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Scaled roller rigs used for railway applications play a fundamental role in the development of new
technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction
of the economic investments. The main problem of the scaled roller rig with respect to the full scale
ones is the improved complexity due to the scaling factors. For this reason, before building the test
rig, the development of a software model of the HIL system can be useful to analyse the system
behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled
roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced
on the rig. The main purpose of this work is the development of a complete model that satisfies
the previous requirements and in particular the performance analysis of the controller and of the
dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion
conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate
and realistic wheel–roller contact model also has to be included in the model. The contact model
consists of two parts: the contact point detection and the adhesion model. The first part is based on a
numerical method described in some previous studies for the wheel–rail case and modified to simulate
the three-dimensional contact between revolute surfaces (wheel–roller). The second part consists in
the evaluation of the contact forces by means of the Hertz theory for the normal problem and the
Kalker theory for the tangential problem. Some numerical tests were performed, in particular low
adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets
were introduced. The tests were devoted to verify the robustness of control system with respect to
some of the more frequent disturbances that may influence the roller rig dynamics. In particular we
verified that the wheelset imbalance could significantly influence system performance, and to reduce
the effect of this disturbance a multistate filter was designed.
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776 R. Conti et al.

1. Introduction

Hardware in the Loop (HIL) testing of degraded adhesion conditions is an important tool
for development and calibration of safety relevant on board subsystems like traction controls
[1,2], odometry algorithms, WSP (wheel slide protection systems) [3]. HIL testing may be
performed considering different levels of integration of the tested system with the surrounding
vehicle as in the example of Firenze Romito MI-6 test rig [3]. More recently, in the research
Centre of Firenze Osmannoro, Trenitalia has built an innovative full-scale roller rig in which
it is also possible to simulate degraded adhesion conditions in railway vehicle according to a
control scheme previously described in [4]. The control scheme proposed requires the on line
estimation of the vehicle motor torque (to reduce the time of the setting up phase) by means
of an estimator strategy that uses the roller angular velocity and the tangential component
of the contact forces (measured on the support). Within this research activity, a scaled roller
rig was designed and realised, with the aim of investigating the feasibility and the calibration
of different control layouts that may be used also for the full-scale version [4,5]. In [5], the
control laws for the definition of the roller torques and speeds were developed by means of
considerations based on a simplified model that considered the system dynamics only in the
longitudinal plane. The possible interactions between the longitudinal and lateral dynamics
were not investigated.

In this paper, a numerical model of the scaled version of the roller rig is presented. The
numerical model reproduces both the hardware (scaled bogie, rollers) and the software (sim-
ulated vehicle) parts of the roller rig. The main contribution of the paper is the study of the
complete three-dimensional dynamics of the hardware part of the test rig, in particular, the con-
tact between wheels and rollers [6] was modelled by adapting a previously existing algorithm,
described in detail in [7,8], initially defined for the wheel/rail contact model: the algorithm
was then modified to simulate the contact between two revolute surfaces and to work with
variable step solvers (that improve the numerical efficiency and robustness). The software part
of the roller rig and the control laws of the roller motors were derived substantially from those
described in [4], even if some improvements were necessary: first of all, since the roller rig
described in that paper tests a whole vehicle, while the scaled version tests only one bogie, the
controller has to include a virtual vehicle, in which one of the bogies is real and the other is
simulated. Furthermore, the roller motor control laws had to be modified taking into account
the scaling factor. Since the same software environment (Matlab–Simulink) was used for the
development of the real-time software of the scaled test rig (controller and virtual vehicle [4]),
and the simulator of the hardware part of the test rig, the proposed study may be seen as a
software in the loop (SIL) calibration of the control algorithms that will be directly compiled
and implemented in the scaled rig.

In particular in this paper we investigated the robustness of the proposed control system
with respect to some disturbances, for instance wheelset imbalance and bogie hunting. Further-
more the effect of simulated low adhesion conditions was evaluated. This sensitivity analysis
was carried out by means of numerical simulations. The numerical control performance was
evaluated in terms of angular speed error (between the simulated train model and the roller
velocity) and torque estimation error (between the real torque and the estimated torque).
The results show that the architecture proposed in [4] was robust in terms of angular speed
error for both the scenarios while, as regards the dynamical imbalance disturbance, it was
necessary to modify the estimation procedure. The proposed estimation strategy contains a
multi-state nonlinear filter that consistently reduces the particular disturbance produced by
the imbalance.

This paper is organised as follows: Section 2 summarises the general architecture of the
scaled roller rig, Section 3 shows the developed multi-body simulator (and in particular
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Vehicle System Dynamics 777

focuses on the wheel–roller contact model), while in Section 4 some numerical simulations
are presented and discussed.

2. General architecture of the scaled roller rig

The main design features of the scaled roller rig [5], referred to as MDM roller rig in the
following, are described in [4,9] and summarised here for the convenience of the reader.
The railway bogie roller rig is used to reproduce on the test rig the train behaviour in degraded
adhesion conditions. In order to reach this goal, HIL approach is used: a virtual vehicle model
with a simplified adhesion model simulates the desired vehicle dynamics; then the test rig
rollers are controlled in order to approximate the dynamical behaviour of the vehicle in terms
of wheel angular velocity and vehicle motor torque. In [4], the feasibility of degraded adhesion
tests on a HIL full scale roller rig is discussed.

This is the most important feature of the device, a reliable simulation of wheel sliding
is necessary to test some on-board components and their interactions. This result could be
obtained by reproducing, in the interface between the wheel and the rail, the same sliding that
would be found during the real run of the vehicle, but this is not practically suitable for a
number of reasons: the phenomena that arise in the wheel–roller interface are different from
those arising in the wheel–rail interface, due to the geometry (the roll has a finite-curvature
radius) and the environmental conditions; the sliding between the wheel and the roller may
produce a significant wear on the roller profile; severe sliding tests may produce localised
wear phenomena on the roller profile; this may lead to periodical disturbances that could
heavily influence the test results. The design of the roller rig was then based on the idea that
the sliding between the wheel and the rail is not reproduced in the wheel–roll interface, even
when degraded adhesion conditions are met. In this case, the sliding is simulated by properly
controlling the roller motor torques, that are regulated in order to obtain the same tangential
force and the same wheel speed that exists between the virtual wheel and rail in the contact
area. In other words, the sliding between the wheel and the rail is virtual.

A railway vehicle usually consists of two bogies, four wheelsets, one car body and the
primary and secondary suspensions. The scaled roller rig described in this paper is designed
to test only a single-scaled bogie and consequently, to simulate a whole vehicle, a second roller
rig would be necessary: this second-scaled roller rig is implemented via software by means
of a simplified analytic model. This strategy allows evaluation of the dynamical behaviour of
the whole vehicle using a single-scaled roller rig and reducing the computational load.

The general architecture of the test rig is schematically shown in the block diagram of
Figure 1.

The following main blocks can be identified in the scheme:

(1) Scaled roller rig: The scaled roller rig consists of two different elements, in order to
simulate the whole railway vehicle roller rig:
• the MDM hardware scaled roller rig [10]: it is composed of the scaled bogie and

the actuated rollers. The scaled bogie includes the bogie body, two wheelsets and the
primary and secondary suspensions.

• Virtual bogie roller rig: The virtual bogie roller rig allows us to model the second bogie
by means of a simplified analytic virtual model in order to simulate the whole railway
vehicle.

• Virtual antiskid: The antiskid modifies the torque erogation taking into account the
adhesion limit.
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778 R. Conti et al.

Figure 1. General architecture of the scaled roller rig.

