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Logic will get you from A to B. 

Imagination will take you everywhere. 

 

Albert Einstein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Gaia 
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Glossary 
 

ADM: Acellular Dermal Matrix 

BM: Barrier Membrane 

CAF: Coronally Advanced Flap 

CAL: Clinical Attachment Level  

CRC: Complete Root Coverage  

CrI: Credibility Interval 

CTG: Connective Tissue Graft 

DC: Direct Comparison 

EMD: Enamel Matrix Derivative 

FE: Fixed-Effect 

HF-DDS: Human Fibroblast-Derived Dermal Substitute 

IC: Indirect Comparison 

KT: Keratinized Tissue 

KL: Kullback-Leibler distance 

LogOR: Log Odds Ratio 

MTC: Mixed Treatment Comparison 

NM: Network Meta-analysis 

OR: Odds Ratio 

PRP: Platelet-Rich Plasma 

RecRed: Recession Reduction 

RE: Random-Effect 

SD: Standard Deviation 

SM: Standard Meta-analysis 
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Introduction 
 

 

 

 

Meta-analysis is a statistical method for quantitatively synthesizing evidence 
from multiple trials with the aim of obtaining overall pooled effect estimates. 
This method was initially developed more than a century ago by Karl Pearson 
(1904), but in the last 30 years the impact of meta-analysis has grown 
definitly. Standard meta-analytic methods typically synthesize evidence of 
studies that compare directly, head-to-head, two (or more) interventions. As 
the number of available treatments increases, the number of possible pair-
wise comparisons increases quadratically. In absence of all possible direct 
comparisons of treatments from single trials and in order to allow indirect 
evidence to be included in a single analysis,  Network Meta-analysis was 
developed as an extension to standard meta-analysis. In fact, NM is a 
technique to combine information from all the randomized comparisons, in 
the absence of a set of randomized trials directly comparing all possible 
treatment options, allowing to detect the most effective treatment/intervention. 
The estimate for the relative effectiveness of two treatments uses both the 
direct, head-to-head, comparisons and indirect evidence. In this thesis, the 
statistical methods for carrying out a Network Meta-analysis (NM) are 
investigated and different Bayesian NM models are specified and compared. 
Sources of variability are explored and the attention is focused on 
Inconsistency (Incoherence) which can be viewed as a sort of uncertainty due 
to discrepancy between direct and indirect inference on pair-wise 
comparisons of treatments/interventions. An application to periodontal 
treatments of gingival recession is performed. We specified NM Consistency 
and Inconsistency models based on the approach proposed by Lu and Ades 
(2006). We developed a Bayesian extension of the model used by Lumley 
(2002). Finally the Kullback-Leibler distance is introduced as a way to 
compare direct inference from standard pair-wise meta-analysis and indirect 
inference from the NM models. 
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Problem statement 
 

 

This thesis aims to construct a Bayesian Network Meta-analysis model in the 
context of treatments of gingival recession. Different models are compared 
and the concept of Inconsistency between direct and indirect evidence is 
investigated.  

 
 
 
Disposition 
 

 

 

In the chapter 1, the background and the research problem are described in a 
paper (in press) entitled: 

“Network Meta-analysis of Randomized Controlled Trials. Direct and Indirect 
Treatment Comparison” 

In chapter 2, methods used for the statistical analyses are presented. 

Chapter 3 describes an application of NM models to a data-set of treatments 
of gingival recession. Results of the analysis are presented and discussed. 

Finally in chapter 4, the conclusions from both a clinical and a statistical point 
of view are debated and recommendations for future works are given. 

The WinBUGS codes are listed in Appendices  A-C. 
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1     Extended Background 
 

1.1   Network Meta-analysis of Randomized Controlled Trials. 
Direct and Indirect Treatment Comparison.  
 
Buti J, Glenny AM, Worthington H, Nieri M, Baccini M 

 
Keywords: Network meta-anaysis, Indirect comparisons, Mixed treatment 
comparison. 

 
Introduction 

 

Health care decisions should be based on best available evidence. Meta-
analyses of direct, head-to-head, randomized controlled trials (RCTs) 
generally provides a reliable way to summarize evidence relating to efficacy 
and safety of comparing treatments and can be considered the gold standard 
for evaluating the effectiveness of healthcare interventions (Liberati 2009, 
Nieri 2009).  

Meta-analysis is commonly used for summarizing results from a set of 
different indipendent trials aimed to investigate comparisons of 
treatments/interventions for a given patient population (Egger 2001). In 
particular, in the fields of medical research and clinical practice, systematic 
reviews and meta-analyses are developed to ensure that medical treatments 
are based on the best available empirical data. 

Meta-analysis was developed more than a century ago by Karl Pearson 
(1904), but in the last 30 years (Glass 1976) the impact of meta-analysis has 
grown definitly. Researchers in many fields, beginning in the 1980s, have 
been moving away from the narrative review, adopting systematic reviews 
and meta-analysis according to the need of evidence based conclusions 
(Borenstein 2009). 

Today, meta-analysis is widely used in clinical trials, epidemiology and 
evidence based medicine. Main issues of meta-analysis include the capacity 
of summarizing different findings in an overall estimate enhancing results 
communication; comparing findings coming from different studies and 
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investigate heterogeneity sources; increasing the power by increasing the 
sample size. 

Standard meta-analytic methods typically synthesize evidence of studies that 
compare directly 2 interventions (for example, treatment A versus treatment 
B) alone. Pair-wise comparisons of two treatments are frequently made in 
one (or a set of trials) and other comparisons made in other trials, but as the 
number of available treatments increases, the number of possible pair-wise 
comparisons increases quadratically.  

Thus, in presence of a large number of health-care interventions for the same 
condition, direct comparisons of specific treatments or regimens of interest 
may not be available in single randomized controlled trials and lack of all 
possible comparisons is frequently recognised in the body of literature. The 
pair-wise comparison may be inapplicable due to it disallowing indirect 
comparisons, and consequently it is impossible to decide upon the best 
treatment in a class with no common comparator. For instance, an initial trial 
compares drug A to drug B, while a different trial, studying a similar patient 
population, compares drug B to drug C. Head-to-head, comparisons fail to 
define the relationship between the drug A and the drug C in absence of a 
trial comparing them directly.  

In the absence of a set of randomised trials directly comparing all possible 
treatment options and in order to choose the most effective treatment if more 
than two treatments exist for the same disease, we can rely on indirect 
comparisons of multiple treatments. For example, if we have trials comparing 
A vs C and trials comparing B vs C an indirect estimate of the benefit of A 
over B can be obtained (Bucher 1997, Song 2003, Yazdanpanah 2004) even 
though indirect comparison (Fig.1) produces relatively imprecise estimates 
(Caldwell 2005).  

                                
 

Fig.1 An example of indirect comparison (IC) for the treatment of intrabony defects. Evidence from 
direct comparison (DC) of autogenous bone graft versus Open Flap Debridment (OFD) in a trial 
and Enamel Matrix Derivative versus Open Flap Debridment (OFD) in another trial can be 
combined to have information on the relative treatment effect of autogenous bone graft versus 
Enamel Matrix Derivative.    
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Network Meta-analysis (also called Mixed-Treatment Comparisons - MTC - 
method, Lu 2004) was developed as a new approach to meta-analysis. 
Differently from standard meta-analytic techniques which allow for single 
separate pair-wise comparisons, Network Meta-analysis (NM) is able to 
combine evidence from both direct and indirect comparisons from different 
trials in a unique network of treatments. Diversity in treatment effects (Salanti 
2008) may be present across comparisons in a network, so studies directly 
comparing treatment A versus treatment C may systematically differ from 
trials comparing treatment A versus treatment B and, for instance, B versus C 
from which an indirect estimate of treatment A versus treatment C is 
obtained. Network Meta-analysis approach is able to consider the 
inconsistency in the evidence structure, which can be viewed as a sort of 
uncertainty due to discrepancy between direct and indirect inference on pair-
wise comparisons. In the absence of considerable inconsistency, treatment 
effects can be estimated in a reliable way by taking into account all evidence. 

Applications of NM have been recently published in medical journals (Glenny 
2005, Psaty 2003, Welton 2009, Orme 2010, Bridle 2003, Wilby 2005). Thus 
far, in the area of dental sciences, the literature search revealed two 
applications of Network Meta-analysis (Walsh 2010, Tu 2010).  

The aim of the present study was to review current approaches to Network 
Meta-analysis and discuss different statistical methods to deal with indirect 
comparisons of treatments and combining direct and indirect evidence. 
Advantage and disadvantage of these methods are also discussed. 
Statystical models and specific methods developed for NM are not described 
in this paper. For further details we remand to Lu and Ades (2004, 2006), 
Lumley (2002), Higgins (1996), Song (2003), Salanti (2008). 
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Indirect comparison 

 

Thirty-one (31) of 327 (approximately 9.5%) meta-analyses of RCTs identified 
through DARE (a recent review of the Database of Abstracts of Reviews of 
Effects) included some form of indirect comparison (Glenny 2005). 

Methods used for indirect comparison have been studied by several authors 
(Baker 2002, Bucher 1997, Caldwell 2005, Glenny 2005, Lumley 2002, 
Newhouse 2000). Reliabilty of these approaches was assessed even if 
literature research revelead a lack of suitable indexing terms in the electronic 
databases. 

Glenny et al. (2005) conducted a systematic review analyzing a large body of 
literature concerning statistical methods to deal with indirect comparisons of 
treatments. Throught the search for such papers authors recognised lack of 
terminology for indirect comparisons; terms used in the papers include cross-
study comparison (Phillips 2003, Tsong 2003), connected comparative 
experiment (Hirotsu 1999), network meta-analysis (Lumley 2002), mixed 
treatment comparison (Ades 2003), and virtual comparison (Wang 2002). 
Hardly any of the papers identified cited any of the others. 

The authors (Glenny 2005) reviewed the frequency of use of indirect 
comparisons in systematic reviews and evaluated the methods used in their 
analysis and interpretation. They concluded that direct evidence from good-
quality RCTs should be used wherever possible. Without this evidence, it 
may be necessary to look for indirect comparisons from RCTs. 

Other authors (Edwards 2009, Song 2009, O’regan 2009, Glenny 2005) 
recently reviewed methods for indirect comparisons and proposed decisional 
alghoritms (Gartlehner 2008). 

Difficoulties and methodological problems related to improperly use of indirect 
comparisons are strictly related to the presence of biases and confounders. 
Song et al. (2003) focused on the necessity of similarity between trials 
involved in the meta-analysis to avoid discrepancy between the direct and 
indirect estimates. 

The Cochrane Collaboration’s guidance to authors states that indirect 
comparisons are not randomized, but are “observational studies across trials, 
and may suffer the biases of observational studies, for example confounding.” 
(Higgins 2005) 
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Unadjusted (naive) indirect comparison 

Unadjusted indirect comparisons appear as a simple but uncorrect method to 
summarize evidence from a set of different studies. Data from single arms, 
part of different trials, are compared naively as if they were from a single 
(large) controlled trial. As showed in Fig.2, in a first step an unadjusted 
indirect comparison would combine the summary statistics for study arms for 
treatment A (formulating a weighted overall summary measure). The same 
would be done for treatment B. In a second step, a comparison would then be 
performed on the basis of these two overall summary measures. Data from 
the comparative arms are not used (Gartlehner 2008). This approach is 
methodologically flawed because the randomization is broken (Glenny 2005). 
In these terms, the exclusion of non-randomized studies or observational 
surveys can be questionable. Gartlehner et al. (2008) suggested that 
unadjusted indirect comparisons should always be avoided increasing liability 
to bias and producing overprecise estimates. 

 

                                 
 

Fig.2 Unadjusted (naive) indirect comparison. 
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Adjusted indirect comparison 

In presence of a common comparator P (placebo, active-control or the gold 
standard treatment), the relative effects of treatment A versus P (as extracted 
from one trial) and the relative effects of treatment B versus P (as extracted 
from another trial) can be compared to obtain an indirect comparison. 

Bucher et al. (1997) first described adjusted indirect comparison. For trials 
with a binary outcome they suggested combining odds ratios from separate 
meta-analyses, ORAB and ORAC, so that logORBC is estimated as logORAB - 
logORAC, and its variance as var (log ORBC) = var (logORAB) + var (logORAC). 
From these calculations, it is simple to obtain a confidence interval for 
logORBC and hence, by transformation, an estimate of ORBC with a 
confidence interval. The adjusted indirect comparison method is quite 
general, and this formulation is clearly a specific example of the general 
method. Thus, given two estimated effects dAB and dAC for comparisons of A 
versus B and A versus C, respectively, the effect for the comparison B versus 
C is estimated as dBC = dAB - dAC, and var (dBC) = var (dAB) + var (dAC). A 95% 
confidence interval for dBC is obtained as dBC ± 1.96√[var(dBC)]. The method is 
based on a two-step analysis in which step 1 consists in carrying out single 
separate meta-analyses and step 2 in combining the first step results in an 
“adjusted indirect comparison”. Fig.3 shows an example of adjusted indirect 
comparison. 

 

                           
 

Fig.3 An example of potential indirect comparison (IC) by Walsh et al. (2010). A common 
comparator (1500 ppm) was used allowing for indirect comparison of different concentrations of 
fluoride toothpastes of 1000 ppm and 2000 ppm. 
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Network Meta-analysis 

 

Relative efficacy and effectiveness of healthcare interventions in a network of 
trials can be evaluated using more complex statistical techniques aimed to 
combine direct and indirect evidence from different trials in a single analysis. 

In 1990, Eddy et al. introduced a Bayesian approach to indirect comparison 
of treatments (Confidence Profile Method - CPM). The method was the first 
attempt to combine direct and indirect evidence using data from different 
sources such as observational studies or trials not accounting for 
randomization of treatments. High risk of bias was a limitation of this method.  

Network Meta-analysis (or Mixed Treatment Comparison) can be considered 
an evolution of CPM approach, combining information from all the 
randomized comparisons among a set of several treatments (Gleser 1994, 
Higgins 1996, Song 2003, Lumley 2002, Psaty 2003, Lu 2004, Lu 2006, 
Salanti 2008).  

Network Meta-analysis allows for: 

- Simultaneous comparison of multiple treatments in a single analysis; 

- Multiple treatment meta-analysis of randomized controlled trials using 
direct and indirect evidence; 

- Ranking of treatments using a Bayesian approach (Spiegelhalter 2004). 

 

Lumley et al. (2002) proposed a method to carry out an analysis including 
two-arm trials. Others authors (Ades 2003, Lu 2004, Caldwell 2005) 
described a framework able to consider in a single analysis any number of 
treatment groups in multi-arm trials, allowing to make indirect comparisons 
while fully respecting the randomized structure of the evidence.  

In Fig.4 we show a network diagram for the Network Meta-analysis of 
periodontal treatments of gingival recessions (Cairo 2008) for the RecRed 
(Recession Reduction) outcome variable. Each node in the network 
represents a surgical treatment arm from 22 different studies and the solid 
blue lines between nodes represent pair-wise comparisons for which direct 
evidence is available from clinical trials. The Network Meta-analysis model 
was used to evaluate all pair-wise comparisons in the network, including 
indirect comparisons (dotted yellow lines between nodes) for which no head-
to-head data are available from clinical trials. 
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Fig.4 Network diagram for the comparison among 6 different treatments (CAF, CAF+CTG, 
CAF+BM, CAF+EMD, CAF+ADM, CAF+PRP) of gingival recessions for the RecRed (Recession 
Reduction) outcome variable. The solid blue lines represent comparison informed by direct 
evidence from studies. Dotted yellow lines refer to those comparisons that have not been tested 
directly in randomized-controlled trials. CAF = Coronally Advanced Flap; CTG = CAF + Connective 
Tissue Graft; BM = CAF + Barrier Membrane; EMD = CAF + Enamel Matrix Derivative; ADM = 
CAF + Acellular Dermal Matrix; PRP = CAF + Platelet-Rich Plasma.  

 

Two applications of Network Meta-analysis to dental sciences were found 
searching literature.  

Tu et al. (2009) performed a Network Meta-analysis to investigate whether 
enamel matrix derivatives (EMD) in conjunction with other regenerative 
materials yield better treatment outcomes than EMD alone in the treatment of 
infrabony defects ≥ 3 mm. Three (3) outcome variables, probing pocket depth 
(PPD), clinical attachment level (CAL) and intrabony defect depth were 
evaluated and 28 trials were included in the study. The diagram as showed in 
Fig.5 represents a typical example of a network of connected trials.  
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Fig.5 Network for the comparisons among different combination therapies, enamel matrix 
derivatives (EMD) alone and flap operation. Each node in the network represents a treatment and 
the solid blue lines between nodes represent pair-wise comparisons for which direct (head-to-
head) evidence is available from clinical trials. Dotted yellow lines refer to those comparisons that 
have not been tested directly in randomized controlled trials.  

 

Network meta-analysis included 27 studies grouped into six nodes. Fiftheen 
(15) possible pairs of comparisons were present but evidence of direct 
comparisons was only available in 7 of the 15 pairs. Combining direct and 
indirect evidence, the authors concluded that there was little evidence to 
support the additional benefits of EMD in conjunction with other regenerative 
materials. 

