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Abstract

Landslide, as a major type of geological hazard, represents one of

the natural hazards most frequently occurred worldwide. Landsliding

phenomena not only poses great threats to human lives, but also pro-

duces huge direct and indirect socio-economic losses to societies in all

mountainous areas around the world. The global concern of landslide

hazard and risk have raised the need for effective landslide hazard

analysis and quantitative risk assessment.

Remote sensing offers a valuable tool for landslide studies at different

stages, such as detection, mapping, monitoring, hazard zonation and

prediction. In past years, remote sensing techniques have been sub-

stantially developed for landslide researches, mainly focusing on the

applications of aerial-photos, optical sensors, SAR interferometry (In-

SAR) and laser scanning. In this study, two newly-developed remote

sensing techniques are to be introduced, particularly aiming at rapid

detection and mapping of landslide hazards with semi-automatic ap-

proaches.

The first approach employs the technique of Object-Oriented Analysis

(OOA). It represents a semi-automatic approach based on systemized

analysis using very high resolution (VHR) optical images. The pur-

pose is to efficiently map rapid-moving landslides and debris flows



with minimum manual participation. The usefulness of this method-

ology is demonstrated on the Messina landslide event in southern Italy

that occurred on 1 October 2009. The algorithm is first developed in

a training area of Altolia, and subsequently tested without modifica-

tions in an independent area of Itala. The principal novelty of this

work is (1) a fully automatic problem-specified multi-scale optimiza-

tion for image segmentation, and (2) a multi-temporal analysis at

object level with several systemized spectral and textural measure-

ments.

The second approach is on the basis of recently developed long-term

InSAR technique of Persistent Scatterer Interferometry (PSI), which

generates stable radar benchmarks using a multi-interferogram anal-

ysis of SAR images and enables a detection of mass movement with

millimeter precision. A statistical analysis of PSI Hotspot and Clus-

ter Analysis (PSI-HCA) is further developed based on the Getis-Ord

Gi
∗ statistic and kernel density estimation. It has been performed

on PSI point targets in hilly and mountainous areas within the Arno

river basin in central Italy. The purpose is to use PS processed from

4 years (2003-2006) of RADARSAT images for identifying areas pref-

erentially affected by extremely slow-moving landslides. This spatial

statistic approach of PSI-HCA is considered as an effective way to ex-

tract useful information from PS at the regional scale, thus providing

an innovative approach for a rapid detection of extremely slow-moving

landslides over large areas.



Although both two methods are initially developed for the same pur-

pose of a rapid identification of landslide hazard, it is not easily to

compare the results of these two approaches. A possible solution is to

compare their outcomes at the risk level. For this reason, the output

of PSI-HCA is further included in a quantitative landslide hazard and

risk assessment, which also provides a fundamental basis for potential

risk management in the future. The risk assessment is carried out in

the Arno river basin, with the exposure of estimated losses in euro.

The result indicates that approximately 3.22 billion euro losses are

predicted for the upcoming 30 years within the whole basin.

In sum, the present study shows a great potential for newly-developed

remote sensing techniques in improving procedures not only for iden-

tifying and locating landslide hazards, but also for a subsequent quan-

titative landslide hazard and risk assessment.
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Chapter 1

Introduction

1.1 Landslide hazard: an overview

1.1.1 Landslide: definition and typology

Landslide, as a major type of geological hazard, represents one of the natural

hazards most frequently occurred worldwide. The term ‘landslide’, as simply

denoted by Cruden [1991], refers to ‘the movement of a mass of rock, debris or

earth down a slope’.

A complete classification of landslide is not easy to be determined. Some well-

accepted classification algorithms can be found in recent published literatures.

For example, a well-known classification of landslides was proposed by Varnes

[1978] and subsequently improved by Cruden and Varnes [1996], primarily focus-

ing on the combination of movement and material types. Besides, another widely

recognized classification was proposed by Hutchinson [1988], referring to mor-

phological and geotechnical parameters of landslides in relation to geology and
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hydrogeology. Moreover, Leroueil et al. [1996] have suggested a characterization

of slope movements with further involvement of those geotechnical parameters,

including controlling parameters, predisposition factors, triggering/aggravating

factors, revealing factors and corresponding consequences. Additionally, Hungr

et al. [2001] have modified the landslide classification based on a new separation

of landslide materials, with a more detailed consideration of material type, water

content, pore pressure, recurrent path and velocity.

1.1.2 Landslide hazard in Italy

Despite the diversity of landslide definition and classification, it is widely agreed

that landsliding phenomena not only poses great threats to human lives, but also

produces huge direct and indirect socio-economic losses to societies in all moun-

tainous areas around the world. In particular, with a large coverage (ca. 75%) of

hilly and mountainous areas, Italy is among those countries most susceptible to

landslide hazard.

According to the estimations from the Italian National Research Council

[Guzzetti, 2000], Italy has suffered the highest fatalities of landslides in Europe

and in the last century at least 5939 people (in average 59.4 deaths/year) have

been reported dead or missing by reason of landslide occurrences, including a

catastrophic event of Vajont occurred on 9 October 1963, bringing a victim num-

ber of 1917 people. Moreover, each year in Italy ca. 1-2 billion euro direct

economic losses were estimated from the damages of landslides, accounting for an

average of 0.15% the gross domestic product (GDP) of Italy [Canuti et al., 2004].

With a further consideration of those indirect losses, this number could even rise
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to ca. 0.3-0.4% of the total GDP of Italy [Canuti et al., 2004; Schuster, 1996].

1.1.3 Global concern of landslide hazard

With the development of landslide studies, the recent focus of landslide disasters

has been extended to a global concern.

According to the report from International Disaster Database [OFDA/CRED,

2006], landslide is among the natural hazards most frequently occurred in the

whole world, with a potentially 4 million people affected worldwide in 2006. The

advent of this report was also accompanied with some landslide studies at the

global scale. For example, based on the global database, a worldwide analysis

of landslide hazard and risk, namely the ’global landslide hotspots’ (figure 1.1),

has been proposed and accomplished by Nadim et al. [2006]. Similarly, Hong

et al. [2006, 2007] have presented the efforts for a mapping of global landslide

inventory and a further assessment of global landslide hazard and risk (see risk

map in figure 1.2).

Additionally, under the background of worldwide global warming and climate

changing as reported by IPCC [2007], recent studies have also claimed landslide

occurrences as geomorphological indicators of global climate changes. For in-

stance, Soldati et al. [2004] have dated several landslides in the Italian Dolomites

and correlated the recorded increase of landslide activities with climate changes

since the Late Glacial. The study was further extended by Borgatti and Soldati

[2010] and it was concluded that the alteration in landslide frequency can be

interpolated as changes in the hydrological conditions of slopes, which is closely

connected with climate influences. Moreover, Jakob and Lambert [2009] have re-
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Figure 1.1: Global hotspot landslide hazard zonation for the world [Nadim et al.,
2006]

Figure 1.2: Global landslide risk map prepared by NASA [Hong et al., 2006, 2007;
NASA, 2007]
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ported that the influence of climate change is potentially reflected in an increase

of landslide frequency, based on the simulation of climate models for precipita-

tion regimes. These studies have fundamentally revealed an existence of potential

landslide responses to climate changes.

Furthermore, according to Nadim et al. [2006], the other reasons bringing an

increase of globally-reported landslide occurrences could be summarized as a con-

sequence of uncontrolled human activities such as overexploited natural resources,

intensive deforestation, plus poor land-use planning and undisciplined growing

urbanization. This is in accordance to the report of Unite Nations [UN/ISDR,

2004], which emphasizes the important role of decent land-use planning and man-

agement in conducting natural hazard assessment and risk mapping.

1.2 Study scope and thesis outline

The global concern of landslide hazard and risk have raised the need of effective

landslide hazard analysis and quantitative risk assessment. Also, in past decades,

the urgent need to facilitate the understanding of landslides and the ability to

handle related risks, has created important research and development activities

for landslide studies [Nadim, 2002], which include the significant development of

remote sensing techniques for landslide studies, as chiefly to be dealt with in the

following content of this thesis.

1.2.1 Objectives of the research

The aim of this study is to integrate recent-developed remote sensing techniques

in landslide studies with particular focuses on:
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• An efficient mapping of rapid landslides and debris flows for creating an

event-related landslide inventory based on (semi)-automatic remote sensing

approach.

• A rapid detection of slow-moving landslides using (semi)-automatic remote

sensing approaches at the regional scale.

• The use of remote sensing outputs for a quantitative landslide susceptibility,

hazard and risk assessment.

1.2.2 Research questions

The following proposed research questions would assist to address the above-

mentioned objectives:

• Which type of remote sensing data and technique is useful for a rapid map-

ping of landslide inventory?

• Which kind of remote sensing products can be used for a detection of (ex-

tremely) slow-moving landslides?

• Which information can be extracted from these remote sensing data and

technique for an effective landslide detection and mapping?

• What are the useful and efficient approaches to extract these information?

• How can these approaches be improved in order to facilitate an potential

automated approach for the purpose of rapid mapping and detection of

landslides?
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• How to evaluate the results of these approaches and how much accuracies

can these approaches obtain?

• How can these remote sensing data and techniques further help to an assess-

ment of the landslide susceptibility and hazard zoning, and a subsequent

quantitative risk analysis?

• What are the novelties of this study compared to previous works of remote

sensing for landslide studies?

• How can the whole study be improved for the future works?

1.2.3 Thesis structure and outline

This thesis is outlined as figure 1.1, including a total of seven chapters. The rest

of the chapters are structured as follows:

• Chapter 2 renders a review of previously published principal remote sensing

techniques for different stages of landslide studies. The review is organized

by different remote sensing approaches, including the visual interpretation

of aerial-photos, remote sensing within optical electromagnetic spectrum,

satellite and ground-based SAR interferometry (InSAR), as well as airborne

and terrestrial laser scanning.

• Chapter 3 firstly introduces the concept of a recent-developed technique:

object-oriented analysis (OOA). The chapter further deals with the appli-

cation of OOA in semi-automatic inventory mapping of rapid-moving land-

slides and debris flows, choosing a catastrophic event of Messina in Sicily,

southern Italy as the case study.
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Figure 1.3: The structure and content of the thesis.
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• Chapter 4 initially renders the novelty of a newly-developed InSAR tech-

nique: persistent scatterers interferometry (PSI). The chapter further intro-

duces a new approach of PSI Hotspot and Cluster Analysis (PSI-HCA) for

a rapid detection of slow-moving landslides. The usefulness of this approach

is presented in the case study of the Arno river basin in central Italy.

• Chapter 5 first presents an short review regarding landslide hazard and risk

assessment. The chapter then introduces an effort utilizing the previous

derived outputs of PSI-HCA for further susceptibility and hazard zoning

of landslides and a quantitative landslide risk assessment in the Arno river

basin.

• Chapter 6 mainly deals with some discussions regarding those detailed prob-

lems and uncertainties existed in different stages of this study.

• Chapter 7 is the conclusion of the whole research work. Also some rec-

ommendations for further improvements are provided for possible future

research activities.
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Chapter 2

Remote sensing for landslide

studies: a review

Remote sensing, which is simply defined as the approach of obtaining informa-

tion without physical contact [Lillesand and Kiefer, 1987], is capable to survey

distant areas where field works are difficult to be carried out. Remote sensing

contributes a valuable tool for landslide studies at different stages, such as de-

tection and mapping, monitoring, hazard zonation and prediction [Canuti et al.,

2004; Mantovani et al., 1996; Metternicht et al., 2005]. In this chapter, the pre-

vious published contributions of remote sensing to those landslide studies are

to be reviewed, arranged by the following useful remote sensing techniques: the

visual interpretation of aerial-photos, remote sensing within optical electromag-

netic spectrum, satellite/ground-based SAR interferometry (InSAR), and air-

borne/terrestrial laser scanning.
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2.1 Visual interpretation of aerial-photos

A traditional but still useful remote sensing technique for landslide studies is the

visual interpretation of aerial-photos which are usually provided with excellent

spatial resolution. Visual interpretation of aerial-photos is particularly useful for

the mapping and monitoring of landslide characteristics (distribution, classifi-

cation) and related factors (land cover, lithology, slope, etc.), and until now it

is still one of the most important sources for landslide inventory creations and

modifications [Blesius and Weirich, 2010; Donati and Turrini, 2002; Metternicht

et al., 2005].

The particular useful approach through aerial-photos is the 3D interpreta-

tion from stereo pairs [Mantovani et al., 1996; Soeters and Westen, 1996]. This

stereoscopic approach, combined with additional field surveys, is especially useful

for mapping and monitoring some landslides under forests and thus possibly not

visible from single aerial-photo [Brardinoni et al., 2003]. Besides, the 3D interpre-

tation from stereo pairs of aerial-photos enables a detailed recognition of landslide

features and diagnostic morphology [Metternicht et al., 2005]. Also, the contri-

bution of stereo pairs includes the digital elevation model (DEM), generated from

photogrammetric technique, useful for the estimation of surface elevation, surface

displacements and volume-related features [Blesius and Weirich, 2010; Coe et al.,

1997; kaab, 2002].

Furthermore, as one of the most important uses, archived aerial-photos com-

bined with a collection of landslide records from historical recourses, such as

newspaper, enables a trace of landslide occurrences in older periods [Mantovani

et al., 1996; Parise, 2001]. In particular, van Westen and Getahun [2003] have
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demonstrated a typical qualitative analysis of the evolution of Tessina landslide

in North-eastern Italy for more than 40 years, based on landslide maps inter-

preted from sequential multi-temporal aerial-photos (figure 2.1). This simple but

effective method successfully observed the expanding reactivation activities of an

old existing landslide.

However, the spectral information which can be extracted from the aerial

photos is very limited, especially compared to those satellite imagery captured

from multi-spectral sensors, which is to be described in the next section.

2.2 Optical satellite sensors

The satellite remote sensing within optical electromagnetic spectrum became pop-

ular with the launch of Landsat series of satellites, which also brought the ap-

plication of optical satellite sensors in landslide studies. However, few studies

have revealed the usefulness of Landsat MSS, TM and ETM+ data in landslide

mapping and monitoring. The major difficulty is due to the low spatial resolution

of this kind of conventional sensors (e.g. with the best resolution 30m for visi-

ble and near-infrared, Landsat-7), thus limiting their uses especially in a detailed

landslide mapping [Gupta and Joshi, 1990; Sauchyn and Trench, 1978], especially

in the early times their resolution is far lower compared to aerial-photos. This

was also justified by Huang and Chen [1991] who reported a maximum accu-

racy of 16.6% for landslide mapping at Healy, Alaska using Landsat TM data.

This limitation was also agreed by Mantovani et al. [1996], who have additionally

mentioned that optical satellite remote sensing with low spatial resolution is not

satisfactory for characterizing those particular landslide features.
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With the improvement of spatial resolution for recently-developed optical sen-

sors, some studies have shown the potential improvements of mid-resolution sen-

sors in landslide studies, such as those imageries from SPOT [Lin et al., 2004;

Nichol and Wong, 2005; Yamaguchi et al., 2003] and ASTER [Fourniadis et al.,

2007; Liu et al., 2004], especially for landslide detection and mapping as well as

hazard assessment purposes. In particular, Yamaguchi et al. [2003] enabled a

detection of 20 to 30m displacement with reference to 20m spatial resolution of

SPOT HRV data, with the inclusion of a sub-pixel image matching techniques.

Also, another advantage brought by ASTER data is an inclusion of a nadir and

backward pair of band 3 which enables a generation of DEM from photogram-

metric techniques.

Recent launches and increasing availability of very high resolution (VHR) im-

ageries enables a even more detailed characterization and differentiation of land-

slide processes for hazard analysis. For example, SPOT-5 imageries have been

widely used owing to its high resolution with wide coverage and several stud-

ies have demonstrated their successful applications in landslide mapping (e.g.

Borghuis et al. [2007]; Sato et al. [2007]). Similarly, image interpretations from

higher imageries of IKONOS (e.g. Kim et al. [2010]; Nichol and Shaker [2006])

and Quickbird (e.g. Chadwick et al. [2005]; Owen et al. [2008]) allow a very

detailed preparation of landslide inventory. With the most recent WorldView-

1 and 2 imageries (spatial resolution: 1.8m for multi-spectral bands, 0.5m for

panchromatic band) and equivalent GeoEye-1 images (spatial resolution: 1.65m

for multi-spectral bands, 0.41m for panchromatic band, see an example imagery

in figure 2.2), the accuracy for landslide mapping and hazard assessment can

be furthermore improved, considering that more terrain features can be clearly

14



Figure 2.2: The panchromatic band of GeoEye-1, a new generation of VHR im-
agery with spatial resolution of 0.41m. The image is rendered for the view of a
landslide in Pistoia, central Italy.
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distinguished. In particular, Saba et al. [2010] have demonstrated a successful

spatial and temporal landslide detection with an integration of all above men-

tioned VHR imageries. Besides, it is also mentioned by Kouli et al. [2010] that

these VHR imageries could be additionally used for a detailed land-use correction

for the subsequent hazard zonation. In addition, Casagli et al. [2009] have shown

that how VHR imageries can be integrated in protecting archaeological site of

Machu Picchu area in Peru, which is strongly under the threat of surrounding

landslides.

2.3 Satellite and ground-based SAR

interferometry

SAR interferometry (InSAR) is nowadays an important branch of remote sensing.

It represents the technique that uses the phase content of radar signals for ex-

tracting information on deformations of the Earth’s surface [Gens and Genderen,

1996]. Satellite InSAR is a typical example of repeat-pass interferometry which

combines two or more SAR images of a same portion of terrain from slightly dis-

placed passes of the SAR sensor at different times [Massonnet and Feigl, 1998].

It plays an important role in landslide mapping and monitoring applications,

owing to its capability of detecting ground movements with millimeter precision

[Corsini et al., 2006; P.Canuti et al., 2007; Rott and Nagle, 2006; Squarzoni et al.,

2003]. The traditional InSAR processing approach for ground movement detec-

tion is mainly focused on the differential InSAR (DInSAR) technique [Massonnet

and Feigl, 1998; Rosen et al., 2000]. It uses two corresponding interferograms
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for differential measurements by comparing the possible range variations of two

phases with the capability of detecting terrain motions with sub-centimetric accu-

racy. Several works have indicated the usefulness of DInSAR in landslide studies

[Catani et al., 2005a; Fruneau et al., 1996; Rott et al., 1999; Singhroy et al., 1998;

Strozzi et al., 2005; Ye et al., 2004].

With the development of different techniques of satellite InSAR, ground-based

SAR interferometry (GB-InSAR) has also been built up for landslide studies. The

principle of GB-InSAR is similar to satellite InSAR however with different spa-

tial and temporal scale [Canuti et al., 2004]. Besides, the recently-developed

GB-InSAR devices are designed advantageously for portability and easy instal-

lation. GB-InSAR shows its potential in landslide risk management. The con-

ventional application is to monitor landslide from multi-temporal deformation

maps retrieved from a sequence of interferograms, thus facilitating the under-

standing of the dynamics of unstable slopes. The usefulness of GB-InSAR in

landslide monitoring is well documented in several studies using different de-

vices, including continuous-Wave Step-Frequency (CW-SF) radar [Luzi et al.,

2004, 2006; Pieraccini et al., 2003], the system LISA (Linear SAR) developed

by the Joint Research Center of European Commission [Antonello et al., 2004;

Canuti et al., 2004; Corsini et al., 2006; Leva et al., 2003; Tarchi et al., 2003a,b]

and the equipment from IDS-Ingegneria dei Sistemi [Noferini et al., 2005, 2006,

2007, 2008]. In particular there are several novelties in these recent studies.

For example, Noferini et al. [2005, 2006, 2008] have demonstrated the efforts to

extract coherent pixels (in principle similar to persistent scatterers for satellite

InSAR) from multi-temporal acquisitions in order to locate the landslide affected

areas. Moreover, Herrera et al. [2009] have shown the potential of GB-InSAR
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Figure 2.3: The Stromboli Volcano: the result of interferogram analysis with
millimetric accuracy using LiSA GB-InSAR system [Casagli et al., 2008]

in landslide prediction: in particular the monitoring data from GB-InSAR can

be correlated to rainfall data and the prediction can be made in a viscoelastic

sliding-consolidation model. In addition, Luzi et al. [2009] have reported a po-

tential use of GB-InSAR to get the depth of snow on a slope from the behavior

of phase variation.