(2) Virtual train model: it is the model of the vehicle used to simulate the locomotive behaviour
on the rail in different adhesion conditions [1,2,4]. This multi-body model is a part of the
roller-rig control system and then has to be designed for a real-time implementation: a
simplified but realistic contact model is considered, that allows us to reproduce different
adhesion conditions.

(3) Controllers: its task is to reproduce on the hardware roller rig the same dynamical
behaviour of the virtual train model in terms of wheel angular velocity and vehicle motor
torque [4,11].

(4) Estimators/Filters: The data which can be measured by the sensors installed on the MDM
roller rig are the roller angular velocities and the reaction forces on the roller supports.
This choice is mainly due to replication of the sensor structure that will be installed on
the full-scale solution [4], in this case the tested vehicle will be a locomotive and in order
to speed up the set up process, no sensors will be placed on it. The estimator block allows
for evaluation of an estimation of the creep forces and of the wheel angular acceleration
in order to calculate the estimation torque applied by the bogie motor on the wheelsets
[4]. The filter block reduces the noises/disturbances (high-frequency noise, disturbance
generated by the dynamical imbalance of the wheelset, etc.) on the estimated torque [12].

From the control point of view, the external input of the whole model is the torque applied
to the wheels; this torque is unknown to the control system. The controlled parameter is the
error between the virtual train angular velocities and the measured roller angular velocities.
Since the wheelset torques are not directly measured, but are estimated, as described in [4] as
a function of the sensor measures on the roller rig, the actual torque may be different from the
estimated one.
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Vehicle System Dynamics 779

As previously mentioned, to obtain a more realistic bogie dynamics, an antiskid device is
simulated: the axle train torque is modulated starting from the knowledge of the virtual train
dynamics in order to control the virtual sliding between the wheels and the rail.

The estimator/filter block, from the measures of the roller angular velocity and the tangential
component of the contact forces, evaluates the estimated torque on the wheelset. The torque
estimator includes filters that reduce the estimation error and the noises and disturbances (high-
frequency noise, disturbance generated by the dynamical imbalance of the wheelset, etc.).

The virtual train model simulates the dynamic behaviour of the train in different conditions.
The input of this model is the estimated/filtered torque on the wheelset and the output are
the simulated angular velocities and the simulated tangential contact forces. To calculate
these output values, a simplified contact model is employed. The controller block evaluates
the torque to be applied on the rollers, in order to obtain on the roller rig the same angular
velocities of the virtual train model.

In order to preliminarily evaluate the performance of the proposed control structure, a sim-
ulator of the whole test rig has been developed. The simulator includes the software part of the
system and a three-dimensional multi-body model of the hardware part (the scaled bogie and
the rollers). The whole system simulator has been implemented in the MATLAB®–Simulink®

environment, in particular, the multi-body model has been implemented in the MATLAB® tool-
box SimMechanics. The use of the MATLAB®–Simulink® environment allows us to consider
many numerically efficient integration algorithms; moreover, the structure of the Simme-
chanics is modular and parametric and therefore particularly suitable for modelling complex
multi-body systems.

3. The simulator of the scaled roller rig

In this section, the components of the roller rig simulator will be explained. In Figure 2, the
detailed architecture of the model and the flow data between the blocks are shown. The model
consists of two macroparts: the full-scale model and the scaled model; to connect these parts,
some scaling blocks (containing the proper scaling factors) are needed. Throughout the paper,
the apex ‘sc’ indicates the variables in the scaled model. From a logical point of view, the
whole model can be split into four main sub-blocks: the scaled roller rig, the virtual train
model, the controller and the sensor/estimator/filter. Figure 3 shows the 3D CAD model of
the scaled roller rig and the realised prototype.

3.1. Scaled roller rig

3.1.1. MDM roller rig: multi-body model

The aim of this multi-body model is to simulate the dynamic behaviour of the MDM test rig.
Some previous studies described the design of an MDM roller rig and the considered scaling
hypothesis [4,5,10].

A proper definition of the similitude laws between the scaled model and the real full-scale
system allows us to obtain realistic results and, at the same time to correctly interpret the
experimental data. In literature different approaches are proposed [5]. For the MDM test
rig, Iwnicki scaling method was chosen; this approach involves several consequences on the
system which are as follows:

• Time scaling: it assures that no scaling is applied to elapsed time and system frequencies;
this is a useful feature since the rig is dedicated to HIL simulation. This method allows us to
maintain the same time and frequency behaviour both in the real system and the scaled one.
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780 R. Conti et al.

Figure 2. Detailed architecture.

Figure 3. The MDM scaled roller rig, a) the scaled bogie, b) the 3D CAD model.

• Mass–weight mismatch: It introduces a different scaling factor for mass and weight. For
the design of the mechanical part of the rig this is a problem, since weight is proportional
to mass through the gravity acceleration. Actually in the presented case, this effect can be
quite useful because it permits us to reduce the slidings on the interface between rollers
and wheels.
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Vehicle System Dynamics 781

Table 1. Iwnicki scaling method.

Scaling factor

Length φl = 5
Time φt = 1
Velocity φv = 5
Acceleration φa = 5
Mass φm = 125
Force φf = 625
Density φd = 1
Young modulus φy = 1
Weight φw = 125
Stiffness φs = 125
Contact forces φf = 625
Damping φd = 125
Torque φC = 3125

The scaling factors calculated with the Iwnicki procedure are summarised in Table 1.
The three-dimensional multi-body model of the MDM roller rig presented in this paper is

more accurate than those described in the previous works [8,10]. It consists of two parts: the
scaled roller rig and the scaled vehicle (half vehicle, according to the architecture introduced
before). The scaled roller rig consists of two rollers (two rigid bodies constrained to rotate
around their axis) and a basement.

The scaled roller-rig parameters are detailed in some previous works [10]. The scaled
vehicle multi-body model is composed of six rigid bodies: the half car body, the front bogie
and two wheelsets. The wheelsets (six DoFs for body) are linked to the bogie only by three-
dimensional nonlinear elastic-viscous force elements modelling the primary suspensions; the
bogie (five DoFs) is constrained along the longitudinal direction (to avoid the fall from the
roller rig) and it is linked to the half car body by three-dimensional nonlinear elastic-viscous
force elements reproducing the secondary suspensions; finally in this particular case, the half
car body is constrained to move only along the vertical axis (one DoF).

The effect of the wheelset unloading caused by the traction/braking phase has not been
considered; this aspect of the problem (due to the coach pitch motion) will be investigated
in the future when a complete three-dimensional model of both the scaled roller rigs will
be available.

In this paper, the Manchester Wagon, whose physical and geometrical data can be easily
found in literature [13], has been chosen as a benchmark vehicle. This choice is also precau-
tionary because, since the Manchester bogie is lighter than a locomotive bogie, its dynamical
effects are faster and more severe than those on the locomotive one. The scaled bogie dimen-
sions are referred to this vehicle by means of properly scaling factors. Starting from these
values, the MDM roller rig has been designed [10] according to the architecture previously
presented. The maximum values of the roller angular velocity ωw = 200 rad/s and roller motor
torque Csc

S = 20, 000/φC N m have been derived from practical considerations on the opera-
tive conditions of the considered devices, derived from some previous analysis conducted on
a full-scale test rig and described in [10]. The first value derives from the maximum linear
velocity to be simulated, while the second one was derived from the maximum torque of the
motors of the full scale roller rig described in [3].

The dynamical axle imbalance values have been chosen according to the limits pre-
scribed in [14].

In the MDM roller rig, the sensors whose measures are used by the controller are tri-axial
load cells (which measure the reaction force on the rollers support) and the angular velocity
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782 R. Conti et al.

sensor of the roller. The angular wheel velocity, the angular wheel acceleration and the bogie
motor torque are evaluated by an estimation procedure.

