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Introduction

The importance of long-range systems is known far back. Long range interac-
tions play in fact a crucial role in many different fields including astrophysics
[1, 2], plasma physics [3], hydrodynamics [4, 5], atomic [6] and nuclear [7]
physics. Despite such a general interest, and the ubiquity of applications,
long-range studies constitute a relatively new field of investigation. Fascinat-
ing phenomena, both associated to equilibrium and non-equilibrium dynamics,
remain to be fully elucidated and point to the need for a comprehesive theo-
retical picture.

When long-range forces are at play, each constitutive unit is directly cou-
pled to every other entity belonging to the system under scrutiny. This fact
translates in an enhanced degree of complexity in the behaviour of long-range
systems when compared to short range ones, where elements are solely sensitive
to their immediate neighbourhood. Consequently, and because to the intrinsic
difficulties in facing the study of long-range systems via the paradigm of tradi-
tional equilibrium thermodynamic, short-range problems have been preferen-
tially analyzed. Moreover, for all fundamental interactions in nature, screening
mechanism manifests, resulting in effective short-range smoothing, with excep-
tion of gravity. It is for this reasons that studies on long-range systems were
initially bound to the specific domains of astrophysics and cosmology. The
interest is nowadays revived thanks to novel laboratory experiments which en-
ables one to resolve genuine long-range effects. Among others, we here quote
the case of unscreened Coulomb interaction, vortices in two dimensional fluid
mechanics, wave-particle system relevant to plasma physics and Free-Electron
Lasers (FELs).

When aiming at developing a consistent interpretative framework, it is
rather useful to resort to dedicated toy models, suitable for theoretical analysis.
Mean field models are in particular very important. Despite their simplicity,
they allow to capture key aspects of the intriguing long-range dynamics, and
often return a sound, though effective description of the complex experimental
realizations.

Following these lines of reasoning, and adopting a purely theoretical per-

v



vi Introduction

spective, we have in this thesis chosen to first focus on a Ising like model,
where the discrete spin evolves under mutual couplings. In particular we shall
here inspect the role of an imposed dilution mechanism, acting on the network
of underlying of connections. Introducing a dilution like effect has several im-
plications. Dilution represents in fact an interesting concept, recently being
re-discovered in the rapidly expanding field of network theory [8]. We shall
be mainly concerned, with discussing the modification on the equilibrium so-
lution, following the introduction of dilution. Finite size effects will prove
fundamental, as revealed by our quantitative analysis.

The peculiar character of long-range system is also appreciated, when fo-
cusing on the out-of-equilibrium dynamics. For short-range systems, after a
short transient, the system converges (typically in an exponential fashion) to
the deputed thermal equilibrium. At odd with this vision, interesting and
unexpected dynamical behaviours can develop, when considering long-range
couplings. Simulations in the microcanonical ensemble can for instance reveal
that the system is not ergodic, implying that only a limited portion of the
accessible phase space is visited during the dynamical evolution. More impor-
tantly, when starting far from equilibrium, after a early fast evolution (that is
called “violent relaxation”), long-range systems typically get trapped in the so-
called Quasi Stationary States (QSSs). These are intermediate regimes which
persist for a long-time before the system finds its way to equilibrium.
The QSS lifetime actually diverges with the number of degree of freedom (i.e.
the number of particles composing the system). In this respect, QSSs assume
a particular important conceptual role. They might in fact represent the only
experimentally accessible configuration for all those applications where a large
ensemble made of interacting particles is driving the dynamics.

QSSs are for instance found within the celebrated Hamiltonian Mean Field
(HMF) model, often referred to as the paradigmatic example for out-of-equili-
brium studies on long-range interacting systems. The HMF model and the
emergence of QSSs are the second topic covered in this Thesis.
In the course of time several attempts have been made aiming at providing a
systematic theoretical description of QSSs. The most successfull attempt elab-
orates on the pioneering work of Lynden-Bell [9] and is based on the fact that in
the continuum limit (infinite number of particles) the discrete set of equations
stemming from the original N-body Hamiltonian, converges to a Vlasov equa-
tion. The Lynden Bell theory is however an approximate, statistical based,
approach. Alternatively one could resort to a dynamical description, which
should however originates from the relevant Vlasov setting. In this Thesis
we will analyse the out-of-equilibrium HMF properties within the associated
Vlasov picture, by fully exploiting the Hamiltonian formalism to derive closed
analytical expressions for the main macroscopic observables. This technique
here termed the Bracket Method is particularly targeted to short time analysis.
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Finally, as a third point and to close up the picture, we will finally elaborate
on the out-of-equilibrium effects of dilution. Also for this latter application,
we will operate with reference to the HMF model, testing the robustness of
the QSSs with respect to the dilution amount.

The outline of the Thesis is the following:

1. Chapter 1 is devoted to summarizing the main features of long-range
systems. We discuss the anomalies relative to the thermodynamical be-
haviour, emphasising the crucial aspects related to the lack of additivity.
We then recall the ensemble inequivalence concept, focusing on specific
applications. We also elaborate on the dynamical behaviour of long-range
systems, discussing in particular the puzzle of QSSs’ emergence.

2. The second chapter presents a detailed analysis of an Ising like model, of
the mean filed type, in presence of a diluted network of couplings. The
latter converges to the Curie-Weiss model in the fully coupled limit. We
explore in particular the modification on the equilibrium solution and
investigate the finite size corrections to the equilibrium magnetization.
This is achieved by performing two independent calculations that are
subsequently benchmarked to direct simulations. The first procedure is
based on the replica trick approximation, while the second develops on
the cavity method.

3. In the third chapter we turn to analyze the HMF model, and start by re-
viewing the current literature entries on the subject. We briefly recall the
equilibrium thermodynamic solution, and then rapidly introduce the con-
cept of QSS. We recap on the Lynden Bell theory and comment on how
it enables us to predict, with a good accuracy, the relevant macroscopic
observables associated to the QSSs and corresponding out-of-equilibrium
transition. Finally, we summarize the available results on the time dura-
tion of the QSSs. This is a complex, apparently controversial, issue that
we try to clarify by providing novel numerical insight.

4. In Chapter 4 we analyse the HMF model, in its continuum limit, i.e.
within the Vlasov scenario. We shall adopt a Hamiltonian formalism to
derive an analytical expression for the global magnetization of the system
as a function of time. We here analyse both the HMF violent relaxation
process and the subsequent QSS regime focusing in particular with high
and low energy dynamical regimes. We also analytically characterize the
out-of-equilibrium phase transition separating homogeneous and non-
homogeneous QSSs, testing our results versus direct simulations.

5. In the last chapter we will continue elaborating on the effects of a dilution,
which is now assumed to alter the ideal, fully coupled HMF model. Are
QSS robust versus the imposed dilution? This question is here answered
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via dedicated simulations, also aimed at clarifying the associated QSS
duration.



Chapter 1

Dynamics and

thermodynamics of systems

with long-range interactions

———————————————————————————–

To provide an operative definition of long-range interactions we shall con-
sider the two-body potential V (r):

V (r) =
C

rα
, (1.1)

where r is the modulus of the inter-particle distance. An approximate evalua-
tion of the energy U of a particle positioned in the center of a sphere of radius
R in a d-dimensional space (see Fig. 1.1) reads

U =

∫ R

ε
ρ

[
1

rα

]
4πrd−1dr =

= 4πρ

∫ R

ε
r(d−1)−αdr ∝

{ [
rd−α

]R
ε
∼ Rd−α if d− α 6= 0

[ln r]Rε ∼ lnR if d− α = 0
,

where we evidence the dipendence on R and we neglect the contribution of a
small ball of radius ε around the particle1. It is hence clear that the energy
diverges with R if the exponent α is smaller than the embedding dimension d,
namely the dimension of the physical space where the interaction occurs. In-
spired by this peculiar observation and following the customary paradigms [10]
we will define an interaction to be long-range if α ≤ d (α ≤ 3 in the Euclidean
space).

Remarkably, and according to the above definition, the surface contribution
to the energy cannot be neglected when long-range couplings are at play. Each

1This requirement provides an effective smoothing of the potential by eliminating problems
that arise due to the singular behaviour of the interaction at short distances.

1



2 1. Dynamics and Thermodynamics of systems with long-range interactions

Figure 1.1: The energy in a 3D sphere of radius R diverges as R3−α if the interaction
is long-range, i.e. α ≤ 3.

particle is hence influenced by all other constituents, not just local neighbours,
as it happens for short-range interactions.

When aiming at charaterizing the main properties of long-range systems,
one can make reference to two distinct interpretative levels: The first has to do
with the associated properties of equilibrium, while the second deals with non-
equilibrium features. As we shall be addressing in the following, inequivalence
of statistical ensemble is being reported, an observation which motivates the
search for a consistent thermodynamics description. On the other hand, the
emergence of Quasi Stationary States (QSSs) points to the need of elaborating
a compherensive dynamical framework stemming from the principles of kinetic
theory. Investigating the physics of systems subject to interactions decaying
with distance and that can show singularities at short ranges proves difficult
despite progresses has been recently reported along these lines. For these
reasons it is customary to resort to the so called mean-field approximation

(α = 0) which turns out to be analitically tractable both in canonical and
microcanonical ensemble. These systems will be object of our analysis.

In this chapter we shall briefly review some of the phenomena that char-
acterize long-range interactions, with reference to both toy-models and real
physical systems.

1.1 The lack of additivity

When attempting a statistical mechanics treatment of systems with long-range
couplings, one faces the problem of lack of additivity, which can be exemplified
as follows. Imagine to partition a given system into subsystems. Then, the
total energy of the system does not correspond to the sum of the energies
associated to each subsystems.

Let us turn to illustrate this concept, with reference to a simple mean-field
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Figure 1.2: A microscopic configuration with total zero magnetization, illustrating the
lack of additivity in the mean-field model (1.2).

Hamiltonian:

H = − J

N

(
∑

i

Si

)2

, (1.2)

where the spins Si = ±1, i = 1, ..., N , are all coupled. This is the cele-
brated Curie-Weiss model which we shall be deeply analysing in the forthcom-
ing chapter. Notice that the rescaling prefactor 1/N ensures the extensivity of
this Hamiltonian [11], since H ∝ N . On the contrary, while being extensive,
Hamiltonian (1.2) is not additive. To shed light onto this point, we divide the
system into two equal parts, as schematically pictured in Fig. 1.2. Consider
first the particular case when all spins in the left box are equal to 1, while all
spins in the right portion are equal to −1. It is clear that the energy of the

two different parts is the same, and reads E1 = E2 = − J
N

(
N
2

)2
= −JN

4 . At

variance, the energy of the whole system is E = − J
N

(
N
2 − N

2

)2
= 0. Hence,

the energy of such a system is not additive, since E 6= E1 + E2.

The fact that the system is non additive has strong consequences in the
construction of the canonical ensemble, i.e. following the usual derivation
which moves from the microcanonical ensemble. Consider a situation as de-
picted in Fig. 1.2, and imagine that system 1 is much smaller than system 2.
The probability that system 1 carries an energy which falls within the interval
[E1, E1 + dE1], given the system 2 has an energy E2 (the conservation of total
energy imposes that E = E1 +E2), is proportional to Ω(E1)Ω(E2)dE1, where
Ω(E) is the number of states of a system with a given energy E. Ω(E) is
related to the entropy via the classical Boltzmann formula S(E) = kB ln Ω(E),
where kB stands for the Boltzmann constant. By invoking the additivity of
the energy and considering that E1 is much smaller than E, one can expand
the term S2(E − E1), thus yielding:
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Ω(E1)Ω(E2)dE1 = Ω(E1)Ω(E − E1)dE1 (1.3)

= Ω(E1) exp[S2(E − E1)]dE1

= Ω(E1) exp[S2(E) − E1
∂S2

∂E2
|E + ...]dE1

∝ Ω(E1) exp[−βE1]dE1,

where β = ∂S2

∂E2
|E . As an end result one obtains the usual canonical distri-

bution. As it should be clear from the above, additivity is a crucial ingredient
in the derivation, which in turn suggests that non additive systems may have
peculiar behaviours, when placed in contact with a thermal reservoir. The
next sections are devoted to presenting a selection of important, both dynam-
ical and equilibrium features which are ultimately related to the long-range
nature of the interaction and the associated lack of additivity.
We shall first focus on the equilibrium properties, to which the next section is
entirely devoted. Then we will concentrate on dynamical aspects, so introduc-
ing the main topic addressed in this thesis work.

1.2 Equilibrium anomalies: Ensembles inequivalences,
negative specific heat and temperature jumps

The lack of additivity is indirectly responsible for many unusual properties
which have been detected for systems with long-range interactions [10]. Among
the most striking equilibrium anomalies it is worth including the inequivalence
of statistical ensembles, negative specific heat in the microcanonical ensemble

and possible temperature discontinuities at first order transitions.

In the following, we elaborate on these concepts, by referring to specific
examples [12].

Consider yet another spin model with infinite range, mean-field like interac-
tions. The model is defined on a lattice, where each lattice point i is occupied
by a spin-1 variable Si = 0,±1. The Hamiltonian is given by:

H = ∆

N∑

i=1

S2
i − J

2N

(
∑

i=1

Si

)2

(1.4)

where J > 0 is a ferromagnetic coupling constant and ∆ controls the energy
difference between the magnetic (Si = ±1) and the non-magnetic (Si = 0)
states. We set J = 1. This is a simpler version of the Blume-Emery-Griffiths
(BEG) model [13], also known as the Blume-Capel model. As we will discuss
later, the model phase diagram can be determined analytically, both within
the canonical and the microcanonical ensembles, so allowing to shed light onto
the inequivalence issue.
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A global parameter to monitor the evolution of the model is the average
magnetization m, given by:

m =
1

N

∑

i

Si . (1.5)

The canonical equilibrium state can be obtained by maximizing the rescaled
free energy (see details in [13])

φ(β) = − 1

β
lim

N→∞

lnZ

N
(1.6)

where Z is the partition function

Z =
∑

Si

exp[−βH], (1.7)

and β = 1/kBT , T labelling the temperature of the system. kB stands for the
Boltzmann constant.

In general working in the microcanonical ensemble can prove rather cum-
bersome. However, with reference to this specific case study, the derivation
of the equilibrium state in the microcanonical ensemble reduces to a simple
counting problem [14]. This is due to the fact that all the spins interact with
equal strength, irrespectively of their mutual distance. A given macroscopic
configuration is characterized by the quantities N+, N−, N0 respectively iden-
tifying up, down and zero spins. Cleary, the constraint N+ + N− + N0 = N
applies. The energy E of such a configuration is solely function of N+, N−

and N0 and reads

E = △Q− 1

2N
M2, (1.8)

where Q =
∑N

i=1 S
2
i = N+ + N− (the so called quadrupole moment) and

M =
∑N

i=1 Si = N+ − N− (the magnetization amount) plays the role of the
order parameters. The number of microscopic configurations Ω compatible
with the macroscopic occupation numbers N+, N− and N0 is

Ω =
N !

N+!N−!N0!
. (1.9)

Using Stirling’s approximation in the large N limit, the entropy, S = ln Ω can
be cast in the explicit form:

S = −N
[
(1−q) ln(1−q)+1

2
(q+m) ln(q+m)+

1

2
(q−m) ln(q−m)−q ln 2

]
(1.10)

where q = Q/N and m = M/N are the quadrupole moment and the magneti-
zation per site, respectively.
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t
ε

LFT

β βε1 ε2εt

V 0

slope=β

m

different slopes

m 0

=0

c

φ(β)εs( )

t

Figure 1.3: s(ǫ) as a function of energy density ǫ for the BEG model is plotted. Here
the negative specific heat coexists with a temperature jump, the dash-dotted line is
the concave envelope and the region with negative specific heat cV < 0 is explicitily
indicated. On the right the rescaled free energy is represented. The first order phase
transition is located in βt. The figure is taken from Ref. [12].

We are hence in a position to compare the predictions in the microcanonical
and canonical ensembles, and identify possible traces of inequivalence. In doing
so we shall mainly refer to the discussion in [12].

We shall elaborate on this important phenomenon in the remaining part of
this section. In doing so we build on the specific BEG model, while at the same
time identifying the general, reference concepts. In particular, we will show,
for this specific example, that the inequivalence of ensemble is associated to
the existence of a convex region of the microcanonical entropy as a function of
the energy. This latter conclusion holds in general for long range interacting
systems.

In Fig 1.3 a schematic rapresentation of the entropy and the rescaled free
energy (defined in Eq. (1.6)) is depicted, being these observables related by a
Legendre-Fenchel Transform (LFT):

φ(β, n) = inf
ǫ

[βǫ− s(ǫ, n)]. (1.11)

The entropy curve consists of two branches: the high energy branch is obtained
form = 0 (dotted line), while the low energy one refers tom 6= 0 (full line). The
two branches merge at energy value ǫt where the left and right derivatives do
not coincide; hence microcanonical temperature (T (e) =

(∂s(e)
∂e

)−1
) is different

on the two sides, yielding to a temperature jump (this is better shown in Fig. 1.5
as we will discuss later). In the low energy branch, a region where entropy
is locally convex (thick line) arises, that corresponds to negative specific heat,

according to the formula ∂2S
∂E2 = − 1

CvT 2 . In the same figure, the rescaled free
energy φ(β) is plotted. φ(β) is a concave function and for this reason in the
canonical ensamble the specific heat is always positive. This is in turn the
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CTP

/J

MTP

∆

k BT
/J

Figure 1.4: Schematic representation of the phase diagram, expanded around the
canonical (CTP) and microcanonical (MTP) tricritical points. The dotted line refers to
the common second order curve, while the solid line represents the canonical first
order curve. The dashed lines correspond to the microcanonical ensemble (the bold
one represents a continuous transition). Figure is taken from Ref. [12].

first stringent evidence that the two ensembles here considered, namely the
micronanical and the canonical ones, are inequivalent.

The inequivalence is also appreciated when considering the inverse LFT
transform, which enables us to recover the microcanonical entropy from the
rescaled free energy φ(β). Mathematically in fact:

s(e, n) = inf
β

[βǫ− φ(β, n)]. (1.12)

Since the invesre LFT of a function is always concave one cannot recover the
initial microcanonical entropy, which displays a “convex intruder“. Indeed,
one gets the concave envelope of the entropy function as reported in in left
side of Fig. 1.3, with the dashed-dotted line.

Moreover we note that, in βt, left and right derivatives of φ(β) (given by
ǫ1 and ǫ2 respectively) are different. This is the first order phase transition
point in the canonical ensemble. The BEG model displays, indeed, phase tran-
sitions, both of first and second order, but the transition curves in the phase
diagram obtained within the two ensemble are different, as clearly shown in
Fig. 1.4 [10]. First the position of the tricritical points, which connect the
first order curve to the second order one, is not the same, thus implying that
there is a region in which the canonical phase transition is first order, while
the microcanonical one is second order. It is precisely in this region that the
specific heat is negative. Again this is a general fact that we here learned
with reference to a specific application: The region with negative specific heat
develops in correspondence of a first oder transition in the canonical ensemble.
Back to the BEG model, in the microcanonical ensemble, beyond the tricrit-
ical point, the temperature experiences a jump at the transition energy. The
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Figure 1.5: Caloric curves for the Blume-Emery-Griffiths model. ∆/J is the ratio
between a local coupling term and the global ferromagnetic coupling. Figure is taken
from Ref. [12].

two lines emerging on the right side from the microcanonical tricritical point
(MTP) correspond to the two limiting temperatures, which are reached when
approaching the transition energy from below and from above.
Let us now turn to clarifying the temperature-energy relation T (e) and as-

sociated temperature jump as identified above. Also this curve displays two
branches, as shown in Fig. 1.5: A high energy branch, corresponding to the
homogeneous state, and a low energy branch relative to the magnetized phase.
Fig. 1.5a corresponds to the canonical tricritical point (CTP). Here, the lower
branch of the curve has a zero slope at the intersection point. Thus the spe-
cific heat of the magnetized phase diverges at this point. This effect signals
the canonical tricritical point, as it appears in the microcanonical ensemble.
Increasing ∆ up to a value in the region between the two tricritical points a
negative specific heat in the microcanonical ensemble first arises (∂T/∂e < 0,
see Fig. 1.5b). At the microcanonical tricritical point the derivative ∂T/∂e of
the lower branch diverges, yielding a vanishing specific heat (Fig. 1.5c). For
larger values of ∆/J a jump in the temperature appears at the transition en-
ergy (Fig. 1.5d). The lower temperature corresponds to m = 0 solution and
the upper one is the temperature of the magnetized (m 6= 0) solution at the
transition point.



