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INTRODUCTION 

  

Stem Cells 

 In multicellular organisms, cell populations derive from progenitors 

organized in a hierarchical fashion, with the staminal compartment residing at the 

apex of developmental pathway (Jordan et al., 2006).  

 Stem cells are defined as cells endowed with the potential to proliferate 

extensively, sometimes limitlessly, and with the capacity of self-renewal whereby at 

least one daughter retains the staminality properties (Mittal et al., 2009). Stem cells 

not only renew themselves, but also give rise to specialized cell types (Lemoli et al., 

2005). As a matter of fact, stem cells can divide symmetrically, whereby each 

daughter cell retains the properties of the parental cells, or asymmetrically, where, in 

this case, one daughter cell retains the properties of the parental cell, whereas the 

other daughter begins the process of determination (Sell, 2004).  

 According to their differentiation potential, stem cells can be divided into 

three categories: embryonal, germinal and somatic or adult. Embryonal stem cells are 

derived from the first five or six divisions of the fertilized egg. The progeny of 

embryonal stem cells are the precursors for all cells of the adult organs. Germinal 

stem cells in the adult produce eggs and sperm and are responsible for reproduction. 

Somatic stem or progenitor cells are considered more limited in their potential, and 

they produce cells that differentiate into mature functioning cells that are responsible 

for normal tissue renewal (Sell, 2004). The fertilized egg is defined as a totipotent 

stem cell, because it can give rise to all cells and tissues of the developing embryo. 

The embryonal stem cells, which give rise to cells originating from all three germ 

layers (mesoderm, endoderm and ectoderm), are defined as pluripotent. The latter 
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proliferate extensively in the embryo, are capable of differentiating into all adult 

tissues, and can be isolated and grown ex vivo, where they continue to replicate and 

differentiate. Human pluripotent stem cells were found in culture to possess an active 

telomerase, thus being entitled to replicate for many generations. 

 Adult stem cells have long-term self-renewal capacity and give rise to mature 

cell types with specialized functions. Typically, stem cells generate intermediate cell 

types (progenitors and more differentiated precursors) before they achieve their fully 

differentiated state. Progenitors and precursors cells are actually regarded as 

committed to differentiate along a specific cellular pathway. So, by definition, adult 

stem cells should be capable of self-renewal for the lifetime of the organism and of 

giving rise to fully differentiated cells with mature phenotypes, fully integrating into 

the tissues, capable of specialized functions (Lemoli et al., 2005).  

 

Cancer Stem Cells 

 Advances in the field of stem cell biology provided renewed hopes that stem 

cells can be used to treat a wide range of genetic diseases and traumatic injuries. At 

the same time, it has been proposed that within the tumor bulk a minor subpopulation 

play the role of cancer stem cells (CSC).  Indeed, recent studies on cancer self-

renewal demonstrated that this subpopulation really exists, endowed with an 

unlimited capacity for self-renewal, together with sufficient plasticity to generate 

multiform progenies committed to different terminal fates. These committed 

compartments constitute the highly mitogenic bulk of tumours, that is the real target 

of conventional antiblastic treatments, whereas the staminal elements survive and 

prepare relapses (Pardal et al., 2003; Jones et al., 2004; Olivotto and Dello Sbarba, 

2008). 
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Fig. I. Cancer Stem Cells comprise a unique subpopulation of neoplastic cells within 

tumours that results to be resistant to standard therapy. Importantly, while conventional 

anti-cancer treatments (e.g. chemotherapy and radiation) can often transiently shrink tumours 

by targeting tumour bulk, these therapies fail to target and kill CSCs leading to treatment 

failure and relapse (Stemline, 2008). 

 

The fact that CSC share some main properties with SC has brought to the conclusion 

that CSC are the result of genetic and epigenetic mutations in SC, in progenitors or in 

differentiated cells that re-gain the capacity of self-renewal. As a matter of fact, the 

very essence of tumor evolution implies that, whatever the hierarchical position of 

the progenitor targeted by a transforming agent, the neoplastic cell must acquire both 

the staminal feature of unlimited self-renewal and the genomic instability necessary 

to modulate its fitness to restricted environments. Actually, CSC can give rise to all 

the malignant cells of a primary tumor residing in drug-resistant staminal niches 

responsible for tumour relapses, subsequent a chemotherapy-induced tumor 

remission, as well as provoking metastases. Moreover, cancer stem cells share with 
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SC the invasivity and the tendency to migrate as they are able to migrate and 

proliferate in sites distant from their original sites (Paget, 1889; Fidler, 1978).  

  

 

            

 

Fig. II. Origin of cancer stem cells. CSC may be caused by transforming mutations, 

derived by numerous microenvironmental factors, occurring in normal stem cells, 

progenitors cells or differentiated cells (Bjerkvig et al., 2005). 

 

 

 

Tumour phenotypes are extremely varying, due to their mixture of differentiated and 

undifferentiated cells, in the context of abortive attempts to reproduce normal tissues 

and organs. This variability is further increased by the acquisition of local invasivity 

and metastatic spread that lead to the progressive loss of differentiation. This 

evolution was termed by Rous as the “neoplastic progression”, to indicate that 

“cancer changes from bad to worse” (Rous and Beard, 1935). 
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Nowadays, it is generally agreed that the neoplastic progression is the result of a 

combination of genetic and epigenetic changes, brought about by mutations and 

DNA methylation, with a final fate driven by mutagenesis and clonal selection 

(Klein, 1998; Loeb, 1998; Blagosklonny, 2002). In this light, the term “tumour 

mutator phenotype” has been introduced to indicate genes that govern any 

mechanism ensuring genetic stability, such as genes involved in DNA repair and 

replication as, for example, p53 and DNA polymerase. Alterations of these genes 

initiate a process which, at each successive round of DNA replication, increases the 

number of mutations throughout the genome (Loeb and Cheng, 1990). 

This progressive increase in cancer mutations is in keeping with the Nowell’s 

definition of cancer as “an evolutionary system, subject to the effects of natural 

selection, and therefore modulated by the microenvironment” (Nowell, 1976). 

Actually, this very “Darwinian” account of neoplastic progression leads to interpret 

tumours as ecosystems exposed throughout their life to environmental challenges 

(Merlo et al., 2006; Olivotto and Dello Sbarba, 2008). 

 

Tumour Hypoxia 

 The neoplastic progression implies rapid cellular growth accompanied by the 

alterations of the microenvironment. To a large extent, these alterations consist in 

variations of essential nutrients supply, of pO2 and of pH. These changes are due to 

the tumour neovascularization process. In order to grow beyond a diameter of 

approximately 1 mm, newly developing tumors must arrange their own vascular 

network and blood supply, which they accomplish either by incorporating preexisting 

host vessels or by forming new microvessels through the influence of tumor 

angiogenetic factors (Vaupel et al.,1989; Fokman, 1990). The newly formed vascular 
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network differs greatly from that found in normal tissue, typically displaying a broad 

range of structural and functional abnormalities, including dilatations, incomplete or 

absent endothelial linings and basement membranes, leakiness, irregular and tortuous 

architecture, arteriovenous shunts, blind ends, and a lack of contractile wall 

components and pharmacological/physiological receptors (Vaupel, 2004). These 

irregularities lead to abnormal and sluggish blood flow, thereby diminishing the 

delivery of nutrients and O2 to the tumour cells, with the resultant development of 

hypoxic or even anoxic areas. These factors that can cause hypoxia are mostly 

perfusion-, diffusion-, or anemia-related. In particular, perfusion-related anemia is 

caused by inadequate blood flow in tissues, while diffusion-related (chronic) hypoxia 

is caused by an increase in diffusion distances with tumour expansion. This causes an 

inadequate O2 supply to cells more than 70 µm distant from the nutritive blood 

vessels. Anemic hypoxia is caused by reduced O2 transport capacity of the blood 

subsequent to tumor-associated or therapy induced anemia (Vaupel and Harrison, 

2004). In these hypoxic areas, the concentration of glucose is usually very low, 

prohibitive for normal cell survival, but sufficient to guarantee the CSC to enter a 

“dormant state”. 

The Tumour Converging Phenotype 

Given that genetic instability is a feature of cancer, one might expect that 

phenotypic heterogeneity of tumours is destined to increase indefinitely. This 

assumption seems to be contradicted by the consideration that, if the tumor 

ecosystem has to evolve a phenotype resistant to mictoenviromental restrictions, this 

evolution must result in a stable genotype which is fitted to survive internal and 

external perturbations (Klein, 2003). So, while the changes and variations made 

possible by the genetic instability of the tumour are practically unlimited, the 
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microenvironment progressively reduces those possibilities in the struggle for life 

imposed by hypoxia and nutrient shortage. It would therefore seem that the natural 

selection of tumours is driven by the need to adapt to a very limited range of 

microambiental conditions, which in turn implies a substantial convergence in 

selected phenotypes. Although hypoxia-resistant cells may represent a minority of 

the tumor population at the beginning of the process, it is only matter of time before 

the ecosystem is dominated by this final convergent phenotype. 