A search to determine the relative effectiveness of fluoride toothpastes of 
different concentrations in preventing dental caries in children and 
adolescents was undertaken by Walsh et al. (2010). The primary outcome 
was caries increment in the permanent or deciduous dentition as measured 
by the change in decayed, (missing), filled tooth surfaces (D(M)FS/d(m)fs) 
from baseline. Sixty-six (66) studies were included in a Network Meta-
analysis where each node of the network diagram represented different 
concentrations of fluoride toothpastes. The review showed the benefits of 
using fluoride toothpaste in preventing caries in children and adolescents 
when compared to placebo, but only significantly for fluoride concentrations 
of 1000 ppm and above.  
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Direct and indirect evidence. What do we need to know before 
combining information? 

 

Combining the data from a set of different studies, indirect comparison and 
NM approach share all difficulties with standard meta-analysis. Precise 
definition of treatment procedures, differences in the characteristics of the 
partecipants, duration of follow-up, outcome measures, quality assessment 
criteria and others must be accurately considered and subgroup analysis 
should always be performed. In combining treatments/interventions from 
different studies, a formal statistical approach should move from a correct 
specification of assumptions and an appropriate search of trials. 

Moreover, researchers should consider some important issues before 
combining information from direct and indirect evidence (Caldwell 2006): 

 

1. Are the individual treatments respected or “lumped” together? 

In standard meta-analytic methods, it is often the case that treatments are 
“lumped” together to form a single comparator allowing for summarizing 
evidence from different trials. Network Meta-analysis is not constrained like 
standard meta-analysis and individual treatments are respected and 
evaluated in the different nodes of the diagram network. For example, the aim 
of a clinical trial could be to investigate the relative effectiveness of a non-
surgical versus a surgical approach to periodontal disease. Surgical 
treatments of periodontal disease may include Open Flap Debridment, 
Modified Widman Flap, Regenerative therapy and other techniques.  
“Lumping” three or more of these surgical treatments to form a single 
comparator to be compared to non-surgical therapy is questionable and 
results obtained in this way do not allow for drawing conclusions about which 
treatment is best on the chosen outcome. Combining direct and indirect 
evidence, Network Meta-analysis is able to deal with all the possible 
comparisons and so to avoid problems related to “lumping” treatments. 

2. Do treatments/trials form a connected network?  

Information from direct and indirect evidence can be combined in a Network 
Meta-analysis only in the case that each treatment/trial is part of a connected 
network. In other words, in a data-set consisting, for example, of AD, AC, BC, 
CD, EF, EG, FG pair-wise comparisons, the A, B, C, D group of treatments is 
not connected to the E, F, G group (Fig.6). 
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Fig.6 Hypothetical example of a disconnected network of treatment comparisons. Each node in the 
network represents a treatment and the solid lines between nodes represent pair-wise 
comparisons for which direct (head-to-head) evidence is available from clinical trials.  

 

3. Is it appropriate to combine all available evidence in a Network Meta-
analysis? 

The key assumption is that the relative effect of one treatment compared with 
another is the same across the entire set of trials included in the Network 
meta-analysis. In other words, the relative effect dAB estimated in the A vs B 
trials should be the same as the dAB = dAC - dBC estimated in the A vs C and B 
vs C trials (Caldwell 2005). Similarity of trials, inclusion criteria, study 
partecipants, intervention protocols will support the decision on whether or 
not to combine direct and indirect evidence. Moreover, clinical experience 
and informed judgment are required for a careful examination of the trials to 
be included in the analysis. As with a standard pair-wise meta-analysis, 
subgroup analysis may be carried out. 

 

Standard meta-analysis - adjusted indirect comparison - Network Meta-
analysis. Which approach should be to prefer?  

 

In healthcare decision-making, it is often the case that the clinician has to 
assess the best treatment strategy according to the relative effectiveness of 
interventions for a specific condition or patology. Several different treatment 
options can be available for the same case and it is hard to think that 
literature could provide direct evidence on all possible treatment comparisons 
in any of the trials dealing with the same clinical condition. 

The relationship between trials can be arbitrarily complex, but conventional 
meta-analysis can only take into account the results from comparisons of two 
treatments directly compared and is not able to draw conclusions from the 
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indirect evidence. This generates a “selection bias”, in terms of automatically 
excluding evidence with an indirect relationship with the target. Moreover, 
meta-analysis fails to control the bias which means that it can not produce 
reliable results if it includes trials of poor methodological quality or badly 
designed. 

Standard meta-analityc techniques, based on pair-wise treatment 
comparisons, start showing their limitations when dealing with a large 
network of comparisons. In fact, as the number of treatment choices grows 
up, the number of possible comparisons of each treatment to another will 
enhance in a factorial way (Fig.5). In particular, the number of combinations 
of n treatments taken r at a time is: C(n,r) = n! / r! (n-r)!. Thus, considering 
pair-wise comparisons of treatments, in presence of 4 treatments, researcher 
will have to deal with 6 comparisons; in presence of 6 treatments, with 15 
comparisons; in presence of 10 treatments, with 45 comparisons. 
 

For instance, consider the structures showed in Fig.7, where the letters 
represent different treatment options, the solid lines represent direct, head-to-
head, comparisons between two treatments, and the dotted lines represent 
indirect comparisons. In this figure, (1) shows a pair-wise treatment 
comparison, (2) shows an indirect comparison, (3) shows a realistic complex 
network of comparisons. 

 

 

            
 

Fig.7 Network evidence structures. 
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In presence of two treatments to be compared (1), no indirect evidence will 
be obviously take into account and a single meta-analysis of RCTs providing 
head-to-head comparison of treatments will represent the most reliable way 
to summarize evidence of the relative effectiveness of interventions. 

In presence of three treatment choices (2) for the same condition, direct 
evidence will probably be present in literature and strongly raccomended 
when compared to indirect evidence. However, adjusted indirect comparison 
methods can be applied in presence of a common comparator and may be 
particulary useful in demonstrating, for example, that a new active drug is 
equivalent to (i.e. not very different in efficacy from) an already available 
active drug, which itself has been shown to be superior to placebo. (Glenny 
2005, Hauck 1999, Mainland 1938) 

Limitations of adjusted indirect comparison methods can be described as 
follows: 
  
- adjusted indirect comparison methods do not explicitly generalise to allow 
inclusion of direct evidence. 
 
- adjusted indirect comparison methods can not take account of trials with 
three or more arms without either splitting or discarding groups. 
 
In this context, Network Meta-analysis approach provides a method to create 
a unique diagram of the evidence present in literature, allowing for a large 
number of treatments to be included and all available evidence from both 
direct and indirect comparisons to be simultaneously evaluated. Summarizing 
direct and indirect evidence and avoiding treatments to be grouped in multiple 
analyses or even excluded, NM approach can represent a really useful way 
of obtaing an evidence synthesis and a basis in decision making process. 
 
 

Heterogeneity and Inconsistency 

 

Bringing together material from different studies, one of the most troublesome 
aspects of many systematic reviews and meta-analysis is quantifying the 
extent of heterogeneity (Higgins 2002, Thompson 1999, Lu 2004) among a 
collection of studies. 

There are at least three sources of data uncertainty in the Network Meta-
analysis data: sampling error, between-trial heterogeneity, Inconsistency 
(‘Incoherence’) of the network. In particular, heterogeneity and Inconsistency 
can be described as follows: 
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- Between-trial heterogeneity: between trial heterogeneity within pair-wise 
comparisons, measured in a similar way as in standard pair-wise meta-
analysis. Statistical heterogeneity exists when the true effects being 
evaluated differ between studies, and may be detectable if the variation 
between the results of the studies is above that expected by chance (Higgins 
2002, Edwards 2009). 
 
- Inconsistency (‘Incoherence’) of the network: between pair-wise comparison 
heterogeneity. Lumley (2002) suggests comparing the results derived from 
the different comparators, and suggests a parameter to measure the 
‘incoherence’ of the system, which considers the consistency of a specific 
estimated contrast between two treatments with the rest of the system. 
The authors described an incoherent network of comparisons as showed in 
Fig.8 (which represents an extreme exemple), where the sign “-“ indicates a 
negative different in treatment effect as two nodes are compared in the 
direction of the arrow and the sign “+” a positive effect. 
 
 

                                             
 
Fig.8 Incoherent network of comparisons.  

 
Combining dAC and dCB suggests that A is better than B, but combining dAD 
and dDB suggests that A is worse. This evenience may be explained in almost 
three ways: 
 

1. Estimates are consistent among trials, but these ones are 
     underpowered; 

2. Estimates are consistent, but heterogeneity in the effect of one or 
     more treatments is sufficient to account for disagreement in the 
     results. 

3. Each individual estimate of dAB is apparently reliable but they 
     disagree. This form of uncertainty can not be handled by standard 
     meta-analytic methods and is called “Inconsistency” (or 
     Incoherence) by Lumley (2002). 
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The Inconsistency of a network can be due to genuine diversity, bias or 
combination of both (Salanti 2008). The lack of a demonstrable Inconsistency 
does not prove that the results are free of bias and diversity. A proper 
evaluation of Inconsistency may be difficult in epidemiological and clinical 
studies, due to uncorrect reporting of some important characteristics, 
presence of few results in many comparisons or results reported in diverse 
formats. 
 
The Network Meta-analysis approach proposed by some authors such as 
Lumley (2002) and Lu (2004, 2006) allows for estimating both heterogeneity 
in the effect of different treatments and Inconsistency in the evidence from 
different pairs of treatments. 
 

 

Software for Network Meta-analysis  

 

The most commonly used form of the Network Meta-analysis (or Mixed 
Treatment Comparison) is based on a Bayesian Markov Chain Monte Carlo 
method (Spiegelhalter 2002b). Freely available WinBUGS software 
(Winbugs) offers the greatest flexibility for fitting models. Frequentist 
approaches have been developed by Lumley (2002) in R using linear mixed 
models and are also feasible in SAS using PROC NLMIXED (Glenny 2005). 
 

 

Advantages and limitations of Network Meta-analysis 

 

Meta-analysis of randomized controlled trials with direct treatment 
comparisons generally provides the most reliable evidence. Network Meta-
analysis can be performed in the absence of head-to-head evidence and 
provides a way to combine direct and indirect comparisons in the same 
analysis. However, the use of indirect comparison methods and the results of 
the analysis must be properly interpreted. The unadjusted indirect 
comparison approach should be avoided (Garthlener 2008) as high frequency 
of discrepancies from the direct estimate has been showed (Glenny 2005). 
Adjusted indirect comparison methods and more complex strategies such as 
Network Meta-analysis can offer a framework for integrating information of 
arms from multiple trials within a unified analysis of a network of randomized 
controlled studies. Higgins and Whitehead (1996) showed that the results 
from direct comparisons could have the precision of their results enhanced by 
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being analysed with any available indirect comparison of the same treatments 
(Edwards 2009). However, statistical experience is required to appropriately 
approach to assumptions underlying the NM model. Sources of evidence 
have to provide consistent information about the treatments contrasts and 
further research must be performed to investigate how to interpret results that 
differ substantially between direct and indirect evidence.  
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2     Network Meta-analysis 
 

2.1   Introduction 
 

Network Meta-analysis (also called Mixed Treatment Comparison - MTC) is 
an extension of standard meta-analysis. Instead of dealing only with direct 
comparisons of treatments (as extracted from single trials) and summarizing 
data in separate meta-analyses, NM approach is able to consider a number 
of different interventions in a connected network. Our research focused on 
evaluating several different treatment effects considered in a number of 
randomized controlled trials in a specific disease. A unique framework 
including both direct and indirect evidence was developed and all possible 
pair-wise comparisons of treatments were analyzed at the same time. From a 
clinical point a view, NM models allowed for obtaining results (and draw 
conclusions) on treatments never directly compared in single RCTs and 
ranking the different treatment options.   

NM methods were recently proposed by some authors but are still 
underresearched even if different models were developed in the last years. 
Throught the search of the literature, we identified two of the most important 
approches to NM, which were the one proposed by Lu and Ades (2004, 
2006), also called Mixed Treatment Comparison - MTC, and the method 
introduced by Lumley (2002), who described a maximum-likelihood approach 
using linear mixed models; his method has been applied in relatively few 
papers (van der Valk et al. 2009, Elliott and Meyer 2007, Psaty et al. 2003). 
 

Following Lu and Ades framework, two models were performed: 

- Consistency model (or model under evidence consistency); 

- Inconsistency model (or model under evidence inconsistency). 

A third model was proposed as a Bayesian extension of the method of 
Lumley (which was originally based on a frequentist approach). 

Finally, in the same spirit as the work of Lumley, we introduced Kullback-
Leibler distance as a newly way to evaluate the discrepancy between direct 
evidence (as analyzed in standard meta-analysis) and information derived by 
NM models where both direct and indirect evidence are included. 

The main issue of these proposals was the ability of assessing different 
sources of variability and, in particular, to focus on Inconsistency which can 
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be viewed as a sort of discrepancy that lies between the pairwise 
comparisons rather than between individual trials (such as heterogeneity). 

The objective of our analyses was to explore and compare different 
approaches to Inconsistency as the literature revealed lack of applications of 
NM models in which all the sources of variabilty were properly evaluated in 
combining evidence from different trials. 

A Bayesian framework was preferred because of the great flexibilty in dealing 
with all the sources of uncertainty. The Bayesian analysis produced posterior 
distributions and measures for individual parameters, such as the posterior 
mean, median and the relative credible intervals (CrI - e.g., the endpoints of 
the 90% CrI are the 5 and 95 percentiles of the posterior distribution), as well 
as posterior distributions for functions of parameters (e.g., estimates of the 
probability that each treatment is best). 
 
Some NM models can accommodate data from multi-arm trials, but in this 
work a two-arm trials framework was developed for all the analyses. In 
presence of trials including more than two arm (so called multi-arm trials) the 
complexity of the network require different assumptions which are not 
discussed in this thesis (Higgins 1996, Hasselblad 1998, Domenici 1999, 
Whitehead 2002). 
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2.2   Sources of variability 

 
As introduced in chapter 1 of this thesis, at least three sources of data 
uncertainty can be detected in the Network meta-analysis data: sampling 
error, heterogeneity and Inconsistency. In particular: 
 
Heterogeneity 
 
Statistical heterogeneity quantify the between-trials variation and exists when 
the true effects being evaluated differ between studies, and may be 
detectable if the variation between the results of the studies is above that 
expected by chance (Higgins 2002). 
Ordinary meta-analyses (especially by frequentist methods) customarily 
evaluate heterogeneity of effects, as a basis for choosing between a fixed-
effects or a random-effects procedure. This preliminary step can form part of 
a Network Meta-analysis, but it should be preceded by examination of 
potential effect modifiers, because disparities among studies may preclude 
analysis of the network, even if effects show no heterogeneity within direct 
comparisons. Deeks et al. (2008) discuss strategies for addressing 
heterogeneity. The Bayesian approach takes appropriately into account the 
uncertainty around the heterogeneity variance, while the frequentist approach 
only uses the point estimate of the heterogeneity variance. A posterior 
distribution of τ2 is obtained, making heterogeneity evaluation and 
investigation more reliable. 
 
Inconsistency 
 
In standard meta-analysis of randomised trials it is assumed that different 
trials are sufficiently (not necessarily completely) homogeneous and that they 
estimate the same single treatment effect (fixed effect model) or different 
treatment effects distributed around a typical value (random effects model). 
We refer to this assumption for standard meta-analysis as the homogeneity 
assumption, to distinguish it from other related assumptions. 
In Network Meta-analysis, Inconsistency (Incoherence) of the Network can be 
described as the uncertainty due to discrepancy between direct and indirect 
inference on pair-wise comparisons. In other words, a departure from 
consistency arises when the direct and indirect estimates of an effect differ 
(e.g., the direct estimate dBC does not equal the indirect estimate dAC - dAB). 
Methods for evaluating Inconsistency have been proposed and represent an 
important area of research.  
In this thesis two of the most important approaches to Inconsistency in NM 
models was applied and described in the section below.  
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2.3   Model Specification 
 
 
We present the sequence of Bayesian hierarchical random-effects models 
used in this work:  
 

NM Consistency model - Lu and Ades 
 
The framework is based on the statistical model of Higgins and Whitehead 
(2005).  
 
The formal model is: 
 
 

 
                              
 
 

 
 
 
With priors: 
 

 
 
 

 
 
where Yjbk = treatment difference estimate from the randomized trial j 
comparing treatments b and k; 

dbk = difference between the true average effects of treatments k and b so dbk 
= µk - µb  which (expressed in terms of basic parameters) is = dAk - dAb (see 
below) where treatment k = A is the overall baseline treatment (i.e. A = CAF 
in the case study presented after in this thesis);  
 
uj = random effects with variance τ2 represent the difference between the 
average effects of treatments k and b and their effects in this study j. They 
capture heterogeneity of treatment effect. The model assumes the same 
random-effect variance τ2 for all treatment comparisons (a fixed-effect model 
results if τ2 = 0);  
 

€ 

Yjbk ~ N(dbk + u j ,σ jbk
2)

u j ~ N(0,τ
2)

dbk = µk − µb = dAk − dAb
dAA = 0

€ 

dAk ~ normal(0,10
6)

τ ~ uniform 0,10[ ]

€ 

j = study
k,b = treatment
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σjbk = estimated standard error of Yjbk . 
 