1.3. Non-equilibrium dynamical properties 9

1.3 Non-equilibrium dynamical properties

As previously mentioned, long-range systems also present intriguing out-of-
equilibrium features. When dealing with systems driven by short-range cou-
plings (e.g. a gas of neutral particles), out-of equilibrium initial conditions
does not significantly influence the subsequent dynamical evolution. After a
short transient, the system converges (exponentially fast) to thermal equilib-
rium, where the property of ergodicity is satisfied. At odd with this vision,
interesting and unexpected dynamical behaviours can develop, when consider-
ing long-range couplings. Simulations in the microcanonical ensemble can for
instance reveal that the system is not ergodic, implying that only a limited
portion of the accessible phase space is visited during the dynamical evolution.
More importantly, when starting far from equilibrium, long-range systems typi-
cally get trapped in the so-called Quasy Stationary States (QSSs), intermediate
regimes which persist for a long time (diverging with the numbers of degrees of
freedom) before the system relaxes to the deputed thermal equilibrium. This
interesting phenomenon is one of the topics addressed in this Thesis.

Before elaborating on the QSS concept, we introduce another interesting
dynamical phenomenon as investigated in [15]. There an Ising model with
both short and long-range interactions was analyzed. Such a model describes
a system of spins mathematically specified by the following Hamiltonian:

H = −K
2

N∑

i=1

(SiSi+1 − 1) − J

2N

(
N∑

i=1

Si

)2

, (1.13)

where Si = ±1. Molecular dynamics simulations demonstrated that the acces-
sible region of extensive parameters (energy, magnetization, etc.) may be non
convex. This implies that broken ergodicity can appear, due to the fact that
the accessible magnetization states, at a given energy, can be disconnected.
An example is illustrated in Fig. 1.6 which compares two different situations:
on the one hand (panel a) different magnetized states are accessible in a micro-
canonical simulation. In the other case a magnetization gap forbids transitions
between different states (panel (b)). Random dynamics is performed using the
microcanonical Creutz algorithm [16].

1.4 Quasi Stationary States (QSSs)

As anticipated, long-range systems get frozen in Quasi Stationary States (QSSs),
i.e. apparently stable states that persist for long time, followed then by a slow
relaxation to the thermal equilibrium.
These regimes are for instance encountered within the framework of the cel-
ebrated Hamiltonian Mean Field (HMF) model, a paradigmatic mean-field
model to which we shall be making extensive reference in the following. With-
out entering into the details of its mathematical formulation, we shall simply
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Figure 1.6: Time evolution of the magnetization forK = −0.4 (a) in the ergodic region
(ǫ = −0.318) and (b) in the non-ergodic region (ǫ = −0.325). The corresponding
entropy curves are shown in the inset. Figure is from Ref. [15].

mention that the HMF model describes the coupled evolution of N rotators
confined on a unitary circle. When it comes to characterizing the dynamics,
it is customary to refer to the global magnetization which provides a sensi-
ble measure for the degree of clusterization of the particles on the ring (see
Section 3.1).

Starting from an out-of-equilibrium initial condition, after a violent re-
laxation, the systems gets stuck in a QSS, as confirmed by visual inspection
of Fig. 1.7, where the magnetization amount is reported as function of time.
Such picture is also particularly instructive to elucidate the dependence of the
duration of QSSs on the system size. The relaxation to thermal equilibrium
is driven by granularity and the QSSs lifetime, T , diverges with the num-
ber of particles N . For a particular class of initial conditions, a power law
T ∝ Nν is shown to accurately reproduce the life time scaling, the exponent
being ν ≃ 1.7. This rather unusual scaling was for the first time observed by
Yamaguchi et al. in [17].2 These latter observations extend to a vast realm
of physical systems and emphasizes the importance of deriving a consistent
theoretical framework for the QSSs emergence. In real physical systems, in
fact a huge number of particles is often involved, so making virtually infinite
the time to equilibration. QSSs are hence the solely regime experimentally
observable.

As a reference example we quote the case of Single-Pass Free Electron

2All along this thesis, we shall elaborate on the correctness of the proposed scaling, pro-
viding novel numerical evidence.
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Figure 1.7: Temporal evolution of the magnetization M(t) for different particles num-
bers: N = 102(103), 103(102), 2.103(8), 5.103(8), 104(8) and 2.104(4) from left to right
(the number between brackets corresponding to the number of samples).

Laser (FEL). This is an experimental device which exploits the interaction of
a relativistic electron beam with a magnetostatic field to produce powerful
laser light, with tunable wave-length. Under particular assumptions (which
are generally consistent with a typical experimental set up), the evolution of
the system can be modelled by a one-dimensional Hamiltonian model (Colson-
Bonifacio) [18]. This model is quite general and shares striking similarities with
other systems characterized by wave-particle interactions, e.g. the Travelling
Wave Tube and CARL (Collective Atoms Recoil Laser) [19, 20]. After an ini-
tial violent relaxation, in which the intensity grows exponentially, an apparent
stationary regime is attained, where small oscillations are displayed around a
well defined plateau. Here, however, the average intensity is lower than the
final level which is eventually attained at thermal equilibrium: Only after a
finite time the system experiences a slow relaxation which takes the intensity
towards the value predicted by Boltzmann-Gibbs statistics. An indirect sig-
nature that such states emerge far from equilibrium is also provided by the
particles velocity distribution functions: In the QSSs the latter present strong
non Gaussian features [21], which clearly cannot be captured by equilibrium
statistical mechanics treatments.

In the last decades, several attempts have been proposed aiming at provid-
ing a systematic theoretical description of QSSs. The most successfull interpre-
tative scenario is inspired to a maximum entropy principle, based on Lynden-
Bell theory [9]. It was recently proven in a series of paper [22, 23, 24, 25] that
Lynden-Bell theory enables one to predict with a good accuracy the relevant
macroscopic observables associated to the QSSs. In Chapter 3 we shall review
the Lynden-Bell theory, and present its main predictions with reference to the
HMF case study. Despite this success, and the demonstrated predictive ade-
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quacy of the Lynden-Bell ansatz, many open problems still remain which make
the puzzle of QSSs origin and stability a fascinating one.

1.5 Examples of systems with long-range interactions

A growing scientific community has recently begun to tackle the problem of
long-range interactions with different viewpoints [10, 26, 3, 12, 27]. Long-
range interatcions are in fact ubiquitous and prove central in both fundamental
applications and a large variety of physical systems and experiments, that
are currently under development. In the following subsections we will briefly
discuss the most relevant examples.

Gravitational systems. The first important example of long-range in-
teractions is given by the gravitational potential:

V (~r) = −K

|~r| . (1.14)

In this case d = 3 and α = 1. The singularity at the origin makes the
study of this interaction particularly hard, and generate phenomena like the
“gravitational collapse”. To avoid this latter, it is customary to introduce a
dedicated regularization. Clearly, gravity plays a central role in astrophysics
and cosmology, especially as for as the problem of structure formation in the
expanding universe is concerned [28].

Plasmas. Rarefied plasmas share many similarities with collisionless stel-
lar systems. In particular the mean-field drives the evolution and it is more
important than the local fields of individual nearby particles. Here, again,
the Coulomb force is of long-range type, and, as for the gravitational case,
d = 3 and α = 1. However, as opposed to the previous example, plasmas have
both positive and negative charges: Hence they are neutral on large scales and
can form static homogeneous equilibria. An important example in the context
of plasma physics is played by the so-called beam-plasma instability: When
a weak electron beam is injected into a thermal plasma, electrostatic modes
at the plasma frequency (Langmuir modes) are destabilized [3]. The interac-
tion of Langmuir waves and electrons constituting the beam is studied in the
framework of a self-consistent one dimensional Hamiltonian, which bears an
universality character being also found in other disciplinary contexts where
wave-particles interactions are central [3, 18].

Free Electron Lasers. As already anticipated, the Free Electron Lasers
(FELs) represent innovative laser sources, that provide tunable powerful light,
even at very small wave-length [29]. The physical mechanism responsible for
light emission and amplification is the interaction between a relativistic elec-
tron beam, a magnetostatic periodic field generated by an undulator and an
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optical wave co-propagating with the electrons. Under realistic assumptions,
the longitudinal dynamics of the system can be described by a one dimensional
model [18]: The particles do not interact directly with each other, but are in-
directly coupled via the external field, which in turn provides the long-range
connection (in this case d = 1 and α = 0).

2D Hydrodynamics. Two-dimensional incompressible hydrodynamics
represents another important application where the interactions are of long-
range nature [30]. Indeed, the stream function ψ is related to the modulus of
the vorticity ω, via the Poisson equation △ψ = ω. Using the Green’s function
technique, one easily finds that the solution is

ψ(~r) = − 1

2π

∫

D
d2~r′ω(~r′)G(~r − ~r′) , (1.15)

where G(~r − ~r′) depends on D, but G(~r) ∼ | ln~r|, when r → 0. The
kinetic energy being conserved by the Euler equation (dissipative-less), it is
straightforward to compute it on the domain D, with boundary ∂D,

E =

∫

D
d2~r

1

2
(∇ψ)2 (1.16)

=

∮

∂D
~ndl∇ψ +

1

2

∫

D
d2~rω(~r)ψ(~r)

= − 1

4π

∫ ∫

D
d2~rd2~r′ω(~r′)ω(~r) ln |~r − ~r′|,

since ψ = 0 on ∂D. This result confirms that logarithmic interactions are
involved. The long-range character becomes even more explicit if one approx-
imates the vorticity field by point vortices ω(~r) =

∑
i Γiδ(~r − ~ri), located at

~ri, with a given circulation Γi. The energy of the system reads now:

E =
1

2

∑

i6=j

ΓiΓj ln |~ri − ~rj |. (1.17)

The vortices’ interaction has a logarithmic character, which corresponds to
α = 0. We remark that Eq. (1.17) is nothing but the energy due to vortices in
2D XY model.

Small systems. In addition to large systems, where the interaction are
truly long-range, one should consider small systems where the range of the in-
teractions is of the order of the system size. Also in this case the system is not
additive, and many similarities with a pure long-range setting are displayed.
Phase transitions are universal properties of interacting matter which have
been widely studied in the thermodynamic limit of infinite systems. However,
in many physical situations this limit is not attained and phase transitions
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should be considered from a more general perspective. This is the case for
specific microscopic or mesoscopic systems: atomic clusters can melt, small
drops of quantum fluids may undergo a Bose-Einstein condensation or a su-
perfluid phase transition, dense hadronic matter is predicted to merge in a
quark and gluon plasma phase, while nuclei are expected to exhibit a liquid-
gas phase transition. Given the above, it is mandatory to develop a general
understanding of phase transition for a finite systems.

Most of the theoretical approaches that have been proposed to explain the
peculiar behaviour of systems with long-range interactions are currently under
development. It is therefore important to define dedicated toy-models, suit-
able for theoretical analysis, which enable to address the rich phenomenology
of long-range systems. A paradigmatic, though particular class of long-range
system is characterized by mean-field models. An emblematic example, already
mentioned above, is the Curie-Weiss model, where discrete spin variables are
associated to each node of a fully coupled network, and mutually interact as
prescribed by Hamiltonian (1.2). This model is a a long-range system with
α = 0, and constitutes an important entry to the wider class of non-zero α
systems. The model can be straightfowardly characterized in terms of its as-
sociated statistical equilibrium properties. It becomes however intriguingly
complex when allowing for an effective dilution of the underlying network of
connections, i.e. reducing the average number of links per node. Exploring
the modification induced by the dilution to the equilibrium solution, as well as
investigating the role of finite size corrections, represents the main objective
of the next chapter. Being also interested in the out-of-equilibrium diluted
dynamics we will subsequently consider the presence of QSSs in an ”ad hoc“
modified version of the celebrated HMF model. In Chapter 4, a novel analyt-
ical treatment targeted to the short time evolution will be discussed and, in
Chapter 5, the role of dilution inspected via numerical simulations.



Chapter 2

Dilute Ising model on random

graph

———————————————————————————–

Among mean-field models the Ising model plays a central role. It can be
studied in its fully coupled version (Curie-Weiss model) or on a specific graph1

topology. Most studies have so far focused on the finite connectivity scaling,
that is graphs such that the number of sites N and number of bonds M go
to infinity, keeping the ratio N/M fixed. Models defined on such graphs have
been extensively studied in the physics literature, especially in the context
of spin glasses and combinatorial optimization. Several recent mathematical
works also analyze rigorously Ising models on such networks [31, 32, 33, 34, 35].
Besides the fully coupled case, which as we commented previously constitute
a reference case study for the broad class of long-range interacting systems,
comparatively very few works are devoted to the infinite connectivity scalings,
where N, M and M/N all go to infinity. Bovier and Gayrard [36] showed rig-
orously that, under an appropriate rescaling, the Ising model defined on such
graphs is completely equivalent in the infinite N limit to its fully connected
(M = N(N − 1)/2) counterpart. On the basis of this finding, it can be safely
conjectured that analogous conclusions apply to other spin models when in-
spected on a similar geometry.
The rigorous result by Bovier and Gayrard leaves however open the question of
the speed of convergence towards the fully connected limit. Finite size effects
are indeed crucial when aiming at understanding the behavior of a finite graph.
Given a finite random graph with relatively high connectivity, two different ap-
proaches may be used to address this issue: on one hand, one might consider
expanding around the fully connected solution of [36], to compute the leading
order finite-N corrections; on the other hand, the graph under scrutiny can

1In mathematical term a network is represented by a graph. A graph is a pair of sets
G = {P, E}, where P is a set of N points or nodes (in this case spins) and E is a set of M
edges or links [8].

15
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be seen as a realization of an Erdős-Rényi2 random graph [37], with high, but
finite, mean connectivity. This observation enables one to employ the powerful
techniques developed for this latter scaling.
In this chapter we investigate the finite size corrections to the equilibrium mag-
netization of a diluted Ising model performing both computations, the first by
resorting to the celebrated replica trick; the second, by means of the cavity
method. Theoretical estimates will be then compared to numerical simula-
tions, performed for different sizes and connectivities, in order to test their
accuracy.
The kind of randomness we will focus on is a quenched type: The underlying
graph is generated in the beginning and the macroscopic observables estimated
by averaging over several independent realizations. This procedure is opposed
to the annealed scenario, where links are allowed to vary on timescales com-
parable to those governing the evolution of individual degrees of freedom.
As expected, the system displays a phase transition of the mean-field type for
all the considered values of γ at the transition temperature of the fully con-
nected (Curie-Weiss) graph.
We will also bring convincing evidences that finite size corrections do play an
important role in presence of a diluted network and thus need to be carefully
addressed. The underlying objective is to start investigating the effect of di-
lution in a reference case study for the broad class of long-range interacting
systems. The problem of inspecting the out-of-equilibrium modification as in-
duced by the dilution will be commented upon in the forthcoming chapters,
with reference to the HMF case study.

2.1 The model

We here consider an Ising model defined on a uniform random network topol-
ogy. The network is made of N sites, each tagged by a discrete counter i, which
ranges from 1 to N . On each site sits an Ising spin variable Si = ±1. Two ran-
domly selected nodes, say i and j, are connected through a coupling constant
Jij . The number of links NL is bounded from above by Ñ = N(N − 1)/2,
which corresponds to the fully connected case, since we are avoiding double
edging of two sites and self wiring. We introduce the dilution parameter γ by
scaling the number of links as NL =

(N
γ

)
= Nγ/γ! (1 +O(1/N)), the normal-

ization factor γ! is introduced so that the fully connected topology is exactly
reproduced when γ → 2. We restrict our analysis to the interval 1 < γ ≤ 2,
which corresponds to network topologies that range from a number of links
growing linearly with the size of the system (γ = 1) up to the fully connected
case (γ = 2).

2Erdős-Rényi graph is a random graph constructed as follows: Imagine to have a ensemble

of N nodes; every pair of nodes is then connected with probability p. As p increase from 0
to 1 the total number of edges increases and scales as

`

N

2

´

p for a graph of N vertices.
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The Hamiltonian of the Ising model on such a diluted network is

H = − N

2NL

∑

i6=j

JijSiSj. (2.1)

With this scaling of the coupling constant the energy is extensive. In the
simplest formulation, Jij is set to an identical reference value, say J > 0, if
the nodes i and j are connected, zero otherwise. In the following we shall
study the behaviour of the system as a function of the dilution rate γ. As
proved in [36], for γ strictly larger than its lower bound 1, a second order
phase transition of the Curie-Weiss type always occurs. Our main goal is to
characterize the behaviour of the system for a finite size N . In the following
we start by analyzing the large N limit. The partition function Z reads

Z =
∑

{Si}

exp
( βN
2NL

∑

i6=j

JijSiSj

)
=
∑

{Si}

∏

i6=j

exp
( βN
2NL

JijSiSj

)
, (2.2)

where β stands for 1/kBT , where kB is the Boltzmann constant and T the
system’s temperature. The outer sum in Eq. (2.2) extends over all possible
spin configurations. The coupling factor Jij is related to the linking probability
via the following condition

Jij =

{
J with probability p
0 with probability 1 − p ,

(2.3)

where p is

p = NL/Ñ =
2

γ!
Nγ−2

(
1 +O

(
1

N

))
. (2.4)

The O(1/N) term in the probability represents subdominant finite size effects,
and plays no role in the following. The probability distribution P (Jij) reads

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij) . (2.5)

We end this section by showing that for all 1 < γ ≤ 2, this system is exactly
equivalent, in the N → ∞ limit, to the fully coupled Curie-Weiss model. This
is a non rigorous rephrasing of the main result in Ref. [36], which will set the
stage for the finite-N studies of the following sections.

We want to compute 〈lnZ〉J , where 〈·〉J denotes the average over disorder.
This is achieved via the celebrated replica trick, which is based on the identity

〈lnZ〉J = lim
n→0

〈Zn〉J − 1

n
, (2.6)

where n is a assumed to be a real number. The central idea consists in carrying
out the computation for all integers n, extending the results for all n, and
performing in the end the limit for n→ 0.
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In our setting the replicated partition function reads

Zn =
[∑

{Si}

exp (−βH)
]n

=

=
∑

{Sa
i }

exp


γ!

2
β

1

Nγ−1

∑

a

∑

i6=j

JijS
a
i S

a
j


 =

=
∑

{Sa
i
}

exp


γ!

2
β

1

Nγ−1

∑

i6=j

Jij

∑

a

Sa
i S

a
j


 , (2.7)

where the index a runs over the n replicas.

Averaging over the disorder returns

〈Zn〉J =
∑

Jij

P (Jij)
∑

{Sa
i
}

exp


γ!

2
β

1

Nγ−1

∑

i6=j

JijTij


 =

=
∑

{Sa
i }

∑

Jij

P (Jij)
∏

i6=j

exp

(
γ!