To be “successful” in Darwinian terms, this unique cancer phenotype must include 

the ability to cope with severe hypoxia and nutrient shortage, a clonogenic capacity, 

essential to sustain tumorigenicity and a high glycolytic potential, for the production 

of the necessary ATP amount for survival in anaerobic conditions. Morphologically, 

these cells must a) present a reduced dimension, b) be dominated by the nucleus to 

the extent that it will be devoid of any cytological structures exploiting sophisticated 

functions c) have a scanty endoplasmatic reticulum to minimize protein production at 

the absolutely indispensable levels d) have an elevated quantity of glucose 

transporters in order to assume as much as glucose possible from the surrounding 

hostile environment (Olivotto and Dello Sbarba, 2008). 

 

Adaptation to Hypoxia of Normal and Neoplastic Hematopoietic 

Stem Cells 

 

Hematopoietic Stem Cells 

 The striking adaptation of cancer stem cells to hypoxia is a feature also found 

in normal Hematopoietic Stem Cells (HSC). In fact, hypoxia is a critical 

environmental condition for the survival and maintenance of HSC (Cipolleschi et al., 

1993). 
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Actually, bone marrow, the site of postnatal haemopoiesis, is characterized by a 

marked hypoxia, more than any other adult tissue. This fact, apparently paradoxical 

owing to the high density of bone marrow microvessels, is explained by the vascular 

anatomy of the bone marrow tissue. Blood enters the bone marrow space through the 

nutrient artery, which only branches after penetrating the wall of the surrounding 

bone, where it originates a microcirculation which anastomoses with that deriving 

from the periosteal artery. The venous branches from this microcirculation then 

penetrate into the marrow space to form the sinusoidal network that subdivides the 

haematopoietic tissue. Therefore, the blood that supplies bone marrow is primarily 

venous. Moreover, the haemopoietic tissue is made of a thick mass of cells that most 

of them are in extremely active biosynthetic phases: two factors that increase the 

competition for the scarce oxygen initially supplied. Consequently, there is a zone, 

just near to the vessel, in which the cells have at their disposal oxygen and nutrients; 

this zone borders another one in which cells lack oxygen but not glucose and farther 

on, a zone lacking both oxygen, glucose and other nutrients. It has been 

demonstrated that in the first zone the cells are actively recruited into the mitotic 

cycle, whilst in the third one they die; in the intermediate zone, highly hypoxic but 

still supplied with nutrients, cells survive indefinitely in a state of complete, but 

reversible, replicative quiescence, a condition typical of stem cells in the areas 

devoted to their maintenance, forming the “stem cell niches” (Olivotto et al., 2003).  

 Biochemical studies (Dello Sbarba et al., 1987) have revealed that 

haematopoietic progenitors are endowed with an anaerobically-oriented metabolism, 

essentially relying on glycolysis for energy supply, with minimal oxygen 

requirement for their maintenance and coordinate expansion.  
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Thus, “hypoxic niches” in the context of the marrow haematopoietic tissue represent 

the selective habitat necessary for the maintenance of the stem cell compartment and 

implies that adaptation to hypoxia is a general feature of stem cells rather than a 

peculiarity of cancer stem cells (Olivotto et al., 2003). However, normal cells 

inexorably lose their hypoxia adaptation, among with the other staminality features, 

once they have migrated out of the original niches, whilst neoplastic cells retain, 

together with all the other staminality properties, their fitness to survive in hypoxia 

after their exit from the niche and throughout tumour progression. It seems clear, 

then, that cancer cells gain an evolutionary advantage by retaining hypoxia 

adaptation for just as long as it represents an indispensable tool to survive 

indefinitely in the dormant state, evading antiblastic attacks (Merlo et al., 2006). In 

other words, a condition which in normal stem cells is no more than a restriction, 

enabling them to remain in a dormant state, becomes an essential premise of 

existence in cancer cells, enabling them to survive through alternate aerobic and 

anaerobic phases in neoplastic progression. This alternating response can be 

explained by the theory of Quesenberry et al. (Quesenberry et al., 2002) according to 

which there is no genetically or phenotipically stable stem/progenitor cell hierarchy, 

but a flexible continuum, where the shift between the stem and progenitor cell 

phenotypes is reversible, rather than being a uni-directional differentiation step. 
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Fig. III. Normal and Leukaemic Stem Cells in the BM microenviroment. In the environs 

of or at the endosteum, osteoblasts, osteoclasts and stromal cells may provide a quiscent 

microenvironment for normal and leukemic stem cells. In the vascular niche around 

sinusoids, perivascular reticular cells, sinusoidal endothelial cells, and mesenchymal 

progenitors may facilitate transendothelial migration, homing, proliferation and 

differentiation of normal and leukaemic stem cells (Konopleva et al., 2009). 

 

 

Leukaemia Stem Cells 

 The concept of the CSC was first proposed in liquid tumors (myeloma and 

leukaemia) when experiments showed that only a small percentage (1- 4%) of cancer 

cells were capable of extensive proliferation and could form colonies (Park et al., 

1971; Bruce and Van Der Gaag, 1963; Hamburger and Salmon, 1977; Mittal, 2009). 

Actually, the demonstration that tumour growth depends on a subpopulation of 

cancer stem cells in tumours was first described in transmissible leukaemias of mice. 

Furth and Kahn in 1937 were able to transplant leukaemia from one mouse to 

another using a single undifferentiated cell (Furth and Kahn, 1937). In 1955, Makino 

ad Kano obtained clones of tumour cells from single cells (Makino and Kano, 1955). 
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Human leukaemias manifested gene rearrangements that are present in all the cells of 

the population, suggesting a tumour origin from a single progenitor cell undergone a 

malignant gene rearrangement (Rowley, 1999; Schmidt and Przybylski, 2001; Pardal 

et al., 2003). The effect of a genetic change in the progenitor cell of the population is 

exemplified by the malignant increase of multiple cell types in chronic 

mono/myelogenous leukeamias, including various types of polymorphonuclear cells 

(neutrophils, eosinophils, and basophils), as well as monocytes, erythrocytes and 

platelets (megakaryocytes), all of which contain the same genetic lesions. In these 

cases, malignancy can be traced back to pluripotent cells endowed with the capacity 

to differentiate into multiple types of blood cells (Baird, 2003; Sell, 2004). 

 Chronic Myeloid Leukaemia (CML) has been one of the first malignancies to 

which a defined genetic abnormality has been ascribed and is a paradigm for stem 

cell-derived cancer. Following the post-war atomic testing in the Pacific, increased 

detection of myeloid leukaemias such as CML was noted among witnesses to those 

tests. However, little was actually known about the initiating oncogenic event that 

gave rise to CML, other than that the aberration must arise in an immature HSC, 

which has the potential to produce many daughter cells as well as identical copies of 

itself (Jorgensen and Holyoake, 2007). In 1960, Nowel and Hungerford described a 

shortened chromosome 22 [the so-called Ph (Philadelphia) chromosome] as a 

consistent chromosomal abnormality associated with a specific type of leukaemia, a 

breakthrough discovery in cancer biology (Nowell and Hungerford, 1960). It took 13 

years before it was appreciated that the Ph chromosome is the result of a t(9;22) 

reciprocal chromosomal translocation (Rowley, 1973) and again 10 years before the 

translocation was shown to involve the abl proto-oncogene normally situated on 

chromosome 9 (Bartram et al. 1983) and a previously unknown gene on chromosome 
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22, later termed bcr for breakpoint cluster region (Groffen et al., 1984). This novel 

fusion oncogene created on chromosome 22, and called BCR-ABL, (Rowley, 1973) 

encodes a constitutively active tyrosine kinase of the same name (BCR-ABL), which 

has proven to be causative of CML, and is nowadays recognized as the target of 

therapeutic prevention (Sawyers, 1999; Jorgensen and Holyoake, 2007; Deininger et 

al., 2000). 

 

 

Fig. IV. Translocation (9;22)(q34;q31). On the left; normal chromosomes 9 and 22; on the 

right chromosome Philadelphia and the derivative chromosome 9 (National Cancer Institute, 

2008). 

 

 

 CML is a triphasic myeloproliferative disorder normally initiating with a 

relatively benign chronic phase (CP) in which Ph is the only genetic abnormality. 

After 5-7 years, the CP transforms into an accelerated phase (AP) characterized by a 

huge increase in the number of blast cells in the bone marrow and peripheral blood. 

This phase is relatively short (6-9 months) and terminates in a blast crisis (BC); 
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lasting 3-6 months, characterized by numerous additional genetic aberrations in Ph+ 

HSCs, e.g. trisomy 8 or 17 or i(17q) (Mughal and Goldman, 2006; Jorgensen and 

Holyoake, 2007). 

 A widely used model of LSC is the K562 cell line, which is derived from a 

patient affected with CML at the onset of a BC (see below). 

 

The Yoshida AH130 Hepatoma Model as a Prototype of the Tumour 

Converging Phenotype 

 A phenotype mirroring the one of cancer stem cells at advanced stages of 

neoplastic progression is expressed by experimental tumours which were widely 

used before the advent of cell culture in vitro, such as the AH130 ascites hepatoma 

and similar neoplasias. In 1932, Yoshida produced the AH130 hepatoma by treating 

rats with the potent cancerogen o-aminoazotoluene (Yoshida, 1934). He eventually 

obtained a transplantable, liquid tumour developing in the ascites fluid which is 

secreted by the vessels of the peritoneal cavity. At the end of its development this 

tumour contains myriads of isolated cells, a high nucleus/cytoplasm ratio, scanty 

endoplasmic reticulum and very few mitochondria. On the whole, they appear 

extremely simplified and devoid of any of the phenotypic markers of the parental 

hepatocytes, including the histocompatibility antigens. 

