (Figure	 4B).	 They	 come	more	 frequently	 from	 articulated	 (71%)	 than	 disarticulated	
skeletons	(44%)	(Figure	5C).	They	are	found	directly	in	contact	with	the	bones,	as	in	W1,	or	
in	the	nearest	sediments	(Figure	9A).	The	identified	species	are	Carcharodon Charcarias	(W1,	
W15,	W17,	W22),	Prionace glauca	(W1),	Carcharinus cf. brachyurus	(W22),	Odontapsis sp.	(W17),	
Isurus oxyrhyncus	(W3),	Galeorhinus galeus	(W7),	and	cf.	Galeorhinus galeus	(W15).	Cemented	
epibionts directly attached to the external surface of the bones were found on the 44% of the 
specimens	(Figure	4B).	They	consist	mostly	of	molluscs	of	the	family	Ostreidae,	with	specimens	
up	to	10	cm	in	length	(Figure	9C-D)	and	balanid	barbacles,	solitary	(Figure	9B)	or	gregarious	
(Figure	9E-F).	Bioencrustation	was	recovered	both	from	sandy	and	muddy	sediments	(Figure	
6C).

No data are available for chemosymbiotic bivalves associated with the fossil bones, 
except	for	W1	(Figure	4A).	Other	invertebrates	were	recovered	in	the	40%	of	the	cases	(Figure	
4B).	These	are	molluscs	 in	most	cases,	and	decapods	reported	 in	W16	and	W17.	Within	 the	
molluscs the most represented trophic category is the suspension feeders, including bivalves 
of	the	family	Glossidae,	Pectinidae,	Veneridae	and	Mytilidae	(Figure	10).	Tens	of	specimens	of	
Glossus humanus	were	found	in	life	position	next	to	intervertebral	disks	of	W8	(Figure	10A).	
Pectinids were associated with specimens W3, W5, W17, W20 and W21, and are represented 
by the species Amusium cristatum, Chlamys opercularis and cf. Chlamys varia (Figure	10D).	The	
venerid Pelecyora brocchi	 is	 associated	with	 specimens	W15	 (Figure	10C)	 and	W24	 (Figure	
10E).	 Unidentified	 mytilids	 are	 associated	 with	 W5	 and	 W21,	 Mytilus sp. with W14 and 
Modiolus sp.	with	W16.	Deposit	feeders	were	found	at	W3	(Aporrhais uttingeriana uttingeriana, 
Tellina compressa)	and	W17	(Aporrhais uttingeriana uttingeriana, Dentalium fossile).	Predatory	
carnivores	are	represented	by	naticid	gastropods	at	W5,	W15	and	W20	(Figure	10E),	and	by	
Ficus sp. (W14,	 Appendix).	 Among	 scavenging	 gastropods,	 nassarids	were	 found	 (Nassarius 
italicus:	W3;	W20).

Next page:
Figure 4. Histograms summarizing collected data on the 25 fossil whales. A. Taphonomic data: bone articulation, 
cortical bone preservation, vertebral process preservation, bone cementation. B. Biota associated with the bones: 
shark teeth, encrusting epifauna, chemosynthetic bivalves, other molluscs. All data expressed in per cent.

Figure 5. Bar diagrams in which bone articulation is compared with other taphonomic and paleoecologic variables. A. 
Comparison between the degree of bone articulation and the litology of the embedding sediments. B. Bone articulation 
compared with skeletal completeness. C. Comparison between bone articulation and the presence/absence of shark 
teeth. vs: versus.

Figure 6. Bar diagrams comparing some of the measured taphonomic and paleoecologic variables. A. Degree of bone 
cementation respect to cortical bone preservation. B. Changing of degree of cementation with litology. C. Distribution 
of encrusting epibionts respect to litology. 
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Figure 7. Taphonomic data from fossil whale bones: different degrees of skeletal articulation. A. W10 with highly 
articulated bones and well preserved vertebral processes. B. W16 in fine grained silty sandstones, with a medium 
degree of bone articulation; note the ribs in anatomical position whereas vertebrae are displaced. C. Acephalous W18 
in sandy sediments; like in the former specimen (W16), ribs are in true position and vertebrae missing or displaced. 
D. W22, Highly disarticulated specimen; note the bimodal distribution of the bones.
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Figure 8. Taphonomic data from fossil whale bones: cortical bone and vertebral process preservation, and 
cementation. A. W15 with highly bioeroded vertebra and badly preserved compact bone tissue. B. W13 with partially 
preserved spinous processes and partially preserved compact bone. C. W11 with intact spinous processes and well 
preserved outer compact bone. D. Articulated skeleton with pristine costae, heavily cemented to thoracic vertebrae 
in unconsolidated muds (W17). E. Isolated ribs partially enclosed in a carbonate concretion.
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Figure 9. Shark teeth and encrusting epifauna associated with fossil whale bones. A. W17 with Carcharodon carcharias 
tooth next to the bones (see Bianucci et al. 2002). B. Large solitary balanid barnacle on one vertebral process (W22). 
C and D. Ribs and mandibles with encrusting oysters(W16). E. W11 highly preserved vertebrae encrusted with balanid 
barnacles (arrow). F. Detail of figure E showing a small naticid gastropod next to the barnacles.
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Figure 10. Molluscs associated with fossil whale bones. A. Three articulated specimens of Glossus humanus (arrows) 
next to intervertebral disks of a large whale (W8) embedded in muddy sediments B. Mytilid on one vertebra (W11). 
C. Pelecyora brocchi ? attached to a vertebra of W24. D. Mytilid (large arrow) and pectinid cf. Chlamys varia (small 
arrow) enclosed in the carbonate concretion around W21. E. Pelecyora brocchi ? (large arrow) and naticid gastropod 
(small arrow) on lumbar vertebra of W15.
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4.5 discussion

4.5.1 Taphonomic pathways at the Orciano Pisano fossil whale

The	detailed	study	of	the	Orciano	Pisano	fossil	whale	(W1)	is	here	discussed	separately	
from the others, because used as a template for all the other specimens. Shark teeth and bite 
marks suggest scavenging, consistent with the habits of white sharks, which attack whales in 
pelagic	waters,	and	blue	sharks,	which	dive	up	to	80–100	m	depths	(Fergusson	1996,	Kubodera	
et	 al.	 2007).	 White	 sharks	 were	 large	 (Figure	 2F),	 but	 the	 high	 degree	 of	 W1	 articulation	
suggests that they had a limited role in stripping soft tissues away. Successive steps were 
deduced from taphonomic pathways in some modern deep-water analogs that show analogies 
with	W1	(Allison	et	al.	1991,	Goffredi	et	al.	2004,	Fujiwara	et	al.	2007).	Some	modern,	heavily	
downgraded carcasses show badly preserved or missing thoracic vertebrae and corroded 
skulls,	while	ribs	and	lumbar	and	caudal	vertebrae	are	retained	(Fujiwara	et	al.	2007).	Costae,	
tail	bones,	and	jawbones	seem	to	be	the	first	part	of	the	skeleton	to	be	exposed	and	collapse	
(Goffredi	et	al.	2004),	whereas	soft	 tissues	 in	 the	skull	 remain	available	 for	months	 to	years	
(Fujiwara	et	al.	2007).	Biotic	activity	is	thus	expected	to	be	more	intense	around	the	chest	and	
the head. High sedimentation rates could explain early burial and low corrosion of the ribs that 
lay	lowest	in	the	pile	(Allison	et	al.	1991,	Fujiwara	et	al.	2007).	We	infer	early	exposition	of	W1	
tail	bones,	ribs,	and	jaws,	and	costae	undergoing	early	burial	in	a	soft	muddy	bottom.	Aerobic	
and anaerobic decomposition followed at the chest and head regions, where bones underwent 
a	prolonged	exposure	and	destruction	possibly	by	bone-eating	worms	(genus	Osedax, hosting 
heterotroph	bacteria;	Dubilier	et	al.	2008)	active	on	the	shelf	(Glover	et	al.	2005,	Dahlgren	et	
al.	2006).	The	subsequent	sulfophilic	stage	 is	 inferred	 from	the	abundant	 lucinids,	and	their	
uneven distribution along the carcass suggests that higher nutrient content at the chest and the 
skull	fuelled	a	more	intense	and	prolonged	chemosynthetic	activity	(Figure	2H-H′).	At	the	end	
of	the	succession,	large	bones	still	lying	on	the	bottom	offered	enhanced	flow	conditions	(“reef”	
stage)	to	the	suspension	feeders	found	on	the	skull	(Figure	2D).

4.5.2 Biostratinomy of shelf-depth fossil whales

Since water depth correlates with several environmental parameters that are important 
factors	of	biostratinomic	processes,	we	first	estimated	the	water	depth	from	grain	size	of	the	
sediments associated with the fossil whales. Muddy sediments settle in fact, on average, at greater 
depth	than	sandy	sediments	(Thorson	1957).	According	to	this	general	rule,	we	approximated	
depth with grain size, and considered that fossil whales excavated from sandstones come from 
shallower waters than those from mudstones. Accordingly, we have a positive correlation 
between litology and degree of skeletal articulation, i.e. well articulated specimens occur more 
frequently	in	muddy	sediments,	whereas	disarticulated	in	sandstones	(Figure	5A),	as	observed	
in	a	similar	study	for	Jurassic	marine	vertebrates	in	the	Lower	Oxford	Clay	of	central	England	
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(Martill	1985).	This	implies	lower	bottom	energy	for	mudstones	and	thence	deeper	settings.	
Our data suggest thus that in outer shelf areas with soft substrates and low sedimentation rate 
marine vertebrate skeletons are preserved preferentially more articulated than in onshore 
position, where reworking is higher.

We know from actualistic data that disarticulation, especially if related to skeletal 
incompleteness,	can	be	also	linked	to	carcass	flotation	after	resurfacing	(Allison	et	al.	1991).	
In	 shallow	 waters,	 floating	 carcasses	 resurfaced	 by	 the	 production	 of	 decay	 gasses	 in	 the	
abdominal cavity continue to decay, and the removal of supportive soft tissues promotes the 
disarticulation	of	skeletal	elements.	The	skull	is	usually	the	first	part	lost,	and	the	mandibles	are	
soon	separated	from	the	cranium	(Schäfer	1972).	Flotation	in	shallow	waters,	may	be	prevented	
by	scavenging	if	soft	parts	are	stripped	before	decay,	or	by	catastrophic	burial,	 if	a	sufficient	
overburden	of	sediment	is	deposited	on	the	carcass	(Allison	et	al.	1991).	Six	fossil	whales	here	
under	study,	which	miss	either	the	trunk	or	the	head,	are	good	candidates	to	reflotation	before	
final	settling.	All	other	cases	have	been	possibly	prevented	from	reflotation	by	scavenging	or	
catastrophic burial. In cemented specimens, carbonate concretions probably precipitated by 
microbial processes linked to the decay of the whale organic matter, which favours carbonate 
precipitation	increasing	poor	fluid	alkalinity	(Coleman	and	Raiswell	1993).	Cementation	is	thus	
an indirect evidence of rapid burial before all the organic matter is consumed.

The abundance and diversity of shark teeth in close association with the bones indicates 
an interaction between pelagic sharks and whales. In the modern Mediterranean, cetaceans 
represent	a	significant	component	of	the	diet	of	large	size	white	sharks,	either	through	scavenging	
or	predation	on	living	animals	(Mojetta	et	al.	1997).	Considering	the	body	size	of	Pliocene	white	
sharks,	Bianucci	et	al.	 (2002)	hypothesized	that	active	predation	was	possible	only	on	small	
Mysticeti,	as	some	cetotheriids	and	baleanids	(eg., Balaenula),	whereas	in	all	other	instances	
concerning larger specimens, the association with shark teeth must have been true scavenging. 
In	our	data	set	shark	teeth	are	all	associated	with	 large	specimens	(7-10	m	long),	 thence	all	
our evidence points to scavenging. The correlation between high degree of articulation and 
shark	teeth	(Figure	5C)	suggests	that	in	shallow	waters	the	action	of	scavengers	is	not	intense	
enough to disarticulate whale carcasses and disperse their bones, This datum is in accordance 
with knowledge from a modern shallow water study of a North Atlantic minke whale carcass, 
consumed	 by	 sharks	 and	 haghfishes	 within	 6	 months	 at	 125	 m	 depth	 without	 significant	
disarticulation	(Dahlgren	et	al.,	2006:	Figure	5).

Low degree of preservation of the cortical bone tissue, together with the loss of vertebral 
processes,	suggest	bioerosion	at	the	micro	and	mesoscale	during	exposition	on	the	sea	floor.	At	
the microscale bioerosion can be caused by heterotrophic bacteria, cyanobacteria, algae or fungi 
consuming	the	bones,	bioeroders	considered	only	by	palaeontologists	(Amano	and	Little	2005,	
Kaim	et	al.	2008,	Kiel	2008,	Shapiro	and	Splanger	2009,	Chapter	5:	Danise	et	al.	submitted)	and	
for which actualistic data are badly needed. At the mesoscale, an active bioeroder could have 
been the siboglinid worm Osedax, the most famous among bone consumers in modern shallow 
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and	deep	water	whale	falls	(Glover	et	al.	2005,	Braby	et	al.	2007,	Highs	et	al.	2010a),	togheter	
with decapods, that can feed directly on fragile Osedax-laden	 lateral	 processes	 (Braby	 et	 al.	
2007).	Decapods	are	also	among	the	more	active	scavengers	at	shallow	sub-littoral,	modern	
whale-fall	sites	(Glover	et	al.	2010)	and	are	reported	from	three	sites	in	our	survey	(W1,	W16	
and	W17).	Osedax trace fossils have been recognized only very recently in Oligocene whale 
bones	(Kiel	et	al.	2010)	and	in	one	isolated	Pliocene	bone	from	Orciano	Pisano,	from	an	ancient	
collection	housed	at	the	MSNF	(Higgs	et	al.	2010b).	In	conclusion,	at	all	scales,	bioerosion	is	an	
important	 biostratinomic	process	 of	 shallow	water	whale	 carcasses,	 allowing	 for	 significant	
exposition	on	the	sea	floor.

Encrusting epifauna on the bones, especially oysters and balanids, is a good paleoecological 
indicator for oxygenated bottom waters and low sedimentation rates, depending on their size 
and	 concentration	 (Martill	 1985).	 Lack	 of	 correlation	 between	 bioencrustation	 and	 litology	
(Figure	6C),	does	not	help	 to	 relate	biological	and	physical	processes.	 Instead,	a	one	by	one	
analysis of well known encrusted skeletons and their associated sedimentary features, allows 
some	important	considerations.	At	W1	only	one	oyster	was	found	attached	to	the	bones	(Figure	
3B),	but	the	occurrence	of	other	vertebrate	remains	in	the	same	outcrop,	of	a	laterally	continuous	
shell	bed	and	glauconite	grains	 (see	Chapter	5)	are	all	 evidence	of	 low	sedimentation	rates.	
Many encrusting oysters and a lateral continuous shell bed are also associated with W16. This 
shell bed is in the middle part of a small scale depositional sequence, corresponding to the 
maximum	flooding	interval	(see	Chapter	6),	thence	also	this	case	points	to	low	sedimentation	
rate at the whale carcass. Scanty data are available for the highly encrusted W14. Finally, the 
excellent	report	of	Giuseppe	Cortesi,	despite	 the	whale	skeleton	 is	no	 longer	available	(W7),	
leaves	little	doubt	that	the	whale	carcass	had	been	deposited	at	a	starved	bottom:	“...	picciole 
ostriche, parecchie delle quali veggonsi tuttavia incollate sulle ossa medesime… Morì questo cetaceo 
in un mare permanente e tranquillo; e perciò rimase lo scheletro nella sua naturale disposizione”	
(Cortesi	1819). Finally the size of the ostreids attached to the studied whales, up to 10 cm long, 
suggests	that	some	specimens	lay	on	the	sea	floor	at	least	for	6-10	years	(Richardson	1993).

All of the above information helps framing the paucity of data concerning the 
chemosynthetic bivalves. As a conservative assumption we should not draw positive conclusions 
based on negative evidences, particularly knowing that chemosynthetic bivalves could have 
been present but overlooked. Large chemosynthetic bivalves, like at Orciano Pisano, must have 
been originally lacking in the best described cases of a fossil whale skeleton associated with 
molluscs	(W3,	W8,	W14-W17).	However	this	argument	is	no	longer	tenable	in	the	case	of	very	
small bathymodiolins.