2
β

1

Nγ−1
JijTij

)
, (2.8)

where Tij =
∑

a S
a
i S

a
j . Recalling Eq. (2.5), one straightforwardly obtains

〈Zn〉J =
∑

{Sa
i }

∏

i6=j

[
1 − 2

γ!

1

N2−γ
+

2

γ!

1

N2−γ
e

γ!

2
β 1

Nγ−1
Tij
]
. (2.9)

where J is set to 1. To proceed further, we now expand the exponential
function to its second order approximation, which immediately yields

〈Zn〉J =
∑

{Sa
i
}

exp
(∑

i6=j

ln
[
1 − 2

γ!

1

N2−γ
+ (2.10)

+
2

γ!

1

N2−γ

(
1 +

γ!

2
β

1

Nγ−1
Tij +

1

2

γ!2

4
β2 1

N2γ−2
T 2

ij + ...
)])

,

and, expanding the logarithm

〈Zn〉J =
∑

{Sa
i }

exp
(∑

i6=j

[ β
N
Tij +

γ!

4

β2

Nγ
T 2

ij −
1

2

β2

N2
T 2

ij

])
. (2.11)
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Keeping only the leading order in N , we have

〈Zn〉J =
∑

{Sa
i }

exp
(∑

i6=j

[ β
N
Tij

])
=

=
∑

{Sa
i }

exp
( β
N

∑

a

∑

i6=j

Sa
i S

a
j

)
=

=



∑

{Si}

exp
( β
N

∑

i6=j

SiSj

)



n

=

= [ZMF ]n , (2.12)

where ZMF is the partition function of the Curie-Weiss model. Thus, we
recover the fact that at leading order in N , the dilute model is equivalent to
the fully coupled one for all 1 < γ ≤ 2. We can calculate the ZMF using by
using the Hubbard-Stratonovich transformation

exp
(
ba2
)

=

√
b

π

∫ +∞

−∞
dx exp

(
−bx2 + 2abx

)
, (2.13)

The partition function ZMF (hereafter simply Z) can be cast in the form

Z =
∑

{Si}

exp

(
β

N
(
∑

i

Si)
2

)
= (2.14)

=
∑

{Si}

exp

(
N2β

N
(
(
∑

i Si)

N
)2
)

=

=

√
βN

π

∑

{Si}

∫ +∞

−∞
dx exp

(
−βNx2 + 2βN

∑

i

Six

N

)
=

=

√
βN

π

∫ +∞

−∞
dx exp

(
−βNx2

)∑

{Si}

exp

(
2βN

∑

i

Six

N

)
,

where a = (
∑

i Si)
2 and b = βN and eventually

Z =

√
βN

π

∫ +∞

−∞
dx exp

(
−N(βx2 − ln(2 cosh(2βx)))

)
. (2.15)

The free energy function results in

−βF = lim
N→∞

1

N
lnZN = (2.16)

= lim
N→∞

1

N
ln
[√βN

π

∫ +∞

−∞
dx exp

(
−N

(
βx2 − ln(2 cosh(2βx))

))]
,
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and using the saddle point approximation

−βF = max
x

[−βx2 + ln(2 cosh(2βx))]. (2.17)

The magnetization of the system m = limN→∞
∑

i Si/N is obtained by solving
the implicit equation

m = tanh(2βm) . (2.18)

The critical inverse temperature, βc = 1/2, separates the non magnetized
phase from the magnetized one. The probability distribution function of the
magnetization can be calculated from the free energy F (m) as

P (m) =
1

Z(β)

∑

{C|m(C)=m}

exp (−βF (m)N) , (2.19)

where C represents the subsets of spins configurations that have magnetization
equal to m. For small m, one can expand F (m) in powers of m and obtain

P (m) ∝ exp
(
−c2m2 − c4m

4
)
. (2.20)

At the critical point βc = 1/2, one gets c2 = 0 and c4 = 1/12. We stress once
again that all these results do not depend on γ in the N → ∞ limit.

In the following section, we will discuss the numerical implementation, test
the above infinite N theory and quantify the finite size corrections.

2.2 Numerical simulations

The properties of the system are numerically studied via the Metropolis Monte
Carlo algorithm [38]. We focus on the quenched scenario and reconstruct the
average distribution of the main quantities of interest by averaging over several
realizations of the graph of connections.

2.2.1 Annealed solution

Before going forward we give the annealed solution of the model (2.1). Av-
eraging the partition function Eq. (2.2) over the Jij ’s, using the probability
distribution (2.3), one straightforwardly obtains

〈Z〉J =
∑

{Si}

∏

<i,j>

[1 − 2

γ!
Nγ−2 +

2

γ!
Nγ−2e

γ!β

2Nγ−1
SiSj ] =

=
∑

{Si}

exp[
∑

i,j

ln(1 − 2

γ!
Nγ−2 +

2

γ!
Nγ−2e

γ!β

2Nγ−1
SiSj )]. (2.21)
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To proceed further we shall recall that γ > 1, an observation which in turn
allows us to expand in power of 1/N the above expression. The following
expression is formally recovered

〈Z〉J =
∑

{Si}

exp
(JβN

2N

∑

i,j

SiSj

)
, (2.22)

where the finite N temperature, βN , reads

βN = β + J2β3

(
γ!2

24N2γ−2
− γ!

4Nγ
+

1

3N2

)
. (2.23)

In the above derivation we made use of the fact that (SiSj)
m = 1 for m even

and (SiSj)
m = SiSj otherwise. In the limit for N → ∞, Eq. (2.23) implies

βN → β, which in turn implies

〈Z〉J =
∑

{Si}

exp
( Jβ
2N

∑

i,j

SiSj

)
, (2.24)

for each value of the γ parameter. The annealed solution is thus also equiv-
alent to the fully coupled graph solution, in the N → ∞ limit. For finite N ,
Eq. (2.23) implies a modification of the temperature due to finite size effects.
According to Eq. (2.23), we can imagine to replace the finite N system at
temperature T = 1/kBβ with its Curie-Weiss counterpart, provided a slightly
smaller value of the temperature is allowed. This finding would in turn suggest
that the finite graininess of the distribution drives an increase of the critical
temperature. Consequently, one would expect to observe an inhomogeneous
state at the mean-field transition temperature. This is at variance with what
is found in our (quenched) simulations, where an opposite tendency is mani-
fested, see below.

2.2.2 Numerical results

The simulated system reproduces well the phase transition, the actual value of
the temperature associated with symmetry breaking depending on the number
of simulated spins. To test the scenario discussed in the previous section, we
first estimate βc using the so-called Binder cumulant [39], defined as

UN (T ) ≡ 1 − 〈m4〉
3〈m2〉2 , (2.25)

where 〈m2〉 and 〈m4〉 denote respectively the second and fourth moments of the
magnetization. The Binder cumulant is computed for different values of the
imposed temperature. These numerical experiments are repeated for distinct
values of N , while keeping γ fixed. The obtained profiles UN vs. T are reported
in Fig. 2.1 for various values of γ. Notice that we have introduced a subscriptN
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to recall that the plotted profiles are reconstructed from finite N calculations.
The importance of the cumulant concept stems from the observation that
curves corresponding to different N all intersect at approximately the same
temperature, which provides an estimate of the critical temperature Tc = 1/βc

in the infiniteN limit. A direct inspection of the enclosed figures suggests that,
for all values of γ scanning the relevant interval (1.2, 1.7), Tc = 2. This result
is in agreement with the convergence to the mean-field limit irrespectively of
γ. Clearly, the convergence to the mean-field solution is expected to be faster
for larger values of γ. Indeed, Fig. 2.1, panel a), which refers to the case
γ = 1.2, shows a less clear intersection in the interval of N covered by our
investigations, when compared to similar plots depicted for larger values of γ.

More interestingly, working at finite N , one can monitor the magnetization
and plot it as a function of the dilution parameter γ. Results are reported in
Fig. 2.2 for two different choices of N (symbols): A tendency to asymptotically
approach the mean-field reference (solid) line is clearly displayed, in agreement
with the above scenario. Finite size corrections play however a crucial role,
which deserves to be carefully addressed.

Aiming at shedding light onto this issue, we use in the following two dif-
ferent analytical methods to estimate the finite N corrections.

Finally let us return on the validity of the simple annealed calculation as
discussed above. In Fig. 2.3. we also anticipate the results from the replica
based analysis as developed of Section 2.4, which, as we shall see, shares the
quenched viewpoint of direct simulation. A similar trend between simulations
and replica calculations (though the matching is not perfect as commented
afterwords) is observed. Conversely, the annealed prediction obtained from
the mean-field magnetization associated to the finite N temperature (2.23),
returns a striking different behaviour.

2.3 The replica method

The first method relies on the replica trick. Starting with the calculations of
Section 2.1, we now include the leading order finite N corrections. We start
again from Eq. (2.11), which we recall here

〈Zn〉J =
∑

{Sa
i }

exp
(∑

i6=j

[ β
N
Tij +

γ!

4

β2

Nγ
T 2

ij −
1

2

β2

N2
T 2

ij

])
. (2.26)

The largest neglected term in this expansion is γ!2

24
β3

N2γ−1T
3
ij

3 ; including it
would imply coupling three replicas and make the calculation technically more

3Note that the relative importance of the terms in Eq. (2.26) depends on the specific value
of γ. As γ < 3/2, the first term here neglected dominates over the smallest included in the
development. This observation sets the limit of our replica approximation and suggests that
discrepances between the theory and the observations are to be expected in such a parameter
interval.
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Figure 2.1: Binder cumulants UN as a function of temperature T , for γ =
1.2, 1.4, 1.5, 1.7. The time averages are calculated over 4.104 Monte Carlo sweeps.
The error bars are estimated with the resampling technique using 10 sets of 1000
sweeps and calculating the associated variance. In all panels the curves relative to
N = 500, 1000, 2000 are reported. In addition, for γ = 1.2, the profiles relative to
N = 5000, 7000 have been also included to better appreciate the convergence in N .

difficult. However, this term becomes progressively more important as γ ap-
proaches 1 from above; this may possibly affect the accuracy of the prediction
derived here, in this region of parameters. In the following we shall also neglect
O(N−2) terms in expression (2.26), which is certainly well motivated as long
as γ < 2 (in a strict sense).

Notice that the following relations apply

∑

i6=j

Tij =
∑

i6=j

∑

a

Sa
i S

a
j =

∑

a

∑

i6=j

Sa
i S

a
j =

∑

a

(∑

i

Sa
i

)2−Nn = N2
∑

a

m2
a−Nn ,

(2.27)
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Figure 2.2: Magnetization versus γ for β = 1. Symbols refer to the quenched numer-
ical simulations for, respectively, N = 100 (diamonds), N = 1000 (circles), N = 3000
(squares) and N = 8000 (triangles). Dashed lines are guides for the eye. The solid
line stands for the mean-field solution (2.18).

and

∑

i6=j

T 2
ij =

∑

i6=j

∑

a,b

Sa
i S

a
j S

b
iS

b
j =

∑

a,b

(∑

i,j

Sa
i S

a
j S

b
iS

b
j −N

)
= (2.28)

=
∑

a,b

(∑

i

Sa
i S

b
i

)2 − n2N = 2N2
∑

a<b

m2
ab + nN2 − n2N ,

where use has been made of the definitions

ma =
∑

i

Sa
i /N , (2.29)

mab =
∑

i

Sa
i S

b
i /N . (2.30)

Substituting (2.27) and (2.29) into Eq. (2.11) yields

〈Zn〉J =
∑

{Sa
i }

exp
(
βN

∑

a

m2
a − nβ +

γ!β2

2
N2−γ

∑

a<b

m2
ab +

γ!β2

4
N2−γn

)
,

(2.31)
where the term scaling as n2 has been dropped (recall that we shall be con-
cerned with the limit n→ 0).

The Hubbard-Stratonovich identity can now be invoked to rewrite the
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Figure 2.3: Magnetization versus γ for β = 1. The solid line refers to the mean-
field solution; the dashed line stands for the replica based calculation; the dotted line
represents the annealed perturbative estimate. Points represent numerical data for
N = 1000.

above exponentials involving m2
a and m2

ab

exp
(
βNm2

a

)
=

√
βN

π

∫ ∞

−∞
dλa exp

(
−βNλ2

a + 2βNmaλa

)
(2.32)

exp

(
γ!β2

2
N2−γm2

ab

)
=

√
γ!β2N2−γ

2π

∫ ∞

−∞
dqab × (2.33)

× exp

(
−γ!β

2

2
N2−γq2ab + γ!β2N2−γmabqab

)
.

Putting the various pieces together, the average replicated partition function
reads

〈Zn〉J = C
∑

{Sa
i }

∫ ∞

−∞

∏

a

dλa

∏

a<b

dqab ×

× exp
(
−βN

∑

a

λ2
a + 2βN

∑

a

maλa −
γ!β2

2
N2−γ

∑

a<b

q2ab + γ!β2N2−γ
∑

a<b

mabqab

)

= C

∫ ∞

−∞

∏

a

dλa

∏

a<b

dqab exp
(
−βN

∑

a

λ2
a −

γ!β2

2
N2−γ

∑

a<b

q2ab

)
× (2.34)

×
∑

{Sa
i }

exp
(
2βN

∑

a

maλa + γ!β2N2−γ
∑

a<b

mabqab

)
,
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where the normalization C(γ, β, n,N) =
√

βN
π

√
γ!β2N2−γ

2π can be safely ignored

in the forthcoming development.
Let us focus now on the last sum appearing in Eq. (2.34). A straightforward

manipulation leads to

∑

{Sa
i }

exp
(
2βN

∑

a

maλa + γ!β2N2−γ
∑

a<b

mabqab

)
=

=
∑

{Sa
i }

exp
(
2βN

∑

a

λa

∑

i

Sa
i

N
+ γ!β2N2−γ

∑

a<b

qab

∑

i

Sa
i S

b
i

N

)
=

=

(
∑

{Sa}

exp
(
2β
∑

a

λaS
a + γ!β2N1−γ

∑

a<b

qabS
aSb
))N

, (2.35)

where the index i can be removed, being replaced by the power N .
Let us now introduce the function Ψ as

Ψ(λa, qab) =
∑

{Sa}

exp
(
2βN

∑

a

λaS
a + γ!β2N1−γ

∑

a<b

qabS
aSb
)
. (2.36)

We now make the replica symmetric hypothesis which corresponds to setting
λa = λ and qab = q ∀a, b. After this ansatz, Ψ can be cast in the form

Ψ(λ, q) =
∑

{Sa}

exp
(
2β
∑

a

λaS
a + γ!β2N1−γq

[1
2
(
∑

a

Sa)2 − n

2

])
. (2.37)

The Hubbard-Stratonovich trick allows us to write

exp

(
γ!β2

2
N1−γq(

∑

a

Sa)2

)
=

√
γ!

2π

∫ ∞

−∞
dx exp

(
−γ!

2
x2 + γ!βN

1−γ
2

√
q
∑

a

Sax

)
,(2.38)

which leads to the following expression for Ψ

Ψ(λ, q) = exp

(
−γ!β

2N1−γqn

2

)√
γ!

2π

∫ +∞

−∞
dx exp

(
−γ!

2
x2

)
×

×
∑

{Sa}

exp
(
(2βλ+ 2γ!βN

1−γ
2

√
qx)

∑

a

Sa
)

=

= exp

(
−γ!β

2N1−γqn

2

)√
γ!

2π

∫ +∞

−∞
dx exp

(
−γ!

2
x2

)
×

×
[
2 cosh(2βλ+ γ!βN

1−γ
2

√
qx)
]n
. (2.39)

Finally, we obtain

〈Zn〉J = C

∫ ∞

−∞
dλdq exp[NLn] , (2.40)
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where

Ln =
[
− βnλ2 − γ!β2

2
N1−γ n(n− 1)

2
q2 + ln Ψ

]
. (2.41)

We want to keep the terms linear in n in Eq. (2.41), since they are the only
ones to give a contribution in the limit n → 0. A straightforward expansion
in n yields, in the n→ 0 limit,

1

n
ln Ψ −→ −1

2
γ!β2N1−γq + ln 2 +

√
γ!

2π

∫ +∞

−∞
exp

(
−γ!x2/2

)
×

× ln cosh
(
2βλ+ γ!βN (1−γ)/2√qx

)
dx . (2.42)

The computation of the free energy is now reduced to finding the saddle point
of the following function

φ(λ, q) = −βλ2 +
ε2

4γ!
q2 − ε2

2γ!
q + ln 2 +

√
γ!

2π

∫ +∞

−∞
exp

(
−γ!x2/2

)
×

× ln cosh (2βλ+ ε
√
qx) dx , (2.43)

where we have introduced the small parameter

ε = γ!βN (1−γ)/2 . (2.44)

Expanding in ε up to order ε2 and performing the Gaussian integrations, we
get

φ(λ, q) = −βλ2 + ln cosh 2βλ+
ε2

4γ!
q2 − ε2

2γ!
q tanh2 2βλ+ ln 2 + o(ε2) . (2.45)

At order ε0, the conditions ∂λφ = 0 and ∂qφ = 0 yield

λ0 = tanh 2βλ0 , q0 = tanh2 2βλ0 . (2.46)

As it should, the mean-field solution is recovered from these equations, see
Eq. (2.18). We now write λ = λ0+ε2λ1, and we get from the condition ∂λφ = 0

λ1 = − 1

γ!

λ3
0(1 − λ2

0)

1 − 2β(1 − λ2
0)
. (2.47)

The dummy parameter λ can be shown to correspond to the magnetization.
Thus, one can compare the replica based prediction Eq. (2.47) (which takes into
account the leading order finite N corrections) to direct numerical simulations.
The comparison is made in Fig. 2.4, where the magnetization is plotted as
a function of γ. The global trend is captured by Eq. (2.47); however the
agreement deteriorates quickly for small values of γ. This may be due to the
approximations involved in the calculation.
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Figure 2.4: Magnetization versus γ for β = 1. Symbols refer to numerical simula-
tions. From top to bottom: N = 1000 (circles), N = 3000 (squares) and N = 8000
(triangles). The dashed lines serves as a guide for the eye. The solid line stands for
the replica based solution (2.47).
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As a final step, let us compute the leading finite N correction to the tran-
sition temperature. We recall that its N → ∞ value is βc = 1/2. We compute
the Hessian matrix Hφ(0, 0) of φ in (λ, q) = (0, 0), getting

Hφ(0, 0) =

(
2β(2β − 1) 0

0 ε2

2γ! .

)
(2.48)

The critical temperature corresponds to a vanishing determinant for Hφ(0, 0).
We find, at order ε2, βc = 1/2. In conclusion, at this level of approximation,
there is no modification of the critical temperature due to finite N effects.

We end this section with a comment. A given finite random graph with
N sites and M links may be seen as a finite N realization of a dilute random
graph as above, for some value of γ. It may also actually be seen as a finite N
realization of a graph constructed according to the rule described in Eq. (2.4)
and Eq. (2.5), with p = αNL/Ñ ≃ 2α

γ! N
γ−2. To each choice of γ ∈]1, 2[

corresponds a value of α. There is then an infinite number of models to which
our graph at hand may be compared. This freedom could be in principle
exploit to optimize the predictions for a finite N graph via tha replica based
calculation. However, our analysis at first subleading order in 1/N , does not
depend on the specific choice of γ and α. This conclusion is reached above for
the case α = 1. In conclusion and limiting the dicussion to the first corrections
here evaluated one can not take full advantage of the aforementioned flexibility
intrinsic to the fromulation of the model.

2.4 An alternative approach: The cavity method

The method used in the previous section (expansion in powers of N coupled to
a replica calculation) does not give very precise results for small to moderate
values of γ. We now turn to an alternative theoretical approach to interpret
the results of our simulations: a finite size graph with N sites, constructed
with the rule (2.5) for a given γ, may be seen as a standard Erdős-Rényi
random graph with parameter λER = N (γ−1)/γ! (that represents the mean
connectivity) [37, 40]. This makes possible the use of the powerful methods
devised for finite connectivity random graphs, such as the cavity method.