 Each Yoshida cell is capable of generating myriads of identical cells, 

behaving like stem cells endowed with an unlimited capacity of self-renewal. In fact, 

soon after transplantation into a new host, the population undergoes an intense 

proliferation, drawing nutrients and oxygen from the plasma-like fluid exuded from 

peritoneal vessels. This ability to proliferate weakens progressively when tumour 

volume and cell number increase, until oxygen and glucose concentrations in the 
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fluid fall to zero (usually within 5-6 days after transplantation) (Del Monte, 1967; 

Del Monte and Rossi, 1963). From this time on, cell growth progressively slows 

down, and reaches its plateau at day 10-11. At this stage, nearly 100% of cells are 

still alive but they are randomly dispersed in a long G1 of the mitotic cycle, owing to 

their inability to enter the S phase (Olivotto, 1979; Olivotto and Paoletti, 1980). This 

“hibernation” is possible because, even when extremely crowded, cells can move 

freely in the ascites fluid, residing randomly in different areas of the tumour bulk, 

although most of the time they are distant from, and only very rarely close to, the 

peritoneal vessels. This ceaseless change of the environment represents a potent 

driving force for selecting clones which are adapted to hypoxia and nutrient shortage, 

as well as able to resume cell growth with the improvement of external conditions. 

Taken all together, the features just described are typical of dormant cancer stem 

cells naturally synchronized in a long G1 (Olivotto and Dello Sbarba, 2008). 
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The Role of Glycolysis and Mitochondrial Respiration in Normal 

and Tumour Stem Cells: The Warburg phenomenon 

 Warburg used to define as glycolysis the process by which glucose 6-

phosphate is transformed into lactic acid. The German biochemist used to distinguish 

an “anaerobic glycolysis”, in which lactate is produced in the absence of oxygen, and 

an “aerobic glycolysis”, in which the production of lactate is accomplished in aerobic 

conditions. He also observed that the cells of adult differentiated tissues carry out the 

anaerobic and not the aerobic glycolysis; on the contrary, he claimed that only cancer 

cells produce lactate in the presence of oxygen (Warburg, 1956; Warburg, 1956; 

Warburg 1959). 

 Nowadays, we know that glucose transported inside the cell gets consumed in 

various metabolic pathways especially in glycolysis, today defined as the conversion 

of glucose to pyruvate. In aerobic conditions, pyruvate enters the Krebs 

(tricarboxylic acid-TCA) cycle, where its reducing equivalents get oxidized to H2O 

and CO2 through the mitochondrial respiratory chain. The electron transport to O2 

begins with the reduction of mitochondrial NAD to NADH. In anaerobic conditions, 

electrons cannot be transported to O2; thus, pyruvate is reduced to lactate instead of 

entering the Krebs cycle. The latter is fundamental for the conversion of cytosolic 

NADH to NAD

 and for triggering one of the crucial steps of the TCA cycle, the 

oxidation of glyceraldehyde-3-phosphate to 2,3-biphosphoglycerate. Under these 

conditions, the conversion of glucose to lactate is the only significant source of 

energy of the cell and occurs when the mitochondrial task is inhibited or insufficient 

(Nelson and Cox, 2002).   

 Studies made in Prof. Olivotto’s laboratory have proven the Warburg’s 

scheme right, even though its interpretation needs to be substantially revised. It was 

shown that AH130 cells transition from the G1 cell cycle phase to the S phase is 
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blocked in anaerobic conditions, for the existence of a limiting step which depends 

on respiration but not implicated in ATP production (Olivotto et al., 1984). 

 In order to identify this step, the effects of the block of the electronic flow to 

O2 have been compared to those triggered by the uncoupling of the electronic 

transfer from ATP production. These experiments were carried out by analyzing the 

effects of Antimycin A and 2,4-dinitrophenol (DNP) on the respiration-limiting steps 

mentioned above. Antimycin A is a potent inhibitor of the electron transfer through 

the respiratory chain, and therefore blocks mitochondrial oxygen consumption and 

the related ATP synthesis to the same extent as anaerobiosis (N2 incubation). In this 

respect, Antimycin A mimics the effect of anaerobiosis (Chance and Williams, 

1956). On the other hand, DNP uncouples electron transfer through the respiratory 

chain from ATP synthesis and thus abolish the latter, while enhancing oxygen 

consumption (Loomis and Lippmann, 1948; Lardy and Wellmann, 1952). The results 

of these experiments were that, Antimycin A blocked cell recruitment into S, 

whereas DNP at concentrations increasing the electron flow to O2, does not have 

inhibitory effect on cell cycle. ATP measurements showed that cells treated with 

Amtimycin A and DNP displayed the same levels of ATP, evidently produced by an 

enhanced glycolysis (Olivotto and Paoletti, 1981).  

 These results led to conclude that the G1-S transition in tumour cells depends 

tightly on the electron transfer through the respiratory chain but not on its oxidative 

coupling that generates ATP. In other words, the limiting step for cell cycle 

recruitment is connected with the oxidation of reducing equivalents throughout the 

respiratory chain, but it has no connection with the mitochondrial ATP production 

that can be completely substituted by the increment of glycolysis through the Pasteur 

effect (Ramaiah, 1974; Olivotto and Paoletti, 1981). 
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 In view of the fact that glycolysis has a crucial role in tumour cells survival, 

we have explored the role of this sugar in the recruitment of resting AH 130 cells 

into the cycling state. Glucose consumption resulted proportional to the glucose 

concentration in the microenvironment so that, when this consumption exceeds the 

optimal request for cell recruitment, the G1-S transition is impaired. This kind of 

inhibition is observed particularly in hypoxia-resistant cells because of their 

augmented capacity for transport in glucose.  In these cases, it has been observed that 

the great part of glucose used for glycolysis (80%) gets converted in lactate instead 

of being directed to the Krebs cycle, whilst approximately 1% of glucose is used for 

glycogen synthesis. This cytostatic effect is attributable to the conversion of glucose 

to pyruvate that constitutes a leading substrate of the Krebs cycle; when pyruvate is 

produced in excess, the reducing equivalents derived from it saturate the respiratory 

chain. Thus, the conversion of glucose to lactate in aerobic conditions (the 

Warburg’s aerobic glycolysis), represents a defence mechanism of highly anaplastic 

tumour cells for disposing of glucose taken up in excess. Therefore, what emerged is 

a paradoxical role of glucose that, at low concentrations, behaves as a vital nutrient 

whereas at high concentrations is a potent inhibitor of mitotic cycle. Consequently, 

the cell cycle arrest, can be achieved in malignant cells either by blocking the 

respiratory chain or by saturating this chain by an excess of reducing equivalents 

deriving from oxidizable substrates. This saturation somehow impaired some 

essential reoxidation of cytosolic reducing equivalents, leading to the enhancement 

of the NAD(P)H/NAD(P) ratio (Olivotto et al.,1983). This enhancement interferes 

with NAD(P)-dependent processes like purine biosynthesis, an essential pathway 

required for cell recruitment into growth (see Fig.V). In particular, this complex 
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synthesis requires the conversion of folic acid into N
10

-formyl-tetrahydrofolate 

(HCO-FH4) that gives two carbonic units to the purine ring. 

        Two intermediate products are formed: N
5
,N

10
-methylene-tetrahydrofolate 

(CH2-FH4) and N
5
,N

10
-methenyl-tetrahydrofolate (CH-FH4). CH2-FH4 has an 

important role in both purine and pyrimidine synthesis: as far as purine synthesis it 

concerns, it must be oxidized to CH-FH4 through the reduction of NADP
  

 to 

NADPH. In the other hand, CH2-FH4 is the co-factor of thymidylate synthase 

enzyme (TS) that catalyzes the conversion of deozyuridine-5’-monophosphate 

(dUMP) to deoxythymidine -5’-monophosphate (dTMP). Therefore, the increment of 

the NAD(PH)/NADP ratio impairs the conversion of CH2-FH4 to CH-FH4 and hence 

diminishes the purine synthesis, without affecting the pyrimidine synthesis (Nelson 

and Cox, 2002).  

 

 

Fig V. Interplay of folates, pyrimidines and purines metabolism. 
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AIM OF THE THESIS 

 

 

The aim of this thesis has been the definition of the complex metabolic network 

which controls the adaptation of cancer stem cells to hypoxic microenvironments, 

and the definition of the fundamental mechanism controlling the transition of the 

stem cells from the dormant to the cycling state. In particular, we designed to study 

the role of the mitochondrial respiratory chain and its connection with glycolysis in 

the regulation of this transition. The revision of the Warburg’s theory was also a 

major task of this work.  
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MATERIALS AND METHODS 

 

 

AH130 MODEL 

 
Yoshida ascites hepatoma (AH130) was maintained by weekly intraperitoneal 

inoculation of 3x10
7
 cells in tumour-adapted male Wistar rats weighing 150-200g 

(Harlan Italy Srl, Correzzana-Milan), given water and food ad libitum. 