Among heterotrophic molluscs, the abundant suspension feeders were possibly exploiting 
flow	enhancement,	similarly	to	encrusting	epibionts	(Martill	1986,	Smith	et	al.	2002).	Pectinids	
were the most frequently recovered among suspension feeders in our dataset, and are found 
(Pecten maximus)	even	associated	with	shallow	water	artificially	implanted	carcasses	at	23-30	
m	in	the	North	Sea	(Glover	et	al.	2010).	The	unusual	abundance	or	size	of	Glossus humanus and 
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its	proximity	 to	 large	bones	at	 two	sites	(W1,	W8)	might	point	 to	special	adaptation	to	high	
sulphide	concentrations.	The	only	available	study	on	the	biology	of	 this	 taxon	(Owen	1953),	
adapted to very soft and calm mud bottoms, does not support this hypothesis. Nassarids, found 
at	three	sites	(W1,	W3,	W20),	and	abundant	in	some	cases,	are	scavengers	that	might	have	fed	
directly	on	the	whale	flesh,	as	observed	in	modern	examples	(Glover	et	al.	2010).	They	could	
also have been secondarily active predators on polychaetes and small crustaceans, as they are 
known	to	do	in	the	present	(Britton	and	Morton	1994).	Naticid	and	ficid	gastropods	are	active	
carnivores	present	or	abundant	at	many	whale	falls	(W1,	W5,	W14,	W15,	W20),	they	could	have	
preyed on soft bodied biota living around the whale carcasses, or on bivalves and crustaceans 
(Taylor	1980).

4.5.3 The fate of a whale carcass on the shelf

Building	on	previous	experience	(Dominici	et	al.	2009),	the	present	study	has	shown	that	
museum specimens can be used to understand the taphonomy of shallow water whale falls 
and that insights bring substantial knowledge of interest for both palaeontologists and marine 
biologists. Much of the paleobiological value of our research relies on knowledge gathered at 
Orciano,	where	an	ecosystem-level	approach	was	applied	for	the	first	time	to	the	excavation	of	
a large and articulated fossil whale, clearly implying that the same approach should be followed 
in all future excavations. Our taphonomic work concerns the fate of large cetacean carcasses 
sunken at shelf depths, with some degree of exportability to the taphonomy of Mesozoic large 
marine reptiles which are not explored here.

All natural occurrences of deep sea whale falls studied so far concern large and well-
articulated carcasses which have undergone all stages of whale fall ecological succession 
and have been or are inhabited by large-sized shelled specialists, suggesting very similar 
taphonomic	pathways	(Allison	et	al.	1991,	Naganuma	et	al.	1996,	Goffredi	et	al.	2004,	Lundsten	
et	al.	2010).	The	ample	variety	of	taphonomic	states	encountered	in	the	Italian	Neogene	whale	
record suggests instead that in shallow marine bottoms the destiny of whale carcasses can be 
more variable than in the deep sea. Because of the wider ranges of variation of physical and 
biological factors, the way carcasses are recycled on the shelf can vary to a large degree. After 
a	dead	whale	has	sunk,	its	permanence	on	the	sea	floor	will	depend	on	the	interplay	between	
two main biological factors, i.e., the development of decompositional gasses and the rate of 
scavenging. If the process of soft tissue degradation is dominated by microbial decomposition 
and gas production, the carcass will easily resurface and become dismembered, leading to 
the	 final	 settlement	of	 incomplete	 specimens.	This	has	occurred	 in	a	minority	of	 cases	here	
under	 consideration,	 since	 the	most	 studied	 specimens	were	 complete	 (complete	 specimen	
here	include	those	lacking	the	rostrum	or	the	neurocranium,	but	with	the	two	mandibles).	This	
implies that most large whale falls that have made it to the fossil record, passed through an 
intense action of scavengers and rapid removal of abdominal soft tissues. Since gas production 
was	not	sufficient	for	buoyancy,	the	carcass	had	remained	on	the	bottom	where	it	had	landed.	
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The following course of transformation depended on sedimentation rates. Each carcass, whether 
complete	or	not,	might	have	been	exposed	on	the	sea	floor	interacting	with	the	local	ecosystem	
and subsequently buried at any stage of development of a whale fall community, if one was 
allowed to develop. Bioerosion and biota associated with our specimens suggest that most of 
them underwent an intense and prolonged biotic activity. We could recognize both the mobile 
scavenger	stage	and	the	enrichment	opportunist	stage	on	many	shelf	specimens,	not	differing	
from what occurs at deeper settings. Scavenging is marked by shark teeth or shelled predatory 
invertebrates, the opportunist stage by the general downgrading of the bones or by rare traces 
of the bone eating worm Osedax. Some specimens underwent a more prolonged exposure, 
testifying	 to	 sediment	 starvation,	 as	 testified	 by	 cemented	 epifauna	 resting	 on	 downgraded	
bones. Instances of bioincrustation on pristine bone suggests that successional stages can be 
intermingled. Benthic organisms associated with the bones and belonging to common taxa of 
the Neogene marine record, like many suspension feeding bivalves and carnivore gastropods, 
point	to	their	general	adaptation	to	exploit	enhanced	flow	conditions	(for	example	preferred	
by	the	pectinids)	or	large	organic	particles	(preferred	by	the	nassarids)	which	are	much	more	
frequent on the shelf than on the deep sea. The mature, sulphophilic stage of whale falls was 
recognized in one case, which coincided with the only excavation carried out on an ecosystem-
level approach. This could mean that had all other recoveries dealt with the whole of the 
benthic fauna associated with the carcass, more instances of sulphophilic stage would have 
been found. Some evidences suggest however that this stage on the shelf seldom involves 
larger	chemosymbiotic	molluscs	like	in	deep	sea	sites.	These	evidences	include	1)	the	presence	
at	Orciano	of	 just	 large	 infaunal	 lucinids	and	very	 rare	bathymodiolins,	 in	 the	 lack	of	 larger	
chemosymbiotic	bivalves	like	vesicomyid	clams	and	2)	the	lack	of	chemosymbiotic	taxa	among	
all other shelled benthics reported at other sites.
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CHAPTER 5 — Fossil microbial ecosystems 
associated with Neogene Italian fossil whales

Fossil microbial ecosystem associated with a Miocene shallow-water whale 
fall from Northern Italy

5. 1 Introduction*1

Microbial	life	occurs	in,	and	seems	to	be	adapted	to,	many	different	kinds	of	ecological	
niches,	 including	unusual	habitats,	wherever	chemical	and	physical	conditions	(e.g., nutrient 
availability	and	energy	sources)	permit.	The	relatively	poorly	explored	deep,	dark	biosphere	
is of great interest because it shows an high and still completely unknown biodiversity and 
continuously	reveals	evolutionary	novelties,	despite	the	scarcity	of	food	sources	(e.g.,	Van	Dover	
2000,	Rouse	et	al.	2004,	Santelli	et	al.	2008,	Cavalazzi	2007,	Cavalazzi	et	al.	submitted	a).	Several	
reports exist of diverse, well adapted, active macro- and micro-organisms recovered from 
submarine hydrothermal vents, hydrocarbon cold seeps and whale carcasses sunk in the deep 
sea	(e.g.,	Van	Dover	2000,	Smith	and	Baco	2003,	Levin	2005).	Modern	submarine	hydrothermal	
seep and hydrocarbon areas are known to support highly productive chemosynthesis-based 
ecosystems	that	are	quite	ecologically	distinct	from	that	of	the	surrounding	sea	floor	and	whose	
ancient	counterparts	are	also	increasingly	recognized	in	the	geological	record	(e.g., Peckmann 
and	Thiel	2004,	Little	and	Vrijenhoek	2004,	Campbell	2006).	Sediments	rich	in	organics	on	the	
seabed, including hydrocarbon seeps and mud volcanoes areas, are known to host consortia of 
anaerobic methane oxidizing archaea and sulphate-reducing bacteria that, as a consequence 
of their metabolism, bio-induce precipitation of carbonate minerals, thus favouring their 
accumulation	as	geological	deposits	 (Orphan	et	al.	2001,	Peckmann	and	Thiel	2004,	Reitner	
et	al.	2005).	Modern	deep	water	whale-falls	represent	symbiont-dominated	oases	that	consist	
mainly	of	vesicomyids	clams,	bathymodioline	mussels,	and	vestimentiferan	tube	worms	(Smith	
et	 al.	 1989,	 Smith	 and	 Baco	 2003),	 together	 with	 their	 associated	microbial	 consortia	 that	
are similar to those occurring at hydrocarbon cold seeps and that could be preserved in the 
geological	record	(Shapiro	and	Spangler	2009).

Whale	bones	contain	up	to	60%	lipids	by	wet	weight	(Deming	et	al.	1997,	Higgs	et	al.	
2011)	and	anaerobic	bacterial	degradation	of	whale-bone	lipids	during	the	so-called	sulfophilic	
stage	of	the	ecological	succession	can	provide	hydrogen	sulphide	(H2S)	to	the	chemoautotrophic	

* This part of the study consists of a paper by Danise S., Cavalazzi B., Dominici S., Westall , S. Monechi F. and Guioli 
S. “Fossil microbial ecosystem associated with a Miocene shallow-water whale-fall from Northern Italy” submitted to 
Palaeogeography, Palaeoclimatololgy, Palaeoecology.”
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community	for	periods	of	years	to	decades	(Smith	et	al.	2002,	Smith	and	Baco	2003,	Lundsten	
et	al.	2010).	Chemosynthetic	sulphide-oxidizing	microorganisms	found	at	whale	falls	 include	
free-living	bacteria	(e.g., Beggiatoa spp.)	which	cover	bones	and	sediment	surfaces,	as	well	as	
endosymbionts	in	bivalves	and	tubeworms	(Bennett	et	al.	1994,	Deming	et	al.	1997,	Goffredi	
et	al.	2004).	The	sediments	beneath	and	around	whale	carcasses,	progressively	enriched	with	
lipids	and	other	organic	compounds	(Naganuma	et	al.	1996,	Smith	et	al.	1998),	experience	
anoxic conditions due to high microbial oxygen consumption that, in turn, favours anaerobic 
processes	such	as	sulphate	reduction	and	methanogenesis	(Allison	et	al.	1991).	Thus,	whale	
carcasses and the surrounding sediments represent a suitable habitat for sulphide-based 
chemosynthetic communities as well as sulphate-reducing and methane-producing microbial 
consortia	(Goffredi	et	al.	2008,	Treude	et	al.	2009).

Although	significant	advances	have	been	made	on	the	study	of	modern	and	fossil	whale-
falls, few studies have been made on bacterial degradation in ancient whale-falls. Positive 
evidence of fossil whale-falls, dating back to the late Eocene, is provided by the occurrence 
of	 chemosynthetic	macro-invertebrates	 associated	with	 fossil	 bones	 (Goedert	 et	 al.	 1995,	
Amano and Little 2005, Kiel and Goedert 2006, Amano et al. 2007, Pyenson and Haasl 2007, 
Dominici	et	al.	2009,	Danise	et	al.	2010).	More	recently,	biosedimentological	features	such	as	
botryoidal cements, microbial peloids, authigenic pyrite and microborings have been reported 
in association with fossil whale and marine reptile carcasses that could represent evidences 
of	whale-fall	 community	 development	 (Kaim	 et	 al.	 2008,	 Kiel	 2008,	 Shapiro	 and	 Spangler	
2009).	However,	the	role	played	by	depositional	and	diagenetic	processes	in	preserving	the	
traces	left	by	microbial	ecosystems	related	to	whale-falls	still	remains	to	be	elucidated	(e.g., 
Kiel	2008,	Shapiro	and	Spangler	2009).

In this study we present the results of a detailed investigation of a fossil microbial 
ecosystem associated with the bones of a Miocene mysticaete whale from shallow water 
sediments of Northern Italy. A combination of analytic techniques, such as optical and 
scanning electron microscopy, Raman spectroscopy and stable isotope geochemistry allowed 
us	to	 investigate	the	fossil	bones	and	enclosing	concretions	in	order	to	 i)	reconstruct	their	
taphonomic	 processes	 and	 diagenetic	 events,	 ii)	 recognize	 the	 distinguishing	 features	 of	
microbial	activity,	and	iii)	discuss	the	results	in	relation	to	the	development	of	a	whale-fall	
community.

5.2 Geological setting

The	 fossil	whale	 investigated	 in	 this	 paper,	 hereafter	 called	 “Voghera whale”	 (W25:	
Chapter	 4),	was	 found	 in	 the	 lower	member	 of	 the	Monte	 Vallassa	 Formation,	 part	 of	 the	
Epiligurian succession cropping out in the northernmost part of the Northern Apennines 
(Figure	 1).	 The	 Monte	 Vallassa	 Formation,	 ranging	 in	 age	 from	 the	 Serravallian	 to	 the	
Tortonian, is an approximately 400 m thick sequence consisting of a transgressive marine 
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cycle	recording	coastal	to	inner	and	outer	shelf	deposits	(Bellinzona	et	al.	1971).	The	lower	
member is characterized by blue-grey sandy marls rich in macro-invertebrates, mainly 
terebratulids, and poorly preserved bivalves, gastropods, isolated corals and echinoids. Based 
on the occurrence of Uvigerina barbatula (Macfad),	Stilotomella vermeuili (D’Orb.),	Orbulina 
universa (D’Orb.) and Globoquadrina dehiscens (Chap.,	Parr.,	Coll.),	 to	 the	 lower	member	 is	
assigned	a	Serravallian	age	(13.8-11.6	Ma)	(Bellinzona	et	al.	1971).	

Figure 1. Schematic geological map of 
the Voghera whale site, Northern Italy. 
The Voghera whale was recovered within 
middle Miocene blue-grey sandy marls 
belonging to the Epiligurid Monte Vallassa 
Formation (arrow). Oblique lines: areas of 
outcrop of Alpine units; horizontal lines: 
areas of outcrop of Apennine units; light-
grey : Oligo–Miocene sedimentary succes-
sions of Monferrato, Torino Hill and Tertia-
ry Piedmont Basin; dark-grey: Epiligurids; 
unpatterned: Plio–Pleistocene sediments. 
Figure modified from Clari et al. 2009.

5.3 Materials and methods

The	Voghera	whale	is	curated	in	the	Civico	Museo	di	Scienze	Naturali	di	Voghera	(Pavia,	
Northern	Italy)	(specimen	V658).	The	specimen,	collected	in	2007	at	the	Cà	del	Monte	locality	
near	 to	 Cecima,	 Pavia	 (Figure	 1),	 is	 an	
unidentified	mysticaete	consisting	of	three	
vertebrae, some ribs, one scapula and 
some undetermined fragments, partially 
enclosed	in	a	carbonate	concretion	(Figure	
2).	 Cemented	 fragmentary	 bones	 were	
selected	 for	 analysis.	 They	 were	 firstly	
characterized by optical microscopy 
examination of covered and uncovered 
standard	 petrographic	 thin	 sections	 (30	
μm	 thick)	 and	 polished	 surfaces.	 Optical	
analyses were performed in transmitted 
and	 reflected	 light	 by	 using	 a	 Zeiss	
Axioplan2 Imaging microscope equipped 

Figure 2. The Voghera whale, specimen V658, Civico Museo 
di Scienze Naturali di Voghera (Italy). Note the whale bones, 
such as vertebrae and ribs, enclosed in a carbonate concre-
tion. wb: whale bone; ec: enclosing concretion.
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with	a	Zeiss	AxioCam	digital	camera	and	an	Olympus	BX51	TH-200	microscope	equipped	with	
an Olympus DP12 Digital Microscope Camera. Subsequently, the uncovered thin sections and 
polished surfaces were examined using a WITec Alpha500 AFM-confocal Raman microscope. 
Three	objectives	(Nikon	20x,	50x	and	100x)	and	a	frequency	doubled	Nd:YAG	(532	nm)	Ar-ion	
20-mW monochromatic laser source were used to collect the Raman spectra. Beam centering 
and Raman spectra calibration were performed before spectra acquisition using a Si standard 
with a characteristic Si Raman peak at 520.4 cm-1. The optimum power for in situ analyses of 
different	minerals	was	experimentally	determined	between	1.67	and	1.70	nW	at	 the	sample	
surface.	 Raman	 analyses	 and	 maps	 were	 recorded	 and	 treated	 using	WITec	 Project	 2.00®	
software. Finally, selected portions of the thin sections and freshly broken samples were etched 
in an aqueous solution of 1% HCl between 5 and 120 seconds, air dried and Au-coated for 
scanning	electron	microscope	observations	and	element	analysis	(SEM-EDX).	SEM-EDX	imaging	
and	analyses	were	performed	using	a	Field	Emission	Gun-SEM	(FEG-SEM)	Hitachi	S4200	and	
a	ZEISS	EVO	MA	15,	both	equipped	with	an	X-ray	energy	dispersive	spectrometer	system.	The	
operating	conditions	of	the	scanning	electron	microscopes	were	5	to	20	keV	accelerating	voltage	
for	imaging,	and	15-20	keV	for	elemental	analyses.

13C and 18O stable isotope analyses were performed on carbonate cements inside whale 
bones	and	on	the	external	matrix.	Samples	(3-5	milligrams)	were	hand	drilled	from	polished	
slabs.	 The	 powdered	 samples	 were	 dissolved	 in	 vacuum	 in	 100%	 phosphoric	 acid	 at	 25˚C,	
and analysed using a Finnigan-MAT 250 mass spectrometer. Reproducibility was checked by 
replicate	analyses	(10	identical	samples)	and	the	standard	deviation	was	better	than	±0.3‰.	
All	results	are	reported	in	per	mil	(‰)	deviations	from	the	V-PDB	(Vienna-Pee	Dee	Belemnite)	
standard.