3.1.2. Wheel/roller contact model

The wheel/roller contact model is an improvement of previous models developed for the
wheel–rail pair and detailed in [7,8]. The contact model can be logically divided into two
parts: the contact point detection between two revolute surfaces and the calculation of the
normal and tangential contact forces.

There are different strategies in literature [15–17] to find the contact points. Those adopted
in the roller-rig simulator is based on a semi-analytical procedure and satisfies the following
requirements:

• The contact detection algorithm between revolute surfaces is fully three-dimensional and
does not introduce simplifying assumptions on the problem geometry and kinematics

• Generic wheel–roller profiles
• Accurate management of the multiple contact points without limits on the point number
• High computational efficiency needed for the online implementation within multi-body

models

The research of the contact points is based on the consideration that the contact points between
the wheel surface and the roller surface are located where the distance between the two surfaces
assumes a stationary point. The following conditions allow us to find these points:

(1) Parallelism condition between the normal unitary vector to the roller surface and the
normal unitary vector to the wheel surface

(2) Parallelism condition between the normal unitary vector to the roller surface and the vector
representing the distance dr between the generic point of the wheel and the rail surfaces.

Going through the details of the procedure, a fixed reference system Orxryrzr is defined, with
its origin located on the roller rotation axis and the axis yr parallel to the rotation axis (see
Figure 4). The local reference system Owxwywzw is defined on the wheelset, with the axis yw

coincident with the rotation axis of the wheelset. The origin Ow coincides with the common
point between the nominal rolling plane and the wheelset axis.

The vector Or
w is the position of the local references system with respect to the fixed one

and [R] is the rotation matrix that represents the relative orientations. In the local system the
axle can be described by a revolution surface. The generative function is indicated with w(yw).

In the local reference frame, the position of a generic point of the wheel surface is described
by the following analytic expression

pw
w(xw, yw) = [xwyw −

√
w(yw)2 − x2

w]T, (1)

while in the fixed reference system the same position is given by

pr
w(xw, yw) = Or

w + [R]pw
w(xw, yw). (2)

Similarly, the roller can be described by a revolution surface with respect to the fixed reference
system (the generative function is indicated by r(yr), see Figure 4). The main difference with
respect to the method presented in [7,8] is obviously the geometry of the contact bodies. Since
the semianalytic methods are based on a preliminary algebraic simplification of the above
introduced geometrical conditions and since the contact geometries have necessarily different
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Vehicle System Dynamics 783

Figure 4. Fixed reference system – local reference system.

mathematical representations, the method presented in [7,8] has to be properly modified. The
position of a generic point of the roller surface has the following analytic expression:

pr
w(xw, yw) = Or

w + [R]pw
w(xw, yw). (3)

The outgoing normal unit vector to the wheel surface in the local system is defined by nw
w(pw

w),
while in the fixed reference system, will be

nr
w(pr

w) = [R]nw
w(pw

w). (4)

In the fixed reference system, the outgoing normal unitary vector to the rail surface is defined
as nr

r(p
r
r). The complete expressions of the normal unit vectors are

nw
w(pw

w) = −(∂pw
w/∂xw × ∂pw

w/∂yw)

‖∂pw
w/∂xw × ∂pw

w/∂yw‖ , nr
r(p

r
r) = (∂pr

r/∂xr × ∂pr
r/∂yr)

‖∂pr
r/∂xr × ∂pr

r/∂yr‖ . (5)

The distance vector between two generic points belonging to the wheel surface and the roller
surface is defined as

dr(xw, yw, xr , yr) = pr
w(xw, yw) − pr

r(xr , yr), (6)

as can be seen, the distance vector is a function of four parameters.
The Parallelism Conditions can be formally written as follows:1

nr
r(p

r
r) ‖ nr

w(pr
w) −→ nr

r(p
r
r) × [R]nw

w(pw
w) = 0, (7)

nr
r(p

r
r) ‖ dr −→ nr

r(p
r
r) × [R]dr = 0. (8)

The conditions defined in Equations (7) and (8) are an algebraic system of six equations (of
which only four are independent; for example, the first two components of each vectorial
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784 R. Conti et al.

equation) in four unknowns. However, as will be shown in the following, the original four-
dimensional system can be analytically reduced to one single scalar equation F(yw) = 0 (that,
at this point, can be easily solved numerically) by expressing the variables xw, xr and yr as a
function of yw.

The solutions of Equations (7) and (8) have to be checked in order to avoid the physical
meaningless solutions. The first condition to check is the indentation condition. The ith solution
xC

wi, yC
wi, xC

ri , yC
ri (pr,C

wi ,pr,C
ri in terms of contact points) can be accepted only if the indentation

between the wheel surface and the roller surface is negative (with respect to the adopted
convection):

pni = dr,C
i · nr

r(p
r,C
ri ) ≤ 0, (9)

where nr
r(p

r,C
ri ) is the outgoing normal unitary vector to the roller surface in the candidate

solution and dr,C
i is the distance between pr,C

wi and pr,C
ri . Otherwise, the solution must be

rejected.
The ith solution has also to satisfy the convexity condition. This condition constrains the

curvature radii of the roller profile to be smaller than the curvature radii of the wheel profile.
The complete expression of surface curvatures is described in [8]. Finally, the solutions

with algebraic multiplicity larger than one have to be reduced to an unique solution rejecting
the physical meaningless solutions. As said before, the four-dimensional problem can be
reduced to a one-dimensional scalar problem expressing the variables xw, xr and yr as a
function of yw. In order to determine xw as function of yw, the quantity xr/

√
r(yr)2 − x2

r can be
expressed as a function of xw,yw both from the second components of Equations (7) and (8):
xr/

√
r(yr)2 − x2

r = f1(xw, yw), xr/
√

r(yr)2 − x2
r = f2(xw, yw). Comparing the two expressions,

the following equation can be found:

B
√

A2 − x2
w = Cxw − D, (10)

where

A = w(yw), (11)

B = −Gxr33 − ywr12r33 + w(yw)w′(yw)r13r32 + Gzr13 + ywr13r32 − w(yw)w′(yw)r12r33,
(12)

C = w(yw)w′(yw)r11r32 + Gzr11 + ywr11r32, (13)

D = −Gxw(yw)w′(yw)r32 + Gzw(yw)w′(yw)r12, (14)

rjk is the generic element of the rotation matrix [R], w′ is the wheel profile derivative and
Gx, Gy and Gz are the components of Or

w. The solutions of Equation (10) define the xw as a
function of yw (there are two values of xw for each value of yw):

xw1,2(yw) = CD ± √
C2D2 − (C2 + A2)(D2 − A2B2)

C2 + A2
. (15)

At this point, xr/
√

r(yr)2 − x2
r = f1(xw1,2(yw), yw) that is only function of yw, can be related to

the quantity in r(yr)/
√

r(yr)2 − x2
r because:

r(yr)√
r(yr)2 − x2

r

=
√√√√1 +

(
xr√

r(yr)2 − x2
r

)2

; (16)

therefore, also r(yr)/
√

r(yr)2 − x2
r = f3(yw) will be only a function of yw. Subsequently, to

determine yr as a function of yw Equation (16) can be inserted into the first component of the
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Vehicle System Dynamics 785

vectorial equation (7):

r′(yr)1,2 = −(f3(yw))−1 · xw1,2(yw)r21 − w(yw)w′(yw)r22 − r23

√
w(yw)2 − xw1,2(yw)2

−w(yw)w′(yw)r32 − r33

√
w(yw)2 − xw1,2(yw)2

. (17)

Usually the function r′(yr) has a monotonic descending trend, therefore it can be numerically
inverted in order to obtain yr1,2(yw); if r′(yr) is not monotonic descending, the function can
still be inverted but a further multiplication of the solution number is needed.