At the time of the experiment (11 days after transplantation), one tumour-bearing 

animal was decapitated and the tumor was withdrawn by a syringe under sterile 

conditions. Haemorragic tumors were discarded. 

A small aliquot (3 ml) of the tumor was saved; the remainder, usually 70-80 

ml, was centrifugated  at 6000 RPM for 20 min in room temperature (RT), 

(Heraeus®, Biofuge®, Primo R, Tabletop Centrifuge), in order to separate the cells 

from the ascitic plasma, which was collected and used for the preparation of the 

incubation medium. This ascitic plasma was the only source of exogenous substrates 

for the cells and had approximately the same composition as the blood plasma 

(Olivotto and Paoletti, 1974), except that it contained 10-12 mM lactate and no 

glucose. 

 

Incubation  

All procedures were carried out in sterile conditions using sterilized materials. 

Approximately 1 ml of the ascites fluid was diluted with about 100 ml of medium 

(see below) to obtain a final concentration of 3-3.5x10
5 

viable cells per ml. 

The medium was prepared by mixing two volumes of the same ascitic plasma in 

which the cells were grown in vivo (autologous ascitic plasma) with eight volumes of 

a saline containing 133 mM NaCl; 3.8 mM KCl; 0.58 mM MgSO4; 0.88 mM CaCl2; 

0.24 mM Na2HPO4; 0.32 mM KH2PO4 ; 0.04 mM Phenol red (Fluka, Sigma Aldrich); 

http://www.thermo.com/com/cda/product/detail/0,1055,10124136,00.html
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antibiotics (100 U penicillin and 100 µg of Streptomycin per ml) (Euroclone). The 

standard medium (ascitic plasma plus saline) was added with glucose (final 

concentration 15 mM), buffered with N-2- hydroxyethylpiperazine-N'-2-ethane 

sulfonic acid (HEPES) (final concentration 20 mM) and adjusted with NaOH at pH 

7.6 at room temperature (pH 7.4 at 38
o
 C) (Fluka). 

Incubation in normoxia (21% O2) was carried out in a conventional cell culture 

incubator in a 5% CO2, 95% air water-saturated atmosphere. 

 

 

For the labeling and radioactivity measurements, aliquots of the cell 

suspension were incubated in air at 38
o
 C in Warburg apparatus (B.Braun, model 

V85, 80 oscillations per min). Each flask contained 3.0 ml of the cell suspension in 

the main compartment and 0.1 ml of medium containing the isotopes (see below) in 

the side arm. 

At various intervals after the beginning of the incubation, the isotope solution was 

tipped into the main compartment of the flasks. At the end of the labeling the 

contents of the flasks were transferred into a centrifuge tube and spun at 1000g for 10 

min. The supernatant was decanted and kept frozen until used for biochemical 

assays, while the sedimented cells were processed for radioactivity measurements. 
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Additions 

Antimycin A (Sigma-Aldritch) was dissolved in ethanol and added at time zero. The 

other substrates tested, that is, pyruvate (Sigma-Aldrich); folic, dihydrofolic and 

tetraidrofolic acid (Sigma-Aldrich); adenine, cytosine (Fluka) and Methotrexate 

(Sigma-Aldrich, Fluka) were also added at the beginning of the incubation. 

 

Anaerobiosis 

To carry out the experiments in anaerobiosis, the saved portion of the tumour was 

kept in a syringe to avoid any contact with air until zero time. At this point, the 

amount of the ascites fluid containing the required number of cells was delivered into 

the main compartment of the Warburg flasks and mixed with incubation mixture, 

which had been previously and thoroughly flushed with nitrogen. A stick of yellow 

phosphorus was then put in the central well of the flask, while nitrogen was kept 

flushing for another 5 min to complete air replacement. 

 

Labeling and radioactivity measurements 

The standard procedure for labeling DNA and proteins was a pulse labeling of 90 

min at different times from the beginning of incubation. The amounts of the 

thymidine and lysine incorporated into the trichloroacetic acid (TCA)-precipitable 

material were measured by labeling the cells with an isotope mixture containing 0.6 

µCi of [2-
14

C] thymidine (T.R.C., Amersham, U.K., 250 mCi/mmole). 

10 ml of 10% TCA were added to the cell pellet soon after its separation from the 

supernatant. The TCA-precipitated material was washed three times, each time with 

10 ml of 10% TCA, then dissolved in 0.5 ml of NCS solubilizer (Amersham/Searle 

Corp.) and counted in a toluene-based scintillation mixture (4.0 g of 2.5-

diphenyloxazolone and 0.05 g of 2.2’-p-phenylen-bis-5-phenyloxazolone and 0.05 g 
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of 2.2’-p-phenylen-bis-5-phenyloxazolone in 1 l of toluene), using a Packard Tricarb 

460 CD, set at the dual isotope counting. 

 

 

Autoradiography 

For autoradiographical analysis two types of labeling experiments were performed. 

In the first, the cells were pulse-labeled for 90 min with 5 µCi of methyl-

[
3
H]thymidine (spec. act. 21 Ci/mmol, T.R.C., Amersham) in order to measure the 

percentage of cells synthesizing DNA at the various times of incubation; i.e., labeling 

index pulse = LI(P). In the second type of experiment, the cells were exposed to 

continuous labeling with 5 µCi of tritiated thymidine from time t = 0 until the end of 

incubation. From these experiments data were obtained on the percentage of cells 

which had entered into S phase since the beginning of the incubation; i.e., labeling 

index continuous = LI (C). 

Each cell pellet was first washed in 1 ml of cold medium and then fixed by 

resuspension in 10 ml of acetic acid: methanol (1 : 3) mixture. Subsequently, the 

fixed cells were washed three times with the same mixture, then concentrated by 

mild centrifugation and finally spread onto glass slides pretreated with a solution 

containing 0.05% KCr(SO4) and 0.5% gelatine. After drying of the preparation these 

were dipped into Kodak NTB-2 emulsion and kept in the dark at 4
o
C for 20-30 days. 

After this period the slides were developed for 5 min at room temperature in D-19 

(Kodak Ltd.), fixed for 15 min in Kodak fixer and stained with Giemsa. 
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Assays 

 

Metabolites dosages were carried out on the supernatant of cell cultures by the 

following enzymatic methods: 

 

Glucose: the dosage measurement was carried out according to the enzymatic 

method of Werner et al (Werner et al., 1970). 

 

Lactate: the dosage measurement was carried out according to the enzymatic method 

of Hohorst (Hoohorst, 1963). 

 

Pyruvate: the dosage measurement was carried out according to the enzymatic 

method of Bucher et al. (Bucher et al., 1963).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

HPLC (High Performance Liquid Chromatography) method 

 

 

Cell organic extraction protocol 

 

1. organic extraction solution: acetonitrile (ultrapure for HPLC) + 10mM  

KH2PO4 at pH 7.40 (in a 3:1 ratio alias 75% acetonitrile + 25% 10 mM 

KH2PO4 at pH 7.40). 

2. this solution must be insufflated with N2 for at least 20 min before it’s 

utilized and  kept afterwards at 4
o
 C. 

3. centrifugate the cells (10 millions), remove the supernatant and add 2ml 

precipitant solution. 

4. vortex for about 60 sec. 

5. centrifugate at 21.00g/10 min at at 4
o
 C. 

6. separate supernatant from pellet and conserve supernatant, well-closed, at -

20
o
C. 

7. add in the pellet 1ml of the precipitant solution and repeat 4. and 5. 

8.  mix the supernatant obtained from the second extraction with the supernatant 

conserved at -20
o
C. 

9. add chloroform (ultrapure, for HPLC) in the 3ml of the final volume obtained 

from the 2 extractions with the precipitant solution, according to a 3: 1 ratio 

respect to the final volume of the supernatant. (In this case 6ml of chloroform 

must be added). 

10. agitate vigorously for at least 90 seconds. Remember that this operation is 

aimed to remove acetonitrile thus, tubes and taps resistant to aggressive 

solvents (e.g.chloroform) must be used. 
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11. centrifugate at 18000g/10 min at 4
o
C. 

12. separate carefully the aqueous phase from the underlying organic one. 

13. repeat 9. and 12. 

14. after this second washing, the remaining aqueous phase (which will be used 

for the HPLC analysis) results almost completely devoid of acetonitrile and 

can be conserved at -80
o 

C until the moment of the analysis. 

 

 

 

 

Buffers for the HPLC course 

 

Buffer A: KH2PO4 10mM (Fluka) + Methanol 0.125% (Sigma-Aldrich) + 

Tetrabutylammonium 12 mM (Nova Chimica)-pH 7 

 

Buffer B: KH2PO4 100mM (Fluka) + Methanol 30% (Sigma-Aldrich) + 

Tetrabutylammonium 2.8 mM (Nova Chimica)- pH  5.5 
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K562 MODEL 

 

K562 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium 

supplemented with 50 units/ml penicillin, 50µg/ml streptomycin, and 10% fetal 

bovine serum (all from EuroClone, Paignton, U.K., http://www.euro-clone.net/), and 

incubated at 37
o
C in a water-saturated atmosphere containing 5% CO2 and 95% air 

(Heraeus® incubator). Experiments were carried out with cells from maintenance 

culture, at the time of confluence, plated in 24-well dishes (EuroClone) at 30 x 10
3
 

/ml. 