The GB-InSAR is also crucial for the establishment of an early warning sys-

tem which aims at a maximum mitigation of the damages caused by sudden

events. A successful application was demonstrated in the real-time monitoring

of Stromboli Volcano in 2002 and 2003 [Casagli et al., 2008], by means of the

LiSA system [Antonello et al., 2004; Canuti et al., 2004; Corsini et al., 2006;
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Leva et al., 2003; Tarchi et al., 2003a,b]. After a large landslide occurrence on 30

December 2002, the system was installed on the northwestern flank of Stromboli

and started real-time monitoring from 20 February 2003. The system enabled a

sending of synthesized radar images with 2m resolution every 12 minutes from

the instrument. Displacements were then calculated along the sensor’s line-of-

sight (LOS) from the generated consecutive interferograms and the deformation

maps are produced with millimetric accuracy (figure 2.3). The collected data

covered an area of 2 km2 and were sent to the Italian Civil Protection in the

near real-time. Actually, it is also possible to distinguish the interaction of dif-

ferent geomorphic processes within the monitoring periods which can be ideally

extended to several years.

2.4 Airborne and terrestrial laser scanning

The active sensor of laser scanning, also known as Light Detection and Ranging

(LiDAR), has been largely used for landslide studies in recent years, especially

with the increasing improvements in vertical and horizontal accuracy, and its

usefulness in high resolution topographic mapping.

The airborne laser scanning is suitable for the study over a large area with

one-time flying data acquisition. A common use of airborne laser scanning is to

generate a high resolution DTM from the highly-accurate raw point cloud data.

Although potential information loss during the data interpolation, the accuracy

of generated DTM can be bettered by technical improvements in collected points

density, and in several sophisticated interpolation routines.

The derived high resolution LiDAR DTM and its derivatives (hillshade, slope,
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curvature etc.) are widely used in characterizing terrain features and landforms,

useful for landslide identification and mapping, thanks to its provided details

and accuracies [Corsini et al., 2009; Haugerud et al., 2003; Schulz]. Also, to-

pography information extracted from LiDAR DTM enables a characterization of

landslide features which is not able to be detected by aerial-photos due to the

forest canopy [Haugerud et al., 2003]. Some successful case studies have been

reported in landslide identification and mapping applications of airborne laser

scanning [Ardizzone et al., 2007; Baum et al., 2005; Eeckhaut et al., 2007; Schulz,

2007]. Besides, several studies have indicated the potential use of LiDAR DTM

in landslide volume estimation [Chen et al., 2006; Corsini et al., 2009; Derron

et al., 2005; Scheidl et al., 2008].

Some particular studies include the effort of McKean and Roering [2004], who

attempted to identify landslides using surface roughness measurement, perform-

ing the Laplacian operation on a LiDAR DTM. Also, Glenn et al. [2006] have

extracted surface roughness, semivariance and fractal dimension directly from

raw point data for the purpose of keeping original quality and subsequently uti-

lize these morphometry parameters in landslide characterization (e.g. activities,

motion, material and topography). Besides, Booth et al. [2009] have developed

an innovative approach to automatically map landslides using signal process-

ing techniques of Fourier transform on LiDAR DTM. Moreover, Trevisani et al.

[2009] have performed geostatistical techniques, employing variograms maps as

spatial continuity indexes on LiDAR DTM, in order to characterize the surface

morphology. Additionally, Corsini et al. [2009] have rendered a quantification of

mass wasting from a sequential DTMs generated from multi-temporal scanning

acquisitions.
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Figure 2.4: An example of monitoring annual surface displacement through tem-
poral laser scanning at the cirque Hinteres Langtal, Austria as illustrated by
Avian et al. [2009]
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Apart from airborne LiDAR, the terrestrial laser scanning is also helpful to

landslide studies, with the increasing portability and design of the scanning in-

strument. The prevalent approach is to estimate landslide displacement, observ-

ing morphological changes and understanding the failure mechanism from point

data [Abellan et al., 2009; Oppikofer et al., 2009; Teza et al., 2007, 2008] and in-

terpolated surface [Avian et al., 2009; Baldo et al., 2009; Prokop and Panholzer,

2009]. Another important note, since the terrestrial laser scanning is relatively

easier to be regularly arranged and scanned, it can be used as an alternative

approach for the monitoring of landslide morphologic and volumetric evolution

[Avian et al., 2009; Jones, 2006; Oppikofer et al., 2009; Prokop and Panholzer,

2009; Rowlands et al., 2003; van Westen et al., 2008]. An example of Avian et al.

[2009] for monitoring mass movement by temporal acquisitions is illustrated in

Figure 2.4.

In particular, Teza et al. [2007] have introduced an automatic approach to

measure landslide displacement using iterative shape matching from multi-temporal

point clouds. After, combined with a strain field computation, Teza et al. [2008]

enables a characterization of the kinematics of ground surface for mass move-

ments, aiming at a detailed analysis of landslide behaviour. Furthermore, Prokop

and Panholzer [2009] showed that terrestrial laser scanning is useful for monitor-

ing slow-moving landslides with displacement rate changes < 50mm.

Besides, the terrestrial laser scanning is well used in monitoring rockfall haz-

ards, which enables a detection of displacement with millimeter accuracy from

sequential raw data. Also, using the software of Coltop3D [Jaboyedoff et al.,

2007], it is able to extract detailed structural features with the point clouds ac-

quired from the upper part of cliffs for rockslide characterization [Oppikofer et al.,
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2009], similar to Sturzenegger and Stead [2009], who presented an effort to quan-

tify discontinuity orientation and persistence on rock slopes. Additionally, Lato

et al. [2009] utilized a mobile scanning system at a speed up to 100km/h to en-

sure a constant monitoring of rockfall movement from geomechanical structural

feature identification and kinematic analysis.

2.5 Conclusion

This chapter renders an overview of the contributions of remote sensing to land-

slide researches from the past published works, particularly regarding those works

of aerial-photos, optical satellite sensors, SAR interferometry and laser scanning.

These remote sensing techniques show their usefulness in different stages of land-

slide studies, such as landslide mapping, detection, monitoring ,investigation and

so on.

The visual interpretation of aerial-photos is conventional but still effective,

owing to its capability of 3D interpretation and high spatial resolution. In terms

of satellite remote sensing within optical electromagnetic, their utilities for land-

slide studies are strongly limited by traditional sensors with low spatial resolution.

However, the new generation of VHR imageries show their potential in accurate

landslide mapping and following hazard assessment. The InSAR techniques, in-

cluding both satellite sensors and ground-based instruments, have strong ability

in detecting and monitoring ground mass movements, especially those displace-

ments within millimeter precision which can hardly be detected by aerial-photos

and optical images. In addition, laser scanning from both airborne and terres-

trial acquisitions have demonstrated the capability in capturing high resolution
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topographic parameters, enabling a detailed feature characterization for landslide

identification, mapping and monitoring.

The development of remote sensing techniques is always rapid. New tech-

niques and data are often developed and become available in very short time.

The continuous focus and discovery over newly-updated approaches is necessary

for different researches using remote sensing techniques. This is also what the

following chapters will mainly focus: the novelty brought by new technique of

remote sensing in landslide applications.
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Chapter 3

Object-Oriented Analysis (OOA)

for mapping of rapid-moving

landslides

A complete multi-temporal landslide inventory, ideally updated after each major

event, is essential for quantitative landslide hazard assessment. However, tradi-

tional mapping methods, which rely on manual interpretation of aerial-photos

and intensive field surveys, are time-consuming and accordingly not efficient for

the generation of such event-based inventories. In this chapter, a semi-automatic

approach based on object-oriented change detection for landslide mapping, and

using very high resolution (VHR) optical images, is introduced. The approach

was specifically developed for a mapping of rapid-moving (velocity > 1.8m/hour,

according the scale of [Cruden and Varnes, 1996]) shallow landslides and debris

flows. The usefulness of this methodology is demonstrated on the Messina land-

slide event in southern Italy that occurred on 1 October 2009. The algorithm
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was first developed in a training area of Altolia, and subsequently tested without

modifications in an independent area of Itala. 198 newly-triggered landslides an

debris flows were correctly detected, with user accuracies of 81.8% for the number

of landslides, and 75.9% for the spatial extent of landslides. The principal novelty

of this work is (1) a fully automatic problem-specified multi-scale optimization

for image segmentation, and (2) a multi-temporal analysis at object level with

several systemized spectral and textural measurements.

This chapter is organized in eight sections. The first section gives the back-

ground of object-oriented analysis (OOA), including a comparison of traditional

pixel-based analysis and novel OOA approach. The second section is to define the

research gap and propose the major research questions. It reviews the application

of OOA in landslide studies and then defines the main purpose of this study. The

third section proceeds with the case study area. The fourth section renders an

overview over the flowchart and the datasets used. The fifth section introduces

a new approach of image segmentation systemized with multi-scale optimization.

The sixth section is going through the classification of landslide objects, including

the preliminary selection of landslide candidate objects and the following removal

of false positives. The seventh section shows the result of this object-oriented ap-

proach with subsequent accuracy assessment. The final section summarizes the

whole chapter regarding the application of OOA in landslide mapping.

3.1 What is OOA?

OOA is mainly dealing with the measuring unit of ‘object’. The term ‘object’

inside OOA can be defined as ‘individually resolvable entities located within a
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Figure 3.1: The concept of OOA illustrated in GeoEye-1 VHR imagery over a
landslide near Pistoia, Italy. (a) The landslide is analyzed at the pixel level. (b)
The landslide is rendered at the object level.

digital image which are perceptually generated from high-resolution pixel groups’

[Hay and Niemann, 1994; Hay et al., 1997, 2001, 2003]. In detail, OOA initi-

ates with a image segmentation approach that spatially divides the digital image

(including remote sensing imagery) into several homogeneous segments which

contain high spectral autocorrelation, so as to form these ‘objects’, and the fol-

lowing analysis can be then performed on the unit of these segmented objects

instead of original pixels [Benz et al., 2004; Hay et al., 2003]. Figure 3.1 renders

an example of analyzing a landslide at both pixel (figure 3.1(a)) and object levels

(figure 3.1(b)), for a landslide occurred near Pistoia in Italy from a VHR imagery

of GeoEye-1.
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3.1.1 What’s wrong with pixels?

In general, the traditional approach of analyzing optical remote sensed imagery,

which has been prevalently used for the pasting 30 years, is based on pixels

of multi-spectral bands. However, this pixel-based approach sometimes shows

its limitations in the image analysis, not only due to those traditional prob-

lems related to geometry, pixel mixture, point spread functions and resampling

[Cracknell, 1998], but also the weakness in describing the complex targets which

seem to exist ‘beyond pixels’. Especially for the latter, those weaknesses can be

elaborately summarized as follows.

Firstly, the pixel-based approach, including both per-pixel and sub-pixel anal-

ysis, chiefly shows its usefulness when pixels sizes are similar to or coarser than

the targeted objects of interest [Blaschke, 2010]. However, with the increasing

development and availability of VHR images, which bring huge improvement in

spatial resolution (e.g. Worldview-1: 0.44m panchromatic; GeoEye-1: 0.41m

panchromatic) and wide applications in different study purposes, the only focus

on pixels is possibly not sufficient because a targeted object can be represented by

a large number of pixels. These pixels need to be further grouped into, so-called

‘objects’, for a more systematic and accurate characterization. Also, it should

be noticed that pixel-based analysis on VHR imagery introduces the potential

disturbance of noises and artefact, such as those ‘salt-and-pepper’ effects.

Secondly, pixel-based image analysis is exclusively employing the approach

with statistical analysis of pixels based on their spectral responses, however with-

out a consideration of contextual properties of these pixels [Benz et al., 2004;

Flanders et al., 2003]. This leads to the difficulty in calculating some features of
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targeted objects, such as those textual behaviors, which can hardly be extracted

without a definition of object context. Also, pixel-based approach fails to render

the shape and the spatial relationship between neighboring pixels or distant im-

age regions, especially for high resolution imagery, whose neighboring pixels are

possibly having the same spectral behavior if only considering the classification

of multi-spectral bands [Blaschke, 2003].

Thirdly, as indicated by Hay et al. [2003], scale is the critical part of image

understanding for pattern recognition, and it can be described as a ‘window of

perception’. However, the traditional approaches of analyzing remote sensing im-

ages based on pixels fail to explicit the scaling laws which define a scale to and

from an image, the number of classes to be dealt with, and the suitable upscaling

approach to employ [Hay et al., 2001]. That is, the pixel-based approach only

has the ability to analyze image with one scale. Therefore, it is difficult describe

different characteristics of each targeted object, since these characteristics appear

diversely with different visualizing and analyzing scales. Moreover, it is trouble-

some for pixel-based approach to analyze different objects with different scales,

considering that these objects usually have their own inherent scale and are not

necessarily remaining as same [Burnett and Blaschke, 2003]. These problems

limit the understanding of image at different scale levels and multiple hierarchies

in simultaneous time.

In sum, the only focus of image analysis on pixels cannot adequately provide

the reliable pixel unit, and cannot represent potential spatial, contextual and

multi-scale environment for a specified analysis. This brings the request for a

more advanced approach possibly processed ‘beyond pixels’, which is the essence

of OOA approach to be introduced in this chapter.
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3.1.2 The advantages of OOA

Compared to the traditional pixel-based analysis, OOA nevertheless represents a

more advanced image analysis approach, gaining benefits from several advantages

listed in the following:

• OOA represents a more advantageous approach for analyzing VHR remote

sensing data because image pixels can be meaningfully grouped into net-

worked homogeneous objects, and noise can be consequently reduced [Benz

et al., 2004; Blaschke, 2010].

• OOA is not only focusing on the spectral statistics of pixels, but instead

an inclusion of neighboring and surrounding pixels, thus allowing a further

contextual analysis such as textural, spatial and shape measurement.

• OOA provides a multi-scale hierarchical approach which is closer to real-

world entities and is more fitting to human vision and perception. This is

also in accordance with the prerequisite of a knowledge-based analysis.

• OOA enables a powerful but low-cost computation [Hay et al., 2005]. In

particular, in many applications OOA shows the potential in automatic and

semi-automatic image analysis for targeted objects extraction (e.g. al Khu-

dairy et al. [2005]; Castilla et al. [2008]; Diaz-Varela et al. [2008]; Ehlers

et al. [2003, 2006]; Lackner and Conway [2008]; Pascual et al. [2008]; Weinke

et al. [2008]; Zhang et al. [2005]).

It should also be noted that, although the existence of several OOA-based

analyzing softwares, in recent years primary OOA studies for remote sensing
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imagery, including the following work described in this chapter, have been carried

out using the software of Definiens eCognition [Definiens, 2010].

3.2 Problem definition

As already indicated in Chapter 2, traditionally, landslide mapping has relied on

visual interpretation of aerial-photos and intensive field surveys. However, for

mapping of large areas those methods are too subjective, time-consuming and

not always easy to be carried out, creating a gap that remote sensing has been

increasingly filling. Due to restrictions in spatial resolution, traditional optical

satellite imagery, such as acquired by Landsat TM, has limited utility for landslide

studies [Hervas et al., 2003]. More recently, high resolution images and LiDAR

derivatives have started to offer an alternative way for effective landslide mapping.

However, most researches of landslide mapping using above-mentioned remote

sensing data and imagery, have been focusing on pixel-based analysis. For exam-

ple, Borghuis et al. [2007] have employed unsupervised image classification in au-

tomated landslide mapping using SPOT-5 imagery. Besides, McKean and Roer-

ing [2004] also successfully delineated landslide features using statistical measures

of surface roughness from LiDAR DTM. Moreover, Booth et al. [2009] detected

and mapped 82% of landslides in the inventory using Fourier and continuous

wavelet transformation on 1m LiDAR DTM. With increasing spatial resolution,

however, pixel-based methods have fundamental limitations in addressing par-

ticular landslide characteristics due to finite spatial extent. Only those object

characteristics allow landslides to be further assigned to different type classes,

and other features of similar appearance to be discarded. Such methods focusing
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on features instead of pixels are the basis of object-oriented analysis (OOA).

OOA, the approach employing initial image segmentation and subsequent

analysis and classification of the image objects, on the other hand, offers a more

reliable way to analyze high resolution remote sensed data, considering that im-

age pixels are spectrally merged to systemized objects with a removal of ‘salt-

and-pepper’ noises [Benz et al., 2004; Blaschke, 2010]. Moreover, OOA offers a

potentially automated approach for landslide mapping, with a consideration of

spectral, morphological and contextual landslide features supported by expert

knowledge [Martha et al., 2010], thus allowing a cognitive approach compara-

ble to visual image analysis. Nonetheless, so far few studies have focused on

OOA-based landslide mapping. Preliminary efforts by Barlow et al. [2003] and

Martin and Franklin [2005] focused on automatic landslide detection using low

resolution Landsat ETM+ images. The methodology was further improved by

Barlow et al. [2006] through the use of higher resolution SPOT-5 data, as well

as an inclusion of more robust geomorphic variables. Also, Moine et al. [2009]

have proposed a complex set of spectral, shape and textural features for auto-

matic landslide characterization from aerial and satellite images. Additionally,

Martha et al. [2010] developed an algorithm which integrates spectral, spatial

and morphometric properties of landslides, and successfully recognize 76.4% and

classify 69.1% of five different types of landslides in difficult terrain in the High

Himalayas. These studies show the increasing utility and potential of OOA in

detecting and mapping landslides automatically and rapidly. However, all of the

proposed approaches tend to fail in situations where both fresh and older land-

slides are present and prevent an accurate event-related landslide inventory.

A potential solution could be the integration of pre-event image data. Change
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detection from satellite imagery before and after a landslide event has already

been proven useful for identification of newly-triggered landslides at a pixel-based

level. Most frequently change detection has been based on image ratios and image

differencing with a defined threshold [Hervas et al., 2003]. Additionally, image

subtraction and post-classification comparison have been attempted. For exam-

ple, Nichol and Wong [2005] have reported that a post-classification comparison

using a maximum likelihood classifier produced a detection rate of 70%. Park

and Chi [2008] have introduced the concept of change detection into OOA, using

VHR images before and after landslide occurrence. However, their identification

of changes was exclusively based on subtractive image differencing, i.e. a direct

comparison of average spectral measurements from pre- and post-event images.

Their aim is only to recognize change/non-change objects, without further efforts

to remove those potential false positives from ’change’ objects. The approach

is apparently only suited for situations where all major changes are induced by

landslides and all landslides occurred in forested terrain.

Therefore, the purpose of this work is to introduce a new approach for a rapid

mapping of newly-triggered landslides using an objected-oriented change detec-

tion technique. The methodology aims at a semi-automatic and rapid analysis

with a minimum of operator involvement and manual analysis steps. Compared

to conventional approaches for landslide mapping, this approach benefits from

(1) an image segmentation with problem-specified scale optimization, and (2)

a multi-temporal analysis at object level with several systemized spectral and

textural metrics.
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Figure 3.2: The location of the case study area, including a training area of
Altolia and a testing area of Itala.

3.3 Study area

The application of this OOA approach for landslide mapping is demonstrated

from a case study in the Messina province of Sicily, southern Italy of Sicily Region

(figure 3.2).
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3.3.1 Geographical, geological and geomorphological

settings

The Province of Messina is located in the northeastern Sicily Region, with a

total territory area of 3247 km2. The capital of the province is the Messina city.

The Messina province is divided by the Peloritani Mountains into two parts: the

Tyrrhenian part in the north and the Ionian part in the east, with respectively

150 km and 68 km coastline. Along each of the coastline, several catchment areas

were formed, with the channeled streams flowing into the Tyrrhenian and Ionian

seas.

The detailed descriptions of geological settings for this area can be primarily

found from several previous literatures and studies [Antonioli et al., 2006; Lentini

et al., 1995; Monaco and Tortorici, 2000; Punturo et al., 2005; Somma et al.,

2005], and summarized in the report of Italian civil protection [Civil-Protection,

2009] in the following: the Province of Messina is belonging to the mountain

system of Peloritani which created the southern tip of the Calabrian-Peloritano

Arch. The mountain systems was developed from the converging and collision

processes between the African and European plates which determined in the

course of time a complex structure of overlapping beds and tectonic flakes. The

area is accompanied with land outcrops which were formed by the deformation of

the original European edge due to continental crust consisting of crystalline rock.

These sediments over the crystalline basement, which started from the quaternary

floods to intramiocenic pelitic and conglomeratic sediment, were sedimented in

land surfacing areas of clay and sand. Marine and fluvial Terraces can be largely

found in the Peloritani Mountains, (Pleistocene superior) indicating the final
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phase of the typical orogeny of this area. The deposits were chiefly formulated by

gravel, sand, lime or possibly only abrasion plains [Antonioli et al., 2006; Civil-

Protection, 2009; Lentini et al., 1995; Monaco and Tortorici, 2000; Punturo et al.,

2005; Somma et al., 2005].