When there is no extra information about the parameters besides the 
available data, the prior densities can be specified by vague prior 
distributions: N(0, 106) for the dAk (independently) and Uniform(0, 10) for τ. 
These priors are common choices in homogeneity models (Lu 2004, 2006, 
Lumley 2002). 
 
 
Basic and Functional Parameters 
 
In a Consistency model, the difference (dbk) between the true average effects 
of treatments k and b can be expressed in terms of so called ‘basic’ 
parameters and ‘functional’ parameters. The dbk are identified by expressing 
them in terms of effects relative to treatment A: dbk = dAk - dAb with dAA = 0 (the 
order of the subscripts on dbk is conventional, but counterintuitive) where A is 
assumed as the primary reference treatment. 
In other words, any statistical models built on the relations between basic and 
functional parameters may be called models under evidence consistency. 
For instance, in presence of a network of evidence involving A, B, C and D 
treatments, six treatment effects can be estimated from the data: dAB, dAC, 
dAD, dBC, dBD and dCD. These values are mathematically related. In fact, if any 
three are known (and regarded as ‘basic’) the remaining three can be derived 
from them (and named ‘functional’). The natural choice is, usually, to have 
treatment A (no treatment) as the reference (baseline) treatment and the 
three treatment effects relative to baseline as the ‘basic’ parameters. 
 
Relative to the four treatments A, B, C and D, as represented in Fig.9, the 
differences in treatment effects dBC, dBD and dCD can be assumed as 
functional parameters and so expressed in terms of basic parameters dAB, dAC 
and dAD : 
 
 
 

 
                                                
 

 
 
 
 
                                                     Fig.9 Connected network of comparison of treatment A, B, C, D. 
 
 

€ 

(1)

€ 

dBC = dAC − dAB
dBD = dAD − dAB
dCD = dAD − dAC
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Each relation corresponds to a cycle of edges in the graph. 
 
In a Bayesian framework, it is the basic parameters that must be given prior 
distributions as follows: 
 

 
                                         
 
 

 
Choices of prior distributions are, to some extent, arbitrary, so they are often 
subjected to sensitivity analysis. Lambert et al. (2005) discuss sensitivity 
analysis for exploring the impact of the use of vague priors. On the other 
hand, some frequentist methods involve approximations and assumptions 
that are not stated explicitly or verified when the methods are applied. 
Therefore, both insight into the sensitivity of results from a Bayesian analysis 
to assumptions on priors and transparent reporting of assumptions underlying 
a frequentist analysis are highly important. 
 
Any subset of effect parameters can be chosen as basic parameters as long 
as their corresponding edges can form a spanning tree in the graph G, that is, 
a connected subgraph consisting of all vertices but containing no cycles. 
 
 

                                      
 
                                                                  Fig.10 Spanning tree 
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dAB ~ normal(0,10
6)

dAC ~ normal(0,10
6)

dAD ~ normal(0,10
6)
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NM Inconsistency model - Lu and Ades 

Following Lumley (2002), Lu and Ades (2006) define evidence Inconsistency 
as a sort of discrepancy that lies between the pairwise comparisons rather 
than between individual trials (such as heterogeneity). 

At the same time, the way of assessing Inconsistency in network diagrams by 
these authors is quite different from the model proposed by Lumley (and 
described after in this chapter). Lu and Ades define Inconsistency as a 
property of evidence cycles, rather than of individual treatment comparisons. 
 
The authors focused on the structure of networks and expanded the 
Consistency model by adding one parameter (Inconsistency Factor - ICF or 
w-factor) for each independent inconsistency. 
If the equations in (1) express consistency relations, by definition, 
inconsistency can be expressed as follows: 
 
 

 
 
 

 
 
where the w-factors, called ICFs, represent the discrepancy between the 
evidence supporting the functional parameter on the left side and the 
difference between the basic parameters on the right side. Because each 
consistency relationship lies on a cycle, the ICFs are, in fact, attached to 
corresponding cycles rather than to individual edges. 
The potential number of inconsistencies in the structure is called by the 
authors the Inconsistency Degree of Freedom (ICDF). Obviously, the greater 
the ICDF, the more complex the network structure should be. 
For two-arm trials, the ICDF can be calculated as follows: 
 
ICDF = #Functional Parameters = DC – K +1 (for 2-arm trials) 
 
where DC (Direct Comparison) is the number treatment comparison informed 
by data and K is the number of treatments included in the network.   
 
Assuming that ICFs ~ N(0, τw

2) then the posterior mean of each ICF is a 
measure of the extent of inconsistency within the corresponding evidence 
cycle. 
 
By comparing the models with and without those parameters, one can assess 
overall Inconsistency, and the posterior distributions of the added parameters 

€ 

dBC = dAC − dAB + wABC

dBD = dAD − dAB + wABD

dCD = dAD − dAC + wACD
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show the extent of inconsistency in the various loops. 
 
Overall Inconsistency (τw

2) can be compared with the between-trials 
heterogeneity τ2 and expressed in terms of probability as follows: 
 
Pr (τw

2 > τ2) 
 
The posterior probability Pr may give an approximate summary, with a high 
value signaling potential evidence inconsistency. 
 
A non-informative prior distribution for τw

2 is added to the model as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

€ 

τw ~ uniform 0,10[ ]
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NM Inconsistency model - Bayesian extension of Lumley’s method 
 
For networks of two-arm trials that contain loops, Lumley (2002) describe a 
second random effect wkb, other than heterogeneity, which represents a 
change in the effect of treatment k when it is compared with treatment b. In 
order to combine different treatment comparisons the effect of treatment k 
should be the same no matter what it is compared against, that is, wkb should 
be close to zero. Thus wkb captures the inconsistency of this pair of 
treatments with the rest of the evidence. The author uses a frequentist model 
with one variance parameter to summarize inconsistency (or incoherence) in 
the network as a whole: τw

2 = var [w]. 
 
The formal model is thus: 
 

 
 
 

 
 
where Yjbk = treatment difference estimate from the randomized trial j 
comparing treatments b and k. 

uj = random effects with variance τ2 represent the difference between the 
average effects of treatments k and b and their effects in this study j. They 
capture heterogeneity of treatment effect. The model assumes the same 
random-effect variance τ2 for all treatment comparisons. (A fixed-effect model 
results if τ2 = 0.)  
 
σjbk = estimated standard error of Yjbk . 
 
The author proposed a frequentist approach by maximum likelihood or 
restricted maximum likelihood (REML) estimation in their model (using 
software for linear mixed models) with one variance parameter to summarize 
inconsistency (or incoherence) in the network as a whole: τw

2 = var [w]. 
 
In this thesis a Bayesian approach was used by setting non-informative 
vague priors as follows: 
 

 
 
 

 
 
 € 

τ ~ uniform 0,10[ ]
τw ~ uniform 0,10[ ]

€ 

Yjbk ~ N(dbk + u j + wbk,σ jbk
2)

u j ~ N(0,τ
2)

wbk ~ N(0,τw
2)

€ 

j = study
k,b = treatment
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Kullback-Leibler method 
 
The Kullback-Leibler distance (Kullback 1959) between two distributions  f0(t) 
and f1(t), taking f0(t) as reference, is given by: 
 
 

 
 

 
To obtain a simple approximation of the Kullback–Leibler distance, we 
supposed that the posterior distribution of the overall effect was Normal. Let f0 
and f1 represent the posterior distributions of β obtained, respectively, by the 
reference and the alternative model. We calculated: 
 
 

 
 

 
where mk and sk

2 are, respectively, the mean and the variance of fk (k=0; 1). 
To better appreciate the amount of KLf0 (f0, f1) a calibration method was 
applied (McCulloch 1989). Let B(p) represent the Bernoulli distribution with 
parameter p. Given a calculated distance d, we calibrated it by the probability 
q such that: 
 
 

 
 

 
It can be shown that: 
 

 
 

 
Values of q around 0.5 correspond to low sensitivity of inference, and values 
close to 1 correspond to substantial changes in results. 
 
In this work, Kullback-Leibler distance (and the correspondent probabilty q) 
was calculated between the posterior distribution of the mean for the pair-
wise comparison under the standard Bayesian meta-analysis model 
(assumed as the reference) and the posterior distribution of the mean under 
the NM model (Consistency model without ICFs/w-factors), limited to the 
subset of treatement comparisons informed by data.  
 
 

€ 

KLf0
( f0, f1) = log f1(t)

f0(t)
∫ f0(t)dt

€ 

KLf0
( f0, f1) = 0.5 × ((mo −m1)

2

s1
2 +

s0
2

s1
2 − log

s0
2

s1
2 −1)

€ 

d = KLB(0.5)(B(0.5),B(q))
0.5 ≤ q ≤1

€ 

q = 0.5 + 0.5(1− exp−2d )0.5
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Other approaches to Inconsistency 
 
In a hierarchical Bayesian setting Dias et al. (2010) extended the approach of 
Bucher et al. (1997) to general networks (but not using evidence from multi-
arm trials), by deriving a weighted difference between the estimate from the 
network and the direct estimate. By plotting the posterior densities of the 
direct, indirect, and network estimates, they show how the direct evidence 
and the indirect evidence are combined in the network estimate. For each 
effect that has direct evidence Dias et al. (2010) also split the information into 
direct and indirect information and examine the posterior distribution of the 
difference between the resulting direct and indirect estimates. They discuss 
how to handle multi-arm trials in this analysis. 
 
 
Assessment of model fit 
 
In frequentist analyses, assessment of model fit is similar to that for direct 
evidence and in relation with the particular outcome measure. 
For Bayesian model selection and comparison, we used the deviance 
information criterion (DIC) DIC = D + pD (Spiegelhalter 2002a), where D is the 
sum of residual deviance and pD is an estimate of the effective number of 
parameters, particularly useful in Bayesian hierarchical modeling. 
 
 
Software 
 
WinBUGS software (Spiegelhalter 2002b) was used for the Bayesian 
analyses in the case study presented in chapter 3.  
The results for SM models are based on a WinBUGS run of 20,000 updates 
after a 6,000-run burn-in. 
The results for NM models are based on a WinBUGS run of 100,000 updates 
after a 50,000-run burn-in. The method of Gelman and Rubin (1992) was 
used to check convergence. 
Details and programme code are provided in the Appendix A, B and C. 
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Sensitivity analysis 
 
In hierarchical models it is the choice of prior distribution for the hierarchical 
variance parameters that has been shown to be most crucial. Thus, in this 
research, sensitivity analyses focused on evaluating the impact of choosing 
different prior distributions on τ2 and τw

2 (the areas of greatest uncertainty). 
All the alternative priors (other then Uniform(0, 10)) for heterogeneity and 
inconsistency variance which were tested did not produce substantial 
changes in the values of τ2 and τw

2. 

 
Comparison of the mean residual deviance for individual data points (trials) 
between models with and without inconsistency factors was also performed. 
In presence of outliers another Inconsistency model based on the data 
remaining after outliers trials had been removed was carried out to 
investigate ICFs and inconsistency variance. 
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3     Case Study 
 
3.1   Bayesian Network Meta-analysis. Application to surgical 
treatments of gingival recession 
 
 
 
Background 
 
The treatment of buccal gingival recession is a common requirement due to 
aesthetic concern or root sensitivity in patients with high standards of oral 
hygiene (American Academy of Periodontology 1996). The ultimate goal of a 
root coverage procedure is the complete coverage of the recession defect 
with good appearance related to adjacent soft tissues and minimal probing 
depth (PD) (Miller 1985, Roccuzzo et al. 2002, Clauser et al. 2003). Previous 
systematic reviews showed that several surgical procedures such as pedicle 
flaps, free soft tissue grafts, combinations of pedicle flaps and grafts or 
barrier membranes (BM) may be indicated to improve the coronal level of the 
gingival margin on the root surface (Roccuzzo et al. 2002, Clauser et al. 
2003, Oates et al. 2003), even if very limited data for epithelialized free 
gingival graft and laterally positioned flap are available (Roccuzzo et al. 
2002). In addition, no difference between resorbable and non-resorbable 
barriers in terms of mean root coverage was reported (Roccuzzo et al. 2002) 
and no clinical benefit following root conditioning was detected (Roccuzzo et 
al. 2002, Cheng et al. 2007). An earlier European Federation of Perio- 
dontology Systematic Review on root coverage (Roccuzzo et al. 2002) 
reported that complete root coverage (CRC) and mean percentage of root 
coverage varied considerably between studies comparing the same 
techniques. 
The coronally advanced flap (CAF) procedure is a very common approach for 
root coverage. This procedure is based on the coronal shift of the soft tissues 
on the exposed root surface (Allen & Miller 1989, Pini Prato et al. 2000). This 
approach may be used alone or in combination with soft tissue grafts 
(Wennstrom & Zucchelli 1996), BM (Pini Prato et al. 1992), enamel matrix 
derivative (EMD) (Rasperini et al. 2000), acellular dermal matrix (ADM) 
(Harris 1998), platelet-rich plasma (PRP) (Marx et al. 1998) and living tissue-
engineered human fibroblast-derived dermal substitute (HF-DDS) (Wilson et 
al. 2005). 
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Aim 
 
Two different purposes are identified: 
 
- the clinical purpose of this work is to perform a Bayesian Network Meta-
analysis to answer the following question: ‘‘Why performing a Network Meta-
analysis model instead of standard single meta-analyses in evaluating the 
CAF (Coronally Advanced Flap) surgical technique alone or in combination 
with grafts or specific biomaterials (CTG, BM, EMD, ADM, PRP, HF-DDS) in 
the treatment of Miller Class I and II localized gingival recessions?” 
 
 
- the statistical purpose is to carry out and compare different Bayesian 
Network Meta-analysis (NM) models according to recent developments of 
literature. The concept of inconsistency between direct and indirect evidence 
is investigated.  
 
 
Material and Methods 
 
This Network Meta-analysis was conducted on the basis of the studies 
identified and selected in a systematic review by Cairo et al. 2008.  
 
 
Participants 
 
Patients with a clinical diagnosis of Miller Class I or II localized gingival 
recession defect. 
 
 
Studies (N) 
 
Twenty-five (N = 25) randomized-controlled clinical trials (RCTs), including a 
split-mouth model, of at least 6 months’ duration were considered. 
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Tab.1 Summary of studies and treatment comparisons included in the analysis. 

 
 
CAF, coronally advanced flap; CTG, connective tissue graft; BM, barrier membrane; EMD, enamel matrix 
derivative; ADM, acellular dermal matrix graft; PRP, platelet-rich plasma; HF-DDS, human fibroblast-derived 
dermal substitute. 
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Outcome measures 
 
 
The following outcome measures are considered.  
 
- Primary outcome (dycotomous variable) 
 
! Recession defects that obtained Complete Root Coverage (CRC). CRC had 
   to be expressed as the number or the percentage of treated teeth of each 
   considered study arm that achieved total root coverage at the follow-up 
   visit. 
 
- Secondary outcomes (continous variables) 
 

• !Change in gingival recession expressed as recession reduction in mm 
at follow-up visit (RecRed), 

• !Change in clinical attachment level (CAL) expressed as CAL gain in   
millimetres at follow-up visit (CAL gain), 

• !Change in width of keratinized tissue (KT) expressed as KT gain in 
millimetres at follow-up visit (KT gain) 

! 
 The analyses were conducted on RecRed and CRC outcome measures. 
 
Treatments (K) 
 
The following surgical procedures for the treatment of single recessions are 
considered: 
 
• CAF (Coronally Advanced Flap),  
• CAF plus Connective Tissue Graft (CAF+CTG),  
• CAF plus Barrier Membrane (CAF+BM), 
• CAF plus Enamel Matrix Derivative (CAF+EMD), 
• CAF plus Acellular Dermal Matrix (CAF+ADM), 
• CAF plus Platelet Rich Plasma (CAF+PRP),  
• CAF plus Human Fibroblast-Derived Dermal Substitute (CAF+HF-DDS). 
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Comparisons informed by data (DC-Direct Comparison) 
 
The following comparisons (number of studies) informed by data between the 
selected techniques were investigated in standard pair-wise meta-analysis 
(when more than one study per comparison was available) for RecRed, CAL 
gain and KT gain: 
 

•  CAF versus CAF+CTG (2 studies), 
•  CAF versus CAF+BM (2 studies), 
•  CAF versus CAF+EMD (5 studies), !  
•  CAF versus CAF+ADM (2 studies), 
•  CAF versus CAF+PRP (1 studies), ! !  
•  CAF+CTG versus CAF+BM (6 studies), 
•  CAF+CTG versus CAF+ADM (4 studies) 

 
The following comparisons (number of studies) informed by data between the 
selected techniques were investigated in standard pair-wise meta-analysis 
(when more than one study per comparison was available) for CRC: 
 

•  CAF versus CAF+CTG (2 studies), 
•  CAF vesrsus CAF+BM (1 study), 
•  CAF versus CAF+EMD (4 studies), !  
•  CAF versus CAF+ADM (2 studies), 
•  CAF vesrsus CAF+PRP (1 study),! !  
•  CAF+CTG versus CAF+BM (6 studies), 
•  CAF+CTG versus CAF+EMD (1 studies), 
•  CAF+CTG versus CAF+ADM (4 studies), 
•  CAF+CTG versus CAF+HF-DDS (1 studies) 
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Analysis for RecRed 
 

Data 

The data (Tab.2) for RecRed outcome consist of: 

• N = 22 studies 
• K = 6 treatments (CAF, CAF+CTG, CAF+BM, CAF+EMD, CAF+ADM, 

CAF+PRP) 
• DC (Direct Comparison) = 7 pair-wise comparisons informed by data 

(e.g. with direct evidence from single trials) 
• IC (Indirect Comparison) = 8 pair-wise comparisons based on indirect 

evidence 
• Comp = 15 possible pair-wise comparisons (DC + IC) 

 
Graph Representation 

The graphic representation of the network diagram for RecRed data is given 
in Figure 11.  