The instruments used are located at the Dipartimento di Scienze della Terra and Centro 
Interdipartimentale	di	Microscopia	Elettronica	e	Microanalisi,	Università	di	Firenze	(Italy),	at	 
the	 Centre	 de	 Biophysique	 Moléculaire,	 CNRS,	 Orléans	 (France),	 Centre	 de	 Microscopie	
Electronique,	Université	d’Orléans	(France),	and	at	the	Stable	Isotope	Laboratory,	Department	
of	Geology,	Copenhagen	University	(Denmark).

5.4 Results

5.4.1 Fossil bone preservation

The	Voghera	whale	bones	are	enclosed	in	a	grey,	fine-grained	host	matrix,	consisting	
of angular siliciclastic grains, such as quartz, feldspars and micas, and cemented with 
microcrystalline	to	small	rhombohedral	dolomite	crystals	(maximum	size	of	the	main	axis	10	
μm)	(Figure	3A).	Poorly	preserved	bioclasts	of	benthic	foraminifera	tests	and	concentrations	
of	fecal	pellets	close	to	the	fossil	bones	are	also	observed	(Figure	3B).

The	 Voghera	 whale	 fossil	 bones	 are	 mineralized	 in	 carbonate-rich	 fluorapatite,	
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Ca5(PO4,CO3)3F	 (Figure	 4).	 The	 studied	 fossil	 bones	 preserve	 both	 the	 compact	 and	 the	
cancellous	bone	tissue	(Figure	5A).	They	are	light	brown	in	colour	in	plane	polarized	and	light	
black	to	light	grey	in	cross	polar,	exhibiting	a	birefringence	pattern	(Figure	5B-C).	Compact	
bones result in a relatively solid and dense bone texture, whereas cancellous bones are spongy 
and	highly	porous	and	consist	of	plates	and	struts	called	trabeculae	that,	in	life,	are	filled	with	
marrow	(sensu	Lyman	1994).	The	fossil	bone	structures	are	well	preserved.	Osteons,	the	major	
structural	elements	of	bone	tissue,	and	osteocytes,	the	bone	cells,	are	clearly	visible	(Figure	
5B-D).	 Osteons	 produce	 a	 roughly	 cylindrical	 structure	 of	 successive	 concentric	 lamellae	
surrounding a centrally located canal that contains blood vessel and nerves, the Haversian 
canal	 (Lyman	 1994).	 In	 the	 Voghera	 whale,	 osteons	 show	 a	 radial	 system	 of	microcracks	
(Figure	5C).	In	Figure	5A,	the	external	part	of	cancellous	bones	appears	to	be	highly	enriched	
in dark iron sulphides. Optical microscopy and Raman spectroscopy show reddish, globular 
aggregates	of	lepidocrocite,	γ-FeO(OH),	intimately	associated	with	the	tissue	of	compact	and	
cancellous	bones	(Figure	5E).	The	lepidocrocite	grains	have	a	diameter	in	between	4	and	8	
μm,	however,	rare	larger	diameter	grains	up	to	40	μm	were	also	observed.

Figure 3. Transmitted light photomicrographs of 
petrographic thin sections of the Voghera whale 
bones and the enclosing carbonate concretion. 
A. Fossil whale bone (wb) and the enclosing 
concretion (ec). The enclosing concretion consists 
of a siliciclastic matrix cemented by microcrystalline 
dolomite. Note the canals of compact bones (wb) 
filled by sparry calcite (sc). B. Enclosing concretion 
with fecal pellets (arrows). Fecal pellets are ovoid 
or elliptical shape, are up to 420 μm in length and 
contain minor amounts of iron sulphide.

Figure 4. Raman spectrum of the Voghera whale 
fossil bones. The bones are preserved as Ca-rich 
fluoroapatite, Ca5(PO4,CO3) 3F.
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Figure 5. Transmitted light 
photomicrographs of petrographic thin 
sections of the Voghera whale bones. 
A. Bone structure with well preserved 
compact and cancellous bone tissue. 
Note black iron monosulphides especially 
concentrated at the compact-cancellous 
bone interface (arrows). B. Detail of 
compact bone as observed in cross 
polarized light. The birefringent pattern 
of the osteons emphasizes the concentric 
lamellar structures (arrow) surrounding 
the central Haversian canal. C. Detail of 
compact bone showing radial microcracks 
(small white arrows). The cavities of 
Haversian canals may be empty (black 
arrow) or filled with pyrite framboids 
(large white arrow). D. Well preserved 
osteocyte cells (arrow) within the 
carbonate-rich fluoroapatite fossil bone. 
E. Globular lepidocrocite (arrows) in the 
bone matrix. All figures in plane polarized 
light except C which is cross polarized.
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5.4.2 Carbonate cements filling cancellous bones

Cancellous	bones	are	filled	with	different	carbonate	phases,	including	microcrystalline	
and	 rhombohedral	 dolomite,	 and	 euhedral	 (sparry)	 calcite	 (Figure	 6).	 In	 thin	 section,	
microcrystalline	dolomite	exhibits	a	clotted	fabric,	resulting	in	a	dark,	cloudy	aggregate	(Figure	
6A).	Locally	microcrystalline	dolomite	forms	well	organized	rounded	to	sub-rounded	microbial	
peloids	with	an	average	radius	of	57	μm	(min	37.8	μm,	max	116	μm)	(Figure	6B-D).	Microbial	
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Figure 6. Transmitted light photomicrographs and SEM images of petrographic thin sections showing different Ca-
Mg-carbonate cements lining and filling cancellous bones. A. Whale bone trabeculae (wb) are lined and encrusted by 
thin rims (arrows) of microcrystalline dolomite and clotted dolomite (cd). Locally, microbial peloids (mp) are observed 
associated to clotted dolomite lining the trabecular bones (boxed area). Sparry calcite (sc) occludes the trabecular 
bone cavities. B. Detail (magnification of the boxed area in A) of an aggregate of microbial peloids (arrows). The 
peloids are stained by opaque Fe-sulphides (py: pyrite) and -oxyhydroxide (lep: lepidocrocite) . C. High magnification 
of a microbial peloid. Microbial peloids consist of a microcrystalline dolomite nucleus (md) surrounded by small 
rhombohedral dolomite crystals (arrows). D. SEM image of microbial peloid with a rim of rhomoboedral dolomite 
crystals (arrow) lining bone trabecula (wb), and cemented with sparry calcite (sc). E. Detail of the microbial peloid (high 
magnification of boxed area in D). Note the clotted (3-5 μm) microcrystalline dolomite (md) and the well developed 
rhombohedra on the external part (arrows). F. Pyrite framboids (py) partially oxidized into lepidocrocite (lep) and 
closely associated with small rhombohedral dolomite (rd). Note the internal area of framobids with still preserved 
pyrite microcrystallites. A, B, and C in plane polarized light.

peloids show a characteristic internal organization. Their inner part consists of a dense 
aggregate of microcrystalline dolomite whereas their external portion shows a characteristic 
rim	of	rhombohedral	dolomite	crystals	(Figure	6C).	SEM	observation	of	the	microbial	peloids	
shows	a	dense	nucleus	of	microcrystalline	dolomite,	3	to	5	μm	in	size,	and	an	external	rim	of	
rhombohedral	dolomite	with	an	average	main	axis	size	of	22	μm	(Figure	6E).	Similar	dolomite	
rhombohedra	are	also	observed	to	line	the	surface	of	trabeculae	bone	(Figure	6A,D).	Locally,	
dolomite	rhombohedral	crystals	exhibit	a	particular	habit	of	aggregates	with	a	flower-like	form	
and	an	average	radius	of	20	μm	(Figure	7).	They	can	be	solitary	or	coalescent	(2-4	bodies)	and	are	
especially	observed	close	to	bone	trabeculae	and	result	embedded	in	the	sparry	calcite	(Figure	
7A).	These	 flower-like	 structures	 are	 characterized	by	 a	dark,	 opaque	nucleus	of	 few	pyrite	
framboids	(Figure	7B).	Raman	analyses	made	on	the	peloids	and	flower-like	structures	show	
the	presence	of	disordered	carbonaceous	matter	(DCM)	associated	with	the	dolomite	crystals	

Figure 7. Transmitted light photomicrographs of petrographic thin sections showing flower-like cements lining whale 
bones. A. Flower-like structures (white arrows) close to bone trabeculae and embedded in sparry calcite. Flower-like 
structures occur typically as isolated and paired bodies, or in small aggregates. At the top note clotted microdolomite 
(cd) embedded in sparry calcite cement. Note also the osteocytes (black arrow) within the whale bone. B. Detail of 
flower-like structures formed by few small pyrite framboids (py) surrounded by rhombohedral dolomite crystals.
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and	the	pyrite	framboids,	respectively	(Figure	
8A-B).	Pyrite	framboids,	commonly	associated	
with	 peloids	 and	 the	 flower-like	 structures,	
have	an	average	diameter	of	6	μm	and	can	be	
partially or totally oxidized to lepidocrocite 
(Figure	 8B).	 SEM	 observations	 show	 zoned	
pyrite framboids with a pyritic nucleus and an 
external	rim	of	lepidocrocite	(Figure	6F).

5.4.3 Microborings

Two	different	microboring	morphologies	
were	observed	 in	 the	Voghera	whale	samples	
(Figures	 9-11).	 Type	 1	 microborings	 are	 the	
more abundant and occur both in the inner 
cancellous bones and in the outer compact 
bones	(Figure	9).	They	have	an	average	diameter	
size	of	3.8	μm	(observed	diameter	between	1.7	
and	8.4	μm)	and	a	maximum	measured	length	
of	 37	 μm.	 Optical	 microscope	 observations	
of type 1 microborings show that they are 
formed by not bifurcating, slightly curved 
microtunnels without any preferred orientation 
(Figure	 9B,D).	 SEM-EDX	 analyses	 on	 type	 1	
microborings show microtunnels with the wall 
surface intensely encrusted by micron-sized 
iron-oxides	 (Figure	 11B-C).	 On	 the	 external	
part of compact bones type 1 microborings 
form	 a	 300	 μm	 thick	 densely	 tunnelled	 zone	
(Figures	 9C-D,	 11A).	 The	 bioeroded	 area	 is	

delimited by bright cement lines that mark the boundaries between the secondary osteons 
of the Haversian systems, whereas the concentric lamellae typical of compact bone osteons 
are	totally	obliterated	by	the	intense	bioerosion	(Figure	9C-D).	Type	2	microborings	are	less	
abundant	than	type	1.	They	occur	exclusively	on	the	external	part	of	compact	bones	(Figure	10).	
They	have	an	average	diameter	size	of	2.3	μm	(observed	diameter	size	is	in	between	of	1.3	μm	
and	max	3.7	μm)	and	show	a	maximum	measured	length	of	81	μm.	They	are	straight	or	slightly	
curved	tunnels,	often	branching	with	90°	bifurcations	(Figure	10A,D).	They	can	be	partially	filled	
by	pyrite-lepidocrocite	framboids	that	form	central	swellings	(Figure	10B-C).	Some	filaments	
reveal	 internal	 segmentation	 (Figure	10C).	Often	 terminal,	 sack-shaped	swellings,	15-20	μm	
wide,	occur	at	the	tip	of	one	filament	(Figure	10B-C).	Sometimes	microtunnels	can	be	linked	

Figure 8. Raman spectra of the carbonate cements filling 
cancellous bones and of pyrite-lepidocrocite framboids. 
A. Raman spectral signature of rhombohedral dolomite 
crystals and sparry calcite. Note the presence of a well-
defined D (1350 cm-1) and G (1600 cm-1) peaks associated 
with the dolomite crystals, indicating the presence of dis-
ordered carbonaceous matter (DCM). B. Raman spectral 
signature of pyrite and lepidocrocite minerals. Note the 
occurrence of D and G peaks associated with the fram-
boidal pyrite, indicating the presence of disordered car-
bonaceous matter (DCM).
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to	the	bone	surface	by	larger	apertures	(Figure	10D).	Neither	type	1	nor	type	2	microboring	
developments are observed around post-mineralized fractures. In the same area in which the 
microborings	occur,	a	30	μm	thick	barite	coating	encrusts	the	external	surface	of	compact	bones	
(Figure	11D).	SEM	and	EDX	analysis	 indicates	that	the	barite	crust	 is	microcrystalline	and	is	
associated	with	a	Sr-rich	calcite	cement	(Figure	11E-F).

Figure 9. Transmitted light photomicrographs of petrographic thin sections showing type 1 microborings in cancellous 
and compact bones. A. Trabeculae of cancellous bones (wb) intensely bored by type 1 microborings (arrows). Note 
cancellous bones filled with clotted dolomite (cd), microbial peloids (mp) and sparry calcite (sc). B. Detail of type 
1 microborings within trabecular bones. They do not show any preferential orientation. C. Type 1 microborings in 
compact bone. A 300 μm thick intensively tunnelled zone is bored with a pattern that follows the micro-architecture 
of the bone tissue. Note in fact that the bioeroded area is delimited by bright cement lines (arrows) that mark the 
boundaries between the secondary osteons of the Haversian systems. D. Detail of the intensively bioeroded compact 
bone. The Haversian canal contains a reddish lepidocrocite grain (arrow). Note that the concentric lamellae typical of 
the osteons are totally obliterated by the microborings. All figures in plane polarized light.
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Figure 10. Transmitted light photomicrographs of petrographic thin sections showing type 2 microborings in compact 
bones. A. Type 2 microborings on the external side of the compact bone. Note the 90° bifurcations (arrows). B. Detail 
of type 2 microborings. Note the reddish lepidocrocite grains forming central swellings (small arrows) and a sack-
shaped swelling at the tip of the same filament (large arrow). C. The large arrow points on an isolated sack-shape 
swelling and the small arrow to a bifurcating microboring containing two small reddish lepidocrocite grains which 
highlight internal segmentation. D. Bifurcating type 2 microborings (small arrows). Note the large aperture linking one 
tunnel to the outside of the bone (large arrow). The black dotted line delimits the external side of the bone.
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Figure 11. SEM images of the bioeroded bones. A. External surface of compact bones showing a 200 μm thick zone 
intensively bioeroded by type 1 microborings. B. Detail of type 1 microborings in cancellous bones. The microborings 
resemble empty tunnels with micron-sized mineral grains encrusting the walls (arrows). C. EDX analysis of the micron-
sized Fe-oxide grains arrowed in B. Both apatite in the bone and the Fe-oxide were detected in this analysis. D. Barite 
crust covering  the external surface of bones that are intensely bioeroded by type 1 microborings. E. Detail of the 
barite crust showing its massive microcrystalline habit. F. EDX analysis of the barite crust. Barite is associated with 
Sr-rich calcite. A and E were made in backscattered electron mode, C and D in secondary electron mode with an 
acceleration voltage of 15 kV.
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5.4.4 Stable isotope analyses

Carbon	 and	 oxygen	 stable	 isotope	 values	 were	 obtained	 for	 the	 different	 carbonate	
mineral phases within our samples such as the 
dolomite cement of the enclosing concretion, the 
clotted microcrystalline dolomite and microbial 
peloids,	and	the	sparry	calcite	(inside	and	outside	
the	bones)	(Figure	12).	The	δ13C	and	δ18O values 
of the microcrystalline dolomite sampled inside 
bone	trabeculae	range	from	-7.28	‰	to	-7.15	‰,	
and	from	+3.51	‰	to	+3.54	‰	respectively.	The	
dolomite cements of the enclosing concretion 
have	 δ13C	 values	 as	 low	 as	 -7.34	‰,	with	 δ18O 
values	ranging	from	+3.86	‰	to	+4.36	‰.	The	
sparry calcite occluding voids in- and outside 
bones	 has	 δ13C	 values	 between	 -1.33	 ‰	 and	
+0.22	 ‰,	 with	 δ18O values ranging between 
-1.67	‰	and	-0.3	‰.

5.5 discussion

The	Voghera	whale	fossil	bones	are	preserved	in	Ca-rich	fluorapatite,	the	mineral	into	
which	(hydroxyapatite)	biogenic	bones	are	commonly	transformed	during	diagenesis	(Allison	
and	Briggs	1991).	The	birefringent	pattern	of	 the	 fossil	bones	 investigated	suggests	 that	 the	
bones retain the original alignment of apatite crystals that is typical of fresh, proteinated bones, 
despite	 the	 loss	 of	 the	 collagen	 fibres	 due	 to	 fossilization	 (Hubert	 et	 al.	 1996).	 Iron	 oxide-
hydroxide lepidocrocite is a common product of the diagenetic alteration of iron sulphides 
(Allison	 and	 Pye	 1994,	 Bailey	 et	 al.	 2010).	 The	 presence	 of	 iron	 sulphides	within	 the	 bone	
matrix is presumably related to the early stages of bacterial bone decay. Sulphide produced 
by the bacterial degradation of bone collagen could have induced iron sulphide precipitation 
inside small void spaces within the bones, such as canaliculi, that are no longer visible because 
they	have	been	occulted	by	diagenesis	(Pfretzschner	2001).	Similarly,	iron	monosulphides	have	
been	observed	to	form	layers	and	fill	in	vertebrae	micropores	in	modern	deep-water	whale-falls	
(see	Figure	5	in	Allison	et	al.	1991).	In	addition,	radial	microcracks	in	compact	bones	could	be	
related to the degradation of collagen during early diagenetic processes as a consequence of 
the	hydration	of	gelatinized	collagen	that	swelled	the	bones	(Pfretzschner	2004).	Microcracks	
enhanced	the	exchange	of	fluids	and	chemicals	between	the	bones	and	the	surrounding	water	
during	 bone	 decay	 (Pfretzschner	 2004).	 The	 diffusion	 of	 oxygen	 and	 sulphates	 from	 the	
surrounding water into the bones presumably favoured the onset of the decay processes in the 

Figure 12. Stable isotope analyses of the carbonate 
cements inside and outside the Voghera whale fossil 
bones. Cross-plot of δ13C and δ18O values of dolomite 
filling cancellous bones (triangles), concretionary do-
lomite enclosing the bones (squares) and sparry calcite 
(rhombi).
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inner	part	of	the	bones,	where	whales	host	large	amounts	of	lipids	(Higgs	et	al.	2011).	Then,	once	
oxygen was depleted by aerobic heterotrophic bacteria, sulphate reduction and methanogenesis 
could	start	(Allison	et	al.	1991).	The	concentric	zone	enriched	in	iron	sulphide	observed	in	the	
outer	part	of	the	Voghera	cancellous	bones	may	represent	the	boundary	between	an	internal	
area in which sulphate reduction took place at the lipid-water interface and an outer zone 
where	sulphide	oxidation	and	aerobic	decay	were	the	dominant	processes	(Allison	et	al.	1991).	
A similar distribution of iron sulphides inside whale bones has been recognized in modern and 
fossil	whales	(Allison	et	al.	1991,	Shapiro	and	Spangler	2009).