The solution of the Ising model on random graphs with arbitrary distribu-
tions of links is given in [41, 42]; we follow here the formulation given in [43],
which is there applied to the solution of an Ising spin glass on a Bethe lattices.
Our case is much simpler, as we are studying a ferromagnet; a small compli-
cation is related to the probability distribution of the site connectivities.

We briefly recall the main steps leading to the (replica symmetric) cavity
equations, following Ref. [43]. Consider the Hamiltonian (2.1) defined on a
random graph. Figure 2.5 represents a node, denoted with 0, and its k = 3
neighbours. We represent by hi, i = 1, ..., k the total field acting on spin Si in

the absence of the central spin S0. The magnetization of the i-th spin reads
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Figure 2.5: This figure shows an example of a tree-like structure with k = 3. The
cavity fields hi represent the total field acting on the spin Si, when the central spin S0

is removed.

mi = tanh(βhi). The basic ingredient of the cavity method is to assume that
the fields hi are uncorrelated.

Let us define the partition function of the spin S0 as follows

ZS0
=

∑

S0,S1,..,Sk

exp
(
β

′

S0

k∑

i=1

JSi + β
′

k∑

i=1

hiSi

)
, (2.49)

where

β
′

= γ!
1

Nγ−1
β . (2.50)

One can now invoke the basic identity

∑

Si=±1

exp
(
β

′

S0JSi + β
′

hiSi

)
= c(J, hi) exp(β

′

u(J, hi)S0) , (2.51)

where the two functions u(·, ·) and c(·, ·) respectively read

u(J, h) =
1

β′
arc tanh[tanh(β

′

J) tanh(β
′

h)] , (2.52)

c(J, h) = 2
cosh(β

′

J) cosh(β
′

h)

cosh(β′u(J, h))
, (2.53)

and rewrite the partition function (2.49) as

ZS0
=

∑

S0,S1,..,Sk

k∏

i=1

c(J, ki) exp
(
β

′

k∑

i=1

u(J, hi)S0) . (2.54)
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In practice the magnetization on site 0 is thus given by m0 = 〈S0〉 =
tanh(β

′

h0), where

h0 =

k∑

i=1

u(J, hi) . (2.55)

The connectivity k of a given site in the finite size random graph we study is
a random variable with distribution

π0(k) =
(N − 1)!

k!(N − 1 − k)!
(1 −Nγ−2)N−kN (γ−2)k . (2.56)

We want to compare our finite size random graph with the corresponding
infinite size graph with the same Erdős-Rényi parameter λER = Nγ−1/γ!.
This graph has a Poissonian connectivity distribution with paramter λER.
Thus, we use in the cavity calculations the following distribution, which is
close to (2.56),

π(k) = e−λER
λk

ER

k
. (2.57)

Eqs. (2.55) and (2.57) allows one to write the following implicit relation for
the probability density Q(h) of local fields

Q(h) =
∑

k

π(k)

∫ k∏

i=1

[dhiQ(hi)]δ(h −
k∑

i=1

u(Ji, hi)). (2.58)

Eq. (2.58) can be solved using a population dynamics algorithm [43] to ac-
cess an estimate of the local field distribution Q(h), and eventually compute
the magnetization of the system. More concretely, one starts with arbitrarily
chosen population of Ω fields and proceeds iteratively as follows. A random
number k is picked up with probability π(k); a subset of k fields is randomly
selected in the population, and used to compute the h0 field, as prescribed by
Eq. (2.55). Then one field is removed at random from the population, and
replaced with the computed h0. Such a scheme defines a Markov chain on
the space of the Ω fields which admits a stationary distribution. In the limit
Ω → ∞ such a stationary distribution clearly satisfies the self-consistency re-
lation (2.58). The magnetization m is hence straightforwardly recovered as
m =

∑
i tanh(β

′

hi)/N .

This method provides very accurate predictions, as shown in Fig. 2.6, much
better than the finite N expansion around the replica calculation discussed in
Section 2.3.

Summing up, in this chapter we have investigated the finite size corrections
to the equilibrium magnetization of the Ising model defined on a diluted net-
work. Varying the dilution parameter γ, these networks interpolate between
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Figure 2.6: Magnetization versus γ for β = 1. Symbols refer to numerical simulations:
N = 1000 (circles), N = 3000 (squares) and N = 8000 (triangles). The solid lines are
the solution obtained using the cavity method. The agreement is much better than
for the replica approach (see Fig.2.4).

the fully connected network (γ = 2) and the opposite setting where the num-
ber of links scales linearly with system size N (γ = 1). Systematic deviations
with respect to the asymptotic mean-field behavior are observed when a finite
number of spins is considered, such discrepancies being more pronounced as
γ approaches its lower bound γ = 1. This phenomenon is clearly displayed
in the plot of the magnetization m versus γ. A replica based perturbative
analysis is developed, whose predictions are compared with the outcome of the
numerics. The dependence of m on γ is qualitatively captured, but the quan-
titative match is not satisfying, especially as the dilution rate is increased. A
cavity based calculation, inspired by the Mèzard-Parisi technique [43] is able
to reproduce the data with an excellent degree of accuracy.
We have in conclusion brought convincing evidences that finite size corrections
do play an important role in presence of a diluted network and thus need to
be carefully addressed.

In the next chapter we turn to discussing the HMF model, the reference
case study for out-of-equilibrium properties of long-range interacting systems.
We will start by reviewing the existing literature, being particularly interested
with the emergence of Quasi Stationary States. The final objective, persecuted
in Chapter 5 will be to elucidate the effect of dilution on the out-of-equilibrium
dynamics.



Chapter 3

The Hamiltonian Mean Field

model: equilibrium and

out-of-equilibrium features

———————————————————————————–

The HMF [44] model belongs to the class of toy-models, specifically de-
signed to investigate the properties of long-range systems. Toy models allow
one to capture the basic physical modalities of a class of systems under scrutiny,
often reproducing with a satisfying degree of accuracy the correct experimental
phenomenology. In doing so they enable for a drastic reduction in complexity,
and return an ideal playground for theoreticians.

When it comes to the HMF, we already recalled that it displays rather
peculiar out-of-equilibrium features which are also shared by other physical
systems [3, 29]. As we will clarify in the following, the HMF admits a Hamil-
tonian formulation in terms of continuous variables, at variance with the Curie-
Weiss model analysed in the previous chapter. It is exactly solvable both in
the canonical and microcanonical ensembles, leading in this case to equivalent
results, and displays a second order phase transitions from homogeneous to
magnetized distributions. In the last years, several extensions of the original
formulation have been proposed, so to account among the other, for a spa-
tial modulation of the the interaction [45], higher dimensionality (e.g. a 2D
spatial version of the model here considered [46]) and refined coupling mecha-
nisms [10]. In the following we shall however limit our discussion to the original
HMF model.

When performing numerical simulations starting out-of-equilibrium, the
system is usually trapped in long-lived Quasi Stationary States (QSSs), before
relaxing to the deputed equilibrium solution. The QSSs display a rich phe-
nomenology that was alluded to in the preceding discussion, and that will be
further developed below. We shall be in particular concerned with reviewing

33
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the literature devoted to the QSS and bring novel numerical insight on the rela-
tion between their lifetime and the system size. More specifically, this chapter
is organised as follows. In the next section we will introduce the model and
shortly discuss its equilibrium thermodynamics. Then, in Section 3.1.2, we will
report on the out-of-equilibrium dynamics, with emphasis on the emergence of
QSSs. Section 3.2 is devoted to discussing the continuous limit of the discrete
N-body picture. This yields to the Vlasov equation which plays a crucial role
in understanding the QSS properties, as discussed in Section 3.3. Finally, in
the last section, we present new evidences relative to the lifetime of the QSS
and discuss them with reference to the existing data in order to broaden and
clarify the current picture.

3.1 The HMF model

The Hamiltonian Mean Field model [44] describes the motion of N particles
on a ring (see Fig. 3.1) and is characterized by the following Hamiltonian

H =
1

2

N∑

j=1

p2
j +

ǫ

2N

N∑

i,j=1

[1 − cos(θi − θj)] (3.1)

where θj ∈ [0, 2π[ represents the position (angle) of the j-th particle in the
ring and pj stands for its conjugate momentum. Once two particles comes to
the same location, we can either think that they cross each other or collide
elastically, since they share the same mass. Such a model is a nothing but a
globally coupled XY model augmented with a kinetic term.
Depending on the coupling constant ǫ the interaction can be attractive (ǫ > 0)
or repulsive (ǫ < 0). In this former (resp. latter) case, the HMF is obtained by
retaining only the first harmonic of the one-dimensional self-gravitating [47]
(resp. Coulomb charged planes) potential V (x) ∝ −|x| (resp. V (x) ∝ +|x|)
and assuming periodic boundary conditions [48]. The rescaling factor 1/N
which appears in the potential term of Hamiltonian (3.1) is introduced to
guarantee the energy extensivity and avoid divergences. This is the so-called
Kac prescription [11]. The equations of motion follows from (3.1) and read:

θ̇i =
∂H

∂pi
= pi (3.2)

ṗi = −∂H
∂θi

= − ǫ

N

N∑

j=1

sin(θi − θj).

To monitor the evolution of the system, it is customary to introduce the local
magnetization vector mi = (cos θi, sin θi) and the average (complex) magneti-

zation
−→
M, a global order parameter whose norm reads:

M =
∣∣∣
−→
M

∣∣∣ = |Mx + iMy| =
∣∣∣
∑

mi/N
∣∣∣ . (3.3)
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Figure 3.1: The Hamiltonian Mean Field model describes the coupled motion of a
bunch of massive particles confined on a unit ring. The position of each particle is
identified via the angle θ, as depicted in the cartoon.

The phase, φ, satisfies:

tan(φ) =
My

Mx
. (3.4)

Making use of the above definition, Eqs. (3.2) can be cast in the form

θ̇i = pi (3.5)

ṗi = −ǫM sin(θi − φ).

All along this thesis we shall concentrate on the ferromagnetic case (ǫ = 1),
this latter being the interesting scneraio when it comes to elucidating the
emergent QSS dynamics [49, 44, 49].

3.1.1 Equilibrium thermodynamics

In the following we will discuss the equilibrium solution of the HMF. The
discussion follows closely [50, 51]. The exact canonical solution of the HMF is
obtained by applying the Hubbard-Stratonovich trick. The partition function
for the HMF model reads in fact:

Z =

∫ N∏

i=1

dpidθi exp(−βH), (3.6)

where the integration is extended over all the phase space and β stands for the
inverse temperature, β = 1/(kBT ). Integrating over momenta, yields:

Z =

(
2π

β

)N/2

exp(−βN
2

)J, (3.7)
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with

J =

∫ 2π

0

N∏

i=1

dθi exp


 β

2N

N∑

i,j=1

cos(θi − θj)




=

∫ 2π

0

N∏

i=1

dθi exp


 β

2N

(
N∑

i

mi

)2

 . (3.8)

In order to evaluate this integral, one resorts to the Hubbard-Stratonovich
transformation in the µ > 0 case, which takes the form:

exp
[µ
2
x2
]

=
1

π

∫ ∞

−∞

∫ ∞

−∞
dy exp[−y2 +

√
2µx · y], (3.9)

where x and y are two-dimensional vectors. Eq. (3.8) hence becomes

J =
1

π

∫ 2π

0

N∏

i=1

dθi

∫ ∞

−∞

∫ ∞

−∞
dy exp[−y2 +

√
2µ

N∑

i,j=1

mi · y], (3.10)

with µ = β/N . We can now exchange the order of the integrals in (3.10) and
factorize the integration over the coordinates of the N particles. Introducing
the rescaled variable y → y

√
N/2β, one obtains

J =
N

2πβ

∫ ∞

−∞

∫ ∞

−∞
dy exp

[
−N

(
y2

2β
− ln(2πI0(y))

)]
, (3.11)

where y is the modulus of y and I0 represents the modified Bessel function of
order 0. This latter integral can be evaluated with the saddle point technique
in the mean-field limit (N → ∞). In this limit, the Helmoltz free energy F
reads:

F = − lim
N→∞

1

βN
lnZ = −1

2
ln

(
2π

β

)
+
β

2
+max

y

(
y2

2β
− ln(2πI0(y))

)
. (3.12)

The maximization of the last term in (3.12) yields to the consistency equation:

y

β
=
I1(y)

I0(y)
. (3.13)

For β < 2 Eq. (3.13) has a minimal free energy solution for y = 0, which cor-
responds to a homogeneous equilibrium distribution with zero magnetization.
On the contrary, for β > 2 the minimal free energy solution is a non-vanishing
β-depending value ȳ that can be deduced numerically, so specifying the mag-
netized equilibrium solution. The value of M for such non-homogeneous states
is given by the ratio of the Bessel functions

M =
I1(ȳ)

I0(ȳ)
. (3.14)
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Figure 3.2: Equilibrium magnetization M as a function of the energy per particle U .
Symbols refer to direct N-body simulations data for N = 102 and 103, while the solid
line stands for the canonical prediction. The vertical dashed line points to the critical
energy, which is located at Uc = 0.75, βc = 2. The figure is from Ref. [51].

Hence, the system displays a phase transition at the critical temperature βc =
2, which can be proven to be of the second order type1 [44], with the exponent
1/2.

This prediction is consistent with numerical simulations, as clearly dis-
played in Fig. 3.2. Here the equilibrium magnetization is plotted against the
internal energy U of the system. This latter follows from the free energy as

U =
∂(βF )

∂β
, (3.15)

which yields

U =
1

2β
+

1 −M2

2
. (3.16)

The temperature vs. the internal energy at equilibrium is reported in Fig.
3.3. Comparisons with numerical simulations are also displayed (see Ref. [51]).

With reference to the microcanonical ensemble, the first numerical exper-
iments, performed at constant energy, showed that for energies slightly below
the canonical phase transition, Uc = 1

(2βc)
+ 1

2 , the system rapidly relaxes to an

apparent equilibrium different from the canonical one [44]. This finding was
initially thought to be the fingerprint of inequivalence between microcanonical
and canonical ensemble, considering the long-range nature of the interaction.
However, it was later recognized that inequivalence only occurs when in pres-
ence of a first order canonical phase transition, which is not the case for the

1This means that the magnetization passes continuously from zero to a finite value, when
decreasing the temperature (or increasing β).
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Figure 3.3: Equilibrium temperature T vs energy per particle U . Symbols refer to
N-body simulations for N = 102 and 103, while the solid line stands for the canonical
prediction. Figure is from Ref. [51].

HMF. Indeed, it was also rigorously proved [48, 52] that ensembles are equiv-
alent for the case of the HMF, the Large Deviation technique being applied
to derive the exact HMF microcanonical solution. The aforementioned dis-
agreement as revealed by microcanonical simulations stems from the peculiar
dynamical evolution of the HMF, which was subsequently found to occur also
in other context [53]. The following section is devoted to discussing these
important aspects into details.

3.1.2 On the emergence of QSS: Non-equilibrium dynamics

To investigate the HMF dynamics one has to perform direct (microcanoni-
cal) numerical simulations of eqs. (3.2). A careful numerical analysis suggests
that the evolution of the system is very sensitive to the choice of the initial
condition [44, 49, 54]. Depending on the specific traits of the initial parti-
cle distribution, the system can be frozen in long-lasting Quasi Stationary
States [49]. In other words, there is no straight convergence to the Boltzmann
distribution, and particles are apparently stuck in a intermediate regime, whose
macroscopic characteristics strongly differ from the corresponding equilibrium
configuration.

Yamaguchi et al. performed a comprehensive campaign of simulations em-
ploying a 4th-order symplectic scheme, with a time step τ = 10−1. The system
was initialized in the so-called “water-bag” distribution. This corresponds to
imposing a uniformly occupied rectangle in phase space:

f(θ, p, 0) =

{
f0 = 1/ (4∆θ∆p) if −∆p ≤ p < ∆p and −∆θ ≤ θ < ∆θ
0 otherwise.

(3.17)
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Figure 3.4: The timescale b(N) as a function of log10N , as follows direct N-body
simulation for an initial water-bag distribution with M0 = 0 and U = 0.69.

This choice identifies a whole family of possible initial conditions parametrized
via the quantities ∆θ and ∆p. By tuning ∆θ and ∆p we can adjust the specific
characteristics of the selected profile in terms of associated anergy and initial
magnetization.
The spatial coordinates θj are randomly chosen in the interval [-∆θ,∆θ[. For
the special setting ∆θ = π one obtains an initial magnetization of order 1/

√
N ,

i.e. corrisponding to an homogeneous condition in the large N limit. The
momenta pj are also randomly chosen from the interval [−△p, △p[. With this
choice, one can express the initial energy density U = H/N and the initial
magnetization as functions of ∆θ and ∆p:

M0 =
sin(∆θ)

∆θ
, U =

(∆p)2

6
+

1 − (M0)
2

2
. (3.18)

To monitor the system dynamics one can track the global magnetization as a
function of time. The initial evolution takes place on timescale which are in-
dependent on the value of the simulated particles2 N . Such an early evolution
corresponds to the “violent relaxation” process, which brings the system to-
wards the QSS. The lifetime τQSS of the QSS, i.e. the time that is necessary to
abandon the intermediate phase and eventually jump to equilibrium, is instead
increasing with the system size N . Yamaguchi’s simulation, performed with
reference to an initial homogeneous (M0 = 0) water-bag, returned a power law
divergence Nν , with the rather surprising exponent ν = 1.7 [17], see Fig 3.4.
To extract a sound estimate of τQSS, Yamaguchi considered the log-lin plot
of the magnetization time series, dropping the part relative to the violent re-
laxation. The sigmoid shape so obtained can be interpolated via the following
ansazt:

2This observation is valid with exception of the initially homogeneous case, where the
violent relaxation scales as log N [55].
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Figure 3.5: Function (3.19) is plotted for a(N) = 10, c(N) = 0.5, d(N) = 0.1 and for
b(N) = 4, 4.5, 5 (green, red and black line respectively).

M(t) = [1 + tanh(a(N)(log10 t− b(N)))]c(N) + d(N) (3.19)

where the best fit value for b(N) returns an estimate for the duration of the
intermediate lethargic phase, as τQSS = 10b(N) and which yields to the scaling
recalled above. Eq. (3.19) can be also re-written as

M(t) = [1 + tanh(a(N) log10(
t

τQSS
))]c(N) + d(N) (3.20)

The parameters c(N) and d(N) are also adjusted by a proper fitting procedure
and respectively represent the half-width between the initial and the equilib-
rium levels of M(t) and the initial plateau of the magnetization. In Fig. 3.5
the function (3.19) is plotted for a(N) = 10, c(N) = 0.5, d(N) = 0.1 and three
values of b(N).
The important conclusion is hence that the lifetime of the QSS diverges when
performing the thermodynamic limit N → ∞. In such a limit, the system
is permamently trapped in the out-of-equilibrium QSS and cannot eventually
relax to the Boltzmann equilibrium. Such an intriguing observation implies
that the limit for t → ∞ and N → ∞ do not commute. The system behaves
in fact in a sensibly different fashion, depending on the order the two limits
are taken. Importantly, and developing on this observation, QSSs can be seen
as stable stationary equilibria of a continuous system, formally recovered from
the original discrete formulation, when sending N → ∞. As we shall prove in
the forthcoming chapter, this procedure yields to the celebrated Vlasov equa-
tion, which is nowdays believed to return the correct interpretative framework
for clarifying the puzzle of QSSs’ emergence in presence of long-range interac-
tions [21].
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3.2 The continuous limit: the Vlasov equation

As anticipated, we are here concerned with deriving the continuous counter-
part of the HMF Hamiltonian, i.e. its equivalent description which holds for
diverging system size. To this end, one can invoke the rigorous result of Braun-
Hepp [56] who cast the problem within a solid mathematical perspective. At
variance, and to preserve physical intuition, we will here follow a kinetic theory
argument which moves from the so called Klimontovich equation [57, 58].