From the second component of Equations (7) and (16), xr1,2(yw) can be calculated as a
function of yw:

xr1,2(yw) = r(yr1,2(yw))

f3yw
· Gx + xw1,2(yw)r11 + ywr12 − r13

√
w(yw)2 − xw1,2(yw)2

Gz + ywr32 − r33

√
w(yw)2 − xw1,2(yw)2

. (18)

Finally, replacing the first component of Equation (8) the relations xw1,2(yw), yr1,2(yw), xr1,2(yw)

and the following scalar equation can be obtained where the unique unknown is yw:

F1,2(yw) = −r′(yr1,2)r(yr1,2)

(
Gz + ywr32 − r33

√
w(yw)2 − x2

w1,2 −
√

r(yr)2 − x2
r

)
−

√
r(yr1,2)

2 − x2
r

(
Gx + xw1,2r11 + ywr12 − r13

√
w(yw)2 − x2

w1,2 − yr

)
= 0.

(19)

Replacing the solutions yC
wi of the scalar equations F1(yw) = 0 and F2(yw) = 0 in Equa-

tions (15), (17) and (18) the values of the other variables can be obtained:

(xC
wi, yC

wi, xC
ri , yC

ri), i = 1, 2, . . . , n (20)

and consequently the positions of the corresponding contact points on the wheel and on
the roller:

pr,C
wi = pr

w(xC
wi, yC

wi), pr,C
ri = pr

r(x
C
ri , yC

ri), i = 1, 2, . . . , n. (21)

Since Equation (10) has irrational terms, the following analytical conditions have to be
satisfied:

• the solutions xC
wi, yC

wi, xC
ri and yC

ri must be real numbers,
• the solutions should not generate complex terms by means of the radicals,
• the solutions of Equation (19) have to be effective solutions of Equations (7) and (8) (they

might not be valid due to removal of the radicals by squaring).

Then, for each contact point defined according to the preceding described procedure, the
contact forces have to be calculated. The definition of the normal component has been solved
using Hertz’s theory, while for the tangential force problem, the saturated Kalker theory is
used [15].

3.1.3. MDM roller rig: simulated disturbances

The objective of this paper is to analyse the performance of the controller and the dynami-
cal behaviour of the MDM roller rig when different kinds of disturbances are coupled with
degraded adhesion condition simulation. In this work, the attention was focused on the model
uncertainties concerning the geometrical and inertial parameters. The geometrical errors of
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786 R. Conti et al.

the rollers, the errors of the bearing seats and the surface errors can be neglected because the
MDM roller rig will be built with high tolerances and the controller is studied to reduce the
wear between rollers and wheels. Therefore, the simulated disturbances are as follows:

• Longitudinal variation: δGx(t0) of the position of the centre of mass of the bogie: this
disturbance simulates the uncertainty on the bogie position in longitudinal direction when
the bogie is positioned on the rollers.

• Lateral variation δGy(t0) of the position of the center of mass of the bogie: the introduction
of this alteration produces the bogie hunting on the MDM roller rig.

• Dynamical imbalance of wheelsets and rollers (δM for the mass imbalance, δJ for the
inertial imbalance and δG produce an alteration of the positions of the centre of mass of the
wheelsets): the dynamical imbalance of the MDM wheelsets/rollers have to be modelled
because there are uncertainties in the exact knowledge of the inertial and mass parameters.
These effects can disturb the controller performance and stability. In literature there is an
European standard referring to the wheelset dynamical imbalance [14].

The dynamical imbalance generates on the wheelset and the roller an approximatively sinu-
soidal force (at the wheel rotation frequency) that produces a disturbance on the torque
estimation. The force disturbance modifies the estimated torque C̃sc

S because it alters the
estimation of the tangential component of the contact force T̂ sc as will be explained later in
the estimation part. The torque disturbance term can be modelled by the following analytical
expression:

Csc
D (t) = A(t) sin(ω̂w(t)t + φ), (22)

where A(t) represents the amplitude approximatively proportional to the centrifugal term,
ω̂w(t) represents the estimated wheel angular velocity (depending on the work operative con-
dition), φ is the phase and it is approximatively constant in time and function of the initial
conditions of the system.

The disturbance Csc
D (t) is defined in the whole work range (in terms of frequency) but its

amplitude is variable with the velocity: at low angular speed the error between the real torque
and the filtered torque is acceptable while at high angular speed produces vibrations and
modifies the dynamical behaviour of the virtual train model.

As demonstrated in practice, it is possible to make a simplifying hypothesis: the uncoupled
spectrum hypothesis. The spectrum of the torque signal C̃sc

S (t) = Ĉsc
S (t) + Csc

D (t) + N(t) con-
sists of three different contributes: the real torque signal Ĉsc

S (t) (its frequency spectrum is on
the left part of Figure 5), the high-frequency noise N(t) (its frequency spectrum is on the right
part of Figure 5) and the torque disturbance Csc

D (t) (its frequency spectrum is in the middle
of Figure 5 and it is variable with respect to the wheel angular velocity). If the filter works
correctly, the filtered torque Csc

S coincides with the real torque Csc
S (Ĉsc

S = Csc
S in terms of

frequency range). In this case, the real torque spectrum has an upper bound of 10 Hz (the real
torque range is [0–10] Hz). The upper bound has been evaluated considering the frequency
range of both the manual control of the torque and the automatic control of the anti-skid device
(ASD) (see Section 3.1.4). Several numerical simulations have been made to verify what hap-
pens when the disturbance is present within the real torque range. The results showed that for
low speeds the effect of the disturbance is very limited and does not significantly influence
the torque estimation. It is then possible to find a lower bound of the imbalance disturbance
at a frequency of about 10 Hz. The upper bound of the disturbance range is set to ∼= 32 Hz or
in other words the maximum wheel angular velocity 200 rad/s. The high frequency noise is
produced by dynamical high frequency transients, measure disturbance and numerical noise.
In conclusion the situation can be summarised as follows:
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Vehicle System Dynamics 787

Figure 5. Spectrum of the torque signal.

• real torque Ĉsc
S (t) range: [0–10] Hz,

• torque disturbance Csc
D (t) range: [10–32] Hz,

• high-frequency noise N(t) range: over 50 Hz.

3.1.4. Anti-Skid device

In order to improve the model of the scaled bogie mounted on the MDM roller rig, an idealASD
is implemented [18]. The objective of this part was to simulate the behaviour of real antiskid
in terms of work frequency and dynamical system. The implementation of a real antiskid
system is scheduled as a future development. The anti-slip is an electronic device that allows
the reduction of the sliding between wheel and rail in degraded adhesion conditions. This
component uses the information about the adhesion state in the virtual train model to calculate
the modulated torque that reduces the slidings. The anti-skid works only in a traction phase.

The inputs are the linear velocities (v = ωwr) and acceleration (v̇ = ω̇wr) of the wheels
(where ωw is the wheel angular speed, ω̇w the wheel angular acceleration and r the wheel
radius), the motor train torques Csc and the reference values of the virtual train linear velocity
and acceleration ẋ, ẍ (see Figure 2). The Anti-Skid model uses the information obtained from
the virtual train model to define the adhesion states for each wheelsets. The adhesion state is
1 when the wheel loses adhesion and 0 when the wheel is in good adhesion. The outputs of
this block are the four modulated torques Csc

S .
The anti-skid model consists of two different parts: the first one, the logic term, evaluates the

adhesion state between wheels and rollers comparing the linear velocities and accelerations
of the wheels with the virtual train ones; the second one, the action term, defines the strategy
to modulate the torque.