Clotted	and	peloidal	structures	similar	to	those	described	within	Voghera	fossil	whale	bones	
(Figure	6)	occur	in	wide	variety	of	different	geological	settings,	such	as	in	shallow	water	carbonates,	
coral reef crusts, mud mounds, hydrocarbon seep deposits, as well as in late Eocene-early Oligocene 
deep	water	whale-falls	 (Chafetz	1986,	Cavagna	et	al.	1999,	Campbell	et	al.	2002,	Peckmann	and	
Thiel 2004, Shapiro 2004, Barbieri and Cavalazzi 2005, Cavalazzi et al. 2007, Shapiro and Spangler 
2009).	 The	 clotted	 fabric	 is	 related	 to	 small-scale	 variations	 in	 the	 chemical	microenvironment	
during	carbonate	precipitation	caused	by	the	metabolic	activities	of	microorganisms	(Burne	and	
Moore	1987).	Peloids	are	 interpreted	as	microbial	bio-products	or	biominerals	 that	are	 thought	
to	be	precipitated	on	the	surface	of	bacterial	clumps	(Chafetz	1986).	As	observed	in	the	Voghera	
whale bones, microbial peloids are characterized by richness of dark organic matter, indistinct 
margins,	 variable	 sizes,	 cloudy	 interiors,	 and	 sulphide	minerals	 (Shapiro	2004).	The	 flower-like	
structures	 floating	within	 sparry	 calcite	 cement	 resemble	 small	 peloids	 although	 they	 lack	 the	
inner	 filling	 of	 microcrystalline	 dolomite	 (Figure	 7).	 They	 could	 represent	 bacterially	 induced	
precipitates	overgrown	by	single	euhedral	dolomite	crystals	instead	of	being	completely	lithified	
by microcrystalline calcite, as supposed for similar dolomite aggregates from a Miocene methane 
seep	of	northern	Italy	(Cavagna	et	al.	1999).	A	biogenic	origin	for	the	peloids	and	the	flower-like	
structures is also supported by the presence of disordered carbonaceous matter in close association 
with	them	(Figure	8).	In	the	Raman	spectra	the	G	and	D	bands	represent	a	mixture	of	crystalline	
carbonaceous	material	(graphite,	G)	and	poorly	organized	carbonaceous	matter	(D),	respectively	
(Beissac	et	al.	2003)	and	the	association	with	probable	microbial	structures,	such	as	the	peloids	and	
the	flower-like	structures,	may	indicate	that	the	carbon	is	of	biological	origin	(Marshall	et	al.	2010).

Shapiro	and	Spangler	(2009)	suggested	that	the	model	presented	by	Riding	and	Tomás	
(2006)	 for	 the	 calcification	 of	 bacterial	micropeloids	 in	 Cretaceous	 stromatolites	may	 also	 be	
applicable to fossil whale bones. According to this model the clotted microcrystalline dolomite 
and	the	peloids	of	the	Voghera	whale	would	represent	the	product	of	the	organic	matter	decay	
immediately below the sediment-water interface. During early diagenesis, microbial decay 
of whale bone lipids could have induced the dolomite precipitation, that potentially induced 
the	 calcification	of	 bacterial	 aggregates	 forming	 the	nuclei	 of	 peloids.	 The	 spatial	 distribution	
of aggregating bacterial colonies determined the spacing of the peloidal masses. When all the 
organic matter was consumed and the peloids overgrew, the sparry calcite cement occluded the 
water-filled	voids.
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The	 precipitation	 of	 dolomite	 in	 the	 peloids	 of	 the	 Voghera	 fossil	 whale	 bones	 was	
probably determined by the chemistry of the pore waters. Dolomite precipitation, in fact, is 
known to be inhibited by normal marine sulphate concentration, whereas is favoured when 
sulphates	are	removed	from	the	pore	waters	by	an	intense	reducing	bacterial	activity	(Kastner	
1984).	 In	 particular,	 the	 degradation	 of	 organic	matter	 by	 sulphate	 reducing	 bacteria	 could	
promote early dolomite precipitation by simultaneously increasing the carbonate alkalinity 
and	reducing	near	zero	the	sulphate	ion	concentration	(Compton	1988).	The	sediment	depth	
of early dolomite precipitation depends on the organic input, the rate of sulphate reduction 
and sedimentation rate, and already can start at less than 1 m below the sediment sea-water 
interface	(Mazzullo	2000).

The	 common	 co-occurrence	 in	 the	Voghera	 samples	 of	 pyrite	 framboids	 associated	with	
dolomitic clots and rhomboedric dolomite cements suggests an intense sulphate reduction. Although 
diagenetic, microbially produced pyrite framboids and crystals are common in sedimentary rocks, 
especially	in	fine-grained	lithologies	(e.g.,	Berner	1970),	the	association	of	framboidal	pyrite	with	
authigenic carbonates is less common, and in seep-related authigenic carbonates it is considered to 
be a paleoenvironmental indicator for bacteria sulphate reduction independent of burial diagenesis 
(Cavagna	et	al.	1999,	Shapiro	2004,	Cavalazzi	et	al.	submitted	b).

The similar carbon and oxygen isotopic signal obtained for the microcrystalline dolomite 
intimately associated with cancellous bone and for the dolomite in the enclosing concretion 
(average	 δ13C:	 -7.12	‰;	 average	 δ18O:	 +3.81	‰)	 suggests	 that	 they	 probably	 precipitated	
in	 similar	 geochemical	 conditions.	 The	 slightly	 depleted	 δ13C values are compatible with 
fractionation promoted by sulphate reduction processes during bacterial oxidation of the whale 
lipids	 (Irwin	et	 al.	 1977,	Coleman	et	 al.	 1993,	Mazzullo	2000).	The	 slightly	high	δ18O values 
could be explained as a consequence of low bottom water temperatures on the shelf in addition 
to	late	diagenetic	alteration	(Mozley	and	Burns	1993).	The	carbon	and	oxygen	stable	isotope	
values	of	sparry	calcite	cement	inside	and	outside	the	bones	(avg	δ13C:	-0.55	‰;	avg	δ18O: -0.98 
‰)	are	consistent	with	a	(late)	precipitation	in	chemical	equilibrium	with	seawater	(Mozley	
and	Burns	1993).

Microborings	in	the	Voghera	fossil	whale	bones	were	generated	prior	to	the	fracturing	
and mineralization of the bones as they are not concentrated around post-mineralized 
fractures	(Trueman	and	Martill	2002).	Type	1	microborings	are	in	the	same	range	size	of	those	
described	 in	previous	 studies	on	deep-water	 fossil	whale-falls	 (Amano	and	Little	2005,	Kiel	
2008,	Shapiro	and	Spangler	2009)	and	in	plesiosaurid	carcasses	(Kaim	et	al.	2008),	while	type	
2 microborings are smaller. The morphologies of the microborings are similar to the traces left 
by euendoliths, that is, endolithic microorganisms that actively penetrate into rocks or hard 
substrates	and	create	microtubular	cavities	conform	with	the	shapes	of	their	bodies	(Golubic	
et	al.	1981).	In	the	marine	ecosystem	such	organisms	include	phototrophic	cyanobacteria	and	
algae and heterotrophic fungi and bacteria, all of which are capable of metabolizing collagen 
and	dissolving	the	mineral	matrix	(Davis	1997,	Trueman	and	Martill	2002).	While	phototrophic	
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euendoliths	dominate	within	the	sunlight-illuminated	(euphotic)	coastal	ranges	in	the	oceans,	
the light-independent heterotrophs follow the distribution of organic substrates for food and 
are	 found	 in	 all	 depths	 ranging	 from	 shallow	 coastal	waters	 to	 the	 abyssal	 depths	 (Golubic	
et	al.	2005	and	references	therein).	As	a	consequence	of	convergent	evolution	of	boring	and	
reproductive behavior among unrelated organisms that exploit similar environments in shallow 
waters,	 the	distinction	between	the	borings	of	endolithic	 fungi,	 filamentous	(and	sometimes	
coccoid)	cyanobacteria	and	eukaryotic	algae	is	often	difficult	(Golubic	et	al.	2005,	Jans	2008).	
The	occurrence	of	the	Voghera	type	1	microborings	along	the	internal	walls	of	cancellous	bones	
(Figure	9A)	that	is,	in	an	environment	not	influenced	by	sunlight,	suggests	that	the	responsible	
organisms are heterotrophic rather than phototrophic. In addition, the absence of bifurcations, 
the presence of permineralized rims around the borings, and the destructive pattern of the 
bones	 support	 a	 prokaryotic	 origin	 (Turner-Walker	 2008,	 Turner-Walker	 et	 al.	 2002,	 Jans	
2008).	Type	2	microborings	only	occur	on	the	external	part	of	the	bones	(Figure	10).	Here,	the	
presence	of	dichotomously	branched	ramifications	with	internal	segmentation	and,	especially,	
associated	bag-shaped	swellings	support	a	fungal	origin	(Schumann	et	al.	2004,	Golubic	et	al.	
2005,	Eickmann	et	al.	2009).

Barite	 (BaSO4)	 is	known	 to	 form	 in	numerous	microbially	colonized	habitats,	 including	
marine cold seeps, white smokers, hot springs, and the upper water columns of lakes and oceans 
(Bonny	 and	 Jones	 2008	 and	 references	 therein).	 Barite	 deposits	 generally	 form	as	 a	 result	 of	
mixing	of	soluble	barium-containing	fluids	with	sulphate-rich	fluids.	Deposits	formed	by	direct	
precipitation	from	barium-enriched	hydrothermal	fluids	are	known	as	hydrothermal	barite.	They	
are	restricted	to	the	vicinity	of	seafloor	vents	and	are	commonly	associated	with	anhydrite	and	
sulphides	(e.g.,	Koski	et	al.	1985).	At	cold	seeps,	on	the	other	hand,,	barite	precipitation	occurs	
when	rising	barium-rich	fluids	derived	from	the	dissolution	of	biogenic	barite	deposits	react	with	
sulphate-rich,	downwards-diffusing	seawater	or	ascending	brines	(Torres	et	al.	2003,	Aloisi	et	al.	
2004).	In	the	water	column,	barium	sulphate	is	known	to	precipitate	within	microenvironments	
of decaying planktonic organisms, which may actively or passively accumulate barium and form 
barite	in	pelagic	sediments	underlying	high	productivity	waters	(Dehairs	et	al.	1980,	Bishop	1988,	
Paytan	and	Griffith	2007).	Authigenic	barite	has	also	been	documented	 in	biogenic	calcareous	
rocks where barium is derived from the decomposition of organic matter, plankton and other 
organisms	such	as	bacteria	(Stamatakis	and	Hein	1993).	Although	the	morphologies	and	sizes	of	
marine barite crystals in the water column and in marine sediments indicate a possible biogenic 
origin,	 the	 living	 organisms	 which	 directly	 precipitate	 barite	 have	 not	 yet	 been	 identified	 in	
seawater	(González-Munõz	et	al.	2003).	Barite	precipitation	by	living	organisms	(protozoa)	has	
been, however, demonstrated in lacustrine freshwater environments, where sulphur-metabolizing 
microbes	are	capable	of	mediating	barite	saturation	(e.g.,	González-Munõz	et	al.	2003,	Senko	et	
al.	 2004).	 Sulphur-oxidizing	 bacteria	with	 affinities	with	 the	 genus	Beggiatoa can be suitable 
substrates	for	barite	precipitation	(Bonny	and	Jones	2008).	Thus,	microcrystalline	barite	on	the	
external	surface	of	the	Voghera	whale	bones	may	be	derived	from	the	decomposition	of	organic	
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matter	(plankton	or	bacteria),	or	may	represent	indirect	evidence	of	sulphur-oxidizing	bacterial	
mats	encrusting	the	bones	when	they	were	lying	on	the	sea	floor.

5.6 Taphonomic model: an hypothesis

After	sinking	on	the	sea	floor	in	a	shallow	marine	environment	and	the	removal	of	fleshy	
tissue by scavengers, the dead whale underwent decay of the organic matter and the bone 
lipids.	Organic	matter	decay	started	with	bacterial	degradation	of	bone	collagen,	as	testified	by	
the precipitation of iron sulphides in the bone matrix and by radial micro-cracks in compact 
bones. Saprophagous bone borers feeding on bone collagen created microscopic tunnels in the 
external surface of the bones, migrating progressively inward. These processes enhanced the 
inflow	of	seawater	inside	the	bones,	allowing	the	diffusion	of	sulphate.	After	the	consumption	of	
free oxygen by aerobic heterotrophic bacteria, the decay of bone lipids in the marrow cavities of 
cancellous	bones	was	affected	by	anaerobic	sulphate	reduction.	The	whale-fall	moved	into	the	so-	
called sulfophilic stage during which elevated H2S concentrations within the whale bone and the 
surrounding sediments led to a sulphide-based chemoautotrophic primary production. Microbial 
sulphide production induced the precipitation of iron sulphides in the external area of trabecular 
bones. Barite crusts on the surface of the bones could be linked to the oxidation of sulphide by 
sulphide-oxidizing	 bacteria.	 When	 the	 bones	 were	 just	 below	 the	 sediment-water	 interface,	
sulphate reduction processes promoted the precipitation of microcrystalline- and euhedral-
dolomite cements inside bone trabeculae and in the bone-bearing concretion. The precipitation 
of early diagenetic cements could have been favoured by early burial of the bones, more desirable 
in a shallow marine depositional environment. High sedimentation rates caused rapid burial of 
the	bones,	hindering	the	onset	of	an	epibiont	“sulphur	loving”	stage	of	the	ecological	succession	
and the colonization of the bones by macro-invertebrates while at the same time favouring the 
preservation of the associated microbial processes in the fossil record.

5.7 Conclusions

The	detailed	microfacies	and	geochemical	analyses	of	the	Voghera	fossil	whale-fall	system	
provide fossil evidence of the intimate association of a microbial ecosystem with a decaying whale 
carcass	on	the	sea	floor.	Traces	were	left	by	two	different	types	of	euendolith	microorganisms,	a	
prokaryote and a fungus, that intensely eroded the fossil bones. We also found evidence of the 
occurrence of microbial processes mediated by sulphate-reducing bacteria during the sulfophilic-
stage that include diverse biofabrics and biominerals, such as microbial dolomite, microbial peloids, 
clotted textures, pyrite and barite. This evidence highlights how whale falls can create sulphidic 
conditions similar to other chemosynthetic habitats such as cold seeps and hydrothermal vents, 
and how their traces can be recognized in the fossil record. Finally, we illustrated the role of the 
depositional environment in the preservation of the microbially mediated structures.
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Two more case-studies: the Orciano Pisano and the Castelfiorentino fossil 
whales

5.8 Introduction

The	same	analytical	methods	applied	to	the	study	of	the	Voghera	whale	fossil	bones	were	
used for study the whale bones and the enclosing concretion of two Pliocene specimens. The 
Orciano	Pisano	whale	is	a	10	m	long	mysticete	with	associated	chemosymbiotic	bivalves	(Figure	
13A,	Chapter	3,	4).	The	 taphonomic	 study	of	 the	 skeleton	highlighted	 the	presence	of	 intense	
bioerosion on the higher side of the bones and cemented areas in the lower side, especially between 
vertebrae	(Figure	13B).	The	Castelfiorentino	whale	(W21:	Chapter	4),	a	very	well	preserved	8	
m	long	balaenopterid,	when	excavated	was	intensively	cemented	in	the	thoracic	region	(Figure	

Figure 13. The Orciano Pisano and the Castelfiorentino fossil whales. A. Field view of the 10 m long Orciano Pisano 
whale at the end of its excavation. B. Caudal vertebrae of the Orciano Pisano whale. Note the intense bioerosion 
on the upper side of the bones and the higher degree of cementation on the lower side (arrows). Note also the 
bivalve Amusium cristatum next to the bones. C. The articulated Castelfiorentino whale. D. Thoracic area of the 
Castelfiorentino whale bones soon after excavation. The arrows point on the diffuse carbonate concretion enclosing 
the bones. The concretion was totally removed during specimen preparation.
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13D).	During	museum	preparation	carbonate	concretions	where	totally	removed	from	the	bones	
(compare	Figures	13C	and	D).	No	data	are	available	on	the	presence	of	chemosymbiotic	molluscs	
associated	with	the	bones	(Chapter	4:	Appendix).