 

                           

                                       (a)                                                            (b) 

 

Fig.11 Network for the comparisons among 6 different treatments (CAF, CAF+CTG, CAF+BM, 
CAF+EMD, CAF+ADM, CAF+PRP) without indirect evidence (a), with both direct and indirect 
evidence. Dotted yellow lines refer to those comparisons that have not been tested directly in 
randomized-controlled trials. The width of the solid blue lines is in proportion to the amount of 
evidence (number of RCTs included for each comparison) available in the literature. 
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Tab.2 NM for RecRed: Summary of studies included in the analysis. 

Study Treatment 
Comparison 

Mean 
Difference 

(mm) 
SD F-up* 

(months) Study Design 

da Silva et al. (2004) CAF vs CAF+CTG 0.44 0.27 6 RCT, split mouth design 

Cortellini et al. (2008) CAF vs CAF+CTG 0.52 0.23 6 RCT, parallel study 
design 

Amarante et al. (2000) CAF vs CAF+BM -0.20 0.21 6 RCT, split mouth design 

Lins et al. (2003) CAF vs CAF+BM -0.40 0.29 6 RCT, split mouth design 

Modica et al. (2000) CAF vs CAF+EMD 0.90 0.43 6 RCT, split mouth design 

Del Pizzo et al. (2005) CAF vs CAF+EMD 0.07 0.25 24 RCT, split mouth design 

Spahr et al. (2000) CAF vs CAF+EMD 0.38 0.23 24 RCT, split mouth design 

Castellanos et al. (2006) CAF vs CAF+EMD 0.91 0.44 12 RCT, parallel study 
design 

Pilloni et al. (2006) CAF vs CAF+EMD 0.93 0.24 18 RCT, parallel study 
design 

Cortes et al. (2006) CAF vs CAF+ADM 0.08 0.16 24 RCT, split mouth design 

Woodyard et al. (2004) CAF vs CAF+ADM 1.23 0.38 6 RCT, parallel study 
design 

Huang et al. (2005) CAF vs CAF+PRP -0.20 0.35 6 RCT, parallel study 
design 

Jepsen et al. (1998) CAF+CTG vs CAF+BM -0.01 0.23 12 RCT, split mouth design 

Trombelli et al. (1998) CAF+CTG vs CAF+BM -0.90 0.26 6 RCT, split mouth design 

Zucchelli et al. (1998) CAF+CTG vs CAF+BM -0.60 0.21 12 RCT, parallel study 
design 

Borghetti et al. (1999) CAF+CTG vs CAF+BM 0.00 0.37 6 RCT, split mouth design 

Tatakis & Trombelli 
(2000) CAF+CTG vs CAF+BM -0.40 0.24 6 RCT, split mouth design 

Wang et al. (2001) CAF+CTG vs CAF+BM -0.20 0.27 6 RCT, split mouth design 

Aichelmann-Reidy et al. 
(2001) 

CAF+CTG vs 
CAF+ADM 

-0.50 0.29 6 RCT, split mouth design 

Paolantonio et al. (2002) CAF+CTG vs 
CAF+ADM 

-0.20 0.35 12 RCT, parallel study 
design 

Tal et al. (2002) CAF+CTG vs 
CAF+ADM 

0.29 0.22 12 RCT, split mouth design 

Joly et al. (2007) CAF+CTG vs 
CAF+ADM 

-1.40 0.41 6 RCT, split mouth design 

*F-up = Follow-up 
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Standard pair-wise Bayesian meta-analysis 

Standard pair-wise Bayesian meta-analyses for each treatment comparison 
informed by data were performed when more than one study was present 
(see also Appendix A) and results are presented in Table 3. Random-effects 
models were carried out in all cases except when only 2 studies were 
involved in the analysis and a fixed-effects model was applied to avoid the 
posterior distribution to include implausibility large values for τ2. Non 
informaive prior (the inverse-gamma distribution (ε, ε) with ε = 0.001) was 
used in all cases.  

Tab.3 SM for RecRed and relative forest plots.  

Standard pair-wise Bayesian meta-analysis – CAF vs CAF+CTG 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Da Silva et al. (2000) 0.44 

 
-0.00, 0.88  

 
Cortellini et al. (2005) 0.52 

 
0.14, 0.90  

 
 Point Estimate** 90% CrI*** 
 

Overall (FE) 

 
 

0.49 
 

 
 

0.20, 0.78  
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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Standard pair-wise Bayesian meta-analysis – CAF vs CAF+BM 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Amarante et al. (2000) -0.20 

 
-0.54, 0.14  

 
Lins et al. (2003) -0.40 

 
-0.88, 0.08  

 
 Point Estimate** 90% CrI*** 
 

Overall (FE) 

 
 

-0.27 
 

 
 

-0.55, 0.01  
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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Standard pair-wise Bayesian meta-analysis – CAF vs CAF+EMD 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Modica et al. (2004) 0.90 

 
0.20, 1.61  

 
Del Pizzo et al. (2008) 0.07 

 
-0.34, 0.48  

 
Spahr et al. (2000) 0.38 

 
0.00, 0.76  

 
Castellanos et al. (2006) 0.91 

 
0.19, 1.63  

 
Pilloni et al. (2006) 0.93 

 
0.54, 1.32  

 
 Point Estimate** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
0.57 

0.15 

32.26 
 
 

0.24, 0.91 
 

0.00, 0.55 
 

1.64, 83.24 
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 
where Point Estimate is the median. 

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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Standard pair-wise Bayesian meta-analysis – CAF vs CAF+ADM 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Cortes et al. (2006) 0.08 

 
-0.18, 0.34  

 
Woodyard et al. (2004) 1.23 

 
0.61, 1.85  

 
 Point Estimate** 90% CrI*** 
 

Overall (FE) 

 
 

0.25 
 

 
 

0.01, 0.50  
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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Standard pair-wise Bayesian meta-analysis – CAF+CTG vs CAF+BM 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Jepsen et al. (1998) -0.01 

 
-0.39, 0.37  

 
Trombelli et al. (1998) -0.90 

 
-1.33, -0.47  

 
Zucchelli et al. (1998) -0.60 

 
-0.94, -0.26  

 
Borghetti et al. (1999) 0.00 

 
-0.61, 0.61  

 
Tatakis & Trombelli (2000) -0.40 

 
-0.79, -0.01  

 
Wang et al. (2001) -0.20 

 
-0.64, 0.24  

 
 Point Estimate** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
-0.38 

0.08 

32.37 
 
 

-0.62, -0.12 
 

0.00, 0.30 
 

2.17, 80.49 
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 
where Point Estimate is the median. 

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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Standard pair-wise Bayesian meta-analysis – CAF+CTG vs CAF+ADM 
 

Study 
 

Mean Difference (mm) 
 

 90% CI* 
Aichelmann-Reidy et al. (2001) -0.50 

 
-0.98, -0.02  

 
Paolantonio et al. (2002) -0.20 

 
-0.77, 0.37  

 
Tal et al. (2002) 0.29 

 
-0.07, 0.65  

 
Joly et al. (2007) -1.40 

 
-2.07, -0.73  

 
 Point Estimate** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
-0.39 

0.95 

77.47 
 
 

-1.16, 0.28 
 

0.02, 3.10 
 

15.68, 96.70 
 

*90% CI is the 90% Confidence Interval for the Mean Difference. 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 
where Point Estimate is the median. 

***90% CrI is the 90% Credible Interval for the Point Estimate. 
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NM Consistency model - Lu and Ades 

 

Among the total K(K − 1)/2 = 15 potential pairs of comparisons, DC = 7 
pairwise comparisons are independently supported by direct evidence from 
the data (Fig. 11). For describing all possible treatment effects in a model, we 
need to specify K − 1 = 5 basic parameters that can form a spanning tree. 
The natural choice si to define the effects of the five combination treatments 
(i.e., CAF+CTG, CAF+BM, CAF+EMD, CAF+ADM, CAF+PRP) relative to the 
treatment CAF alone.  

Therefore, we have the following five basic parameters (represented by the 
solid blue lines in Fig. 12): 

 

dCAF K   where K is CAF+CTG, CAF+BM, CAF+EMD, CAF+ADM, CAF+PRP 

                                                       

dCAF CAF+CTG  

dCAF CAF+BM 

dCAF CAF+EMD 

dCAF CAF+ADM 

dCAF CAF+PRP 

                 
                                                                                Fig.12 Spanning tree for RecRed    

 

Functional Parameters (on the left of each equation below) can be expressed 
in terms of difference between basic parameters (on the right of each 
equation below) (Figure 13) as follows: 

 

dCAF+CTG CAF+BM     =    dCAF CAF+CTG    –   dCAF CAF+BM                     

dCAF+CTG CAF+ADM   =     dCAF CAF+CTG    –   dCAF CAF+ADM   
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Fig.13 Network of comparisons expressing the relationship between Basic and Functional 
parameters. The solid lines represent comparisons whose treatment contrasts are specified as 
basic parameters. All solid lines form a spanning tree. The dotted lines represent comparisons 
associated with functional parameters. 

 

NM Inconsistency model – Lu and Ades 

 

Inconsistency Degree of Freedom (ICDF) 

Potential number of inconsistencies as defined by Lu and Ades (2006) can be 
calculated as follows in the network diagram for RecRed: 

 ICDF (for 2-arm trials)  = #Functional Parameters = DC – K +1  

 ICDF for RecRed = #Functional Parameters = 7 – 6 +1 = 2 

Two (2) inconsistencies are identified in the NM for RecRed.  

 

Inconsistency Factors (ICFs)/w-factors  

Discrepancy between the functional parameters and the difference between 
the basic parameters can represented as follows:  

 

dCAF+CTG CAF+BM = dCAF CAF+CTG – dCAF CAF+BM  + WCAF CAF+CTG CAF+BM                             

dCAF+CTG CAF+ADM   =  dCAF CAF+CTG  – dCAF CAF+ADM + WCAF CAF+CTG CAF+ADM             
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Two (2) ICFs (w-factors) are defined and attached to the corresponding 
evidence cycles (Figure 14): 

 

WCAF CAF+CTG CAF+BM   ;     WCAF CAF+CTG CAF+ADM 

 

The number of w-factors (2, for RecRed analysis) being estimated is not 
equal to the number of treatment comparisons (7, for RecRed analysis) (as 
showed by Lumley model) but is defined according to the presence of 
functional parameters. 

 

WCAF CAF+CTG CAF+BM                                    WCAF CAF+CTG CAF+ADM 

                             

 

Fig.14 Two (2) evidence cycles are defined by relations between Basic and Functional parameters 
for the Network Meta-analysis under Consistency model. The solid lines represent comparisons 
whose treatment contrasts are specified as basic parameters. The dotted lines represent 
comparisons associated with functional parameters. 
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Results of NM models with and without Inconsistency Factors 
 
Both in the NM random-effects Consistency and Inconsistency models, the 
median of the posterior distribution of the between-trials variance (Tau2) is 
very small (0.12 and 0.13 respectively), suggesting that similar results would 
be obtained with a fixed-effects model. Results with and without the 
inconsistency factors are given in Table 4, 6, 8 (Figure 15, 17). 

The goodness-of-fit statistic, DIC, for the NM model without ICFs is 25.34 and 
it is reduced to 24.64 by adding ICFs to the model. 

The values of the overall inconsistency, Tau-w2 = 0.46, and inconsistency 
probability, Pr (Tau-w2 > Tau2) = 0.71, suggest the presence of inconsistency 
between sources of evidence on posterior treatment effects. 

The values of WCAF CAF+CTG CAF+BM = 0.26, and of WCAF CAF+CTG CAF+ADM = - 0.22 
suggest the presence of inconsistency in the two evidence cycles. 

Combinations of CAF+EMD and CAF+CTG showed the best results in terms 
of RecRed under both Consistency and Inconsistency models and occuped 
the first and the second position respectively in the ranking of treatments and 
in terms of probability of beeing the best (Table 5, 7; Figure 16, 18)  

Mean residual deviance for individual data points in models with and without 
inconsistency factors has been compared and Figure 19 shows the presence 
of two outliers, corresponding to trials 11 and 22, in the model without w-
factors. Point 11 correspond to the comparison CAF vs CAF+PRP of the trial 
of Woodyard et al. 2004 and point 22 to the comparison CAF+CTG vs 
CAF+ADM of the trial of Joly et al. 2007. The last one confirm suspicions 
about the (CAF CAF+CTG CAF+ADM) cycle.  

Another inconsistency model has been carried out after removing points 11 
and 22 from the analysis. The results (Table 9) show both ICFs (WCAF CAF+CTG 

CAF+BM = 0.20, WCAF CAF+CTG CAF+ADM = 0.14) and overall inconsistency (Tau-w2 = 
0.25) are substantially reduced, not the inconsistency probability due to the 
simoutaneous strong reduction of between-trials variance (Tau2 = 0.05). 
Results of Consistency and Inconsistency (full data and 11, 22 deleted) 
models are showed in Table 10.  
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Tab.4 NM for RecRed: Consistency model (without ICFs/w-factors). Results of all possible 
pair-wise treatment comparisons.  

Network Meta-analysis – Consistency model 

 
Treatment Comparison 

 
Point Estimate* 

 
 90% CrI** 

CAF vs CAF+CTG 0.44 
 

0.11, 0.79  
 

CAF vs CAF+BM -0.02 
 

-0.38, 0.36  
 

CAF vs CAF+EMD 0.58 
 

0.23, 0.94  
 

CAF vs CAF+ADM 0.24 
 

-0.14, 0.63  
 

CAF vs CAF+PRP -0.20 
 

-1.06, 0.64  
 

CAF+CTG vs CAF+BM -0.46 
 

-0.73, -0.18  
 

CAF+CTG vs CAF+EMD 0.14 
 

-0.36, 0.62  
 

CAF+CTG vs CAF+ADM -0.20 
 

-0.55, 0.14  
 

CAF+CTG vs CAF+PRP -0.65 
 

-1.56, 0.26  
 

CAF+BM vs CAF+EMD 0.60 
 

0.10, 1.12  
 

CAF+BM vs CAF+ADM 0.26 
 

-0.16, 0.67  
 

CAF+BM vs CAF+PRP -0.18 
 

-1.11, 0.73  
 

CAF+EMD vs CAF+ADM -0.34 
 

-0.87, 0.18  
 

CAF+EMD vs CAF+PRP -0.78 
 

-1.71, 0.13  
 

CAF+ADM vs CAF+PRP -0.45 
 

-1.37, 0.49  
 

Tau2 

DIC 

0.12 

25.34 

0.03, 0.33 

*Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 where 
Point Estimate is the median. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

 

 

 

 



	
   58	
  

Fig.15. NM for RecRed: Plots of the posterior densities of each treatment compared to 
CAF under Consistency model (without ICFs/w-factors). 

 

 

 

Tab.5 NM for RecRed: Ranking and Best for the six treatments included in the analysis 
under Consistency model (without ICFs/w-factors).  

 Ranking Best 
 

Treatment 
 

Point Estimate* 
 

90% CrI** 
 

Pr*** 
CAF  4.63 

 
3.00, 6.00  

 
0.00 

CAF+CTG 1.99 
 

1.00, 3.00  
 

0.26 

CAF+BM 4.75 
 

3.00, 6.00  
 

<0.00 

CAF+EMD 1.55 
 

1.00, 3.00  
 

0.64 

CAF+ADM 3.19 
 

2.00, 5.00  
 

0.05 

CAF+PRP 4.89 
 

1.00, 6.00  
 

0.05 

*Point Estimate is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

***Pr is the probability that each treatment is the best. 
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Fig.16 NM for RecRed: Ranking for the six treatments under Consistency model (without 
ICFs/w-factors). 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   60	
  

Tab.6 NM for RecRed: Inconsistency model (with ICFs/w-factors). Results of all possible 
pair-wise treatment comparisons. 