3.2.1 A kinetic theory approach: The Klimontovich equation

We will start by considering a general one dimensional Hamiltonian setting.
The derivation reported below closely follows Refs. [59, 12]. The discrete N-
body Hamiltonian hence reads:

H =

N∑

i=1

p2
i

2
+ U(θi) (3.21)

where U(θi) refers to the potential which we express as a function of the
individual particles coordinates θi:

U(θ1, .., θN ) =
N∑

i<j

V (θi − θj). (3.22)

The HMF clearly falls within the above realm. The state of the N-body system
is specified by the discrete, one-particle, time dependent density function fd

given by:

fd(θ, p, t) =
1

N

N∑

i=1

δ(θ − θi(t))δ(p − pi) (3.23)

where δ stands for the Dirac function, (θ, p) indicate the Eulerian coordinates
in the phase space. (θi, pi) is the Lagrangian coordinates of the i-th particle,
whose dynamics is ruled by the following equations of motion:

θ̇i = pi (3.24)

ṗi = −∂U
∂θi

.

Differentiating with respect to time the one-particle density (3.23) and making
use of equations (3.24) one gets

∂fd(θ, p, t)

∂t
= − 1

N

N∑

i=1

pi
∂

∂θ
δ(θ−θi(t))δ(p−pi(t))+

1

N

N∑

i=1

∂U

∂θi

∂

∂p
δ(θ−θi(t))δ(p−pi(t)).

(3.25)
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Recalling that aδ(a − b) = bδ(a − b) one can re-write the previous equations
as:

∂fd(θ, p, t)

∂t
= − 1

N

N∑

i=1

p
∂

∂θ
δ(θ−θi(t))δ(p−pi(t))+

1

N

N∑

i=1

∂v

∂θ

∂

∂p
δ(θ−θi(t))δ(p−pi(t))

(3.26)
where:

v(θ, t) = N

∫
dθ′dp′V (θ − θ′)fd(θ

′, p′, t) (3.27)

which eventually yields to the well-known Klimontovich equation:

∂fd

∂t
+ p

∂fd

∂θ
− ∂v

∂θ

∂fd

∂p
= 0. (3.28)

This equation is still exact, even for a finite number of particles N , and contains
the information about the orbit of every single particle. Klimontovich equation
is especially useful as a starting point for deriving approximate equations that
enables one to describe the average properties of the system under scrutiny.
One can in particular perform a perturbative development with respect to
the system size, so to obtain an indication of the so called mean-field like
approximation. More specifically, one can pose:

fd = 〈fd(θ, p, t)〉 +
1√
N
δf(θ, p, t) = f0(θ, p, t) +

1√
N
δf(θ, p, t) (3.29)

where f0(θ, p, t) = 〈fd(θ, p, t)〉 represents the averaged one-particle density
function. The average is here taken over a large set of independent microscopic
initial realizations, relative the same macroscopic state [12]. Inserting (3.29)
in (3.27) clearly implies:

v(θ, t) = 〈v〉(θ, t) +
1√
N
δv(θ, t) (3.30)

where the first term reads:

〈v〉(θ, t) = N

∫
dθ′dp′V (θ − θ′)f0(θ

′, p′, t) (3.31)

Inserting both expression (3.29) and (3.30) into the Klimontovich equation one
obtains:

∂f0

∂t
+p

∂f0

∂θ
−∂〈v〉

∂θ

∂f0

∂p
= − 1√

N

(∂δf
∂t

+p
∂δf

∂θ
−∂v
∂θ

∂f0

∂p
−∂〈v〉

∂θ

∂f

∂p

)
+

1

N

∂δv

∂θ

∂δf

∂p
.

(3.32)
Averaging the above equation over fin, finally yields to:

∂f0

∂t
+ p

∂f0

∂θ
− ∂〈v〉

∂θ

∂f0

∂p
=

1

N
〈∂δv
∂θ

∂δf

∂p
〉 (3.33)
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Equation (3.33) is still exact. Performing the limit for N → ∞, so neglecting
finite size corrections, one ends up with the Vlasov equation, namely:

∂f0

∂t
+ p

∂f0

∂θ
− ∂〈v〉

∂θ

∂f0

∂p
= 0 (3.34)

This ultimately defines the correct framework to investigate the origin of
QSSs. These are in fact intermediate out-of-equilibrium regimes of the discrete
dynamics, which become stable solutions of the corresponding continuous pic-
ture.

As opposed to the Klimontovich derivation, the Braun-Hepp theorem [56]
states that, for a mean-field microscopic two-body smooth potential, the dis-
tance between two initially close solutions of the Vlasov equation increases at
most exponentially in time. If we apply this result to a large N approximation
of a continuous distribution, the error at t = 0 is typically of order 1/

√
N ,

thus for any ”small” ǫ and any ”large enough” particle number N , there is a
time t up to which the dynamics of the original Hamiltonian and its Vlasov
description coincide, within error bounded by ǫ. The theorem implies that
such a time t increases at least as lnN , and is linked with the faster possible
instability of the Vlasov dynamics.
Since quasi-stationary states evolve on time scale that diverge with N , the
Braun-Hepp result suggests that QSSs might gain their stability from being
”close” to some stable stationary states of Vlasov dynamics. One can expect
that this associated slow evolution takes place passing through different stable
Vlasov stationary states.
At this stage the system is trapped close to one of the numerous stable station-
ary states of the Vlasov equation. This state may be the statistical equilibrium
of the Vlasov equation. An interpretation of this process is the Lynden-Bell
statistics, that will be discussed in the next section.

3.2.2 On the properties of the Vlasov equation

The discrete dynamics of equations (3.24) conserves the average energy per
particle e(p, q) = H(p, q)/N and other selected quantities depending on the
symmetry properties of the potential V (q) (e.g. the average momentum for
translational invariant potentials, as it is the case for the HMF model). The
Vlasov equation (3.34) clearly conserves the very same constants of motion,
which are to be properly expressed in term of the particles distribution f . As
an example, the average energy density reads

h[f ] =

∫ ∫
dpdqf(p, q)

p2

2
+

∫ ∫
dpdqf(p, q)φ(q), (3.35)
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and similar relations are straightforwardly derived for the other quantities
involved. Importantly, the total mass

µ[f ] =

∫ ∫
dpdqf(p, q), (3.36)

is also conserved, which in turn corresponds to keeping constant the number
of particles in the discrete scenario. In addition, the Vlasov dynamics (3.34)
also preserves the following quantities:

Cn[f ] =

∫ ∫
dpdqfn(p, q). (3.37)

usually referred to as to Casimirs [3]. This is indeed a crucial property, which
makes the Vlasov dynamics interestingly rich. As we shall demonstrate, the
formal distinctions between the aforementioned Lynden-Bell statistics (i.e. the
statistical mechanics of the Vlasov picture) and the conventional Boltzmann-
Gibbs description stem from these unique characteristics.

3.2.3 The Vlasov equation for the HMF

Making explicit reference to the case of the HMF, the following version of the
Vlasov equation (3.34) is readily recovered when taking the continuum limit:

∂f

∂t
+ p

∂f

∂θ
− {Mx[f ] sin(θ) −My[f ] cos(θ)}∂f

∂p
= 0, (3.38)

with Mx[f ] =
∫
f cos(θ)dθdp and My[f ] =

∫
f sin(θ)dθdp. System (3.38) con-

serves the energy

h[f ] =

∫ ∫
(p2/2)f(θ, p, t)dθdp− (M2

x +M2
y − 1)/2 (3.39)

and the average momentum

P [f ] =

∫ ∫
pf(θ, p, t)dθdp (3.40)

as well as the normalization of the distribution

µ[f ] =

∫ ∫
f(θ, p, t)dθdp = 1. (3.41)

The adequacy of such a scheme can be also tested via direct numerical simula-
tions. We here present the computer simulations performed by Antoniazzi et

al. aimed at confronting the N-body scenario to its corresponding continuous
picture [60]. The algorithm employed to solve the Vlasov system in phase space
is based on the so-called “splitting scheme”, a common strategy in numerical
fluid dynamics. N-body simulations are performed for various choices of the
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Figure 3.6: Particle velocity distribution functions for U = 0.69 and different initial
magnetization: (a) M0 = 0.3, (b) M0 = 0.5, (c) M0 = 0.7. The solid lines refer to the
solutions of the Vlasov equation (3.38), while the symbols correspond to the N -body
simulations. The picture in (d) is the same as (a), but it has been plotted in logarithmic
scale, in order to emphasize the agreement in the tails of the distributions. The figure
is taken from [60].

number of simulated particles (103 to 106). As it should be clear from the
above, one expects that the macroscopic observables measured in the Hamil-
tonian discrete setting superpose to the homologous Vlasov quantities, over a
time interval which gets progressively larger for increasing N . This conclu-
sion is unambiguosly reached in [60]. We here solely present the comparison
between the velocity probability distribution functions relative respectively to
the continuum and N -body settings: The profiles are reported in Fig. 3.6 and
display an excellent agreement. Curves refer to a large enough number of
simulated particles (N = 106), with respect to the selected time of integra-
tion (the larger the number of N the longer the time for which the agreement
is expected to hold). Motivated by such a nice correspondence, one wish to
gain analytical insight into the QSS by resorting to the Vlasov scenario. This
is eventually achieved by elaborating on the Lynden-Bell maximum entropy
principle, to which next section is entirely devoted.
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3.3 Lynden-Bell statistics explains the QSS and re-
veals the exixtence of an out-of-equilibrium phase
transition

The approach proposed by Lynden-Bell, and presented in his seminal paper
in 1967 [9], is elaborated within cosmological context and aims at explaining
the observable stars distributions in elliptical galaxies. For infinite number
interacting bodies, the system reduces in fact to a Vlasov equation, gravity
being the governing force. Similarly to what observed above, galaxies are QSS
which do correspond to statistical equilibria of the Vlasov dynamics. After an
initial rapid evolution, the function f becomes progressively more filamented
and stirred at smaller and smaller scales, without attaining any final stable
equilibrium. However, averaging over larger windows in phase space which
encompass the above filamentations, one obtains a coarse-grained function f̄
that is smooth and likely to converge toward an equilibrium state.

Thus, assuming the dynamics of each coarse-grained element of f to satisfy
a mixing hypothesis during the violent relaxation process, one can naturally
infer that the QSS corresponds to a statistical equilibrium of equation (3.34).
Like in the usual Boltzmann approach, one assumes that all the possible mi-
crostates are visited with the same probability, during the mixing dynamics.
Hence the equilibrium is obtained as the most probable macrostate f̄ , i.e. the
one that maximizes the mixing entropy, consistent with all the constraints
imposed by the dynamics.

We shall here focus on the family of water-bag initial distributions, which
correspond to a uniformly occupied rectangle in phase space (θ, p) (3.17). The
mixing entropy is the logarithm of the number of microscopic configurations
associated with the same macroscopic state characterized by the probability
density f̄(θ, p) [9, 61, 62]:

s = ln[W ({f̄})]. (3.42)

To get the number W the phase space is discretized into a finite number of
macrocells [q, q + dq] × [p, p + dp], the volume dp × dq being much smaller
than the whole phase space. Dividing these macrocells in ν microcells with
size h smaller than the fine-grained distribution, these can be either occupied
by the level f0 or 0, one excluding the other, similarly to Pauli principle. A
combinatorial calculation detailed in [9, 51] yields to the final expression:

s(f̄) = −
∫ [

f̄

f0
ln
f̄

f0
+

(
1 − f̄

f0

)
ln

(
1 − f̄

f0

)]
dθ dp. (3.43)

where in particular the limit (hν) → 0 has been performed. Let us emphasize
that this conclusion is fully justified from first principle and follows a direct
counting process, as in the spirit of conventional statistical mechanics. The
initimate nature of the Vlasov dynamics enters the picture via the exclusion
principle, a direct consequence of the Casimirs invariance which makes the
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Lynden-Bell statistics very similar to the Fermi-Dirac one. The analogy is
purely formal since the contexts are different, as already emphasized in [21, 61].
Moreover, it is worth stressing that in the limit f0 → ∞ such additional
contribution can be neglected: The usual Boltzmann-Gibbs statistics is hence
recovered.

In order to compute the equilibrium distribution, one has to maximize
expression (3.43), while imposing the conservation of the invariants. Consider
the HMF model and refer to the water-bag initial conditions (3.17), the two
levels being respectively f0 = 1/(4∆θ∆p) and 0. Each element of the water-bag
family is completely specified by the associated internal energy U and initial
magnetization M0 = (Mx0,My0)

3.
The maximum entropy solution is derived from the constrained variational

problem:

S(e, σ)=max
f̄

(
s(f̄)

∣∣∣∣h(f̄) = e;P (f̄ ) = σ;

∫
dθdpf̄ = 1

)
. (3.44)

The problem is solved by introducing three Lagrange multipliers β/f0, λ/f0

and µ/f0 for respectively energy, momentum and normalization. This leads,
after some calculations, to the following analytical form of the distribution

f̄(θ, p) = f0
e−β(p2/2−My [f̄ ] sin θ−Mx[f̄ ] cos θ)−λp−µ

1 + e−β(p2/2−My[f̄ ] sin θ−Mx[f̄ ] cos θ)−λp−µ
. (3.45)

Again we notice that this latter differs from the Boltzmann-Gibbs distribution
because of the “fermionic” denominator which is originated by the form of the
entropy. Besides, it clearly manifests non-Gaussian features in the core, while
the tails decay exponentially, as for usual Maxwellian profile.

The variational problem (3.45) results in a system of implicit equations
that can be tackled numerically. Multiple stationary solutions are in prin-
ciple possible. To identify the global maximum, which in turn corresponds
to the equilibrium state, one has to punctually evaluate the entropy in cor-
respondence of the selected stationary points. Depending on the predicted

value of M =
√
M2

x +M2
y , we can ideally distinguish between two distinct

regimes: The homogeneous case corresponds to M ≃ 0 (non-magnetized),
while the non-homogeneous (magnetized) setting is found for M 6= 0 distribu-
tions. Indeed the predictions of the Lynden-Bell equilibrium (3.45) are derived
scanning the parameter plane (M0, U), which we recall univocally identify the
initially selected water-bag distribution. The underlying scenario, as first rec-
ognized in [25], is depicted in Fig. 3.7. When fixing the initial magnetization

3In general, one should consider also the average momentum P =
R

dpdθpf0, but we here
assumed the distributions to be centered around (θ, p) = (0, 0), which clearly implies P = 0.
This is not a restrictive choice: a non-zero average momentum results in the same evolution,
with the superposition of a constant translational drift.



48 3. The HMF model: equilibrium and out-of-equilibrium features

and decreasing the energy density, the system undergoes a phase transition,
from homogeneous to magnetized QSS. The plane can be then formally di-
vided into two zones respectively associated to an ordered non-homogeneous
phase, MQSS 6= 0, (lower part of Fig. 3.7), and a disordered homogeneous
state, MQSS = 0 (upper part). These regions are separated by a transition
line, collection of all the critical points (M c

0 , U
c), which can be segmented into

two distinct parts. The dashed line corresponds to a second order phase tran-
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Figure 3.7: Theoretical phase diagram in the control parameter plane (M0, U) for
a rectangular water-bag initial profile. The dashed line stands for the second order
phase transition, while its continuation as a full line refers to the first order phase
transition. The full dot is the tricritical point. The green zone corresponds to forbidden
domain of the parameter space.

sition, meaning that the magnetization is continuously modulated, from zero
to positive values, when passing the curve from top to bottom. Conversely,
the full line refers to a first order phase transition: Here, the magnetization
experiences a sudden jump when crossing the critical value (M c

0 , U
c). First

and second lines merge together in a tricritical point approximately located at
(M0, U) = (0.2, 0.61). Such a rich out-of-equilibrium scenario results from a
straightforward application of the Lynden-Bell theory and proves extremely ac-
curate versus direct simulations based on the discrete formulation of Eq. (3.2).
The existence of phase transition is in particular numerically confirmed. The
values of the critical parameters (U c, M c

0) and the order transition are correctly
predicted. More recent evidence on the adequacy of the Lynden-Bell scenario
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for the HMF model are reported in Staniscia et al. [63] where the presence
of re-entrance phases is demonstrates. Lynden-Bell theory constitutes indeed
a powerful analytical tool which enables one to characterize the global prop-
erties of QSSs and unravel their unexpected richness. Having recognized the
existence of at least two different classes of QSS points out the need of further
clarifying the issue of their time duration. Is the scaling N1.7 universal or,
conversely, does it apply only under specific condition? In the following we
settle down to further explore this important point.

3.4 On the lifetime of homogeneous and magnetized
QSS: Different scalings, numerical simulations and
kinetic theory

Let us start by reviewing the available results on the time duration of the QSS
for the HMF model. As already mentioned in Section 3.1.2, Yamaguchi et al.

reported in [17] that the lifetime of the QSS diverges as N1.7 when increasing
the system size. Their numerical simulations refer to initially homogeneous
water-bag (M0 = 0) and for a specific choice of the energy (U0 = 0.69), which
lies in the portion of the parameter space yielding to (almost) unmagnetized
QSS (MQSS = 0). Later on, Anteneodo et al. performed an independent
campaign of simulations [64] initializing the system as a water-bag specifed
by the conditions M0 = 1, U0 = 0.69, which admits the equilibrium values
M ≈ 0.31 and T ≈ 0.457 for magnetization and temperature respectively.
When preparing the initial water-bag, Anteneodo et al. set θi = 0 for i =
1, ..., N and assume regularly valued momenta (instead of random ones as
customarily done) with the addition of a small noise to allow for a statistical
realization4. In Fig 3.8 the (average) temporal evolution of the temperature
T (t) =

∑
i〈p2

i 〉/N is plotted. Then, Anteneodo et al. rescaled the time axis by
a factor N1.7, clearly inspired to the the work of Yamaguchi et al.. Different
curves nicely collapse onto each other, see Fig. 3.9, suggesting that the lifetime
of the QSS at M0 = 1 obeys to a scaling law identical to that associated to
the M0 = 0 case. Two comments are mandatory at this point. On the one
hand working at U = 0.69 for M0 = 1, one would expect to find a magnetized
QSS, while Anteneodo data returns homogeneous configuration, as confirmed
by visual inspection of Fig. 3.9. How can this observation reconcile with the
existence of the transition line, as identified via the Lynden-Bell calculation?
Also, having identified the same scaling for two extreme values of M0 (resp. set
to 0 and 1) and energy values respectively below and above the corresponding
transition point, would naively suggest that the QSS lifetime is not sensitive
to the initial water-bag characteristics.

4No specific information is provided in [64] on the strength of the superposed stochastic
contribution. As we shall argue in the following we do believe that the noise is practically



50 3. The HMF model: equilibrium and out-of-equilibrium features

Figure 3.8: Average of time series of the temperature T for U = 0.69 and different
values of the simulated particles N (N = 500 × 2k, with k = 0, ..., 9). Averages
were taken over 2.56×105/N realizations starting from a “isotropic” (regularly valued
momenta) water-bag initial configuration at t = 0. Dotted lines correspond to tem-
peratures at equilibrium, TEQ = 0.476 and at QSS, TQSS = 0.38 (this temperature
corresponds to MQSS = 0 according to the formula U = T

2 + 1
2 (1 −M2)). Figure is

from Ref. [64].