The geomorphological condition of the area is in poorly-developed state: a

very intensive erosion activities especially strong during significant and long last-

ing hydrometric events when the degradation of the soil is changed in its diverse

aspects by the pervasive rain water. The extraordinary rainfall fall in short time

periods and under special hydro-geological circumstances often brings about a

natural vulnerability to trigger potential disaster, such as landslides and floods

[Civil-Protection, 2009].

3.3.2 The landslide event

The landslide event of Messina was triggered by heavy rainfalls during the pe-

riod 16 September to 1 October 2009 (figure 3.3). On 16, 23 and 24 September

2009, the northeastern Sicily was continuously hit by heavy rainfalls, resulting

in a saturation of terrain. During the night of 1 October 2009, a strong storm

accompanied with even more intensive prolonged rainfall, ca. 223 mm in 7 hours,

again affected several catchments south of Messina city along the Ionian side,

including several municipalities of south Messina, Scaletta Zanclea, Itala and Ali

Terme. Numerous landslides were consequently triggered as a result of steep

slopes with saturated state of the soil, with most of them as rapid shallow land-

slides and debris flows (figure 3.4). These landslides were sliding and flowing

into the populated inhabited areas, and 31 people were reported dead, with ad-
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Figure 3.3: For the landslide event of Messina on 1 October 2009, accumulation
of precipitation were recorded by four different weather stations nearby before
and after the event. [Civil-Protection, 2009]

ditional 6 people missing. Besides, 122 people were injured and 2019 people

were evacuated emergently. The event has caused huge damages to buildings and

other infrastructures (figure 3.5). A total of 550,000,000 euros of direct damages

were estimated with additional estimated 48,936,978 euros for operational costs

[Civil-Protection, 2009].

The event caused severe damages to several towns, which were isolated due to

the destruction of roads and railways. Two of the most damaged areas were stud-

ied, including a training area of Altolia (ca. 1.8 km2) for algorithm development,

and a larger independent testing area of Itala (ca. 8.1 km2, see detailed locations

in 3.2). The latter allows the robustness and transferability of the algorithm

(without any change of ruleset and threshold) and the corresponding accuracy to

be assessed by comparison with a manually mapped landslide inventory prepared
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Figure 3.4: A view of numerous triggered landslides in the town of Giampilieri.
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Figure 3.5: A view of the damages to the buildings caused by landslides.

from field works and subsequent modifications from image interpretation.

3.4 Flowchart and dataset

3.4.1 General flowchart

The adopted methodology for landslide mapping includes two parts: (1) image

segmentation with multi-scale optimization, and (2) classification of landslide

objects. The general methodology is shown in figure 3.6.
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Figure 3.6: General flowchart of landslide mapping by OOA change detection.
RXD: Reed-Xiaoli Detector; SAM: Spectral Angle Mapper; PC: Principal Com-
ponent; GLCM: grey level co-occurrence matrix.

3.4.2 Dataset

Two QuickBird images were used in the study, acquired on 6 September 2006

and 8 October 2009, with respectively 0.3% and zero cloud cover (figure 3.7).

For each image, only four multispectral bands (Blue: 450-520 nm, Green: 520-

600 nm, Red: 630-690 nm, NIR: 760-900 nm) with the spatial resolution of 2.4 m

were used. The panchromatic band (450-900 nm) was not used for pansharpening

because of a reduction of computation time in ruleset development and testing.

Also, the 2.4m spatial resolution of multi-spectral band is sufficient for landslide

mapping given the dimension of these newly-triggered landslides. Additionally, a
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Figure 3.7: The used Quickbird imageries: (a) pre-event QuickBird imagery, (b)
post-event QuickBird imagery (false color 4-3-2)
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1m DTM was created from airborne LiDAR data acquired during 6 to 19 October

2009, shortly after the event, with a maximum point density of 8 points/m2

(vertical and horizontal accuracy: 15cm and 40cm, 1-σ). The spectral analysis

was performed with ENVI 4.7 software. The OOA and textural analysis were

implemented in Definiens eCognition Developer 8.

3.5 Image segmentation with scale optimization

Image segmentation defines the building blocks for object-oriented image analysis

and, to ease further analysis, should aim at meaningful delineation of targeted

real-world objects. However, considering the complex characteristics of each sin-

gle landslide, including land cover variance, illumination difference, diversity of

spectral behavior and size variability, it is difficult to delineate each individual

landslide as a single object [Martha et al., 2010]. Notwithstanding this diffi-

culty, over- and under-segmentation can be reduced by means of a multi-scale

optimization approach.

The multi-resolution segmentation based on Fractal Net Evolution Approach

(FNEA) described by Baatz and Schaepe [2000] and implemented in Definiens

eCognition software [Benz et al., 2004; Definiens, 2010], is employed for the ini-

tial segmentation, parameterized according to the specific needs of event-based

rapid mapping of landslides, and incorporated in a multi-scale optimization rou-

tine. The FNEA approach requires the user to define weights for input layers

(bands), as well as appropriate heterogeneity criteria. The targeted landslides

are present in the post-event image, and consequently only the second QuickBird

scene was used as an input for segmentation. The main change observed results
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from removal of vegetation, and consequently a high ratio between the red and

the near-infrared (NIR) bands is a typical feature of newly triggered landslides

[Rau et al., 2007]. These bands are also least affected by atmospheric effects and

were assigned with equal weights for the segmentation procedure.

FNEA is a region-growing segmentation algorithm, starting from individual

pixels and merging the most similar adjacent regions as long as the internal

heterogeneity of the resulting object does not exceed the user defined threshold

scale parameter f . The scale parameter f is calculated as:

f = (1 − ws) ∗ Hcolor + ws ∗ Hshape (3.1)

and it comprises color heterogeneity Hcolor and shape heterogeneity Hshape with

user-defined weight of shape ws. Hcolor is defined as:

Hcolor =
N∑

i=1

wi ∗ σi (3.2)

where N is the number of input layer for segmentation, w and σ are respectively

weight and standard deviation of input layer i.

Due to great variety of landslide shape, Hshape is excluded from the segmen-

tation procedure by setting it to 0. Thus, 3.1 becomes

f = Hcolor =
N∑

i=1

wi ∗ σi (3.3)

Since each input band in this study was treated as the same weight wc, the scale
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Figure 3.8: A sketch of the Fractal Net Evolution Approach (FNEA) approach
for image segmentation. Each object employs the homogeneity algorithm to find
the best neighbor (red) to continue the merging branch. The merging algorithm
repeats until each branch finds the best merging object (blue) fitting the scale
parameter f .

parameter is consequently defined as

f =
∑

c

wc(nmrg ∗ σc,mrg) − (no1 ∗ σc,o1 + no2 ∗ σc,o2) (3.4)

While n corresponding to the number of pixels within an object, and σc to the

standard deviation of pixel values within the band c. The subscripts indicate

objects prior to merge (o1 and o2) and the respective resulting object after merging

(mrg). The flowchart of FNEA can be simply sketched in figure 3.8.

FNEA is computationally efficient, enables an analysis among various user-

defined scales and has been used successfully in various remote sensing studies.

Nevertheless, the need to define the operational scale of the process under inves-
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Figure 3.9: A sketch of the fully automatic approach for image segmentation with
multi-scale optimization.
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tigation and the corresponding scale parameter a priori or in a time consuming

‘trial and error’ procedure has been identified as one of its major limitations [Hay

et al., 2003]. Statistical optimization methods (e.g. Dragut et al. [2009]; Espin-

dola et al. [2006]) have been shown to allow the choice of the scale parameter to

be made more objective if the targeted elements exhibit one operational scale.

However, slope failures feature several orders of magnitudes in volume and area

(e.g. Malamud et al. [2004]) which prohibits the definition of one single scale

parameter. [Martha et al., in review] developed a modified version of Espindola’s

approach, by calculating a plateau objective function that has several scale pa-

rameter maxima to simplify segmentation parametrization and obtain a suitable

multi-scale representation of satellite imagery. Additionally, Esch et al. [2008]

proposed a multi-level segmentation optimization procedure (SOP). A modified

version of this approach is used in this study (see the sketch in figure 6.2).

In an initial step the image is segmented with the above-mentioned settings

and two hierarchical scales (f1=5, f2=10). The mean Percentage Difference

(mPD) between sub-object level (L1) and super-object level (L2) is calculated

as

mPD =
vL1 − vL2

vL2

(3.5)

where v is the ratio of the intensities in the NIR and red band of the respective

sub- and super-object. Each sub-object whose mPD exceeds the mean mPD of

all sub-objects by more than 2σ is consequently classified as a real sub-object and

transferred to the super-object level:
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Figure 3.10: Detailed view of the image segmentation at: (a) a fixed scale of 30,
(b) a specified scale of 200, (c) a described multi-scale optimization.
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realobject =

⎧⎪⎨
⎪⎩

1,mPD > 2σmPD

0, else
(3.6)

In this sense 2σmPD replaces the user defined thresholds introduced by Esch

et al. [2008]. In a next step the similarity of transferred adjacent sub-objects

(ob1 and ob2) is evaluated by their intensities difference in the NIR and red band.

Similar objects are merged according to the following condition:

simob1,ob2 =

⎧⎪⎨
⎪⎩

1, (0.5 ∗ |REDob1 − REDob2| + 0.5 ∗ |NIRob1 − NIRob2|) < 10

0, else

(3.7)

The procedure is repeated for a total of 11 scales (15, 20, 30, 50, 70, 100, 150,

200, 300, 500, 700), where in each step the result of the previous cycle becomes

the sub-object level, and according to the next larger scale factor a number of

objects are merged to create a super-object level above. With each iteration

further objects exceeding the initially derived 2σmPD are transferred to the next

level. The complete procedure aims to provide a segmentation that represents

sufficiently distinct objects independent of their particular scale.

Figure 3.10(c) shows the segmentation result of the multi-scale optimization

on the post-event imagery (figure 3.7(b)). Compared to the original FNEA

with only one segmentation scale (figure 3.10(a,b)), image segmentation using

multi-scale optimization (figure 3.10(c)), although still facing some difficulties

to delineate every individual landslide, decreases the degree of over- and under-

segmentation and is able to capture better landslides as image objects among a
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number of different scales. Furthermore, the optimization runs fully automati-

cally and liberates the user from a time-consuming trial and error evaluation of

the optimal parameterizations for the image segmentation.

3.6 Classification of landslide objects

Landslide classification in previous studies has become increasingly complex.

While initial works were largely restricted to digital number (DN) values of

multi-spectral bands, later indices such as Normalized Difference Vegetation In-

dex (NDVI), different texture measures, DEM derivatives, and externally pre-

pared vector layers (e.g. of flow accumulation and stream networks) or shadow

masks were employed [Martha et al., 2010]. The landslide detection approach pre-

sented here makes use of additional spectral and textural measurements: change

detection using temporal Principal Component Analysis (PCA), image matching

through Spectral Angle Mapper (SAM), anomaly detection by Reed-Xiaoli detec-

tor (RXD), and textural analysis with grey level co-occurrence matrix (GLCM).

The derivatives of PCA, SAM and RXD are calculated as separate layers and

incorporated in OOA as features of each object that were derived during the

hierarchical segmentation.

Both the QuickBird imageries were orthorectified by calculating a rational

polynomial coefficients (RPC) model as described in Grodecki and Dial [2003],

with the elevation information from 1m LiDAR DTM whose resolution is finer

than multi-spectral bands of QuickBird, thus allowing an enhancement of the

accuracy of RPC orthorectification process. A further image co-registration was

performed using polynomial cubic convolution interpolation [Richards, 1999], by
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Figure 3.11: An overview of the PCA transformation result from pre- and post-
event QuickBird images: (a)–(h) the 1st to 8th components derived from PCA.

50



Figure 3.12: The eigenvalues of PCA for 8 bands from pre- and post-event Quick-
Bird imageries

automatically selecting 60 tie points within the ENVI 4.7 software environment,

with a RMS error of 0.45.

The change detection was first carried out using temporal PCA (figure 3.11),

an image transformation of stacked pre- and post-event images based on eigen-

vector analysis of their image covariance matrix (figure 3.12), so as to extract

principal components meanwhile segregate noise components [Deng et al., 2008;

Richards and Jia, 2006; Singh, 1989]. Temporal PCA works by creating new

orthogonal axes which rotate the original data by a maximized data variance.

In this case, it combined all 8 bands of the pre- and post-event QuickBird im-

ages (namely 4 bands each), and transformed these bands into uncorrelated 8

components using:

Yi = eT
i (Xi − μi) (3.8)

where μ is the mean value of all pixel values in band i, ei is the eigenvector of

the data covariance matrix C defined as:
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Figure 3.13: The fourth principal component derived from PCA of 8 pre- and
post-event QuickBird bands

C =
1

N

∑
i

(Xi − μi)(Xi − μi)
T (3.9)

N is the number of pixels of band i.

Two transformed image components, the fourth (figure 3.13) and the second

(figure 3.14) principal components (respectively referred as PC4 and PC2), were

incorporated as separate layers in the Definiens eCognition procedure. As was

mentioned by Deng et al. [2008] most changes detected by temporal PCA are

contained in the first four components, and in this case these changes of newly-

triggered landslides are primarily recognized in PC4. The minor components
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Figure 3.14: The second principal component derived from PCA of 8 pre- and
post-event QuickBird bands

beyond PC4 are mainly composed of residuals of the transformation, in most

cases as noises due to less variance. In the training area, landslide candidates

were preliminarily chosen from PC4 using a membership function calculated from

10 selected samples of landslide objects (Figure 3.15). This membership function

is then incorporated in the algorithm of classification and later employed without

modification in the testing area. PC2 was also found useful for removing false

positives of roads, infrastructures, deforestation areas and the water, most of

which are contained in objects with low values of PC2, with a defined threshold

of PC2 < -300.

Since shadows were also recorded as changes in PCA, a spectral matching
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Figure 3.15: The training area of Altolia: (top) The 10 selected samples (yellow),
(bottom) the generated membership function from these 10 samples

image (figure 3.16) between the pre- and post-event images was created using

SAM [Dennison et al., 2004; Kruse et al., 1993; Sohn and Rebello, 2002] and then

imported in OOA. The purpose of SAM is to remove the influence of these subtle

spectral changes due to illumination differences and viewing angle variation. The

matching image derived from SAM estimates spectral similarity by comparing
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Figure 3.16: The matching image generated from spectral angle mapper using
two pre- and post-event QuickBird images

spectral angle difference in terms of image space between the pre- and post-event

QuickBird images. For both images each pixel is represented by a spectrum

identified as a 4-dimensional vector with specified length and direction. The

spectral angle θ was therefore calculated as:

θ = cos−1

⎡
⎢⎢⎢⎣

4∑
i=1

aibi

(
4∑

i=1

ai
2

) 1
2
(

4∑
i=1

bi
2

) 1
2

⎤
⎥⎥⎥⎦ . (3.10)

while ai and bi are respectively the spectra of the pre- and post-event images. As

SAM only considers the angle between the spectral vectors but not the vector

55



Figure 3.17: The result image of RXD anomaly detection performed on pre-event
QuickBird images

length, it is less sensitive to changes due to illumination and shadowing [Kruse

et al., 1993]. Excluding objects with low SAM values (SAM < 0.09) allows a

removal of spectral false positives that result from subtle spectral changes in

illumination as well as shadow, which are not always excluded from the change

component of PCA.

In addition, in order to remove false positives such as urban areas as well as

existing outcrops and clear-cuts, the RXD anomaly detector [Chang and Chi-

ang, 2002; Reed and Yu, 1990] was used to estimate spectral anomalies based on

the pre-event image, allowing the statistical removal of spectral noises. Assum-

ing that urban areas, deforestation, roads and other infrastructure demonstrate
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spectral signatures significantly different from the background, RXD can be used

to highlight those areas. In this study RXD is applied on the pre-event imagery

to detect spectral anomalies that existed already before the event, which are

consequently excluded as newly-triggered landslides. The anomaly detector

δRXD(r) = (r − μ)T K−1(r − μ) (3.11)

was used in RXD, where r is 4x1 vector for 4-band pre-event QuickBird image,

μ is 4x1 global mean vector, and K is 4x4 sample covariance matrix. A created

anomaly image (figure 3.17) was then derived and employed as an additional

layer in Definiens eCognition. Objects with large RXD values were considered as

spectral anomalies and a threshold of δRXD(r) > 16 was defined to exclude these

anomalous false positives.

Following the spectral processing that identified landslide candidate objects,

a texture analysis of a 1m LiDAR DTM was performed after merging those can-

didates. Limited attempts have been made to use texture analysis of airborne

and satellite imagery for the identification of landslides (e.g. Mason et al. [1998];

Whitworth et al. [2005]). These studies applied texture measures to quantify

image roughness and thereby highlight hummocky landform with turbulent tex-

ture. The texture analysis here was performed on elevation data for the purpose

of analyzing topographic variability, using second-order statistics of the widely-

applied GLCM [Haralick et al., 1973]. The objective is to remove false positives

with low-frequency elevation variation, such as undisturbed or unfractured areas,

homogenous flat surfaces, and objects with low height variation (e.g. roads and

water bodies). Haralick et al. [1973] have introduced 14 texture features calcu-
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Figure 3.18: The false positives mapped by texture analysis of grey level co-
occurrence matrix (GLCM) mean (in green)

lated from GLCM. In our study, since no local contrast and variation inside each

object is focused, only the GLCM mean m is used, determined by:

m =
N−1∑
i,j=0

i(Pi,j) × 100 (3.12)

where i and j are respectively the row and column of GLCM of DEM, Pi,j is

the normalized value of cell (i,j) in GLCM of DEM. Texture features calculated

from GLCM mean were used in our study. Neighboring pixels in all directions

(0◦, 45◦, 90◦, 135◦) were considered for the GLCM generation, accounting for the

potential different aspects of landslide objects. Objects with low GLCM mean
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values were considered to be false positives, and a threshold of GLCM mean <

126.7 was defined (figure 3.18). The remaining landslide candidates were then

classified as final output of newly-triggered landslides.

Figure 3.19: The segmentation using scale optimization in the training area of
Itala.
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Figure 3.20: The classification result from OOA spectral analysis in the training
area of Itala.

3.7 Result and accuracy assessment

The algorithm developed based on the training area of Altolia was directly ap-

plied in the testing area of Itala, without any changes in membership function

values and previous defined thresholds in the ruleset. The segmentation result

of the training area is shown in figure 3.19. The classification result of landslide

candidate objects and false positives from spectral analysis in the training area

is displayed in figure 3.20. The outcome of a further textural analysis outcome

is demonstrated in figure 3.21. The final outputs for the testing area are shown

in figure 3.22. To evaluate the accuracy of this approach, OOA-derived land-
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Figure 3.21: The classification result from OOA textural analysis in the training
area of Itala.

slides were compared with a manually-mapped landslide inventory. The accuracy

assessment was carried out for the number and the spatial extent of mapped

landslides (table 3.1), both of which are considered critical in a subsequent quan-

titative landslide hazard assessment and prospective risk analysis. The number

of landslides is useful for a quantitative estimate of the temporal probability

of landslide occurrence, whereas the spatial extent of landslide is beneficial for

the estimate of probability of landslide size through the landslide frequency-area

statistics [Guzzetti et al., 2005a; van Westen et al., 2006].

The accuracy assessment calculates the commission and omission errors, which

are measures of the user’s and producer’s accuracies [Congalton, 1991; Story and
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Figure 3.22: The result of OOA landslide mapping in the independent testing
area of Itala

Congalton, 1986] of the mapped landslides, respectively. For the spatial extent

of landslides a user’s accuracy of 75.9% and a producer’s accuracy of 69.9% were

achieved. In terms of the number of landslides, user’s and producer’s accuracies of

81.8% and 69.5%, respectively, were reached. For both number and spatial extent

of landslides the results show a lower producer’s accuracy than user’s accuracy:

specifically, ca. 31% of all manually mapped landslides were omitted in the OOA-

based detection. This indicates an overestimation of false positives during their

classification, accompanied with an underestimation of true positives obtained

from the membership function of the selected samples. Further improvements

should include a more accurate definition of these thresholds for classifying false
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Table 3.1: Accuracy assessment for OOA mapped land-
slides.

Manual OOA TP 1 UA 2 PA 3

Number 285 242 198 81.8% 69.5%
Extent (km2) 0.602 0.555 0.421 75.9% 69.9%
1 TP: true positives
2 UA: user’s accuracy
3 PA: producer’s accuracy

positives and a more careful selection of representative samples.