The Orciano Pisano whale comes from upper Piacentian-lower Gelasian marine sediments of 
the	Fine	Basin	(Tuscany),	
and	 the	 Castelfiorentino	
whale from Piacentian 
marine sediments of the 
Valdelsa	Basin	 (Tuscany)	
(Figure	 14).	 The	 Fine	
Basin is situated on the 
Tyrrhenian side of the 
northern Apennines, and 
is	 filled	 by	 1000	 m	 of	
Tortonian-Pleistocene, 
mostly marine deposits. 
The depositional 
environment rapidly shifts 

from	deltaic	to	bathyal	depths	at	the	start	of	the	Pliocene	(Carnevale	et	al.,	2008	and	references	
therein),	at	the	onset	of	deposition	of	grey–blue	marls.	The	Orciano	Pisano	fossil	whale	was	found	
in	 the	middle	part	of	 the	 regressive	deposits	overlaying	 the	grey-blue	marls,	within	 silty	 fine-
grained	sandstones	marking	the	regression	to	shelf	depths.	The	Valdelsa	Basin	is	a	post-collisional	
basin	filled	with	more	than	2000	m	Neogene	deposits,	constituted	by	continental	Miocene	and	
Pliocene alluvial, coastal marine, and shelf sediments. The succession can be subdivided into 
large-scale sequences, previously referred to as synthems, where bounding unconformities are 
produced	 during	 major	 pulses	 of	 uplift	
of	 the	Apennines	(Benvenuti	et	al.	2007	
and	 references	 therein).	 The	 whale	
was excavated from inner shelf muddy 
sediments	(see	Chapter	5).

Selected bone fragments and the 
enclosing	 concretion	 (Figure	 15)	 were	
studied	 to	 find	 evidence	 of	 microbial	
processes associated with the degradation 
of whale bones and to reconstruct the 
burial and diagenetic history of the 
bones. Petrographic thin sections and 
polished slabs were analyzed at optical 
and scanning electron microscopes, and 

Figure 14. Schematic geological map (modified after Carnevale et al. 2008) and 
location of the two study sites.

Figure 15. Studied samples. A and B. Selected bone fragments 
enclosed in the carbonate concretion of the Orciano Pisano 
whale. C and D. Selected bones and enclosing concretion of 
the Castelfiorentino whale. wb: whale bone; ec: enclosing 
concretion
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powder samples were collected for 13C and 18O stable isotope analyses. For a detailed description 
of	the	methods	see	the	Voghera	whale	method	section,	paragraph	5.3.

5.9 Results

5.9.1 The Orciano Pisano fossil whale

5.9.1.1 Carbonate cements and fossil bone preservation

The Orciano whale bones are enclosed in a grey host matrix consisting of angular to 
subangular quartz grains, sparse pyrite framboids and abundant glauconite grains, cemented 
with	dolomite	crystals	(Figures	16A-B,	17C).	Glauconite	grains	are	rounded	to	ovoidal	in	shape	
with	 an	 average	 size	 of	 76.2	 μm	 (min	 29.5	 μm,	max	 128.7	 μm),	 and	 are	 frequently	 stained	
by	 clusters	 of	 pyrite	 framboids	 (Figure	 16C).	 Glauconite	 grains	 can	 also	 fill	 tests	 of	 benthic	
foraminifers	(Figure	16C).	The	dolomite	cement	as	observed	at	the	optical	microscope	shows	a	
clotted fabric, forming dark and cloudy aggregates of more densely packet crystals alternated 
with	areas	with	less	packed	and	larger	crystals	filling	the	voids	(Figure	16B-C).	SEM	observations	
of the dolomite concretion allowed the distinction of areas with tightly packet anhedral to 
subhedral	crystals	and	poorly	distinct	crystal	boundaries	(Figure	17A),	from	areas	with	loosely	
packed	dolomite	crystals,	mostly	euhedral	in	shape,	floating	in	a	fine	argillous	matrix	(Figure	
17B).	Dolomite	crystals	range	in	size	between	4.7	μm	and	18.4	μm.

The	 fossil	 whale	 bones	 are	 preserved	 as	 carbonate	 apatite	 (Figure	 A,C).	 The	 external	
compact bone is missing and the internal, more porous cancellous bone, is directly in contact 
with	 the	external	dolomite	 concretion	 (Figure	16A).	The	bones	are	 light	brown	 in	 colour	 in	
plane polarized light and when observed in SEM backscattered electron mode they show 
densely	de-mineralized	areas	with	characteristic	spongiform	porosity	(Figure	18A-B).	This	de-
mineralization pattern is observed along the bone structure, and the resulting holes have an 
average	diameter	of	2.2	μm,	with	a	minimum	and	maximum	measured	diameter	of	0.8	μm	and	
6.1	μm,	respectively.	Locally,	the	holes	are	filled	by	spherules	of	calcium	sulphate	minerals	with	
an	average	diameter	of	4.1	μm	(Figure	18B,D).

Cancellous	bones	are	filled	by	the	same	dolomite	cement	forming	the	external	carbonate	
concretion	(Figure	19).	The	dolomite	cement	shows	a	clotted	fabric	and	fills	the	trabecular	cavities	
with	a	geopetal	pattern	(Figure	19A).	Rare	peloids	are	observed,	with	a	medium	diameter	of	90	
μm	(Figure	19B).	Locally,	glauconite	grains	and	benthic	foraminifer	tests	are	also	observed	(Figure	
19A)	as	well	as	pyrite	framboids	(Figure	19C).	Framboids	are	scattered	within	the	dolomite	cement,	
sometimes	 forming	well	defined	clusters.	They	have	a	medium	diameter	of	20.3	μm,	however,	
they	are	highly	variable	in	size,	with	a	minimum	and	maximum	measured	diameter	of	2.6	μm	and	
61.7	μm,	respectively.	Rarely,	a	second	carbonate	cement	is	observed,	consisting	of	banded	fibrous	
calcite,	also	associated	with	euhedral	or	framboidal	pyrite	(Figure	19D-F).
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Figure 16. Transmitted light photomicrographs of 
petrographic thin sections of the Orciano Pisano 
whale bones and the enclosing carbonate concretion. 
A. The fossil whale bone (wb) and the enclosing 
concretion (ec). The enclosing concretion consists 
of angular to subangular quartz grains, sparse pyrite 
framboids and abundant glauconite grains, cemented 
with dolomite crystals. B. Detail of the enclosing 
concretion. Note the abundant, rounded, glauconite 
grains. C. Pyritized glauconite grains (large arrows) 
and glauconitized foraminifer test (small arrow).

Figure 17. SEM images of petrographic thin sections of 
the dolomite concretion of the Orciano Pisano whale. 
A. Densely packet dolomite crystals (cd). Arrows point 
on euhedral dolomite crystals. B. loosely packed 
dolomite crystals, mostly euhedral in shape, floating in 
a fine argillous matrix. C. EDX analysis of the dolomite 
concretion. A and B were made in backscattered 
electron mode, C in secondary electron mode with an 
acceleration voltage of 15 kV.
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Figure 18. SEM images of petrographic thin sections of the Orciano Pisano whale bones. A. Contact between well 
preserved (bottom) and demineralised (top) bones. B. Detail of the demineralised area. Note the small calcium sulphate 
spheres filling the holes, analyzed in D. C. Areal EDX analysis of the fossil bone, preserved as carbonate apatite. D. 
Punctual EDX analysis of the small spheres filling demineralised bones. Calcium sulphate (gypsum? Anhydrite?) is 
associated with the carbonate apatite of the bone. A and B were made in backscattered electron mode, C and D in 
secondary electron mode with an acceleration voltage of 15 kV.
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Figure 19. Transmitted light photomicrographs of petrographic thin sections of the Orciano Pisano whale bones. A. 
Clotted dolomite filling bone trabeculae. The remaining spaces are empty. Note the geopetal pattern with which 
dolomite fills the bones. Clotted dolomite hosts sparse glauconite grains (white arrows) and foraminifer tests (black 
arrow). B. Detail of the clotted dolomite in A. Badly preserved peloids occur. C. Pyrite framboids in the dolomite 
cement. D, E, F. Fibrous calcite secondary filling the voids, and associated with framboidal or euhedral pyrite grains. 
All figures in plane polarized light except E which is in cross polars.
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5.9.1.2 Microborings

Microborings were observed in cancellous bones in contact with the external carbonate 
concretion	(Figure	20).	They	are	slightly-	to	highly-curved	structures,	not	bifurcating,	with	a	
medium	diameter	of	4.4	μm	(min.	2.4	μm,	max.	7.1	μm)	and	a	maximum	measured	length	of	
33.5	μm.	The	microborings	tunnel	the	bones	without	any	preferred	orientation	and	the	eroded	
area	have	a	maximum	thickness	of	64.2	μm.

Figure 20. Transmitted light photomicrographs and SEM images of petrographic thin sections showing microborings 
tunnelling the external side of the bones. A. Bone trabecula in contact with the external concretion which is enriched 
in glauconite grains (large arrows). Small arrows point on the microtunnelled area. Note the well preserved osteocytes. 
B. Detail of the microborings which tunnel the bones for a maximum of 60 μm towards the inside. C and D. SEM 
images of the microbored area. Microborings are slightly curved and do not bifurcate. A and B in plane polarized light, 
C and D in backscattered electron mode.
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5.9.2 The Castelfiorentino whale

5.9.2.1 Carbonate cements and fossil bone preservation

The	Castelfiorentino	whale	bones	are	enclosed	 in	a	dolomite	concretion	constituted	by	
microcrystalline to larger dolomite crystals. 
Dolomite crystals are tightly packed, subhedral 
to anhedral in shape, have distinct straight crystal 
boundaries,	 and	 form	 a	 dense	 mosaic	 (Figure	
21A,C).	 Dolomite	 crystals	 measure	 from	 2.54	
to	11.4	μm,	with	a	medium	size	of	the	main	axis	
of	 6.4	 μm.	 Subordinately	 voids	 are	 filled	 by	 a	
secondary	cement	of	sparry	calcite	(Figure	21C).	
Rare siliciclastic grains, mainly quartz, occur in 
the dolomite cement, whereas pyrite framboids 
are	 abundant	 (Figure	 21B-C).	 Pyrite	 framboids	
have	an	average	diameter	of	4.8	μm	(min.	0.9	μm,	
max.	9.2	μm).

In most of the analyzed samples the outer 
compact bone is missing and the inner cancellous 
bone is directly in contact with the external 
concretion	 (Figure	 21A).	 Cancellous	 bones	 are	
filled	 by	 the	 same	 cements	 of	 the	 enclosing	
concretion. Microcrystalline to larger dolomite 
crystals	fill	bone	trabeculae,	locally	sparry	calcite	
fills	 the	 remaining	 voids	 (Figure	 22A-B).	 Bone	
trabeculae can be rimmed with equant calcite 
cement	 (12.3	 μm	 thick:	 Figure	 22C).	 Cluster	 of	
pyrite framboids occur in the dolomite cement, 
and are more frequently distributed close to bone 
trabeculae	(Figure	22D,	23B-C).	Framboids	have	
an	average	diameter	of	3.4	μm.	The	fossil	bones,	
preserved	as	carbonate-apatite	(Figure	23E)	are	
cut	 by	 many	 secondary	 fractures	 (Figure	 22D).	
The	 fractures	 can	be	 empty	or	 filled	by	massive	
pyrite	(Figure	22E-F).	Pyrite	can	also	 form	thick	
crust	 covering	 large	 areas	 of	 the	 bones	 (Figure	
23A,F).

Figure 21. Transmitted light photomicrographs of 
the Castelfiorentino whale bones and the enclosing 
carbonate concretion. A. Trabecular bones directly in 
contact with the densely packet dolomite concretion. 
Bones are highly destroyed by microbial bioerosion. 
B. and C. Detail of the dolomite cement enclosing the 
bones. Note the abundant pyrite framboids (white 
arrows) and the secondary sparry calcite (black 
arrow). All figures in plane polarized light.
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Figure 22. Transmitted light photomicrographs of the Castelfiorentino whale bones and cements filing bone trabeculae. 
A. Trabecular bones filled by a microcrystalline dolomite cement (md) with secondary sparry calcite (white box). B. 
Detail of figure A showing sparry calcite associated with framboidal pyrite (arrows). C. Bone trabecula rimmed with 
equant calcite cement. D. Area with high concentration of cluster of pyrite framboids next to the bones. E. Trabecular 
bones intensively cut by secondary fractures (arrows), which can be filled by massive pyrite crusts (white box). F. 
Detail of the pyrite crusts on trabecular bones. Large arrows point on pyrite crusts, the small arrow to an empty 
fracture. All figures in plane polarized light.
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Figure 23. SEM images of petrographic thin sections of the Castelfiorentino whale bones. A. Well preserved bone 
trabecula in the lower part of the figure, pyritized bone in the upper part. B. Compact bone Haverisan canal filled with 
pyrite framboids. C. Detail of pyrite framboids in the mosaic dolomite cement. D. Areal EDX analysis of the dolomite 
cement, hosting siliciclastic grains. E. Areal EDX analysis of the fossil bone, preserved as carbonate apatite. F. Areal 
analysis of the dense pyrite crust covering the bones. A, B, C figures in backscattered electron mode, C, D, F analyses 
in secondary electron mode with an acceleration voltage of 15 kV.
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5.9.2.2 Microborings

The outer part of cancellous bones is intensively eroded by micron-sized microborings. 
The microborings do not show any preferred orientation respect to the bone structure, they 
tunnel	progressively	the	bones	from	the	surface	toward	the	internal	part	(Figure	24A-B).	The	
eroded	area	has	a	maximum	thickness	of	450	μm.	In	heavily	tunnelled	area	the	bone	shows	a	
dark	and	cloudy	habit	(Figure	24B).	The	microborings	have	a	maximum	measured	length	of	103	
μm	and	a	diameter	between	3.9	μm	and	10.7	μm	(medium	value	6.6	μm).	They	are	straight	or	
slightly	curved	and	preferentially	do	not	bifurcate	(Figures	24C-D,	25).	The	microborings	are	
empty	or	filled	by	pyrite	framboids	(Figure	25A-B).	In	the	same	area	where	microborings	occur,	
on	the	external	side	of	the	bones,	euhedral	pyrite	crystals	are	observed	(average	size	9.7	μm:	
Figure	24C).

Figure 24. Bioerosion on Castelfiorentino fossil bones. A. Trabecular bone intensively bioeroded by micron-sized 
microborings. The density of microborings decrease toward the internal part of the bones; they do not show any preferreed 
orientation. B. Dark and cloudy 300 μm thick bioeroded area. C. Detail of microborings. They can be empty or filled by 
pyrite. Note euhedral pyrite on the external side of the bones next to the bioeroded area. D. Detail of microborings. They 
are straight or slightly curved and preferentially do not bifurcate. All figures in plane polarized light.
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5.10 Isotope analyses

Carbon and oxygen stable isotope analyses have been performed on the dolomite 
concretions	enclosing	the	bones	and	on	the	dolomite	cement	filling	cancellous	bones	(Table	1,	
Figure	26).	The	dolomite	concretion	outside	the	Orciano	Pisano	whale	bones	has	δ13C values 
between	-12.18	‰	and	-19,23	‰,	and	δ18O	medium	values	of	between	+5.10	‰	and	+5.23	‰.	
Dolomite	cements	inside	the	bones	have	similar	values,	with	δ13C	between	-18.4‰	and	-19.69	
‰	and	δ18O	values	between	+5.10	‰	and	+5.21	‰.	The	concretion	outside	the	Castelfiorentino	
fossil	bones	has	δ13C	values	of	-11.41	‰	close	to	the	bones,	and	+2.98	‰,	2.2	cm	far	from	the	
bones.	δ13C	inside	bone	trabeculae	has	a	value	of	-14.12	‰.	δ	18O outside and inside the bones 
has	values	of	+3.05‰	(on	average)	and	+3.99‰,	respectively.

Figure 25. SEM images of petrographic thin sections on bioeroded bones of the Castelfiorentino whale. A. Microborings. 
Note the absence of bifurcations and sparse pyrite framboids inside the holes. B. Microborings partially filled by 
pyrite framboids (arrows). All figures in backscattered electron mode.
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Figure 26. Stable isotope analyses of the carbonate cements inside and outside the Castelfiorentino and the Orciano 
Pisano whales. Also data on the Voghera whale bones are reported (see Figure 12). The Orciano Pisano dolomite 
cement inside bone trabeculae and in the surrounding concretion has the lowest δ13C values, as low as -19.23‰.