Network Meta-analysis – Inconsistency model (with ICFs/w-factors)  

 
Treatment Comparison 

 
Point Estimate* 

 
 90% CrI** 

CAF vs CAF+CTG 0.47 
 

0.03, 0.94  
 

CAF vs CAF+BM -0.19 
 

-0.69, 0.29  
 

CAF vs CAF+EMD 0.58 
 

0.22, 0.95  
 

CAF vs CAF+ADM 0.40 
 

-0.08, 0.92  
 

CAF vs CAF+PRP -0.20 
 

-1.06, 0.65  
 

CAF+CTG vs CAF+BM -0.66 
 

-1.32, -0.09  
 

CAF+CTG vs CAF+EMD 0.11 
 

-0.47, 0.69  
 

CAF+CTG vs CAF+ADM -0.07 
 

-0.66, 0.57  
 

CAF+CTG vs CAF+PRP -0.67 
 

-1.63, 0.28  
 

CAF+BM vs CAF+EMD 0.77 
 

0.18, 1.40  
 

CAF+BM vs CAF+ADM 0.59 
 

-0.07, 1.34  
 

CAF+BM vs CAF+PRP -0.01 
 

-0.10, 0.98  
 

CAF+EMD vs CAF+ADM -0.18 
 

-0.79, 0.45  
 

CAF+EMD vs CAF+PRP -0.78 
 

-1.73, 0.13  
 

CAF+ADM vs CAF+PRP -0.60 
 

-1.59, 0.37  
 

w-CAF.CTG.BM 0.26 
 

-0.31, 0.98  
 

w-CAF.CTG.ADM -0.22 
 

-0.96, 0.36  
 

Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

0.13 

0.46 

0.71 

24.64 

0.03, 0.34 

0.00, 24.38 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis  except for Tau2 and 
Tau-w2 where Point Estimate is the median (90% CrI is the 90% Credible Interval). 

**90% CrI is the 90% Credible Interval for the Point Estimate. 
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Fig.17 NM for RecRed: Plots of posterior densities of each treatment compared to CAF 
under the Inconsistency model (with ICFs/w-factors).  

                     

Tab.7 NM for RecRed: Ranking and Best for the six treatments included in the analysis 
under Inconsistency model (with ICFs/w-factors).  

 Ranking Best 
 

Treatment 
 

Point Estimate* 
 

90% CrI** 
 

Pr*** 
CAF  4.47 

 
3.00, 6.00  

 
<0.00 

CAF+CTG 2.21 
 

1.00, 4.00  
 

0.28 

CAF+BM 5.12 
 

3.00, 6.00  
 

0.00 

CAF+EMD 1.78 
 

1.00, 3.00  
 

0.48 

CAF+ADM 2.62 
 

1.00, 5.00  
 

0.19 

CAF+PRP 4.80 
 

2.00, 6.00  
 

0.05 

*Point Estimate is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

***Pr is the probability that each treatment is the best. 
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Fig. 18 NM for RecRed: Ranking for the six treatments under Inconsistency model (with 
ICFs/w-factors). 
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Tab.8 NM for RecRed: Standard meta-analysis, Consistency and Inconsistency models 
(limited to the comparisons informed by data and analyzed in SM). 

 SM NM (Consistency model) NM (Inconsistency model) 

 
Treatment Comparison 

(N*) 

 
Point Estimate 

(90% CrI)** 

 
Point Estimate 

(90% CrI) 

 
Point Estimate 

(90% CrI) 
CAF vs CAF+CTG (2) 0.49 

(0.20, 0.78) 
0.44 

(0.11, 0.79) 
 

0.47  
(0.03, 0.94)  

 
CAF vs CAF+BM (2) -0.27 

(-0.55, 0.01) 
-0.02 

(-0.38, 0.36) 
 

-0.19  
(-0.69, 0.29)  

 
CAF vs CAF+EMD (5) 0.57 

(0.24, 0.91) 
0.58 

(0.23, 0.94) 
 

0.58  
(0.22, 0.95)  

 
CAF vs CAF+ADM (2) 0.25 

(0.01, 0.50) 
0.24 

(-0.14, 0.63) 
 

0.40  
(-0.08, 0.92)  

 
CAF+CTG vs CAF+BM 

(6) 
-0.38 

(0.62, 0.12) 
-0.46 

(-0.73, -0.18) 
 

-0.66  
(-1.32, -0.09)  

 
CAF+CTG vs CAF+ADM 

(4) 
-0.39 

(-1.16, 0.28) 
-0.20 

-0.55, 0.14 
 

-0.07  
(-0.66, 0.57)  

 
Tau2 - 0.12 (0.03, 0.33) 0.13 (0.03, 0.34)  

Tau-w2 - - 0.46 (0.00, 24.38)  

Pr (Tau-w2 > Tau2) - - 0.71  

DIC - 25.34 24.64  

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis  except for Tau2 and 
Tau-w2 where Point Estimate is the median (90% CrI is the 90% Credible Interval). 

**90% CrI is the 90% Credible Interval for the Point Estimate. 
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Fig.19 NM for RecRed: residuals in fitting models with and without Inconsistency Factors. 
Points 11 and 22 correspond to the comparison CAF vs CAF+PRP of the trial of Woodyard 
et al. 2004 and CAF+CTG vs CAF+ADM of the trial of Joly et al. 2007.                             
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Tab.9 NM for RecRed: Inconsistency model (11 and 22 deleted). Results of all possible 
pair-wise treatment comparisons. 

Network Meta-analysis – Inconsistency model (11 and 22 deleted) 

 
Treatment Comparison 

 
Point Estimate* 

 
 90% CrI** 

CAF vs CAF+CTG 0.38 
 

0.01, 0.77  
 

CAF vs CAF+BM -0.21 
 

-0.60, 0.15  
 

CAF vs CAF+EMD 0.57 
 

0.28, 0.87  
 

CAF vs CAF+ADM 0.13 
 

-0.32, 0.57  
 

CAF vs CAF+PRP -0.19 
 

-0.91, 0.52  
 

CAF+CTG vs CAF+BM -0.59 
 

-1.14, -0.14  
 

CAF+CTG vs CAF+EMD 0.19 
 

-0.29, 0.67  
 

CAF+CTG vs CAF+ADM -0.25 
 

-0.81, 0.25  
 

CAF+CTG vs CAF+PRP -0.57 
 

-1.38, 0.24  
 

CAF+BM vs CAF+EMD 0.78 
 

0.32, 1.28  
 

CAF+BM vs CAF+ADM 0.34 
 

-0.21, 0.91  
 

CAF+BM vs CAF+PRP 0.02 
 

-0.79, 0.83  
 

CAF+EMD vs CAF+ADM -0.44 
 

-0.99, 0.08  
 

CAF+EMD vs CAF+PRP -0.76 
 

-1.54, 0.01  
 

CAF+ADM vs CAF+PRP -0.32 
 

-1.16, 0.53  
 

w-CAF.CTG.BM 0.20 
 

-0.24, 0.76  
 

w-CAF.CTG.ADM 0.14 
 

-0.37, 0.76  
 

                        Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

                     0.05 

0.25 

0.74 

17.77 
 

                  0.00, 0.20 
 

0.00, 16.12 
 
 
 

 

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis  except for Tau2 and 
Tau-w2 where Point Estimate is the median (90% CrI is the 90% Credible Interval). 

**90% CrI is the 90% Credible Interval for the Point Estimate. 
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Tab.10 NM for RecRed: Consistency, Inconsistency (full data) and Inconsistency (11 and 
22 deleted) models (limited to the comparisons informed by data and analyzed in SM). 

  NM (Inconsistency model) 
 NM (Consistency model) Full data 11 and 22 deleted 

 
Treatment Comparison (N*) 

 
Point Estimate 

(90% CrI)** 

 
Point Estimate 

(90% CrI) 

 
Point Estimate 

(90% CrI) 
CAF vs CAF+CTG (2) 0.44 

(0.11, 0.79) 
0.47  

(0.03, 0.94)  
0.38  

(0.01, 0.77)  
CAF vs CAF+BM (2) -0.02 

(-0.38, 0.36) 
-0.19  

(-0.69, 0.29)  
-0.21  

(-0.60, 0.15)  
CAF vs CAF+EMD (5) 0.58 

(0.23, 0.94) 
0.58  

(0.22, 0.95)  
0.57  

(0.28, 0.87)  
CAF vs CAF+ADM (2)*** 0.24 

(-0.14, 0.63) 
0.40  

(-0.08, 0.92)  
0.13  

(-0.32, 0.57)  
CAF+CTG vs CAF+BM (6) -0.46 

(-0.73, -0.18) 
-0.66  

(-1.32, -0.09)  
-0.59  

(-1.14, -0.14)  
CAF+CTG vs CAF+ADM (4)**** -0.20 

-0.55, 0.14 
-0.07  

(-0.66, 0.57)  
-0.25  

(-0.81, 0.25)  
w-CAF.CTG.BM - 0.26  

(-0.31, 0.98)  
0.20  

(-0.24, 0.76)  
w-CAF.CTG.ADM - -0.22  

(-0.96, 0.36)  
0.14  

(-0.37, 0.76)  
 

Tau2 0.12 (0.03, 0.33) 0.13 (0.03, 0.34)  0.05 (0.00, 0.20)  

Tau-w2 - 0.46 (0.00, 24.38)  0.25 (0.00, 16.12)  

Pr (Tau-w2 > Tau2) - 0.71  0.74  

DIC 25.34 24.64  17.77  

*N is the number of trials with direct evidence for each treatment comparison.  

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis  except for Tau2 and 
Tau-w2 where Point Estimate is the median (90% CrI is the 90% Credible Interval). 

***In the Inconsistency model without 11 and 22, N = 1. 

****In the Inconsistency model without 11 and 22, N = 3. 
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NM Consistency model (Heterogenous variance) - Lu and Ades  
 
In Consistency and Inconsistency models proposed, all random effects are assumed 
having the same variance, which is just the case of homogeneity of between-trial 
variation (Higgins 1996, Lu 2004). Heterogeneity of between-trial variation has been 
investigated and an Heterogeneous model has been performed but discarded due to a 
higher value of DIC with respect to Homogeneous models previously described. 
Results are presented in Table 11.  

Tab.11 NM for RecRed: Heterogeneous model. Results of all possible pair-wise treatment 
comparisons.  

Network Meta-analysis – Heterogeneous model 

 
Treatment Comparison 

 
Point 

Estimate* 

 
 90% CrI** 

 
σ2 

 
90% CrI 

CAF vs CAF+CTG 0.40 0.08, 0.72  0.16 0.00, 0.60 

CAF vs CAF+BM -0.06 -0.38, 0.30  0.21 0.00, 0.78 

CAF vs CAF+EMD 0.57 0.24, 0.93  0.14 0.00, 0.50 

CAF vs CAF+ADM 0.20 -0.28, 0.66  0.55 0.01, 2.06 

CAF vs CAF+PRP -0.19 -1.39, 1.04  1.08 0.00, 3.98 

CAF+CTG vs CAF+BM -0.46 -0.70, -0.22  0.10 0.00, 0.33 

CAF+CTG vs CAF+EMD 0.17 -0.30, 0.66  - - 

CAF+CTG vs CAF+ADM -0.19 -0.62, 0.25  0.40 0.01, 1.38 

CAF+CTG vs CAF+PRP -0.59 -1.82, 0.66  - - 

CAF+BM vs CAF+EMD 0.63 0.13, 1.11  - - 

CAF+BM vs CAF+ADM 0.27 -0.22, 0.74  - - 

CAF+BM vs CAF+PRP -0.13 -1.39, 1.13  - - 

CAF+EMD vs CAF+ADM -0.37 -0.97, 0.20  - - 

CAF+EMD vs CAF+PRP -0.76 -2.02, 0.53  - - 

CAF+ADM vs CAF+PRP -0.39 -1.69, 0.94  - - 

Tau2 

DIC 

0.10 

26.23 

0.01, 0.68   

*Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2  where 
Point Estimate is the median. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

 

 



	
   68	
  

NM Inconsistency model - Bayesian extension of Lumley’s method 
 

Among the total K(K − 1)/2 = 15 potential pairs of comparisons, DC = 7 
pairwise comparisons are independently supported by direct evidence from 
the data (Fig. 1). 

The number of terms wkb being estimated is equal to the number of treatment 
comparisons. Thus, seven (7) w-factors can identified for RecRed analysis: 

  

wCAF CAF+CTG, wCAF CAF+BM, wCAF CAF+EMD, wCAF CAF+ADM 

wCAF CAF+PRP, wCAF+CTG CAF+BM, wCAF+CTG CAF+ADM 

                 

Results for the Bayesian extension of Lumley’s method 

The median of the posterior distribution of the between-trials variance (Tau2) 
is very small (0.13) and similar to models previously described. Results for all 
possible pair-wise comparisons are given in Table 12. Posterior densities of 
each treatment compared to reference treatment (CAF) are represented in 
Figure 20.  

The goodness-of-fit statistic, DIC, for this NM model (24.76) is close o the 
value of Inconsistency model by Lu and Ades (24.64). 

The lower values (with respect to Lu and Ades model) of the overall 
Inconsistency, Tau-w2 = 0.18, and Inconsistency probability, Pr (Tau-w2 > 
Tau2) = 0.57, may be explained according to the fact that in the present 
model the w-factors are attached to single comparisons informed by data and 
not to evidence cycles. 

The values of w-factors relative to CAFvsCAF+BM (- 0.12), CAFvsCAF+ADM 
(- 0.12), CAFvsCAF+PRP (0.17), CAF+CTGvsCAF+BM (0.09), 
CAF+CTGvsCAF+ADM (- 0.38) and asimmetries in the relative posterior 
densities (Figure 22) suggest the presence of Inconsistency in 
correspondence of these comparisons (Table 12).  

Combinations of CAF+EMD and CAF+CTG showed the best results in terms 
of RecRed also under the Bayesian extension of Lumley’s method (Table 13, 
Figure 21). 

Mean residual deviance (Figure 23) for individual data points in the Bayesian 
extension of Lumley’s method show similar results to the Inconsistency model 
by Lu and Ades.  
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Tab.12 NM for RecRed: Bayesian extension of Lumley’s method. Results of all possible 
pair-wise treatment comparisons.  

*Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and 
Tau-w2 where Point Estimate is the median. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

 

 

 

 

 

Network Meta-analysis – Bayesian extension of Lumley’s method 

 
Treatment Comparison 

 
Point 

Estimate* 

 
 90% CrI** 

 
w 

 
90% CrI 

CAF vs CAF+CTG 0.43 -0.94, 1.85  0.04 -1.36, 1.41 

CAF vs CAF+BM -0.07 -1.55, 1.74  -0.12 -1.93, 1.22 

CAF vs CAF+EMD 0.60 -1.29, 2.65  -0.01 -2.06, 1.84 

CAF vs CAF+ADM 0.52 -0.89, 2.60  -0.12 -2.09, 1.35 

CAF vs CAF+PRP -0.37 -2.88, 1.57  0.17 -1.56, 2.57 

CAF+CTG vs CAF+BM -0.50 -1.82, 0.90  0.09 -1.26, 1.44 

CAF+CTG vs CAF+EMD 0.17 -2.11, 2.88  - - 

CAF+CTG vs CAF+ADM 0.09 -1.19, 2.28  -0.38 -2.60, 0.83 

CAF+CTG vs CAF+PRP -0.80 -3.42, 1.50  - - 

CAF+BM vs CAF+EMD 0.67 -1.87, 3.41  - - 

CAF+BM vs CAF+ADM 0.59 -0.98, 3.17  - - 

CAF+BM vs CAF+PRP -0.31 -3.14, 2.08  - - 

CAF+EMD vs CAF+ADM -0.09 -2.78, 3.45  - - 

CAF+EMD vs CAF+PRP -0.98 -4.19, 1.64  - - 

CAF+ADM vs CAF+PRP -0.89 -4.47, 1.39  - - 

Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

0.13 

0.18 

0.57 

24.76 

0.04, 0.36 
 

0.00, 15.15 

- - 
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Fig.20 NM for RecRed: Plots of posterior densities of each treatment compared to CAF 
under the Bayesian extension of Lumley’s method. 

 

 

 

Tab.13 NM for RecRed: Ranking and Best for the six treatments included in the analysis 
under the Bayesian extension of Lumley’s method. 

 Ranking Best 
 

Treatment 
 

Point Estimate* 
 

90% CrI** 
 

Pr*** 
CAF  4.27 

 
2.00, 6.00  

 
0.01 

CAF+CTG 2.47 
 

1.00, 5.00  
 

0.23 

CAF+BM 4.42 
 

2.00, 6.00  
 

0.04 

CAF+EMD 2.25 
 

1.00, 6.00  
 

0.48 

CAF+ADM 3.08 
 

1.00, 6.00  
 

0.16 

CAF+PRP 4.51 
 

1.00, 6.00  
 

0.09 

*Point Estimate is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the Point Estimate. 

***Pr is the probability that each treatment is the best. 
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Fig. 21 NM for RecRed: Ranking for the seven treatments under the Bayesian extension of 
Lumley’s method. 

                     

Fig.22 NM for RecRed: Plots of posterior densities of w-factors under the Bayesian 
extension of Lumley’s method.  
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Fig.23 NM for RecRed: residuals in fitting Consistency models without w-factors and the 
Bayesian extension of Lumley’s method. Points 11 and 22 correspond to the comparison 
CAF vs CAF+PRP of the trial of Woodyard et al. 2004 and CAF+CTG vs CAF+ADM of the 
trial of Joly et al. 2007. 
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Kullback Leibler distance 

 

Kullback-Leibler distance between the posterior distribution of treatment 
effect obtained by SM model (assumed as reference distribution) and by NM 
Consistency model was calculated for each treatment comparison informed 
by data (Table 14). KL distance (and relative q) for CAFvsCAF+BM 
(0.67;0.93), CAFvsCAF+ADM (0.17;0.77), CAF+CTGvsCAF+BM (0.13;0.74), 
CAF+CTGvsCAF+ADM(1.97;1.00) and corresponding plots (Figure 24) 
suggest the presence of discrepancy between direct and indirect evidence for 
these comparisons according to the results of the Bayesian extension of 
Lumley’s method. KL distances (q) and w-factors (as derived by Bayesian 
extension of Lumley’s method) are compared in Table 15.      