3.8 Conclusion

This chapter describes a novel approach of object-oriented change detection for

rapid mapping of newly-triggered landslides after major events, using VHR satel-

lite images and LiDAR data. The approach used semi-automatic mapping with a

minimum user involvement and benefited from systemized OOA work processes.

First, a problem-specific multi-scale optimization of FNEA was proposed to re-

duce the degree of over- and under-segmentation of landslides among a number

of different scales, avoiding a time-consuming trial and error evaluation of the

optimal segmentation parameters that has characterized most OOA research in

the past. Second, change detection using image transformation of PCA was not

only found to be useful for a preliminary selection of landslide candidates from

PC4, but also enabled a removal of false positives directly from PC2. Third,

the matching image derived from SAM allowed the detection of subtle spectral

changes from the change of spectrum vector direction. Fourth, spectral anomalies

detected by RXD in the pre-event image allowed the removal of false positives,

such as landslides that already existed before the landslide event of October 2009.
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Finally, surface texture measures based on a 1m LiDAR DTM were incorporated

to remove false positives with low-frequency elevation variation.

For the case study in Messina, the approach achieved user’s and producer’s ac-

curacies of 75.9% and 69.9%, respectively, for the extent of landslides, and 81.8%

and 69.5%, respectively, for the number of landslides. Although the accuracy of

the automatic approach does not entirely match what can be achieved in manual

mapping, it provides an efficient supplement for traditional methods. The chosen

spectral object features are expected to be useful to accommodate multi-spectral

information from a great variety of different sensors. The proposed thresholds

typically need further adjustment for the application in other cases, whereas in

the presented example the visual inspection of one fifth of the study area was suf-

ficient for this purpose. Also, it should not be forgotten that considerable time

can be saved for landslide mapping because the manual drawing of landslides

boundaries is replaced by image segmentation. Hence, for an effective landslide

hazard assessment, the approach provides an efficient tool to retrieve lacking tem-

poral data for an event-based landslide inventory, thus allowing the assessment of

temporal probability and magnitude of landslide events for a quantitative hazard

assessment.
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Chapter 4

PSI hotspot and clustering

analysis for detection of

slow-moving landslides

As mentioned in Chapter 2, the InSAR technique has already gained its impor-

tance in landslide mapping and monitoring applications, due to its strength in

mapping topography and estimating surface deformation [Massonnet and Feigl,

1998]. However, the usefulness of conventional differential InSAR applications

is often limited by disturbing factors such as temporal decorrelation and atmo-

spheric disturbances. The Persistent Scatterers Interferometry (PSI) technique

is a recently developed InSAR approach. It generates stable radar benchmarks

(namely persistent scatterers, PSI point targets) using a multi-interferogram anal-

ysis of SAR images. The PSI technique has the advantage of reducing temporal

decorrelation and atmospheric artefact. It is suitable for the investigation of ex-

tremely slow-moving landslides for its capability to detect ground displacements
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with millimeter precision. However, the interpretation of PSI outputs is some-

times difficult for the large number of possible persistent scatterers (PS).

In this chapter, a new approach of PSI Hotspot and Cluster Analysis (PSI-

HCA) is here introduced in order to develop a procedure for mapping landslides

efficiently and automatically. This analysis has been performed on PS in hilly

and mountainous areas within the Arno river basin (Italy). The aim is to use

PS processed from 4 years (2003-2006) of RADARSAT images for identifying

areas preferentially affected by extremely slow-moving landslides. The Getis-

Ord Gi
∗ statistic was applied in the study for the PSI-HCA approach. The

velocity of PS was used as weighting factor and the Gi
∗ index was calculated

for each single point target. The results indicate that both high positive and

low negative Gi
∗ values imply the clustering of potential mass movements. High

positive values suggest the moving direction towards the sensor along the satellite

Line-of-Sight (LOS) whereas low negative values imply the movement away from

the sensor. Furthermore, the kernel function was used to estimate PS density

based on these derived Gi
∗ values. The output is a hotspot map which highlights

active mass movements. This spatial statistic approach of PSI-HCA is considered

as an effective way to extract useful information from PS at a regional scale, thus

providing an innovative approach for rapid mapping of extremely slow-moving

landslides over large areas.
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4.1 Persistent Scatterer Interferometry

4.1.1 Introduction to the technique

SAR interferometry (InSAR), as a major branch of remote sensing, plays an im-

portant role in landslide mapping and monitoring applications, thanks to its util-

ity in detecting ground movements with millimeter precision [Corsini et al., 2006;

P.Canuti et al., 2007; Rott and Nagle, 2006; Squarzoni et al., 2003]. Also, these

applications are benefited from the advantages of InSAR which is independent of

weather conditions and is regardless of day and night. Besides, the side-looking

imaging radar ensures an improvement of pixel resolution in the viewing direc-

tion. In addition, for satellite-based radar, it has the advantages of global access,

large swath (area seen on the ground), regular repeated image acquisition, huge

data archive and low cost [Santoro, 2008]. A general sketch of InSAR can be

found in figure 4.1.

However, the conventional InSAR processing technique for ground movement

detection, which is primarily focused on the differential InSAR (DInSAR) tech-

nique [Massonnet and Feigl, 1998; Rosen et al., 2000] and based on the assumption

that surface deformation change is linear, is often affected by the temporal decor-

relation and atmospheric disturbances [Colesanti and Wasowski, 2006; Ferretti

et al., 2001; Kimura and Yamaguchi, 2000; Massonnet and Feigl, 1998]. These

disturbing factors, which produce a bias during the phase measurement and the

difficulty in fulfilling a baseline criteria, bring the need for further advanced pro-

cessing approaches of SAR images.

One possible solution is the utilization of multi-temporal SAR images for a

long-term interferogram processing, such as the technique of Persistent Scatter-

67



Figure 4.1: A general sketch of the concept of InSAR. φ refers to the interferogram
phase.

ers Interferometry (PSI) which was developed over recent years. The general

flowchart of PSI can be found in figure 4.2. Several approaches using different

statistical approaches have been developed for this technique in order to extract

long-term stable benchmarks as PSI point targets, namely persistent scatter-

ers (PS), from some multi-interferogram analysis of SAR data. For example, the

PSInSARTM technique was proposed by Ferretti et al. [2000, 2001] and improved

by Colesanti et al. [2003]. Besides, Hooper et al. [2004] presented a method to

develop a time series of deformation by using the spatially correlated nature of

ground deformation. Its measuring accuracy was further improved by Hooper

et al. [2007] whose approach is the Stanford Method for Persistent Scatterers

(StaMPS). Meanwhile, a small baseline approach known as the Coherent Pixels

Technique (CPT) was suggested by Mora et al. [2003] and Blanco-Sanchez et al.
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Figure 4.2: The general flowchart of Persistent Scatterer Interferometry process-
ing. Different statistical approaches are summarized in table 4.1
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[2008]. Moreover, an Interferometric Point Target Analysis (IPTA) was presented

by Werner et al. [2003] and Strozzi et al. [2006]. This approach has the advan-

tages of finding persistent benchmarks in low-coherence regions and allows the

use of large baselines for phase interpretation. Other recently-developed long-

term InSAR techniques include Small Baseline Subset (SBAS, Berardino et al.

[2002]; Casu et al. [2006]; Lanari et al. [2004]) and Stable Point Network (SPN,

Crosetto et al. [2008]; Duro et al. [2003]). A summary of these PSI techniques

can be found in table 4.1. Some successful cases have shown the suitability of

PSI for detecting, investigating and monitoring landslides [Bovenga et al., 2005;

Colesanti and Wasowski, 2006; Colesanti et al., 2003; Farina et al., 2003, 2006;

Ferretti et al., 2005; Hilley et al., 2004].

4.1.2 PSInSARTM technique and available dataset

The PSI point targets available in this study were processed by Tele-Rilevamento

Europa (TRE) on behalf of the Arno River Basin Authority. The processing

procedure employs the PSInSARTM technique, a long-term multi-image inter-

ferometric approach proposed by Ferretti et al. [2000, 2001]. This approach is able

to overcome major disadvantages of DInSAR (e.g. temporal decorrelation and

atmospheric disturbances). Long temporal series enables the decoupling of height

and deformation. Meanwhile, atmospheric artifacts can be estimated and moved

out. Interferometric phase was analyzed on a pixel-by-pixel approach. Stable

radar benchmarks, namely PS, can be identified using a coherence map. PS are

usually recognized as man-made structures (e.g. buildings, dams and bridges)

as well as natural reflectors (e.g. bared rocks). The velocity of each single PSI
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Table 4.2: Some parameters of RADARSAT
Agency CSA
Band C
Wavelength 5.6 cm
Polarization HH
Beam mode S3
Incidence angle 37◦

Resolution range 30 m
Resolution azimuth 30 m
Scene width 100 km
Passage rate 24 days

point target can be estimated by performing a statistical analysis on amplitudes

of electro-magnetic returns. The detailed description of PSInSARTM technique

can be found in Colesanti and Wasowski [2006]; Colesanti et al. [2003]; Ferretti

et al. [2000, 2001, 2005].

A PS dataset derived from 4 years of RADARSAT (see detailed parameters in

table 4.2) images spanning from March 2003 to January 2007 is available for the

Arno river basin. As indicated in table 4.3, a total of 102 images (54 ascending

and 48 descending scenes) were used to conduct PSInSARTM analysis, with an

acquisition cycle of 24 days. These images were captured by a beam mode of S3

that renders an incidence angle ranging between 30◦ and 37◦. The used satellite

track is 54 for descending and 247 for ascending acquisition. These two tracks

cover about 6300 km2, ca. 70% of the whole basin area.

The selection of a master image is important for the processing. The prin-

ciple is to choose an image able to minimize the high dispersion of the baseline

values and the geometry distortion of slave images [Brugioni, 2007]. The master

image should be selected on a day without intensive precipitation to also avoid

the atmospheric disturbance and not to compromise the quality of differential in-
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Table 4.3: RADARSAT data used for the processing of PSInSARTM

RADARSAT - ascending orbit
Track Beam mode No. of scenes Temporal cover-

age
master image

247 S3 54 April 2003 –
January 2007

27 March 2005

RADARSAT - descending orbit
Track Beam mode No. of scenes Temporal cover-

age
master image

54 S3 48 March 2003 –
January 2007

14 November 2004

terferogram. The final chosen master images are listed in table 4.3. The focusing

and co-registration were performed on the sampling grid of the master acquisition

with the lowest dispersion of the normal baseline values.

Each pixel of SAR image is associated with the information of amplitude and

phase. As illustrated in Ferretti et al. [2005], the phase information is composed

of:

φ = ψ +
4π

λ
r + α + ε (4.1)

where φ is the interferogram phase, ψ is the reflectivity of an object, r is the

distance from the satellite to target, λ is the signal wavelength, and α is the

atmospheric phase contribution. The noises (ε) are composed of decorrelation

noise and the residual topographic phase contribution resulting from errors in

the reference DEM. In two radar images, the phase shift can be described as:

Δφ = Δψ +
4π

λ
Δr + Δα + ε (4.2)
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if the reflectivity phase contribution ψ remains unchanged for both scenes (Δφ

= 0), and if atmospheric disturbances and noise can be removed, the phase shift

can be written as:

Δφ =
4π

λ
Δr (4.3)

and the possible target motion (Δr) can be estimated from phase shift Δφ.

According to this basic model of signal phase definition, a time series analysis

of phase values for each RADARSAT pixel (beam mode S3, 20m East-West, 5m

North-South) was performed. Multiple differential interferograms were generated

between each pair of two successive acquisitions, and the phase of master image

was compared with all slave images. Totally 53 ascending and 47 descending

differential interferograms were generated. These interferograms get the infor-

mation of both ground motion of the target, topographic phase contribution and

atmospheric disturbances. The following step was to individualize the sub-pixel

persistent scatterers independently from the sensor position (geometric baseline)

and the moment of acquisition (temporal baseline), by estimating and isolating

different interferometric phase contributions, using a numerical and statistical

analysis as indicated in Colesanti and Wasowski [2006]; Colesanti et al. [2003];

Ferretti et al. [2000, 2001, 2005].

The PSI point target can then be identified by the coherence maps linked to

the exploited interferograms. Approximately 700,000 PS were obtained, with a

coherence higher than 0.60. The precision of displacement rates ranges from 0.1

to 2 mm/year along LOS, depending on coherence and distance to the reference

point. The geocoding accuracy of PS location is within 10m in East-West and
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5m in the North-South direction. The density of ascending data is 54 PS/km2

while the density of descending point targets is 60 PS/km2. For the purpose of

landslides detection, PS located within the flat area were masked out so that

the processing was only performed in mountainous and hilly areas. PS density

after masking decreases to 31 PS/km2 for ascending data and 32 PS/km2 for

descending data.

4.2 Problem definition

The PSI technique has increased its usefulness in different solutions. However,

information extraction from PSI technique is sometimes difficult due to a possible

large number of PS, thereby entailing long interpretation times. Especially in

those regions where there are a lot of stable reflectors such as buildings and

bared rocks, the PS density is possibly higher than 500 PS/km2 [Colesanti and

Wasowski, 2006]. A large number of PS also limit the efficiency for detection and

mapping of landslide hazards. Especially for a study over large areas, a manual

interpretation of PS is nevertheless inefficient and subjective, thereby decreasing

the use of PS in landslide rapid detection purposes. Hence, an efficient approach

of data processing and analyzing over a large amount of PS is needed.

The need for an efficient processing approach is also reflected in the rapid

improvement of sensors and its platforms. For example, PSI point targets are

expected to be acquired and updated even more frequently in the near future as a

consequence of the rapid development of new satellite platforms with short revisit

time [Galeazzi, 2000]. Furthermore, PS density is going to be largely increased

with the recent launch of several X-Band satellites (e.g. COSMO-SkyMed and
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TerraSAR-X) leading to a significant improvement in the resolution [Bamler et al.,

2006]. Therefore, the need for a rapid approach is also needed due to the rapid

development of space technology.

Additionally, other efforts of increasing target density have always been per-

formed by improving processing approaches of SAR images, such as the method-

ology illustrated by Leijen and Hanssen [2007] and the SqueeSARTM technique

mentioned by [Novali et al., 2009]. Especially for the newly developed SqueeSARTM

technique, the point density of PS can be significantly improved in rural areas.

This is essential for the PS application in landslide studies. As a result, the de-

mand of efficient PS data interpolation is also resulted from the improvement of

SAR image processing techniques.

In sum, an effective approach of data interpretation over large and very-large

datasets is generally needed for analyzing PS datasets. This is also for the purpose

of a rapid and semi-automatic detection of landslide hazards, which is always

within the detection range of PSI techniques.

4.3 Study area

4.3.1 Geographic location

The Arno river basin is situated in central Italy (figure 4.3), 98.4% of the area

within the region of Toscana and 1.6% within the region of Umbria. The basin

covers completely 5 provinces: Firenze, Prato, Pistoia, Pisa and Arezzo. Also,

the basin partly covers the province of Siena, Lucca, Livorno and Perugia.

The total area of the basin is approximately 9130 km2, with hydrographic
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Figure 4.3: The location of the Arno river basin

area of approximately 8200 km2. The basin is across the Apennines chain and

accordingly 78% (ca. 7190 km2) of the total area is located in mountainous and

hilly areas. The mean elevation of the whole basin is about 235m above sea level,

with ca. 55% of the basin lower than 300m, ca. 30% between 300m and 600m,

ca. 10% between 600m and 900m, and another 5% higher than 900m [Marks,

2006].

The basin includes 2.2 million inhabitants which are distributed within 166

municipalities [Marks, 2006]. The major cities include Arezzo, Pisa and Firenze

which is also the capital of Toscana region (see their locations in figure 4.3).
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4.3.2 Geological settings

The Arno river basin is situated across the Northern Apennines orogenic belt

which is a complex thrust-belt system formed by the juxtaposition of several

tectonics units, built during the Tertiary under a compressive regime followed by

extensional tectonics from the Upper Tortonian [Catani et al., 2005b].

The latter phase brought several horst and graben structures with an align-

ment of NW-SW which induced the emplacement of Neogene sedimentary basins

that could arise during the Pliocene and Pleistocene [Catani et al., 2005b; Vai

and Martini, 2001]. The basin sediments are of marine (west) or fluvio-lacustrine

origin (east), depending on the location of the intra-mountainous basins, and

resulted from marine transgression and regression cycles (west to east), which oc-

curred during Miocene and Pliocene. Marine transgression and regression cycles

occurred during the Miocene and Pliocene while fluvio-lacustrine sedimentation

occurred during the Pliocene-Quaternary ages [Boccaletti and Sani, 1998; Marks,

2006; Vai and Martini, 2001].

The drainage system of the Arno river is accordingly influenced by this struc-

ture, thus bringing the prevailing NW-SE trending streams. Four main ridges

can be identified as follows: (1) Mt. Pisano-Montagnola Senese, made up of

clastic and carbonate rocks of Mesozoic and Paleozoic age; (2) Mt. Albano-

Chianti, prevalently composed by flysch units emplaced during the Tertiary and

the Mesozoic; (3) Calvana-Mt. Morello, Pratomagno, made up of calcareous

and arenaceous flysch of respectively the Ligurian and the Tuscan Series and

(4) Mt. Falterona-Mandrioli-Alpe di Catenaia, constituted by arenaceous and

marly flysch formations of the Ligurian Series. The main basins can be specified
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as: (1) Lower Valdarno, prevalence of Pliocene marine deposits; (2) Middle and

Upper Valdarno, with Villafranchian and Pleistocene fluvio-lacustrine sediments;

(3) Mugello and Casentino sub-basins, featured by Upper Villafranchian fluvio-

lacustrine terrains and (4) Chiana Valley, influenced by the Pliocene marine and

the Villafranchian lacustrine cycles [Catani et al., 2005b; Marks, 2006].

4.3.3 Landslide hazard within the basin

The Arno river basin is very susceptible to landslide hazard and the total af-

fected area of landslides is about 800 km2. In the past few years, more than

27,000 landslides were mapped by the Arno River Basin Authority [Catani et al.,

2005b] and by the SLAM project of European Space Agency [Farina et al., 2006],

using aerial photo-interpretation, field surveys, historical archive data, optical

image interpretation and PSI technique. These landslides are dominated by rota-

tional slides (about 74%). The other types of mass movement include solifluction,

shallow landslides (18%) and flows (5%). Most of these landslides are slow and

intermittent, accompanied with accelerations due to prolonged and/or intense

rainfall (Canuti and Focardi 1986). In addition, the occurrence of some rainfall

events may also result in the transition of landslides activity from dormant to

active [Canuti et al., 1979]. The prevalence of landslides in the Arno river basin

poses a great risk to vulnerable elements considering the high density population

within the basin. More than 16,000 civil buildings, 460 industrial areas and 350

km of roads are affected by landslides. Over the basin ca. 6 billion euro losses

were predicted in the upcoming 30 years [Catani et al., 2005b].
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Figure 4.4: The clustering of PS using Getis-Ord Gi
∗ statistic, in northern part

of the basin in Pistoia Province: (a) the PS distribution map before clustering
using a color rendering on velocity; (b) the PS distribution map after clustering,
with a color coding of derived Gi

∗ values.
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4.4 Methodology

The spatial distribution of velocities, as visible from a standard point-based map

using a color coding, is clearly scattered and affected by noises (figure 4.4(a)).

Furthermore, it offers no reliable information on the probability of movement

for intervening areas. For a better understanding of the connection between

preparatory terrain-related factors and landslide processes for hazard mapping

purposes, it is necessary to average in some way the point data and to spatially

distribute displacement figures for obtaining a continuous estimate (figure 4.4(b)).

This is even truer in the case of mass movements, which occur in specific areas

with discontinuous nature and tend to cluster.

To automatically detect extremely slow-moving landslides from large amount

of PS distributed within the basin, a new spatial statistic approach known as

PSI-HCA is introduced. The purpose is to automatically identify concentrations

of high velocity PS. Here high ‘velocity’ does not refer to the landslide velocity

scale, but to PS displacement rates, usually over 4–5 mm/year which is fairly

large compared to the technique precision mentioned above (0.1–2 mm/year).

For landslides 4–5 mm/year movement is extremely slow [Cruden and Varnes,

1996; Varnes, 1978], but for displacement rates of PS it is significantly high (> 2

standard deviation).