The first part of the block includes two criteria used to define the adhesion state between
the wheel and roller:

• Speed criterion: this criterion compares a threshold value to the velocity error value. This
error value is the difference between the linear velocity of the wheels v and the linear
velocity ẋ of the virtual train.
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788 R. Conti et al.

• Accelerometer criterion: this criterion compares the acceleration error value to a threshold
value. This error value is obtained by the difference between the linear acceleration v̇ of the
wheels and the linear acceleration ẍ of the virtual train.

The two criteria use the logical operator OR to produce the activation signal; therefore the
sliding condition can also be activated (or deactivated) by one criterion. The logical algorithm
of the logical part is

if [(v̇ − ẍ) ≥ ath ∨ (v − ẋ) ≥ vth]
then State of loss adhesion is estimated: State 1
else State of full adhesion is estimated: State 0

The second term defines the action to pass from the loss adhesion State 0 to the full adhesion
State 1; to obtain this result the ASD modulates the torque Csc [18]. This block memorises the
critical torque Csc

crit when the State 1 of loss adhesion is revealed (see Figure 6). Starting from
this value the torque is reduced using a decreasing ramp (y = −x). When the state goes State
0, the torque rises using three different kinds of increasing ramp:

(1) if Csc ≤ 10%Csc
crit , then the torque increasing ramp is steep (y = 4x)

(2) if 10%Csc
crit ≤ Csc ≤ 70%Csc

crit , then the torque increasing ramp is less steep (y = 0.4x)
(3) if 70%Csc

crit ≤ Csc ≤ 90%Csc
crit , then the torque increasing ramp is slight (y = 0.15x)

3.1.5. Virtual roller rig

The virtual bogie roller-rig model and the MDM bogie roller-rig model allows the simulation
of a full vehicle roller rig [5]. In order to reproduce the dynamics of the whole vehicle, this
strategy permits us to physically build only one roller rig (that simulates the front bogie and
the half car body) and to simulate via software by means of a simplified model of the roller
rig the rest of the wagon. To improve the computational efficiency of the whole system, the
virtual roller rig is modelled by a simplified analytical model. This model will be a part of
the HIL control system and then will have to run in real time. so it has to be more simple
and computationally efficient that those previously described. The input of the block are the
rollers control torques usc

3 − usc
4 and the modulated torque Csc

S applied by the motors to the

Figure 6. Detailed architecture of the anti-skid device.
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Vehicle System Dynamics 789

wheels (see Figure 2). The output are the same as that of the MDM roller rig: the measured
tangential contact force T sc

mis and the measured roller angular velocity ωrm. The analytical
model is simplified with respect to the MDM roller-rig multi-body model because it is based
on a two-dimensional dynamical model of a wheelset–roller system.

3.2. Virtual train model

3.2.1. Multi-body model

The virtual train model permits us to simulate the dynamics of the full-scale railway vehicle.
The multi-body model is a simplified two-dimensional model [1] of the longitudinal train
dynamics which is used to calculate the linear velocity ẋi, the linear acceleration ẍi and the
wheelsets load distribution Ni. The goal of the whole system is to simulate the train dynamics
in different scenarios: bad adhesion conditions, different physical/geometrical configurations,
etc. The train model is bounded in terms of velocity ẋ = ωwsr and motor torque ĈS: the maxi-
mum train velocity is approximatively 300 km/h and the maximum motor torque is 20,000 N m
(defined by practical observations on the railway vehicles). The inputs of this model are the
estimated tangential forces T̂ (estimated by the estimator block and measured from a load cell
on the MDM roller-rig support) and the filtered torque ĈS while the outputs are the reference
values of the wheel angular velocity ωws,the simulated tangential force Tsim, the train linear
velocity ẋ and the train linear acceleration ẍ (see Figure 2). The virtual train model uses a
simplified adhesion model in order to be implemented directly in real-time software.

As shown in Figure 7, the virtual train model consists of two parts:

• the train block: this term simulates the longitudinal dynamics of the train on the rail.
The model of the train is composed by a car body, two bogies and four wheelsets; the
wheelsets are linked to the bogie by an elastic-viscous force element modelling the primary
suspensions while the bogie is connected to the car body by an elastic-viscous element
modelling the secondary suspension. This model, from the estimated tangential component
force T̂ calculates the longitudinal acceleration ẍ and, imposing equilibrium with respect to
pitch rotation, obtains the load distribution N1, N2, N3 and N4 on the four axles (in Figure 7
the scheme refers to a traction phase).

• the wheelset block: this term is a two-dimensional analytic model of the wheelset which
calculates the wheel reference angular velocity ωws and the reference tangential component
force Tsim starting from the normal component of the load Ni, the linear velocity ẋ and the

Figure 7. Scheme of the virtual train model.
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790 R. Conti et al.

filtered torque ĈS (see Figure 2):

ω̇ws = 1

J
(ĈS − Tsimr), (23a)

Tsim = μN , (23b)

where μ is the adhesion coefficient calculated from Equation (25), J the axle inertia moment
and r the wheel radius.

In the layout of the virtual train model the longitudinal train dynamics and the wheelsets
dynamics have been split. This architecture allows us to use in the longitudinal dynamics model
the estimated tangential force T̂ calculated by the estimator block (based on the tangential
force Tmis measured on the MDM roller rig). By means of this strategy, a measured value is
introduced in the virtual train model increasing the accuracy of the model. In the development
phase also the non-split layout has been tested: in this case, the virtual train model used only a
single input, the filtered torque ĈS, because the tangential force Tsim evaluated by the wheelset
block was directly passed on to the train block. The numerical results showed that the original
layout is better in terms of controller performance and noise robustness.

3.2.2. Simulated adhesion model

This adhesion model in the virtual vehicle model is needed to simulate the wheel/rail adhesion
condition and to tune the roller rig torques in order to simulate the loss and recovery of
adhesion of the wheel as discussed in the previous sections. The wheel/rail model presented
in this paper is a simplified model able to manage both pure rolling conditions (micro-sliding)
and macroscopic sliding. The adhesion model adopted in these preliminary simulations is
that described in [4], the research activity in this field is going on and some more accurate
models are being developed [19]. Since the aim of the tests described in this paper was to
preliminarily evaluate the control performance in presence of external disturbance, in this
phase a more simple adhesion model was adopted. In order to implement this model in a
real-time software, the model should not be very complicated. The adhesion coefficient μ

is positive during the traction phase and negative during the braking phase. First of all, the
relative sliding δ is defined by

δ =
⎧⎨⎩

rω − ẋ

max(|rω|, |ẋ|) max(|rω|, |ẋ|) 	= 0,

0 rω = ẋ = 0,
(24)

where ẋ is the linear train velocity, ω the angular velocity of the wheel and r the wheel
radius. The adhesion function μ(δ) is valid in the range 0 ≤ δ ≤ 1 (see Figure 8) and can be
analytically defined as follows:

μ =

⎧⎪⎨⎪⎩
−μasy − (μ0 − μasy) eλ(δ+δ0)v, −1 ≤ δ < −δ0,

Kδ, −δ0 ≤ δ ≤ δ0,

μasy + (μ0 − μasy) e−λ(δ−δ0)rω, δ0 < δ ≤ 1,

(25)

where μ0 and μasy represent the static and the dynamic friction coefficients. These values can
be modified in order to simulate different adhesion conditions between the wheel and the rail
(for example, including the effects of the environmental conditions).
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Vehicle System Dynamics 791

Figure 8. Traction phase: adhesion function.