 

Tab.14 NM for RecRed: Consistency model (without ICFs/w-factors) and standard pair-
wise Bayesian meta-analysis (limited to the comparisons informed by data and analyzed in 
SM). 

 Network Meta-analysis 
(Consistency model) 

Standard pair-wise meta-
analysis (Ref.)  

 
Treatment 

Comparison (N*) 

 
Point 

Estimate** 

 
90% CrI*** 

 
Point 

Estimate 

 
90% CrI 

 
KL(q)**** 

CAF vs CAF+CTG (2) 0.44 
 

0.11, 0.79  
 

0.49 0.20, 0.78 
 

0.05 (0.66)  
 

CAF vs CAF+BM (2) -0.02 
 

-0.38, 0.36  
 

-0.27 -0.55, 0.01 
 

0.67 (0.93)  
 

CAF vs CAF+EMD (5) 0.58 
 

0.23, 0.94  
 

0.57 0.24, 0.91 
 

0.00 (0.54)  
 

CAF vs CAF+ADM (2) 0.24 
 

-0.14, 0.63  
 

0.25 0.01, 0.50 
 

0.17 (0.77)  
 

CAF+CTG vs 
CAF+BM (6) -0.46 

 
-0.73, -0.18  

 
-0.38 -0.62, -0.12 

 
0.13 (0.74)  

 
CAF+CTG vs 
CAF+ADM (4) -0.20 

 
-0.55, 0.14  

 
-0.39 -1.16, 0.28 

 
1.97 (1.00)  

 
*N is the number of trials with direct evidence for the treatment comparison.  

**Point Estimate is the mean of the posterior distribution of the Bayesian meta-analysis. 

***90% CrI is the 90% Credible Interval for the Point Estimate. 

****Kl is the Kullback–Leibler distance between the posterior distribution of the mean for the pair-wise 
comparison under the NM model and the correspondent pair-wise comparison under the standard meta-
analysis model; q is the calibrated value of the Kullback–Leibler distances espressed as a probability. 
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Fig.24 NM for RecRec: Plots of posterior distributions of Consistency model (without 
ICFs/w-factors) and standard pair-wise Bayesian meta-analysis (limited to the 
comparisons informed by data and analyzed in SM). 

 
Dotted lines = Network Meta-analysis; solid lines = Standard pair-wise Bayesian Meta-analysis. 
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Tab.15 NM for RecRed: SM, NM Consistency (Lu and Ades) and NM (Bayesian extension 
of Lumley’s method) models (limited to the comparisons informed by data and analyzed in 
SM). 

 SM (Ref.) NM (Consistency model) NM (Lumley) 

 
Treatment Comparison 

(N*) 

 
Point 

Estimate 
(90% CrI)** 

 
Point 

Estimate 
(90% CrI) 

 
KL(q)*** 

 
Point 

Estimate 
(90% CrI) 

 
w 

CAF vs CAF+CTG (2) 0.49 
(0.20, 0.78) 

0.44 
(0.11, 0.79) 

0.05 (0.66)  0.43  
(-0.94, 1.85)  

0.04  
(-1.36, 1.41)  

CAF vs CAF+BM (2) -0.27 
(-0.55, 0.01) 

-0.02 
(-0.38, 0.36) 

0.67 (0.93)  -0.07  
(-1.55, 1.74)  

-0.12  
(-1.93, 1.22)  

CAF vs CAF+EMD (5) 0.57 
(0.24, 0.91) 

0.58 
(0.23, 0.94) 

0.00 (0.54)  0.60  
(-1.29, 2.65)  

-0.01  
(-2.06, 1.84)  

CAF vs CAF+ADM (2) 0.25 
(0.01, 0.50) 

0.24 
(-0.14, 0.63) 

0.17 (0.77)  0.52  
(-0.89, 2.60)  

-0.12  
(-2.09, 1.35)  

CAF+CTG vs CAF+BM 
(6) 

-0.38 
(0.62, 0.12) 

-0.46 
(-0.73, -0.18) 

0.13 (0.74)  -0.50  
(-1.82, 0.90)  

0.09  
(-1.26, 1.44)  

CAF+CTG vs CAF+ADM 
(4) 

-0.39 
(-1.16, 0.28) 

0.20 
-0.55, 0.14 

1.97 (1.00)  0.09  
(-1.19, 2.28)  

-0.38  
(-2.60, 0.83)  

Tau2 - 0.12 
(0.03, 0.33) 

-  0.13  
(0.04, 0.36)  

-  

Tau-w2 - - -  0.18  
(0.00, 15.15)  

-  

Pr (Tau-w2 > Tau2) - - -  0.57  -  

DIC - 25.34 -  24.56  -  

*N is the number of trials with direct evidence for each treatment comparison.  

**Point Estimate is the mean of the posterior distribution of the bayesian meta-analysis (90% CrI is the 90% 
Credible Interval). 

***Kl is the Kullback– Leibler distance between the posterior distribution of the Mean for the pair-wise 
comparison under the NM model and the correspondent pair-wise comparison under the standard meta-
analysis model; q is the calibrated value of the Kullback–Leibler distances espressed as a probability. 
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Analysis for CRC 
 

Data 

The data (Tab.16) for CRC outcome consist of: 

• N = 22 studies 
• K = 7 treatments (CAF, CAF+CTG, CAF+BM, CAF+EMD, CAF+ADM, 

CAF+PRP, CAF+HF-DDS) 
• DC (Direct Comparison) = 9 pair-wise comparisons informed by data 

(e.g. with direct evidence from single trials) 
• IC (Indirect Comparison) = 12 pair-wise comparisons based on indirect 

evidence 
• Comp = 21 possible pair-wise comparisons (DC + IC) 

 
Graph Representation 

The graphic representation of the network diagram for CRC data is given in 
Figure 25.  

 

      

                                

                                (a)                                                                     (b) 

 

Fig.25 Network for the comparisons among 7 different treatments (CAF, CAF+CTG, CAF+BM, 
CAF+EMD, CAF+ADM, CAF+PRP, CAF+HF-DDS) without indirect evidence (a), with both direct 
and indirect evidence. Dotted yellow lines refer to those comparisons that have not been tested 
directly in randomized-controlled trials. The width of the solid blue lines is in proportion to the 
amount of evidence (number of RCTs included for each comparison) available in the literature. 
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Tab.16 NM for CRC Summary of studies included in the analysis. 

Study Treatment 
Comparison LogOR SD Follow-up 

(months) Study Design 

da Silva et al. (2004) CAF vs CAF+CTG 0.80 1.15 6 RCT, split mouth 
design 

Cortellini et al. (2008) CAF vs CAF+CTG 0.93 0.45 6 RCT, parallel study 
design 

Leknes et al. (2005) CAF vs CAF+BM -0.54 0.65 12 RCT, split mouth 
design 

Modica et al. (2000) CAF vs CAF+EMD 0.00 1.00 6 RCT, split mouth 
design 

Del Pizzo et al. (2005) CAF vs CAF+EMD 1.61 1.55 24 RCT, split mouth 
design 

Spahr et al. (2000) CAF vs CAF+EMD 1.32 0.50 24 RCT, split mouth 
design 

Pilloni et al. (2006) CAF vs CAF+EMD 2.57 0.94 18 RCT, parallel study 
design 

Cortes et al. (2006) CAF vs CAF+ADM 0.00 1.29 24 RCT, split mouth 
design 

Woodyard et al. (2004) CAF vs CAF+ADM 3.09 1.21 6 RCT, parallel study 
design 

Huang et al. (2005) CAF vs CAF+PRP 0.22 0.86 6 RCT, parallel study 
design 

Jepsen et al. (1998) CAF+CTG vs 
CAF+BM 

0.00 0.82 12 RCT, split mouth 
design 

Zucchelli et al. (1998) CAF+CTG vs 
CAF+BM 

-1.39 0.61 6 RCT, split mouth 
design 

Borghetti et al. (1999) CAF+CTG vs 
CAF+BM 

0.00 0.73 12 RCT, parallel study 
design 

Trombelli et al. (1998) CAF+CTG vs 
CAF+BM 

-2.58 1.08 6 RCT, split mouth 
design 

Tatakis & Trombelli 
(2000) 

CAF+CTG vs 
CAF+BM 

-1.95 1.51 6 RCT, split mouth 
design 

Wang et al. (2001) CAF+CTG vs 
CAF+BM 

0.00 0.82 6 RCT, split mouth 
design 

McGuire & Nunn (2003) CAF+CTG vs 
CAF+EMD 

0.84 0.83 12 RCT, split mouth 
design 

Aichelmann-Reidy et al. 
(2001) 

CAF+CTG vs 
CAF+ADM 

-0.76 0.55 6 RCT, split mouth 
design 

Paolantonio et al. 
(2002) 

CAF+CTG vs 
CAF+ADM 

-0.88 0.78 12 RCT, parallel study 
design 

Tal et al. (2002) CAF+CTG vs 
CAF+ADM 

0.00 0.82 12 RCT, split mouth 
design 

Joly et al. (2007) CAF+CTG vs 
CAF+ADM 

-2.20 1.49 6 RCT, split mouth 
design 

Wilson Jr (2005) CAF+CTG vs 
CAF+HF-DDS 

0.00 2.00 6 RCT, split mouth 
design 
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Standard pair-wise Bayesian meta-analysis 

Standard pair-wise Bayesian meta-analyses for each treatment comparison 
informed by data were performed when more than one study was present 
(see also Appendix A) and results are presented in Table 17. Random-effects 
models were carried out in all cases except when only 2 studies were 
involved in the analysis and a fixed-effects model was applied to avoid the 
posterior distribution to include implausibility large values for τ2. Non 
informaive prior (the inverse-gamma distribution (ε, ε) with ε = 0.001) were 
used in all cases.  

Tab.17 SM for CRC and relative forest plots.  

Standard pair-wise Bayesian meta-analysis – CAF vs CAF+CTG 
 

Study 
 

LogOR 
 

 90% CI* 
Da Silva et al. (2000) 0.80 

 
-1.09, 2.69  

 
Cortellini et al. (2005) 0.93 

 
0.19, 1.67  

 
 LogOR** 90% CrI*** 
 

Overall (FE) 

 
 

0.91 
 

 
 

0.23, 1.61  
 

*90% CI is the 90% Confidence Interval for the LogOR. 

**LogOR= Log Odds Ratio of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for LogOR. 
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Standard pair-wise Bayesian meta-analysis – CAF vs CAF+EMD 
 

Study 
 

LogOR 
 

 90% CI* 
Modica et al. (2004) 0.00 

 
-1.64, 1.64  

 
Del Pizzo et al. (2008) 1.61 

 
-0.93, 4.15  

 
Spahr et al. (2000) 1.32 

 
0.50, 2.14  

 
Pilloni et al. (2006) 2.57 

 
1.03, 4.11  

 
 LogOR** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
1.36 

0.07 

5.59 
 
 

0.43, 2.25 
 

0.00, 3.37 
 

0.12, 74.84 
 

*90% CI is the 90% Confidence Interval for the LogOR. 

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 where 
LogOR is the median. 

***90% CrI is the 90% Credible Interval for the LogOR. 
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Standard pair-wise Bayesian meta-analysis – CAF vs CAF+ADM 
 

Study 
 

LogOR 
 

 90% CI* 
Cortes et al. (2006) 0.00 

 
-2.12, 2.12  

 
Woodyard et al. (2004) 3.09 

 
1.11, 5.07  

 
 LogOR** 90% CrI*** 
 

Overall (FE) 

 
 

1.64 
 

 
 

0.19, 3.09  
 

*90% CI is the 90% Confidence Interval for the LogOR. 

**LogOR= Log Odds Ratio of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for LogOR. 
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Standard pair-wise Bayesian meta-analysis – CAF+CTG vs CAF+BM 
 

Study 
 

LogOR 
 

 90% CI* 
Jepsen et al. (1998) 0.00 

 
-1.35, 1.35  

 
Zucchelli et al. (1998) -1.39 

 
-2.39, -0.39  

 
Borghetti et al. (1999) 0.00 

 
-1.20, 1.20  

 
Trombelli et al. (1998) -2.58 

 
-4.35, -0.81  

 
Tatakis & Trombelli (2000) -1.95 

 
-4.43, 0.53  

 
Wang et al. (2001) 0.00 

 
-1.35, 1.35  

 
 LogOR** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
-0.78 

0.10 

9.83 
 
 

-1.50, -0.07 
 

0.00, 2.13 
 

0.18, 69.21 
 

*90% CI is the 90% Confidence Interval for the LogOR. 

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 where 
LogOR is the median. 

***90% CrI is the 90% Credible Interval for the LogOR. 
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Standard pair-wise Bayesian meta-analysis – CAF+CTG vs CAF+ADM 
 

Study 
 

LogOR 
 

 90% CI* 
Aichelmann-Reidy et al. (2001) -0.76 

 
-1.66, 0.14  

 
Paolantonio et al. (2002) -0.88 

 
-2.16, 0.40  

 
Tal et al. (2002) 0.00 

 
-1.35, 1.35  

 
Joly et al. (2007) -2.20 

 
-4.64, 0.24  

 
 LogOR** 90% CrI*** 

Overall (RE) 

Tau2 

I2 

 
-0.75 

0.04 

3.55 
 
 

-1.56, 0.02 
 

0.00, 1.67 
 

0.12, 63.70 
 

*90% CI is the 90% Confidence Interval for the LogOR. 

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and I2 where 
LogOR is the median. 

***90% CrI is the 90% Credible Interval for the LogOR. 
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NM Consistency model - Lu and Ades 

 

Among the total K(K − 1)/2 = 21 potential pairs of comparisons, DC = 9 
pairwise comparisons are independently supported by direct evidence from 
the data (Fig. 25). For describing all possible treatment effects in a model, we 
need to specify K − 1 = 6 basic parameters that can form a spanning tree. It 
would be natural to choose the effects of the six combination treatments (i.e., 
CAF+CTG, CAF+BM, CAF+EMD, CAF+ADM, CAF+PRP, CAF+HF-DDS) 
relative to the treatment CAF alone. However, no direct evidence is available 
for CAF versus CAF+HF-DDS. Treatment CAF+HF-DDS is an isolated vertex 
(see Fig. 26) compared only with treatment CAF+CTG in trial 22, and thus we 
must have dCAF+CTG CAF+HF-DDS, instead of dCAF CAF+HF-DDS, as a basic parameter.  

Therefore, we have the following six basic parameters (represented by the 
solid blue lines in Fig. 26): 

 

 dCAF CAF+CTG 

 dCAF CAF+BM 

 dCAF CAF+EMD 

 dCAF CAF+ADM 

 dCAF CAF+PRP 

 dCAF+CTG CAF+HF-DDS   

                                                            Fig.26 Spanning tree for CRC    

 

Functional Parameters (on the left of each equation below) can be expressed 
in terms of difference between basic parameters (on the right of each 
equation below) (Figure 27) as follows: 

 

dCAF+CTG CAF+BM     =    dCAF CAF+CTG    –   dCAF CAF+BM                     

dCAF+CTG CAF+EMD   =     dCAF CAF+CTG    –   dCAF CAF+EMD  

dCAF+CTG CAF+ADM   =     dCAF CAF+CTG    –   dCAF CAF+ADM  
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Fig.27 Network of comparisons expressing the relationship between Basic and Functional 
parameters. The solid lines represent comparisons whose treatment contrasts are specified as 
basic parameters. All solid lines form a spanning tree. The dotted lines represent comparisons 
associated with functional parameters. 

 

NM Inconsistency model - Lu and Ades 

 

Inconsistency Degree of Freedom (ICDF) 

Potential number of inconsistencies as defined by Lu and Ades (2006) can be 
calculated as follows in the network diagram for CRC: 

 ICDF (for 2-arm trials) = #Functional Parameters = DC – K +1  

 ICDF for CRC = #Functional Parameters = 9 – 7 +1 = 3 

Three (3) inconsistencies are identified in the NM for CRC.  

 

Inconsistency Factors (ICFs)/w-factors  

Discrepancy between the Functional Parameters and the difference between 
the Basic Parameters can represented as follows:  

dCAF+CTG CAF+BM     =    dCAF CAF+CTG    –   dCAF CAF+BM + WCAF CAF+CTG CAF+BM  

dCAF+CTG CAF+EMD   =     dCAF CAF+CTG    –   dCAF CAF+EMD + WCAF CAF+CTG CAF+EMD 

dCAF+CTG CAF+ADM   =     dCAF CAF+CTG    –   dCAF CAF+ADM + WCAF CAF+CTG CAF+ADM 
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Three (3) ICFs (w-factors) are defined and attached to the corresponding 
evidence cycles (Figure 28): 

 

WCAF CAF+CTG CAF+BM   ;     WCAF CAF+CTG CAF+EMD  ;     WCAF CAF+CTG CAF+ADM 

 

The number of w-factors (3, for CRC analysis) being estimated is not equal to 
the number of treatment comparisons (9, for CRC analysis) (as showed by 
Lumley model) informed by data but is defined according to the presence of 
Functional Parameters. 