The PSI-HCA approach is based on two statistics approaches: Getis-Ord Gi
∗

statistic and kernel density estimation.
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4.4.1 Getis-Ord Gi
∗ statistic

The Getis-Ord Gi
∗ statistic [Getis and Ord, 1992, 1996; Ord and Getis, 1995] is

a kind of local spatial statistic which represents the association up to a specified

distance. The Gi
∗ statistic is applied in PSI-HCA in order to evaluate the clus-

tering level of PS (Gi
∗ value in figure 2(b)). The statistic specifies a single PS at

a site i, and its neighbors j within a searching distance d. For each single PS at

a site i, the Gi
∗ index is calculated as:

Gi
∗(d) =

Σxj + xi − nij × x∗

s∗{[(n × nij) − n2
ij]/(n − 1)}0.5

(4.4)

where n is the total number of PS datasets. nij is the number of PS in the

vicinity of searching distance d, namely the summation of PS at the site i and its

neighbors j. x is the velocity of PS. x∗ is the mean value and s∗ is the standard

deviation of PS velocity for whole datasets.

In order to define the searching distance of d, a DTM of the Arno river basin

with the spatial resolution of 10m was utilized. For each pixel of DTM, both

the shortest path to a channel (referred as d1) and the shortest distance to a

ridge pixel (d2) were calculated based on steepest descent direction as proposed

by Tucker et al. [2001]. The searching distance of each pixel (di) was calculated

using the mean value of d1 and d2, since the sum d1+d2 can be used as a proxy

for slope length (the limiting dimension for a landslide over the same hillslope).

An estimation of the searching distance d for a given step of Gi
∗ computation

was rendered by the average value of di for all the DTM pixels in hilly and

mountainous areas. In the case of the Arno river basin, the searching distance d

is calculated as 114m compared with a DTM of 10m resolution.
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This approach offers an easy and straightforward way to define the searching

distance d. However, the reliability of this methodology can be decreased by in-

accurate extraction of ridge and stream network, thus influencing the numerical

computation of Gi
∗ index. This requests the availability of a good quality DTM.

The very low resolution DTM often leads to an over-clustering of PS datasets,

thereby resulting in an overestimation of landslides or the difficulty in differen-

tiating landslides with other geophysical processes. In addition, a DTM with

intensive noises can considerably underestimate the searching distance d as well

as the clustering level. This always brings to a lack or underestimation of a

potential landslide-affected area.

The Gi
∗ index was then calculated for each single PSI point target (figure

4.4(b)), choosing velocity as the weighting factor. The Gi
∗ index measures con-

centrations of high velocity PS compared with the entire dataset. The larger

(positive) the Gi
∗ index is, the more intense the clustering of high velocity values

it indicates, with moving displacement vector towards Line-of-Sight (LOS) of the

satellite. The smaller (negative) the value is, the more intense the clustering of

low velocity values (negative) it suggests, with the PS moving away from LOS.

4.4.2 Kernel density estimation

According to the Gi
∗ statistic analysis, the kernel density estimation was used

in PSI-HCA in order to fit a smoothly tapered surface as a hotspot. Here is

the kernel density calculation proposed by Silverman [1986]. It shows a kernel

estimator which is defined as:
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f(x) =
1

nh

n∑
i=1

K(
x − Xi

h
) (4.5)

where h is the window width, x − Xi is the distance of each calculating pixel to

each PSI target point i. K is the quadratic kernel function defined as:

⎧⎪⎨
⎪⎩

K(x) = 3
4
(1 − x2), | x |� 1

K(x) = 0, x > 1
(4.6)

The kernel estimator is then performed on PS, choosing the previous derived Gi
∗

index as the weighting factor. The output is a smooth kernel density map which

converts large amount of PS into several hotspots for an easier and straightforward

visualization.

4.5 Result

The output of PSI-HCA is a hotspot map which highlights areas preferentially

affected by extremely slow-moving landslides. The result includes two types of

hotspot maps: individual orbit (ascending or descending) map and combined map

with an overlay of both ascending and descending orbits.

Figure 4.5 is the example of an individual hotspot map which separates the

information provided by ascending (figure 4.5(a)) and descending (figure 4.5(b))

PS. Both ascending and descending hotspot maps cover the Pistoia-Prato-Firenze

and the Mugello basin in the Arno river basin. In a preliminary phase, the flat

area was masked out so that PSI-HCA was only performed on hilly areas for

landslides detection. Both ascending and descending maps are displayed based

on the kernel density estimation. Pixels with high positive values are rendered
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Figure 4.5: The PSI hotspot map of the Arno river basin covering the Pistoia-
Prato-Firenze and Mugello basin area: (a) hotspot map derived from a kernel
density estimation using ascending RADARSAT PS; (b) hotspot map derived
from a kernel density estimation using descending RADARSAT PS. Red hotspot
(low negative kernel density) indicates the clustering of high velocity PS moving
away from sensor whereas blue hotspot (high positive kernel density) implies the
clustering of high velocity PS moving towards sensor.
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with blue color while clustering of low negative pixels is displayed with red color.

Both blue and red hotspots indicate where mass movements exist. The deeper

the color is, the more intense high-velocity PS are clustered, thereby indicating

the existence of intensive mass movements. The color of hotspots provides the

information of moving direction. Clustering of PS moving towards LOS (positive

velocity) is indicated by blue hotspot whereas clustering of PS moving away from

LOS (negative velocity) is plotted in red hotspot. Moreover, the radius of each

hotspot implies the extent of a potential landslide-affected area.

Figure 4.6 is a hotspot map with an overlay of ascending and descending re-

sults in figure 4.5. The aim is to better visualize ground movements from two

different looking directions of the sensor. Unlike the individual hotspot map in

figure 4.5, the magenta areas in figure 4.6 are originated from the combination of

red and blue hotspots. Some magenta hotspots are discovered in Vernio, Trespi-

ano, Pomino, Carbonile and Rimaggio areas (see locations in figure 4.6). These

hotspots suggest opposing moving directions (moving towards and away from

LOS) detected separately by ascending and descending orbits, thus indicating

the existence of horizontal components in the movement. The intensity of the

clustering is displayed by its color deepness. The deeper magenta it displays, the

more intense PS with high velocity are clustered. Also, deep blue hotspots that

are prevalent in the north Pistoia-Prato-Firenze basin are overlays of two orbits.

This can be interpreted as the same moving direction (moving towards LOS) that

has been detected from both ascending and descending PS. Similarly, the deep

red hotspot, such as the one in Mugello (see figure 4.6 for its location), shows

both ascending and descending PS are moving away from LOS.
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Figure 4.6: The PSI hotspot map obtained from a combination of ascending
and descending data for the Pistoia-Prato-Firenze and Mugello basin area. The
magenta hotspots indicate the clustering of high velocity PS detected by ascend-
ing and descending PS, with opposing LOS directions. The deep red and blue
hotspots indicate the clustering of high velocity PS detected by both ascending
and descending data, with consistent direction along LOS. The labelled hotspots
have been chosen for results validation and further investigation.

4.6 Validation

In total 110 hotspots were obtained from ascending PS and 155 hotspots were

detected from descending data. Accuracy assessment (table 4.4) was carried out

by comparing the hotspot result with the existing landslide susceptibility map

[Catani et al., 2005b], landslide inventory, aerial photos, historical archive data,

optical image interpretation, topographic maps and some field surveys. 79.1% of
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the ascending and 63.2% of the descending hotspots are connected with existing

landslides. Also, 12.7% of the ascending and 20.6% of the descending hotspots are

associated with new landslides, thus providing an important source for updating

landslide inventory. Detection errors also exist when mass movements are associ-

ated with other geophysical processes that PSI can identify but not discriminate.

Especially for blue hotspots, the misdetection rate reaches to 13.2% for ascending

and 35.2% for descending data. This is because down-slope landslide movements

moving towards sensor can hardly be detected from PSI analysis.

4.6.1 Confirmation of existing landslides

The hotspot analysis provides an important support for confirming existing land-

slides in the Arno river basin. Compared to the landslide inventory which was

previously mapped by the Arno river basin Authority and SLAM project [Catani

et al., 2005b; Farina et al., 2006], 3203 landslides (14.9%, totally 21,444 landslides

within orbit coverage) are confirmed by PSI-HCA, including intensively affected

areas in Rimaggio, Pomino, Pelago, Vernio and Carbonile (see locations in figure

4.6).

A case study in Carbonile village (figure 4.7) is presented to illustrate the

usefulness of PSI-HCA in landslide confirmation and further investigation. The

area was affected by historical earth-slides reactivated in 1984, as a result of

intense prolongated rainfall [Farina et al., 2006]. Currently mapped landslides are

prevailed by translational and rotational slides. Several remedial works (including

drainage collectors, trench drains and sheet piles) were built to stabilize slopes

(see their distributions in figure 4.7). Also, a monitoring system composed of 30
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Figure 4.7: The Carbonile landslide as confirmed by PSI-HCA result: (a)
RADARSAT PS (from 2003 to 2006) used for PSI-HCA are displayed. The
landslide inventory is classified based on state of activity (active, dormant and
stable). Several remedial works have been performed to stabilize the Carbonile
village; (b) the time series of PS, indicated with the periods of displacement
acceleration.

inclinometric tubes with piezometers was established after this reactivation.

The hotspot detected in Carbonile includes 211 RADARSAT PS covering the

period from 2003 to 2006. 125 of them are from the ascending data and the

other 86 PS are from the descending orbit. The maximum velocity detected by

ascending data is 18.08 mm/year (positive value, moving towards LOS) and the
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minimum velocity noticed by descending data is -25.04 mm/year (negative value,

moving away from LOS). The result was compared with the investigation by

Farina et al. [2006], which employs PS derived from 350 ERS images covering the

period from 1992 to 2001.

The result of RADARSAT PS reveals that the central part of the village was

observed to be stable during the period from 2003 to 2006, with PS velocity

ranging from -3 to 3 mm/year. This observation is in accordance with the result

from ERS PS. As mentioned above the decrease in velocity can be attributed

to mitigation efforts carried out in the past few years. Major unstable sites are

located in the north side zone called ‘La Cava’, in the ‘Frantoio’ area, in the

south side zone ‘Il Formicaio’ and in the eastern part of the Carbonile village

(see locations in figure 4.7). All sites are located in the upper part of the slope,

just above those remedial structures. Velocity of PS ranges from 4 to 9 mm

/year in ‘La Cava’. The rate is equivalent to the monitoring result during period

from 1992 to 2001 obtained from ERS PS. Also, accelerations of movement are

detected in the time series of RADARSAR PS from 2003 to 2006 (figure 4.7).

These accelerations are mainly occurring during the summer period of each year.

In ‘Frantoio’, the mean PS velocity is -7.7 mm/year for descending data and 6

mm/year for ascending data. The rate is higher than the average velocity (4.5

mm/year) detected by ERS PS (1992 to 2001). Similar to the ‘La Cava’ area,

some accelerations of movement during the summer period are suggested in the

time series of RADARSAT PS (figure 4.7). The most unstable site is located in

the ‘Il Formicaio’ area. The ground moving rate detected in this area ranges from

-14 mm/year to -18 mm/year. The instability of ‘Il Formicaio’ turns out to be a

consequence of lacking stabilization works. In the lower part of the slope, at least
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300 m away from the affected area, there are existing drainage wells and sub-

horizontal drainages. Such instability was also detected by the ERS PS whose

average rate is around -8.7 mm/year. However, the movement has been increased

since 2003 compared to previous 10 years.

4.6.2 New landslide detection

PSI-HCA is also an effective tool to detect new extremely slow-moving landslides.

Ancillary inputs such as aerial photos, topographic maps and optical images

can be integrated into hotspot and PS information for landslide mapping. To

illustrate its applicability, a newly detected landslide in the cemetery of Trespiano

(see location in figure 4.6) is presented. This landslide is situated a few kilometers

north of Firenze. The lithology of this area is mainly composed of pelitic units

with a downslope attitude of the geological beds. The landslide is considered to

be a slow slide with the slip surface possibly located in correspondence of the

pelitic layers.

The landslide was firstly detected by a hotspot indicated in figure 4.5 and

figure 4.6. The hotspot represents a cluster of 678 RADARSAT PS from 2003 to

2006 (figure 4.8). Among them, 211 PS are from ascending orbit and 467 are from

descending acquisition. The detection of this hotspot is owing to the existence

of a cemetery which is built on the slope. Thus, a bunch of stable benchmarks

are identified and they are recognized as buildings, walls, roads and man-made

structures.

The orbit information reveals that ascending displacement vectors are ori-

ented towards the sensor whereas the descending movements are away from LOS.
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Figure 4.8: A landslide in the Trespiano cemetery detected by PSI-HCA: (a)
RADARSAT PS distribution and mapping results of the new landslide; (b) the
time series of PS located in the northern part of the cemetery.

It indicates the direction of ground movements is along the west-facing slopes.

No landslide located inside the cemetery is reported by the existing inventory.
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Figure 4.9: The damaged walls (a), roads (b, c) and structures (d) inside the
Trespiano cemetery.

Also, no evidence of movement is attested by ERS PS covering the period from

1992 to 2001. However, the time series of RADARSAT PS suggests that the
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movement was accelerated since October 2003 (figure 4.8). The velocity of these

RADARSAT PS in the cemetery reaches to 15 mm/year. Stable and unsta-

ble parts can be easily distinguished by checking the velocity distribution of PS

where a sharp increase of velocity can be seen along the slope (figure 4.8). PS

information in the lower part of the slope is missing because of a lack of stable

scatterers.

The landslide was then mapped with the help of the topographic map and

aerial photos. It was mapped across the northern part of the cemetery. The

result was validated by the field evidences: a field check carried out in March

2009 discovered existing damages on walls, roads and structures (figure 4.9). The

southern part of the cemetery was not included within the landslide because

some stable PS are present (figure 4.8). However, the stability of the southern

cemetery is not certain. Since PS velocity is measured along LOS and it is

strongly affected by the change of slope inclinations, the stability indicated by

these stable PS in the southern cemetery is probably influenced by the gentle

slope of their locations (ca. 7◦), thus possibly underestimating the displacement

rate of these PS. Further investigations will be needed in the near future to

better understand the possible deep structure and general dynamics of the mass

movement, using field instrumentation. As a result of this study, the new detected

landslide has been updated in the existing landslide inventory, classified as active

slide as proposed by Cruden and Varnes [1996].
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4.6.3 Ground movement related to other processes

PSI-HCA shows its usefulness in landslide detection in mountainous and hilly

areas. However, ground motion detected by PSI-HCA is not only related to

landsliding. The movement observed by PSI can also be associated with other

geophysical processes. Concerning ground instability with downward movement

away from LOS, landslide is not the only factor that InSAR can identify. Other

geo-processes like local subsidence [Canuti et al., 2007; Ferretti et al., 2000; Mas-

sonet et al., 1997], sinkholes [Al-Fares, 2005; Ferretti et al., 2004], building con-

solidation [Stramondo et al., 2008], erosion [Smith, 2002], tectonics [Buergmann

et al., 2006; Colesanti et al., 2003; Massonet et al., 1994; Vilardo et al., 2009] and

underground works related to tunnelling or mining activities [Perski, 1998] could

also be associated with detected displacements. Similarly, for upward movement

(moving towards LOS) detected by PSI-HCA, some possibilities could be taken

into consideration: uplift due to fluid injection [Doubre and Peltzer, 2007], ex-

cavation or abandonment of buildings, sedimentation of rivers [Smith, 2002] and

tectonics again. Also, termination of activities related to subsidence can lead to

the uplift detected by PSI. For instance, the area around Pistoia-Prato-Firenze

basin (see location in figure 4.5 and 4.6) was usually well-known for the subsidence

due to intensive pumping activities. However, due to the gradual termination of

pumping activities since 2000, the area is detected with uplift motions from PSI

interpretation [Lu et al., 2010]. These possibilities lead to some limitations in

PSI-HCA and its interpretation. Possible mis-detection of landslides must warn

us towards a careful interpretation process in which automated mapping proce-

dures should always be backed by expert judgement.
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Figure 4.10: Ground movements in the Mugello circuit area as detected by PSI-
HCA: (a) the RADARSAT PS distributed along the track; (b) the time series of
PS indicating the acceleration of movements since the end of 2003.

An example of a hotspot related to a mixing of different geo-processes is

presented. The case study is relative to a hotspot covering the Mugello and

Scarperia area (see hotspot location in figure 4.5 and 4.6). The hotspot suggests

that PS from both ascending and descending orbits are moving away from the

sensor. Displacement rates of PS inside the hotspot reach up to 17.69 mm/year.

The hotspot was firstly considered as a consequence of intensive landslide activity
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Figure 4.11: The Mugello circuit area: (a) the distribution of the pumping activ-
ities; (b) the field check confirms the existence of damages inside the circuit; (c)
a view of the high-speed railway tunnel.

distributed in the Scarperia area. This interpretation is verified by the landslide

inventory: a total of 25 landslides (15 of which are active) have been included

in the hotspot. However, when the PS distribution is checked in greater detail,

it can be noticed in figure 4.10 that a small cluster of PS with high velocity are

located along the Mugello circuit which is the race track for Gran Prix motorcycle

racing (MotoGP) and also the testing track for Ferrari Formula 1 team. The

rapid ground motion of the circuit is not likely to be an outcome of landslides.

No landslide was reported inside the inventory for the race track. Also, both

98



ascending and descending PS, distributed over differently exposed and sloping

hillslopes, reveal a rapid ground movement away from LOS, thereby indicating

the prevalence of downward ground movement. Considering the gentle slope (¡

8◦) of the circuit, other geo-processes might exist for the interpretation of the

detected rapid mass movement.

Such considerations lead to the idea that ground subsidence has to be taken

into account here. The subsidence was thought to be linked to two types of

human activity. Firstly, the construction of the Italian high-speed railway tunnel

might be considered responsible for the downward ground movement. This tunnel

was built for the high-speed rail line which connects Firenze and Bologna. The

location of the construction is below the eastern part of the Mugello Circuit (figure

4.11), with a maximum depth of 40m [Lunardi, 2000]. Therefore, the hypothesis

of ground subsidence caused by the construction of this tunnel should not to

be discarded. More details about the tunnel construction and its connection

with the Mugello Circuit can be found in Lunardi [2000]. However, the tunnel

was not likely to influence the whole area of the Mugello circuit because the

excavation of the tunnel is not deep. Also, there is no evidence from PS is shown

that the eastern part of the track is moving faster than the western part. As

a result, the pumping activities in the surrounding area of the circuit can also

be considered as an optional or joint cause. A database of wells was obtained

from the Firenze Province. It records the type of use and the pumping rates

for each well. According to the database, pumping activities are diffuse in the

Scarperia and Mugello area. Several wells operating for different uses have been

built around the Mugello Circuit (figure 4.11). In the San Donato area which

is 500m north from the circuit, several pumping wells have been established for
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industrial uses since 1996, at a depth of about 120m. Also, another large pumping

facility managed by the company Publiacqua for public drinkable water supply is

situated 200m north from San Donato. Still, in the Correntaio area which is 200m

west of the race track, recent pumping activities at a depth of 380m have been

established since March 2003. The time series of PS in figure 4.10 are harmonized

with pumping activities in Correntaio. For PS located in the western part of the

track, accelerations of ground movements can be observed from the end of 2003.

This conformity indicates a likely connection between the ground subsidence and

the newly established pumping activities.

Therefore, the hotspot covering the Mugello and Scarperia area is involved

in various ground moving processes. These movements include landslides around

Scarperia and the subsidence affecting the Mugello Circuit due to ground works

of pumping and tunnel excavation. This example illustrates the limitation of PSI-

HCA application in differentiating various geo-processes. As a result, additional

data sources such as cartographic, optical imagery and in situ monitoring are

needed for an accurate interpretation of PSI-HCA results in this area.

4.7 Conclusion

This chapter introduced an innovative approach for efficiently detecting extremely

slow-moving landslides from PSI analysis. The approach is based on PSI-HCA

which can automatically detect clustering of PS with locally high velocity. The

advantage of this methodology takes both PS velocity and spatial distribution

into consideration. When the flat area was masked out and only PS in moun-

tainous and hilly areas were focused upon, PSI-HCA showed a high potential
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for extremely slow-moving landslide detection. First, PSI-HCA outcomes can be

used to confirm activities of existing landslides. 3203 (14.9% of total) existing

landslides in the Arno river basin are confirmed by PSI-HCA derived hotspots.