3.3. Controller

The aim of the controller is to reproduce on the roller rig the same values of angular velocity
ωws and accelerations ω̇ws which have been calculated by the virtual train model [4]. So, it is
possible to simulate on the roller rig the same dynamical conditions present in the model. The
control action is the roller motor torque. As can be see from the detailed layout of the system,
there is one controller for each wheelset. This architecture is studied to give the possibility to
recreate different conditions on the four wheelsets.

The control performances are evaluated by means of three parameters:

• Speed error eω: error between the simulated wheel angular velocity ωws and the estimated
wheel angular velocity ω̂w

• Torque estimation error ec: error between the real torque CS and the filtered torque Ĉsc
S ∗ φC

• Control torque usc
i : the torques are defined in order to minimise the speed angular error and

the torque error between the MDM roller rig and the virtual roller rig.

The input of this block are the simulated tangential forces T sc
sim, the simulated wheel angular

velocities ωws, the estimated wheel angular velocities ω̂w and the filtered motor torques Ĉsc
S .

The output are the four control roller torques usc
i (as shown in Figure 2).

The control torque is the sum of two contributes: the first one (linear) is a feedforward
term derived from the dynamical equations of the roller rig and the train model and it is used
to generate a control torques that produces on the rig the same wheel angular accelerations
calculated by the virtual train model.

The second one is a nonlinear term, defined on the basis of sliding mode control technique
[11] and allows us to improve system robustness. This term depends on the difference between
the simulated and the estimated wheel angular speed. Furthermore, the nonlinear control torque
allows for the compensation of the effects of the inexact knowledge of the real torque CS and
errors in the estimation of dynamic parameters too. For a more detailed description of the
roller control refer to [4] for the full-scale and [10] for the scaled one. In conclusion, the total
control torque is

utot = ucont + udisc, (26)
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792 R. Conti et al.

where ucont and udisc are given by the following equations:

ucont = R

rs

(
Ĉsc

S

(
1 − JB

J
φT

)
+ JB

J
T sc

sim ∗ φf r

)
, (27)

udisc = ksign(ωws − ω̂w) (28)

in which ωws represents the simulated angular velocity and ω̂w is the estimated angular velocity.

3.4. Estimator and filtering

3.4.1. Estimator

The torque applied by the bogie motor to the wheel is not directly measured in order to reduce
the number of sensors on the bogie and consequently the time necessary to the setting up phase
in the testing activity. The scaled roller rig controller uses as inputs only the roller angular
velocity ωrm and the longitudinal component T sc

mis of the reaction force evaluated on the roller
support. The goal of the estimator block is to estimate the wheel angular velocity ω̂w, the wheel
angular acceleration ̂̇ωw and the estimated torque of the wheel motor C̃S (see Figure 2). In the
MDM roller rig the physical adhesion condition is high and pure rolling conditions between
the wheel and the roller can be considered. In this adhesion state, the slidings between wheel
and roller can be neglected.

With this hypothesis (supposing that the roller radius is equal to the wheel radius rs = R)
the wheel angular velocity, the tangential contact force and the wheel angular acceleration can
be estimated as follows:

ω̂w = −ωrm, T̂ sc = T sc
mis, ̂̇ωw = − d

dt
ωrm; (29)

where ω̂w, T̂ sc and ̂̇ωw are the estimations of the considered quantities. The derivative operation
has also to be robust with respect to the numerical noise affecting ωrm. Then, to estimate the
wheel motor torque that cannot be directly evaluated, the estimator block uses a simplified
dynamical model of the wheel–roller system:

C̃sc
S = T̂ scrs + JB̂̇ωw, (30)

where rs is the wheel radius, JB the total momentum of inertia of the axle/roller system
calculated with respect of wheel rotation axis.

3.4.2. Filter

A reliable value of the wheel motor torque is fundamental for the control system performance.
The torque estimator equation (see Equation (30)) is a function of the wheel estimated angular
acceleration ̂̇ωw and the estimated tangential contact force T̂ sc. The measured values of ωrm

and T̂ sc
mis (and thus ω̂w, ̂̇ωw and T̂ sc) can be affected by noise/disturbances that may lead to two

problems:

• Influence on the MDM bogie model: the ASD, simulated in the bogie model, uses the train
linear velocity ẋ and the linear acceleration ẍ to define the modulated torque CS and the
values of ẋ and ẍ are functions of the estimated torque C̃sc

S .
• Influence on the virtual train model: the estimated torque C̃S defines the dynamical behaviour

of the train model. If C̃S contains noise/disturbances, then the wheel angular velocity ωws
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Vehicle System Dynamics 793

and the tangential component of the contact force Tsim will be different with respect of those
theoretically produced by the real torque CS.

The filter described in this paper is studied to eliminate the particular disturbance Csc
D (t) and

the high-frequency noise N(t), extracting from the estimated torque C̃sc
S the filtered torque Ĉsc

S .
The filter performance is evaluated by means of the torque estimation error (that is defined by
the difference between the real torque CS and the filtered torque Ĉsc

S ∗ φC).
Using the uncoupled spectrum hypothesis (previously defined in Section 3.1.3), the distur-

bance range is fixed; moreover the disturbance is uncoupled with respect to the real torque
Ĉsc

S range and to the noise N(t) range. Therefore, it is possible to set the filter range equal to
the range of the disturbance Csc

D (t) [10–32] Hz.
The analytical form of the torque disturbance (see Section 3.1.3, Equation (22)) approxi-

mates the disturbance produced by the dynamical imbalance of the wheelsets and the rollers
in the MDM roller rig. In order to decrease the time of the setting up phase, a dynamical
identification phase (where the disturbance is exactly evaluated in analytical terms) has not
been considered. The filter has been designed in order to operate in real-time, extracting the
disturbance Csc

D (t) from the torque signal Csc
S (t) and eliminating the disturbance from the

torque. As previously explained, the torque signal C̃sc
S composed by the sum of three terms:

C̃sc
S (t) = Ĉsc

S (t) + Csc
D (t) + N(t). (31)

The filtering procedure is schematically sketched in Equation (31): initially, the estimated
torque C̃sc

S is filtered by a low-pass filter to eliminate the noise N(t). The ideal behaviour of
the filter block would be to extract the disturbance Cscf

D (t) without modifying its amplitude
ACD and its phase φCD (with respect to Csc

D (t)). The condition Cs
Dcf (t) = Csc

D (t) represents one
of the main requirement to employ the filter strategy. In this way, the disturbance is eliminated
in real-time, obtaining the filtered torque Ĉsc

S (t).
The filter has to fulfil the following requirements:

(1) It has to be computationally efficient for the HIL simulation.
(2) The filtering function has to work in a determinate range of frequencies ([10–32] Hz

according to the uncoupled spectrum hypothesis); this specification allows for the extrac-
tion of the disturbance Csc

D (t) from the measured torque C̃sc
S (t) without modifying the real

torque.
(3) The filter transfer function should not modify the amplitude and the phase of the distur-

bance Csc
D (t): this characteristic is fundamental in order to apply the strategy defined in

Figure 9, since the on-line elimination of the disturbance from the estimated torque C̃sc
S (t)

is possible only if the Cscf
D (t) has the same amplitude and the same phase of Csc

D (t).
(4) The filtering function has to be time variant because the disturbance is function of ω̂w(t).

The condition (3) can be analytically expressed like amplitude ACD
∼= 1 and phase φCD

∼= 0;
but both conditions are maintained only in a narrow frequency range. Therefore, there are two

Figure 9. Filter scheme.
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794 R. Conti et al.