5.11 discussion

The abundant glauconite grains in the Orciano Pisano enclosing concretion are indicative 
of a relatively shallow marine deposition and slow sedimentation rates. Glauconite is often 
concentrated	at	discontinuity	surfaces	indicating	depositional	breaks	(Flϋgel	2010),	and	it	is	also	
associated with marine bone beds, stratigraphic levels were vertebrate bioclast concentration 
is	high	(Esperante	2009	et	al	and	references	therein),	like	at	the	Orciano	Pisano	site	(Bianucci	
and	Landini	2005).

As	for	the	Voghera	whale,	 for	the	Orciano	Pisano	and	the	Castelfiorentino	fossil	whales	
carbon and oxygen stable isotope values of the dolomite cement are similar inside the bones 
and in the enclosing concretion, suggesting that they precipitated under similar geochemical 
conditions.	 The	 δ18O	 positive	 values	 could	 be	 result	 from	 precipitation	 in	 cold	 pore	 fluids	
(Raiswell	and	Fisher	2000).	The	negative	δ13C	values,	as	low	as	-19.69‰	for	the	Orciano	Pisano	
whale	and	-14.22‰	for	the	Castelfiorentino	whale,	suggest	that	dolomite	cements	precipitated	
from	the	microbial	oxidation	of	organic	matter	by	sulphate	reduction	(Kiriakoulakis	et	al.	2000,	
Raiswell	and	Fisher	2000).	The	positive	δ13C value for the dolomite sampled far from the bones, 
in	the	Castelfiorentino	whale	concretion,	suggests	a	possible	significant	methanogenic	influence	
during	later	stages	of	organic	matter	oxidation	(Raiswell	and	Fisher	2000).

Dolomite carbonate concretions form preferably when the rate of organic-carbon oxidation 
is	rapid	and	when	sediments	contain	highly	reactive	organic	matter	(Mozley	and	Burns	1993).	
Dolomite precipitation is also favoured by the simultaneous reduction of dissolved sea-
water sulphate to near zero and by a large increase in carbonate alkalinity from the bacterial 
degradation	of	organic	matter	(Compton	1988).	The	presence	of	a	carbonate	precursor,	as	a	

 
  
  
  
  
  
  
  
  

able 1. Stable isotope analysis of the carbonate cements inside and outside the fossil bones. Data on the Orciano 
Pisano, Castelfiorentino and Voghera whales are summarized.
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whalebone, would promote dolomite precipitation by providing a source of Ca and CO32- ions 
(Compton	1988)	The	microbial	oxidation	of	the	whale	organic	matter	by	sulphate	reduction,	
once the bones were buried below the sediment water interface, would have thus favoured 
the precipitation of dolomite. The pervasive distribution of pyrite framboids in the dolomite 
cement	 of	 both	 of	 the	 studied	 fossil	 whales,	 sometimes	 localized	 in	 well	 defined	 clusters,	
suggests that also pyrite formed as a consequence of the production of hydrogen sulphide by 
sulphate	reduction	processes	(Coleman	and	Raiswell	1993,	Mazzullo	2000).	Secondary	cements	
as	fibrous	calcite	in	the	Orciano	Pisano	whale	and	sparry	calcite	in	the	Castelfiorentino	whale	
could have precipitated in equilibrium with sea-water, once the whale organic carbon was 
totally consumed.

The	clotted	fabric	of	the	dolomite	cement	filling	the	Orciano	Pisano	whale	bones	migth	
have	a	microbial	origin	(Peckmann	and	Thiel	2004).	It	could	have	been	originated	by	the	whale	
organic matter decay immediately below the sediment-water interface, during early diagenesis 
(cf.	paragaph	5.5).	The	Castelfiorentino	whale	bones	are	instead	exclusively	filled	by	massive,	
mosaic, hypidiotopic-like dolomite cements that could have formed once the bones were 
deeply	buried	 in	 the	sulphate	reduction	zone	(see	Kiel	2008).	The	 fractures	observed	 in	 the	
Castelfiorentino	whale	bones	 indicate	that	 the	bones	underwent	physical	compaction	due	to	
burial	diagenesis	(Scholle	and	Ulmer-Sholle	2003).	The	pyrite	crusts	closely	associated	with	the	
fractures presumably formed during late diagenetic processes.

As	discussed	in	the	Voghera	whale	section	(cf.	paragaph	5.5),	endolithic	microorganisms	that	
actively penetrate into rocks or hard substrates in the marine ecosystem include phototrophic 
cyanobacteria and algae, and heterotrophic fungi and bacteria, all of which able to metabolize 
collagen	and	dissolve	mineral	matrix	(Davis	1997;	Trueman	and	Martill	2002).	Microborings	
occurring	on	 the	 external	 side	of	both	 the	Orciano	Pisano	and	Castelfiorentino	 fossil	 bones,	
tunnell	progressively	inwards.	They	show	a	destruction	pattern	frequently	described	as	“wedl	
tunnelling”	and	typically	ascribed	to	the	action	of	fungi	or	cyanobacteria	(Davis	1997,	Turner-
Walker	and	Jans	2008).	On	the	contrary	the	intensively	demineralized	area	of	the	Orciano	Pisano	
whale	bones	(Figure	18)	shows	a	very	distinct	pattern	that	could	be	interpreted	as	bacterial	
degradation	(Turner-Walker	2008,	Jans	2008).	The	preferred	orientation	of	the	holes	suggests	
that	bacterial	degradation	followed	the	orientation	of	the	collagen	fibres	in	different	parts	of	the	
bone	(Turner-Walker	2008).	The	presence	of	sulphate	minerals	in	the	same	area,	closely	related	
to the bone tissue, could be linked to late changes in the burial environment from reducing to 
more oxidizing conditions. Pyrite, precipitated under reducing conditions, could in fact have 
undergone oxidation with the consequent release of sulphate and hydrogen ions. The resulting 
fall in pH could have caused local dissolution of bone apatite giving rise to the deposition of 
gypsum	(CaSO4·2H2O)	(Turner-Walker	2008).
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5.12 Conclusions

The results of microfacies analysis on the Orciano Pisano fossil whale are consistent 
with	what	observed	during	the	macro-scale	taphonomic	analysis	of	 the	bones	(Chapter	4).	
At the macro-scale the bones are intensively bioeroded, suggesting a prolonged exposure of 
the skeleton on the sea bottom together with an intense biotic activity on the bone surface. A 
prolonged	permanence	on	the	sea	floor	is	confirmed	by	the	high	amount	of	glauconite	in	the	
host	concretion.	At	the	microscale	the	bioerosion	of	the	bones	is	testified	both	by	the	absence	
of the outer compact bone tissue in thin sectioned samples and by the occurrence of two 
different	traces	left	by	euhendolitic	microorganisms.	The	δ13C negative values of the dolomite 
cement, togheter with the microbial clotted fabric, indicate that dolomite precipitated from 
the microbial oxidation of organic matter by sulphate reduction. The enrichment with 
hydrogen sulphide of the sediments around the bones is further supported by the occurrence 
of chemosymbiont-bearing lucinid bivalves in life position closely associated with the bones 
(Chapter	3,	4).

The	 intense	 bioerosion	 on	 the	 Castelfiorentino	 whale	 bones,	 due	 to	 a	 fungal	 or	 a	
prokaryote	 (cyanobacteria)	 trace	maker,	 testifies	a	period	of	exposure	of	 the	bones	on	 the	
sea	floor,	before	burial.	Differently	from	the	other	two-case	studies,	the	microfacies	analysis	
suggests that the dolomite concretion enclosing the bones formed when the bones were deeply 
buried in the sulphate reduction zone, and that originated during late diagenetic processes.

In sum, microfacies and biosedimentological analysis of fossil bones can be a very 
useful tool to integrate taphonomic data collected during a macro-scale study of the bones. 
The application of a multidisciplinary approach allows to reconstruct in detail most of the 
main taphonomic processes that occur after the death of a large whale, from biostratinomy 
to bone diagenesis. Our study increases general knowledge of taphonomic processes linked 
to microbial degradation of organic matter in a poorly investigated habitat and contributes 
to better understanding of the ecological and evolutionary relationships between whale-fall 
microbial	ecosystems	and	other	localized	reducing	ecosystems	on	the	sea	floor.	In	particular,	
future studies should focus on the analysis of older marine carcasses, which may have 
supported similar chemoautotrophic communities before the evolution whales.
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CHAPTER 6 — Whale fall communities, back-
ground communities and their controlling 
factors in the Neogene of Italy

6.1 Introduction

Water depth is usually interpreted as the single most important factor controlling the 
distribution of marine benthic organisms. Many key factors controlling the structure and 
taxonomic composition of base level communities, like pressure, salinity, energy, oxygen 
content,	 seasonality	 and	 grain	 size,	 are	 directly	 correlated	 with	 water	 depth	 (Holland	 et	
al.	 2001).	 These	parameters	 control	 also	 the	distribution	 of	 chemosynthetic	 communities,	
whose	composition	varies	following	a	depth	gradient	(Tarasov	et	al.	2005,	Dando	2010).	One	
of the key physical factors which matters more than others on the structure of base level 
communities in extreme, reducing environments is light penetration. Benthic communities 
of the photic zone, roughly ending at the shelf break, are dependent on photosynthesis, have 
a higher biomass and are stronger competitors than typical deep water species at cold seeps 
and hydrothermal vents, which on the opposite rely on chemical compounds not directly 
derived from photosynthesis. Shallow water reducing communities at vents and seeps are 
sharply	different	from	those	of	the	deep	sea.	Such	communities	at	deep	sites	are	characterized	
by	specialists	 that	have	not	been	 found	yet	on	 the	shelf	 (Sahling	et	al.	2003,	Tarasov	et	al.	
2005,	Dando	2010)	and	that	evolved	from	coastal	ancestors	(Distel	et	al.	2000,	 Jones	et	al.	
2006).	The	transition	between	the	euphotic	zone	and	the	bathyal	is	the	belt	where	speciation	
most	probably	occur	(Dominici	et	al.	2009).	Knowledge	on	the	absolute	depth	of	deposition	
of the fossil whale falls here under study can help to understand the ecological role of benthic 
islands in extreme reducing conditions, such as whale and wood falls, their role as stepping 
stones,	and	can	bring	clues	to	macroevolutionary	theory	(Smith	1989,	Distell	et	al.	2000,	Kiel	
and	Little	2006).	The	taphonomic	analysis	of	Neogene	shallow	marine	whale-falls	(Chapter	
4)	has	given	some	clues	as	to	the	physical	factors	controlling	the	distribution	of	fossil	whale	
falls on the shelf, suggesting a relationship with depth. To test this possibility, we carried 
out a paleobathymetric analysis in term of absolute depths based on quantitative data on 
fossil benthos, after calculating average life depth of their modern relatives. Taxonomic 
composition of fossil assemblages can be an indirect measure of environmental gradients in 
the	geological	past	 (Olszewski	and	Patzkowsky	2001,	Hohenegger	2005).	Previous	studies	
have shown how ordination can extract high resolution paleoenvironmental signals from 
high-quality,	quantitative	data	(Holland	et	al.	2001,	Scarponi	and	Kowalewski	2004,	Dominici	
et	al.	2008,	Bush	and	Brame	2010).	All	studies	based	on	quantitative	data	on	benthic	species	in	
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stratigraphical samples prove a primary control from depth-related factors. The best results 
are obtained from abundance data analyzed through multidimensional statistics, where 
taxonomic units are the variables with which samples are ordered in the multidimensional 
space.	Holland	et	al.	(2001)	used	detrended	correspondence	analysis	(DCA)	to	calculate	the	
relative water depth preferences and depth ranges of fossil taxa from the late Ordovician of the 
Cinchinnati	region,	Ohio.	Scarponi	and	Kowalewski	(2004)	performed	a	similar	analysis	on	
Quaternary molluscs from the Po Plain, Italy, verifying that ordination recovered a bathymetric 
signal that they could quantify by comparing score along the main axis of distribution of DCA 
(DC1)	with	 the	 known	depth	preferences	of	 extant	 genera.	 They	 showed	how	ecologically	
understood molluscs provide viable quantitative estimates of bathymetry and related 
environmental	parameters,	based	on	DC1	score.	Successively	Dominici	et	al.	(2008)	applied	a	
similar approach at the species-level to foraminifer assemblages from a Pliocene alluvial and 
marine succession in Tuscany, Italy.

Here	 the	 approach	 of	 Scarponi	 and	 Kowalewski	 (2004)	 and	 Dominici	 et	 al.	 (2008)	
was adopted for the multivariate analysis of a large data set of mollusc abundances. This 
set includes quantitative bulk samples collected along seven sedimentary successions where 
fossil nearly-complete large skeletons have been previously recovered. Bulk samples were 
collected at both the bone beds and the sediments immediately above and below. These new 
data were merged with published abundances previously used by Dominici et al. 2009 at 
the family level, where an intertidal to bathyal gradient based on Italian Pliocene to early-
Pleistocene samples was presented. The same database was here used at the genus-level. 
To interpret the ordination in terms of absolute depth we calculated the average life depth 
of extant mollusc genera which were also particularly abundant and characterizing in 
our dataset. Data on modern depths derive from the European Register of Marine Species 
(Costello	et	al.	2008).	All	previous	quantitative	studies	have	tried	to	approach	environmental	
control other than depth by interpreting score along the second axis of distribution in the 
multivariate	ordination	(Holland	et	al.	2001,	Scarponi	and	Kowaleski	2004,	Dominici	et	al.	
2008).	The	same	analysis	was	performed	here,	finally	comparing	the	results	of	our	study	with	
those of the above authors.

6.2 Materials and methods

The	 seven	 Pliocene	 successions	where	 fossil	 whales	 were	 recovered	 (W1,	W14,	W15,	
W16,	W21,	W22,	W23;	Figure	1)	belong	to	different	geological	settings	described	in	Chapter	4	
(paragraph	4.2).	Each	succession	was	studied	in	detail	to	put	in	context	the	seven	whale-falls	with	
the respective sedimentary and stratigraphic setting. Bulk samples were collected for the analysis 
of the mollusc content along those successions, with reference to the conditions immediately 
above, around and below whale-falls. 33 bulk samples, ranging from 0.5 to 3.5 litres, were wet 
sieved through a 1 mm screen and the residue was sorted under a binocular microscope for all 
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recognizable biogenic components. The 
latter includes molluscs, polychaetes, 
echinoids and decapods. Molluscs 
were determined at the species level. 
Bivalve abundance was equated to the 
highest number of right or left valves 
and half of the remaining, the latter 
roughly corresponding to the number 
of unmatchable valves. Gastropods 
were equated to the number of apices. 
A total of 4.639 mollusc specimens were 
thus computed and used for subsequent 
analyses	(Appendix	1:	p.	143).

To reach a meaningful ordination, 
the new data related to the whale fall 
sites, expressed as abundances of 
genera, were added with comparable 
data	 from	 the	 Pliocene	 (Zanclean,	

Piacentian)	and	 lower	Pleistocene	(Gelasian)	of	 Italy	 (Appendix	2,	3:	pp.	149,	173).	These	
consist of 303.460 individuals from 94 samples, and belong to the Paleo-Tyrrhenian domain 
(22	 samples),	 the	 Paleo-Adriatic	 domain	 (53	 samples)	 and	 Southern	 Italy	 (19	 samples).	
These	new	abundance	data	were	gathered	from	the	literature	or	are	unpublished	(Appendix	
3:	p.	173).	Independent	information	on	their	stratigraphic	context,	litology	and	sedimentary	
structures allowed us to make general interpretations on the relative position of each site with 
respect	to	mean	sea	level	(Appendix	3:	p.	173).	The	total	dataset,	consisting	of	whale	fall	sites	
and all the other Plio-Pleistocene sites, includes 312.904 individuals belonging to 330 genera, 
and formed the basis for the multivariate ordination. Genera occurring in only one sample 
were removed, resulting in a data set constituted by the 99.9% of the original specimens. 
Since the comparison concerned varying volumes of sediment, the raw abundances were 
normalized	 and	 square-root	 transformed	 to	 de-emphasize	 the	 influence	 of	most	 abundant	
taxa	 (Clarke	 and	Warwick	 1994).	 Data	were	 elaborated	 trough	 detrended	 correspondence	
analysis	(DCA),	a	multivariate	statistical	technique	widely	used	with	ecological	data	to	ordinate	
taxa	along	underlying	ecological	gradients	(Hill	and	Gauch	1980).	In	DCA	plot,	axis	1	reflects	
the	primary	source	of	ecological	variation	in	the	composition	of	 faunas,	axes	2	and	3	reflect	
additional sources of variation beyond the principal gradient.

Bivariate	 analysis	 was	 based	 on	 average	 depths	 expressed	 in	 meters	 (Table	 1),	 and	
calculated from independent bathymetric estimates for extant genera recorded in the Europen 
Register	of	Marine	Species	(ERMS)	for	the	Mediterranean	and	the	North	Atlantic	(Costello	et	
al.	2008).	47	genera	were	chosen	for	their	abundance	in	our	dataset,	providing	a	continuous	

Figure 1. Location map of the localities of recovery of the studied 
fossil whales (W1, W14, W15, W16, W21, W22, W23) and sche-
matic geological map. Modified from Vai (2001).
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coverage	along	DC1	axis	(see	Scarponi	and	Kowalewski	2004).
Finally	 a	 similarity	 percentage	 analysis	 (SIMPER;	 see	 Clarke	 and	Warwick	 1994)	 was	

performed	 to	 determine	 which	 genera	 were	 primarily	 responsible	 for	 differences	 between	
three selected group of samples of the total dataset. DCA and SIMPER analyses were performed 
with	the	program	PAST	(Hammer	et	al.	2001).