The detected landslides can be further studied for a deeper investigation of pos-

sible PSI-HCA interpretation keys, such as the illustrated example of the Car-

bonile landslide. Second, the proposed PSI-HCA can be useful for new landslide

detection. The Trespiano landslide was detected and mapped by PSI-HCA on

RADARDSAT PS from 2003 to 2006. Time series of PSI displacements over the

same area show an acceleration of movement since October 2003 and this might

well explain the absence of record in the previous landslide inventory. Both appli-

cations indicate that PSI-HCA presents an effective way for landslide inventory

updating. However, detection errors cannot be avoided. The major errors can

rise where the joint contributions of several geo-processes mix up in PSI mea-

sured displacements. In particular, the study in the Mugello Circuit area reveals

that a hotspot can represent a mixing of different geophysical movements having

similar displacement vectors. Notwithstanding this drawback, PSI-HCA seems

still very promising. PSI-HCA could represent an efficient way to extract useful

information from large amount of PSI data especially considering the rapid de-

velopment of short wavelength X-band sensors which largely increases PS density

and decreases the revisit time. Future improvements should include, as priority

objectives, a better spatial definition of the Gi
∗ statistic parameterizations (e.g.

by spatially distributing di values) and the possible inclusion of some series in

spatial averaging schemes.
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Chapter 5

Landslide hazard and risk

assessment

5.1 Landslide hazard and risk mapping:

literature review

5.1.1 Landslide risk

There are many efforts contributed to give a generalized definition of ‘landslide

risk’. Among them, one of the most used definition, was given by Varnes [1984],

defined as ‘the expected number of lives lost, person injured, damage to prop-

erty and disruption of economic activity due to landslide occurrence for a given

area and reference period’. Besides this, another well-accepted definition was

illustrated in ISDR [1999], which concludes landslide risk as ‘the probability of

harmful consequences, or expected losses (deaths, injuries, property, livelihoods,

economic activity disrupted or environment damaged) resulting from interactions
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between landslide hazard and vulnerable conditions’. Nevertheless, it is widely

agreed that these definitions of landslide risk can be quantitatively assessed with

the formula as the product of hazard, vulnerability and amount [Catani et al.,

2005b; Fell, 1994; Remondo et al., 2008; van Westen et al., 2006; Varnes, 1984],

written as:

Risk = Hazard × V ulnerability × Amount (5.1)

The application of this formula can be found in many literatures regarding land-

slide hazard and risk assessment, with different applied scales in different case

studies [Cardinali et al., 2002; Catani et al., 2005b; Guzzetti, 2000; Guzzetti

et al., 2005b; Jaiswal et al., 2010; Kanungo et al., 2008; Lee and Pradhan, 2006;

Michael-Leiba et al., 2003; Nadim et al., 2006; Pradhan and Lee, 2009; Remondo

et al., 2005, 2008; Sassa et al., 2004; Sterlacchini et al., 2007; Zezere et al., 2007,

2008].

It should also be noted that, aiming at a uniformity in terminology and land-

slide zoning structure, a guideline for landslide susceptibility, hazard and risk

zoning was recently proposed by Fell et al. [2008], introduced with a general

framework for landslide risk management.

5.1.2 Landslide hazard

Landslide hazard can be defined as the probability of landslide with a given

intensity occurrence within a given area and period [Catani et al., 2005b; van

Westen et al., 2006; Varnes, 1984]. According to this definition, the landslide

hazard should take both spatial and temporal probability into consideration.
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The spatial probability of landslide occurrence, or more appropriately called

landslide susceptibility, can be estimated from remote sensing data or derivatives,

based on a bunch of statistical approaches. The most-used approaches include

discriminant analysis [Baeza and Corominas, 2001; Cardinali et al., 2002; Carrara

et al., 1991, 2003; Guzzetti et al., 1999; Nagarajan et al., 2000; Santacana et al.,

2003], artificial neural network [Catani et al., 2005b; Choi et al., 2010; Ermini

et al., 2005; Falaschi et al., 2009; Gomez and Kavzoglu, 2005; Lee et al., 2004;

Melchiorre et al., 2008; Nefeslioglu et al., 2008; Pradhan et al., 2010], likelihood

ratio [Chung and Fabbri, 2003; Dewitte et al., 2010; Fabbri et al., 2003; Lee, 2004;

Lee et al., 2007] and logistic regression [Ayalew and Yamagishi, 2005; Bai et al.,

2010; Das et al., 2010; Eeckhaut et al., 2006; Falaschi et al., 2009; Lee, 2005,

2004].

The temporal probability is always difficult to be estimated and this is why

most studies only focus on landslide susceptibility analysis [Ermini et al., 2005;

van Westen et al., 2006]. Temporal probability is generally determined by his-

torical records related to those triggering factors, or temporal historical landslide

inventory itself if available, or estimated from those dynamic models [Guzzetti

et al., 2005a; van Westen et al., 2006], including those widely-used models as

proposed (e.g. Crosta [1998]; Guzzetti et al. [2005a]; Reichenbach et al. [1998];

Terlien [1998]).

5.1.3 Landslide intensity

The term ‘landslide intensity’, according to Hungr [1997], is defined as ‘a set

of spatially distributed parameters describing the destructiveness of landslide’.
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There is no common approach for landslide intensity assessment [Hungr, 1997].

Generally landslide intensity can be determined qualitatively and quantitatively

based on a bunch of spatially distributed parameters of the landslide destructive

power. A common measurement of relative intensity is related to kinetic charac-

teristics, which could be defined as the function of estimated landslide volume and

velocity using qualitative assessment [Cardinali et al., 2002; Hungr, 1995]. Nev-

ertheless, a more complicated analysis can be carried out based on the prediction

of runout distance of landslides (e.g. Corominas [1996]; Hungr [1995]; Revellino

et al. [2004]; Sassa [1988]). In addition, Dai and Lee [2001] employed a magnitude-

cumulative frequency relationship to define intensity classes for rainfall-triggered

landslides.

5.1.4 Vulnerability and exposure

The vulnerability, ranging from 0 to 1, indicating from no destruction to full

damage, describes the expected damage or the degree of loss, for an element at

risk due to a landslide occurrence of a given intensity within the landslide-affected

area [Catani et al., 2005b; Dai et al., 2002; Fell, 1994]. Exposure is closely related

to vulnerability in practical assessment, often referring to the number of lives

or the value of properties exposed at risk [Catani et al., 2005b; Schuster and

Fleming, 1986].

It is hard to find a generalized or standard approach for quantitatively clas-

sifying and assessing the vulnerability of elements at risk to the types and mag-

nitudes of specified landslides [Li et al., 2010]. Dependent on the available data,

scale, areas and conditions, there are different methods to define vulnerability for
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different properties. Some recently developed approaches for landslide vulnera-

bility assessment include historical records [Finlay, 1996; Remondo et al., 2008;

Zezere et al., 2008], damage matrices [Leone et al., 1996], 3D conceptual network

[Duzgun and Lacasse, 2005], fragility curves [Mavrouli and Corominas, 2010] and

function of landslide intensity and susceptibility [Kaynia et al., 2008; Uzielli et al.,

2008].

5.2 Problem definition

The previous works mentioned above are mainly dealing with the application of

remote sensing data in semi-automatic landslide mapping and detection. In par-

ticular, two semi-automatic approaches, OOA and PSI-HCA, were respectively

introduced in chapter 3 and 4. These two semi-automatic techniques however

focus on two different types of mass movements. In terms of OOA-based ap-

proach, it primarily concentrates on a quick mapping of rapid-moving shallow

landslides and debris flows, for the purpose of an immediate response after a

landslide emergency and an efficient risk management and decision making. In-

stead, the approach of PSI-HCA chiefly focuses on a semi-automatic detection of

(extremely) slow-moving deep-seated landslides, for landslide hazard mitigation

and following risk reduction, such as the case study previously illustrated in the

village of Carbonile.

Although both two methods were initially developed for the same purpose: a

rapid identification of landslide hazard, it is not easy to compare the results of

them. The output of OOA-based approach is the semi-automatically generated

landslide inventory whereas the outcome of PSI-HCA is a hotspot map indicat-
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ing where the potential mass movements that could possibly exist. Both of these

two approaches seem to be independent from each other, also because they were

processed separately using diverse inputs of remote sensed data, which are sig-

nificant different in terms of precision, accuracy and uncertainties. This leads to

the particular difficulty in comparing the outputs of these two approaches.

One possible solution could be integrating these outputs in landslide hazard

and risk assessment. In particular, the comparison at risk level is preferred be-

cause hazard analysis is only focusing on the probability of occurrence, which is

still ambiguous for a quantitative comparison purpose. For example, supposing

in a specified area, the hazard of slow-moving landslide is 0.9 whereas the haz-

ard of rapid-moving landslide is 0.5, it cannot simply justify that the harmful

consequence or expected losses of slow-moving landslide is higher than those of

rapid-moving landslide, because 0.9 and 0.5 are only the probability of occur-

rences of these two hazards. As a result, to some extent it is more suitable and

clearer to involve a quantitative risk assessment for comparing these two outputs

from OOA and PSI-HCA.

The output of OOA-based landslide mapping is an event-based landslide in-

ventory, without which it is often making a quantitative risk assessment very

difficult to be performed [van Westen et al., 2006]. The landslide hazard and risk

assessment from historical landslide inventory has already been widely used, and

to some extent landslide inventory-based probabilistic method is best for quan-

titative risk assessment compared to other methods such as heuristic, statistical

and deterministic approaches [van Westen et al., 2006]. A common approach

is to derive frequency-size statistics of landslides from historical inventory such

as indicated in Malamud et al. [2004]. Similarly, Chau et al. [2004] estimated
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frequency-volume statistics of landslides through the historical inventory ranging

from 1984 to 1998 for calculating return period and hazard zonation in Hong

Kong. This approach can also be similarly used in hazard and risk assessment of

rockfall, such as the case study in the Yosemite Valley of California illustrated

by Guzzetti et al. [2003]. Besides, Crovelli [2000] have indicated two proba-

bility models suitable for landslide hazard assessment from historical inventory

data: continuous and discrete time-based models. Also, Coe et al. [2004] have

performed a probabilistic assessment of precipitation-triggered landslides using

historical records of landslide occurrence during the period 1909 to 1999 in Seat-

tle as inputs to their Poisson and binomial probability model. Moreover, Finlay

et al. [1997] have combined both probabilistic and heuristic methods, using his-

torical landslide inventory, for calculating probability of those triggering factors

of landslides in Hong Kong. The similar approach can also be found in the study

of New Zealand as described by Crozier and Glade [1999]; Glade and Crozier

[2005].

However, how to integrate PS hotspot and clustering analysis with quantita-

tive landslide hazard and risk assessment at the regional scale remains a challenge.

Because of the recently-developed methodology, a quantitative risk assessment

from InSAR-derived landslide hotspot map was never attempted. In this chap-

ter, in order to fill this research gap, a new approach of quantitative risk hazard

and assessment for slow-moving landslide using derivatives from PSI-HCA is in-

troduced, choosing the same area of PSI-HCA, the Arno river basin, as the case

study.
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Figure 5.1: The landslide susceptibility map of the Arno river basin, as provided
by Catani et al. [2005b].

5.3 Susceptibility and hazard assessment

5.3.1 Susceptibility: spatial prediction

The landslide susceptibility in the Arno river basin has previously been mapped

by Catani et al. [2005b]. Since landslide susceptibility is only focusing on spatial

probability of occurrences, regardless of temporal prediction, the susceptibility

map was also used in this study with the same area focused.

The methodology to derive this susceptibility map was fully described in
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Catani et al. [2005b]. The method is based on the artificial neural networks

(ANN). Five preparatory factors related to instability were selected for the uni-

variate statistical analysis: slope angle, lithology, profile curvature, land cover

and upslope contributing area. Among them, slope angle, profile curvature and

upslope contributing area factors were derived from a 10m DTM, respectively

classified into 5, 3 and 3 classes. Land cover map were classified into 9 classes

according to the legend of CORINE (Coordination of Information on the Envi-

ronment) land cover project [Heyman et al., 1994]. Lithology map was published

by Canuti et al. [1994] and was reclassified into 8 classes. The statistical predic-

tion was then performed on the basis of unique condition units (UCU), with a

preliminary training data. The derived susceptibility map can be found in figure

5.1 and it is classified into 4 classes (S0, S1, S2, S3, assorted with increasing

susceptibility).

5.3.2 Hazard: temporal prediction

The landslide hazard, namely the temporal prediction of landslide occurrence,

was accomplished on the basis of the previously derived landslide hotspot map

(refer to figure 4.5, figure 4.6) which is derived from the approach of PSI-HCA

as described in chapter 4.

At the beginning stage, five hazard levels (H0, H1, H2, H3, H4, assorted

referring to increasing hazard levels) was initially determined from the kernel

density values of the hotspot map. Ascending (figure 4.5) and descending (figure

4.6) hotspot maps were used separately for hazard analysis. This is due to the

independent PSI processing of SAR images for different orbits, reflected in the
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Table 5.1: The algorithm of assigning hazard levels from kernel density values of
hotspot map

Ascending orbit
Red hotspot
H4: kernel density < -280
H3: -280 < kernel density < -140
H2: -140 < kernel density < -35
H1: -35 < kernel density < 0

Blue hotspot
H4: kernel density > 560
H3: 560 > kernel density > 280
H2: 280 > kernel density > 70
H1: 70 > kernel density > 0

Descending orbit
Red hotspot
H4: kernel density < -200
H3: -200 < kernel density < -100
H2: -100 < kernel density < -25
H1: -25 < kernel density < 0

Blue hotspot
H4: kernel density > 400
H3: 400 > kernel density > 200
H2: 200 > kernel density > 50
H1: 50 > kernel density > 0

difference in acquisition date, master images, reference points and coherence map.

For each orbit, blue and red hotspots, indicating different moving directions of

mass movements along LOS, were individually analyzed for initial hazard zona-

tion. The algorithm for assigning five initial hazard levels were summarized in

table 5.1. The boundary and threshold for hazard zonation were derived from

heuristic determination by classifying hotspot maps into different levels. For each

orbit, the zonation boundaries were respectively chosen as 10, 5 and 2.5 standard
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Table 5.2: The probability of landslide occurrence for different hazard levels and
time spans

Recurrence
time(yrs)

H(2 yrs) H(5 yrs) H(10 yrs) H(20 yrs) H(30 yrs)

H4 1 1 1 1 1 1
H3 10 0.1900 0.4095 0.6513 0.8784 0.9576
H2 100 0.0200 0.0490 0.0956 0.1821 0.2603
H1 1000 0.0020 0.0049 0.0099 0.0198 0.0296
H0 10000 0.0000 0.0005 0.0010 0.0019 0.0029

deviation for red hotspots and 20, 10, 5 standard deviation for blue hotspots.

After, the initial hazard classification estimated from hotspot map was com-

pared with the susceptibility class (figure 5.1). For each pixel (10m), if initial

hazard level is higher than corresponding susceptibility class, the final hazard

level is then determined by the former value. Instead, if initial hazard level from

the hotspot map is lower than the corresponding susceptibility level, the final

hazard level was assigned from the values of the latter. This is due to the fact

that underestimation of mass movements from PSI techniques possibly exists,

resulted from a lack of stable benchmarks with high coherence values.

For each of these five hazard levels, a corresponding recurrence time was

assigned (H0: 10,000 years, H1: 1000 years, H2: 100 years, H3: 10 years, H4: 1

year) as described in Catani et al. [2005b]. The temporal probability was then

calculated for each hazard level, using the following equation as proposed by

Canuti and Casagli [1996]:

H(N) = 1 − (1 − 1/T )N (5.2)

where T is the recurrence time, N is the time period for temporal probability

assessment which was calculated here for 2, 5, 10, 20, 30 years respectively. The
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Figure 5.2: The landslide hazard map of the Arno river basin for 30 years, calcu-
lated from the landslide hotspot maps.

result of probability of occurrence for each hazard level is listed in table 5.2. It was

assessed by five classes (from H0 to H4), with each corresponding probability of

occurrences (from 0 to 1) over five time periods as mentioned above. An example

of a derived hazard map over 30 years time period is displayed in figure 5.2.
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5.4 Landslide intensity

As indicated by Hungr [1995], landslide intensity can be measured from the ki-

netic energy of mass movement, which is primarily considered as its volume and

velocity, or a more complicated estimation of its run-out distance. In general, due

to the difficulty in measuring velocity for slow-moving deep-seated landslides, the

intensity is mainly measured from its estimated volume. For example, in the

same study area of the Arno river basin, Catani et al. [2005b] measured the in-

tensity of deep-seated landslides from the estimation of landslide volume using

the post-failure geometry based the assumption that the shape of landslide is

half-ellipsoidal. In this study, the intensity was additionally measured from the

velocity of landslides, thanks to the technique of PSI which enables a detection of

slow mass movement of millimeter accuracy. Besides, the PSI technique provides

the complete time series record of landslides velocity over the period of processed

SAR images, thus making possible a selection of maximum velocity of mass move-

ment. This is especially useful for landslide intensity estimation due to the fact

that landslide intensity is always determined by its maximum velocity instead of

an average velocity over a period of time.

In this study, for each single PS, in order to remove noises, the time series

data of PS was firstly smoothed using a moving average filtering with a smooth

span of 5, given as:

vs(i) =
1

5
(v(i + 2) + v(i + 1) + v(i) + v(i − 1) + v(i − 2)) (5.3)

where v(i) is the velocity calculated from the ith interferogram from two con-

secutive SAR images, namely the number of records for time series data of each
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Figure 5.3: The algorithm of rendering new intensity level based on kriging-
interpolated velocity level v and current intensity level I mapped from landslide
inventory.

single PS. vs(i) is the smoothed velocity after average filtering. Then the maxi-

mum velocity was selected from the time series of velocity for each single PS, for

both ascending and descending orbits.

The intensity surface was then interpolated from the maximum velocity of

PS incorporating the geostatistical approach of kriging [ESRI, 2008; Stein, 1999],

with firstly quantifying the spatial structure of PS and subsequently performing

a spatial prediction of other areas uncovered by PS data. The model of kriging

employed the statistical relationships of spatial autocorrelation among the mea-

sured maximum velocity of PS for prediction of the surface. This was done by

calculating its empirical semivariogram which estimated the squared difference

between the velocity values for all pairs of PS locations.

The interpolated velocity surface was then classified into four classes: v4 (vel

> 10 mm/year), v3 (10 mm/year > vel > 4 mm/year), v2 (4 mm/year > vel >

2 mm/year), v1 (vel < 2 mm/year). These four classes of velocity were used to
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Figure 5.4: The landslide intensity map derived from the landslide hotspot map
in the Arno river basin

define the level of intensity by a comparison with the intensity level (I0 to I4,

with a significance of increasing intensity level) mapped by Catani et al. [2005b]

from the existing landslide inventory. The comparison is on the basis of the

classification matrix as indicated in figure 5.3. The intensity classification was

performed for both ascending and descending orbits, which were subsequently

merged into a unique intensity map based on the algorithm that higher intensity

classes are used if one pixel has both values from two orbits. The final derived

intensity map is displayed in figure 5.4.
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5.5 Vulnerability and exposure

The vulnerability is generally defined as a function of a given intensity, as the

expected degree of loss for an element at risk as a consequence of a certain event,

ranging between 0 (without damage) to 1 (full destruction) [Fell, 1994; Varnes,

1984]. Exposure instead is more related to the practical use of vulnerability,

usually considered as the number of lives or the value of properties exposed at

risk [Schuster and Fleming, 1986].

The selection of these elements at risk for vulnerability assessment in this

study was extracted based on the regional digital topographic maps at the scale

of 1:10000. Besides, it is on the basis of an updated CORINE land cover map

of 2002 at the scale of 1:50000 [Heyman et al., 1994]. A geodatabase of the

elements at risks was then built, including the exposure values and vulnerability

as a function of intensity which was previously determined. A detailed description

of this geodatabase regarding vulnerability and exposure can be found in table

5.3. The elements at risk were classified into five categories: building, complex,

road, railway and land cover. Each category was further subdivided according to

their practical uses which render the exposure and vulnerability value for each

element. For example, the complexes used for hospital and school are considered

more vulnerable than sport facility, thus receiving higher values for exposure and

vulnerability.