Figure 10. Bode diagram of the ith elliptic passband filter: magnitude-phase.

main problems in the filter design: (1) it has to extract Csc
D (t) respecting the condition (3), (2)

it has to be time variant in the whole frequency range [10–32] Hz.
The first part of the problem can be solved using a passband filter that is implemented by

means of a sixth-order elliptic filter (since with this filter the performances are reached with
medium-low order). The filter band has to respect also the uncoupled spectrum hypothesis.
In Figure 10, both the no ripple condition ACD

∼= 1 and the phase condition φCD
∼= 0 can be

observed.
As can be seen from the red area and the green area in Figure 10, the conditions required are

respected with the selected filter: the amplitude ACD
∼= 1 and the phase φCD

∼= 0. The problem,
as previously said, is the narrow work range where these conditions are respected. The phase
condition is more tight than the amplitude condition because only in a very small frequency
range the phase is approximately zero. For the phase, we assumed a maximum acceptable
value of about φCD ± 2 rad/s (phase limit), while for the amplitude, we assumed as acceptable
the limit ACD ≥ 0.99.

The problem of the small range (where the phase and the amplitude conditions are respected)
can be addressed by discretising the whole frequency range [10–32] Hz in intervals. In this
way, it is possible to design every single filter to work in the interval where the phase and
the amplitude conditions of the considered filter are verified. The selector block permits us
to decide by means of the estimated angular velocity ω̂w which filter has to work within its
interval. The architecture of this strategy (Multi-state filter) is explained in Figure 11.

The input of the block are the estimated torques C̃sc
S and the estimated angular velocity

ω̂w. The output is the filtered torque disturbance Cscf
D (t). The elliptic filter transfer function is

defined by

Gn(ω) = 1√
1 + ε2R2

n(ζ , ω̂w/ω0)
, (32)

where Rn is the elliptic rational function with order n, ε represents the ripple factor, ζ the
sensitivity factor and ω0 the cut-off frequency. All these parameters have been set to maintain
the amplitude and the phase conditions.
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Vehicle System Dynamics 795

Figure 11. Filter architecture.

Table 2. Parameters of different scenarios.

Disturbances Initial conditions Control parameters

Scenario 1 Bogie lateral offset ωinit = 150 rad/s ec front/rear
δGy(t0) = 0.0006 m Traction Phase eω front/rear
Low adhesion condition usc

i
μ = 0.05 Gy(t)

T sc
sim − T sc

cont X − T̂ sc

Scenario 2 Wheelsets imbalance δM , δJ , δG ωinit = 150 rad/s ec front/rear
Rollers imbalance δM , δJ , δG Traction phase eω front/rear
Low adhesion condition usc

i
μ = 0.05 T sc

sim − T sc
cont X − T̂ sc

4. Numerical simulations

The numerical simulations proposed in this section show the behaviour of the MDM roller
rig when virtual degraded adhesion is coupled with different disturbances. The scenarios
proposed in this chapter consist in two numerical simulations the characteristics of which are
summarised in Table 2.

The parameters used to evaluate the system stability and the controller performance are:

(1) Speed error eω: error between the simulated angular velocity ωwws and the estimated
angular velocity ω̂w.

(2) Torque estimation error ec: error between the real torque CS and the filtered torque Ĉsc
S ∗

φC . The torque estimation error is referred to as the full-scale model.
(3) Control torque usc

i : the torques are defined in order to minimise the speed error and the
torque error calculated between the MDM roller rig and the Virtual roller rig. The control
torques are referred to as the scaled model.

(4) Lateral displacement Gy(t): the displacement along the y-axis of the wheelset centre of
mass. The displacement is referred to the scaled model.

(5) Creepage forces T sc
sim − T̂ sc − T sc

cont X : the creepage force are the tangential component of
the contact forces calculated in three cases: the simulated value T sc

sim, the estimated value
T̂ sc and the contact model value T sc

cont X . The first one is referred to the virtual train model,
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796 R. Conti et al.

Figure 12. Comparison between the filtered torque Ĉsc
S ∗ φC and the real torque CS on the front wheelset.

the second one is the value estimated by the MDM roller rig estimator and the last one is
the value evaluated by the three-dimensional adhesion model. The forces are referred to
as the scaled model.

The torque in the traction phase is modelled by means of a ramp with an initial delay of
0.5 s, a slope of 5000 N m/s and limited to 20,000 N m. These values are referred to a generic
railway vehicle working condition.

4.1. Scenario 1

The Scenario 1 objective is to evaluate the control performances and the dynamical behaviour
of the MDM roller rig when bad adhesion condition (μ = 0.05) is coupled with a bogie lateral
offset (δGy(t0) = 0.0006 m).

The first plot (see Figure 12) shows a comparison between the real torque CS and the filtered
torque Ĉsc

S ∗ φC for the front wheelset of the roller rig. In the steady state, the torque error
ec is nearly 0 ± 200 N m, which is acceptable for the requirements of the system, in terms of
controller performance and system stability. The controller is then robust in term of torque
error. In this graphics the anti-skid behaviour is also shown (see Section 3.1.4). The torque
rises till the adhesion condition is exceeded. The anti-skid reduces the torque in order to
stabilise it around a mean value reducing the sliding between wheel/rig in the virtual train
model. Comparing the front and rear wheelset torques, the effects of the traction phase on
the longitudinal train model are evident: the load on the rear wheelset is greater than that on
the front one. Consequently, the rear torque applies on the roller is greater than that on the
front one.

The speed error eω (see Figure 13), after a transient period, is stabilised at 0.03 rad/s. The
controller is also robust in term of speed error. The control torques usc

i (see Figure 14) follow
the torque’s behaviour.

The lateral displacements δGy(t) of the wheelset centre of mass (see Figure 15) show
that, after a transient period, the displacement converges to zero while the contact forces
T sc

sim − T sc
cont X − T̂ sc (see Figure 16) follow the torque behaviour: the forces have the same

trend and rise till the maximum value of adhesion. When the anti-skid is activated, the contact
forces are stabilised on the value where the adhesion coefficient is maximum. In conclusion,
the results show that the controller does not modify the stability of the system and is robust in
case of low adhesion condition coupled with a bogie lateral offset (hunting).
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Vehicle System Dynamics 797

Figure 13. Front/rear speed error eω .

Figure 14. MDM roller rig and virtual roller rig: control torque usc
i .

Figure 15. MDM roller rig: front/rear lateral displacements δGy(t).
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798 R. Conti et al.

Figure 16. Creepage forces: T sc
sim − T sc

cont X − T̂ sc.

4.2. Scenario 2

The Scenario 2 shows the dynamical behaviour of the MDM roller rig and the control per-
formances when degraded adhesion condition (μ = 0.05) is coupled with wheelsets/rollers
dynamical imbalance [14] δM , δG and δJ . In this scenario two different cases are tested: the
MDM roller-rig model without Multi-filter and the MDM roller-rig model with Multi-Filter
(see Section 3.4.2). The first case allows us to show the effects of the dynamical imbalance on
the whole system and the second one permits us to describe the effects of the multi-filter block.

4.2.1. Dynamical imbalance disturbance without multi-filter

As can be seen from the graphics, the presence of the dynamical imbalance produces a sinu-
soidal disturbance on the estimated signal. In Figure 17 the torque behaviour is shown: the real
torque CS follows the Anti-Skid algorithm while in the estimated torque C̃sc

S ∗ φC the effect
of the disturbance Csc

D (t) (see Section 3.4.2, Equation 22) is present.