Assays were performed with the parallel incubation of cells in normoxia (21% O2 

and in the standard conditions mentioned above) and strictly hypoxia. Incubation in 

severe hypoxia (0.1% O2) was carried out in a Ruskinn Concept 400 anaerobic 

incubator flushed with a performed gas mixture (0.1% O2, 5% CO2, 95% N2) and 

water-saturated. This incubator allows easy entry and exit of materials and sample 

manipulations without compromising the hypoxic environment. In order to obtain the 

block or the saturation of the mitochondrial respiratory chain, in a different way from 

the hypoxic incubation, Antimycin A (Sigma-Aldrich) was added at 6x10
-6

 M or, 

respectively, pyruvate (Sigma-Aldrich) at 10 mM at cultures at time zero of the 

experiments. 

Experiments were carried out with the direct addition of several substrates in the cell 

suspension contained in every well. The substrates utilized, added in various 

concentrations (see Results and Discussion) are: folic, dihydrofolic and tetraidrofolic 

acids (Sigma-Aldrich); adenine (Merck); Methotrexate (Sigma-Aldrich); Raltitrexed 

and LY309887 (kindly supplied by Prof. Mini, Pharmacology Department; 

Università degli Studi di Firenze; Florence, Italy). 

 

http://www.euro-clone.net/
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Measures of cell viability 

Cell viability under the various conditions was assayed by the trypan blue 

exclusion test diluting 1:1 the cell suspension with 1% trypan solution (Sigma-

Aldrich). The cell suspension was put into a Bürker chamber and the number of vital 

cells (trypan blue-negative) was then determined by moltiplicating the cell amount in 

1 µl (mean of three squares in 1 mm
2 

of the camera grid) for 20000. 

 

Flow cytometry analysis 

To determine cell cycle distribution, 5x10
5
 cells were centrifugated  for 6 min 

at 1200 rpm. Once pellet was discarded, cells were resuspended in 500 l of 

Propidium Iodide (PI) solution (trisodium citrate 0.1% w/v, NP40 0.1% w/v, PI 50 

g/ml) (Merck4Biosciences Italy, Calbiochem, # 537059), incubated for 30 min at 

4
o
C in darkness and subjected to flow cytometry. 

Flow cytometry was performed using a FACSCanto flow cytometer (Becton  

Dickinson, San Josè, USA) equipped with a 488nm Coherent Sapphire Solid State 

laser. The filter in front of photomultiplier transmits at 585nm and has a bandwidth 

of 42nm. A minimum of 30,000 events per sample were analyzed. Data were 

acquired with the software Diva 6.1.2 (Becton  Dickinson) and afterward analyzed 

with the flow cytometry modeling software ModFit LT (Verity Software House). 

 

Cell lysis  

Total cell lysates were obtained as follows: Culture plates were placed on ice, 

cell monolayers rapidly washed 3 times with ice-cold PBS containing 100 mM 

orthovanadate and cells lysed by scraping in Laemmli buffer (Tris/HCl 62.5 mM, pH 
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6.8, 10% glycerol, 0.005% blue bromophenol, SDS 2%) and incubating at 95°C for 

10 minutes. Lysates were then clarified by centrifugation (20000 g, 10 min, RT). 

 

Western Blotting and Immunoblotting  

Protein concentration was determined by the BCA method and 30-60 g 

aliquots of each sample were incubated at 95°C for 10 minutes, in the presence of 

100 mM 2-mercaptoethanol. Proteins were then separated by SDS-PAGE in 9-15% 

polyacrylamide gel and transferred onto PVDF membranes (Immobilon, Millipore, n. 

cat. IPFL00010) by electroblotting. Membranes were incubated (1 hour, RT) in 

Odyssey Blocking Buffer diluted 1:1 with PBS, and then in the same buffer 

containing 0,1% tween-20 and a proper dilution of the primary antibody (16-18 

hours, 4°C). After extensive washing with PBS/0.1% tween20,  membranes were 

incubated in Odyssey Blocking Buffer diluted 1:1 with PBS containing  a proper 

dilution of Alexa Fluor 680-conjugated secondary antibody (1 hour, 4°C; Invitrogen 

A21065). After extensive wash specific bands were visualized by infrared imaging 

(Licor, Odissey). When needed, membrane stripping was performed by incubation 

(3x10 minutes, 50°C) in a stripping buffer (62,5 mM Tris/HCl, pH 6.7, 2% SDS, 100 

mM 2-mercaptoethanol), followed by extensive washing with PBS and 0.1% Tween-

20. Antibodies were used following the manufacturer’s instructions: mouse-p53 

(DO-1) diluted 1:1000 (Santa Cruz Biotechnology, # sc-126), mouse -vinculin 

diluted 1:1000 (Sigma # V9131).   

 

 

 

 

       



 

32 

 

RESULTS 

 

THE AH130 MODEL 

    

The experimental design and cytokinetics 

 In Fig. 1 are illustrated the cytofluorimetric and cytokinetic analyses of the 

G1/S transition of AH 130 cells after their transfer in vitro at the 11
th

 day of the 

tumour development in vivo. Upon their transfer to aerobic cultures in the presence 

of 15 mM glucose, about 80% of cells are in G1 phase and 10% and 12% are in S 

and G2 respectively (see also Fig.1B). This striking synchronization in G1 is due to 

the progressive shortage of glucose and to the complete absence of O2 in the ascites 

fluid, typical of ascites tumours at the advanced stage of their development (see 

Introduction). Upon transfer in vitro, the cell cycle distribution changed completely 

within 18-24 hours, with more than 40% of cells accumulating in S and a 

concomitant fall of G1 cells from 80% to 45%. From this time on, the percentage of 

cells in S progressively declines, falling to less than 10%, with return of the G1 cells 

at the initial percentage. 
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Fig. 1. A. Cell cycle distribution of Yoshida AH130 hepatoma cells during the first 4 

days after their transport from in vivo to in vitro. B. Total number (black) and cell cycle 

distribution of Yoshida  AH130 cells  in the various phases as a function of time.  
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The cytokinetics of the tumour cell recruitment from the non-cycling to the cycling 

state is also represented in Fig. 2A. In air and in 15 mM glucose (time zero 

concentration) the cell population, as followed up by the pulse labeling with 14C-

thymidine, was recruited into S with a bell-shaped kinetics, whose integration, 

illustrated by the curve (a), represents the cumulative G1-S transition throughout the 

experimental time. The percentage of cells recruited into the S phase was determined 

with: (i) the autoradiographic labeling index procedure, carried out either in pulses or 

continuous, both corrected for the total cell number (cLI(P) and cLI(C), 

respectively); (ii) the pulse labeling technique carried out by measuring the rate (R) 

of 
14

C thymidine incorporation into DNA according to Olivotto and Paoletti 

(Olivotto, 1979; Olivotto and Paoletti, 1981). Once corrected for the total cell 

number in culture, these two techniques proved perfectly consistent. Integrating these 

pulse measurements throughout the time, it was possible to represent the kinetics of 

cell recruitment into S, their permanence in and exit from this phase. In fact, a 

parallel kinetics to the (a) (assigned as curve (b)), shifted by a time corresponding to 

the length of S (TS = 15 h), represents the cumulative kinetics of cell exit from S and 

entry into the G2/M section of the cell cycle, while cell numbers start to increase after 

the time TG2+M with the kinetics represented by the curve (b’). The distances from the 

ordinate axis of the figure to the curve (a) represent the times spent by cells in G1 

before entering the S phase. 
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Fig. 2. The tumour cell recruitment from the non-cycling to the cycling state: 

cytokinetics and respiration-linked limiting step. A. Cytokinetics of cell recruitment. 

Incubation was carried out in air and with the reconstituted medium added of 15 mM 

glucose. Circles = rate of 
14

C-thymidine into DNA (DPM x 90 min per flask = R), expressed 

as percentages of the maximum value found in each experiment; Triangles = total number of 

cells entered the S phase since the beginning of incubation, measured by exposing the cells 

to continuous labeling with 
3
H-thymidine (Labelling Index Continuous, corrected for the cell 

increment = cLI(C)). B. Time-courses of the rates of 
14

C-thymidine (left) and 
3
H-lysine 

(right) incorporation (DPM x 90 min per flask) in the presence of 15 mM glucose either in 

air (open bars) or in nitrogen atmosphere (closed bars). C. Effects of Antimycin A and DNP 

on cell recruitment (above) and on the rate of protein synthesis (below). Bars represent the 

rates of 
14

C-thymidine or 
3
H-lysine incorporation (DPM x 90 min per flask) in the absence 

(open bars) or in the presence (shaded and closed bars) of the inhibitors (3,6 x 10
-6
 

Antimycin A; 5 x 10
-5 

and 10
-4

 M DNP). Values are expressed as percentages of the 

maximum value of the control found in the course of incubation (Olivotto and Dello Sbarba, 

2008). 
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The metabolic features of AH130 cell recruitment into S 

Fig. 2(B) illustrates the time courses of the rate of 
14

C-thymidine (left) and 
3
H-lysine 

(right) incorporation in the presence of 15 mM glucose either in air or in nitrogen 

atmosphere. As shown, cell recruitment into S (estimated by the thymidine 

incorporation rate (R)) was practically abolished in anaerobiosis (Fig.2B, left), but 

this did not substantially affect the highly energy-dependent rate of lysine 

incorporation into cell proteins (Fig.2B, right). These results indicated that the G1-S 

transition is not limited in anaerobiosis by a significant shortage of ATP which can 

be supplied by glycolysis. This conclusion was demonstrated definitely by analyzing 

the effects of Antimycin A and DNP on this process (Fig 2C and Table 1). Actually, 

the inhibition of the respiratory chain by Antimycin A abolished the cell recruitment, 

whereas the uncoupling of the oxidative phosphorylation (DNP) did not affect this 

recruitment.                          