Table 5.3: Exposure and vulnerability for elements at

risk. V refers to vulnerability (%) as a function of inten-

sity I.
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Code Description Exposure

(euro/m2)

V (I0) V (I1) V (I2) V (I3) V (I4)

Building

201 Public, social, admin-

istrative building

3000 0 5 10 30 60

202 Industrial, commer-

cial building and

factory

1000 0 5 10 20 50

203 Religious building,

bell tower, tabernacle

4000 0 5 15 30 60

204 Building under con-

struction

100 0 5 15 30 40

205 Abandoned, ruined

building

10 0 5 20 50 60

206 Projecting body, por-

tico, loggia

100 0 5 10 20 40

207 Shed, kiosk 100 0 5 15 50 60

208 Awning, dormer win-

dow

10 0 5 10 20 40

209 Pressurized dome 10 0 5 20 50 60

210 Permanent green-

house

10 0 5 20 40 60

211 Tollgate, railway sta-

tion or stops

2000 0 5 10 30 50

212 Power station, power

substation, power

shed

2000 0 5 10 20 50

213 Monument 100 0 5 15 40 50
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215 Nursery greenhouse 10 0 5 20 40 60

216 Stable, barn/breeding

farm

10 0 5 15 40 60

217 Tower, chimney 100 0 5 15 40 50

218 Silo 10 0 5 15 40 50

219 Cross, tabernacle 1 0 5 10 30 40

Complex

223 Hospital complex 4000 0 5 10 50 70

224 School complex 4000 0 5 20 50 70

225 Sport facility 100 0 5 10 25 50

226 Religious building

complex

4000 0 5 15 50 70

227 Civil complex 4000 0 5 10 30 50

228 Cemetery complex 100 0 5 10 30 50

229 Campground, resort 100 0 5 20 50 80

Road

301 Highway 200 0 5 30 50 80

302 Regional highway 100 0 5 40 60 100

303 Provincial road 50 0 5 50 80 100

304 Local road 50 0 5 60 80 100

Railway

NA In use, bridge, > 2

platforms

300 0 5 10 50 100

NA In use, gallery, 2 plat-

forms

250 0 0 0 10 20

NA In use, bridge, 2 plat-

forms

250 0 5 10 50 100

NA In use, railway, > 2

platforms

200 0 10 30 70 100
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NA In use, railway, 2 plat-

forms

150 0 10 30 70 100

NA In use, gallery, 1 plat-

form

200 0 0 0 10 20

NA In use, bridge, 1 plat-

form

200 0 50 20 60 100

NA In use, street, 1 plat-

form

100 0 10 40 80 100

NA In use, railway, 1 plat-

form

100 0 10 40 80 100

NA No in use, bridge, 1

platform

20 0 5 30 60 100

NA No in use, railway, 1

platform

20 0 10 40 80 100

Land cover

111 Urban areas 50 0 5 20 30 60

112 Urban areas (discon-

tinued)

30 0 5 20 30 60

120 Industrial areas 30 0 5 20 30 60

131 Quarries 1 0 5 40 60 80

132 Landfills 1 0 5 30 50 70

133 Yard 1 0 5 20 30 60

140 Artificial green zone 5 0 5 30 50 70

210 Cultivated crops 2 0 5 30 50 70

221 Vineyards 4 0 5 50 70 90

222 Fruit yards 5 0 5 40 70 90

223 Olive groves 5 0 5 40 70 90

231 Grassland 1 0 5 20 40 50

240 Farm 2 0 5 40 60 70

310 Tree 2 0 5 20 40 60

120



320 Vegetation 1 0 5 20 30 50

330 Graze 1 0 5 10 20 30

400 Wetland 1 0 5 10 20 30

511 canal, waterway 1 0 5 10 30 60

512 water basin 1 0 5 10 20 40

5.6 Quantitative risk assessment

The quantitative risk assessment was performed with the direct application of

the equation 5.1 as indicated by Catani et al. [2005b]; Fell [1994]; Remondo et al.

[2008]; van Westen et al. [2006]; Varnes [1984]: Risk = Hazard×V ulnerability×
Amount. The calculation was fulfilled with each pixel with spatial resolution

of 10m, completed for five different times spans of 2, 5, 10, 20 and 30 years,

respectively. The final output is a 10m resolution landslide risk map with each

pixel indicating the amount of expected loss in euros. An overview of landslide

risk maps (2, 5, 10, 20, 30 years) is rendered in figure 5.5.

The total estimated economic loss is summarized in table 5.4, indicating the

potential losses (euro) in the upcoming 2, 5, 10, 20 and 30 years. In particular,

ca. 3.22 billion euro loss was expected in the upcoming 30 years in the whole

Arno river basin, due to the slow-moving landslides within the detection range of

PSI technique. The approximate losses for 20, 10, 5 and 2 years are respectively

2.72, 1.86, 1.14 and 0.54 billion euro. The increase of risk with time is nonlinear,

similar to that observed by Catani et al. [2005b].

Compared to the previous risk mapping conducted by Catani et al. [2005b],
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Figure 5.5: The landslide risk map estimated from landslide hotspot map in the
Arno river basin: (a) shaded relief map, (b)–(f) risk map for 2, 5, 10, 20, 30 years
respectively. See the corresponding number of losses in table 5.4.
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Table 5.4: Landslide risks (losses in euros) in the Arno river basin calculated from
PSI hotspot map for five time spans.

Time span (years) Expected economic losses (euro)
2 543,980,444,2
5 1,143,746,730
10 1,864,851,052
20 2,721,273,302
30 3,224,446,172

the risk value in this study is significant lower. Catani et al. [2005b] expected ca.

6 billion euro loss for 30 years whereas the estimation in this study is ca. 3.22

billion euro. Also, Catani et al. [2005b] predicted a 1.6 billion euro loss for the

upcoming 2 years, and in this study the prediction is around 0.54 billion euro. The

decrease of the predicted risk is due to the fact that the risk assessment performed

by Catani et al. [2005b] focused on all types of landslides in the inventory while in

this study only the slow-moving landslides were concentrated on. This decrease is

also reasonable because the major type of landslide in the Arno river basin is slow-

moving rotational slides (about 74%). Another reason of the lower estimated risk

is due to the limitation of PSI technique in areas without stable reflectors. This

causes a low density of PS and a underestimation of landslide hotspot quantities.

However, this limitation is expected to largely improved with these new processing

approaches and the increasing wide use of X-band SAR sensors such as COSMO-

SkyMed and TerraSAR-X.

5.7 Conclusion

This chapter primarily deals with a novel approach of quantitative landslide risk

assessment using landslide hotspot map, the derivative from long-term InSAR
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and PSI-HCA processing. The approach was developed and applied in the case

study area of the Arno river basin. This quantitative landslide risk assessment

provides a platform for comparing the derivatives of two semi-automatic landslide

detection and mapping approaches: OOA for rapid-moving landslide mapping

and PSI-HCA for slow-moving landslide detection. Since the application of OOA

outputs, landslide inventory, in quantitative landslide risk assessment, has already

been extensively developed, this study aims at filling a gap for another semi-

automatic landslide detection approach of PSI-HCA for landslide risk mapping.

This quantitative risk assessment was based on the equation as introduced by

Catani et al. [2005b]; Fell [1994]; Remondo et al. [2008]; van Westen et al. [2006];

Varnes [1984]: Risk = Hazard × V ulnerability × Amount. The approach was

benefited from the case study area of the Arno river basin, thanks to the avail-

ability of large dataset necessary for hazard, vulnerability and exposure (amount)

assessment. In particular, a susceptibility map completed by Catani et al. [2005b]

using ANN predictor was included in this study, subsequently combined with the

kernel density values of the hotspot map, for a generation of landslide hazard

maps for 5 temporal predictions of 2, 5, 10, 20 and 30 years. Besides, a landslide

intensity map was determined by the velocity map interpolated from the maxi-

mum velocity of PS time series data using ordinary kriging method. With given

intensity, elements at risks were extracted from a regional digital topographic

map and a CORINE land cover map. The result of risk mapping was displayed

for 2, 5, 10, 20 and 30 years. Particularly, an expected loss of ca. 3.22 billion

euro was estimated for the upcoming 30 years.
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Chapter 6

Discussion

6.1 OOA for landslide mapping

6.1.1 Segmentation optimization procedure (SOP)

Esch et al. [2008] have proposed a multi-level segmentation optimization proce-

dure (SOP), which iteratively compares the spectral characteristics of image ob-

jects generated with multiple scales. A simplified version of this approach which

uses less spectral information and automatically-derived threshold was used in

this study.

Since the approach was trained and tested on images by the same sensor,

a major research question is, is this SOP approach only data-specified, or it is

also problem-specified for landslide object segmentation? That is, since the case

study of Messina event was using Quickbird imagery, the proposed multi-scale

optimization only works on this imagery or it is also possible to work well in

other imageries? To answer this question, it should be understood what is the
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Figure 6.1: The performance of segmentation optimization procedure (SOP) with-
out any modification in IKONOS image of Wenchuan, China: (a) the IKONOS
imagery (3-2-1), (b) the result of image segmentation using SOP, (c) a detailed
view of segmentation for a small landslide, (d) a detailed zoom of segmentation
for a large landslide.
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principle inside SOP. Since SOP is processed on multi-spectral NIR and red bands,

a minimum requirement should be that the image contains these two bands.

For images with similar multi-spectral bands and spatial resolution, such as

IKONOS imagery, the SOP approach can be directly used without any change.

One example of applying SOP in IKONOS is presented in figure 6.1. The cover-

age area is in Wenchuan, China, which contains totally different geological and

morphological settings from Messina. The SOP algorithm was directly used for

this image segmentation without any change. The result indicates the good per-

formance also on this IKONOS image from a different area. It shows that both

small (figure 6.1(c)) and large landslide (figure 6.1(d)) can be well segmented.

For the imagery with lower spatial resolution, although the over- and under-

segmentation can be to some extent reduced with this fully automatic SOP ap-

proach, in order to get the optimum segmentation, it is suggested to include

other segmentation participation. Figure 6.2 shows the application of SOP in

10m ALOS AVNIR multi-spectral bands for segmentation. It is indicated in fig-

ure 6.2(a) that by directly applying SOP without modification, over-segmentation

can be reduced, but slightly. As illustrated in figure 6.2(b), in order to get an

improved segmentation, it is better to include a spectral difference segmentation

[Definiens, 2010], with given multi-resolution scale of 7 and spectral difference

scale of 11. However, this requires an intensive manual participation for a selec-

tion of optimal scale.

Therefore, it can be concluded the developed SOP is problem-specified: for

the purpose of reducing over- and under-segmentation during the segmentation

of landslide objects. The approach is working well for the imagery with similar

spatial and spectral resolution. The segmentation algorithm is possible to be fully
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Figure 6.2: The performance of segmentation optimization procedure (SOP) in
10m ALOS AVHIR imagery in Wenchuan China for all multi-spectral bands
(landslides in brown) using: (a) fully automatic approach; (b) the involvement of
spectral difference segmentation with manual participation.
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automatically used to get the good segmentation. However, the performance of

SOP might be decreased for image with lower resolution. In this case, although

the under- and over-segmentation is possibly to be reduced, it is better to involve

other approaches for a further improvement in image segmentation.

6.1.2 Principal component analysis (PCA) for

change detection

In this study, the change detection was performed based on principal compo-

nent analysis (PCA). The principle of change detection using PCA is based on

the transformation of multi-spectral images before and after the change into a

different intensity space: the principal component images in relation to large

eigenvalues are considered the unchanged part of the images, and minor com-

ponent images refereing to smaller eigenvalues to changed parts of the images

[Radke et al., 2005]. In particular, the 4th principal component was used for the

detection of ’change’ component, based on the membership function calculated

from 10 selected samples. The approach of employing the 4th principal com-

ponent is working well in the case study of Messina. However, the question is,

considering that PCA is content specified, is the selection of the 4th principal

component useful for its generic use of change detection?

This has been discussed by previous publications (e.g. Jensen [1996]; Niemeyer

et al. [1999]; Radke et al. [2005]) that it is difficult to underhand which component

can represent change without a visual interpretation of PCA components. It

is mentioned by Gong [1993] that changed regions can be detected from the

first or second principal components, however this is not justified in our study.
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Figure 6.3: The performance of change detection using: (a) subtractive NDVI
and (b) PCA.

Nevertheless, it can be generally agreed that the PCA is a generic feature for

change detection, although a training area is preferred to be defined in OOA so

as to identify the appropriate component and threshold. It is in so far generic as

that the PCA can accommodate information from any kind of sensor.

Compared to other change detection approaches, PCA has several advantages

especially useful for OOA. The importance of normalized difference vegetation in-

dex (NDVI) for landslide detection is emphasized in several literatures [Lin et al.,

2004, 2005, 2006; Rau et al., 2007]. Thus, change detection for landslide map-

ping is possibly performed with subtractive differencing of NDVI. However, the

derived subtractive image is not suitable for analysis at the object level because

the pixel values for an object are not always uniform, thus tending to be very

’noisy’. Instead, PCA-based ’change’ component minimizes these kind of noises

because the calculation is based on the intensity space for image transformation.

Therefore, for previous principal components, less noises are contained because

they are transformed into last components. An example of comparing subtractive
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NDVI and PCA is displayed in figure 6.3 for a zoom of debris flows in Messina.

Similar to PCA, there is another image transform approach of Minimum Noise

Fraction (MNF, figure 6.4). MNF employs an approach of transformation similar

to PCA however it considers noise fraction which is defined as the ratio of the

noise variance to total variance for each band [Green et al., 1988]. MNF actually

includes two cascaded steps of PCA [Phillips et al., 2009; Sesnie et al., 2008; Wu

and Murray, 2003]. First step, aiming at separating noises from signals, employs a

PCA transformation with a calculation of noise covariance matrix and subsequent

processing of noise decorrelating and rescaling. Second step is a noise-adjusted

PCA which is carried out using standard transformation on previous derived

noise-whitened data.

Although MNF has been reported as an advantage of reducing signal to noise

ratio (SNR) in the process of data transformation [Phillips et al., 2009; Wu and

Murray, 2003], it shows some limitations in OOA change detection. Firstly, in

terms of change detection, the output of PCA is aligned by the variance of each

component with the increasing order of components. MNF however is more focus-

ing on reducing noises level of all 8 input layers, thus ordering the transformed

components as decreasing image quality instead of maximum component vari-

ance. As a result, change information contained within these reduced ’noises’ is

accordingly removed or transformed to higher order components but containing

more noises. In the case of Messina, the change component would chosen as 5th

component. The 4th contains very less information about the change of land-

slides (referring to figure 6.4). Secondly, due to the minimization of SNR, MNF

renders lower variance between ’change’ and ’non-change’ objects inside the mi-

nor component. Therefore, with lower data variability, it renders the difficulty in
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Figure 6.4: The change detection using Minimum Noise Fraction (MNF): (a)-(h)
the 1st to 8th transformed components.
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selecting representative samples and generating corresponding membership func-

tion for landslide objects, thus introducing another error source of classifying

landslide candidate objects.

6.1.3 GLCM mean from DTM

In order to perform a textural analysis of landslide candidate objects, in this

study the gray-level co-occurrence matrix (GLCM) mean was calculated based

on the GLCM (i, j), with a consideration of neighboring pixels in all directions

(0◦, 45◦, 90◦, 135◦) , written as:

m =
N−1∑
i,j=0

i(Pi,j) × 100 (6.1)

or alternatively written as:

m =
N−1∑
i,j=0

j(Pi,j) × 100 (6.2)

where Pi,j is the normalized value of cell (i, j) in GLCM of DTM. N is the column

or row number of GLCM. Both two equations can be used for the calculation,

considering that the GLCM is symmetrical, namely i = j.

The purpose of GLCM mean is to remove false positives with low-frequency

elevation variation whose GLCM mean values are lower than objects with high-

frequency elevation variation. For instance, an object with no elevation variation,

namely flat and obviously not landslides because of no elevation changes, has a

GLCM mean value of 100, according to the definition of GLCM mean mentioned

above. In this study, the threshold to remove these false positives of low-frequency
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Figure 6.5: A 3D view of raw LiDAR points in the study area. The raw data
suffers the problem of a bunch of off-terrain points such as those high-voltage
lines in the sky (yellow arrow).

elevation variation was set as GLCM mean < 126.7.

The usefulness of this GLCM mean estimation is dependent on the quality of

DTM. A DTM with rough resolution might decrease the utility of this approach,

although it should also dependent on the dimension of landslides and the scale of

landslide mapping. For this reason, a 1m resolution LiDAR DTM was preferred

to be utilized in our study.

Future improvements for GLCM mean using LiDAR DTM should involve an

inclusion of robust pre-filtering of LiDAR point clouds, for the purpose of elimi-

nating off-terrain points, such as trees, houses and other disturbing objects (e.g.

figure 6.5). A promising method is hierarchical robust interpolation (HRI, Briese

et al. [2002]; Pfeifer et al. [2001]), embedded in SCOP++ software environment.
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Figure 6.6: An example of DTM before (up) and after (bottom) hierarchical
robust interpolation. This method enables a removal of off-ground targets from
the ground surface. The example was used from Briese et al. [2002].
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HRI allows an automatic generation of DTM from irregular distributed LiDAR

point clouds, with off-terrain points eliminated and error reduced, such as the ex-

ample illustrated in figure 6.6. Moreover, Razak et al. [in press] have developed a

’landslide filter’ which is especially developed for automatic bare-earth extraction

filtered from LiDAR point clouds for the purpose of landslide visualization. With

an integration of these described methods, the textural analysis using GLCM

mean can be effectively performed on the elevation data for a detection of land-

slide candidate objects.

6.2 PSI-HCA for landslide detection

6.2.1 Reference point

The reference point, the conventional stable point against which all other PSI

displacements are measured, is very important for multi-interferometric process-

ing and it should be carefully chosen. A high quality reference point is selected

based on radar phase stability. Reference point has preferentially to be selected

in the middle of a scene because the precision of the velocity estimation decreases

with the increased distance to the reference point itself, due to an increment of

relative atmospheric disturbance signals [Motagh et al., 2007]. Also, the height of

the reference point should be accurately defined because its accuracy influences

directly the uncertainty of PS location. In addition, since the reference point

is considered as motionless, it should be selected in a stable area. In case of

complicated regional settings areas, a set of locally stable reference points can

be separately chosen in order to overcome the difficulty in unwrapping the entire
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Figure 6.7: An example of selecting reference point in unstable area in Pistoia-
Prato-Firenze basin.

scene using only a single reference point [Parcharidis et al., 2009]. In all, the

selection of a reference is crucial for accurate PSI processing, considering that all

rates and time series of PS are determined through this choice.

Figure 6.7 shows an example of a badly-chosen reference point. In this case,

the reference point is selected in the unstable area of the Pistoia-Prato-Firenze

basin which has long-term problems of subsidence. As a result, the derived PS

data from this reference point is biased (figure 6.8). Due to the fact that this

reference point is not motionless, these derived PS datasets show that the subsi-

dence region is stable. This example illustrates how important a careful selection
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Figure 6.8: The derived PS result from the reference point in figure 6.7

of PS reference point is.

PSI-HCA nevertheless decreases the dependence on the reference point, thus

reducing the effect of badly-chosen reference point. This is because the fundamen-

tal part of this approach is the Getis-Ord Gi
∗ statistic which compares weighted

local averages to global averages for hotspot detection [Getis and Ord, 1992, 1996;

Ord and Getis, 1995]. The hotspot is defined as a geographical area where there

is a statistically significant level of PS clustering with high velocities. It means

that the approach estimates whether local high positive values or low negative

values tend to be clustered, with consideration of global PS dataset. Thus, PSI-

HCA is an approach of relative computation. Since PS velocity is also a relative
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estimation with respect to the velocity of a reference point, the hotspot analysis

is less dependent on the stability of reference point. The high positive velocity

PS will be clustered as a hotspot with high positive Gi
∗ values whereas the low

negative velocity PS will be clustered as a hotspot with low negative Gi
∗ val-

ues. However, the usefulness of Gi
∗ statistic does not decrease the importance of

choosing reference point with good quality. The difficulties in atmosphere distur-

bances, location uncertainty and regional settings mentioned above cannot really

be smoothed using the spatial statistics analysis. To obtain a high quality PSI

measure, a great care about the selection of suitable reference point should be

taken during the processing.

6.2.2 PS density

The PS density determines the usefulness of PSI-HCA in landslide detection.

Current difficulty of PSI-HCA is that the density of PS in hilly and mountainous

areas can not always be ensured. This is because of lacking stable reflectors in

rural areas. The case study of the Arno river basin can be properly carried out

because the area is highly urbanized, thereby rendering PS density of 31 PS/km2

for ascending data and 32 PS/km2 for descending data even after the masking

of flat urbanized areas. Nonetheless, how to improve PS density in mountainous

areas without stable reflectors remains a critical concern for PSI-HCA and current

advances in the research of long-term InSAR makes this improvement promising.

Firstly, the new generation of high resolution SAR images with short wave-

length of X-band (e.g. COSMO-SkyMed and TerraSAR-X) enables a huge im-

provement in PS density. figure 6.9 indicates ca. 10 times improvement in PS
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Figure 6.9: A comparison of PS density between C-band (RADARSAT) and
X-band (TerraSAR-X) data. The image is acquired from Ferretti et al. [2010].

density of X-band TerraSAR-X data over C-band RADARSAT data [Ferretti

et al., 2010]. Moreover, Crosetto et al. [2010] performed a comparison of PS

density between C-band and X-band data in the city of Barcelona: the density

of PS derived from X-band TerraSAR-X images is ca. 40 times of that from C-

band ERS-1/2 and Envisat images. The high density of PS reached by X-band

TerraSAR-X images even allows a 3D distribution of PS over the structure, as

illustrated in figure 6.10.