Figure 17. Comparison between the estimated torque C̃sc
S ∗ φC and the real torque CS on MDM the front wheelset.
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Vehicle System Dynamics 799

Physically, this disturbance represents a nearly rotating force: several numerical simulations
confirmed that a nearly proportional relation between disturbance amplitude A(t) and the
centrifugal term exists:

A(t) ∼= mrω2. (33)

The differences are caused by the effect of the three-dimensional adhesion model and the
alteration of the inertial tensor δJ . The minimum torque error ec is 0 ± 1000 N m and the max-
imum is 0 ± 2500, which is not acceptable because they are out of range for the requirements
of the system, in terms of controller performance and stability system. The controller is not
robust in terms of torque estimation error.

The speed error eω (see Figure 18) after a transient is stabilised nearly on the same value
measured in the scenario 1. This result confirms that the controller is robust in terms of speed
error. The control torques usc

i follows the trend of the torque behaviour (see Figure 19).
The last graphic (see Figure 20) shows the comparison between the contact forces T sc

sim, T̂ sc

and T sc
cont X (see Chapter 3.1.2). Both in the measured tangential force T̂ sc and the contact force

Figure 18. Front/rear speed error eω .

Figure 19. Roller rig and virtual roller rig: control torque usc
i .
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800 R. Conti et al.

Figure 20. Creepage forces: T sc
sim − T sc

cont X − T̂ sc.

Figure 21. Comparison between the filtered torque Ĉsc ∗ φC and the real torque C on the MDM front wheelset.

T sc
cont X the contribution of the disturbance results evident; while in the simulated tangential

force T sc
sim the disturbance is not present.

4.2.2. Dynamical imbalance disturbance with multi-filter

In this simulation, the filter block (see Section 3.4.2) has been used. The first plot (see Figure 21)
shows a comparison between filtered Ĉsc

S ∗ φC and real torque CS on the front wheelsets
and the improvement with respect to Figure 17 appears clearly: the disturbance Csc

D (t) is
almost completely filtered. The torque error ec, after the transient period, is ±300 N m and
this result is satisfying (nearly 2.5% of the mean torque value 12,000 N m) as regards the
system requirements. The speed error eω is included in the range limits (see Figure 22).

The control torque usc
i of the MDM roller rig and the virtual roller rig follows the torque

behaviour (see Figure 23). The comparison between the measured creepage forces T̂ sc, the
simulated creepage force T sc

sim and the calculated creepage force in the contact model T sc
cont X

confirms the presence of the disturbance in two cases only: T̂ sc and T sc
cont X . In the simulated
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Vehicle System Dynamics 801

Figure 22. Front/rear speed error eω .

Figure 23. Roller rig and virtual roller rig: control torque usc
i .

T sc
sim, the disturbance effect is very small because this value is directly calculated by the virtual

train model where the disturbance is not modelled (Figure 24).
In conclusion:

• the filter block and the controller result are robust in terms of torque estimation error ec and
speed error eω,

• the filter block and the controller does not modify the stability of the system,
• the controller is robust and feasible when degraded adhesion condition and dynamical

roller/wheel imbalance are coupled.

4.3. MDM roller rig: numerical performance of the three-dimensional adhesion model
developed by MDM lab

In this section, the numerical performance of whole model (three-dimensional multi-body
model of the MDM roller rig and three-dimensional contact model developed by the authors)
is investigated. The model performances were analysed comparing with each other the different
numerical strategies and focusing on the numerical efficiency of the procedures. In the real
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802 R. Conti et al.

Figure 24. Creepage forces: T sc
sim − T sc

cont X − T̂ sc.

Table 3. Comparison between the three different implemen-
tation of the contact model in the Simulink® environment.

Type of implementation Time consuming

MATLAB® function 16.20 h
M-S function 6.20 h
C-S function 25 min

HIL system, the whole model will be replaced by the real MDM scaled roller rig. The main
considered MATLAB® structures are:

• MATLAB® function: this kind of structure permits us to use a MATLAB® function (contact
model) within Simulink® environment (multi-body model).

• M-S function: this structure allows us to write in MATLAB® script both the parts of the
model (multi-body model and contact model).

• C-S function: this kind of structure allows us to write both the parts of the model (multi-body
model and contact model) directly in C/C++.

The three implementations are tested in a benchmark case like the ‘Scenario 1’ where the
degraded adhesion condition is coupled with the hunting disturbance. The results are reported
in Table 3.

In conclusion, as can be seen in Table 3, the C-S function implementation results very faster
than the previous kind of structure.

4.4. MDM roller rig: Solver parameters

In this section, the ODE solver used in the MATLAB®-Simulink® environment to optimise
the interaction between MDM roller-rig multi-body model and the three-dimensional wheel–
roller contact model is described. The choice of these parameters is based on the results
upon comparison between several simulations and allows us to obtain a trade-off between the
following requirements:
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Vehicle System Dynamics 803

• to ensure the accuracy of the three-dimensional wheel/roller contact model,
• to ensure the accuracy of the multi-body model,
• to reduce the computational load.

The configuration parameters used in the model are summarised in Table 4:

Table 4. Configuration parameters of the Simulink® environment.

Parameters

ODE solver ODE 45
Formulation Runge–Kutta
Type of integration Variable step
Absolute tolerance 10−8

Relative tolerance 10−10

5. Conclusions and further developments

This paper presented an accurate multi-body model of a scaled roller rig employed within
an HIL architecture in order to simulate a scaled railway vehicle test-rig. Since the roller rig
is designed to virtually reproduce on the test rig the degraded adhesion conditions, without
the physical sliding between the wheel and the roller, the contact model represented a very
important part of this model. The contact model described in this paper allows us to consider
the fully three-dimensional phenomena and defines a new approach to determine the contact
points between two generic revolute surfaces, the wheel and the roller.

The main purpose of this work was to study and analyse the performance of the controller and
the dynamic behaviour of the roller rig when different types of disturbances are coupled with
degraded adhesion condition, since the effects of the disturbances on the HIL system would
degrade the reliability of the simulations. Two different simulation scenarios are presented:
Scenario 1 analyses the system when degraded adhesion condition is coupled with bogie
hunting, while Scenario 2 studies the system when degraded adhesion condition is coupled with
dynamical imbalance. The results of Scenario 1 showed that the controller is robust in terms of
speed error and torque estimation error; moreover, in this case the controller does not modify
the system stability. On the contrary, when the degraded adhesion condition is coupled with
the dynamical imbalance, numerical simulations showed that the system is greatly influenced
by the imbalance disturbance, in particular as representing the torque estimation error. The
authors proposed a new torque estimation strategy that involves a multi-state filter especially
designed to eliminate this particular disturbance. The torque disturbance produced by the
dynamical imbalance could be analytically approximated by means of a nearly sinusoidal
component. The proposed estimation procedure uses a multi-state filter that allows for the
extraction of the sinusoidal disturbance.

The proposed estimation processes were analysed and compared with another estimation
procedure previously presented. The numerical simulations showed the effectiveness and
robustness of the new torque estimation strategy, both in terms of speed error and torque
estimation error. Moreover, the presence of the multi-state filter and the controller does not
influence the system stability.

As regards further developments, the comparison between the experimental data coming
from physical model of the MDM roller rig and the numerical results is scheduled for the
future in order to validate the numerical model. Moreover, also numerical optimisations of the
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804 R. Conti et al.

filter block and of the three-dimensional contact model are planned. The final purpose is to
obtain in the MATLAB®–Simulink® environment a complete model of the HIL scheme of the
MDM roller rig. This would make possible to realise preliminary tests on the valid numerical
model to reduce the time and the economic investments.

Notes

1. These conditions could be replaced by the orthogonality condition between the tangent plane to the roller
surface in pr

r and dr(xw, yw, xr , yr) and the orthogonality condition between the tangent plane to the wheel
surface in pr

w and dr(xw, yw, xr , yr). In this case, this formulation turns out to be analytically more complicated
than the previous one and therefore it has not been employed.
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