  

These effects of the inhibitors were confirmed in our system (table 1A), together 

with the measurement of intracellular ATP in Antimycin A or DNP-treated cells as in 

the control (Table 1B).  
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Table 1 

 

A) Effects of Antimycin A and DNP on the rate of the Oxygen consumption by 

ascites cells.  

                                                   
 Control 

 
Antimycin A 

(3x10
-6

 M) 

 

% DNP 

(5x10
-5

 M) 

 

% 

Rate of O2 

consumption 

(µatoms/min/10
6
 

cells) 

1,99±0,12 

 

0,35±0,10 

 
-82% 

 

4,07±0,49 

 
+104% 

 

 

 
Inhibitors were added at time zero and the O2 consumption was measured with a Clarke 

electrode at 30°C after 18h of incubation in air at 38°C, in the presence of 15mM glucose. 

Values are means ± ESM of three separate experiments.  

 

 

B) ATP levels in ascites cells, measured after 18h of incubation in air or in the 

presence of Antimycin A or DNP. 

 
 Control 

 
Antimycin A 

(3x10
-6

 M) 

 

% DNP 

(5x10
-5

 M) 

 

% 

ATP 

(µmoles x10
6
 

cells) 

 

Exp.1 
15,62±1,33 

 

Exp.1 

14,17±0,50 

 

-3% 

 

Exp.1 

15,93±0,84 

 

-1,8% 

 

ATP 

(µmoles x10
6
 

cells) 

 

Exp.2 

14,54±0,43 

 

Exp.2 

13,29±0,45 

 

-8% Exp.2 

13,69±0,60 

 

-0,5% 

 
Values are expressed as µmoles x10

6
 viable cells and are means ± ESM of three separate 

determinations.( Olivotto and Paoletti ,1981).    
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Moreover, as shown in Table 2, nitrogen-induced anaerobiosis, as well as Antimycin 

A and DNP, produced the same Pasteur effect, that is, an increase of glycolysis when 

mitochondrial respiration is impaired. In fact, all three treatments similarly 

stimulated both glucose consumption and lactate production, which accounted for up 

to 80% of glucose uptake. 

 

 

Table 2 

 

The Pasteur effect in ascites cells produced by anaerobiosis, Antimycin A and 

DNP. 

 
 Control 

 

Antimycin 

A 

(3x10
-6

 M) 

 

% DNP 

(5x10
-5

 M) 

 

% Anaerobiosis 

(N2) 

 

% 

 

glucose 

 

11,18 ± 

0,66 (4) 

 

 

16,27 

±1,07(4) 

 

+45% 
 

15,81 

±0,93(4) 

 

 

+41% 16,94 

±0,80(4)  

 

 

+51,7% 

 

lactate 

 

17,78 

±0,61(4) 

 

 

30,71 

±1,56(3) 

 

+72% 
 

24,13 

±1,93(3)  

 

 

+35,7% 26,60 

±2,21(4)  

 

 

+49,6% 

 
Cells were incubated in the presence of 15mM glucose and values are expressed as µmoles 

of glucose consumed or lactate produced for 10
6
 viable cells, throughout the interval 0-18h 

and are means ± ESM of a number of experiments listed in parentheses (Olivotto and 

Paoletti, 1981).   

 

 

To summarize, the fundamental role played by respiration in tumour cell 

recruitment into S cannot be attributed to the mitochondrial ATP supply; instead it is 

conceivably dependent on ATP-uncoupled oxidation through the mitochondrial 

respiratory chain of reducing equivalents produced in some essential step of cell 

progression through the cell cycle. 

 

 



 

39 

 

 The dependence of cell recruitment into S on glucose supply was object of a 

complex study carried out previously in our laboratory (Olivotto and Paoletti, 1981). 

This study showed that the optimal level of  recruitment at 18h,  indeed required 

glucose, but the maximum of this parameter was obtained with time zero glucose 

concentration, at concentrations far lower  (0,2-0,5 mM) than those usually used in 

standard culture media (10-15 mM). Moreover, the above optimal concentrations did 

not generate any lactate, whereas with 15 mM, up to 80-90% of the sugar was 

converted to lactate, and the inhibition of this conversion by oxamate drastically 

reduced the cell recruitment.  The negative effect of the high glucose concentration 

on the G1-S transition was accounted for by the concomitant excess of pyruvate, not 

converted to lactate and metabolized through the TCA cycle. This conclusion was 

supported by the experiments reported in Fig.3A, showing the dose-dependent 

inhibition brought about by pyruvate on cell recruitment into S.  A significantly 

lower degree of inhibition was also produced by others TCA cycle substrates such as 

oxalacetate and citrate. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The Dose-dependence of the cytostatic effect of pyruvate. Values refer to the rate 

of 
14

C-thymidine incorporation (R=DPM x 90 min/flask) in air and in the presence of 15 mM 

glucose (time zero concentration), and are means ± Standard Error of Mean (S.E.M) of three 

separate experiments. In abscissa are reported the pyruvate concentrations at time zero. 
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The removal of the inhibition of the G1/S transition 

 The results presented so far indicated that a respiration-linked step limits the 

G1-S transition of AH130 cells. This blockage was obtained both by impairing the 

electron transfer through the respiratory chain (oxygen consumption) by Antimycin 

A or nitrogen atmosphere, but also by an excess of oxidizable substrates metabolized 

through the TCA cycle. This suggested the hypothesis that this inhibition depends on 

the impairment of some redox metabolic step, necessary for cell recruitment to S. 

Conceivably, this step was attributable to one or more cytosolic NAD(P)-dependent 

reactions among the multitude of the reactions governed by the cellular redox state. 

In fact, this kind of reactions should be limited at the end of long incubation periods 

of impairment or saturation of the respiratory chain. One feasible candidate for this 

type of metabolic pathways was the NADP-dependent step of folate metabolism 

implied in the synthesis of the purine ring (see also the Concluding Remarks). 

   To test this hypothesis, we explored the effects of the addition of folate or pre-

formed purine bases to our system in the absence or in the presence of inhibitors of 

the cell recruitment into S.  

   As shown in Fig. 4, folate stimulates cell recruitment in air and substantially 

removes the inhibitory effects of both Antimycin A and pyruvate. Noteworthy, the 

stimulatory effects of reduced derivatives of folate (FH2 and FH4) were significantly 

lower than those of the oxidated form.  

  In the same Fig.4, the effects of 0,1 mM adenine are reported. The latter, 

although displaying slight inhibitory effects on the control, substantially removed the 

inhibition of Antimycin A and pyruvate. These results indicate that the intracellular 

pool of adenine is at its optimum for cell recruitment to S in air, but it becomes 

insufficient in hypoxia. 
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Fig. 4. Effect of folic, dihydrofolic and tetrahydrofolic acids (40µg/ml), adenine and 

cytosine (2mM) with or without Antimycin A (6 x 10
-6

 M) and pyruvate (10 mM) on the 

AH130 cell recruitment into S. The values reported here are means ± SEM of three 

separate experiments.   
 

 

 

 

The dose dependence effects of adenine and pyruvate on our system in air is 

illustrated in Fig. 5.  
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Fig. 5. The dose-dependent removal of the inhibitory effects of Antimycin A 6x10
-6

 M 

(black) or pyruvate 10 mM M (red) by the addition of adenine 0,1 mM. In green, the 

adenine effects on controls. Values are means ± SEM of three separate experiments and are 

expressed as percentages of the respective controls.  
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Fig. 6 A. Cell cycle distribution of AH130 cells in Adenine (Aden.) and/or in Antimycin 

A (Ant.A). 
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Fig 6 B. The quantititative estimate of the AH130 distribution in S. The experiment 

conditions were the same as in Fig. 5. A.A = Antimycin A (6x10
-6

 M), Aden.= Adenine (0,1 

mM). The number of cells was calculated from the total number of cells scored at various 

days times for the percentage distribution in S given from A.
 

 

 

 

The cytofluorimetric analysis of the effects of adenine are also illustrated in Fig.6, 

where data are reported before and after the correction for the cell viability in S. It is 

evident that Adenine removes the inhibition of the G1/S transition produced by 

Antimycin A or pyruvate. 
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THE K562 MODEL 

 

  Even though AH130 hepatoma represents the prototype of the convergent 

profile of highly anaplastic cancer stem cells, we have considered necessary to 

compare the results provided by this model to those obtained from other types of 

anaplastic CSC population as farthest as possible from a histogenetic and clinical 

point of view. To this purpose, we chose the K562 cell line, which represents the 

extreme anaplastic stage of a CML blast crisis and present all the characteristics of 

tumour staminality. 