6.3 Results

6.3.1 Outcrop evidences at whale-fall sites

The	local	succession	at	Orciano	Pisano	(W1;	Chapter	3)	is	formed,	from	bottom	to	top	by:	(i)	
bioturbated	grey-colored	siltstones	(thickness	50	cm)	with	sparse	macrofauna;	(ii)	a	4-5	cm	thick,	
densely-packed Archimediella spirata	shell	pavement	regularly	continuous	in	all	the	area;	bivalves	
are typically articulated, Archimediella	 shells	are	empty	or	partially	 filled	with	clay;	 fragments	
of	fossil	wood	are	abundant	and	up	to	15	cm	long;	remains	of	marine	vertebrates	are	abundant	
(sharks,	teleosts,	marine	mammals,	chelonids);	(iii)	massive	silty	fine-grained	sandstones,	more	
than	1	m	thick,	with	sparse	to	loosely-packed	macrofauna;	adults	of	the	highly	mobile	epifaunal	
Amusium cristatum	and	other	bivalves	(e.g., Anadara diluvii, Corbula gibba, Tellina planata)	are	in	
life position. Archimediella spirata, Aporrhais uttingeriana uttingeriana, spatangoid echinoderms, 
trace	 fossils	 (Ophiomorpha,	 Thalassinoides)	 and	 vegetal	 debris	 are	 abundant	 throughout	 the	
outcrop.	The	whale	was	lying	in	unit	(iii)	about	20	cm	above	the	Archimediella bed and parallel to 
it. For the position of collected samples see Chapter 3, Figure 2.

The	sampled	Gorgognano	(W14)	outcrop	 is	 situated	about	50	m	 from	the	site	where	
the	fossil	whale	was	excavated	(Figure	2A).	The	studied	succession	consists	of	5	m	of	grey,	
massive,	fine-grained	sandy	mudstones.	Sparse	specimens	in	life	position	of	Venus multilamella, 
Amusium cristatum and the gastropods Nassarius semistriatus and Natica sp. were recovered. 
The serpulid Ditrupa cornea	is	abundant;	well	preserved	decapods	and	sparse	wood	fragments	
occur	(Figure	3).

The	site	where	the	S.	Lorenzo	in	Collina	whale	(W15)	was	excavated	is	exactly	14	meters	
stratigraphically	below	the	base	of	the	church	with	the	same	name	(see	Capellini	1865)	(Figure	
2B).	The	succession	shows	a	general	coarsening	upward	trend	and,	from	bottom	to	top,	is	made	
by:	(i)	9	m	of	blue-grey,	massive	mudstones	with	abundant	carbonate	concretions	up	to	1	m	large	
and	sparse	macrofauna;	(ii)	4	m	of	massive	blue-gray	mudstones	with	scarce	macrofauna	and	
intensively	bioturbated;	(iii)	3	m	of	yellow,	horizontal-plane	stratified,	 fine	to	medium	grained	
sandstones. Three laterally continuous, about 40 cm thick shell beds were recognized in the 
first	 unit,	 and	quantitatively	 sampled	 for	molluscs	 content	 (Figure	3).	The	 lowest	 shell	 bed	 is	
presumably the bone bed and is characterized by abundant Amusium cristatum and Pelecyora 
islandicoides in life position. The middle bed is particularly rich in ostreids, and the upper shell 
bed is characterized by Glans intermedia and Modiolus sp. in life position.
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The	Castellarano	whale	 (W16)	 comes	 from	an	 outcrop	up	 to	 100	m	 thick.	 The	 overall	
succession	consists	of	basal,	tabular,	fine	grained	sandstones,	about	30	m	thick,	passing	with	a	
fining	upward	trend	to	massive,	silty	mudstones	intercalated	with	silty	mudstones,	about	50	m	
thick, and overlaid by a second facies of tabular, medium grained sandstones. This succession 
represents a small scale depositional sequence, the fossil whale coming from the middle part, 
corresponding	 to	 the	maximum	 flooding	 interval	 (Figure	 2C).	 The	 sampled	 succession	 is	 8	
m	thick	and	includes	the	exact	place	of	recovery	of	the	fossil	whale(Figure	3,	see	Chicchi	and	
Scacchetti	2001).	The	succession	is	made	by	massive,	grey	silty-sandstones	intercalated	with	
40-60	cm	thick	silty-mudstone	horizons	rich	in	molluscs.	From	bottom	to	top,	the	(i)	first	shell	
bed	is	characterized	by	numerous	glycymerids;	(ii)	the	second,	where	the	fossil	whale	comes	
from,	by	pectinids	in	life	position	(Aequipecten scabrella and Amusium cristatum)	and	(iii)	the	
third	bears	many	mytilids	(Modiolus cf. barbatus)	in	life	position	and	fragments	of	fossil	wood.

The	 studied	 succession	 at	 Castelfiorentino	 (ex	 SILAP	 quarry)	 comprises	 the	 area	 of	
excavation	 of	 the	W21	 fossil	 whale	 (Figure	 2D).	 The	 succession	was	 described	 in	 a	 nearby	
outcrop	by	Landini	 et	 al	 (1990).	This	 is	 about	 a	50	m	 thick	 succession	mainly	 consisting	of	
massive gray silstone and mudstones with sparse shell beds. The outcrop below the whale 
excavation site consists of 1 m of grey mudstones with sparse fauna dominated by Petaloconchus 
sp., and abundant Venus multilamella, Chlamys varia, Modiolus sp., Nassarius semistriatus and 
solitary	corals;	former	mudstones	are	overlaid	by	a	60	cm	thick	shell	bed	with	loosely	packed,	
articulated specimens, in life position or perpendicular to their original position, with many 
Ostrea edulis	and	wood	fragments	(Figure	2E).	The	fossil	whale	comes	from	a	grey	mudstone	
facies with sparse molluscs. Shells are articulated, oblique or perpendicular from the original 
life position or nested. Anadara pectinata, Modiolus sp., Ostrea edulis, Pelecyora brocchii and 
Neverita josephina occur. Two meters above the whale outcrop there is a third horizon consisting 
of massive mudstones with a 50 cm thick shell bed. Molluscs are highly packed and ostreids, 
modiolids	and	arcids	dominate	(Figure	4).

The	Montalcino	(W22)	was	excavated	at	locality	Poggio	alle	Mura.	The	skeleton	was	lying	
on	a	40	cm	shell	bed	made	by	densely-packed	molluscs	(Figure	2F,	4).	Venus multilamella and 
Pelecyora brocchi are disarticulated and nested. Haustator vermicularis and Dentalium sp. are 
abundant. Large fossil woods were found during the excavation.

The	badly	outcropping	succession	of	the	Allerona	(W23)	whale	was	measured	and	sampled	
(Figure	2G,	4).	Additional	fragmentary	vertebrate	remains	were	recovered	at	the	excavation	site	
characterized by a 60-80 cm thick shell bed in grey-blue massive mudstones The shells are 
loosely	packed	and	mostly	in	life	positions.	Solitary	corals	are	abundant	(Figure	2I),	as	well	as	
Glans aculeata	(Figure	2H),	Venus multilamella and Pelecyora islandicoides.
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Figure 2. The sampled sedimentary successions where the seven fossil whales come from. A. The Gorgognano whale 
(W14) site; the arrow points on the studied outcrop about 50 m far from the exact excavation area where a monument 
was placed. B. The San Lorenzo in Collina (W15) sedimentary succession. The arrows point on the site of excavation 
of the fossil whale about 14 m stratigraphically below the church (see Capellini 1865). C. The Castellarano succession 
(W16); The arrow points on the stratigraphic level of excavation of the fossil whale (see Campanini 1998). 
Next pages:
D. The Castelfiorentino whale (W21); area of excavation marked by the arrow. E. Outcrop of the Castelfiorentino 
succession a few metres below the excavation site. Blue-grey mudstones with sparse macrofauna; articulated 
specimens in the upper part. F. Shell bed at Montalcino, Poggio alle Mure locality (W22). Note nested bivalves and 
abundant turritellid gastropods. G. Excavation site of the Allerona fossil whale (W23). Excavation was carried out in 
2007 and the outline of the site is still recognizable (arrows). H, I. Cardiids and solitary corals at the Allerona shell 
bed.
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Figure 3. Detail of the sedimentary successions of the studied fossil whales. Paleo-Adriatic fossil whales (W14, W15, 
W16). The exact bone bed and the point where bulk samples were collected are shown.
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Figure 4. Detail of the sedimentary successions of the studied fossil whales. Paleo-Tyrrenian fossil whales (W21, W22, 
W23). The exact bone bed and the point where bulk samples were collected are shown.
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6.3.2 Multivariate analysis of bulk samples

The DCA multivariate analysis was performed on the total dataset , including abundance 
data on the fossil whale successions and the other Pliocene and Pleistocene sites of Italy. In the 
resulting	diagram	the	first	two	axes	(DC1	and	DC2)	are	well	representative	of	the	full	distribution	
of	data,	explaining	94.5	%	of	their	variance	(DC1	=	63.9	%,	DC2	=	30.6	%).	The	r-mode	diagram,	
plotting genera after using samples as variables, shows a continuous distribution of taxa along 
axis	1	of	the	ordination	(DC1:	Figure	5).	A	qualitative	analysis	of	the	present-day	distribution	of	
the main genera suggests that DC1 expresses a bathymetric gradient, with shallow water genera 
on the left-side of the diagram and bathyal genera on the right-side. This interpretation of DC1 
was	quantitatively	verified	using	present-day	preferred	depths	of	47	genera	well-represented	in	
the dataset. Preferred depths were estimated using data of ERMS database, resulting in values 
ranging	from	1.1	to	4208	m	depth	below	sea	level	(Table	1).	Number	of	observations	on	which	
ERMS	 is	based	 ranges	 from	8	 (Smaragdia)	 to	4451	 (Hydrobia).	 Extreme	depth	values	 range	
from -2 m for some intertidal molluscs to 4829 m for deep water deposit- and detritus-feeders. 
Deeper genera also tended to show the widest depth ranges. In the bivariate diagram each 
genera is represented by a point expressed by DC1 score in axis x and average depth on axis y 
(Figure	6).	Points	in	the	diagram	were	fitted	with	an	exponential	regression	curve,	which	covers	
the	depth	distribution	of	 the	selected	genera	along	 the	DC1	axis	up	 to	bathyal	depth	(about	
1980m	depth	below	sea	level).	The	bivariate	analysis	indicates	that	DC1	scores	are	very	good	
predictors	of	average	depth	of	mollusc	genera	(R	=	0.91;	R2	=	0.82:	Figure	6).	If	DC1	of	genera	
is a very good predictor of depth, then q-mode DC1 can be used to estimate absolute depth of 
each sample using the regression curve. In the q-mode plot mollusc genera are used as variables 
and	samples	are	distributed	more	or	less	continuously	along	DC1	(Figure	7).	The	sedimentary	
information for each sample allow an independent test of the validity of the bathymetric meaning 
assigned	to	DC1	(Figure	7).	These	a	priori	data	are	consistently	arranged	as	to	display	intertidal	
samples on the left part of the diagram, in correspondence of the lowest DC1 scores, bathyal 
sample	on	the	far	right	side,	all	other	a	priori	groups	in	between.	To	definitely	resolve	the	depth	
of	final	deposition	of	the	seven	whale	falls	here	under	consideration,	absolute	paleodepths	(m)	
are	given	according	to	DC1	scores	(Figure	8).	The	Orciano	Pisano	whale	settled	on	a	sea	bottom	
of	about	93.4	±	1.2	m	and	the	others,	on	average,	between	47	and	68	m	depth,	Castelfiorentino	
coming	from	shallower	waters	than	all	other	whale-falls	here	under	scrutiny	(Table	2).	

Samples coming from inner-outer shelf conditions are widely scattered along axis 2 of 
DCA ordination, whereas all other a priori groups, aligned along the main axis, have a narrow 
range	of	scores	on	the	second	axis	(Figure	7).	All	whale	sites	have	medium	to	high	DC2	scores,	
irrespective	 of	 geographic	 setting	 (Figure	 8,	 Appendix	 4:	 p.	 178).	 Samples	 from	 the	 paleo-
Adriatic have the widest range of DC2 values, among which very low values in correspondence 

Next page:
Figure 5. DCA r-mode diagram. Each point correspond to one genus of the mollusc dataset (n=308). Genera are 
continuously distributed along axis 1 (DC1) of the ordination.
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of samples from cool-water carbonates of the Stirone calcarenite. To understand what secondary 
factors,	 other	 than	 those	 related	 to	 depth,	 control	 the	 distribution	 of	 molluscs	 of	 offshore	
samples, a SIMPER analysis on a selected database limited to inner and outer shelf conditions 
was	 performed.	 Three	 a	 priori	 group	were	 selected	 (a)	 siliciclastic	 samples	 from	whale-fall	
sites,	(b)	all	the	other	siliciclastic	samples	and	(c)	samples	from	cool-water	carbonates.	SIMPER	
allowed	to	cast	out	what	genera	contribute	to	the	differentiation	of	the	three	a	priori	groups	
(Table	3).	Since	the	three	groups	are	in	their	turn	distributed	around	different	DC2	values,	those	
genera can help to discriminate what factors are behind DC2. The taxa contributing most are 
the suspension feeding bivalves of genus Varicorbula and the herbivore gastropods of genus 
Bittium. Varicorbula	increases	in	importance	from	(c)	to	(a),	in	inverse	relationship	with	Bittium. 
Varicorbula gibba	(the	only	species	of	this	genus	in	our	dataset)	is	a	well-studied,	small-sized	
opportunist present at all depths from intertidal to deep sea. In particular it thrives at conditions 
prohibiting	for	other	suspension	feeders,	like	extremely	turbid	waters	(Hrs-Brenco	2006).	On	
the opposite, macrophytes-dwelling, herbivores like Bittium	 can	 occur	 in	 offshore	 settings	
only under extremely clear-water conditions required for photosynthesis at those depths. This 
trend	is	confirmed	by	the	importance	of	other	herbivores	like	Alvania in discriminating cool-
water carbonates, face to face with an increasing contribution of other suspension-feeders 
(Venus, Archimediella, Chlamys, Amusium)	and	deposit	feeders	(Nucula, Nuculana)	in	the	other	
direction.

Figure 6. Bivariate plot correlating DC1 values of the 47 selected genera of the dataset (axis x) with the average depth, 
expressed in meters, of the corresponding modern counterparts (axis y). The exponential regression curve is a good 
predictor of the distribution of points up to bathyal depths (about 1980 m below sea level).
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Table 1. Summary of bathymetric data and multivariate scores used for environmental calibration of the DCA 
ordination. Abundance (%): genera abundance in the Pliocene dataset; Obs: number of observation (sampling sites) 
in the ERMS Database; Max (m): maximum depth of recurrence recovered in the ERMS database; Median (m): most 
frequent class of recurrences recovered in the ERMS database; Min (m): minimum depth of recurrence recovered 
in the ERMS database; Range (m): depth range; MEAN: mean genus depth distribution; DC1: score of detrended 
correspondence analysis axis 1 (DC1).



CHAPTER 6

126

Figure 7. DCA q-mode diagram. Each point on the diagram correspond to one sample of the dataset (n=127). Samples 
are grouped following the a priori determination of their original paleoenvironment (see Appendix 3: p. 173). Samples 
are more or less continuously distributed along axis 1. Inner shelf samples have the widest range of DC2 scores.

Figure 8. DCA q-mode diagram. Samples are grouped following the Paleogeographic domain of provenance. After 
bivariate analysis, together with DC1 values, in axis x also the absolute paleodepth for each DC1 score are reported. 
This allowed to distinguish along DC1 shelf depth samples (shoreface, inner shelf, outer shelf) and bathyal samples 
(upper and lower).
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6.4 discussion

6.4.1 Clues from sedimentary geology

Whale-fall sedimentary successions show analogous tracts. With the exception of 
W22, which was recovered from a shell bed with highly disarticulated and nestled bivalves, 
indicating sediment reworking by bottom currents, all the other fossil whales were associated 
with shell beds with sparse molluscs, in life position or however articulated, suggesting low 
energy conditions and low sedimentation rates. On the outcrop, also the mollusc fauna showed 
similarities, with the recurrence of suspension feeding bivalves, like the epifaunal Amusium 
cristatum, Modiolus sp. and Ostrea sp. and the infaunal Venus multilamella, Pelecyora brocchii and 
P. islandicoides. Molluscs from the bottoms immediately below, around and above the whale falls 
can be compared with those found directly associated with the bones during their excavation 
(Chapter	4,	Appendix),	with	 the	 exclusion	of	W22	and	W23	 for	which	no	data	 are	 available	
on	the	associated	biota.	All	taxa	associated	with	the	bones	of	W15	(Pelecyora brocchii, Venus 
multilamella,	 naticids),	W16	 (Glycimeris inflata, Modiolus sp., Ostrea sp.)	 and	W21	 (mytilids,	
pectinids)	are	common	also	 in	 the	surrounding	soft	bottoms.	Even	the	detailed	study	of	W1	
whale-fall and background communities has shown very similar faunal compositions and 
has further shown that the trophic nucleus of whale-falls and background communities are 
the	same	(Chapter	3).	Albeit	local	faunal	characters	exist,	there	is	a	general	constancy	within-	
and between- whale-fall sites, disregarding of geographical setting, but consistently with a 
constancy in sedimentary conditions, that suggests that more or less complete whale skeletons 
preferentially sink and develop at particular environmental conditions on the shelf. A common 
denominator	is	depth	(inner	or	outer	shelf),	low-	to	medium	sedimentation	rates,	nutrient	levels	
and types consistent with a fauna dominated by epifaunal and infaunal suspension feeders. On 
these	bottoms,	whale	falls	don’t	form	effective	trophic	and	structural	islands	as	their	deep	water	
counterparts.