Figure 3.9: Averaged time series of temperature T as a function of t/N1.7. Parame-
ters are the same as in the caption of Fig. 3.8. The figure is taken from Ref. [64].
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The whole picture is however far more complicate as revealed by an inde-
pendent set of measurements performed by Rapisarda and collaborators [49].
In his work, Rapisarda assumed a water-bag initial condition, the particles po-
sition being θi = 0 for all i, which corresponds to setting M0 = 1. The energy
is again U = 0.69, but, at odd with the procedure followed by Anteneodo, the
velocities are randomly assigned with uniform probability. Surprisingly, the
QSS lifetime is now reported to increase linearly with the system size N , see
Fig. 3.10. When it comes to the observed value of MQSS, refined analysis by
Rapisarda himself [65] indicates that inhomogeneous configuration prevails,
in agreement with the Lynden-Bell prediction. Even more astonishingly no
comment is found in the literature concerning the apparent discrepency of the
two studies mentioned above. This puzzle finds its solution, when considering
the work of Campa et al. [66]. In this paper the authors focus on different
classes of initial conditions, all relative to energy density U = 0.69. In partic-
ular they numerically show that when starting from particles equally spaced
both in momentum and positions, the system naturally evolves towards a ho-
mogeneous QSS configuration (even if the system is initiated in a region that
Lynden-Bell theory baptises associated to inhomogeneous QSS). Conversely, if
the particles are initially randomly distributed then the Lynden-Bell partition
into magnetized and demagnetized QSS is respected. Antenodo simulations
falls in the former class (assuming the stochastic perturbation weak enough)
and the system rapidly moves towards a homogeneous QSS, similar to that
faced by Yamaguchi when dealing with the choice M0 = 0 and U = 0.69.
In this respect, following the intriguing dynamical mechanisms identified by
Campa, which still calls for a sound theoretical interpretation, it is quite nat-
ural to expect an analogous dependence with reference to the observed scaling
properties. Completely different is the situation explored by Rapisarda, since
the initial condition chosen in [49] (random distribution) returns preferentially
magnetized QSS.
In conclusion looking with a critical eye to the results published in the lit-
erature one can argue that the QSS characteristics are non trivially affected
by the initial distribution of the particles. The associated duration time gets

equally influenced.

Motivated by this complex, and apparently controversial scenario, we hy-
pothesise that two main scaling exists for the QSS lifetime5: Above the Lynden-
Bell transition line we conjecture a Nα scaling law, α closely resembling the
value 1.7 detected by Yamaguchi and Anteneodo respectively. Conversely, be-
low the Lynden-Bell transition line, we predict a N divergence for the QSS
lifetime, when increasing the number of simulated particles.
To shed light onto this issue and eventually verify the correctness of our inter-

too small to induce any sensible modification from the equally spaced configuration.
5In our study we consider the particles to be randomly distributed within the initial

water-bag domain.
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Figure 3.10: Log-log of the QSS lifetime is reported as a function of the size N , for
U = 0.69 and M0 = 1. The lifetime diverges linerly with N . The figure is taken from
Ref. [66].

pretative picture we turn to numerical simulations. As we shall be discussing in
the following we also argue that the exponent α is indeed 1.5, as suggested by
a lengthy generalization of the kinetic argument proposed in Section 3.2.1. We
have numerically integrated the equations of motion (3.2), by using symplec-
tic 4th-order integrators, the McLaghan-Atela’s algorithms [67]. The timestep
dt = 0.7 was chosen as a trade-off between a good energy conservation (with a
relative accuracy |△E/E| ∼ 10−5) and the possibility to perform long enough
simulations, for relatively large systems, in a reasonable amount of computa-
tion time.
We consider a water-bag initial condition (3.17) where the spatial coordinates
θi randomly populate the interval [−△θ,△θ[, with a uniform distribution.
Analogoulsy, the momenta are assigned into the the interval [−△p, △p[. The

energy follows from U = (△p)2

6 + 1−(M0)2

2 .

We are interested in measuring the duration of the QSS as the system size
is changed. Consider first U = 0.69 for three different values of M0 respectively
set to 0, 0.2, 0.7. All cases fall above the Lynden-Bell transition line and are
hence expected to yield to a demagnetized QSS, for which the scaling Nα,
α ≃ 1.7 applies. In Fig. (3.11) the temporal evolution of the magnetization
versus the rescaled time, t/N1.7, for M0 = 0 is plotted. Distinct curves relative
to different choices of N collapse onto a universal profile, so pointing to the
correctness of the proposed scaling. To further reinforce our conclusion, we
also extract a direct estimate of the equilibration time following the fitting
scheme introduced by Yamaguchi et al. [17] and revisited above, see Eq. (3.19).
In Fig. 3.12 the best fitted value of b(N) is plotted versus log10(N). The
three panels refer to the values of M0 here considered. The superimposed
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Figure 3.11: The magnetization for different values of N versus the rescaled time
t/N1.7 is plotted. Here N = 2 · 103(8), 5 · 103(8), 104(4) and 2 · 104(4) from left to right
(the number in between brackets stands for the number of samples) are reported.
Simulations refer to M0 = 0 and U = 0.69.

dotted line correspond to a power law scaling with α = 1.7 as suggested by
Yamaguchi/Anteneodo investigations. The dashed line is instead calculated
for α = 1.5, and, in our opinion, it also interpolates correctly the data. We
shall return on this important point in the following.

To complete our analysis we here report results of the simulations relative
to the same choice of M0 but different U . In particular we set U = 0.58, i.e.
a value that fall below the Lynden-Bell transition line for all selected values
of M0. The associated QSS are hence expected to be of the magnetized type.
Results of the simulation are presented in Fig. 3.13: Here the time is rescaled
by a factor N , and the curves shows a clear tendence to accumulate over a
universal profile, regardless of the specific N value to which they refer. This
finding is in agreement with Rapisarda’s simulation relative to the specific case
M0 = 1 and more generally suggest that the lifetime of magnetized QSS grows
linearly with the system size.

In conclusion, and based on the above numerical evidence, we suggest that
the QSS lifetime obeys to two distinct scaling depending on the initial pa-
rameters of the water-bag. The different scalings correlate with the out-of-
equilibrium transition line as detected via the Lynden-Bell theory of violent
relaxation. The suggested scenario is summarised in Fig. 3.14.

Let us now concentrate on the possible origin of the different scaling. We
shall be interested in finding a justification for the observed behaviours, which,
we believe, should ultimately stem from kinetic theory. Consider the Klimon-
tovich equation (3.33) and imagine to develop around a homogeneous solution,
as it is the case (after a fast transient) when working above the transition line
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Figure 3.12: Logarithmic timescale b(N) as a function of log10N for U = 0.69 and
three different choices of M0. From top to the bottom, M0 = 0, 0.2, 0.7. The dotted
and the dashed lines represent the laws τQSS = 10b(N) ∼ N1.7 and τQSS = 10b(N) ∼
N1.5 respectively.
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Figure 3.13: The magnetization for different values of N versus the rescaled time t/N
is plotted. Here N = 102(103), 103(102), 5 · 103(8), 104(8) and 2 · 104(4) from left to
right (the number between brackets corresponding to the number of samples). Data
are referred to U = 0.58 and M0 = 0, 0.2, 0.7.
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Figure 3.14: Two scaling laws for the QSS lifetime as a function of the number of
simulated particles are detected: Above the transition line as predicted by Lynden-
Bell theory of violent relaxation, the QSS lasts for a time that diverges as a power
law of the system size, Nα. α = 1.7 fits the data, but the alternative scaling α = 1.5
results equally appropriate. Below the transition line, when magnetized QSS are to
be expected, one observes a linear dependence of the QSS duration versus N , the
size of the system.

of Fig. 3.14. Then, under this condition, it can be shown [58, 12, 61, 62] that
the first order correction to the Vlasov equation, i.e. the collisional term:

1

N
〈∂δv0
∂θ

∂δf0

∂p
〉 (3.46)

(where the zero index indicates the zeroth order of approximation) van-
ishes. Generalizing the perturbative calculation so to account for higher order
corrections, one can show that the next-to-leading correction to the mean-field
Vlasov scenario scales as 1/N1.5 [68]. This in turn suggests that the system
migrates from the ideal Vlasov setting on time scales which get longer and
longer when increasing the system size and in particular diverging as N1.5, in
quantitative agreement with the results of our simulations.

In the opposite regime, when the QSS is magnetized, and so intrinsically
non homogeneous, one cannot drop the collisional term (3.46), this later is
in principle present and contributes with a non-zero forcing which drives the
relaxation to equilibrium. The equilibration time is hence expected to diverge
linearly with N , as seen in our simulations.



Chapter 4

Analytical results on the

magnetization of the

Hamiltonian Mean Field

model

———————————————————————————–

As discussed in the previous chapter, the Lynden-Bell theory returns a
rather accurate description of the QSS phenomenology in the HMF model.
This is an approximate statistical based approach which builds on the un-
derlying Vlasov picture, formally recovered in the limit for diverging system
sizes. Alternatively, one could resort to a dynamical description which should
however originates from the relevant Vlasov setting.

Motivated by this observation, we here focus both on the HMF violent re-
laxation process and the subsequent QSS regime within the associated Vlasov
scenario. To anticipate our findings, we shall exploit an Hamiltonian formal-
ism to derive analytical expressions for the global magnetization as function of
time. Recall that the magnetization is a macroscopic observable which is di-
rectly influenced by the microscopic, single particle trajectory. It is in general
particularly cumbersome to bridge the gap between the microscopic realm of
the many-body interacting constituents and the macroscopic world of collec-
tive dynamics. A recipe is here provided and succesfully tested versus direct
numerical simulation. We shall be in particular concerned with inspecting two
opposite dynamical regimes, respectively high and low energy ones.

As an additional point, and still exploiting the formalism being here put for-
ward, we shall analytically characterize the out-of-equilibrium phase transition
separating homogeneous and non-homogeneous QSS, as previosuly discussed.
This is achieved by monitoring the initial relaxation of the magnetization,
as a function of reference key parameters, and targeting the first peak value

57
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as the control quantity. The parameter space is hence partitioned into two
regions, depending on the magnetization amount, a finding which positively
correlate with direct numerics. The proposed method is rather flexible and in
principle applies to other settings, beyond the class of water-bag initial condi-
tions here adopted. We shall hence dispose of an ad hoc strategy to predict
out-of-equilibrium phase transitions, with reference to an ample spectrum of
experimental settings, and extending over previous investigations [25].

In the next section, we start by dicussing the analytical foundation of the
so-called Bracket Method, making reference to the specific HMF case study.

4.1 Model and methods

4.1.1 Lie-Poisson structure of the Vlasov equation

We start by recalling the HMF Hamiltonian:

H =
N∑

i=1


p

2
i

2
+

1

2N

N∑

j=1

[1 − cos(θi − θj)]


 , (4.1)

where (θi, pi) are canonically conjugate variables which means that the Poisson
bracket giving the dynamics (Hamilton’s equations) is given by

{F,G} =
N∑

i=1

(
∂F

∂pi

∂G

∂θi
− ∂F

∂θi

∂G

∂pi

)
.

In the continuous limit, we know that we can consider an Eulerian descrip-
tion of the system, which gives the dynamical evolution of the distribution of
particles f(θ, p; t) in phase space via the following Vlasov equation:

∂f

∂t
= −p∂f

∂θ
+
dV [f ]

dθ

∂f

∂p
, (4.2)

where V [f ](θ) = 1 − Mx[f ] cos θ − My[f ] sin θ. The magnetization M [f ] =
Mx + iMy is defined as

M [f ] =

∫∫
feiθdθdp, (4.3)

where the integrals are taken over [−π, π]×R. Equation (4.2) can be cast into
a Hamiltonian form where the (infinite dimensional) phase space is composed
of the functions f(θ, p) of ] − π, π] × R. The Hamiltonian is given by

H[f ] =

∫∫
f
p2

2
dθdp− Mx[f ]2 +My[f ]2 − 1

2
, (4.4)

and the associated Lie-Poisson bracket by

{F,G} =

∫∫
f

(
∂

∂p

δF

δf

∂

∂θ

δG

δf
− ∂

∂θ

δF

δf

∂

∂p

δG

δf

)
dθdp, (4.5)
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for F and G two observables (that is, functionals of f). The functional deriva-
tives δF/δf are computed following the expansion :

F [f + ϕ] − F [f ] =

∫∫
δF

δf
ϕdθdp+O(ϕ2).

The Poisson bracket (4.5) satisfies several properties: bilinearity, Leibniz rule
and Jacobi identity [69, 70]. Its Casimir invariants are given by

C[f ] =

∫∫
c(f)dθdp,

where c(f) is any function of f(θ, p). In particular, the total distribution∫∫
fdθdp is one of such Casimir invariants and hence is conserved by the flow,

as we already discussed. The evolution of any observable F [f ] is then given by

Ḟ = {H,F}. (4.6)

For instance, for F [f ] = f(θ, p), we recover Eq. (4.2). An interesting ob-
servable is the magnetization M [f ] given by Eq. (4.3), which quantifies the
degree of spatial aggregation of the particles. Below the transition line (see
Fig. 3.7), the magnetization relaxes to an out-of-equilibrium plateau, around
which it fluctuates (see Fig. 4.1). In this case, particles are trapped into a
large resonance resulting from the finite magnetization amount (magnetized
state see upper panel of Fig. 4.2). At energies above the critical value, the
magnetization is almost zero (see Fig. 4.1). This is the so called homogeneous
phase (lower panel of Fig. 4.2). We shall return on this important point in the
following, when providing a quantitative interpretation of the switch between
these two regimes, and making contact with the stroboscopic single particle
analysis of Bachelard et al. [71].

The dynamics given by Eq. (4.6) is deduced from the linear operator H.
From the evaluation of the functional derivative of H with respect to f

δH

δf
=
p2

2
−Mx[f ] cos θ −My[f ] sin θ,

we get the expression of H :

H ≡ {H, .}

=

∫∫
dθdpf

(
p
∂

∂θ
+
Me−iθ −M∗eiθ

2i

∂

∂p

)
δ

δf
. (4.7)

In the algebraic computations that follows, we make an explicit use of the
linearity of H and Leibniz rule:

H(F + αG) = HF + αHG,
H(FG) = FHG+ (HF )G.
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Figure 4.1: Real part of the magnetization given by Eq. (4.3) as a function of time
obtained by integrating the dynamics given by Eq. (4.6) for M0 = 0.6. The system
reaches either a finite-magnetization for low energies (U = 0.4, in blue), or a low-
magnetization for high energies (U = 3, in red). The plain lines refer to simulations
described in Section 3.4 with h = 0.01 and for N = 10000, while the dotted lines come
from the predictions given by Eq. (4.10) for k0 = 20.
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Figure 4.2: Phase space portrait of the system (4.1) once saturation has been
reached for M0 = 0.6: The low energy regime (U = 0.5, upper panel) is characterized
by one large cluster of particles, whereas for higher energies (U = 1.7, lower panel),
phase space is quite homogeneous, except for two clusters at ± 2.2 (i.e. moving in
opposite directions).
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4.1.2 Bracket method

The Bracket Method is based on the H operator, that contains the equations
of motion of the system and dynamical evolution of every observable:

F [f ](t) = etHF [f0], (4.8)

where f0 is the initial distribution. The operator etH can be explicitly calcu-
lated only in a few cases but it is possile to use the natural expansion of this
operator that reads as

etH =

∞∑

k=0

tk

k!
Hk −→ F [f ](t) =

∞∑

k=0

tk

k!
HkF [f0]. (4.9)

We note here that this method presents some big advantages:

• It is possible to extend the k0 expansion to higher order only applying the
operator H more times, the coefficients of the series HkF are obtained
recursively by applying H on the previous term Hk−1F . One can arrive
at every level of precision without modifing the model at all.

• The method has an explicit dependence on the initial conditions.

• The procedure is valid for every initial conditions and this features is a
useful tool to investigate the out-of-quilibrium violent relaxation of the
system.

Here we compute a finite number of terms in this series in order to obtain
a Taylor expansion for the solution of the dynamics of F :

F [f ](t) ≈
k0∑

k=0

tk

k!
HkF [f0], (4.10)

where k0 is the truncation parameter. Of course, this approximation is accu-
rate up to some time t depending on k0. A convergence over longer times is
expected for increasing k0.
At this point we need to derive the operator Hn. Since more accurate pre-
dictions need larger n we have to implement a numerical method to make the
calculations as fast as possible even with a high-order expansion.
Since the evaluation of the Hn operator involves derivatives, functional deriva-
tives and integrals we need a sort of trick to skip the problem.
We consider the subspace of functions composed by sums and products of the
following elements (which are also functionals of f):

bn,m[f ] =

∫∫
dθdpfeinθpm,
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where (n,m) ∈ Z × N. We notice that the main observables of the system
such as the n-th order magnetization Mn =

∫∫
einθfdθdp or the momenta

Pm =
∫∫

pmfdθdp of the system belong to this family. This family is stable
by the action of H given by

Hbn,m = inbn,m+1 +
m

2i
(b1,0bn−1,m−1 − b−1,0bn+1,m−1). (4.11)

We notice that only positive values of m are involved in the iterations of the
recursion relation since the second term is proportional to m. Taking into
account the linearity and the Leibniz rule for H mentioned in the previous
section, the derivation of the short-time evolution (4.10) of a given observable F
is computed algebraically as a sum of products of elements bn,m. For instance,
the magnetization is given by M = b1,0 and its first order evolution is obtained
from Eq. (4.11):

M(t) = b1,0[f0] + tHb1,0[f0] +
t2

2
H2b1,0[f0] +O(t3),

= b1,0[f0] + itb1,1[f0] + i
t2

2
Hb1,1[f0] +O(t3),

= b1,0[f0] + itb1,1[f0]

+
t2

2

(
−b1,2[f0] +

1

2
(b1,0[f0] − b−1,0[f0]b2,0[f0])

)

+O(t3).

Of course, a satisfying approximation of the time evolution of any observable
needs a large number of terms in the expansion (4.10). At a given time t, the
number of terms necessary to obtain a reasonably good approximation of the
dynamics depends on the initial distribution f0 as it is shown in Fig. 4.1 where,
at low energies, the accuracy extends to longer times than at high energies.
In addition, we need to specify the initial distribution which will be used to
compute bn,m(0) necessary to complete the computation of the approximate
evolution. In the following sections, we use a water-bag distribution as initial
condition.

4.1.3 Initial conditions

Also in this case and to make contact with the previous investigations, we use
a water-bag initial condition. Let us recall that the initial distribution f0(θ, p)
is equal to 1/(4∆θ∆p) if (θ, p) ∈ [−∆θ,∆θ[×[−∆p,∆p[ and zero otherwise.
The values of bn,m at t = 0 can be computed explicitly in this case and read

bn,m(0) =
(∆p)m+1 − (−∆p)m+1

2(m+ 1)∆p
sinc(n∆θ),

where sinc(·) = sin(·)/(·). In particular, we notice that bn,m(0) = 0 for m
odd. The water-bag is characterized by two parameters (∆θ,∆p). Instead we
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consider the initial magnetization M0 and the energy U to label the initial
conditions:

M0 ≡ b1,0(0) = sinc(∆θ),

U ≡ 1

2
(b0,2 − b1,0b−1,0 + 1) =

∆p2

6
− M2

0 − 1

2
.

In the following, we investigate the high energy U ≫ 1 and low energy U ≪ 1
limits for the initial distribution.