 

The experimental design and cytokinetics 

  Fig 7A shows the expansion in vitro of K562 cells incubated either in the 

control (normoxia, 10mM glucose) or hypoxic conditions, simulated by N2 

atmosphere or Antimycin A addition. As shown, both these treatments practically 

abolished the cell expansion, indicating a strict dependence of the cell growth on the 

activity of the respiratory chain. 

 The cytofluorimetric analysis of the control cell population during its expansion in 

vitro is reported in Fig. 7B, revealing the typical cell cycle distribution of a fast 

growing population (35% cells in G1, 53% in S and 12% in G2/M) up to day 4. On 

the contrary, at the same time, Antimycin A-treated cells appeared substantially 

accumulated in the S phase, an effect that is much more evident at day 7, when it is 

accompanied by a marked cell apoptosis. 

   Thus, from a metabolic point of view, the K562 model responds differently to the 

blockage of the respiratory chain as compared to the AH130 population, undergoing 

a blockage in S instead of in G1. 



 

46 

 

A 

 

 

 

 

 

B 

                                                                                           

 

                               

 

 

 

 

Fig. 7.  The K562 proliferation and cytokinetics in normoxia (Con = Control) and in 

Antimycin A (Ant. A = Antimycin A). The values reported in 7A are means ± SEM of 

three separate experiments.              
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  To study the capacity of K562 cells to resume growth upon removal from a N2 

atmosphere, we performed the experiment reported in Fig.8, showing that this 

removal produces a complete recovery of the cell expansion at the same level as that 

provided by the first seed. These experiments lead us to the conclusion that N2-

incubation selects for a hypoxia-resistant stem cell compartment, entitled to resume 

the growth kinetics displayed by the control cultured in normoxia, as soon as the 

hypoxic conditions are removed. 
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Fig. 8. Time course of K562 cell growth in conditions of normoxia (A-Air), 

hypoxia (H) and in normoxia after a 7-days N2-incubation (H-A). The values 

reported here are means ± SEM of three separate experiments. 
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    From a molecular point of view, the mechanism blocking the mitotic cycle of 

these two types of cells was further exploited, showing that, both the blockage in 

G1/S of AH130 cells and in S/G2 of K562 cells is not mediated by p53, which is not 

expressed in both populations (Fig. 9). 
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Fig. 9. p53 transcription factor is not expressed either in AH130 cells or in K562 

cells. Immunoblot analysis of p53 expression in lysates of AH130 cells, K562 

leukaemia cells and Kasumi acute myeloid leukaemia cells-the latter used as a p53 

expression control cell line. On the same membrane, vinculine expression was tested 

as immunoblot control. 
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The removal of the growth arrest by folate 

The experiments reported in Figs 10 and 11 show that, after a 7-days 

incubation in hypoxia, cells transferred to normoxic conditions display similar 

growth kinetics in presence or in absence of folate in culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Time course of the kinetics of K562 cells cultured in a 21-day incubation in 

normoxia (blue-A=Air), in a 7-day incubation in hypoxia (H=Hypoxia) + 14 days in 

normoxia with (rose-H-A+F) or without (yellow-H-A) folic acid 40 µg/ml (F=Folate). 
Values are means ± SEM of three separate experiments. 

 

 

 

  On the other hand (Fig.11), in N2 atmosphere, folate determined a substantial 

expansion of the population, indicating that the growth promoting effect of this 

vitamin takes place only in hypoxic conditions.  
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Fig. 11. Dose-dependent effect of acid folic on K562 growth in anaerobic and aerobic 

conditions. The values reported here are means ± SEM of three independent measurements. 

 

In conclusion, K562 cells share the response to folate displayed by the 

AH130 cells as far as the removal of the block in hypoxia is concerned. Despite the 

different position of the blockage within the cell cycle, this similarity seems to imply 

a similar metabolic nature of the limiting step of cell growth in the two types of cell 

populations. This in turn led us to hypothesize that the K562 cells undergo a shortage 

of the purine ring in hypoxia. This hypothesis was tested in the experiments reported 

below. 

The effects of specific inhibitors of the synthesis of purine and 

pyrimidine bases on K562 cell recruitment into the cycling state 

 

In Fig.12 are shown the effects of typical specific inhibitors of the synthesis 

of the purine and pyrimidine bases on K562 cells. We used two typical antifolic 

agents, namely the inhibitor of the synthesis of purines LY309887, and the inhibitor 

of the pyrimidines synthesis Raltitrexed (brand name Tomudex). 
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LY309887 is an antimetabolite used for the treatment in colorectal cancer (Assaraf, 

2007). It is a specific inhibitor of glycinamide ribonucleotide formyltransferase 

(GARFT), that blocks the purine de novo synthesis and hence produces a depletion 

of purine nucleotides (Lu et al, 1999). Precisely, this enzyme catalyzes the synthesis 

of formylglycinamide ribonucleotide (FGAR) by the transport of a formyle group, 

obtained from 10-HCO-THF, to glycinamide ribonucleotide (GAR).   

 

TDX is a chemotherapeutic agent also used for the treatment in colorectal cancer, 

since 1998.  It is a powerful inhibitor of the thymidilate synthase and hence, of the 

biosynthesis of the pyrimidine nucleotides precursors (Cunningham, 1998; Botwood 

2000; Van Cutsem, 2002). 

 

In Fig. 12 is reported the dose-dependence effects of LY and TDX on K562 

cell growth. It is evident that LY (IC50 LY309887= 2.5x10
-9

 M) is 1 log more 

efficient than TDX (IC50 TDX= 5 x 10
-8 

M), suggesting that K562 are much more 

sensitive to the inhibition of purines than pyrimidines synthesis. 
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Fig. 12. K562 proliferation following the administration of TDX (black) and LY309887 

(red) in the culture. The values reported here are means ± SEM of three independent 

measurements and are expend as percentage of therapeutic controls. 

 

  The specificity of LY309887 activity on purine synthesis was confirmed in the 

experiments presented in Fig. 13 where it is shown that this agent at 5 x 10
-9

 M 

causes an 80% blockage of cell growth in air with a mechanism reversed by the 

addition of adenine either in air or in Antimycin A. 

 

 

 

 

 

 

 

 

Fig. 13. Influence of LY309887 addition in K562 cultures either in the presence or in 

the absence of Antimycin A (6x10
-6

 M), with or without the addition of Adenine 0,1 

mM. The values are means ± SEM of three independent measurements. 
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 The same applies if one considers the effects of LY309887 in the presence or in the 

absence of adenine, as explored by the cytofluorimetric analysis reported in Fig. 14. 

In fact, LY309887 produces a strong cell accumulation in S, similar to that of 

Antimycin A, an effect totally removed by adenine. These experiments indicate that 

the Antimycin A blockage of K562 cell growth is related with the impairment of the 

purine bases synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. K562 cells percentage in S phase following to treatment with LY309887 5 x 10
-9

 

M in presence or in absence of adenine. Means ± SEM of three independent 

measurements. 
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That purines synthesis is a crucial target of treatments blocking or saturating the 

respiratory chain is further supported by the demonstration that the specific inhibitor 

TDX, at concentrations up to 10
-8

, only slightly impairs cell growth in air, while 

strongly stimulates it in Antimycin A (Fig.15 A and B). This modest inhibition of 

pyrimidine synthesis, far from inhibiting, promotes K562 cell proliferation.               

 

A        B 

 

                                                                                                                                                       

            

 

 

 

 

 

 

 

Fig.15 A, B. Dose-dependent influence of TDX on K562 growth in normoxia (A) and in 

Antimycin-A treated cultures (B). Means ± SEM of three independent experiments. 
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Fig.15 C. K562 growth respect to control cell, in TDX-treated cultures, in aerobic 

(green) and anaerobic conditions induced by either an N2 atmosphere (red)or 

Amtimycin A (black). Values reported means ± SEM of three separate experiments and are 

expressed as percentage of the respective controls. 

 

The effects of addition of purine and pyrimidine bases on the K562 

cells recruitment into the cycling state 

 

Decisive clues to prove the crucial and exclusive role of purine synthesis in 

the K562 cell recruitment into S were obtained by adding all series of purine and 

pyrimidine bases in culture. As shown in Fig. 16, while the mixture of all pyrimidine 

bases (cytosine, thymidine, uracile) tends to further depress the low control rate of 

recruitment in Antimycin A, the combined addition of adenine and guanine produced 

a substantial (up to 60%) stimulation in the concentration range of 0.2-0.25 mM. 

Noteworthy, the single addition of adenine resulted much less efficient, or even 
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inhibitory, beyond 0,1mM. The single addition of guanine is inhibitory across the 

whole dose response.  

    Several relevant implications can be derived from these results: a) the inhibitory 

effects of pyrimidines and the substantial stimulation by purines point out that cell 

the recruitment into S of K562 cells is limited by purine shortage, while it is fully 

sustained at the optimal level of intracellular pyrimidine pool. However, the increase 

of the purine pool must be contained within a definite threshold, beyond which the 

recruitment is impaired. The same happens when the single addition of adenine or 

guanine perturbs the adenine/guanine equilibrium favoring the one or the other. 