 

WCAF CAF+CTG CAF+BM                                                           WCAF CAF+CTG CAF+EMD 

                       

           WCAF CAF+CTG CAF+ADM  

 

Fig.28 Three (3) evidence cycles are defined by relations between Basic and Functional 
parameters for the Network Meta-analysis under Consistency model. The solid lines represent 
comparisons whose treatment contrasts are specified as basic parameters. The dotted lines 
represent comparisons associated with functional parameters. 
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Results of NM models with and without Inconsistency Factors 
 
NM random-effects Consistency model show an higher estimate of the 
median of the posterior distribution of the between-trials variance (Tau2) then 
Inconsistency model (6.83 and 0.16 respectively). Results with and without 
the inconsistency factors are given in Table 18, 20, 22 (Figure 29, 31). 

The goodness-of-fit statistic, DIC, for both models is similar (68.97 and 69.99 
respectively) even if a little higher in the Inconsistency model. 

In Inconsistency model, the values of the overall Inconsistency, Tau-w2 = 
1.07, and Inconsistency probability, Pr (Tau-w2 > Tau2) = 0.78, suggest the 
presence of Inconsistency between sources of evidence on posterior 
treatment effects. 

The values of WCAF CAF+CTG CAF+BM = 0.35, WCAF CAF+CTG CAF+EMD = 0.20 and WCAF 

CAF+CTG CAF+ADM = - 0.66 suggest the presence of Inconsistency in the three 
evidence cycles. 

Combinations of CAF+EMD and CAF+CTG showed the best results in terms 
of CRC under both Consistency and Inconsistency models and occuped the 
first and the second position respectively in the ranking of treatments. (Table 
19, 21; Figure 30, 32)  

Mean residual deviance for individual data points in models with and without 
inconsistency factors has been compared and Figure 33 shows the presence 
of three outliers, corresponding to trials 4, 9 and 14, in the model without w-
factors. Point 4 correspond to the comparison CAF vs CAF+EMD of the trial 
of Modica et al. 2000, point 9 to the comparison CAF vs CAF+ADM of the trial 
of Woodyard et al. 2004 and point 14 to the comparison CAF+CTG vs 
CAF+BM of the trial of Trombelli et al. 1998. The last one confirm suspicions 
about the (CAF CAF+CTG CAF+BM) cycle.  

Another Inconsistency model has been carried out after removing points 4 , 9 
and 14 from the analysis. The results (Table 23) show both ICFs (WCAF 

CAF+CTG CAF+BM = 0.35, WCAF CAF+CTG CAF+EMD = - 0.02, WCAF CAF+CTG CAF+ADM = 
0.02) and overall Inconsistency (Tau-w2 = 0.64) are substantially reduced, not 
the Inconsistency probability due to the simoutaneous reduction of between-
trials variance (Tau2 = 0.09). Results of Consistency and Inconsistency (full 
data and 4, 9 and 14 deleted) models are showed in Table 24.  
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Tab.18 NM for CRC: Consistency model (without ICFs/w-factors). Results of all possible 
pair-wise treatment comparisons.  

Network Meta-analysis – Consistency model 

 
Treatment Comparison 

 
LogOR* 

 
 90% CrI** 

CAF vs CAF+CTG 0.93 
 

0.26, 	
  1.62   
 

CAF vs CAF+BM 0.01 
 

-0.79, 0.84  
 

CAF vs CAF+EMD 1.45 
 

0.71, 2.18  
 

CAF vs CAF+ADM 0.47 
 

-0.40, 1.37  
 

CAF vs CAF+PRP 0.22 
 

-1.38, 1.91  
 

CAF vs CAF+HF-DDS 0.98 
 

-2.47, 4.48  
 

CAF+CTG vs CAF+BM -0.92 
 

-1.53, -0.30  
 

CAF+CTG vs CAF+EMD 0.52 
 

-0.40, 1.41  
 

CAF+CTG vs CAF+ADM -0.46 
 

-1.17, 0.27  
 

CAF+CTG vs CAF+PRP -0.71 
 

-2.47, 1.09  
 

CAF+CTG vs CAF+HF-DDS 0.05 
 

-3.28, 3.50  
 

CAF+BM vs CAF+EMD 1.44 
 

0.42, 2.45  
 

CAF+BM vs CAF+ADM 0.46 
 

-0.48, 1.39  
 

CAF+BM vs CAF+PRP 0.21 
 

-1.63, 2.08  
 

CAF+BM vs CAF+HF-DDS 0.97 
 

-2.45, 4.47  
 

CAF+EMD vs CAF+ADM -0.98 
 

-2.04, 0.11  
 

CAF+EMD vs CAF+PRP -1.23 
 

-3.06, 0.61  
 

CAF+EMD vs CAF+HD-DDS -0.47 
 

-3.93, 3.10  
 

CAF+ADM vs CAF+PRP -0.25 
 

-2.11, 1.64  
 

CAF+ADM vs CAF+HF-DDS 0.51 
 

-2.87, 4.03  
 

CAF+PRP vs CAF+HF-DDS 0.76 
 

-3.01, 4.71  
 

Tau2 

DIC 

6.83 

68.97 

0.99, 572.28 
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*LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 where LogOR 
is the median. 

**90% CrI is the 90% Credible Interval for LogOR. 

 

Fig.29 NM for CRC: Plots of the posterior densities of each treatment compared to CAF 
under Consistency model (without ICFs/w-factors). 

 

 

Tab.19 NM for CRC: Ranking and Best for the seven treatments included in the analysis 
under Consistency model (without ICFs/w-factors).  

 Ranking Best 
 

Treatment 
 

LogOR* 
 

90% CrI** 
 

Pr*** 
CAF  5.56 

 
4.00, 7.00  

 
0.00 

CAF+CTG 2.77 
 

1.00, 4.00  
 

0.06 

CAF+BM 5.51 
 

3.00, 7.00  
 

<0.00 

CAF+EMD 1.78 
 

1.00, 4.00  
 

0.46 

CAF+ADM 4.19 
 

2.00, 6.00  
 

0.02 

CAF+PRP 4.67 
 

1.00, 7.00  
 

0.08 

CAF+HF-DDS 3.52 
 

1.00, 7.00  
 

0.39 

*LogOR is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the LogOR. 

***Pr is the probability that each treatment is the best. 
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Fig.30 NM for CRC: Ranking for the seven treatments under Consistency model (without 
ICFs/w-factors). 
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Tab.20 NM for CRC: Inconsistency model (with ICFs/w-factors). Results of all possible 
pair-wise treatment comparisons. 

Network Meta-analysis – Inconsistency model (with ICFs/w-factors)  
Treatment Comparison LogOR* 90% CrI** 

CAF vs CAF+CTG 0.93 0.13, 1.73  

CAF vs CAF+BM -0.27 -1.54, 0.87  

CAF vs CAF+EMD 1.40 0.62, 2.18  

CAF vs CAF+ADM 1.00 -0.28, 2.50  

CAF vs CAF+PRP 0.23 -1.43, 1.95  

CAF vs CAF+HF-DDS 0.82 -2.87, 4.27  

CAF+CTG vs CAF+BM -1.19 -2.51, -0.06  

CAF+CTG vs CAF+EMD 0.48 -0.56, 1.53  

CAF+CTG vs CAF+ADM 0.07 -1.22, 1.74  

CAF+CTG vs CAF+PRP -0.70 -2.55, 1.19  

CAF+CTG vs CAF+HF-DDS -0.11 -3.71, 3.23  

CAF+BM vs CAF+EMD 1.67 0.31, 3.03  

CAF+BM vs CAF+ADM 1.27 -0.35, 3.26  

CAF+BM vs CAF+PRP 0.50 -1.57, 2.54  

CAF+BM vs CAF+HF-DDS 1.09 -2.70, 4.72  

CAF+EMD vs CAF+ADM -0.40 -1.90, 1.28  

CAF+EMD vs CAF+PRP -1.17 -2.99, 0.64  

CAF+EMD vs CAF+HF-DDS -0.58 -4.44, 2.97  

CAF+ADM vs CAF+PRP -0.77 -2.99, 1.37  

CAF+ADM vs CAF+HF-DDS -0.18 -4.13, 3.52  

CAF+PRP vs CAF+HF-DDS 0.59 -3.59, 4.42  

w-CAF.CTG.BM 0.35 -0.75, 1.73  

w-CAF.CTG.EMD 0.20 -1.07, 1.64  

w-CAF.CTG.ADM -0.66 -2.51, 0.53  

Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

0.16 

1.07 

0.78 

69.99 

0.00, 1.09 

0.01, 26.02 
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*LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and Tau-w2 
where LogOR is the median. 

**90% CrI is the 90% Credible Interval for the LogOR. 

Fig.31 NM for CRC: Plots of posterior densities of each treatment compared to CAF under 
the Inconsistency model (with ICFs/w-factors).  

 

Tab.21 NM for CRC: Ranking and Best for the seven treatments included in the analysis 
under Inconsistency model (with ICFs/w-factors).  

 Ranking Best 
 

Treatment 
 

LogOR* 
 

90% CrI** 
 

Pr*** 
CAF  5.44 

 
4.00, 7.00  

 
0.00 

CAF+CTG 3.09 
 

1.00, 5.00  
 

0.06 

CAF+BM 5.81 
 

4.00, 7.00  
 

0.00 

CAF+EMD 2.12 
 

1.00, 4.00  
 

0.33 

CAF+ADM 3.20 
 

1.00, 6.00  
 

0.18 

CAF+PRP 4.68 
 

1.00, 7.00  
 

0.07 

CAF+HF-DDS 3.68 
 

1.00, 7.00  
 

0.36 

*LogOR is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the LogOR. 

***Pr is the probability that each treatment is the best. 
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Fig. 32 NM for CRC: Ranking for the seven treatments under Inconsistency model (with 
ICFs/w-factors). 
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Tab.22 NM for CRC: Standard meta-analysis, Consistency and Inconsistency models 
(limited to the comparisons informed by data and analyzed in SM). 

 SM NM (Consistency model) NM (Inconsistency model) 

 
Treatment Comparison 

(N*) 

 
LogOR 

(90% CrI)** 

 
LogOR 

(90% CrI) 

 
LogOR 

(90% CrI) 
CAF vs CAF+CTG (2) 0.91 

(0.23, 1.61) 
0.93 

(0.26, 1.62) 
0.93  

(0.13, 1.73)  

CAF vs CAF+EMD (4) 1.36 
(0.43, 2.25) 

1.45 
(0.71, 2.18) 

1.40  
(0.62, 2.18)  

CAF vs CAF+ADM (2) 1.64 
(0.19, 3.09) 

0.47 
(-0.40, 1.37) 

1.00  
(-0.28, 2.50)  

CAF+CTG vs CAF+BM 
(6) -0.78 

(-1.50, -0.07) 
-0.92 

(-1.53, -0.30) 
-1.19  

(-2.51, -0.06)  

CAF+CTG vs CAF+ADM 
(4) -0.75 

(-1.56, 0.02) 
-0.46 

-1.17, 0.27 
0.07  

(-1.22, 1.74)  
Tau2 - 6.83 (0.99, 572.28) 0.16 (0.00, 1.09)  

Tau-w2 - - 1.07 (0.01, 26.02)  

Pr (Tau-w2 > Tau2) - - 0.78  

DIC - 68.97 69.99  

*N is the number of trials with direct evidence for each treatment comparison.  

** LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and Tau-w2 
where LogOR is the median. 

Fig.33 NM for CRC: residuals in fitting Consistency models without w-factors and NM 
Inconsistency model (with ICFs).  Points 4, 9 and 14 correspond to the comparison CAF vs 
CAF+EMD of the trial of Modica et al. (2000), CAF vs CAF+ADM of the trial of Woodyard 
et al. (2004) and CAF+CTG vs CAF+BM of the trial of Trombelli et al. (1998) respectively.                           
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Tab.23 NM for CRC: Inconsistency model (4, 9 and 14 deleted). Results of all possible 
pair-wise treatment comparisons. 

Network Meta-analysis – Inconsistency model (4, 9 and 14 deleted)  
Treatment Comparison LogOR* 90% CrI** 

CAF vs CAF+CTG 0.76 0.01, 1.52  

CAF vs CAF+BM -0.23 -1.32, 0.79  

CAF vs CAF+EMD 1.66 0.85, 2.48  

CAF vs CAF+ADM 0.01 -1.48, 1.52  

CAF vs CAF+PRP 0.26 -1.38, 1.80  

CAF vs CAF+HF-DDS 0.66 -2.77, 4.04  

CAF+CTG vs CAF+BM -1.00 -2.27, 0.06  

CAF+CTG vs CAF+EMD 0.90 -0.11, 1.92  

CAF+CTG vs CAF+ADM -0.75 -2.26, 0.73  

CAF+CTG vs CAF+PRP -0.51 -2.32, 1.18  

CAF+CTG vs CAF+HF-DDS -0.11 -3.40, 3.16  

CAF+BM vs CAF+EMD 1.90 0.62, 3.26  

CAF+BM vs CAF+ADM 0.24 -1.39, 2.12  

CAF+BM vs CAF+PRP 0.49 -1.42, 2.37  

CAF+BM vs CAF+HF-DDS 0.89 -2.65, 4.35  

CAF+EMD vs CAF+ADM -1.65 -3.31, 0.04  

CAF+EMD vs CAF+PRP -1.41 -3.22, 0.30  

CAF+EMD vs CAF+HF-DDS -1.01 -4.53, 2.48  

CAF+ADM vs CAF+PRP 0.25 -2.03, 2.43  

CAF+ADM vs CAF+HF-DDS 0.65 -3.09, 4.30  

CAF+PRP vs CAF+HF-DDS 0.40 -3.45, 4.18  

w-CAF.CTG.BM 0.35 -0.65, 1.69  

w-CAF.CTG.EMD -0.02 -1.25, 1.23  

w-CAF.CTG.ADM 0.02 -1.43, 1.45  

Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

0.09 

0.64 

0.77 

54.50 

0.00, 0.75 

0.00, 19.68 
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*LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and Tau-w2 
where LogOR is the median. 

**90% CrI is the 90% Credible Interval for the LogOR. 

Tab.24 NM for CRC: Consistency, Inconsistency (full data) and Inconsistency (4, 9 and 14 
deleted) models (limited to the comparisons informed by data and analyzed in SM). 

  NM (Inconsistency model) 
 NM (Consistency model) Full data 4, 9 and 14  deleted 

 
Treatment Comparison (N*) 

 
LogOR 

(90% CrI)** 

 
LogOR 

(90% CrI) 

 
LogOR 

(90% CrI) 

CAF vs CAF+CTG (2) 0.93 
(0.26, 1.62) 

0.93  
(0.13, 1.73)  

0.76  
(0.01, 1.52)  

CAF vs CAF+EMD (4)*** 1.45 
(0.71, 2.18) 

1.40  
(0.62, 2.18)  

1.66  
(0.85, 2.48)  

CAF vs CAF+ADM (2)**** 0.47 
(-0.40, 1.37) 

1.00  
(-0.28, 2.50)  

0.01  
(-1.48, 1.52)  

CAF+CTG vs CAF+BM (6)***** -0.92 
(-1.53, -0.30) 

-1.19  
(-2.51, -0.06)  

-1.00  
(-2.27, 0.06)  

CAF+CTG vs CAF+ADM (4) -0.46 
-1.17, 0.27 

0.07  
(-1.22, 1.74)  

-0.75  
(-2.26, 0.73)  

w-CAF.CTG.BM - 
0.35  

(-0.75, 1.73)  
0.35  

(-0.65, 1.69)  

w-CAF.CTG.EMD - 
0.20  

(-1.07, 1.64)  
-0.02  

(-1.25, 1.23)  

w-CAF.CTG.ADM - 
-0.66  

(-2.51, 0.53)  
0.02  

(-1.43, 1.45)  
Tau2 6.83 (0.99, 572.28) 0.16 (0.00, 1.09)  0.09 (0.00, 0.75)  

Tau-w2 - 1.07 (0.01, 26.02)  0.64 (0.00, 19.68)  
Pr (Tau-w2 > Tau2) - 0.78  0.77  

DIC 68.97 69.99  54.50  
*N is the number of trials with direct evidence for each treatment comparison.  

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis  except for Tau2 and Tau-w2 
where LogOR is the median (90% CrI is the 90% Credible Interval). 

***In the Inconsistency model without 4, 9 and 14, N = 3. 

****In the Inconsistency model without 4, 9 and 14, N = 1. 

*****In the Inconsistency model without 4, 9 and 14, N = 5. 
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NM Inconsistency model - Bayesian extension of Lumley’s method 

 

Among the total K(K − 1)/2 = 21 potential pairs of comparisons, DC = 9 
pairwise comparisons are independently supported by direct evidence from 
the data (Fig. 25). 