6.4.2 environmental factors at whale-fall sites

Consistently with all previous applications of DCA to shallow marine benthic faunas, 
from	 Ordovician	 (Holland	 et	 al.	 2001)	 to	 Pleistocene	 (Scarponi	 and	 Kowaleski	 2004),	 our	
study of Plio-Pleistocene molluscs has shown that depth controls score along the main axis of 
ordination. Bivariate plots based on preferred depths of modern genera, allowed to estimate 
absolute depths of all samples used in the ordination, which range from intertidal to bathyal, 
and comprise those collected in proximity of seven whale-falls. The large fossil vertebrates could 
thus be interpreted as having sunken at depths of 46-93 m, corresponding to inner to outer 
shelf	bottoms.	This	 result	 confirms	 incomplete	knowledge	based	on	 taphonomy	(Chapter	4)	
and	sedimentary	geology	(paragraph	6.4.1).	Within	this	rather	narrow	depth	range,	the	Orciano	
Pisano whale is the deepest.
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Samples coming from inner-outer shelf conditions are also widely scattered along axis 2 of 
DCA ordination. The DCA plot, coupled with SIMPER analysis, gives us the opportunity to interpret 
what environmental factors are behind DC2 score. The a priori groups are ordered according to 
the	hypothesis	that	from	whale-fall	offshore	sites	to	molluscs	of	cool-water	carbonates	nutrient	
level decreases. Whale-fall bottoms are under relatively eutrophic conditions and cool-water 
carbonates	under	(relatively)	oligotrophic	waters.	At	high	DC2	scores,	samples	are	dominated	
by opportunist suspension-feeders, organisms of small size that can rapidly exploit resources 
which are abundant at unpredictable times. On the opposite side, benthic communities living 
on cool-water carbonates point to clear waters down to inner-mid shelf depths. This suggests 
that	DC2	is	controlled	by	nutrient	levels,	as	in	a	previous	similar	study	(Dominici	et	al.	2008).	
Eutrophic conditions under turbid waters could be linked to phytoplankton blooms, for the 
advantage of opportunist suspension feeders, whereas relatively oligotrophic conditions 
could develop under clear waters. This result implies that all whale falls considered in the 
multivariate	analysis	are	typical	of	high	nutrient	offshore	bottoms.	The	filter-feeding	habit	of	
large	mysticetes,	which	 obtain	 enormous	 amounts	 of	 small	 prey	 by	 filtering	 vast	 quantities	
of water, implies that the ecosystems exploited by cetaceans must be extremely productive 
(Ryther	1969).	The	concentration	of	cetacean	populations	 in	 localized	regions	characterized	
by eutrophic conditions, like feeding and breeding areas, could then increase the possibility for 
whales to become part of the fossil record. As a matter of fact, cetacean paleodiversity during the 
Neogene is strongly directly related to diatom diversity, among the dominant marine primary 
producers	(Marx	and	Uhen	2010).	Furthermore	exceptional	accumulations	of	fossil	whales	in	
the Miocene–Pliocene Pisco Formation are associated with diatomaceous sediments, suggesting 
nutrient	enrichment	by	ocean	upwelling	(Brand	et	al.	2004).	Coastal	upwelling	and	an	abundant	
and	diverse	cetacean	fauna	are	found	in	the	modern	northern	Tyrrhenian	sea	(Notarbartolo	Di	
Sciara	et	al.	2008).	The	same	environmental	conditions	could	thus	explain	the	abundance	of	
marine	vertebrates	in	the	Pliocene	of	Italy	and	their	high	bioodiversity	(Bisconti	2009).
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SHORT NOTE — Modern and fossil bathy-
modiolin mussels from the Mediterranean

Mytilid	bivalves	of	the	subfamily	Bathymodiolinae	live	around	chimneys	emitting	hot	fluids	
at	deep	sea	hydrothermal	vents,	as	well	as	at	cold	seeps	and	on	sunken	organic	debris	(sunken	
wood,	whale	falls).	Despite	the	absence	of	light-driven	primary	production	in	these	deep-sea	
ecosystems, mussels succeed reaching high biomasses in these harsh conditions thanks to 
chemosynthetic,	carbon-fixing	bacterial	symbionts	located	in	their	gill	tissue	(Duperron	et	al.	
2009).	Mussels	attach	by	their	byssal	threads	to	hard	substrates	just	above	the	interface	between	
bottom seawater and sediment or rocks. Most species harbor sulphur oxidizing bacteria, 
but	 other	 symbionts	 such	 as	 methanotrophs	 and	 methylotrophs	 were	 also	 identified.	 This	
variability	could	explain	the	abilities	of	host	species	to	adapt	to	various	substrates	(Duperron	
et	al.	2008).

Here	two	new	findings	of	bathymodiolin	mussels	of	the	genus	Idas are reported from whale 
bones.	One	is	from	the	modern	southern	Thyrrenian	sea,	the	other	from	Late	Oligocene?-early	
Miocene sediments of northern Italy. These discoveries testify the presence of bathymodiolin 
mussels of the genus Idas in the Mediterranean at least from 25 Ma.

Idas simpsoni from Marettimo island

Five individual of the bathymodiolin mussel Idas simpsoni	 (Marshall,	 1900)	 were	
collected	from	the	skull	of	a	fin	whale	Balaenoptera physalus	(Linnaeus,1758).	The	skull	was	
trawled up in 1998 from a depth of about 
200m near Marettimo Island, in the south 
Tyrrhenian	 Sea	 (Figure	1).	 The	bivalves	were	
nestled in the bone crevices of the 280 cm long 
jawbone	(Figure	2).	The	size-distribution	of	the	
measured	specimens	ranges	from	12.5	X	6	mm	
(Figure	3)	to	2.8	X	1.5mm.

Figure 1. Location map of the two study sites. The late 
Oligocene?-ealry Miocene toothed whale comes from 
Carpineti, Reggio Emilia (white star), while the modern 
whale fall comes from waters off the Marettimo island, 
Trapani (grey star).
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General distribution and habitat

The species Idas simpsoni is found on whale skeletons, including dolphins, and occasionally 
on wood falls. It is known from Southern Iceland, from 100-200 m depth, and from the North 
Sea	in	a	few	hundred	metres	depth	(Warén	1991).	In	the	Mediterranea	Sea	specimens	of	Idas 
simpsoni	 were	 previously	 found	 at	 170	 m	 depth	 off	 Capraia	 Island	 (Tuscan	 Archepelago),	
attached	on	sunken	wood	and	trawled	whale	bones	(Barsotti	1972,	Barsotti	and	Giannini	1974).	
In the Adriatic sea more than one hundred specimens were recovered at 430 m depth from the 
skull	of	a	fin	whale	(Bolotin	et	al.	2005).

Figure 2. The skull of the fin whale Balaenoptera physalus (A) with one specimen of the bivalve Idas simpsoni in the 
bone crevices (B). Photographs by Gianni Insacco (Museo Civico di Storia natural di Comiso).

Figure 3. Specimen of Idas simpsoni associated with the fin whale. 
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Trophism

Recent studies on bacterial symbionts on Idas simpsoni specimens from a whale skull in 
the	North	Sea,	 confirm	the	presence	of	 thiotrophic	 (sulphur	oxidizing)	bacteria	 in	 their	gills	
(Southward	2008).

Idas sp. from Carpineti (northern Italy)

More than 250 individuals of the bathymodiolin mussel Idas sp. were found associated 
with	the	bones	of	an	unidentified	odontocete	from	upper	Oligocene?-lower	Miocene	sediments	
of	 norther	 Italy	 (Carpineti,	 Reggio	 Emilia)	 (Figure	 1).	 The	 bones	 come	 from	 a	 sedimentary	
succession of hemipelagic siltstones and marls belonging to the Epiligurid Antognola Formation 
(Figure	4).	The	bathyomodiolin	mussels,	preserved	as	external	moulds,	are	mainly	articulated.	
They can be directly in contact with whale bones or teeth, or concentrated in the nearest 
sediments	(Figure	5).

Figure 4. The hemipelagitic succession with which the lower Oligocene?-lower Miocene whale fall comes from. 
Photograph by Stefano Dominici.
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General distribution

Fossil bathymodiolin mussels in the Mediterranean area were previously found associated 
with	the	bones	of	a	10	mlong	mysticete	from	the	Pliocene	of	central	Italy	(see	Chapter	3),	and	on	
a	Pliocene?	deep	water	wood-fall	(Bertolaso	and	Palazzi	1993).	The	genus	Idas associated with 
fossil whales has a worldwide distribution. It was recovered from Early Oligocene whale- and 
wood-falls	from	the	Washington	State,	USA	(Kiel	and	Goedert	2006,	2007,	Kiel	2008)	and	from	
the	lower	middle	Miocene	of	Japan	(Amano	and	Little	2005,	Amano	et	al.	2007).	In	the	latter	
examples,	following	Warèn	(1991),	the	genus	Idas and Adipicola are considered the same.

Trophism

At modern whale falls, species of the genus Idas, like Idas washingtonia, are extremely 
abundant,	 and	 are	 known	 to	 harbour	 chemoautotrophic	 endosymbionts	 (Bennett	 et	 al.	 1994,	
Deming	et	al.	1997).	On	the	contrary,	isotopic	analyses	on	specimens	living	on	small	skeletons,	
suggest	that	most	of	the	macrofaunal	biomass	(including	the	dominant	Idas washingtonia)	is	not	
derived from sulphide-based chemoautotrophic production of endosymbionts. Thus, in contrast 
with large whale skeletons, the macrofaunal communities on small skeletons are sulphide tolerant 
but	do	not	appear	to	be	predominantly	chemoautotrophic	(Smith	and	Baco	2003).

Figure 5. The Late 
Oligocene?-early Miocene 
toothed-whale with 
bathymodioline mussels. 
A. Bone fragment 
surrounded by sparse 
Idas sp. (white arrows). 
Note the large area with 
an high concentration of 
specimens on the left. B. 
Tooth in close association 
with one specimen of Idas 
sp. C and D. Respectively 
left and right valve.
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GENERAL	CONCLUSIONS	—	An ecosystem 
approach to the fossil record of whale falls

The	 first	 part	 of	 the	 study	 concerned	 shallow	 marine	 modern	 and	 fossil	 mollusc	
communities	associated	with	whale	carcasses.	Mollusc	species	collected	at	the	Kosterfjord	whale	
fall	–	the	first	study	on	a	complete	skeleton	at	depths	shallower	than	the	shelf	break	-indicate	
that 5 years after deployment the community reached the sulphophilic stage of the ecological 
succession. Sediments below whale bones where dominated by the bivalve Thyasira sarsi, which 
is known to contain endosymbiotic sulphur-oxydizing bacteria and usually lives in organic rich 
sediments	with	high	total	sulphide	concentrations,	like	sewage-polluted	fjords	and	active	methane	
seeps. On the contrary the surrounding soft bottoms were inhabited by another species of the 
same genus, T. equalis, which is less dependent on the bacterial carbon for its nutrition and lives 
in less organic-rich sediments than T. sarsi. These data on modern mollusc communities living 
at a shallow water whale fall suggest that the sulphophilic stage of the ecological succession is 
characterized by more generalist, chemosynthetic bivalves compared with the specialists found 
at deep sea sites. The somehow similar paleoecological study carried out at species-level on the 
10	m	long,	fossil	baleen	whale	from	the	Pliocene	of	Tuscany	(Italy)	gave	consistent	results	with	
the above hypothesis. Although the bulk of the fauna associated with the Orciano fossil bones 
was dominated by the same heterotrophs as found in the surrounding community, whale-fall 
samples were distinguishable primarily by the presence of chemosymbiotic bivalves and a greater 
richness of carnivores and parasites. Large specimens of the lucinid clam Megaxinus incrassatus 
and very rare small mussels of genus Idas testify to the occurrence of a sulphophilic stage, but 
large chemosymbiotic obligates related to vesicomyid clams, common at deep-sea whale falls, are 
absent. The picture that emerges from both the modern and fossil large organic falls considered 
at	Kosterfjord	and	at	Orciano	Pisano	 is	 in	accordance	with	data	 from	other	extreme	 reducing	
habitats in shallow marine settings. Hydrothermal vent and hydrocarbon seeps at shelf depths 
are in fact also inhabited by a subset of the fauna commonly living in the surrounding bottoms and 
obligate taxa are absent. The occurrence of the obligate mussels of the genus Idas even at shallow 
water	whale	falls	could	derive	from	the	high	adaptability	of	this	taxa	to	different	substrata	and	
its	feeding	strategies.	Some	species	are	in	fact	mixotrophs,	being	able	to	filter	particles	as	well	as	
harbouring chemosynthetic bacteria.

In the second part a multi-level ecosystem approach was applied to the study of fossil 
whale falls. Information from taphonomy, microfacies and geochemical analyses on fossil 
bones, paleoecology of the associated biota and helped to better understand biostratinomic 
processes occurrung at shallow water whale falls. The taphonomic pathways of a whale carcass 
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on a relatively shallow marine bottom is much more variable than in the deep sea, where large 
carcasses	rest	articulated	on	the	sea	floor	and	pass	through	all	stages	of	the	ecological	succession.	
Notwithstanding resurfacing, disarticulation and early burial hinder the onset of whale fall 
communities on the shelf, we found multiple evidence of the development of the mobile scavenger 
stage, the enrichment opportunist stage - possibly including Osedax-like polychaetes - and the reef 
stage. Orciano Pisano remains so far the only fossil whale carcass where signs of the sulphophilic 
stage	were	 found,	 possibly	 as	 an	 effect	 of	 insufficient	 sampling	 during	 recovery	 of	 vertebrate	
bones. However evidences of the production of sulphide by bacterial degradation of whale bones, 
the process triggering the onset of the sulphophilic stage, coupled with the possible traces of 
sulphur-oxidizing bacteria on the surface of whale bones, were found even in specimens where 
chemosymbiotic bivalves are absent. This implies that even on the shelf whale carcasses can 
create reducing conditions favourable to the development of a sulphophilic stage, although they 
are	differently	exploited	respect	to	the	deep	sea.	All	the	other	ecological	stages	are	characterized	
by unspecialized taxa commonly living in the surrounding environment, from pelagic sharks to 
benthic suspension and deposit feeders, predatory and browsing carnivores. The only exception 
are	 organisms	 specifically	 adapted	 to	 the	whalebone	 ecological	 niche.	 The	 bone	 eating	worm 
Osedax, hosting heterotrophic batteria to exploit the bone organic matter, is found both at shallow 
and deep water whale falls. Microborings very similar in size and shape, originated by microbial 
euhendoliths like fungi or bacteria tunnelling inside whale bones, are also common to both 
settings. Although microborings are widely documented in the fossil record, no data are available 
from their modern counterpart, which could help to better understand their trophic behaviour.

Finally data collected from the sedimentary successions where some of the studied fossil 
whales were excavated helped to reconstruct paleoenvironmental conditions at the bottom where 
carcasses	sank	prior	to	final	burial	and	fossilization.	All	the	fossil	whales	come	from	similar	inner	
to outer shelf settings, the deepest depth corresponding to the Orciano Pisano fossil whale. These 
settings were accomunated by characterizing elements of the molluscan fauna which have been 
related to high-nutrient conditions, in accordance with the fact that eutrophic, productive waters 
are	known	to	be	the	best	place	for	large	cetaceans	to	thrive	because	of	their	filter	feeding	habit.	
We thus hypothesize that the rich and diverse record of fossil cetaceans in the Pliocene of Italy is 
partly controlled by eutrophic conditions in the water column, at particular depths and particular 
geographic settings, favouring large cetacean populations and an higher probability of carcasses 
to become part of the fossil record.

The multidisciplinary synoptical approach to the study of modern and fossil whale fall 
ecosystems confers additional value to results based on a series of single-group or single-discipline 
approaches. On the shelf the course of the ecological succession is dependent on such a large 
variety of factors that a coherent picture can stem only by considering multilpe evidences at once. 
This approach can be extended back in time to the study of fossil communities associated with 
large marine Mesozoic reptiles, in search for possible evolutionary routes followed from coastal 
ancestors to deep sea obligates of extreme reducing conditions.
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