    On the whole, our findings indicate that the K562 recruitment requires a proper 

equilibrium among the various pools of nucleotide bases, so that the alteration of this 

equilibrium impairs the growth resumption as far as it generates a shortage of purines 

without significantly affecting the pyrimidine basis. 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The effect of the somministration of purine (A=Adenine, G=Guanine) and 

pyrimidine (C=Citosine, T=Thymidine, U=Uracile) bases on the proliferation of K562 

cells treated with Antimycin A. The values reported here are means ± SEM of three 

independent measurements. 
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  The above indications should be reconciled with the fact that folate addition is 

equally necessary to remove the blockage of cell recruitment produced by the deficit 

of the mitochondrial respiration reported in this work (see above). We explained this 

fact recalling that purines synthesis relies on the NADP-dependent oxidation of 

methylen-FH4 (CH2FH4) to methenyl-FH4 (CH4FH4) operated by methylen-FH4 

dehydrogenase. This NADP-dependent reaction, not required for pyrimidine 

synthesis, is evidently regulated by the NADPH/NADP ratio. 

 

 

As shown in Fig.17, this ratio is strongly enhanced when the mitochondrial 

respiration is impaired by Antimycin A. This enhancement makes it obviously 

difficult or impossible the NADP-dependent conversion of CH2-FH4 to CH-FH4.  
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Fig. 17. NAD, NADH, NADP and NADPH dosages and ratios in K562 cells in normoxia 

or in Antimycin A. The nucleotides were measured by HPLC as reported in Materials 

and Methods. 

 

To conclude, the experiments reported so far indicate that the enhancement of 

NADPH/NADP ratio is the eventual metabolic event that triggers the blockage of 

cell recruitment to S produced by the impairment of the respiratory chain under 

hypoxic conditions. 
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The inhibition of K562 cell recruitment into the cycling state by 

pyruvate 

The results presented so far point out a strong similarity of the metabolic 

mechanism underlying the hypoxia-dependent cell growth arrest of K562 as 

compared to that of Yoshida cells (see above). In the case of ascites cells this 

mechanism resulted to be produced not only by the block of electron transfer of 

reducing equivalents to O2 (N2 atmosphere, Antimycin A) but also by the saturation 

of the chain by the preferential oxidation of physiological substrates, chiefly 

pyruvate. To check whether this latter metabolic feature is also displayed by K562 

cells, we measured the effect of pyruvate on K562 growth. As shown in Fig. 18, 

pyruvate indeed inhibits K562 cell growth although at doses about 2-fold higher than 

those effecting the AH130 growth.  

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 18. The cell growth inhibition by pyruvate on AH130 (black) and K562 (red) cells. 
The values reported here are means ± SEM of three separate experiments for each cell line. 
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CONCLUDING REMARKS 

 

 

 Although carried out in two far different experimental systems, (AH130 

ascites hepatoma and the K562 leukaemia), the crucial messages emerged are 

essentially the same. 

Briefly, the Yoshida model led to establish the following points: 

1) cell transition from the non-cycling to the cycling state strictly depends on the 

activity of the mitochondrial respiratory chain, even when the overall energy 

requirements of the cells can be supplied exclusively by the glycolytic ATP 

(see Introduction-Table 1B). The fundamental role of respiration is to exploit 

the reoxidation of reducing equivalents (electrons) deriving from some 

oxidative step connected with purine biosynthesis; 

2) when added in excess, oxidizible substrates, chiefly pyruvate and oxalacetate, 

mimic the effects of Antimycin A and N2 incubation, producing a blockage of 

cell recruitment reversible upon addition of adenine; 

3) the above effects of Antimycin A and N2 are removed also by folate, 

suggesting that the respiration-dependent limiting step of the G1-S transition 

is framed within the folate metabolism. 

 As to point 2), we proposed that the inhibitory effects of oxidizable substrates 

in G1-S transition is due to a saturation of the respiratory chain, with the 

consequent enhancement of the overall cellular NAD(P)H/NAD(P) ratio. A 

similar sequence has been described by Williamson and Jones, after pyruvate 

addition to intact heart cells and mitochondria (Williamson and Jones, 1964). 

This enhancement in turn retards or impairs the oxidation of other substrates to 
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an extent depending on the sensitivities of the related dehydrogenases to 

variations of this ratio. In this light, the crucial process altered by pyruvate in our 

system is expected to be a NAD(P)-dependent step of purine (adenine) synthesis, 

leading to -the metabolic scheme reported below (Fig.19) 

 

 

 

 

 

 

Fig. 19. Diagram indicating the redox mechanism controlling the stem cell 

transition from the non cycling to the cycling state. PDC=pyruvate 

dehydrogenase complex; FP=Flavoproteins; cyt=cytochrome (Olivotto and Dello 

Sbarba, 2008). 
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An accurate survey of the interplay of purine and folate metabolism with the cellular 

redox state is illustrated in the diagram reported below (Fig. 20) 
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Fig. 20. Purine, Thymidilate and Folate Metabolic Pathway.  

 

 

 

In mammals, the key reaction of the biosynthesis of purine and pyrimidine starts 

from methylen-FH4 (CH2FH4). Noteworthy, the utilization of this compound is 

open to one or the other of the following options: 
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a) the direct utilization for the synthesis of thymidylate and hence of pyrimidine 

bases 

b) the utilization for the synthesis of purine bases through the NADP–dependent 

oxidation to methenyl-FH4 (CH-FH4) catalyzed by the enzyme methylen-FH4 

dehydrogenase. This enzyme uses NADP as coenzyme in the so-called 

“central superhighway” of C1 metabolism and FH4 metabolism (Maden, 

2000). The conversion of methenyl-FH4 to 10-formyl-FH4 (Reactions 5 and 

6)  in Fig. 20 are potentially reversible; however, in vertebrates they act 

together in the oxidative direction to provide 10-formyl-FH4 which is the 

essential factor needed for the synthesis of the purine ring (reactions 8-9). 

Thus, in vertebrates, the metabolic pathway of purine synthesis requires a 

sufficiently low NADPH/NADP ratio to accomplish the C1 “redox pathway”. 

 In conclusion, since thymidilate synthesis is NADP-independent, when the 

NADPH/NADP ratio is high enough to hinder the NADP-dependent step of 

purine synthesis, the shift of the overall redox state produced by hypoxia or 

Antimycin A causes a substantial imbalance of the purine/pyrimidine 

equilibrium. This imbalance is entitled to produce DNA mutations unless the cell 

stops in G1 or arrests in the first S phase. (Quéméneur et al., 2003)  

 We consider not a pure chance the similarity of the metabolic profile of 

AH130 cells as compared to that of K562 cells. As a matter of fact, this similarity 

is high despite the high histogenetical distance of these two populations. The 

K562 hypoxic arrest of the cell cycle, as that of Yoshida cells, is based on a 

deficit of purine biosynthesis, which can be overcome by the addition of 

preformed purines and/or folate derivatives. Here again one is forced to admit a 

mechanism relying on a redox step connecting this synthesis with the NADP-
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dependent step of CH2FH4 oxidation. However, a relevant difference consists in 

the fact that, this cycle arrest of K562 cells implies a cell accumulation in the S 

phase instead of in G1.  

 The arrest in G1 of Yoshida cells, as well as the arrest in S of K562 cells, can 

be explained by recalling that cells need to enlarge their purine bases before they 

are allowed to enter the phase of mitosis. We have shown that in AH130 cells do 

not express p53 protein and we’ve reconfirmed literature data (Lübert et al.,1988; 

Miyachi et al.,1999) according to the expression of this tumour suppressor is also 

abolished in the K562 cell line (Fig.9). So, although the cycle arrest in these two 

types of cells takes place in two different checkpoints, this blockage is caused in 

a p53-independent manner both in AH130 and in K562 cells. 

A relevant point which deserves some further comments concerns the fact 

that pyruvate is a powerful tool to induce the cell cycle arrest in both types of 

cells. Indeed, in view of the cytostatic properties of this substrate, the essential 

feature of aerobic glycolysis, appears as a propitious feature for growth, as that is 

not affected by lactate accumulation in the medium without negative effects 

(Olivotto et al., 1983). Consistently, anytime the oxidative capacity of the cells 

undergoes a severe limitation, the pyruvate-lactate conversion turns out to be 

decisive to allow a high glucose breakdown without creating the growth 

impairment which would result from pyruvate oxidation through the TCA. This 

metabolic device is essential to permit cell replication whenever the respiratory 

chain must be available for the oxidative step connected to purine metabolism or 

other essential pathways. 

  The above interpretation of our results is a profound revisitation of 

Warburg’s theory and leads to propose that the “aerobic glycolysis” indeed 
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provides select advantage for tumour survival in restricted microenvironnement. 

In this light this cancer peculiarity should be taken into consideration when 

dealing with anaplastic tumour characterized by high rates of glycolysis and 

scarce oxidative capacity.  

   Finally, it is worth recalling that pyruvate brings about its cytostatic effects 

also in normal cells endowed with a scarce number of mitochondria such as 

normal hematopoietic progenitors and lymphocytes, suggesting that the profile 

emerged in this work is a general metabolic asset as in all type of stem cells 

destined to survive for indefinite time in a quiescent state. 
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