The number of terms wkb being estimated is equal to the number of treatment 
comparisons. Thus, nine (9) w-factors can identified for CRC analysis: 

  

wCAF CAF+CTG ; wCAF CAF+BM ; wCAF CAF+EMD ; wCAF CAF+ADM ; wCAF CAF+PRP ; 

wCAF+CTG CAF+BM ; wCAF+CTG CAF+EMD ; wCAF+CTG CAF+ADM ; wCAF+CTG CAF+HF-DDS 

 

Results for the Bayesian extension of Lumley’s method 

The median of the posterior distribution of the between-trials variance (Tau2) 
is very small (0.15) and similar to Inconsistency model previously described. 
Results for all possible pair-wise comparisons are given in Table 25. 
Posterior densities of each treatment compared to reference treatment (CAF) 
are represented in Figure 34. 

The goodness-of-fit statistic, DIC, for this NM model (70.19) is close to the 
value of Inconsistency model by Lu and Ades (69.99). 

The lower values (with respect to Lu and Ades model) of the overall 
Inconsistency, Tau-w2 = 0.46, and Inconsistency probability, Pr (Tau-w2 > 
Tau2) = 0.69, may be explained according to the fact that in the present 
model the w-factors are attached to single comparisons informed by data and 
not to evidence cycles. 

The values of w-factors relative to CAFvsCAF+BM (- 0.16), CAFvsCAF+ADM 
(0.24), CAF+CTGvsCAF+BM (0.18), CAF+CTGvsCAF+ADM (- 0.46) and 
asimmetries in the relative posterior densities (Figure 36) suggest the 
presence of Inconsistency in correspondence of these comparisons (Table 
25). 

Combinations of CAF+EMD and CAF+CTG showed the best results in terms 
of CRC under the Bayesian extension of Lumley’s method too (Table 26, 
Figure 35).  

Mean residual deviance (Figure 37) for individual data points in the Bayesian 
extension of Lumley’s method too show similar results to the Inconsistency 
model by Lu and Ades.  
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Tab.25 NM for CRC: Bayesian extension of Lumley’s method. Results of all possible pair-
wise treatment comparisons.  

*LogOR is the mean of the posterior distribution of the Bayesian meta-analysis except for Tau2 and Tau-w2 

where LogOR is the median. 

**90% CrI is the 90% Credible Interval for the LogOR. 

Network Meta-analysis – Bayesian extension of Lumley’s method 
 

Treatment Comparison 
 

LogOR* 
 

 90% CrI** 
 

w 
 

90% CrI 
CAF vs CAF+CTG 0.94 -0.38, 2.34  -0.02 	
  -1.42,	
  1.31 

CAF vs CAF+BM -0.09 -1.78, 1.52  -0.16 -1.75, 1.33 

CAF vs CAF+EMD 1.50 -0.15, 3.28  -0.08 -1.76, 1.43 

CAF vs CAF+ADM 0.81 -0.88, 2.68  0.24 -1.05, 2.08 

CAF vs CAF+PRP 0.24 -2.50, 2.84  -0.01 -1.98,	
  2.13 

CAF vs CAF+HF-DDS 1.00 -3.04, 5.35  - - 

CAF+CTG vs CAF+BM -1.04 -2.82, 0.49  0.18 -1.26, 1.99 

CAF+CTG vs CAF+EMD 0.56 -1.19, 2.36  0.08 -1.48, 1.62 

CAF+CTG vs CAF+ADM -0.14 -1.68, 1.62  -0.46 -2.35, 0.90 

CAF+CTG vs CAF+PRP -0.71 -3.68, 2.16  - - 

CAF+CTG vs CAF+HF-DDS 0.06 -3.88, 4.22  -0.11 -2.37, 1.65 

CAF+BM vs CAF+EMD 1.59 -0.50, 4.12  - - 

CAF+BM vs CAF+ADM 0.90 -0.99, 3.37  - - 

CAF+BM vs CAF+PRP 0.33 -2.83, 3.48  - - 

CAF+BM vs CAF+HF-DDS 1.10 -3.04, 5.46  - - 

CAF+EMD vs CAF+ADM -0.70 -2.86, 1.73  - - 

CAF+EMD vs CAF+PRP -1.27 -4.61, 1.81  - - 

CAF+EMD vs CAF+HF-DDS -0.50 -4.71, 4.01  - - 

CAF+ADM vs CAF+PRP -0.57 -3.86, 2.26  - - 

CAF+ADM vs CAF+HF-DDS 0.20 -4.02, 4.59  - - 

CAF+PRP vs CAF+HF-DDS 0.77 -4.23, 6.21  - - 

Tau2 

Tau-w2 

Pr (Tau-w2 > Tau2) 

DIC 

0.15 

0.46 

0.69 

70.19 

0.00, 1.06 
 

0.01, 8.59 

- - 
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Fig.34 NM for CRC: Plots of posterior densities of each treatment compared to CAF under 
the Bayesian extension of Lumley’s method.  

 

 

Tab.26 NM for CRC: Ranking and Best for the seven treatments included in the analysis 
under the Bayesian extension of Lumley’s method.  

 Ranking Best 
 

Treatment 
 

LogOR* 
 

90% CrI** 
 

Pr*** 
CAF  5.38 

 
3.00, 7.00  

 
0.00 

CAF+CTG 3.09 
 

1.00, 5.00  
 

0.06 

CAF+BM 5.39 
 

3.00, 7.00  
 

0.01 

CAF+EMD 2.26 
 

1.00, 5.00  
 

0.38 

CAF+ADM 3.76 
 

1.00, 6.00  
 

0.09 

CAF+PRP 4.55 
 

1.00, 7.00  
 

0.11 

CAF+HF-DDS 3.62 
 

1.00, 7.00  
 

0.35 

*LogOR is the median of the posterior distribution of the Bayesian meta-analysis. 

**90% CrI is the 90% Credible Interval for the LogOR. 

***Pr is the probability that each treatment is the best. 
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Fig.35 NM for CRC: Ranking for the seven treatments under Bayesian extension of 
Lumley’s method. 

                          

 

Fig.36 NM for CRC: Plots of posterior densities of w-factors under the Bayesian extension 
of Lumley’s method.  
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Fig.37 NM for CRC: residuals in fitting Consistency models without w-factors and NM 
Bayesian extension of Lumley’s method (with w-factors). Points 4, 9 and 14 correspond to 
the comparison CAF vs CAF+EMD of the trial of Modica et al. (2000), CAF vs CAF+ADM 
of the trial of Woodyard et al. (2004) and CAF+CTG vs CAF+BM of the trial of Trombelli et 
al. (1998) respectively. 
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Kullback Leibler distance 

 

Kullback-Leibler distance between the posterior distribution of treatment 
effect obtained by SM model (assumed as reference distribution) and by NM 
Consistency model was calculated for each treatment comparison informed 
by data and analyzed in single Bayesian meta-analyses (Table 27). KL 
distance (and relative q) for CAFvsCAF+ADM (1.06;0.97) and  
CAF+CTGvsCAF+ADM (0.18;0.78) and corresponding plots (Figure 38) 
suggest the presence of more pronunced discrepancy between direct and 
indirect evidence for these comparisons according to the results of the 
Bayesian extension of Lumley’s method. KL distances (q) and w-factors (as 
derived by the Bayesian extension of Lumley’s method) are compared in 
Table 28.      

 

Tab.27 NM for CRC: Consistency model (without ICFs/w-factors) and standard pair-wise 
Bayesian meta-analysis (limited to the comparisons informed by data and analyzed in 
SM). 

 Network Meta-analysis 
(Consistency model) 

Standard pair-wise meta-
analysis (Ref.)  

 
Treatment 

Comparison (N*) 

 
LogOR** 

 
90% CrI*** 

 
LogOR 

 
90% CrI 

 
KL(q)**** 

CAF vs CAF+CTG (2) 0.93 
 

0.26, 1.62  
 

0.91 0.23, 1.61 
 

0.00 (0.52)  
 

CAF vs CAF+EMD (4) 1.45 
 

0.71, 2.18  
 

1.36 0.43, 2.25 
 

0.11 (0.72)  
 

CAF vs CAF+ADM (2) 0.47 
 

-0.40, 1.37  
 

1.64 0.19, 3.09 
 

1.06 (0.97)  
 

CAF+CTG vs 
CAF+BM (6) -0.92 

 
-1.53, -0.30  

 
-0.78 -1.50, -0.07 

 
0.08 (0.69)  

 

CAF+CTG vs 
CAF+ADM (4) -0.46 

 
-1.17, 0.27  

 
-0.75 -1.56, 0.02 

 
0.18 (0.78)  

 

*N is the number of trials with direct evidence for the treatment comparison.  

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis.  

***90% CrI is the 90% Credible Interval for the LogOR. 

****Kl is the Kullback–Leibler distance between the posterior distribution of the Mean for the pair-wise 
comparison under the NM model and the correspondent pair-wise comparison under the standard meta-
analysis model; q is the calibrated value of the Kullback–Leibler distances espressed as a probability. 
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Fig.38 NM for CRC: Plots of posterior distributions of Consistency model (without ICFs/w-
factors) and standard pair-wise Bayesian meta-analysis (limited to the comparisons 
informed by data and analyzed in SM). 

 
Dotted lines = Network Meta-analysis; solid lines = Standard pair-wise Bayesian Meta-analysis. 
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Tab.28 NM for CRC: SM, NM Consistency (Lu and Ades) and NM (Bayesian extension of 
Lumley’s method) models (limited to the comparisons informed by data and analyzed in 
SM). 

 SM (Ref.) NM (Consistency model) NM (Lumley) 

 
Treatment Comparison 

(N*) 

 
LogOR 

(90% CrI)** 

 
LogOR 

(90% CrI) 

 
KL(q)*** 

 
LogOR 

(90% CrI) 

 
w 

CAF vs CAF+CTG (2) 0.91 
(0.23, 1.61) 

0.93 
(0.26, 1.62) 

0.00 (0.52)  
 

0.94  
(-0.38, 2.34)  

-0.02  
(-1.42, 1.31)  

CAF vs CAF+EMD (4) 1.36 
(0.43, 2.25) 

1.45 
(0.71, 2.18) 

0.11 (0.72)  
 

1.50  
(-0.15, 3.28)  

-0.08  
(-1.76, 1.43)  

CAF vs CAF+ADM (2) 1.64 
(0.19, 3.09) 

0.47 
(-0.40, 1.37) 

1.06 (0.97)  
 

0.81  
(-0.88, 2.68)  

0.24  
(-1.05, 2.08)  

CAF+CTG vs CAF+BM 
(6) 

-0.78 
(-1.50, -0.07) 

-0.92 
(-1.53, -0.30) 

0.08 (0.69)  
 

-1.04  
(-2.82, 0.49)  

0.18  
(-1.26, 1.99)  

CAF+CTG vs CAF+ADM 
(4) 

-0.75 
(-1.56, 0.02) 

-0.46 
-1.17, 0.27 

0.18 (0.78)  
 

-0.14  
(-1.68, 1.62)  

-0.46  
(-2.35, 0.90)  

Tau2	
   - 6.83 
(0.99, 572.28) 

-  0.15  
(0.00, 1.06)  

-  

Tau-w2	
   - - -  0.46  
(0.01, 8.59  

-  

Pr (Tau-w2 > Tau2)	
   - - -  0.69  -  

DIC	
   - 68.97 -  70.19  -  

*N is the number of trials with direct evidence for each treatment comparison.  

**LogOR is the mean of the posterior distribution of the Bayesian meta-analysis (90% CrI is the 90% 
Credible Interval). 

***Kl is the Kullback– Leibler distance between the posterior distribution of the Mean for the pair-wise 
comparison under the NM model and the correspondent pair-wise comparison under the standard meta-
analysis model; q is the calibrated value of the Kullback–Leibler distances espressed as a probability. 
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4     Concluding remarks 
 

4.1   Clinical perspective 
 
In this thesis, different Bayesian Network Meta-analyses models were carried 
out to combine published information in the context of periodontal treatments 
of gingival recession. The aim was to compare the effect of CAF alone with 
the effects of CAF in combination with grafts or specific biomaterials (CTG, 
BM, EMD, ADM, PRP, HF-DDS). 

In contrast to standard pair-wise meta-analysis, NM is a statistical procedure 
which offers some important advantages in the synthesis of research 
findings. In presence of several treatments choices for the same clinical 
condition, which is a very common scenario in periodontal and dental care, 
NM represent a reliable way to summarize direct and indirect evidence at the 
same time in a unique model. 

NM provided results in agreement with previous frequentist pair-wise meta-
analyses by Cairo et al. (2008). However, it permitted to consider a wider 
evidence base than standard pair-wise meta-analysis drawing conclusions on 
treatments never directly compared in RCTs without breaking randomization 
(Lumley 2002, Caldwell 2005, Glenny 2005, Sutton 2008). In particular, in our 
case study, the two combinations of treatments, CAF+EMD and CAF+CTG, 
which showed the best results in terms of RecRed and CRC, had never been 
head-to-head tested in single trials. 

Combining the data from a set of different studies, NM approach shares al 
difficulties with standard meta-analysis. Precise definition of treatment 
procedures, differences in the chracteristics of the partecipants, duration of 
the follow-up period, outcome measures, quality assessment criteria and 
others must be accurately considered and, probably, NM should be used and 
interpreted with caution. In fact, all these factors are potential sources of 
heterogeneity among studies and Inconsistency. 

In the application presented in this work, heterogeneity and Inconsistency did 
not show particulary high values in their estimates and, in any case, sources 
of inconsistencies could be located to specific evidence cycles or edges. 
Moreover, the most important contribute to Inconsistency was determined by 
a few number of studies (2 for RecRed analysis and 3 for CRC) identifyied in 
the sensitività analysis. This seems to assess for reliability of the results. 
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4.2   Statistical perspective 
 

In this thesis different approaches to NM were evaluated according to recent 
developments of the literature. 

We used two of the most important frameworks dealing with the issue of 
Inconsistency in NM methods, which are the one proposed by Lu and Ades 
(2004, 2006) and a Bayesian extension of the method described by Lumley 
(2002). Lack of applications of such NM models is recognised in the body of 
literature and the concept of Inconsistency is rarely considered. 

Attention focused on investigating the sources of variability commonly 
identified when combining evidence from a set of several trials with multiple 
treatment comparisons. One of the main issue of NM models proposed in this 
work was exploring Inconsistency, which emerges when uncertainty due to 
discrepancy between direct and indirect inference on pair-wise comparisons 
is present. 

Lu and Ades (2006) define Inconsistency as a property of evidence cycles, 
not of individual data points (i.e. treatments). A difficult task is that several 
cycles share common edges. Moreover, for most datasets, the degrees of 
freedom for assessing Inconsistency (ICDF) is small and measures of σw

2 will 
be highly uncertain. 

Lumley (2002) account for Inconsistency in a different way: the number of 
terms wkb (inconsistencies) being estimated appears to be equal to the 
number of treatment comparisons rather than the ICDF. 

Kullback-Leibler distance may be viewed in the same spirit as the work of 
Lumley, investigating a way to compare direct inference from standard pair-
wise meta-analysis and indirect inference from NM model. 

Attention and further research should be focused on establish a unique 
assessment of single specific inconsistencies (ICFs/w-factors) as properties 
of cycles or edges and then analyze and eventually remove these sources of 
uncertainty combining sensitivity analyses and clinical knowledge.  

Other approaches, including graphical representations using dissimilarity 
matrices (Chung et al. 2008), have been developed to assess consistency in 
NM. Salanti et al. (2008) and Dias et al. (2010) have discussed the strengths 
and weaknesses of these approaches. Further research is needed, to 
improve understanding of these methods and encourage their use. As Salanti 
et al. (2008) point out, a measure for Inconsistency analogous to I2 would be 
a welcome addition. 
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Appendices 
We show here the WinBUGS codes for RecRed outcome. Data for N = 22 
studies and K = 6 treatment alternatives are listed as shown in Figure A1 
where t is the treatment, b indicates which treatment is the effective trial-
specific ‘baseline’ treatment in that study, diff is the mean treatment 
difference expressed in millimitres, var is the variability (standard error), arm 
is the trial-specific number of arms (only two-arm studies are included in this 
analysis), comp is the comparison and study is the reference. 

 
Fig. A1. Sample WinBUGS data listing for RecRed outcome. 
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Appendix A: WinBUGS code for the Bayesian meta-analysis 
a  

	
  	
  	
    

 

b 

 

Fig. A2. WinBUGS code for the (a) fixed and (b) random effect standard Bayesian meta-
analysis models. 

 

Appendix B: WinBUGS code for the NM models   
The a,b,c models in Figure A3 assumes that the degree of between-trials variation in 
random effect models is the same for all the pair-wise comparisons (Homogeneous 
variance models). This assumption can be relaxed according to Lu and Ades (2004) 
as showed in the model d (Heterogenous variance model) to obtain estimates of 15 
different variances for each treatment comparison. 
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a 

 

b 
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c 

 

d 

 

 

Fig. A3. WinBUGS codes for the (a) NM Consistency model, (b) NM Inconsistency model, 
(c) NM Bayesian extension of Lumley’s method, (d) NM Heterogeneous model. 
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Appendix C: additional WinBUGS code for the NM models   
The 6 interventions can be ranked in efficacy and the probability that each is 
best cab be obtained as follows: 

 a 

 
  b 

 
Fig. A4. WinBUGS codes for the (a) Ranking of treatments and Best probability; (b) Mean 
residual deviance. 
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