4.2 Analytical results

The first terms of the expansion for the magnetization M(t) given by Eq. (4.10)
(for a water-bag initial distribution) are listed in Tab. 4.1 up to sixth order in
time. We notice that the number of terms in the expansion increases expo-
nentially, making such expressions difficult to handle in practice. In Fig. 4.1,
we notice that even with k0 = 20 which involves approximately one thousand
terms, a good agreement is observed only up to t = 2. In Fig. 4.3, the al-
gebraic expressions for the magnetization obtained by Eq. (4.10) are plotted
at different orders. Other than the initial regime, if one is interested in the
intermediate regimes, the only hope is to find the governing rules behind this
algebraic computations in order to draw some conclusions. This is the case
for the low and high energy limits where the leading terms of the expansion
can be extracted to all orders. These simplifications allow us to derive some
dynamical properties of the system.

Table 4.1: First terms in the expansion of the magnetization M(t) given by Eq. (4.10)
for the water-bag initial distribution.

t2/2! ∆p0 (1 − sinc(2∆θ))M0/2
∆p2 −M0/3

t4/4! ∆p0 (1 − 2 sinc(2∆θ) + sinc(2∆θ)2 − 4M2
0 + 4M0 sinc(3∆θ))M0/4

∆p2 −2 (3 sinc(2∆θ) + 1)M0/3
∆p4 M0/5

t6/6! ∆p0 (1 + 3 sinc(2∆θ) + 64M2
0 + 3 sinc(2∆θ)2 + 26M0 sinc(3∆θ)

+98M2
0 sinc(2∆θ) − sinc(2∆θ)3 − 34M2

0 sinc(4∆θ)
−26M0 sinc(2∆θ) sinc(3∆θ))M0/8

∆p2 (−202 sinc(2∆θ)M0 − 51 sinc(2∆θ)2 + 58 sinc(2∆θ) + 138M2
0

−7)M0/12
∆p4 (−239 sinc(2∆θ) + 23)M0/30
∆p6 −M0/7
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Figure 4.3: Magnetization M(t) versus time for M0 = 0.2 and U = 0.6. Dotted
black curve refers to simulations (see Fig. 4.1). Solid curves represents the algebraic
expansions at various orders, from the 4th to the 20th order.

4.2.1 High-energy limit

First we consider the high energy limit, which corresponds to ∆p ≫ 1 in
the initial water-bag. In this regime, since the kinetic term is dominant, the
dynamics is driven by the reduced Liouville operator, which takes into account
only the kinetic term

HHE =

∫∫
dθdpfp

∂

∂θ

δ

δf
. (4.12)

From Eq. (4.11), the successive actions of H on bn,m is given by

Hkbn,m = (in)kbn,m+k.

For the water-bag initial distribution, it is straightforward to deduce the evo-
lution of the magnetization of order n:

Mn(t) = Mn(0)sinc(n∆pt). (4.13)

The magnetization envelop exhibits a slow decay (as 1/(∆pt)) towards the
asymptotic (equilibrium) state M = 0 (see Fig. 4.4).

The profile obtained from numerical simulations is correctly interpolated
over a finite time window by Eq. (4.13). As U is increased, the agreement gets
better, even if deviations from Eq. (4.13) are observed at later times. Such a
discrepancy is due to the cumulative effects of the neglected contributions in
∆p (see Tab. 4.1).

It is known [71] that, for large values of the energy, and for any given ini-
tial magnetization, two large resonances spontaneously develop and effectively
divide the available phase space into independent regions. Such resonances
move in opposite directions, over the unit circle. Their velocity pr is identical
in modulus and tends to grow as the energy is increased. This is indeed a
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Figure 4.4: Real part of the magnetization M(t) versus time for M0 = 0.6 and U = 20.
The solid red line refers to direct simulations (see Fig. 4.1), while the dashed blue one
stands for the approximate solution (4.13).

recent observation put reported in [71] which points to a different, dynamical
interpretation of the out-of-equilibrium phase transition first observed in [25].
It was in fact argued by Bachelard and collaborators that tori can form in
phase space as a result of a self-consistent interaction in the thermodynamic
limit. While for a small number N of degrees of freedom the single parti-
cle motion is largely erratic, the trajectories become more and more regular
as N → ∞. These trajectories arise from a low-dimensional time dependent
effective Hamiltonian. Working in this framework, two different regimes can
be identified, as shown in [71]: For large enough energy values, a bicluster
QSS arises, which is then gradually transformed into a monocluster QSS when
reducing the energy amount. To shed light on this issue, Bachelard et al. pro-
ceeded as follows: For fixed M0 and N , they gradually increase the energy U
and reconstructed the stroboscopic motion of single particle resorting to a tech-
nique inspired to the Poincaré sections. More specifically, they considered the
time average M̄ (after a transient) and record the positions and momenta of a
few selected particles (θi, pi) when M(t) = M̄ and dM/dt > 0 (since M typ-
ically shows an oscillatory behavior). The resulting stroboscopic sections are
displayed in Fig. 4.5, showing the two dynamical regimes referenced to above.
The recorded sections are analyzed by identifying the number of resonances
and measuring the associated width and position (both calculated in the p
direction). Results for M0 = 0.6 are presented in [71] and here reproduced in
the lower panel of Fig. 4.6: The shaded region, bounded by the dashed lines,
quantifies the width of the resonances. As anticipated, one can recognize the
typical signature of a bifurcation pattern. Repeating the above analysis for
different values of the initial magnetization M0, allows us to draw a bifurca-
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tion line in the parameter space (M0, U). In the upper panel of Fig. 4.6 this
bifurcation line (full) is compared to Lynden-Bell phase transition (dashed)
lines [25], returning a certain degree of similarity.

In the high energy regime, where the particles organizes in the two reso-
nances, the magnetization M(t) is hence mostly influenced by the instanta-
neous positions of the resonances. A snapshot of the positions of the particles
obtained using N -body simulations is depicted in Fig. 4.2 (lower panel). It re-
veals the two resonances moving in opposite directions (with velocity pr). The
maxima of M(t) are obtained when the two resonances are aligned since the
bunching of particles is maximum in this case. During two successive maxima
of M(t) each cluster travels on a segment of length 2π in θ, which takes a time
2π/pr. On the other hand, according to Eq. (4.13), two successive bumps in
the magnetization are separated by a time interval 2π/∆p. This leads to

pr = ∆p =

√

6

(
U − 1 −M2

0

2

)
, (4.14)

which applies in the high-energy limit. The above prediction is compared with
N -body simulations in Fig. (4.7): The velocity (and corresponding width) of
the resonances is plotted for different energies U (circles). The solid line refers
to the analytical expression (4.14). We notice a very good agreement between
the numerics and the prediction (4.14). As expected, as U decreases, some
discrepancy is observed since the system approaches the phase transition.

The above conclusion and in particular Eq. (4.13) can be also recovered
using the following argument: In the high energy limit, the particles move
essentially freely. The potential energy accommodates for just a small fraction
of the total energy. Under this hypothesis, the individual phase θ evolves as:

θ(t) = θ0 + p0t

where the index 0 refers to the initial position of a single particle. From the
definition of the magnetization, once a change of variables has been applied
from (θ, p) to (θ0, p0), we obtain:

Mn(t) ≈
∫∫

ein(θ0+p0t)f(θ0, p0)dθ0dp0,

and Eq. (4.13) is recovered.
The next step is to incorporate the additional contributions, so far ne-

glected. In particular, we focus our attention on the terms t2n∆p2n−2 in
Tab. 4.1. For ∆θ ≈ π (i.e. M0 ≪ 1), the dominant term is −M0∆p

2t4/36
since all the other terms are of higher order in M0. This latter can be seen as
originated from a modification of Eq. (4.13) where a constant factor c is being
introduced as:

M(t) = M0sinc(t
√

∆p2 − c). (4.15)
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Figure 4.5: Poincaré sections of a few selected particles relative to N = 2 × 105 in
the QSS regime for two different water-bag initial conditions : (M0, U) = (0.6, 0.54)
(upper panel) and (M0, U) = (0.6, 0.88) (lower panel). The stroboscopic analysis
enbales us to visualize the presence of two distinc dynamical regimes: The single
cluster (upper panel), which gives a non-zero magnetization QSS (MQSS ≈ 0.5), and
the bicluster regime (lower panel). In this latter case the presence of a large set
of rotational tori implies a substantially lower magnetization level, whereas the libra-
tional tori around the two clusters are responsible for the residual magnetization. The
color code corresponds to the values of the action variable associated with individual
particles. Figure taken from Ref. [71].
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Figure 4.6: Upper panel: Phase diagram in the control parameter plane (M0, U) of
the out-of-equilibrium phase transition of the HMF model from a magnetized to the
(almost) demagnetized phase. The solid curve pinpoints the position of the bifurca-
tion from the monocluster to the bicluster QSS. The dashed line stands for the theo-
retical prediction based on Lynden-Bell’s violent relaxation theory. The star refers to
the tricritical point separating first from second order phase transitions. Lower panel:
The bifurcation is monitored as function of U , for M0 = 0.6. The grey zones refer to
the width of the resonances. Figure taken from Ref. [71].
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Figure 4.7: The velocity of the resonances (in the high energy regime) as a function
of the energy U for M0 = 0.7. The circles refer to the velocities obtained numerically
using N -body simulations (see Fig. 4.1). The vertical bars delimit the width of the
resonances in the p-direction. The solid line is given by Eq. (4.14), and the dashed
line by Eq. (4.15).

The coefficient of ∆p4t4 of Eq. (4.13) is replaced by ∆p4t4−2c∆p2t4. Therefore
c = 5/3 matches the dominant term −M0∆p

2t4/36, corresponding to the order
n = 2 . The approximation of the magnetization given by Eq. (4.15) is in better
agreement with the numerical simulations. In particular for the position of the
resonances, Eq. (4.15) gives pr =

√
∆p2 − c, which is closer to numerical values

as shown Fig. 4.7 (dashed line). However, this additional term does not balance
the analogous contributions associated with higher orders (n > 2) for which
a slightly different value of c is required. Deviations are however reasonably
small (less than 10 %) over the range of inspected coefficients. The above
argument can be extended to the case where ∆θ < π, so accounting for the
terms proportional to M0: In practice, an additional term of the type c1M0 is
introduced in the square roots of Eq. (4.15) where c1 is a constant.

4.2.2 Low-energy limit

We now consider the low-energy limit U ≃ (1 −M2
0 )/2, that is ∆p ≪ 1. We

notice that this limit is close to the line which marks the forbidden region
in the parameter space (M0, U) (see Fig. 3.7). In what follows, we find an
approximation of the coefficients of M(t) proportional to ∆p0. We first observe
that the Liouville operator (4.7) either increases or decreases by one order the
exponent of p. Thus, the odd powers HkM contain a set of elements bn,m with
m odd. For the water-bag initial distribution, such terms vanish, so M(t) is
an even function. Then, the recursion relation (4.10) is generated by H2. In
the low-energy limit, if the kinetic terms are neglected, we get

H2bu,0 ≈ u

2
(b1,0bu−1,0 − b−1,0bu+1,0) . (4.16)
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An algebraic expression of the magnetization in the low energy limit is
obtained by studying the sequence of terms at the lowest order. In this way,
we approximate M as

M(t) ≈
∞∑

n=0

(
αnb1,0 + βnb−1,0b2,0 + γnb−1,0b

2
1,0

) t2n

2n!
. (4.17)

Using Eq. (4.16), we deduce that, at a given order n+ 1, the b1,0 term comes
from the b1,0 term at order n, with αn+1 = αn/2. From this recursion relation,
we deduce the formula

αn =
1

2n
. (4.18)

The b−1,0b2,0 term at the order n + 1 is generated from both the b1,0 and the
b−1,0b2,0 terms at the lower order n. The recursion relation becomes βn+1 =
(βn − αn)/2, which leads to

βn = − n

2n
. (4.19)

The third term in b−1,0b
2
1,0 is not only generated through the reduced operator

given by Eq. (4.16), but also from other nonlinearities: The latter terms have
been neglected in Eq. (4.16), but appear when considering H4 (and possibly
higher powers of H) in the low-energy limit. We resort to an ansatz for γ2n,
fitting the coefficients derived algebraically up to γ10:

γn ≈ −1

9

(
9

2

)n

, (4.20)

for large n. It follows that the magnetization in the low-energy regime is
approximated by

M(t) ≈ M0cosh

(
t√
2

)
−M0M2(0)

t

2
√

2
sinh

(
t√
2

)

−M3
0
1

9
cosh

(√
9

2
t

)
. (4.21)

This expression of the magnetization is compared with numerical simulations
in Fig. 4.8. We notice the good agreement up to the saturation regime. As
expected, for longer times, the approximation gets worse due to higher order
nonlinearities which have been neglected.

4.2.3 Out-of-equilibrium phase transition

As previously reported, increasing the energy U at a fixed value of the initial
magnetization M0 leads to a drastic change in phase space which material-
izes as an out-of-equilibrium phase transition [25] from an inhomogeneous to
a homogeneous phase. This phenomenon has been faced in the previous chap-
ter by invoking a principle of entropy maximization (Lynden-Bell theory [9]).
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Figure 4.8: The magnetization M(t) is plotted versus time, in the low-energy regime
(U = 0.01), for M0 = 0.2 (blue curves) and 0.6 (red curves). The solid lines refer to
Eq. (4.21), the dotted ones to simulations (the numerical experiment’s details are the
same as those specified in Fig. 4.1).

Another dynamical explanation of such transition comes from a bifurcation
analysis in phase space [71].

We here show that the transition can be also retrieved when tracking the
short-time behavior of the magnetization. It means that the system relaxes
very quickly in its metastable phase. The idea goes as follows: We monitor the
magnetization dynamics via the analytical expression obtained from Eq. (4.10)
and store the first local maximum, for each choice of the pair (M0, U). In case
the series diverges, without passing through a local maximum, the intensity
is recorded when its derivative crosses a given threshold (as a polynomial,
it eventually explodes). We choose k0 = 20 in the algebraic computations.
The resulting values of the magnetizations are displayed in Fig. 4.9 adopt-
ing a color code which continuously interpolates between the large (M ≈ 1)
and small (M ≈ 0) magnetization. As clearly shown, the upper portion of
the parameter plane corresponds to almost homogeneous configurations while
magnetized phases are observed as the energy is reduced for fixed M0. This
scenario qualitatively agrees with direct numerical integrations, as confirmed
by inspection of Fig. 4.10. In the N -body simulations, the available parameter
space (M0, U) is partitioned in small cells, each associated with a reference
water-bag distribution (that is, a two-level distribution). The QSS magneti-
zation is measured by averaging the numerical time series over a finite time
window after relaxation. The average QSS magnetization is then represented
using the same color code as above. When comparing Figures 4.9 and 4.10 it
should be emphasized that the QSS regime occurs significantly after the vio-
lent relaxation process, beyond the first local maximum of the magnetization
which is computed here. The results show that the average magnetization as
recorded in the QSS corresponds approximately to these local maxima in the
non-homogeneous phase. A better quantitative matching can be obtained by
considering higher order terms (larger k0). Even though, improving the accu-
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racy of the theoretical analysis is a crucial requirement, already at this level of
approximation it emerges a phase transition as clearly shown in Fig. 4.9. The
difference between first and second order transitions is not clearly evidenced
in the figure. However, in correspondence of the region that we know from
Lynden-Bell analysis to be deputed to a first oder transition, a sharper jump
between dark red and dark blue colors is appreciated, when compared to the
continuos degradation in chromatic tonality as displayed elsewhere. It can be
thus hypothesized that the method here outlined is potentially able to detect
the order of the transition.

As we already discussed in Chapter 3, a continuous line in parameter space
(M0, U) marking the transition between the magnetized and unmagnetized
phases can be computed on the basis of Lynden-Bell procedure shown in Sec-
tion 3.3. Notice that the Lynden-Bell scenario recalled here formally applies to
the water-bag initial condition from which the fermionic principle is derived.
Different energy functionals are at variance to be assumed when dealing with
more complex initial conditions and there is no a priori guarantee that the
maximum entropy strategy would perform equally well. Aiming at extract-
ing a transition line from the viewpoint of the bracket calculation, one could
impose a critical threshold Mc to the magnetization: First local maximum
values of the magnetization larger than Mc are assumed to yield a magne-
tized QSS, while for magnetization below the reference value Mc the system
evolves toward a homogeneous QSS. The (arbitrary) choice Mc = 0.4 leads to
a transition line (dashed line in Fig. 4.10) which resembles qualitatively the
Lynden-Bell line (solid line). Notice that magnetized patches are numerically
seen to extend over the region of homogeneous QSS, so effectively deforming
the transition boundary in a non trivial way. Interestingly, such islands are
entrapped in the wiggles of the bracket transition profile.

In conclusion, the bracket method returns sensible information on the ex-
istence of an out-of-equilibrium transition, so resulting in a powerful tool for
those generalized settings where the Lynden-Bell ansatz proves inadequate (as
for instance, for Gaussian initial conditions) or, at least, cumbersome (e.g.
multi-level initial distribution).

4.3 Conclusion

In this chapter we have focused on the HMF short time dynamics, which ulti-
mately governs the QSS emergence. An analytical treatment is proposed which
enables one to characterize the time evolution of key collective variables. The
idea is to develop an algebraic technique based on the Lie-Poisson structure of
the HMF dynamics. In doing so we are able to return an analytical prediction
for the global magnetization as a function of time, a macroscopic parameter
sensitive to the microscopic particles evolution. Two limiting cases are explic-
itly considered, respectively the high and low energy settings, and shown to
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Figure 4.9: Map of the magnetization evaluated at the first local maximum of
Eq. (4.10) in the (M0, U ) plan, see text for details. The data refer to the theoreti-
cal prediction calculated for k0 = 20. The white region is the forbidden one.
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Figure 4.10: Map of the QSS magnetization in the (M0, U ) plan, as recorded via direct
N -body simulations (N = 10000). The solid line refers to the Lynden-Bell prediction.
The dashed line stands for the bracket transition line with threshold magnetization
set to Mc = 0.4.
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yield to tractable expressions for the magnetization amount. In general, and
due to the perturbative nature of the calculation, the full analytic expression
contains a vast collection of terms which are difficult to handle. The num-
ber of terms involved increases rapidly with the order of the approximation
making it practically difficult to address the dynamics in the relevant, satu-
rated, QSS regime. However, targeting the analysis to the first local maxima
in the magnetization, and accounting for 20 orders in the perturbative ex-
pansion, the existence of an out-of-equilibrium phase transition was singled
out, separating between homogeneous and non-homogeneous QSS. This tran-
sition was already analysed in Section 3.3 [25] and interpreted using an ad hoc

maximum entropy principle suited for water-bag initial profiles. Although on
calculations are carried out for the so-called water-bag initial condition, the
technique here adopted is rather flexible and can be readily extended to other,
possibly more general classes of initial conditions, so returning fully predictive
scenarios. We also notice that the proposed method can be adapted to other
contexts where long-range many body interactions are at play. The method
is particularly adapted to short-time dynamics (transients, metastable states,
violent relaxation, etc. . . ).



Chapter 5

Introducing dilution in the

Hamiltonian Mean Field

model

———————————————————————————–

In this chapter we will continue elaborating on the effects of dilution, this
time examining the case of the HMF model. We shall be in particular inter-
ested in elucidating the out-of-equilibrium dynamics, focusing on the Quasi
Stationary States. This is at variance with the discussion developed in Chap-
ter 2, where we instead addressed the equilibrium feature for the Ising model.

To this end, we will first present a straightforward calculation for the equi-
librium diluted HMF dynamics, the analysis closely resembling that of Chap-
ter 2. Extending the results obtained for the Ising case study, we will here
show that, in the thermodynamic limit, the diluted HMF model behaves, at
equilibrium, as its fully connected analogue, independently on the degree of
dilution.
We will then turn to discussing the results of a dedicated campaign simulations
which enabled us to demonstrate the robusteness of QSS versus the dilution
effects. We shall in particular quantify the QSS duration versus the number
of simulated rotors and shed light onto the role played in this respect by the
dilution amount γ. Within this novel scenario we will also generalize the con-
cept of phase transition as described in Chapter 3 and quickly comment on
the phase space topology as revealed by a Poincaré sections like analysis.