In addition, several efforts have shown the possibility of increasing PS den-

sity through the processing technique improvement, such as the SqueeSARTM

technique developed by [Novali et al., 2009] which performs a filtering over ho-
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Figure 6.10: The high density PS derived from high resolution X-band SAR
images enables a 3D distribution over structures (Barcelona, Spain) [Crosetto
et al., 2010].

mogeneous areas to enhance SNR. The SqueeSARTM technique is on the basis

of accurate coherence matrix estimation which compares adjacent pixels with the

Kolmogorov-Smirnov test, so as to derive ’squeezed’ parameters of InSAR. Fig-

ure 6.11 shows how the utilization of SqueeSARTM contributes to the increasing

density of PS data.

In all, the usefulness of PSI-HCA can be largely increased with the devel-

opment of new X-band SAR satellite platforms and the improvement of data
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Figure 6.11: A comparison between PSInSARTM and SqueeSARTM shows an
increasing point density for the latter, especially in the non-urban areas [Novali
et al., 2009].
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processing technique to extract the stable benchmarks.

6.3 PSI hue and saturation representation

6.3.1 Concept

PS are usually integrated in a geographic information system (GIS) as a stan-

dard point-based map, using color coding on their velocities. However, for this

representation, the measurement of displacements is always along LOS, with an

incidence angle of 37◦ for RADARSAT PS used in this study. Moreover, PS

data has to be displayed with a separation of ascending and descending data

(e.g. figure 6.12), such as the RADARSAT dataset in this study for PSI-HCA

approach.

Here the PSI-HSR (PSI Hue-Saturation Representation), a new method for

representing PSI point targets using the hue-saturation scale, is introduced. The

aim was to render a unique color for each PSI point target, based on a combination

of displacements assessed along two different lines of sight. PSI-HSR provides a

straightforward way to describe ground movement. To demonstrate the usefulness

of this approach, an example of detecting ground subsidence in the Pistoia-Prato-

Firenze basin is presented. PSI-HSR has several advantages:

1. It synthesizes the displacement vectors from both ascending and descending

orbits.

2. It provides a way to display both PS velocity and PS moving direction

on an East-West-Zenith-Nadir plane, within a standard point-based map

containing numerical information on hue and saturation.
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Figure 6.12: The Pistoia-Prato-Firenze basin: a PS (RADARSAT, 2003 to 2006)
point-based map described by a color ramp on velocity, with the separation of
(a) ascending and (b) descending data.
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3. The PS velocity is calculated not only along the line-of-sight (LOS) but also

ranging from 0◦ to 360◦.

4. It offers the possibility to combine PS from different orbits and satellites

together.

5. It provides a clearer and more straightforward visualization of ground move-

ments.

6.3.2 Test area and data used

The Pistoia-Prato-Firenze basin in central Italy was selected as the test area.

As a result of intensive groundwater withdrawal in past decades, the area is

suffering from intense subsidence, with the monitored deformation rate reaching

30 mm/year during the period from 1992 to 2001 [Canuti et al., 2005, 2006]. PSI-

HSR was applied in this area so as to confirm the existing subsidence. Meanwhile,

the previous mapping results can be an alternative way to validate the usefulness

of PSI-HSR.

In this study both ascending and descending PS derived from 48 RADARSAT

images (from 2003 to 2006) were available for the basin. Because of urbanization,

the PS density has reached 281 PS km2 for descending data and 288 PS km2 for

the ascending orbit. The data were processed by Tele-Rilevamento Europa (TRE)

using the PSInSAR technique on behalf of the Arno River Basin Authority.

6.3.3 Methodology

PSI-HSR introduces two new ideas: (1) the use of the hue-saturation color scheme

and (2) the synthesis of ascending and descending components.
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Figure 6.13: The hue-saturation wheel plotted on the East-West-Zenith-Nadir ac-
quisition geometry. The moving direction of a displacement vector is represented
by a hue value ranging between 0◦ to 360◦, with 0◦ starting from the nadir. The
displacement rate is represented by a saturation value ranging from 0 to 100. This
representation is suitable for a synthesized displacement V, which is the addition
of ascending (Va) and descending (Vd) displacement components. θ1 and θ2
refer to the incidence angles of the ascending and descending orbit, respectively.
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The color scheme of HSI (hue, saturation and intensity) is applied in PSI-HSR.

The idea is to allocate a unique color to each PSI point target with a different

displacement rate and moving direction. The intensity value is assigned to a

constant value, in this study with a maximum value of 100. The hue-saturation

wheel is used and integrated in the acquisition geometry of the East-West-Zenith-

Nadir, covering both ascending and descending displacement components (figure

6.13). The moving direction is represented by the hue value, which ranges from 0◦

to 360◦, and the moving velocity is interpreted by the saturation value, ranging

from 0 to 100. Using this color scheme, both displacement rate and moving

direction can be displayed in a single standard point-based map.

For the traditional method, as illustrated in figure 6.12, the displacement

rates of each single PSI point target are only calculated along the line-of-sight

(LOS). Inspired by the flexible representation of the moving direction in the

hue-saturation wheel, the concept of a synthesized displacement is introduced

(figure 6.13). In the satellite acquisition geometry, a synthesized displacement

V is the addition of ascending component Va and descending component Vd.

As a result, each single synthesized displacement V combines PS information

provided by both ascending and descending orbits, with a synthesized moving

direction ranging between 0◦ and 360◦. In the test area of Pistoia-Prato-Firenze

basin, an array of synthesized points is created, with a spatial interval of 100m,

which is the average autocorrelation distance measured in PS velocity. For each

single point, Va and Vd are respectively calculated based on the average value of

neighboring ascending and descending PS, with a Euclidean searching distance

of 100m. Its synthesized displacement V is calculated as the vector sum of Va

and Vd, represented by the hue-saturation wheel indicated in figure 6.13.
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6.3.4 Result interpolation

Compared to the traditional map (figure 6.12), PSI-HSR outputs (figures 6.14

and 6.15) overcome the limitation that ground displacements are only measured

along the LOS. A movement within an East-West-Zenith-Nadir plane can be

described flexibly, without the separation of the ascending and descending maps.

Thus, PSI-HSR enables a spatially detailed mapping of ground deformation and

uplift in the Pistoia-Prato-Firenze basin. In figure 6.14, the saturation stands

for the logarithm of the moving velocity. A velocity smaller than 1 mm/year is

classified as zero saturation because it refers to a stable condition. In figure 6.15,

for an easier visualization, the color wheel is divided into 61 classes, according

to different moving directions and displacement rates. Both figures 6.14 and 6.15

confirm the different spatial patterns of terrain subsidence in several industrial

areas investigated by Canuti et al. [2005, 2006]; Colombo et al. [2003]; Raucoules

et al. [2002]. The subsidence boundary and zonation can be clearly mapped,

based on a homogeneous transition in the hue-saturation color wheel (in the map

from yellow in the west to magenta in the east). Figure 6.14 shows the ground

movement more continuously than figure 6.15 because of the detailed definition

in its legend. However, the legend of figure 6.15 provides the alternative of an

easier interpretation on moving velocities, with a monitored deformation up to

40 mm/year. Other than subsidence, some uplift motions (areas shown by a blue

color) can be clearly observed using the PSI-HSR approach. Future improvements

should involve some field data measured from Observation Stations in the study

area.
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Figure 6.14: The subsidence and uplift in the Pistoia-Prato-Firenze basin, dis-
played by synthesized PS using PSI-HSR. Each point contains numerical infor-
mation of hue and saturation values, and it can be located on the hue-saturation
wheel. The saturation stands for the logarithm of velocity. Velocities < 1
mm/year are classified as zero saturation.
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Figure 6.15: The subsidence and uplift in the Pistoia-Prato-Firenze basin, de-
tected by synthesized PS using PSI-HSR. The color wheel is divided into 61
classes according to different moving directions and displacement rates.
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6.3.5 PSI-HSR for landslide studies

The Pistoia-Prato-Firenze basin is suitable for PSI-HSR. The high density of PS

is ensured by a large number of stable reflectors such as buildings and infrastruc-

tures. However, for landslide studies, the area with low-density PS can limit the

usefulness of PSI-HSR because of insufficient points for calculating the synthe-

sized vectors. The C-band RADARSAT PS employed in this study is still not

sufficient for a representation using PSI-HSR to characterize spatial and geomor-

phometric properties of landslides. Nevertheless, the approach is promising for

the near future, especially with the rapid development of a new generation of

X-band satellites such as COSMO-SkyMed and TerraSAR-X, which can greatly

increase the PS density because of an improvement in resolution [Bamler et al.,

2006]. Also, the utilization of SqueeSARTM technique mentioned by [Novali

et al., 2009] can largely increase the density of scatterers. In addition, with the

concept of synthesized PS, it is possible to integrate ascending and descending

data acquired from different sensors, with known incidence angles. Thus, PSI-

HSR provides the possibility of displaying PSI outputs from different satellites in

the same point-based map. Therefore, the application of PSI-HSR in landslide

studies is very promising.

6.4 Landslide risk mapping from PSI-HCA

In chapter 5, a new approach for quantitative landslide hazard and risk assessment

was developed, using the long-term InSAR derivative of landslide hotspot map

as the input. In the case study of the Arno river basin, approximately 0.54, 1.14,

1.86, 2.72 and 3.22 billion euro losses were estimated from slow-moving landslides
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within the detection precision of PSI technique, for the upcoming 2, 5, 10, 20 and

30 years, respectively.

The uncertainty of this approach for landslide risk assessment results from the

detection error of PSI-HCA. As mentioned in chapter 4, although the flat areas in

the Arno river basin were masked and the analysis was exclusively performed in

the mountainous and hilly areas, the usefulness of PSI-HCA can be decreased due

to the existence of other geophysical processes which can be detection by PSI tech-

nique. For example, red hotspots indicating moving direction away from LOS can

be recognized as ground motions due to subsidence [Canuti et al., 2007; Ferretti

et al., 2000; Massonet et al., 1997], sinkholes [Al-Fares, 2005; Ferretti et al., 2004],

building consolidation [Stramondo et al., 2008], erosion [Smith, 2002], tectonics

[Buergmann et al., 2006; Colesanti et al., 2003; Massonet et al., 1994; Vilardo

et al., 2009] and underground works related to tunnelling or mining activities

[Perski, 1998]. In addition, blue hotspots suggesting moving direction towards

LOS can be associated with ground movement because of uplift due to fluid

injection [Doubre and Peltzer, 2007], excavation or abandonment of buildings,

sedimentation of rivers [Smith, 2002] and tectonics again. These phenomena ren-

der different spatial, temporal probability and intensity from landslides. Also, for

each element at risk, its vulnerability and exposure to these hazards are consid-

ered to be diverse. Failing to eliminate these factors can lead to an overestimation

of expected losses for landslide risk assessment. As a result, further improvements

should include an approach to remove those mis-detected hotspots.
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6.5 Landslide risk management

The rapid development of remote sensing has brought the significant improve-

ment in landslide hazard analysis: diverse data sources, sophisticated processing

techniques and extensive applications. However, how to transfer the knowledge of

remote sensing technique into the operational institutions and the general public

remains a critical problem, considering that they are not expected to have the

sufficient knowledge of landslide hazard identification and risk assessment. This

requires an effective risk management which helps the operational institutions

and the general public to understand how to deal with landslide hazard and risks

with a variety of strategies, for the purpose of minimizing future damages as well

as losses of lives. Also, a quantitative landslide risk assessment is crucial if the

risk management has to be judged quantitatively. A framework and guideline

for landslide risk assessment and management was proposed by Fell et al. [2005,

2008], as displayed in figure 6.16.

Dai et al. [2002] has summarized landslide risk management concerns into five

separated branches: planning control, engineering solution, acceptance, monitor-

ing and warning systems, and decision-making. First, for the planning control,

remote sensing plays an important role for providing relevant information for risk

management. For example, in this study, the landslide hotspot map generated

from PSI data highlights those landslide-prone areas where potential slow-moving

landslides exist however could easily be neglected due to few observed damages.

Also, a landslide hazard zonation map is beneficial for regulate, prohibit and

minimize in landslide-prone areas. Second, for engineering solution, an example

of successful risk management in Carbonile village has already been mentioned in
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Figure 6.16: Guideline and framework for landslide risk management as proposed
by Fell et al. [2005, 2008].
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chapter 4. After the detection of mass movements from PS data, several remedial

works of drainage collectors, trench drains and sheet piles were installed in order

to stabilize slopes for risk mitigation, with an integration of correction of the un-

derlying unstable slope and a control of the landslide movement. Third, in terms

of the acceptance of landslide risks, it is difficult to be judged from remote sensing

techniques. A major difficulty is that it is not easy to judge tolerable risk directly

from remote sensing data or techniques. Dai et al. [2002] used frequency-fatality

curve to define the threshold for acceptable risks, however it involves a degree of

uncertainty in the analysis. Whether the landslide risk is tolerated or not is not

reliably determined from remote sensing. Fourth, for the monitoring and warning

systems, this represents the major advantage of remote sensing technique as re-

viewed in chapter 2. Especially for the real-time monitoring and warning system,

ground and satellite-based InSAR is increasing their uses in recent years. Other

useful techniques of landslide warning system for observing landslide kinematics

include GPS, long-range terrestrial laser scanning and terrestrial oblique optical

images. However, although the technique is developed quite well in monitoring

and warning system, improvement should be focused on how to formulate the cri-

teria for distributing warning messages and making evacuation plans. Finally, for

decision making, although it exceeds the objective of remote sensing, providing

a cost-benefit analysis for remote sensing technique could facilitate the commu-

nication between technicians and decision makers, thus bringing the science into

society.
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Chapter 7

Conclusion

Remote sensing is a valuable tool for landslide researches. In this study, two semi-

automatic approaches for landslide rapid mapping and detection through remote

sensing data were introduced. These two approaches focus on two different types

of mass movements: (1) rapid-moving shallow landslides and debris flows, and

(2) slow-moving deep-seated landslides.

The first approach, which is based on a recently developed technique of

Object-Oriented Analysis (OOA), aims at a semi-automatic preparation of polygon-

based landslide inventory for rapid-moving landslides. The usefulness of this OOA

approach was demonstrated on the Messina landslide event in southern Italy that

occurred on 1 October 2009. Two VHR optical imageries of QuickBird were uti-

lized for the analysis. At the beginning stage, a fully automatic image segmen-

tation with multi-scale optimization was performed on the post-event QuickBird

imagery. The purpose is to maximally reduce the over- and under-segmentation

for an automatic delineation of landslide objects, and meanwhile avoid a time-

consuming ’trial and error’ estimation of the optimal segmentation parameters
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which has featured most OOA approaches in the past studies. The following ap-

proaches were accomplished with several spectral and textural analysis. Firstly,

a change detection analysis was carried out based on the Principal Component

Analysis (PCA) on stacked multi-spectral bands from both pre- and post-event

QuickBird images. Landslide candidates were initially determined from 4th prin-

cipal component through the membership function calculated from 10 selected

samples of landslide objects. Besides, the derived 2nd principal component can

be used to remove false positives of roads, infrastructures, deforestation areas and

water. Secondly, a spectral anomaly detection was performed on pre-event im-

agery using Reed-Xiaoli anomaly Detector (RXD) in order to exclude those spec-

tral anomalies that has already existed before the landslide occurrence. Thirdly,

a spectral matching image between the pre- and post-event images was created

using Spectral Angle Mapper (SAM) so as to remove false positives of subtle

spectral changes from the change of spectrum vector direction. Finally, a textu-

ral analysis using Grey Level Co-occurrence Matrix (GLCM) mean was performed

on an additional 1m LiDAR DTM acquired shortly after the event. The aim is to

topographically eliminate those false positives with low-frequency elevation vari-

ation. The whole approach, which targets at a minimum manual participation,

was developed in a training area of Altolia and implemented with any modifica-

tion in a larger independent testing area of Itala. This OOA approach enables

a successful mapping of 198 newly-triggered landslides, with the user’s accuracy

of 81.8% and producer’s accuracy of 69.5% for the number of landslides, and the

user’s accuracy of 75.9% and producer’s accuracy of 69.9% for the spatial extent

of mapped landslides.

The second approach, the Persistent Scatterers Interferometry Hotspot and
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Clustering Analysis (PSI-HCA), which is calculated based on two spatial statis-

tics analysis of the Getis-Ord Gi
∗ statistic and kernel density estimation on PSI

point targets, makes possible a detection of slow-moving mass movements within

the detection precision of millimeters. The output of this PSI-HCA approach is

the hotspot map indicating where potential slow-moving mass movements exist,

rendered with two different colors according to different moving directions along

LOS. In particular, red hotspots indicate potential landslides moving away from

LOS whereas blue hotspots suggest mass movements towards LOS. The PSI-HCA

approach gains its benefit from an integration of both PS velocity and spatial dis-

tribution. When the flat area was masked out and only PS in mountainous and

hilly areas were concentrated, PSI-HCA shows its potential in the detection of

extremely slow-moving landslides. The major difficulty of PSI-HCA results from

the ground movement related to other geophysical processes that could be also

identified by the detected displacements. These false detections mainly exist in

the blue hotspots indicating mass movement towards LOS. Notwithstanding this

difficulty, PSI-HCA shows its usefulness in an efficient detection of slow-moving

landslides within a large area from huge amount of PS data, which is considered

to be updated even more frequently with the advent of new generation of short

wavelength X-band satellite platform.

The output of PSI-HCA was further included in a quantitative landslide haz-

ard and risk mapping. The purpose is to quantitatively assess landslide risks

from the information provided by landslide hotspots, thus making possible a

comparison at the risk level between two semi-automatic landslide detection and

mapping approaches: OOA for rapid-moving landslide mapping and PSI-HCA

for slow-moving landslide detection. Based on the previously derived landslide
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susceptibility map accomplished by Catani et al. [2005b] using ANN predictor,

landslide hazard maps for five temporal predictions of 2, 5, 10, 20 and 30 years

were produced by classifying the kernel density values of the hotspot map. In

addition, for each PS, maximum velocity was calculated from its smoothed time

series record and these maximum velocities were subsequently interpolated into a

prediction map using ordinary kriging approach. With given intensity, elements

at risk were extracted from the updated CORINE land cover map and the re-

gional digital topographic map. The risk was calculated for 2, 5, 10, 20 and 30

years with the exposure of losses estimated in euro. In particular, approximately

3.22 billion euro losses were expected for the upcoming 30 years due to these

slow-moving landslides as indicated in the hotspot map.

Future improvements should be focused on the following aspects. First, the

segmentation approach for OOA can be further improved. Although current ap-

proach of image segmentation with multi-scale optimization is fully automatic,

and can largely reduce the over- and under-segmentation of landslide objects, it

is still facing the difficulty in completely delineating each single landslide object.

More sophisticated statistical methods for image segmentation optimization as

well as region growing are expected. Second, current selection of thresholds is pri-

marily based on attempts of ‘trial and error’, thereby limiting the approach to be

fully automatic. Further researches can be concentrated on an automatic thresh-

old definition from the statistics analysis of different input layers in OOA. Third,

how to decrease the cost of OOA approach should be taken into consideration.

Since the current study employs VHR optical images, further attempts can be

performed on mid-resolution optical images such as ASTER imagery which offers

a large deduction of cost. Fourth, in future studies it is possible to include robust
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filtering algorithm for raw LiDAR point clouds to eliminate those off-terrain sig-

nals, thus enabling an automatic bare-earth extraction for textural analysis using

GLCM mean in OOA. Fifth, for the approach of PSI-HCA, the priority concern

should be given to the efforts to increase the PS density. One solution is to pro-

cess high resolution X-band SAR images in order to get more stable benchmarks.

Alternative approach is to filter the interferograms over homogeneous area for the

purpose of enhancing signal to noise ratio. Sixth, a better spatial definition of

the Gi
∗ statistic parameterizations (e.g. by spatially distributing di values) and

the possible inclusion of some series in spatial averaging schemes is preferred in

the future work of PSI-HCA. Seventh, a novel approach of representing PS using

hue and saturation scale can be promisingly involved in the future. With given

density, the future hotspot and clustering analysis can be performed on the hue

and saturation values in order to get the spatial clustering of moving direction

and velocity. Finally but not the least, more attentions are needed to be paid

to landslide risk management after hazard and risk analysis. In particular, the

improvements should be focused on those efforts to increase the communication

between researchers and decision makers, and those attempts to bring the science

into society for an extensive public participation.
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