5.1 On the equilibrium solution of the diluted HMF

Adotping the same strategy as in Chapter 2, we will here introduce the dilution
parameter γ which controls the average number of links NL assigned at each
selected node. Assume N to label the total number of particles (sites), then
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NL reads
NL = Nγ/γ! . (5.1)

The HMF Hamiltonian, in presence of dilution can be cast in the form

H =
1

2

N∑

i=1

p2
i +

N

4NL

N∑

〈i6=k〉

Jik

[
1 − cos(θi − θk)

]
. (5.2)

where Jik stands for the coupling strength, that might in principle depend on
the selected pairs (i, k). We start by considering the equilibrium properties of
such a system and so write the canonical partition function as:

Z =
∑

Si

exp (−βH) =
∑

Si

exp
[
− β/2

N∑

i=1

p2
i −

βN

4NL

∑

〈i6=k〉

Jik

(
1− cos(θi − θk)

)]

(5.3)
where θi represents the spin orientation angle. The constants Jik are assumed
to be distributed as

Jik =

{
1 with probability p = 2

γ!N
γ−2

0 with probability 1 − p = 1 − 2
γ!N

γ−2.
(5.4)

The probability distribution is thus written as

P (Jik) = p1δ(Jik − 1) + (1 − p1)δ(Jik), (5.5)

which is completely equivalent to that employed when dealing with for
the Ising model (2.5), with J = 1. We shall hereafter concentrate on the
thermodynamic limit (N → ∞) and prove again that the diluted system always
converges to the corresponding fully coupled for 1 < γ ≤ 2.

To persecute this objective, we compute the averaged logarithm of parti-
tion function 〈lnZ〉J , where, as already mentioned, 〈·〉J denotes the average
over the disorder. More precisely we shall again make use of the replica trick
approximation as defined in (2.6). The HMF replicated partition function
reads:

Zn =
[∑

{Si}

e−βH(Si)
]n

= (5.6)

=
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2 − βN

4NL

∑

a

∑

〈i6=k〉

(
1 − cos(θa

i − θa
k)
)]

=

=
∑

{Sa
i }

exp
[
− β

2

N∑

i=1

∑

a

(pa
i )

2 − βN

4NL

∑

〈i6=k〉

∑

a

(
1 − cos(θa

i − θa
k)
)]

where the index a runs over the n replicas.
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Averaging over disorder eventually yields to:

〈Zn〉J =
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2
]
× (5.7)

×
∑

Jij

P (Jij) exp
[ βN
4NL

∑

a

∑

〈i6=k〉

(
1 − cos(θa

i − θa
k)
)]

=

=
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2
]
×

×
∑

Jij

P (Jij)
∏

i6=j

exp
[ βN
4NL

∑

a

(
1 − cos(θa

i − θa
k)
)]

Recalling Eq. (5.5) one then obtains:

〈Zn〉J =
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2
]
× (5.8)

×
∏

i6=j

[
1 − 2

γ!

1

N2−γ
+

2

γ!

1

N2−γ
exp

[ βNγ!
4Nγ−1

∑

a

(
1 − cos(θa

i − θa
k)
)]]

=

=
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2
]
×

× exp
[∑

i6=j

ln
[
1 − 2

γ!

1

N2−γ
+

2

γ!

1

N2−γ
exp

[ βNγ!
4Nγ−1

∑

a

(
1 − cos(θa

i − θa
k)
)]]]

.

To proceed further we expand the exponential function and the logarithmic
function and retain the leading order in N

〈Zn〉J =
∑

{Sa
i }

exp
[
− β

2

∑

a

N∑

i=1

(pa
i )

2
]
exp

[∑

i6=j

∑

a

−β
2N

(1− cos(θa
i − θa

k)
]

= Zn
∞.

(5.9)
So 〈lnZ〉J = lnZ∞ and the corresponding Hamiltonian:

H∞ =
∑

j

p2
j

2
+
∑

j 6=k

1

2N
(1 − cos(θi − θk)). (5.10)

In conclusion, and as anticipated, for large enough N values and for 1 <
γ ≤ 2 the diluted system is equivalent to Eq.( 3.1). In other words, and irre-
spectively from the dilution amount, system (5.2) is expected to relax asymp-
totically to the equilibrium configuration, which is eventually attained by the
original, fully coupled analogue.
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5.2 On Quasi Stationary States in presence of dilution

We will here focus on investigating the emergence of Quasi Stationary States
for a HMF model on a diluted network. We shall be in particular concerned
with testing the robustness of QSS versus the dilution amount. Are the QSS
still present when the average number of link per node is progressively reduced?
And, in that case, how the duration time scales with the dilution parameter
γ? These are the questions that we plan to address in the following.

Let us start by clarifying the numerical procedure that will be employed in
the forthcoming characterization. The equation of motion of the diluted HMF
model can be readily obtained and read:

θ̇i =
∂H

∂pi
= pi (5.11)

ṗi = −∂H
∂θi

= − 1

2NL

(
sin θi

∑

j∈NL

cos θj − cos θi

∑

j∈NL

sin θj

)

Our numerical implementation relies on a symplectic 4th-order integrator,
the so called McLaghan-Atela algorithm [67]. The timestep here selected is
dt = 0.5.
As for the Ising case, the disorder is of the quenched type: The configuration
of assigned links is fixed for every realization, without being further adjusted
during the simulations. The quantities of interest are averaged over several
configurations of the underlying network of contacts.
To keep contact with the preceding discussion, we will limit our analysis to
the water-bag initial condition specified by Eq. (3.17). We recall again that,
for this specific case the initial magnetization and the energy read respectively
(in the large N limit):

M0 =
sin(△θ)

△θ (5.12)

U =
△p2

6
− M2

0 − 1

2
.

the initial condition being therefore completely characterized by the above
two quantities. We begin our discussion by presenting the results relative to
an initially homogeneous distribution (M0 = 0). We focus on two different
choices of the energy, U = 0.58 and U = 0.69, respectively below and above
the transition line point Uc = 7/12.

Consider first the case U = 0.69 which in the fully connected scenario
(γ = 2) is shown to yield to an almost demagnetized QSS. In Figure 5.1 we
report on the temporal evolutions of the magnetization as recorded in our
numerical simulations, for different values of the dilution, and by varying the
system size (three choices of N in each panel, respectively N = 500, 1000,
2000).
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Several observations can be made, as it follows a straightfoward qualita-
tive inspection of the figures. On the one hand the QSSs do exist even in
presence of dilution. The magnetization settles down into an intermediate,
characteristic plateau which is eventually maintained for long times (notice
the logarithmic scale on the x-asis), displaying a sensible dependence on the
number N of simulated particles, as we shall be commenting in the follow-
ing. On the other hand, the value of the magnetization associated to the QSS
regime of Fig. 5.1 is shown to decrease when increasing the system size. We
hence argue that the QSS is of the homogeneous type, as it is indeed found for
the fully connected reference case for the same choice of paramters (U > Uc).
As a final comment, we also stress that the asymptotic value of the magne-
tization is independent on the specific choice of the dilution and compatible,
within statistical fluctuations due to the finite number of realizations, with the
equilibrium value calculated for the fully connected case (Meq ∼ 0.3, solid lines
in the figures). This finding confirms in turn the adequacy of the theoretical
argument developed in Section 5.1.

In Fig. 5.2 we re-order the simulation outputs so to appreciate how the
dilution γ affects the QSS lifetime. The more the system is connected the
longer the QSS survives. We emphasize that, as the dilution takes the lowest
value here considered (namely γ = 1.5), the QSS lifetime gets reduced by two
orders of magnitude, with respect to the corresponding fully connected case.
While QSS are certainly present when dilution is accounted for, they tend to
progressively reduce their duration as γ approaches the limiting value 1, where
they formally fade off.

In order to quantify our observation we turn to measuring the QSS lifetime
τQSS via the very same fitting procedure as introduced in Section 3.4. We
here recall that the sigmoid profile (3.19) can be numerically superposed to
the simulated curves, by properly tuning the free parameters a(N),b(N),c(N)
and d(N). In particular, τQSS is estimated as 10b(N). Result of the analysis
are displayed in Fig. 5.3, where τQSS is plotted as a function of N in log-log
scale, for different choices of γ (symbols). The data follow a power-law trend,
the exponent (slope of the linear profiles) being sensitive to the selected γ.

Starting from this observation, it would be extremly interesting to elaborate
on a reasonble ansatz, physically motivated, which is capable of reproducing the
scaling observed for γ < 2, while converging to the well-known N1.7 solution
as the γ → 2 limit is performed. We stress again that the 1.7 factor is being
suggested to apply when homogeneous QSS are concerned, but our simulations
as reported in Section 3.4 seem equally compatible with the more sound 1.5
choice. We introduce again α to label such a controversial exponent, regardless
of its specific numerical value. A rather natural proposal would be to replace
in the aforementioned relation the global number of degree of freedom N , with
the effective quantity Neff = N (γ−1) which quantifies the average number of
links per node. Under this assumption:
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Figure 5.1: Temporal evolution of the magnetization M(t) for different particle num-
bers N : 500 (green), 1000 (red), 2000 (black). Different panels refer to distinct choices
of γ. Moving clockwise from the top/left panel, γ = 1.8, 1.7, 1.6, 1.5. Solid lines rep-
resent the equilibrium value M ≃ 0.3. The energy of the system is always set to
U = 0.69, and M0 = 0
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Figure 5.2: Temporal evolution of the magnetization M(t) for different values of γ and
for N = 1000 (on the left) and N = 2000 (on the right). The energy of the system is
U = 0.69.
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τQSS ∝ Nα
eff = Nα(γ−1) (5.13)

which reduces to the correct functional dependence when γ is set to 2.
Also, working at fixed N , ansatz (5.13) predicts that the QSS lifetime would
shrink as γ → 1, in agreement with our numerical experiments. In Fig. 5.3
symbols referring to the simulation are compared to the proposed scaling law
(5.13), for both α = 1.7 (black solid lines) and α = 1.5 (red solid lines). A con-
vincing degree of correspondence can be clearly appreciated, so pointing to the
correctness of the proposed scenario. Even more interestingly, our numerical
data seem to be better interpolated by the α = 1.5 choice, this latter possibly
arising in the context of a standard kinetic theory treatment, see Section 3.4.

Before proceeding with our discussion a further comment is mandatory. We
emphasize in fact that, up to this point, we are solely dealing with homogeneous
QSS, the selected energy amount being so far set above the out-of-equilibrium
transition line. Though the analysis is developed with reference to M0 = 0,
the conclusions reached hold more generally and admit a natural extension to
initially bunched (M0 6= 0) water-bag, provided U > Uc. The dual condition
U < Uc is addressed in the remaining part of this section, where U = 0.58 for
M0 = 0.

Consider the upper panel of Fig. (5.4) and (5.5), where the temporal

1000
N
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1000

10000

1e+05

τ Q
SS

Fully
γ=1.8
γ=1.7
γ=1.6
γ=1.5

Figure 5.3: τQSS is plotted versus N . Symbols refer to direct simulation, where the
time duration of the QSS is estimated by resorting to the fitting procedure (3.19), as
discussed in the text. Averages over several realizations are considered. The solid
lines stand for ansatz (5.13) where α is alternatively set to 1.7 (black) and 1.5 (red).

evolution of the magnetization is plotted, for γ = 1.7 and γ = 1.8 respec-
tively. Visually, the evolution shares many similarities with the corresponding
fully coupled scenario: Indeed the system sets down into an intermediate QSS
which is now magnetized. Then the system drifts towards the thermodynamic
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equilibrium, to which the solid horizontal line refers to. Expanding on the pre-
ceding argument and recalling that for magnetized QSS a linear scaling with
N is expected to apply, we are inclined to believe:

τQSS ∝ Neff = N (γ−1) (5.14)

To assess the adequacy of such an ansatz we now plot the time series col-
lected in our numerical esperiments, as a function of the rescaled time t/Nγ−1,
see lower panel of Fig. (5.4) and (5.5). The curves nicely collapse onto each
other, so validating the scenario of Eq. (5.14). Also in this case, such conclu-
sions are shown to apply also for the more general setting where initial bunched
water-bag are selected.

In conclusion we have here proven that QSSs do exist in diluted HMF
dynamics. Their lifetime diverges with the system size, following however a
different scaling depending on the specificity of the selected initial condition.
The effect of the dilution translates into a modification of the scaling exponent,
which is correctly guessed on the basis of an intuitive ansatz.

5.3 Phase transition

In the preceding discussion we have concluded that the high energy (non-
magnetized) state and the low-energy (magnetized) state preserve their iden-
tity, when the dilution is accommodated for. What can we say about the phase
transition separating this two regimes? While it is evident that a transition
still occurs, can one elaborate on the specific role of γ? Is it affecting the
critical value of the energy at which the transition takes place for a given M0

amount? And what about the order of the transition? We shall here provide a
preliminary answer to these questions for the specific case M0 = 0, which, we
recall, yields to a first order out-of-equilibrium phase transition, as evidenced
by the Lynden-Bell variational problem [25].

In Fig. 5.6 (left panel) the temporal evolution of the magnetization is re-
ported for γ = 1.7. Different curves refer to distinct U , scanning the interval
from 0.58 to 0.62. The corresponding transition is represented in right panel
of Fig. 5.6. The transition seem to occur for an energy value larger than 7/12,
i.e. the fully coupled reference value. Additional simulations are however nec-
essary to shed light onto this issue, clarifying the role of finite N corrections,
particularly crucial for diluted graphs. It can be moreover argued that the
dilution mechanism mutates first order into second order transitions.

As a final point, we also enclose a plot of single-particle stroboscopic tra-
jectories in the magnetized QSS (see Fig 4.5 upper panel). In Fig. 5.7 the
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Figure 5.4: In the upper panel the temporal evolution of the magnetization is plotted
for γ = 1.7 and U = 0.58. Different colors refer to different system sizes: green is
N = 100(100), red is N = 1000(10), black is 5000(8), blue is 10000(4). The number
between brackets corrisponds to the number of samples. In the lower panel the
same curves are plotted versus the rescaled time t/Nγ−1. Solid lines represent the
equilibrium value M ≃ 0.5.

dilution is set to γ = 1.95 and the number of simulated particles is N = 5000.
Fig. 5.8 is instead relative to γ = 2 and is obtained by employing an identical
number of simulated particles. It is evident that the tori tickness is more pro-
nounced in the former case when compared to the latter, so favouring mixing
and equilibration. This observation agrees hence with the finding that diluted
QSS last for shorter times as opposed to their fully coupled homologue.
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Figure 5.5: The temporal evolution of the magnetization is plotted for γ = 1.8 and
U = 0.58. Different colors refer to different system sizes: green is N = 100(100),
red is N = 1000(10), black is 5000(8). The number between brackets corrisponds to
the number of samples. In the lower panel the same curves are plotted versus the
rescaled time t/Nγ−1. Solid lines represent the equilibrium value M ≃ 0.5.
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Figure 5.6: In the left panel the temporal evolution of the magnetization is represented
for N = 1000, γ = 1.7 and different energy values. Every curve is averaged over 10
realizations of the system. In the right panel the magnetization in the QSSs (MQSS)
is displayed versus the energy amount.
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Figure 5.7: Poincaré sections of a few selected particles relative to N = 5000 in the
QSS regime for water-bag initial conditions : (M0, U) = (0.7, 0.5). γ is set to 1.95.
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Figure 5.8: Poincaré sections of a few selected particles relative to N = 5000 in the
QSS regime for water-bag initial conditions : (M0, U) = (0.7, 0.5). γ is set to 2.
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Conclusions

In this thesis work we have focused on long-range interacting systems, being
particularly concerned with the special class of mean-field models.

One of the issues that we have here addressed relates to the effect of di-
luting the networks of contacts between microscopic actors. The Ising model
was first analyzed and the associated equilibrium properties discussed ver-
sus the dilution amount. In the thermodynamic limit the system is shown
to be equivalent to its corresponding, fully connected analogue, i.e. the so
called Curie-Weiss model. A prominent role is however played by finite size
corrections, which substantially affect the equilibrium solution, the deviations
becoming more pronounced as the dilution is enhanced. The problem is here
analytically tackled by resorting to a replica based perturbative calculation.
In parallel the cavity method is also employed, so adapting to the case under
inspection a procedure pionereed by Mézard and Parisi in [43]. To validate
our predictions direct numerical simulations are also performed, which unam-
bigously resolve in favour of the cavity approximation when compared to the
replica one. In conclusion, and with reference to the equilibrium behaviour
of our Ising like model, the imposed dilution drastically alters the dynamics
of the system, the corrections being sensible for relatively small populations
of interacting spins. This result warns against an undiscriminate, non crit-
ical usage of straightforward (mean field type) calculations, a practice often
invoked in biological and social modelling contexts. In other words, finite size
corrections do play an important role and need to be carefully addressed.

Long range systems diplay also a rather peculiar out-of-equilibrium dynam-
ics, that we have evoked all along this thesis. We have in particular directed
our attention on the emergence of Quasi Stationary States (QSSs) and inves-
tigated such a fascinating topic with reference to the Hamiltonian Mean Field
(HMF) model. Motivated by the necessity to reconcile apparently contradict-
ing empirical observations, we here conjecture that two different scaling for the
lifetime of the QSSs versus the simulated number of particles exist, depending
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on the initial parameters setting. Our numerics suggest that homogeneous
QSSs last for a time diverging as a super-linear fractional power of the system
size. Conversely, when magnetized QSS are to be expected, a linear divergence
with N is detected. This scenario seems plausible in the light of a simple ki-
netic theory argument.

To provide a dynamical interpretation on the QSS and eventually shed
light onto the associated phase transition, originally understood in the frame-
work of the statistical theory of violent relaxation, we have then developed the
so called Bracket Method. This is an analytical scheme, particularly suitable
for short time investigations, that exploits the Hamiltonian formalism of the
relavant (continuous) Vlasov picture, which ultimately governs the QSS phe-
nomenon. The time evolution of the magnetization is predicted and shown to
correlate with the results of direct numerical experiments. Two limiting cases
are explicitly addressed, respectively the high and low energy settings, and
shown to yield to tractable, closed expressions for the magnetization amount.
Altough approximately, due to the inherent difficulties to handle the vast col-
lection of terms that the full analytic expression contains, the aforementioned
out-of-equilibrium phase transition is singled out, separating between homoge-
neous and non-homogeneous QSS. Even if calculations are carried out for the
so-called water-bag scenario, the proposed technique is rather flexible and can
be readily extended to other, possibly more general classes of initial conditions.
We also notice that the proposed method can be adapted to other contexts
where long-range many-body interactions are at play.

Finally, and to build an ideal bridge with our earlier investigations, we
turned to quantify the effect of an induced dilution in the HMF out-of-equilibri-
um dynamics. To quote our main conclusion, we assess that QSS are robust
versus the dilution effect. Starting from an initial condition of the water-
bag type the system rapidly falls towards an intermediate, long lasting regime
which bears the distinctive features of the paradigmatic QSS. The more the
network of couplings is connected, the longer the QSS survives, at fixed N
amount, before the system relaxes to equilibrium. In other words the dilution
does quantitatively alter the QSS lifetime. In this respect, we have guessed
a physically sound ansatz which is able to reproduce with a satisfying degree
of accuracy the dependence of the lifetime of diluted QSS versus N . A phase
transition is also found in presence of an effective dilution, which seems to
induce a smoothing of the transition line.
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